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Many large-scale data analysis applications involve data that can vary over both time

and space. Often the primary goal of analyzing spatiotemporal data is identifying trends,

movements, and sudden changes with respect to time, location, or both. This can include

a variety of applications in economics (housing prices, unemployment, job movement,

etc), city planning (traffic, power consumption, resource allocation, etc), and ecology

(migration patterns, species variety, habitat change, etc). Like many domains, one of

the major challenges of spatiotemporal data is dealing with noise and missing or un-

trustworthy observations. These uncertainties make it difficult to ascertain the distinct

roles that changes in time and location have on the data. To this end, I have developed

two different approaches for dealing with data uncertainty in different spatiotemporal

applications. The first approach, dubbed the Quantile Scan algorithm, makes use of

quantile regression to more accurately identify anomalous regions in the data. The flex-

ibility of this framework allows ‘anomalies’ to be defined with respect to any quantile of

interest. I develop a version of the Quantile Scan algorithm for analyzing spatial, and

spatiotemporal data. The second approach is a unique variation of Collective Graphical

Models (CGMs) to incorporate multiple views of the data. This multiview model learns

and leverages shared information between the views to better compensate for missing

observations. Both the Quantile Scan and Multiview CGM algorithms improve accuracy

and robustness on noisy data without sacrificing runtime. The speed and accuracy of

these models is demonstrated on a variety of synthetic and real-world datasets, compared

against existing algorithms.
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Chapter 1: Introduction

A common goal in many machine learning and data analysis tasks is the modeling and

prediction of real world processes. These processes invariably change with respect to

time and, if the analysis is at a large enough scale, over location. This spatiotemporal

dynamic is evident in applications in: economics, such as analyzing differences in housing

prices, unemployment, and job availability; city planning, where changes in traffic, power

consumption, and resource allocation are of interest; and ecology, where season and

habitat affect migration and species variety. In most of these domains, both space and

time shape the dynamics of the data in different ways.

Within the vast umbrella of spatiotemporal analysis, this work focuses on the issue

of dynamics: how values change over time and across different locations. As is the case

in many other machine learning tasks, this goal is often impeded by noisy or missing

observations within the data. The scale of this type of data, which is often collected

over years and across multiple states or counties, makes this kind of uncertainty fairly

common. This can be due to the cost limitations of data collection, inherent noise in the

observation process, or the aggregation over individual processes. Accounting for this

noise is imperative in order to properly ascertain the distinct influences that time and

space have on the underlying systems.

In this work, I present two different paradigms for dealing with noisy spatiotemporal

data within two different analysis frameworks. The first framework is the Spatial Scan

Statistic Kulldorff [1997]. The Spatial Scan Statistic (SSS) is a sliding window search

procedure that can be used over space or time aspects of a dataset to detect regions

of significant change. Traditionally this significance is defined in terms of aggregate or

mean values within the search windows. However, the use of measured quantiles instead

of means has been shown to be more robust to data noise and outliers, particularly in

regression analysis Rousseeuw and Leroy [1987]. To this end I derive the Quantile Spatial

Scan Statistic (QSSS) and Quantile Snapshot Scan (Qsnap) algorithms, which perform

spatial and spatiotemporal change detection over measured quantiles. Both algorithms

make use of unique update procedures that reduce the normally intractable runtime cost



2

of computing quantiles for each scan region by an order of magnitude. The robustness

and versatility of both algorithms are demonstrated on real and synthetic datasets.

The second spatiotemporal framework is Collective Graphical Models (CGMs) Shel-

don and Dietterich [2011]. CGMs model the group transitions of a population in a

graphical model, based on an individual model but without individual observations.

They are a natural fit for the application of population tracking Iwata et al. [2017],

Iwata and Shimizu [2019], where individual observations are not available due to privacy

constraints (with people) or sensing limitations (with animals). Without the individual

data, CGMs reason based on aggregate statistics, making the model under-specified in

general. To help combat this missing information, I develop a hierarchical multiview

CGM model. This multiview CGM identifies and accounts for the shared information

between two populations moving in the same space and time frame. The shared informa-

tion is then leveraged as an additional factor to improve the predictive accuracy for both

populations. The improved accuracy of this method is demonstrated on multiple syn-

thetic and real-world datasets. I also show empirically that the runtime of the multiview

algorithm is faster than the baseline for large graphs.

In the following three chapters I will present the QSSS, Qsnap, and the multiview

CGM algorithms. The details of each algorithm are encapsulated within their chapters,

including methodology, related work, and experiment results. A holistic conclusion will

then follow in Chapter 5.
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Chapter 2: Quantile Spatial Scan Statistic

2.1 Introduction

Spatial data analysis often involves finding spatial regions that are different from the

surrounding area. For example, epidemiologists are interested in finding regions with an

unusually high incidence of disease while criminologists are interested in identifying crime

hotspots. The spatial scan statistic (SSS) [Kulldorff, 1997] is a widely used technique to

discover unusual regions from a Bernoulli or Poisson point process. The SSS searches

over a given set of regions, scoring each region according to how a quantity of interest

(e.g. the disease rate) inside the region differs from outside the region. Finally, the SSS

computes the p-value of the highest scoring region using a randomization test.

Many spatial data sets, however, are more complex than point processes, which focus

on the spatial locations of the data. Real-world spatial data sets from domains such as

citizen science biodiversity monitoring and real estate associate a response value with

each point as well as a set of covariates (called features by machine learning researchers).

For example, in a real estate data set, each data point has a location, a sale price, and

associated features such as square footage, number of bedrooms, age, etc. Formally,

we represent the ith data point of dataset D as a tuple (Yi, Xi,1, . . . , Xi,p, Li,1, . . . , Li,d),

where Yi is a continuous response, (Xi,1, . . . , Xi,p) are the p covariates and (Li,1, . . . , Li,d)

are spatial coordinates in d-dimensions; for simplicity, we assume d = 2. In later sections,

we will refer to the data as D = {Y ,X,L} to represent the distinct aspects of response,

covariates and locations.

We can follow the SSS framework to find unusual regions in this more complex setting.

For each region, we fit a model that captures the relationship between the features and

the response variable. Then, we use a scoring function to compare the models from inside

the region versus outside the region, using a hypothesis test that compares the means of

the models. While such an approach seems reasonable, there are two shortcomings. First,

the approach is not robust as the mean is well known to be vulnerable to outliers and

extreme values [Rousseeuw and Leroy, 1987]. Second, many real-world tasks compare



4

spatial regions using other parts of their distributions besides the mean. For instance,

a real-estate agent interested in high-end homes may want to compare regions based on

the 90th percentile of the sale price distribution. To overcome both of these problems,

we develop a novel method for comparing quantiles of spatial regions.

We modify the proposed SSS variant by fitting quantile regression models to the

‘inside’ and ‘outside’ regions. Unfortunately, this naive approach is computationally

expensive; fitting a quantile regression requires a linear program and this step would

be required in the inner loop of the algorithm. To make the algorithm efficient, we

replace the traditional likelihood ratio test with the rank test, which is a non-parametric

hypothesis test that avoids the need to fit quantile regressions to the data inside the

region. However, performing a rank test from scratch every time we score a new region

is also computationally expensive. Instead, we develop an incremental version of the

rank test that allows the rank test from a smaller region to be updated when the region

is grown to include more spatial data points. Lastly, we show how the algorithm can be

adapted to perform one-sided hypothesis tests with only a minor increase in runtime1.

The contributions of our work are as follows. First, we introduce the Quantile Spatial

Scan Statistic (QSSS), which discovers unusual regions for continuous spatial data with

covariates. The comparison between regions to determine unusualness is based on a

comparison of the τ -th quantile of the response variable distributions. This algorithm

is also robust to outliers, unlike an analogous algorithm that makes comparisons based

on the mean of a region. Second, we show how to make the QSSS over an order of

magnitude faster than a naive implementation by introducing an incremental update to

the rank test. This update is exact and not an approximation. Third, we show how

the rank test hypothesis of the algorithm can be adjusted to a one-sided version, with

minimal impact on runtime. Finally, we evaluate the QSSS on simulated data and also

show interesting results from case studies on three real-world datasets.

2.2 Background

We first present a brief introduction to the Spatial Scan Statistic, Quantile Regression

and the Rank test for Quantile Regression as these techniques form the foundation for

1An earlier version of this work without the one sided test was published in UAI [Moore and Wong,
2018]
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the QSSS. In addition, we discuss connections to existing work in these three areas.

2.2.1 The Spatial Scan Statistic

The Spatial Scan Statistic, introduced by Kulldorff [1997] is a widely used approach for

finding anomalous regions. The algorithm considers a set of data points, each with a

location and response value, and attempts to find the most anomalous contiguous region.

The original SSS used a scanning window in the shape of a circle to discover unusual

regions. While in theory the search should be over all circular regions, in practice it

is often limited to circles with centers determined by a fixed grid superimposed on the

spatial area. For each region, a hypothesis test is calculated, scoring the region based on

how different it is from the rest of the data. The likelihood ratio test, performed with an

assumption on the distribution function of the data, is a common choice of hypothesis

test. The SSS then returns the best scoring region.

Due to multiple hypothesis testing, we cannot interpret the score from the likelihood

ratio test as a true p-value. Instead, we estimate the p-value through a randomization

test. In each replication of the randomization test, we maintain the same underlying

population as the original problem, but generate events assuming a uniform probability.

Then, the search for the best scoring region is performed. The process is repeated for

R replications to produce an empirical distribution which determines how likely it is to

obtain the score of the best scoring region.

Many researchers have extended the original SSS approach, including using scanning

windows that are arbitrarily shaped [Duczmal and Assuncao, 2004] and incorporating

mobility patterns [Lan et al., 2014]. We point out that performing a quantile-based

comparison results is a fundamentally different type of optimization problem and past

work on speeding up the SSS (eg. [Neill and Moore, 2004, Neill, 2012]) is not readily

applicable. Finally, Moore and Wong [2015] use the SSS to find species-rich hotspots,

but they do not compare quantiles of distributions.

Another spatial scan variant that can perform comparisons on arbitrary quantiles of

the underlying distribution is the Treatment Effect Spatial Scan (TESS) [McFowland

et al., 2018]. In the TESS algorithm, the data is partitioned into two subsets denoted as

‘control’ and ‘treatment’. The algorithm learns a distribution model on the control set,

and then uses the model to compute a p-value for every datapoint in the treatment set.
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The original paper uses a discrete empirical distribution to fit these p-values, but any

data appropriate model can be used.

With the treatment data condensed into a vector of p-values, the TESS algorithm

uses the subset scan framework to find the subset of the treatment group where the

p-values have the greatest deviation from the expected distribution. For a given subset

C and quantile τ , the algorithm performs the likelihood ratio test

T = N(C)KL

(
Nτ (C)

N(C)
, τ

)
(2.1)

where N(C) is the number of points in C, Nτ (C) is the number of points in C less than

τ , and KL() is the KL-divergence function. The authors suggest performing the test

for a range of values of τ , and keeping the most significant result. The reduction of the

treatment set to p-values makes the algorithm very fast to run, as these values can be

computed independent of the subset search. The accuracy of the algorithm is tied to its

ability to learn an accurate model from the control set.

The ability of TESS to detect significant regions at a given quantile makes it the

closest related work to our QSSS algorithm and we compare against it in our experiments.

2.2.2 Quantile Regression

Suppose we have a continuous random variable Y with distribution function F (Y ) =

P (Y ≤ y). The τ -th quantile q(τ), with 0 < τ < 1, is defined as q(τ) = F−1(τ) =

inf
y
{F (y) ≥ τ}. For example, when τ = 0.5, we get the median. Given a dataset

Y1, . . . , Yn, the τ -th sample quantile q̂(τ), can be computed by solving the optimization

problem:

q̂(τ) = argmin
q

n∑
i=1

ρτ (Yi − q) (2.2)

where ρτ (r) = r(τ − I(r < 0)).

Quantile regression, introduced by Koenker and Bassett [1978], fits a regression

to the conditional τ -th quantile of the response variable. Given a dataset D =

{(Y1,X1), . . . , (Yn,Xn)} where Yi is the response variable and Xi are the covariates,
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fitting a quantile regression involves solving:

β̂(τ) = argmin
β

n∑
i=1

ρτ (Yi −Xiβ) (2.3)

The solution β̂(τ) produces a conditional quantile function QY (τ |X = x) = x′β̂(τ),

similar to how a standard regression produces the conditional mean when the coefficients

are multiplied with the covariate values.

Quantile regression is a useful tool for analyzing specific parts of a distribution. It

can model the data extremes by setting τ close to either 1 or 0, or it can reduce the

influence of these points by modeling τ close to 0.5.

Koenker and Machado [1999] introduce three methods for comparing two quantile

regression models, based on Wald’s test [Wald, 1943], the Likelihood Ratio test [Wilks,

1932], and the Rank test [Rao, 1948]. Mood’s median test [Mood, 1950] can also be

adapted to perform a fast, low power comparison at a given quantile. Any of these

methods are still usable when the covariate set X is empty by using the quantiles of Y .

We use the Rank test, as it can be implemented without repeatedly re-estimating the

quantile regression coefficients for each data subset, thereby reducing its computation

time without sacrificing power. In the following section we explain the Rank test for

quantile regression.

2.2.3 Rank Test for Quantile Regression

Let the regression model for the τth quantile have the form Y = Xβ1 + X̃β2 where

each row Xi corresponds to a data point. For a given data subset C ⊆ D, X̃i = Xi if

Xi ∈ C and X̃i = 0 (we use boldface to indicate a vector of zeros) if Xi 6∈ C. This

model will simultaneously fit a regression to C and D \C. In the spatial scan context

C is the region inside our circle and D \C is the region outside. The goal is then to test

the null hypothesis H0 : β2 = 0 against the alternative H1 : β2 6= 0 to see if the subset

C is sufficiently different from the full distribution of D.

One method for performing this hypothesis test is to use the score test [Rao, 1948],

which takes the form T = S′M−1S. Here S is a p× 1 score vector and M is the p× p
information matrix. For the hypothesis test defined above, M = n−1(X̃ −HX̃)′(X̃ −
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HX̃), where H = X(X′X)−1X′. HX̃ is the projection of X̃ onto the space spanned

by X, and subtracting it from X̃ removes the influence of β1 from the test, allowing it

to focus on β2.

The score vector is the gradient of the log-likelihood. In cases where the likelihood

is not explicitly known, S can be approximated by a rank-score process. This assigns a

ranking to each datapoint as a substitute for their probability, and changes the score test

into a rank test. For applications to quantile regression, this ranking can be assigned with

respect to the quantile of interest. Gutenbrunner and Jurecková [1992] and Machado and

Silva [2002] use the following rank-score approximation for S for quantile regression.

S = n−1/2(X̃ −HX̃)′b̂ (2.4)

The n × 1 vector b̂ is the rank-score for each datapoint based on β1, the quantile

regression model under the null hypothesis. Each point is assigned a ranking value

between τ and τ − 1 depending on whether the point falls above, below, or on the

regression plane defined by β1. More specifically, b̂i = âi−(1−τ) where âi = 1 if xiβ1 >

0, âi = 0 if xiβ1 < 0, and 0 ≤ âi ≤ 1 if xiβ1 = 0, subject to the constraint X ′â =

(1− τ)X ′1. The values â are the dual solution of the quantile regression optimization,

which can be computed in parallel with β1.

Ψ2 = τ(1− τ) is included to normalize the rank-score vector, giving us

T = S′M−1S/Ψ2 (2.5)

The test statistic T follows a Chi-squared distribution under the null hypothesis with

p degrees of freedom. The rank test has the same asymptotic power as the analogous

Wald and likelihood ratio tests, but the rank test does not require an estimation of the

parameters under H1. This aspect of the rank test is critical for our algorithm as it

greatly reduces the computation load for the algorithm’s inner loop.

2.3 Related Work

Having presented the background material needed to understand the QSSS, along with

techniques related to the background material, we now discuss other related work. A

large body of work that is seemingly related to our task has focused on producing dis-
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ease maps that illustrate how disease cases vary across space (eg. [Best et al., 2005]).

Researchers have also investigated spatial quantile regression (eg. [Reich et al., 2011,

Macmillan, 2013, King and Song, 2019, Almanjahie et al., 2019]). These modeling ap-

proaches generally produce a probabilistic surface, which results in a useful visualization

but does not directly solve our goal of identifying specific unusual regions. Achieving

this goal requires a human to inspect the probabilistic surface, manually segment it into

unusual regions and rank these regions according to some unusualness criterion. This

human intervention is not desirable when the spatial region is large and also if the goal is

to create an automated monitoring system. Our QSSS algorithm essentially automates

these steps in a computationally efficient manner.

2.4 Methodology

We start with a high level overview of our QSSS. Given a dataset D = {Y ,X,L}, and

a list of starting locations P , the QSSS searches over circular areas in L, beginning at

each starting location in P and growing the regions one data point at a time, starting

from some minimum number of points. The regions are grown as circles of increasing

radius. Each time the region grows, we calculate its test statistic using our Incremental

Rank test (Section 2.4.1). Once the region cannot be grown any larger, or reaches a

maximum size, we move on to the next starting point in P . After all starting points

have been exhausted, an adjusted p-value is calculated for the region with the highest

test statistic using a Gumbel correction (Section 2.4.3). We chose the Gumbel correction

because it is much faster than the traditional randomization test. If the adjusted p-value

is significant then the algorithm returns the region, otherwise it says that no significant

region was found.

2.4.1 Faster Rank Test for QSSS

In the QSSS framework, the Rank test needs to be performed for every circular subset

C ⊆D. We can choose a set of starting points (either each data point or a grid formed

over L) for the regions and grow each one, recalculating our hypothesis test each time the

region overlaps a new data point. The inclusion of a new data point i into the region will

change the ith row of X̃ from a row of zeros to the ith row of X. Under the framework
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of the Rank test, X, H, and b̂ will be the same for every choice of region C. Thus our

only task is to update T as X̃ changes.

The primary bottlenecks in updating T are in updating S and recomputing M−1.

M−1 can be updated incrementally using applications of the Sherman-Morrison for-

mula [Sherman and Morrison, 1950], but a more efficient update can be performed by

leveraging the special structure of T . Note that we can re-write T as

T = b̂Z(Z′Z)−1Z′b̂/Ψ2 (2.6)

where Z = X̃ −HX̃. Z(Z′Z)−1Z′ is by definition a projection matrix onto the space

of Z. If we let U be an n x p orthonormal column basis of Z, then

T = b̂UU ′b̂/Ψ2 (2.7)

The inverse in Equation 2.6 is a normalization term. Since U is already normalized,

the formulation of Equation 2.7 allows us to forgo the matrix inverse calculation. To

utilize this efficient calculation of T , we will need to calculate an orthonormal basis U t

of Zt for every iteration t. Rather than calculate this basis from scratch every iteration,

we can dramatically improve runtime by performing incremental updates to U as X̃

changes.

2.4.1.1 Incremental Orthogonalization of Rank Test

Our goal is to take an existing orthonormal basis at iteration t (i.e. U t), and calculate

U t+1 based on the (small) change in X̃ when a new data point is added to the inside

region. This can be achieved by using a modified rank one QR update algorithm. To

show this, we will prove that Zt+1 is a rank one update of Zt, illustrate an existing QR

factorization rank one update algorithm from Golub and Loan [2012], and then show

how that algorithm can be modified to run much faster for our problem.

Z Update: The first step is to show that the update of Z between iteration t and t+1

is a rank one update. Specifically:
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Theorem 1

Let Zt be the value of matrix Z at iteration t of the spatial scan expanding window

search. At iteration t+1, when the ith data point of X is added to the inside region,

then

Zt+1 = Zt +Ai (2.8)

whereAi is a rank one matrix that can be decomposed into known vectorsAi = a′ibi.

Proof: Let K[n×n] be a row selector matrix, where K[j,j] = 1 if point j is in C, and

all other values are zero. For a current region Ct at iteration t, X̃ = KtX. If we add

point i to X̃ during iteration t + 1, then this is equivalent to changing element (i, i) of

Kt from 0 to 1. We can express this change as a matrix sum Kt+1 = Kt+Ki where Ki

is zero except for element (i, i), which equals 1. This allows us to decompose the change

in Zt+1 as follows:

Zt+1 = (Kt +Ki)X −H(Kt +Ki)X (2.9)

= Zt +KiX −HKiX (2.10)

= Zt + (ei −Hi)
′Xi (2.11)

where ei is the ith unit basis vector of size 1 × n. H is a symmetric matrix, so we

use the row vector Hi to keep our notation consistent. In Equation 2.10, note that

Zt = KtX − HKtX. In Equation 2.11 we have reduced the update to Zt to the

product of a column and row vector i.e. (ei −Hi)
′Xi. This means that the matrix

added to Zt has a rank of one. �

We can use this special update structure in an algorithm to find U t+1 efficiently, by

incrementally updating the QR factorization of Z.

QR Rank One Update Algorithm: If the QR factorization of Zt is known, where

R is an upper triangular matrix and Q = U t is an orthonormal column basis, then

the factorization for Zt+1 can be found with the rank one update algorithm detailed in

section 12.5.1 of Golub and Loan [2012]. This algorithm lets us find the factorization

Zt+1 = Qt+1Rt+1 using the previous factorization Zt = QtRt, giving us U t+1 = Qt+1
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for our update to the test statistic T .

Let v = ei −Hi. We start by refactoring the update as

Zt+1 = QtRt + v′Xi = Qt(Rt +w′Xi) (2.12)

where w′ = (Qt)−1v′ = (Qt)′v′. Our goal is to turn Zt+1 into the product of an

orthonormal matrix (which will be Qt+1) and an upper triangular matrix to be produced

from (Rt +w′Xi). R
t is already upper triangular, leaving w′Xi to be converted.

Givens rotations are a common tool used in QR factorization to convert matrices into

a product of an orthonormal matrix and an upper triangular matrix. A Given’s rotation

is a matrix multiplication that results in the scaled difference of two rows of the multiplied

matrix, similar to a linear algebra elimination step. Givens rotations have a special form

that makes them particularly useful in triangularizaiton and QR factorization. They

can be represented as a rotation matrix G(i, j, θ), where G[k,k] = cos θ for k = i, j,

G[k,k] = 1 for k 6= i, j, G[i,j] = −G[j,i] = − sin θ, and all other entries are zero. θ, the

angle of rotation, can be set such that the product of G and a given vector has a zero at

index j, making it useful in zeroing out matrix elements to produce a triangular result.

We can also see from this definition that Givens rotation matrices are orthonormal, and

the inverse of a Givens rotation matrix is also its transpose. Thus, given a matrix X, a

set of Givens rotations G = G1 . . .Gm can be constructed such that GX is triangular.

It then follows that G′ is an orthonoral matrix, and G′(GX) = X is a QR factorization

of X.

We can compute a set of Givens rotation matrices J1, ...,Jn−1 such that

(J1)′...(Jn−1)′w′ = ||w||e′1. This will ensure that ||w||e′1Xi is upper triangular, since

only the first row of the product is non-zero. To maintain equality with the original

formula, we must include the transpose of every Givens rotation we introduce. This

results in

Zt+1 = QtJn−1...J1(J1)′ . . . (Jn−1)′(Rt +w′Xi) (2.13)

= QtJn−1...J1(A+ ||w||e′1Xi) (2.14)

where A = (J1)′...(Jp−1)′R, which is an upper Hessenberg matrix. Upper Hessenberg
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matrices are upper triangular matrices with one additional non-zero entry below the

diagonal of each column. They can be turned into upper triangular matrices with a

linear number of Givens rotations.

Zt+1 = QtJn−1...J1(A+ ||w||e′1Xi) (2.15)

= QtJn−1...J1Ã (2.16)

Ã is also an upper Hessenberg matrix. As such, we can find another set of Givens

rotation matrices G1, ...,Gp−1 such that (Gp−1)′...(G1)′Ã = R̃, where R̃ is an upper

triangular matrix.

Zt+1 = QtJn−1...J1Ã (2.17)

= QtJn−1...J1G1, ...,Gp−1(Gp−1)′...(G1)′Ã (2.18)

= QtJn−1...J1G1, ...,Gp−1R̃ (2.19)

This completes the factorization update from Golub and Loan [2012], with Qt+1 =

QtJn−1...J1G1...Gp−1 and Rt+1 = R̃.

Efficient QR Rank One Update Algorithm: The previous algorithm is not ideal

in its current form, because creating the upper triangular matrix takes O(n) Givens

rotations, a result of Q being n×n. This makes its complexity O(n2), which is too large

to run as an inner loop procedure for larger datasets. However, the first p columns of

Q and p rows of R, denoted as Q[·,1:p] and R[1:p,·], are sufficient to reconstruct Z, as

Z = Q[·,1:p]R[1:p,·] = QR. Working with this reduced factorization would reduce the

storage and number of Givens rotations required for the algorithm.

Unfortunately this representation is insufficient to perform the update. If we were to

compute the vector w from Equation 2.12 with Q[·,1:p], then w′ = Q′[·,1:p]v
′ = Q′[·,1:p]e

′
i−

Q′[·,1:p]H
′
i = 0. To see this, note that Q′[·,1:p]e

′
i is zero because the ith row of Zt and Q

is zero, since the ith data point has not been added to the inside region yet. Q′[·,1:p]H
′
i

is also zero because Hi is perpendicular to Zt and thus perpendicular to Q[·,1:p]. With

w′ = 0, Equation 2.12 becomes Zt+1 = Qt
[·,1:p]R

t
[1:p,·], which completely ignores the
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update term. Intuitively speaking, we cannot update the column basis of Zt by only

considering that basis.

Fortunately, there is a way to summarize the influence of the last n-p columns of Q,

denoted Q[·,(p+1):n], into a single vector.

Theorem 2

Define the Givens rotations (J1)′ . . . (Jn−1)′ from equation 2.13 such that

(J1)′ . . . (Jn−1)′w′ = ||w||e1, where w′ = Q′v′. Let Q̃[·,1:p] be the row concate-

nation of Q[·,1:p] and the vector q = v/||v||. Then

(J1)′ . . . (Jp)′Q̃′[·,1:p]v
′ = ||w||e1 (2.20)

Proof: Since Q is orthonormal, we can note that ||w|| = ||v||. Givens rotations

are length preserving when applied to vectors. When the Givens rotations zero out

element j in w, it changes element j − 1 to
√
w2
j−1 + w2

j . Consequently, the result

of rotations J ′p+1 . . .J
′
n−1 will set wp+1 =

√
w2
p+1 + . . .+ w2

n =
√∑n

j=p+1(Q′jv)2) =

||Q[·,(p+1):n]v||. Because Q[·,1:p] is perpendicular to v, the columns Q[·,p+1] . . .Q[·,n] are

an orthonormal basis of v. Projecting v onto its own basis will preserve its length, giving

us ||Q[·,(p+1):n]v|| = ||v||. qv′ = vv′/||v|| = ||v|| as well, thus Q̃′[·,1:p]v
′ is equivalent to

the first p+ 1 rows of J ′p+1 . . .J
′
n−1Q

′v′. Since the remaining rows of J ′p+1 . . .J
′
n−1Q

′v′

are 0, we have (J1)′ . . . (Jp)′Q̃′[·,1:p]v
′ = ||v||e1. �

Theorem 2 allows us to summarize the Givens rotations J ′p+1 . . .J
′
n−1 with a single

vector, meaning we don’t need the full n x n forms of Q and R. If we append q as

a new column of Q[·,1:p] to produce Q̃[·,1:p] and a zero row to the bottom of R[1:p,·] to

produce R̃[1:p,·] then we can run the algorithm with only O(p) Givens rotations and still

produce the same result. Since q is normalized and perpendicular to Q[·,1:p], Q̃[·,1:p] is

still orthonormal.

Algorithm 1 shows the details of this modified QR update procedure. It creates the

modified and slimmed down matricies Q̃t
[·,1:p] and R̃t

[1:p,·], and uses the techniques of

Golub and Loan [2012] to find the factorization after the rank one matrix addition. The

first p columns of Q̃t+1
[·,1:p] make our new orthonormal column basis U t+1 used to calculate

our test statistic T .

Algorithm 2 shows the incremental rank test which calls rankOneUpdate. It takes
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Algorithm 1 rankOneUpdate

Inputs: Q,R,v,u
# Add q as a new column basis to Q
q = v/||v||
Q = Append Column(Q[·,1:p], q)
R = Append Row(R[1:p,·],0)
w′ = Q′v′

# Use givens rotation to zero out w
for i = p− 1 to 1 do
G = givens(wi,wi+1)
Q[·,i:i+1] = Q[·,i:i+1]G
R[i:i+1,·] = GR[i:i+1,·]
w[i:i+1] = Gw[i:i+1]

end for
R[1,·] = R[1,·] + w1u
# Use Givens rotations to make R upper triangular
for i = 1 to p− 1 do
G = givens(R[i,i],R[i+1,i])
Q[·,i:i+1] = Q[·,i:i+1]G
R[i:i+1,·] = GR[i:i+1,·]

end for
# Return first p columns of Q, p rows of R
Q = Q[·,1:p]

R = R[1:p,·]
Return(Q,R)

Algorithm 2 QSSS Incremental Rank Test

Inputs: X,H, b̂,Q,R, τ , i
v = ei −Hi

Q,R =rankOneUpdate(Q,R,v,Xi)
T = b̂′QQ′b̂/(τ(1− τ))
Return(T,Q,R)
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the index i of the datapoint being added to the region, along with the QR factorization

for the previous iteration as inputs.

Note that our incremental rank test is not an approximation as it computes the test

statistic (Equation 2.5) exactly.

2.4.1.2 Update Runtime

With our compact representation for Q̃[·,1:p] and R̃[1:p,·], the rank one update to our

QR factorization takes O(np) time. Each Givens rotation is an O(n) operation, and we

perform O(p) of them in total. Once U t+1 is found, T t+1 can be calculated in O(np)

time by computing b̂U t+1 = u, and then finding T t+1 = uu′. Thus the entire update to

T can be performed in O(np) time when a single point is added to X̃.

2.4.2 One Sided Hypothesis Tests

The rank test for quantile regression defined in Equation 2.5 is a two sided model test.

This can be seen from the form of the alternative hypothesis H1 : β2 6= 0. In some

applications, it may be beneficial to be able to consider the one sided alternative tests

H1+ : β2 ≥ 0 and H1− : β2 ≤ 0. These would let us consider alternative models where

the response value is strictly increasing or decreasing from the null across all parameters.

A general hypothesis test would also be desirable, where each parameter βi of β2 could

independently be set as less than zero, greater than zero, or not equal to zero. Having

this kind of freedom would allow us to restrict the algorithm to find specific types of

model changes in unusual regions.

Silvapulle and Silvapulle [1995] give one way of setting up a restricted alternative

hypothesis for the general score test. To illustrate, if we consider the alternative H1+ :

β2 ≥ 0, then the adjusted score test becomes

T+ = S′M−1S − inf{(V − δ)′M(V − δ) : δ ≥ 0} (2.21)

where V = M−1S. The added correction term on the right removes the influence of

parameters that would decrease in the alternative model, restricting their change to be

at least zero. The introduced variable δ is the same size as β2, and the constraints on

δ mimic the restrictions applied to β2. If β2 is unbounded, such as in our two-sided
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test, then δ is unbounded and the correction term reduces to zero, giving us our original

hypothesis test.

Performing this correction changes the large sample distribution of T+ from a chi-

squared to a chi-bar-squared distribution. In practice, the specifics of this distribution

can be ignored, as significance for the algorithm can be determined using randomization

test corrections on the value of T+.

Solving for the correction term in the one-sided hypothesis test requires finding a

solution to a quadratic program with vector constraints. Finding this solution for every

candidate region would introduce a major bottleneck in the algorithm runtime. Below,

we show how the correction can be calculated efficiently with only a slight increases in

the total runtime.

2.4.2.1 Fast One Sided Test Computation

The QP in Equation 2.21 can equivalently be written as inf{γ ′Mγ : γ ≤ V }, using

γ = V −δ as the vector to solve for. For our rank test, we can further expand this using

our form of the information matrix and score vector. Recall from previous sections that

S = Z ′b̂ and M = Z ′ZΨ, where Z = X̃ −HX̃, and Ψ is a constant.

γ ′Mγ = γ ′(Z ′ZΨ)γ (2.22)

V = M−1S = (Z ′ZΨ)−1Z ′b̂ (2.23)

During our incremental rank test, the factorization QR = Z will be known for the

current value of Z. Performing this substitution for the previous two equations gives

γ ′(Z ′ZΨ)γ = Ψγ ′(R′Q′QR)γ = Ψ(Rγ)′(Rγ) = Ψ

p∑
i=1

r2
i (2.24)

(Z ′ZΨ)−1Z ′b̂ = (R′RΨ)−1R′Q′b̂ = Ψ−1R−1Q′b̂ (2.25)

Our quadratic program is equivalent to the least squares optimization of the vector

r = Rγ, subject to the constraint γ ≤ Ψ−1R−1Q′b̂. Since R is square upper triangular,

its inverse can be found quickly, making this form of the constraints relatively simple
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to compute. To solve the simplified optimization, we can easily find the gradient and

second gradient with respect to γ.

∂Ψ(Rγ)′(Rγ)

∂γj
=

∂

∂γj
Ψ

p∑
i=1

(
p∑
k=i

Ri,kγk

)2

= 2Ψ

j∑
i=1

riRi,j (2.26)

∂2Ψ(Rγ)′(Rγ)

∂γ2
j

= 2Ψ

j∑
i=1

R2
i,j (2.27)

The resultant summations go from 1 to j because R is upper triangular, and thus has

zeros below the diagonal. We can see from the second gradient that the optimization is

convex, making gradient methods guaranteed to converge. With the gradient and second

gradient known, our optimization can be solved using a boundary constrained Newton’s

method with the update

γt+1
j = γtj −

∑j
i=1 rjRi,j∑j
i=1R

2
i,j

(2.28)

and with the constraint γ ≤ Ψ−1R−1Q′b̂. This derivation is for the alternative hy-

pothesis β2 ≥ 0. For β2 ≤ 0, we simply flip the signs on the constraint and solve with

γ ≥ Ψ−1R−1Q′b̂. In general, we can decide the direction of inequality for each term in

β2 and adjust the constraint on γj accordingly. If we want the jth term of β2 to have a

two sided alternative, then we simply leave γj unconstrained.

2.4.2.2 One-Sided Test Runtime Analysis

In order to change the QSSS algorithm to account for a one-sided hypothesis test, the

minimizing value of γ must be calculated for each candidate region in the scan algorithm.

Since our regions grow point by point from an initial circle, we can greatly speed up the

convergence of the optimization by warmstarting it with the value of γ from the previous

region. Each iteration of Newton’s method takes O(p2) time to compute.

For each new region, we must also compute the constraint boundary Ψ−1R−1Q′b̂.

R is upper triangular, and its inverse can be found through back-substitution in O(p2)

time. The full product then takes O(np) time to compute. Computing the adjusted test

statistic T −Ψ(Rγ)−1(Rγ) can also be done in O(p2) time.
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If we let k be the number of iterations required for Newton’s method to converge,

the total runtime overhead of the one sided test for each region is O(np + kp2). As

long as warmstarting keeps the value of k relatively low, this will not change the O(np)

asymptotic runtime of the QSSS update.

It should also be noted that in some cases the one-sided test statistic will be the same

as the two-sided alternative. For example, for the alternative test of β2 ≥ 0, if it occurs

that V ≥ 0, then V is a valid assignment for δ. δ = V causes the correction term to

drop to zero (and is thus the minimizing assignment to δ), making the one-sided test

value equal to the two-sided value. Thus, if V ≥ 0 then the one-sided corrections do

not need to be applied. By comparing V against 0 at each iteration using the one-sided

test of interest, we can prune unnecessary corrections to the test statistic and further

improve the runtime.

2.4.3 Multiple Hypothesis Test Correction

To account for the multiple hypothesis test problem, we perform a correction using the

method in Abrams et al. [2010]. We generate 1000 simulations of the data under the

null hypothesis. The maximum test statistic from each of these simulations are used

to fit the parameters µ, γ of a Gumbel distribution. We calculate the adjusted p-value

of a region with test statistic T as 1 − g(T |µ, γ), where g is the CDF of the Gumbel

distribution. This tells us the rarity of drawing a value at least as large as T from the

distribution of maximum test statistics. In all of our applications we report the most

significant region found by QSSS, provided that the adjusted p-value of the region is less

than 0.05. Otherwise no significantly different region is found.

2.5 Results

2.5.1 Synthetic Data Experiments

We begin by demonstrating the speedup from our incremental formulation of the Rank

test and its one-sided variant, along with a comparison of the Rank test to other possible

choices of hypothesis tests. We use synthetic data to evaluate these two criteria, as it is
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easy to generate in large quantities, and it can contain a verifiable ground truth2.

2.5.1.1 Simulator

The purpose of our simulator is to inject data points in spatial regions where the data

distribution is altered at a specific percentile. We start with a default distribution, then

modify a specific range of the distribution for a random spatial region. This acts as the

target region for the algorithm to identify.

In our data simulator, values for X and L are generated uniformly at random across

defined minimum and maximum values. The response values Y are then calculated as

yi = xiβ + ε (2.29)

where ε ∼ Norm(0, σ) is normally distributed noise term. By uniformly generating

quantile values q ∈ [0, 1]n, we can specify the value of the error term for data point i as

ε(qi).

For each dataset generated, the simulator selects a random circular subset of the

data C, where C contains a specified number of points. This area is the ‘target’ region

for the algorithms to locate. A random offset parameter δ is generated, with |δ| kept

constant for each experiment. Exactly three values in δ are non-zero, which are randomly

selected when p > 3. For every point i ∈ C, if |qi − τ | < 0.1 then yi is calculated from

the following formula instead:

yi = xi(β + δ) + ε(qi) (2.30)

This modification effectively changes the parameterization of the model inside C

within the quantile range [τ − 0.1, τ + 0.1]. Specifically, three of the p covariates are

changed, corresponding to the non-zero entries of δ. We evaluate each algorithm based

on the proportion of data points in the best reported region that are in C.

2Matlab code for our experiments and algorithms can be found at https://github.com/moortrav/QSSS
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2.5.1.2 Comparison against Other Baselines

TESS is the only other recent method we are aware of that can be easily modified

to solve exactly the same problem as the QSSS. We compare against three additional

baseline algorithms, named Mean, SSS-Moods, and LR. Mean fits standard least squares

regressions to the inside and outside region, and compares them using the likelihood

ratio test. This algorithm compares the means, not quantiles, of the distributions. SSS-

Moods fits a τth quantile regression with coefficients β to the entire data set. For each

test region, this baseline calculates Mood’s test at τ , which compares the number of

points above and below the β plane from both inside and outside of the region. LR uses

the more powerful but computationally expensive likelihood ratio test from Koenker and

Machado [1999] for quantile regression. This LR test forms a Chi-squared statistic from

the residuals of the quantile regressions fit to the null and alternative models. Each of

these baselines uses the same region search as our QSSS.

To modify TESS to be applicable to our setup, we replace the subset scan with the

same search over spatial regions used in the other algorithms. We compute the baseline

p-values by fitting a non-parametric distribution to the entire data set. Specifically,

we first fit a quantile regression to the data at the τth quantile and then calculate the

residuals for each point. Each point is then assigned a p-value based on the percentage

of points with a lower residual. For example, if the jth residual is larger than 90% of the

other points, then point j is given a p-value of 0.9. This approach is a straightforward

and meaningful way of converting the multivariate data into a univariate distribution,

which the TESS algorithm was originally designed for. We found that using these non-

parametric p-values produce better results than attempting to fit a parametric model,

such as the normal distribution.

Using our simulator, we produced 30 randomly generated data sets for each exper-

iment setting. We keep n = 2000 and look at p = 5, 10, 15, and 20. 500 of the points

in each dataset form a circular target region. All the points in this region between the

(τ − 0.1) and (τ + 0.1) quantiles are generated from the linear model Y = X(β + δ),

while the rest of the data is generated from the model Y = Xβ. We investigate setting

τ equal to 0.1, 0.3, 0.5, 0.7, and 0.9. Our SSS-Moods, LR, Rank, and TESS tests search

for regions that differ at the τth percentile, while the mean test only looks for differences

in the mean.
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Figure 2.1: Average AUC of each algorithm for each experiment setup. Bold denotes
the best performing algorithm, while * indicates algorithms that are significantly better
than all others (Wilcoxon signed-rank test, α = 0.05).

For each algorithm, we look at the accuracy of the most significant region found

for each dataset. We compute the AUC of each algorithm, using points in the tar-

get regions as true positives. Specifically, we compute the true positive rate (tpr =
True Positives Detected

Total True Positives ) and the false positive rate (fpr = False Positives Detected
Total True Negatives ) for each

dataset. This gives a single point in the ROC curve, where the curve is equal to 0 to the

left of fpr, and equal to tpr to the right of fpr. We compute the area under this curve

(AUC) as tpr(1− fpr), and then report the average AUC of each algorithm over the 30

datasets generated for each experiment setup.

Figure 2.1 shows the average AUC of each algorithm across all experiments. The like-

lihood ratio algorithm is a clear winner in terms of performance, with QSSS a definitive

second place. We expected these two algorithms to be the best, since they have the best

statistical power for our simulated data of the five variants. Our Mean, SSS-Moods, and

TESS algorithms all performed equally poorly in the experiments, as each has its own
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issue in this setting. A mean-based test is a poor choice for detecting quantile specific

changes, and the Moods test lacks power. TESS prefers a separate control set to learn a

distribution model, which cannot be obtained in a setting where the anomalous regions

are unknown. Using the entire dataset incorporates these anomalous regions into the

model, making them harder to identify.

2.5.1.3 Timing Results

Using our simulated data, we compare the runtime of our incremental version of the

Rank test to its naive (non-incremental) formulation. For each algorithm we calculated

the Rank test statistic T , starting from a base radius, then expanding to include 100

new points. In Figure 2.2 (left) we show the average time, in milliseconds, that each

algorithm took to calculate T when a new point was added for increasing values of n.

Our experiments show that while the naive algorithm is quadratic in n, our incremental

version is linear.

Figure 2.2 also shows the average total runtime of our incremental QSSS versus each

baseline algorithm as p increases with n fixed at 2000, and as n increases with p fixed at

10. Because they reduce the multivariate data down to univariate values and perform

simple hypothesis tests, TESS and SSS-Moods are extremely fast, though at a huge

cost to accuracy. Likelihood ratio is easily the slowest of the algorithms, and quickly

becomes intractable to use as n increases to even moderate size. With the incremental

speedups, our QSSS algorithm has a comparable runtime to the Mean scan algorithm,

scaling similarly as p and n increase. This makes our algorithm far more usable on larger

datasets than the likelihood ratio test, with only a small trade-off in performance.

2.5.1.4 One Sided Test Evaluation

To compare the power of our one-sided QSSS, we use the same data simulator as the

previous experiments. We set n to 2000, p to 5, and test over a range of τ values. In these

experiments, the parameter offset δ is set so that δ ≥ 0. We compare the performance of

QSSS using the default two-sided test, to QSSS using the one-sided alternative β2 ≥ 0.

Figure 2.3 shows the average AUC of the two algorithms. The one-sided variant is

strictly better than the two-sided QSSS in every experiment, and significantly so in three
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Figure 2.2: (Left) Average time to update the Rank test statistic, for the naive and incre-
mental formulations. (Middle, Right) Average runtime for each algorithm for increasing
P and N.
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Figure 2.3: Average AUC of one-sided QSSS vs two-sided QSSS. Bold denotes the best
performing algorithm, while * indicates algorithms that are significantly better (Wilcoxon
signed-rank test, α = 0.05).

of the five setups.

2.5.1.5 One-Sided Test Runtime Results

We use our data simulator to evaluate the difference in runtime between the QSSS algo-

rithm using a two sided rank test vs a one sided rank test. Figure 2.4 shows the runtime

of each algorithm on datasets of increasing size n and with increasing dimensionality

p. Each runtime is averaged over 30 randomly generated datasets. Algorithmically, we

have observed that the one sided test should take strictly more time than the two sided

test, but is unlikely to be of a different complexity order. Our results indicate that the

additional overhead of the one sided test is negligible compared to the total runtime,

making it nearly identical to the two-sided test in runtime.

Figure 2.4: Average runtime for QSSS algorithm using a one sided test and two sided
test, for increasing values of n, and increasing values of p.
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2.5.2 Robustness to Outliers

One of the benefits of quantile based analysis is that it is more robust to data outliers

than mean-based methods. We illustrate how this can affect spatial scan analysis using

eButterfly data as an example use case.

(a) QSSS 50th Percentile (b) Mean

Figure 2.5: Most significant regions found from eButterfly data, with data points in the
region shown as red dots. The figures are zoomed in on the Toronto region for visibility.

Citizen science biodiversity monitoring programs, such as eButterfly [Prudic et al.,

2017], play an important role in ecology by providing data for species distribution mod-

els and also conservation programs. Participants in these programs submit checklists

which record observations of certain types of organisms, such as butterflies in the case

of eButterfly, identified by species.

We construct a dataset out of the abundance counts of monarch butterflies (i.e.

the number of butterfly individuals observed) in Ontario in 2016. Quantile regression

on count data can be addressed using the smoothing method in Machado and Silva

[2002], which turns the counts into continuous values by adding uniform noise. This

transformation allows us to perform inference with the Rank test as we would with

continuous data.

In our analysis, we include the time spent observing for each checklist as the covariate,

since there should be a strong correlation between this value and the number of monarchs

observed.

Figure 2.5 shows the most significant regions found by the mean regression spatial
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scan and QSSS at the 50th percentile3. We ran TESS on the dataset at the 50th percentile

as well, but it failed to find any significant region. Inspection of the data, and verification

with domain experts at eButterfly reveal an important benefit to using QSSS. The region

found by the mean spatial scan only detects checklists from a single observer, whose

extremely high counts are an outlier in the dataset. In contrast, our QSSS was less

affected by the outliers, and found an area of high monarch counts due to migration

routes around the great lakes.

If we were limited to only mean-based spatial scans, we would have to filter out the

outlier data to find the desired trends in the dataset. Being able to adjust the percentile

of QSSS allows us to reduce the influence of outliers as desired, without explicit removal

of outliers from the data.

2.5.3 Quantile Based Region Detection

We now demonstrate the usefulness of detecting unusual spatial regions based on different

quantiles.

2.5.3.1 Education and Unemployment Data

(a) 10th Percentile (b) 90th Percentile (c) Mean

Figure 2.6: Most significant region found by the QSSS algorithm for the 10th and 90th
percentiles of the Education and Unemployment dataset. Most significant region by the
mean spatial scan is included for comparison. Regions are illustrated by the centroids of
the counties they contain.

We combine the county-level education and unemployment datasets from the USDA

Economic Research Service web page [Parker, 2017]. We use the county-level unemploy-

3All maps generated using ggmap in R [Kahle and Wickham, 2013]
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ment rates from 2016 as the response variable, and combine the education percentages

from 2012-2016 with median household income (as percentage of state total) values from

2016 as the covariates. The education percentages are the proportion of adults in each

county with less than a high school diploma, just a high school diploma, one to three

years of college, and four years of college or more. We only use the counties from the

continental US.

We ran TESS and our QSSS algorithm on the 10th and 90th percentile of the data,

along with a mean-based approach using least squares regression. Figure 2.6 shows the

most significant region found by QSSS and the mean scan. TESS was unable to find any

significant regions at the 10th or 90th percentiles. Both the mean and 90th percentile

QSSS search found the Appalachian region that intersects Kentucky, West Virginia and

Virginia, which is well-known to have high unemployment rates with the collapse of

the coal industry [Caruthers, 2016]. In the 10th percentile QSSS region, South Dakota,

North Dakota, Nebraska, and Colorado are rated 2,3,4, and 6 in unemployment in the

continental US as a whole. This middle region of the country enjoys lower unemployment

rates due to the local oil industry and relatively low fallout from the Great Recession

[DePillis, 2018]. The most significant region discovered at the 10th percentile has a 2

point lower unemployment rate on average, which is abnormally low even when compared

to other low unemployment areas.

The unemployment data results highlight the fact that the QSSS, unlike the mean

scan, can identify multiple trends in a dataset by changing the modeled quantile.

2.5.3.2 One Sided Unemployment Tests

For our one sided experiments, we modify the unemployment data to include more

unique and diverse covariates. We keep the percent of county populations without high

school diplomas and the percent with 4 or more years of college from the education

covariates, as well as the median household income. We also add the labor force size and

urban/rural continuum code for each county. The continuum code is a discrete numerical

value ranging from 1 (very urban) to 9 (very rural). As before, we use these covariates

to predict unemployment rate at a county level.

Figure 2.7 shows the most significant region from two different one sided tests per-

formed on the 90th percentile. The first test specifies that all the model parameters
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should be increasing in the region, necessitating that the 90th percentile unemployment

rate is abnormally high for that area. The second test specifies all model parameters as

decreasing in the region. This will find an area with significantly low unemployment at

the 90th percentile.

(a) Increasing (b) Decreasing

Figure 2.7: Significant regions for 3 different one sided tests performed on the unemploy-
ment dataset.

The result of the first one sided test is unsurprising, as it found a subset of the Ap-

palachian region from the two sided test. We had surmised from our previous results that

this area was significant due to unusually high unemployment, and the one sided test

corroborates this conclusion. In the second test we only considering decreasing parame-

ters. The region shown was the only significant one found, with significant decreases in

the parameters for less than high school diploma and median household income. This

region contains an area of the country with many manufacturing and blue-collar jobs.

These jobs tend to have lower education requirements and lower pay, making this region

unique in that low education and income decrease the unemployment rate at the 90th

percentile.

2.5.3.3 eBird

The next case study presents the results of applying QSSS to eBird [Sullivan et al.,

2014] data. The eBird project collects bird observation checklists from citizen scientists

around the world. We compiled two datasets from eBird data collected in 2017 between

March and April. These datasets correspond to two different Bird Conservation Regions

(BCRs) within the U.S. We divide the data by BCR because they represent cohesive

habitats for different bird species. Our choice of March and April is to mitigate the

effects of seasonality on the algorithms.
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(a) TESS 90th Percentile (b) QSSS 90th Percentile (c) Mean

(d) TESS 90th Percentile (e) QSSS 90th Percentile (f) Mean

Figure 2.8: The most significant regions found by TESS and QSSS at the 90th percentile,
and by the mean spatial scan on eBird data from BCRs 31 (Florida) and 37 (Gulf coast).
Data points within a region are shown as red dots.

Different from our eButterfly study, we used the total number of species observed

from each checklist as our response variable, and the time spent observing as the co-

variate. Past work has shown that the number of species observed per unit time is

highly predictive of the skill level of an observer [Kelling et al., 2015]. We use the same

count smoothing approach on the eBird data as we did on eButterfly to fit the quantile

regression model.

Figure 2.8 shows the most significant regions found for the mean spatial scan com-

pared to TESS and QSSS run at the 90th percentile. We corresponded with domain

experts from eBird, who offered an analysis on the regions detected.

For BCR 31, TESS and QSSS found an unusual birding location – one that is less

frequented by beginners. The birders who visit this region are highly skilled and are able
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to continue observing a high number of bird species as they stay there. In contrast, the

mean scan found a popular species-rich hotspot in the Everglades frequented by both

experts and novices. This region has many large wading birds which are easy to see and

identify initially.

In BCR 37, TESS and QSSS again find the same region. This area in Matagorda Bay

is a hotspot, because it has an unusually high number of bird species along the shoreline

that can be readily observed as compared to the surrounding area. Our domain expert

commented that the area found by the mean scan was an area that was not particularly

high in species. Upon inspecting the models for the inside versus outside region, we found

that the models indicate that observers appear to find fewer species initially inside that

area than outside that area.

The mean scan and quantile based algorithms found very different but meaningful

regions for the BCRs. We hypothesize that TESS and QSSS are finding unusual areas for

more skilled observers (as in BCR 31), specifically areas where they are able to identify

more birds over time.

We also ran our one-sided QSSS algorithm on these datasets. When looking for areas

with strictly increasing parameters at the 90th percentile, our one-sided test found the

same areas in BCRs 31 and 37 as our two sided test. This further verifies our hypothesis

that these areas are significant due to a higher number of birds being spotted by expert

observers.

2.6 Conclusion

The QSSS discovers unusual spatial regions that differ from the surrounding area. The

inner loop of the algorithm relies on comparing quantile regressions fit to data from inside

and outside a region under consideration. To perform these comparisons efficiently, we

developed an incremental rank test, which is over an order of magnitude faster than a

naive implementation. Our results on simulated data and on three real-world datasets

show that QSSS enables a new type of analysis for spatial data that is different from

mean-based methods and that the QSSS is also robust to outliers.
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Chapter 3: Quantile Snapshot Scan

3.1 Introduction

The QSSS presented in the previous chapter only finds unique regions over space. There

are many potential applications where a similar kind of quantile region detection could

include a time aspect as well. For example, suppose an analyst is comparing counts of

a specific species between the current year and the previous year. Each data point rep-

resents a geographic location with a response (e.g., the number of individuals observed)

and an associated vector of covariates (e.g., features related to the observation process

such as the time of day, time spent observing, etc.). A common task in this analysis is to

look for the spatial region that is the most different between the two snapshots in time.

In addition, the analyst may be interested in regions that differ according to a specific

quantile of the response value. For example, the analyst may be interested in areas of

high density for the species, such as those in the 75th percentile, and thus focus on how

these regions have changed between the two snapshots.

This type of spatial analysis is applicable to many other spatial datasets, such as

data from crop yields, property tax assessments and unemployment surveys. To solve

problems of this nature, we introduce a novel algorithm, called the Quantile Snapshot

Scan (Qsnap for short), that extends the previous QSSS algorithm for use on different

snapshots in time1. Qsnap finds the spatial region that differs most between two time

periods, where the difference is measured relative to a specific quantile of the response

variable. More precisely, Qsnap looks for differences relative to the two models predicting

the conditional quantile function for the two snapshots. This modification violates the

assumptions used in the QSSS fast update algorithm and requires a new method to be

developed for the snapshot setting.

We show that Qsnap is more robust at detecting quantile differences for a variety

of distributions than competing approaches, and we develop a new efficient incremental

update that speeds up a naive implementation of the algorithm by an order of magnitude.

1An earlier version of this work was published in AISTATS [Moore and Wong, 2020]
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We also apply Qsnap to the tasks of identifying bird migration routes and detecting

changes in drought conditions.

3.2 Related Work

Qsnap is based on many of the same building blocks as QSSS, including quantile regres-

sion [Koenker and Bassett, 1978], the Spatial Scan Statistic [Kulldorff, 1997], and the

rank test for quantile regression [Gutenbrunner et al., 1993]. Details on these related

works can be found in section 2.2 in the previous chapter.

The computer vision and remote sensing communities address a seemingly related

problem of change detection for images and landsat data taken at different times (see

Radke et al. [2005], Zhu [2017] for surveys). This line of research is different from our

work, as those techniques are specifically intended for images and regularly gridded

landsat values, rather than randomly located spatial data. In addition, these methods

do not compare quantiles of the data distributions.

3.3 Methodology

Suppose we are given two spatial datasets obtained at two different times (i.e., snap-

shots). We denote the two datasets as D(1) = {Y (1),X(1),L(1)} and D(2) =

{Y (2),X(2),L(2)}. For the dataset at snapshot s, we denote the ith data point as

D
(s)
i = (y

(s)
i ,x

(s)
i , l

(s)
i ) where y

(s)
i is the continuous response, x

(s)
i = (x

(s)
i,1 , . . . , x

(s)
i,p ) are

the p covariates associated with the ith data point and l
(s)
i = (l

(s)
i,1 , . . . , l

(s)
i,d ) are the d

dimensional coordinates specifying the spatial location of the data point. If d = 2, the

location tuple (l
(s)
i,1 , l

(s)
i,2 ) can represent latitude and longitude. Note that the set of lo-

cations L(1) and L(2) are not required to be from the exact same locations for the two

snapshots, but they should be from the same general region. Our goal is to find a re-

gion C that is the most different between the two snapshots (with respect to the τth

quantile of the response variable) and to compute a score that characterizes this region’s

unusualness.

The Qsnap algorithm searches over candidate regionsC. As is commonly done in SSS

variants, the search involves looking at regions of expanding size (e.g., circles of increasing

radius), centered at evenly-spaced gridpoints covering the space L = L(1) ∪ L(2). For
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each candidate region, Qsnap performs a hypothesis test to determine when the τth

quantile of D(1) is different from the τth quantile of D(2) in region C. For this paper,

we will focus on optimizing the speed and power of the hypothesis test.

3.3.1 Snapshot Hypothesis Test

Given a region C, we denote the response variables and associated covariates of the

datapoints from snapshot s in region C as Y
(s)
C and X

(s)
C respectively. We want to

compare Q
Y

(1)
C

(τ |X(1)
C ) and Q

Y
(2)
C

(τ |X(2)
C ), the τth quantile regression models of C at

snapshots 1 and 2. We define X = [X
(1)
C ;X

(2)
C ] and Y = [Y

(1)
C ;Y

(2)
C ], where the symbol

“;” indicates matrix concatenation (as in Matlab). We construct the matrix X̃ such

that X̃i = Xi if point i is from snapshot 2, and 0 (i.e., the zero vector) otherwise.

We can then set up the quantile regression model QY (τ |X, X̃) = Xβ1 + X̃β2. This

represents a nested model where β1 are the parameters for snapshot 1 and (β1 + β2)

are the parameters for snapshot 2. Testing the null hypothesis β2 = 0 vs the alternative

β2 6= 0 will determine if the region C in snapshot 2 is significantly different from the

region in snapshot 1 at the τth quantile.

We choose to use the rank test for quantile regression, because it only requires fit-

ting a quantile regression model for β1 under the null hypothesis, and it has the same

asymptotic power as a likelihood ratio test. The test statistic T can be formulated as

T = b̂′Z(Z ′Z)−1Z ′b̂/Ψ2 where Z = X̃ −HX̃.

Alternatively, we can write this as T = b̂′QZQ
′
Z b̂/Ψ

2 if QZ is an orthonormal basis

for Z. In either form, re-calculating T from scratch each time C changes can be very

time consuming. The incremental update used in QSSS employed the same testing

framework, but with the assumptions that X, H, b̂, and β1 are all constant between

iterations. These assumptions are violated in the snapshot scan setting. Specifically,

when C grows by one point, both X̃ and X grow by an additional row, which requires

H, b̂, and β1 to be recalculated. In the following section we will outline a novel speedup

for the snapshot scan setting.
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3.3.2 An Efficient Incremental Update

We now derive a novel incremental update for Qsnap that drastically reduces the time

needed to calculate T when C grows. In each iteration of Qsnap, the size of the region

C grows by one point, which increases the size of X and X̃ by one row. Changes to

X and X̃ means QZ , Z, H, and b̂ must be updated to re-calculate T . While T only

depends on QZ and b̂, QZ will change in relation to Z, since it is a basis for Z, and

Z depends on H. In the following sections, we describe efficient incremental updates

for these values. For many values, we save time by updating the QR decomposition of

the data matrix, instead of the matrix itself. We use the superscript t to indicate the

current iteration, and t + 1 the iteration after adding a new data point. The proofs of

the theorems used to derive these updates are in section 3.3.3.

Updating H: We start by addressing how to quickly update Ht as Xt grows in

size. First, let Xt = Qt
XR

t
X be the QR factorization of Xt. Note that Ht =

Xt(Xt′Xt)−1Xt′ is a projection matrix, and can be re-written as Ht = Qt
XQ

t′
X since

Qt
X is an orthonormal basis for Xt. An initial QX comes from the Q matrix of the QR

factorization of Xt at t = 1.

Theorem 3

Let xt+1 be the new row added to Xt at iteration t + 1. If the QR factorization

Qt
XR

t
X = Xt is known, then

Ht+1 =

[
1 0

0 Ht

]
− vv′ (3.1)

where v is the last column of Qt+1
X .

Qt+1
X can be efficiently found using the modified Golub and Loan [2012] update shown

in Algorithm 2 of the previous chapter. This uses O(p) Givens rotation to update the

existing QR factorization.

Updating Z: Next, we look at the incremental update for calculating Zt+1
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Theorem 4

If Zt and Qt+1
X are known, then

Zt+1 =

[
0

Zt

]
+ vg′ (3.2)

where g = [x̃t+1, X̃t]v and v is the last column of Qt+1
X .

The incremental update to Zt has two simple steps: append a zero row, and add

the rank one matrix vg′. Explicitly calculating Ht+1 to find Zt+1 is not needed as

computing Qt+1
X and then reading off its last column to produce v is sufficient.

Updating QZ:

Theorem 5

Assume the QR factorization Zt = Qt
ZR

t
Z is known. Two sets of O(p) Givens

rotations GR = GR,1 . . .GR,(p−1) and GB = GB,1 . . .GB,p can be constructed such

that the factorization of Zt+1 is

Zt+1 = Qt+1
Z Rt+1

Z (3.3)

Qt+1
Z = Qt

ZG
′
RG

′
B (3.4)

Rt+1
Z = GBGR

([
0

Rt
Z

]
+ cg′

)
(3.5)

where c = Qt′
Zv and g is as defined in Theorem 4.

GR and GB are both computed by multiplying O(p) Givens rotation matrices. The

proof uses the algorithm in section 12.5.1 of Golub and Loan [2012] for rank one updates

of QR decompositions.

Updating b̂: b̂ is based on the dual solution to the quantile regression and can be

directly computed if the primal solution β1 is known. β1 can be calculated more ef-

ficiently by warmstarting the optimization algorithm (i.e., starting the optimization at
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the previous solution point). Since the changes to Y and X are small, we can expect the

previous solution to be relatively close to the new solution. We use the simplex method

as the optimization algorithm, because pivot operations are fast, and the algorithm is

very efficient when started near the optimal solution.

Algorithm 3 Qsnap Incremental Rank Test

Inputs: Y ,X, X̃,xt+1, x̃t+1,QX ,RX ,QZ ,RZ , β1, τ
[QX ,RX ] = rowUpdate(QX ,RX ,x

t+1)
v = QX .lastColumn
QX = removeLastColum(QX)

X̃ =

[
x̃t+1

X̃

]
g = X̃ ′v
[QZ ,RZ ] = rowUpdate(QZ ,RZ ,0)
[QZ ,RZ ] = rankOneUpdate(QZ ,RZ ,v, g

′)
β1 = simplexSolve(X,Y , τ, β1)
a = dualSolution(X,Y , τ, β1)
b̂ = a− (1− τ)
T = b̂′QZQ

′
Z b̂/(τ(1− τ))

Return(T, X̃,QX ,RX ,QZ ,RZ , β1)

Full Update: Algorithm 3 shows the entire update process when point j is added

to C. The functions rowUpdate() and rankOneUpdate() correspond to the QR update

algorithms from Golub and Loan [2012]. simplexSolve() uses the simplex algorithm to

compute a quantile regression solution, warmstarted at a given solution value. dualSo-

lution() returns the dual solution to the quantile regression given the primal solution.

Both rowUpdate() and rankOneUpdate() can be run in O(np) time, as their main

bottleneck is the multiplication ofO(p) Givens rotations; the rotation matrices are sparse,

so each can be done in O(n) time. The quantile regression dual solution can be calculated

in O(np) time when the primal solution is known. For the simplex solver, each pivot

operation takes O(np) time. Convergence is guaranteed by the convex solution space,

but in general we cannot say how many pivots will be required. Provided the data is

reasonably well behaved, warmstarting should significantly reduce the number of pivots

required, especially when adding a single new data point. In practice, we have observed

that the warmstarted simplex algorithm often converges in a sublinear number of pivots.
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3.3.3 Theorem Proofs

Theorem 3

Let xt+1 be the new row added to Xt at iteration t + 1. If the QR factorization

Qt
XR

t
X = Xt is known, then

Ht+1 =

[
1 0

0 Ht

]
− vv′ (3.6)

where v is the last column of Qt+1
X .

Proof: We start by finding the new QR factorization of Xt+1.

Xt+1 =

[
xt+1

Xt

]
(3.7)

Qt
X is an orthonormal basis for Xt, meaning Qt′

XQ
t
X = I, and thus Qt′

XX
t = Rt

X .

We can expand the size ofQt
X to account for the increased size ofXt+1 while maintaining

orthonormality, giving us[
1 0

0 Qt′
X

]
Xt+1 =

[
1 0

0 Qt′
X

][
xt+1

Xt

]
=

[
xt+1

Rt
X

]
= R̃X (3.8)

In equation 3.8, we use a boldface zero (0) to indicate the rest of the row or column

of the matrix is filled with 0s.

Our goal is then to refactor R̃X into an upper triangular matrix while preserving

the orthonormality of Qt+1
X . Givens rotations are a common tool used to accomplish

this refactoring efficiently in QR factorization algorithms. R̃X is upper Hessenberg,

meaning we can quickly construct the upper triangular matrix G′XR̃X using only p

Givens rotations GX,1 . . .GX,p = GX (where GX,k indicates the kth Givens rotation

matrix). Note that GXG
′
X = I. Thus we have
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G′X

[
1 0

0 Qt′
X

]
Xt+1 = G′X

[
1 0

0 Qt′
X

][
xt+1

Xt

]
(3.9)

= G′X

[
xt+1

Rt
X

]
(3.10)

= Rt+1
X (3.11)

Qt+1
X =

[
1 0

0 Qt
X

]
GX (3.12)

However, in this form Qt+1
X is an (n+1)×(p+1) matrix, which has one more column

than we need for an orthonormal basis of Xt+1. Rt+1
X has dimensions (p+ 1)× p and is

almost a triangular matrix except its last row is 0. This means that the last column of

Qt+1
X , denoted as v, is part of the left null space of Xt+1 and contributes nothing to the

reconstruction of Xt+1. Thus we can safely remove this column from Qt+1
X and the last

row of Rt+1
X without changing the factorization.

We can represent this removal by multiplication by

[
Ip

0

]
, where Ip is the p×p identity

matrix.

Recall that H = QXQ
′
X when QX is an orthonormal basis for X. Let us denote

the last column of Qt+1
X as v. Using the vector removal notation from above, we can

rewrite the form of Ht+1, where 0p is the p× p zero matrix:

Ht+1 = Qt+1
X

[
Ip

0

] [
Ip 0

]
Qt+1′
X = (3.13)

Qt+1
X

(
Ip+1 −

[
0p 0

0 1

])
Qt+1′
X = (3.14)

Qt+1
X Qt+1′

X −Qt+1
X

[
0p 0

0 1

]
Qt+1′
X = (3.15)



40

[
1 0

0 Qt
X

]
GXG

′
X

[
1 0

0 Qt′
X

]
−Qt+1

X

[
0

1

] [
0 1

]
Qt+1′
X = (3.16)

[
1 0

0 Qt
XQ

t′
X

]
− vv′ = (3.17)

[
1 0

0 Ht

]
− vv′ (3.18)

�

Theorem 4

If Zt and Qt+1
X are known, then

Zt+1 =

[
0

Zt

]
+ vg′ (3.19)

where g = [x̃t+1, X̃t]v and v is the last column of Qt+1
X .

Proof: From Theorem 3 we know how to express the form of Ht+1. Let x̃t+1 be the

row added to X̃t.

Zt+1 = X̃t+1 −Ht+1X̃t+1 = (3.20)

[
x̃t+1

X̃t

]
−

([
1 0

0 Ht

]
− vv′

)[
x̃t+1

X̃t

]
= (3.21)

[
x̃t+1

X̃t

]
−

[
x̃t+1

HtX̃t

]
+ vv′

[
x̃t+1

X̃t

]
= (3.22)

[
0

Zt

]
+ vg′ (3.23)

where g = [x̃t+1, X̃t]v. �
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Theorem 5

Assume the QR factorization Zt = Qt
ZR

t
Z is known. Two sets of O(p) Givens

rotations GR = GR,1 . . .GR,(p−1) and GB = GB,1 . . .GB,p can be constructed such

that the factorization of Zt+1 is

Zt+1 = Qt+1
Z Rt+1

Z (3.24)

Qt+1
Z = Qt

ZG
′
RG

′
B (3.25)

Rt+1
Z = GBGR

([
0

Rt
Z

]
+ cg′

)
(3.26)

where c = Qt′
Zv and g is as defined in Theorem 4.

Proof: Given an existing decomposition Zt = Qt
ZR

t
Z ,

Zt+1 =

[
0

Zt

]
+ vg′

=

[
0

Qt
ZR

t
Z

]
+ vg′

= Qt
Z

([
0

Rt
Z

]
+ cg′

)

where c = Qt′
Zv.

We can compute a set of (p − 1) Givens rotations GR = GR,1 . . .GR,(p−1) such

that GRc = ||c||e1 where e1 is the first unit basis vector. Then GR

([
0

Rt
Z

]
+ cg′

)
=[

0

R̃

]
+ ||c||e1g

′ = B. The matrix B is guaranteed to be upper Hessenberg; as before, we

can construct p Givens rotations GB = GB,1 . . .GB,p such that GBB = Rt+1 is upper

triangular. It then follows that Qt+1
Z = Qt

ZG
′
RG

′
B. �
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3.3.4 Multiple Hypothesis Test Correction

With multiple hypothesis tests being performed, we cannot use the rank test p-value

to determine the significance of the most extreme region. Instead, we apply a Gumbel

correction [Abrams et al., 2010], which uses the most significant test values from ran-

domized data permutations to parameterize an extreme value distribution and identify

significant values. This approach requires fewer data permutations than the traditional

randomization test. If multiple significant regions need to be returned, methods like the

false discovery rate [Benjamini and Hochberg, 1995] or Bonferroni correction [Bonferroni,

1936], can be used.

3.4 Results

Evaluating Qsnap on real-world data is challenging due to the lack of datasets with

ground-truth identification of which region(s) change (or did not change) from one time

period to another. Consequently, we create simulated data where the ground truth

is known, and we perform an extensive set of experiments under different simulator

settings. We also compare Qsnap against other algorithm on two real-world problems,

and we corroborate the results against findings by independent sources2.

3.4.1 Runtime Analysis

We compare our rank test speedup against two baselines. The first baseline is a naive

implementation that calculates the test statistic T from scratch every iteration; the

second is a naive implementation that uses warmstarting to re-learn β1 quickly each

iteration.

Table 3.1 shows the average update time of each algorithm as the size of the dataset

increases, with the number of features constant at p = 3. Our incremental algorithm is

by far the fastest for larger n, demonstrating a linear increase in runtime while the others

increase quadratically. The difference between the naive and warmstarted algorithms is

relatively small, showing that the primary computational bottleneck is in calculating

Z(Z ′Z)−1Z ′.

2Matlab code for our experiments and algorithms can be found at
https://github.com/moortrav/Qsnap
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n 1000 2000 4000 6000 8000

Naive 1.8 6.1 20.9 48.6 81.4
Warmstart 1.1 4.4 17.6 43.0 74.9
Incremental 0.3 0.4 0.8 1.1 1.4

Table 3.1: Average test statistic update time in ms, averaged over 1000 updates for
randomly generated data.

3.4.2 Simulation Experiments

We evaluate the accuracy of Qsnap on simulated data where the changed regions are

known. We compare Qsnap against two other quantile spatial scan algorithms, with the

first being a variant of the Treatment-Effect Spatial Scan (TESS) [McFowland et al.,

2018]. We adapt TESS to the snapshot scan setting by using the first and second

snapshots as the “control” and “treatment” groups, respectively. In the original paper,

p-values for each data point are calculated non-parametrically as the ratio of points with

a higher response value. For our multi-variate data, we compute a quantile regression

on the control set at the desired quantile, compute the residuals for this regression on

the treatment set, then find the non-parametric p-values of those residuals. We found

this approach produces far better results than assuming a parametric distribution form.

Like Qsnap, TESS can find subsets of the second snapshot that most differ from their

expected distribution with respect to a specific quantile. We replace the discrete subset

search from the original TESS paper with the same search used by Qsnap, for a more

direct comparison of the hypothesis tests.

To our knowledge, TESS is the only existing algorithm that can be directly applied

to our task. We create a second baseline using the SSS framework. First, we modify the

SSS to search for the most significant region between two snapshots in time. Second, we

replace the likelihood ratio test of the SSS with Mood’s hypothesis test [Mood, 1950] so

that we can compare the τth quantiles of the regions under consideration. For a given

region C, this test fits the quantile regression Q
Y

(1)
C

(τ |X(1)
C ), then performs a 2× 2 chi-

squared test on the number of points above and below the regression line in snapshot

one and snapshot two. We refer to this algorithm as SSS-Moods.
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3.4.2.1 Simulator

Our simulator generates data points as a tuple {yi,xi, li}. The location (li) and pa-

rameter values (xi) are created uniformly at random between a set of maximum and

minimum values. Each dataset is partitioned into K spatially contiguous sections. For

each section k, the response, yi, is calculated from a linear relationship yi = βkxi + ε,

where βk is a randomly generated parameter vector that is different for each section,

and ε is a random noise term. In our experiments, we compare normal, exponential, and

uniform distributions for the random noise term ε. Our simulator models data that is

globally heterogeneous, but homogeneous for specific local spatial areas.

Two data snapshots of n points each are generated using the same partition bound-

aries and values of β1, . . . ,βK . In the second snapshot, a partition j is designated as

the target area. In the target area, a subset of the response values are generated from

a shifted distribution as yi = (βj + δ)xi + ε, where δ is a random vector with ||δ|| = p.

When generating data, we can identify which quantile qi of the error distribution each

data point falls into. Any point in the target area with a quantile value qi such that

|τ−qi| ≤ 0.1 is generated from this shifted distribution with parameters βj+δ, while the

rest are generated with βj . This effectively creates a change in 20% of the distribution in

the target area, centered around the τth quantile; detecting this change in the simulated

datasets is in general a very challenging problem. A successful algorithm will find the

area j by performing tests at the τth quantile.

3.4.2.2 Evaluation Metric

We evaluate the algorithms’ true positive rate (TPR) versus false positive rate (FPR)

curve, calculated on a per-point basis. Only points generated from the shifted distri-

bution are counted as true positives. Typically, a good summary of this curve can be

captured with the area under the curve (AUC). In a real-world setting, we would never

realistically operate the algorithm under a high false positive rate and the AUC for

high FPR values is not meaningful. As a result, we use the partial AUC to measure

performance; specifically, we report the AUC from FPR = [0, 0.2] to emphasize lower

FPR values. This makes a value of 0.2 a perfect partial AUC score. We compute the

partial AUC for each algorithm on each dataset, and report the average value across 30
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randomly generated datasets. See Appendix A for calculation details.

3.4.2.3 Simulation Results

(a) Normal Noise Distribution.

(b) Exponential Noise Distribution.

(c) Uniform Noise Distribution.

Figure 3.1: Partial AUC of TESS, SSS-Moods, and Qsnap on simulated data. The
best performing algorithms are bolded, * indicates the best algorithm is statistically
significant (Wilcoxon signed-rank test, α = 0.05).

We performed a suite of experiments to compare the performances of Qsnap, TESS,

and SSS-Moods. In each experiment, each algorithm is tasked with finding the target area

in snapshot two where 20% of the points are generated from the shifted distribution. Each

algorithm performs its search on the τth quantile, the center of the distribution shift.

Each algorithm uses the same spatial search routine, allowing a direct comparison of their

hypothesis tests. We evaluate each algorithm’s performance by the most significant area

reported by each algorithm on each dataset.

We tested each algorithm on simulated data with normal, exponential, and



46

uniform noise distributions, with distribution changes centered at quantiles τ =

0.1, 0.3, 0.5, 0.7, 0.9 in the target area. We also varied the number of partitions K be-

tween 1 and 3. For K = 1, the snapshots have the same base distribution at all locations,

and the target region is a random circle in L.

Figure 3.1 shows the average partial AUCs for each algorithm at different values of

τ , K, and different forms of the noise distribution. These experiments were run for

n = 5000 and p = 5. The size of the target area in snapshot two was set at 1000 points,

meaning approximately 200 points generated from the shifted distribution. We do not

show experiments with changing values of n, p, or target area size, as these parameters

affected each algorithm in similar, intuitive ways.

SSS-Moods performs very poorly in these experiments, barely detecting any changes.

The low-power Mood’s quantile test is ill-suited to the difficulty of this problem. TESS

does well for K = 1, but poorly on larger K. The speed of TESS is dependent on fitting

a global model instead of many local models, making it ill-suited for data with local

variation.

Qsnap performs significantly better than the other algorithms in 42/45 of the ex-

periments. Like SSS-Moods, it fits a model to each local region, allowing it to account

for spatially varying distributions. It also uses a more powerful test statistic, giving it

significantly greater accuracy than the other algorithms.

The runtimes of the algorithms, averaged over 10 datasets (n = 5000, p = 5, and

τ = 0.7) are: 87 seconds (Qsnap), 25 seconds (SSS-Moods) and 0.2 seconds (TESS). SSS-

Moods and TESS perform simpler hypothesis tests and are faster than Qsnap. However,

the simpler tests cause them to be unable to detect many changed regions and they lack

robustness. In the next section, we show that both TESS and SSS-Moods also perform

poorly on real-world data.

3.4.3 Drought Detection

We use Qsnap, TESS, and SSS-Moods to detect changes in drought conditions in the

continental US using climate data collected from climateengine.org [Huntington et al.,

2017]. Our model uses precipitation as the response, with humidity, evaporation, mean

temperature, max temperature, and soil moisture (5cm level) as covariates. We use 2001,

a relatively mild drought year for most of the country, and 2007, which had extensive

climateengine.org
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(a) TESS (b) SSS-Moods (c) Qsnap (d) Change in SPEI

Figure 3.2: (a)-(c) Significant areas found on climate data. (d) Change in SPEI between
2001 and 2007.

Avg. ∆(C) ∆(C) Avg. ∆τ (C)

TESS 0.76 0.95 0.66
SSS-Moods 0.87 0.95 0.86
Qsnap 1.20* 0.81 1.17*

Table 3.2: Evaluation of detected regions for climate data using change in SPEI on
regions found, regions omitted, and the τth quantile change in regions found. * for
statistical significance (paired t-test, α = 0.05)

droughts in California and the South, as our two time snapshots to compare.

Each algorithm is tasked with finding areas of significant change between the two

years at the 10th percentile. Tuning the algorithms to a low percentile of precipitation

makes them better suited to finding changes in drought conditions. Since our dataset

contains many areas of significant drought change, each algorithm reports all significant

regions instead of the most significant, using the Holm–Bonferroni correction with α =

0.01 [Holm, 1979]. Though the observations in this data are in a consistent grid structure,

our algorithm does not require such conditions.

To evaluate the regions returned by each algorithm, we use the Standardised

Precipitation-Evapotranspiration Index (SPEI). SPEI is a numerical measure of drought

severity, calculated based on the difference of precipitation and potential evaporation.

These SPEI values are independent from our climate data, and we use the difference in

SPEI between 2007 and 2001 as a proxy for the (unknown) ground truth.

In Table 3.2 we report three evaluation metrics. First is ∆(C), the average change

in SPEI for observations in each detected region C, using the absolute difference of each

observation. An algorithm that more accurately detects regions of high change will have

a higher value. The second metric is the average absolute change in all regions not



48

detected by the algorithm, C, which will be lower for better performers. We also report

the average absolute change in the 10th percentile of each detected region, ∆τ (C), which

should increase for better performers. Qsnap performs the best for all three algorithms

in all of these categories.

Figure 3.2 shows the significant areas found by each algorithm, along with a heat map

of the change in SPEI between 2007 and 2001. Red and orange areas in the heat map

experienced increased drought conditions, while blue areas decreased. Qsnap finds many

areas of significant change, while including fewer areas of no change. In comparison,

TESS fails to identify many of the areas with the most significant change, and SSS-

Moods identifies nearly the entire map as changing significantly. Note that we do not

claim Qsnap is the best tool for drought detection – only that it outperforms TESS and

SSS-Moods.

3.4.4 Discovering Migration Paths in eBird

Figure 3.3: Most significant regions (τ = 0.9) found on eBird data. Regions are color
coded for time of year.

We applied Qsnap to eBird checklists [Sullivan et al., 2014], which record bird obser-

vations identified by species by citizen scientists. We aim to discover migration routes by

identifying areas with an unusual influx of birds between time periods. By segmenting

the migration period into snapshots, and running Qsnap on those snapshots, the anoma-
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lous regions found should discover the migration path. We identify unusual regions by

finding changes in the 90th percentile of the number of birds reported on checklists in a

region.

We restricted our dataset to the western flyway of the United States, during 2017. We

only included checklists from that year, and in Bird Conservation Regions3 (BCRs) 5, 9-

10, 15-16, 32-35. Past work [La Sorte and Fink, 2017] has shown that migrating birds pass

through this area during the first half of the year, traveling north from Central America

and staying west of the Rocky Mountains. We divided the data from the first half of

the year into 6 snapshots spanning 4 weeks each, and ran Qsnap, TESS, and SSS-Moods

on pairs of consecutive snapshots. Note that, unlike other studies of migration patterns

(e.g. La Sorte and Fink [2017]), we did not filter our dataset to only include migrating

species or smooth the observations over space. Our dataset included every checklist for

every species in the region and time frame, making this dataset very challenging due to

the noise from non-migratory bird species and the imperfect observation process. We

used time spent observing as the covariate, and number of individual birds seen as the

response. For all algorithms, we used expanding rectangles instead of circles for the

spatial scan search because rectangles can better detect longer regions that capture the

South to North migration. Each rectangle is allowed to expand to the width of the data

area, with its height constrained to a reasonable distance that the birds could travel

between time frames.

Figure 3.3 shows the areas4 reported by each algorithm over the 6 snapshots of data

from the first 168 days of 2017. The areas are represented by the individual checklists

inside them, and color coded for time of year. The areas found by TESS were large

and sporadic, with no clear pattern over time. The areas found by SSS-Moods seem

to identify the start and end of the expected migration path, but fail to connect them

well. Qsnap produced the best South to North gradient over time, identifying a clear

progression that closely matches the migration route shown in La Sorte and Fink [2017].

Being able to identify a shifting spatial trend in the complex and highly noisy eBird

dataset without any data filtering illustrates the robustness and usefulness of Qsnap.

3See http://nabci-us.org/resources/bird-conservation-regions-map/ for the regions
4All maps generated using ggmaps in R [Kahle and Wickham, 2013]
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3.5 Conclusion

We presented Qsnap, which finds a region in spatial data that has undergone the most

significant change between two data snapshots, with respect to the τth quantile. To

reduce the computational cost of a search over multiple regions, we developed an efficient

incremental update to the rank test that makes the algorithm scalable to large datasets.

Compared to other similar algorithms, Qsnap is less dependent on assumptions about

the data, and performs better on a variety of different distributions. Qsnap was also

better suited to our two real-world data analysis tasks.
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Chapter 4: Multiview Collective Graphical Models

4.1 Introduction

Modeling population movement is an essential component of many research problems in

a wide variety of fields such as urban planning, economics and ecology. Building these

spatio-temporal models is challenging because data at the individual level is typically

not available. There are many reasons for this lack of data such as privacy concerns,

insufficient sensor coverage and logistical challenges in collecting this type of data for

a large population. In several cases, however, aggregate data are available, such as the

total number of cars observed at a traffic intersection at a given time.

Collective Graphical Models (CGMs) [Sheldon and Dietterich, 2011] are probabilistic

graphical models that connect individual behavior with aggregate data observed at spe-

cific locations and times. In CGMs, the behavior of an individual can be described with

a latent individual model (e.g., a Markov Chain [Sheldon et al., 2007]) and a collection of

these latent individual models produces the observed aggregate data. There are two key

challenges with CGMs. First, exact inference is computationally intractable, and sev-

eral approaches for approximate inference have been developed [Liu et al., 2014, Nguyen

et al., 2016, Sheldon et al., 2013, Sun et al., 2015]. Second, the CGM is under-specified,

as there are many possible individual behaviors that can produce the aggregate data.

In our work, the primary goal is to address the second issue by incorporating informa-

tion from multiple correlated datasets of aggregated data; we also keep the first issue in

mind, as we need to incorporate this additional information without incurring a large

computational cost.

Incorporating information from multiple datasets can be achieved through multiview

learning [Li et al., 2019, Sun, 2013, Xu et al., 2013], where views correspond to different

kinds of data. For instance, one view for a webpage classifier could be a set of features

derived from the text in the page, while another view could be a set of features derived

from the hyperlinks pointing to the webpage [Blum and Mitchell, 1998]. Traditionally,

each view on its own is assumed to be sufficient to train a learning algorithm that
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performs well. The general strategy for multiview learning is to leverage the relationship

between different views of the data and, in doing so, learn a model that generalizes better

than a model that is learned from a single view.

Our work is the first to extend CGMs to the multiview setting with aggregate data

coming from different views. For example, we can infer population movement across the

US using the number of jobs in each state (view 1) and the population in each state

(view 2), both collected over multiple years. We introduce a novel hierarchical Bayesian

model for incorporating multiview information into CGMs through Dirichlet priors on the

transition population (the number of individuals that move between each location at each

time), and we highlight critical details for making approximate inference on this model

efficient. When compared against learning multiple CGMs independently, our method

is more accurate at modeling latent population movement while being computationally

efficient, especially for large spatio-temporal grids1.

4.2 Related Work and Background

4.2.1 Collective Graphical Models

CGMs [Sheldon et al., 2007], shown as plate notation in Figure 4.2(a), are a class of

latent variable graphical models that represent the distribution of the movements of a

group of individuals, consistent with observed aggregate statistics at specific locations

and times. The nodes of the graph are the set of locations L, and the edges are defined

by the neighborhood function n(i ∈ L) which returns the set of locations j ∈ L that are

reachable from i in a single time step. Each edge {i, j} will have an associated probability

θ(i,j), with
∑

j θ(i,j) = 1. These transition probabilities may change with respect to time,

in which case t will be added as a subscript.

Let xt be an individual’s location at time t. If we have a sequence of movements

x = {x1, ..., xT } ⊂ LT by an individual through this graph, then the likelihood of that

sequence is p(x) =
∏T−1
t=1 θ(xt,xt+1,t).

Now consider a population of N individuals moving through the graph simultane-

ously, with movement sequences x(1), ...,x(N). Instead of tracking the separate move-

ments of each individual, CGMs let us describe the joint distribution of movements

1This work is currently under review for NeurIPS 2021
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in terms of aggregate statistics. Let Z = {Z(i,t)}Tt=1,i∈L be the set of populations s.t.

Z(i,t) =
∑N

p=1 I(x
(p)
t = i). In addition, let M = {M(i,j,t)}Tt=1,i∈L,j∈n(i) be the set of tran-

sition populations. We define M(i,j,t) =
∑N

p=1 I(x
(p)
t = i)I(x

(p)
t+1 = j) i.e. the transition

population moving from location i to j at time t. The conditional distribution of M is

p(M |Z,θ) =
∏
i∈L

T∏
t=1

Z(i,t)!∏
j∈n(i)M(i,j,t)!

∏
j∈n(i)

θ
M(i,j,t)

(i,j,t) (4.1)

Figure 4.1 shows an example relationship between a single location population and

the transitions populations that flow from it. Z5 is the observed population at a given

time t for location 5. Each M value then denotes the amount of that population that

flows to each neighbor location as the time transitions to t+ 1. Our constraints say that

Z5 =
∑9

i=1M5,i.

Figure 4.1: Example population flow for grid locations at a single time step. Locations
are labeled 1-9. Z5 is the population at location 5. The values of M are the transition
populations that move from location 5 to each of it’s neighbors.

Z and M are integer valued, which makes general MAP inference intractable [Shel-

don et al., 2013]. In practice this condition is relaxed, allowing Z and M to be real-

valued and non-negative. As a model governing the flow of a population through space

and time, there are also flow constraints that need to be incorporated when learning

M , namely
∑

jM(i,j,t) = Z(i,t) and
∑

iM(i,j,t) = Z(j,t+1). These ensure that the total

flow going into and coming out of a location match the total population at that time. A

variety of approximate inference techniques for CGMs have been developed, including a

tractable convex relaxation [Sheldon et al., 2013], Gaussian approximations [Liu et al.,



54

2014], message passing [Sun et al., 2015] and a difference-of-convex functions program

[Nguyen et al., 2016].

CGMs are a natural fit to population tracking, where individual transitions are often

unknown, but group dynamics can be inferred from aggregate observations at different

times and locations. While many models may be suited to modeling the movements of a

single individual, such as Hidden Markov Models and Kalman filters [Welch et al., 1995],

they are unable to predict group dynamics when individual observations are missing.

CGMs have been extended in a variety of ways including differential privacy [Bern-

stein et al., 2017], collective graphical mixture models [Iwata et al., 2017] and incorporat-

ing neural networks into CGMs to model the transition probabilities [Iwata and Shimizu,

2019]. However, none of these extensions so far have included multi-view learning.

4.2.2 Multiview Learning

Multiview learning [Sun, 2013, Xu et al., 2013] has been applied to many areas of ma-

chine learning, including semi-supervised learning [Blum and Mitchell, 1998], clustering

[Yang and Wang, 2018] and representation learning [Li et al., 2019]. The literature is

extensive, and we will focus on multiview learning techniques that are closely related to

our approach of capturing the relationship between views by aligning lower dimensional

representations of each view. Li et al. [2019] call this category of approaches multi-view

representation alignment and it includes similarity-based [Frome et al., 2013, Karpathy

and Fei-Fei, 2017], distance-based [Li et al., 2003, Feng et al., 2014] and correlation-based

[Hotelling, 1936, Bach and Jordan, 2005] measures of alignment.

Correlation-based alignment relies on Canonical Correlation Analysis (CCA)

[Hotelling, 1936]. Given two data matrices X1 and X2, which consist of observations

of random vectors x1 and x2, CCA computes the projections U1 and U2 such that

corr(X1U1,X2U2) = P where P is a diagonal matrix with p on the diagonal and each

value pi maximized in sequence. The diagonal entries of P are the canonical correlations,

which gives an indication of how much information is shared between the views along

each projected axis.

Many extensions to CCA have been proposed including Sparse CCA [Witten et al.,

2009], Kernel CCA [Lai and Fyfe, 2000, Akaho, 2001] and Deep CCA [Andrew et al.,

2013]. We focus on probabilistic CCA (PCCA) [Bach and Jordan, 2005] because we need
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a probabilistic approach to CCA in order to integrate it with CGMs. Bach and Jordan

[2005] showed that CCA is equivalent to solving a latent variable model, with x1 and x2

assumed to be normally distributed. In this probabilistic CCA (PCCA) interpretation,

x1 and x2 are seeded by the values of a latent variable s ∼ N(0, I), using the following

relationships:

x1|s ∼ N(sW 1 + µ1,Φ1) (4.2)

x2|s ∼ N(sW 2 + µ2,Φ2)

µv = mean(xv) (4.3)

W v =
√
PU vΣvv

Φv = Σvv −W v′W v

In this model, s represents the information that is shared between the views, which

is projected by W v and offset by µv, while Φv is the amount of variability remaining

in view v when this shared information is accounted for. W v is calculated using the

canonical covariates U v and canonical correlations P from CCA.

4.3 Methodology

We consider the scenario where the data consists of observations about two distinct pop-

ulations moving through the same locations at the same time. Each of these population

movements can be considered as a different view of some underlying latent process that

influences individuals from both groups. Thus, both populations possess some shared

information, and we can improve estimates on both views by accounting for what infor-

mation is shared and what is unique to each population.

We first describe the algorithm we use as a default CGM optimizer. We then explain

the pitfalls of a naive approach to multiview CGMs in Section 4.3.2. Finally, we present

our unique multiview CGM method in Section 4.3.3, with potential modifications in

4.3.4.
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4.3.1 CGM Optimization

In our CGM model, shown in plate notation in Figure 4.2a, we are tasked with estimating

both M and θ given the observations Z. To estimate M we use the Non-Linear Belief

Propagation (NLBP) algorithm of Sun et al. [2015] over the DC approach of Nguyen

et al. [2016], as the latter assumes a noise model over observations, and we are not in

that setting.

Using Stirling’s approximation, we can express the log-likelihood of Equation 4.1 as

L(M |Z,θ) =
∑
i∈L

T∑
t=1

Z(i,t) log(Z(i,t))−
∑
j∈n(i)

M(i,j,t) log(M(i,j,t))+
∑
j∈n(i)

M(i,j,t) log(θ(i,j,t))

(4.4)

The goal then is to maximize this likelihood (or minimized the negative log-likelihood)

with respect toM . Sun et al. [2015] made the observation that the negative log-likelihood

can be decomposed as −L(M |Z,θ) = ECGM (M)−HB(M ,Z), where

ECGM (M) = −
∑
i∈L

T∑
t=1

∑
j∈n(i)

M(i,j,t) log(θ(i,j,t)) (4.5)

HB(M ,Z) =
∑
i∈L

T∑
t=1

Z(i,t) log(Z(i,t))−
∑
j∈n(i)

M(i,j,t) log(M(i,j,t)) (4.6)

HB(M ,Z) is the Bethe entropy of the graph [Yedidia et al., 2005], while ECGM (M)

is referred to as the CGM energy function. In this current form, the CGM energy

function matches the energy function of the Bethe free energy objective for a standard

graphical model [Yedidia et al., 2000]. This means that the values of M can be found

using belief propagation, re-normalized to match the population values. However, this

would not incorporate the flow constraints of the model.

Sun et al. [2015] developed a generalized belief propagation algorithm for non-linear

energy functions (NLBP). The flow constraints of the model are incorporated as a func-

tion C(Z|M), which quantifies how close the predicted incoming and outgoing flow

values of M are to the observed values of Z. The form of C() is an implementation

choice, based on how the user wants to model the flow constraints. The only require-
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ment is that C() is differentiable with respect to M . The CGM energy function is then

modified to be

ECGM (M) = −
∑
i∈L

T∑
t=1

∑
j∈n(i)

M(i,j,t) log(θ(i,j,t))− C(Z|M) (4.7)

The NLBP algorithm equates to performing standard belief propagation with the

modified potentials θ̂(i,j,t) = exp
(
−∂ECGM (M)

∂M(i,j,t)

)
. The two step process is used along

with a dampening factor to update M as illustrated in Algorithm 4. This process is

repeated until convergence.

Algorithm 4 Non-Linear Belief Propagation M update

Input: Z, θ, initial M , β > 0

θ̂(i,j,t) = exp
(
−∂ECGM (M)

∂M(i,j,t)

)
∀i, j, t

MNEW = BP (θ̂,Z)
M = (1− β)M + βMNEW

NLBP normalizes the beliefs by the population values, which handles the outgoing

flow constraints by setting
∑

jM(i,j,t) = Z(i,t). We enforce incoming flow constraints by

choosing the soft constraint function

C(Z|M) = −λ
2

∑
i∈L

T∑
t=1

Z(i,t+1) −
∑
j∈n(i)

M(j,i,t)

2

(4.8)

Estimating θ along with M makes the model under-specified, making it difficult to

find a meaningful joint solution. In practice this is combated by adding some structure

to θ to inform its solution, such as making θ a function of a set of transitions features,

or sharing values of θ across multiple times and/or locations.

We adopt a similar Bayesian method that was used in Iwata et al. [2017], where

a Dirichlet prior is estimated over subdivisions of θ. How these partitions are defined

can be tailored to each application. For example, the priors could be shared over all

locations, but differ at each time step if time is expected to be the main source of change

in the data.

Let g be a partition of the CGM graph over L and T . We estimate the parameters αg

of a Dirichlet distribution, used as a prior for all θg. Utilizing the relationship between
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the Dirichlet and multinomial distributions, we can estimate θ using the Dirichlet prior

and current estimates for M .

∀(i, t) ∈ g : θ(i,:,t) =
αg +M(i,:,t)∑
j αg,j +M(i,j,t)

(4.9)

Here (i, :, t) is a vector indexing of the values (i, j, t)∀j. To update αg, we can used

the fixed-point equation derived in [Minka, 2000],

αNEWg,j = αg,j

∑
(i,t)∈g Ψ(M(i,j,t) + αg,j)−Ψ(αg,j)∑

(i,t)∈g Ψ(
∑

kM(i,k,t) + αg,k)−Ψ(
∑

k αg,k)
(4.10)

Both of these updates depend on the current estimate of M . We perform them

concurrently with the estimation of M , as illustrated in Algorithm 5.

Algorithm 5 CGM optimization

Input: Z, initial M , initial θ, partitions g ∈ G
while !converged do
M = NLBP(Z,θ,M)
θ(i,:,t) = normalize(αg +M(i,:,t)) ∀(i, t) ∈ g ∀g
while !converged do

αg,j = αg,j

∑
(i,t)∈g Ψ(M(i,j,t)+αg,j)−Ψ(αg,j)∑

(i,t)∈g Ψ(
∑

kM(i,k,t)+αg,k)−Ψ(
∑

k αg,k) ∀j, g
end while

end while

4.3.2 A Naive Approach to Combining CGMs With CCA

In the NLBP algorithm, M is updated with a message passing scheme that incorporates

the gradient of the CGM likelihood. A straightforward approach in adapting CGMs to

a multiview setting is to incorporate a CCA term into the model connecting two views.

The probabilistic CCA of Bach and Jordan [2005] works for this, as it re-parameterizes

the CCA objective as a latent variable model.

This naive approach adds the PCCA likelihood terms to the CGM model, and in-

cludes their gradient in the NLBP update. Section B of the Appendix details this

approach, along with the complex and lengthy gradient of the PCCA term. The latent
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variables of PCCA can either be linked to the view-specific values of M or θ. Unfortu-

nately, due to the nature of CGMs there are three key issues with this naive approach,

which we will briefly explain.

Issue 1: CGMs are under-specified, with M and often θ being much larger than Z.

Because there are combinatorially many solutions for M and θ that would explain Z,

there is inevitably a realization of both views that is highly correlated. Including PCCA

in the likelihood objective will bias estimates of M or θ to this maximally correlated

solution. Since it is rarely the case that the true correlation is this high, this method

ultimately harms the accuracy of M .

Issue 2: Calculating the gradient of the CCA contribution to the likelihood for each

iteration of NLBP is very time consuming. This is a significant bottleneck for any

gradient-based solver.

Issue 3: Since θ takes values on the simplex, it has built-in negative correlations that

adversely impact CCA. More specifically, when one value increases, all other values

decrease because all the components of θ have to sum to 1.

Issues 1 and 2 are demonstrated experimentally is section 4.4.1.1. Addressing these

issues is non-trivial and requires care during parameter estimation.

4.3.3 A Multiview Approach Using a Hierarchical Bayesian Model

(a) Single View CGM. (b) Multiview CGM.

Figure 4.2: Plate diagrams for single view and multiview CGM. K represents the neigh-
borhood size of the graph, V the number of data views, L the number of locations and
T the number of time steps.
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We present a novel hierarchical Bayesian model for incorporating multiview infor-

mation into a CGM that avoids the three issues above. Figure 4.2 shows the high-level

difference between our multiview CGM and the single view CGM. Our method focuses

on performing a joint estimation of θ1 and θ2 that estimates the shared information

between the two views, and converts that information into the Dirichlet priors on θ1 and

θ2.

Incorporating the shared information into the prior avoids Issue 1, as the prior does

not force the algorithm to optimize for high correlation (which does not ensure high

accuracy), but to account for correlations that arise during optimization. Issue 2 is

avoided by decoupling the optimizations of PCCA and the CGMs for each view. Issue 3

is avoided by transforming θ from the simplex to the real number plane.

For Issue 3, we use the additive log-ratio (alr) transform [Aitchison, 1986] to transform

θ1 and θ2. We choose alr for a theoretical property used in Section 4.3.3.2, and because

the centered log-ratio transform causes the covariance to be singular. The alr transform

removes the kth component of log θ and divides the other components by its value.

The choice of the index k is arbitrary, so long as it is consistent for all i and t. The

transformed values, denoted as φ are computed as φv(i,j,t) = log

(
θv
(i,j,t)

θv
(i,k,t)

)
, ∀j 6= k.

φ has one less dimension that θ, does not have constant sum, and does not have the

spurious correlations intrinsic on the simplex. φ can also be accurately fit by a normal

distribution, which makes it ideal for use in PCCA.

Both PCCA and CCA operate on a set of n “instances” from different views, where

the i-th instances from each view are assumed to be correlated. Each view is required to

have the same number of instances, but the length of these instances (i.e., the number

of variables in each view) can vary. In our formulation, we define a location/time pair as

an instance for PCCA, which requires both views to have the same number of locations

and time steps.

We estimate the latent variables s of PCCA, which encode the shared information

between the two views. The conditional distributions p(φv|s) are then use to compute

the Dirichlet priors α, which allows the shared information to influence the estimation

of θ. The details of these two steps are shown in the following sections.
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4.3.3.1 Estimating S

Using φ1 and φ2 as x1 and x2, we compute the PCCA parameters W , Φ, and µ as

described in Equation 4.3. Let S be a matrix of samples of s. From Equation 4.2, we

can write the joint probability

P (S(i,:,t),φ
1
(i,:,t),φ

2
(i,:,t)) = P (S(i,:,t))P (φ1

(i,:,t)|S(i,:,t))P (φ2
(i,:,t)|S(i,:,t)) (4.11)

Using it as a shorthand for (i, :, t), this gives a joint log-likelihood of

L(Sit,φ
1
it,φ

2
it) = −1

2
SitS

′
it −

2∑
v=1

1

2
(φvit − SitW v − µv)(Φv)−1(φvit − SitW v − µv)′ +C

(4.12)

where C is a normalization constant. We can find the MLE of Sit by setting the gradient

of the joint log-likelihood equal to 0.

∂L(Sit,φ
1
it,φ

2
it)

∂Sit
= −Sit +

2∑
v=1

(φvit − SitW v − µv)(Φv)−1W v′ = 0 (4.13)

Sit =

∑2
v=1(φvit − µv)(Φv)−1W v′

I +
∑2

v=1W
v(Φv)−1W v′

(4.14)

Since the denominator is constant with respect to i, t, its inverse only needs to be

computed once.

4.3.3.2 Estimating α

The conditional distributions φv|S represent the distributions of φv when the shared

information S is accounted for. We convert these distributions back to the simplex as

Dirichlet distributions with parameters α, where they can be used as priors for θv.

The parameters α of a Dirichlet can be alternatively defined by a mean α̃ and a

precision ρ =
∑

k αk. The mean can easily be found by computing the inverse alr

transform of E(φvit|Sit) = SitW
v + µv. This gives a different mean for each choice of i
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and t.

To estimate the precision, we can use a result from [Aitchison, 1986]. If x ∼ Dir(α),

and y = alr(x), then Cov(yi, yj) = ψ′(αk) and V ar(yi) = ψ′(αi) + ψ′(αk), where ψ′() is

the trigamma function, and k is the variable used in the denominator of the alr transform.

Note that the covariance is the same for every choice of i and j. We calculate the average

of the off-diagonal values of Φv, denoted as cv, and estimate αvk = [ψ′]−1(cv), where

[ψ′]−1() is a numerically approximated inverse trigamma function. With αvk known, we

can then compute αvj = [ψ′]−1(Φv
jj − cv), summing the values of α together to arrive at

the precision ρv, which is shared among all choices of i and t. This gives us the prior

parameters αvit = ρv[alr]−1(SitW
v + µv).

4.3.3.3 Multiview CGM Algorithm

With the Dirichlet parameters αvit known ∀v, i, t, we can use them as priors and update

the values of θ in a manner similar to section 4.3.1, the only difference being that each

θvit has its own prior distribution defined by αvit.

The proceedure for our multiview CGM optimization is shown in Algorithm 6, with

the details of MV Update() in Algorithm 7. Note that, while we use non-linear belief

propagation to solve for M in our single and multiview CGMs, any other iterative solver

could be used in tandem with our multiview update.

Algorithm 6 Multiview CGM optimization

Input: Z1, Z2, initial M1, initial M2, initial θ1, initial θ2

while !converged do
M v = NLBP(Zv,θv,M v) ∀v //Compute M values given θ
[θ1,θ2] = MV Update(M1,M2) //Compute PCCA priors and estimate θ

end while

4.3.4 Parameter Sharing and Additional Views

Section 4.3.3 outlines the case when each location and time in the CGM is given a

unique prior. We can implement parameter sharing by sharing these priors over groups

of locations/times. In general, if we let g be a subdivision of the CGM over time and

space, we can perform the previous derivation by first calculating θvg = 1
|g|
∑

i,t∈g θ
v
it. φ

v
g
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Algorithm 7 MV Update

Input: M1, M2

φv(it) = alr(normalize(M v
it)) ∀v, i, t

[U1,U2,P ] = CCA(φ1,φ2)
Σv = Cov(φv) ∀v //Start: Compute Probabilistic CCA parameters
W v =

√
PU vΣv ∀v

Φv = Σv −W v′W v ∀v
µv = mean(φv) ∀v // End: Compute Probabilistic CCA parameters

Sit =
∑2

v=1(φv
it−µv)(Φv)−1W v′

I+
∑2

v=1W
v(Φv)−1W v′ ∀i, t

α̃vit = [alr]−1(SitW
v + µv) ∀v, i, t // Start: Compute prior parameters

cv = mean(OffDiagonal(Φv)) ∀v
ρv = [ψ′]−1(cv) +

∑
j [ψ
′]−1(Φv

jj − cv) ∀v
αvit = ρvα̃vit ∀v, i, t // End: Compute prior parameters
θv(it) = normalize(αvit +M v

it) ∀v, i, t

is calculated from θvg, and the rest of the algorithm proceeds as before to give αvg. The

values of αvg can then be the shared priors over the set g.

Section 4.3.3 assumes the number of views of the data to be 2, but it is trivial to

extend this to the case v > 2 by utilizing generalized CCA methods, of which there

are many options [Kettenring, 1971]. Our algorithm utilizes a shared set of canonical

correlations P , and canonical covariates U v for each view. Calculating these using

existing GCCA algorithms is all that is required to implement our multiview CGM for

more than two views.

It is also important to note that while we define a PCCA “instance” as a location/time

pair, instances could alternatively be defined over locations or times separately. This

would allow either the number of time steps or locations to vary between views, which

would permit the comparison of a wider variety of data views. The trade-off to this

approach is that it reduces the total number of instances and increases the length of each

instance (to absorb the additional dimension not used), which can reduce the effectiveness

of PCCA.
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4.4 Results and Discussion

Since there are no other known methods for this task, we compare our multiview CGM

against the baseline of using a separate CGM for each view (denoted as the 2 CGM

approach). All CGMs use the belief propagation optimization method described in

Section 4.3.1. Algorithms are given population observations Z and tasked with finding

the MAP estimates of the latent variables M while estimating parameters θ. Both

approaches are evaluated based on their Normalized Absolute Error (NAE) for M on a

suite of simulated and real world data sets. NAE, which has been used in past work to

compare CGMs (e.g. [Iwata et al., 2017]), is computed as

∑
i∈L

∑
j∈n(i)

∑T
t=1 |M(i,j,t)−M∗(i,j,t)|∑

i∈L
∑

j∈n(i)

∑T
t=1M

∗
(i,j,t)

for each view, where M∗ are the true transition population values and M are the

predicted values.

Unless stated otherwise, the locations in each dataset are arranged as an m × m

grid and the neighborhood of a location consists of the 8 adjacent grids, plus itself, with

special cases for edge cells and corner cells. Our default CGM shares prior values over

locations at each time step, while the multiview algorithm computes a unique prior at

each time and location.

We first present the simulated data results, along with a description of our simula-

tor. Second, we present the real world population flow data results. Finally, we show the

runtimes for all performed experiments together in Section 4.4.3.2 Code and data to re-

produce all experiments are available at https://github.com/MVCGM/Code-and-Data.

4.4.1 Accuracy on Simulated Data

Our simulation algorithm generates a set of transition probabilities θ for each view, along

with an initial population distribution at time t = 1. M v
it is drawn from a multinomial

distribution with p = θvit and n = Zv(i,t). The populations of the next time step are then

computed as Zv(i,t+1) =
∑

jM
v
(j,i,t). This two step process is iterated until the last time

step.

We use three different methods for generating θ. In the Attract-Same method, two

locations are randomly chosen as centers of attraction, with the locations changing every

m time steps. The value of θ(i,j,t) is calculated using an RBF kernel on the distance of

2All experiments were run on a vitual machine with a 3.00GHz Intel Xeon CPU and 8.0 GB of RAM.
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Table 4.1: Simulated data

2 CGMs Multiview CGM

Generation NAE View 1 NAE View 2 NAE View 1 NAE View 2

5x5, Attract-Same 0.355 0.351 0.203* 0.204*
5x5, Attract-Diff 0.351 0.369 0.144* 0.152*
5x5, Attract/Repel 0.377 0.342 0.182* 0.278*
10x10, Attract-Same 0.361 0.366 0.330 0.332*
10x10, Attract-Diff 0.452 0.456 0.202* 0.202*
10x10, Attract/Repel 0.375 0.385 0.159* 0.298*

j from the closest center of attraction at time t. These values are normalized to sum to

1, and θ1 = θ2.

In the Attract-Diff method, a single center of attraction is generated for each view

independently. In the Attract/Repel method, view 1 is attracted to the two centers of

attraction, while view 2 is repelled from them, using the negative distance in the RBF

kernel.

Table 4.1 shows the simulator results for the different generation methods when

locations span a 5×5 and 10×10 grid with 100 time steps. Results are averaged over 10

random generations, ∗ values indicate statistical significance (paired t-test, p ≤ 0.05). In

each case, for each data view, our multiview algorithm achieves better NAE values, with

11 of the 12 views being significantly better. The smallest gains in NAE came when the

two views had the same underlying transition probabilities. This is expected, as in the

extreme case where both views are exactly the same, the multiview process adds no new

information and should have similar performance to the baseline.

4.4.1.1 Comparison to Naive Approach

To illustrate the shortcomings of the naive multiview CGM approach discussed in section

4.3.2, we compared an implementation of it (Naive MVCGM) against the 2 CGM baseline

and our hierarchical multiview algorithm (Multiview CGM). The three algorithms were

compared on our simulated data, generated on a 5× 5 grid with 50 time steps. Results

are averaged over 10 randomly generated datasets.

Table 4.2 shows the NAE results for each algorithm on the simulated data. Table
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Table 4.2: NAE Values

2 CGMs Naive MVCGM Multiview CGM

Generation View 1 View 2 View 1 View 2 View 1 View 2

Attract-Same 0.362 0.358 0.855 0.870 0.216* 0.213*
Attract-Diff 0.165 0.219 0.862 0.848 0.138 0.155*
Attract/Repel 0.361 0.334 0.867 0.807 0.185* 0.272*

4.3 also shows the runtimes of the algorithms, the correlation of the ground truth M

values, and the correlation of the predicted M values for each algorithm. The naive

approach is by far the worst of the three algorithms in terms of NAE and runtime,

the latter due to the bottleneck of computing the PCCA gradient. While all three

algorithms over estimate the correlation between the views, the naive method has the

highest predicted correlation for each simulator except Attract-Same (which has the

highest true correlation). In contrast, our hierarchical multiview algorithm predicts a

lower correlation than the 2 CGM baseline in every case. This illustrates the point of

Issue 1 from section 4.3.2, where maximizing for view correlation does not equate to high

accuracy.

Table 4.3: Runtime and Correlation

2 CGMs Naive MVCGM Multiview CGM

Generation True Corr Corr Runtime Corr Runtime Corr Runtime

Attract-Same 0.727 0.970 3.45 0.932 725.31 0.966 7.67
Attract-Diff 0.179 0.425 8.64 0.531 505.34 0.367 8.53
Attract/Repel 0.194 0.692 4.77 0.727 539.16 0.599 8.51

4.4.2 Accuracy on Real World Data

For our first set of real world data tests, we use anonymized people tracking data made

publicly available by Nightley, Inc.3 This data was collected from geo-tagged tweets

3SNS-based People Flow Data, Nightley, Inc., Shibasaki & Sekimoto Laboratory, the University of
Tokyo, Micro Geo Data Forum, People Flow project, and Center for Spatial Information Science at the
University of Tokyo. https://nightley.jp/archives/1954/
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from thousands of participants in Tokyo, Osaka, and Nagoya, and creates movement

trajectories for each individual. The original data contains no identifying information

about individuals, other than gender. We further anonymize the data by aggregating the

individual movements into the population variables Z and M . We split the populations

by men and women as our two views.

The data is processed as a 10× 10 grid over locations, with time steps every 5 mins

over a 24-hour period (288 total time steps). Each city has 6 days of data, which are

learned in batch with the same θ used for each day. Each day has a different population

sample, thus a distinct M must be learned for each one. For this data, the priors of our

multiview CGM are shared over locations for each time step.

Table 4.4 shows the results of learning the two views separately versus our multiview

CGM. We also include results for fitting the data as a single population, combining

aggregate values of men and women, with a single CGM. The results show that the

aggregate movements of men and women in the areas are different enough that treating

them as separate populations improves NAE for each view. These values are further

improved by our multiview approach in 5 of the 6 cases. Statistical significance cannot

be calculated on real world results, since there is only one dataset for each city.

Table 4.4: Japan population flow

Single CGM 2 CGMs Multiview CGM

City NAE NAE Women NAE Men NAE Women NAE Men

Tokyo 0.156 0.074 0.131 0.056 0.071
Osaka 0.052 0.037 0.050 0.033 0.035
Nagoya 0.064 0.041 0.040 0.026 0.058

Our final experiment uses data made publicly available by the U.S. Census Bureau.4

We use aggregated values (over states) from their state-to-state job flow and migration

data as the two views, with time steps every year for years 2005 to 2019. Note that

ground truth at the state-to-state level is available for evaluation. Locations are taken

as the 46 states without missing data during this period. This data set is unique from

the others in that the two views are not over the same units (number of jobs vs number

of people), and that the locations are fully connected in the span of one time step.

4https://www.census.gov/data.html
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The fully connected locations makes the data too un-constrained to learn on its

own. We add a universal transition prior to all algorithms, based on an RBF kernel

over distances between state capitals. This biases the models to favor geographically

close transitions, and enables the transitions to be learned with a reasonable amount of

accuracy.

Table 4.5 shows the NAE results on this data. Even with the views being over

different entities, our multiview approach offers a considerable improvement for both

views.

Table 4.5: US job and population flow

2 CGMs Multiview CGM

NAE Jobs NAE Pop NAE Jobs NAE Pop

0.404 0.454 0.315 0.348

4.4.3 Runtime Results

Table 4.6 shows the runtime results from all performed experiments. We include the di-

mensions of M for each dataset, listed as (number of locations)×(neighborhood)×(time

steps). The table is sorted by the overall size of M . Our multiview CGM adds increased

runtime per iteration over the baseline. However, we notice that this overhead is miti-

gated by our algorithm converging in fewer iterations. The runtime results indicate that

the additional overhead is a significant factor when the problem size is small. As the

size of M increases, the faster convergence rate becomes a greater factor in reducing

runtime, with multiview CGM being significantly faster on our largest datasets.

4.5 Conclusion

In this chapter we presented a novel hierarchical Bayesian approach to performing multi-

view inference in Collective Graphical Models. This is the first ever attempt at multiview

learning in CGMs, as the under-specified nature of the models prevents a traditional mul-

tiview approach from significantly impacting optimization. Our method overcomes this

issue by estimating the shared information between views as a transition prior, which
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Table 4.6: Runtime results in seconds, sorted by the size of the spatial grid.

Data Set M Size |M | 2 CGMs
Multiview

CGM
Runtime

Ratio

5 x 5, Attract-Same 25x9x100 22,500 7.56 15.98 2.11
5 x 5, Attract-Diff 25x9x100 22,500 9.81 17.31 1.76
5 x 5, Attract/Repel 25x9x100 22,500 9.59 17.80 1.86

US Job and People Flow 46x46x15 31,740 31.79 46.24 1.45

10 x 10, Attract-Same 100x9x100 90,000 44.57 53.98 1.21
10 x 10, Attract-Diff 100x9x100 90,000 30.73 78.55 2.56
10 x 10, Attract/Repel 100x9x100 90,000 73.85 146.82 1.96

Tokyo 600x9x288 1,555,200 3757.0 1378.9 0.37
Osaka 600x9x288 1,555,200 2196.5 1581.7 0.72
Nagoya 600x9x288 1,555,200 2242.3 1412.7 0.63

allows the model to account for correlations that arise between views rather than arbi-

trarily increase them during optimization. Our method is evaluated on simulated and

real world population movement data, where it consistently and significantly outperforms

the baseline method, reducing the error rate in both views.
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Chapter 5: General Conclusions

In this thesis, I detailed work done in two main research avenues for spatial and spa-

tiotemporal data: a quantile based spatial scan statistic, and a multiview approach for

collective graphical models.

The quantile based scan statistic research produced two new scan algorithms, QSSS

and QSnap, for comparing regions in space or across different snapshots in time using

quantile regression. Comparing the regions based on their fitted regression quantiles

allows the scan statistic to be more robust to data outliers, and helps the user identify

changes to specific parts of the data distribution. Both of these points were illustrated

in multiple experiments on real world and synthetic data. While the benefits of quantile

based statistics usually come with a prohibitively larger cost in runtime, incremental

optimization techniques were developed for both QSSS and QSnap that reduce their

runtime by an order of magnitude. These incremental optimizations allow the algo-

rithms to run in time comparable to traditional mean-based scans, giving them the best

combination of speed, robustness, and statistical power. An adjustment for performing

one-sided tests was also introduced, which was optimized to incur a negligible penalty

on runtime. This one sided test is applicable for both QSSS and QSnap.

My research into collective graphical models produced the first ever multiview al-

gorithm for CGMs. CGMs are usually under specified in practice, with more variables

to determine than data observations. I showed that a traditional multiview approach,

incorporating a shared likelihood term between the two model views, is poorly defined

due to this lack of observations, strongly influencing the model to a solution that harms

its accuracy. Instead, I developed a hierarchical Bayesian multiview model, where the

correlations between views are incorporated into parameter priors, softening their influ-

ence on optimization. This Bayesian approach demonstrated greatly improved accuracy

compared to learning each view separately, on both real world and simulated data. The

collection of results also indicate that, while the multiview algorithm has a higher run-

time for small data sets, it becomes more comparable to the baseline as the problem size

grows, even becoming faster to run on the largest experiments.
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While they focused on different algorithmic methods and applications, both research

tracks revolve around the shared goals of improving spatiotemporal data analysis in the

face of data uncertainty. For the scan statistic work, this was accomplished by utilizing

the robustness of quantile test statistics. These quantile scan statistics not only reduce

the influence of outliers, they also greatly reduce the influence of any data noise not

apparent in the quantile of interest. This, combined with the one-sided test variant,

opens up a wide level of customization for performing scan statistic region detection

in a dataset. By exploiting domain knowledge to pinpoint quantiles of interest and

likely variable interactions, the power of these tests and their ability to overcome data

noise is greatly increased. Given how much domain knowledge can be leveraged in the

parameters of these tests, I believe their full potential has yet to be fully explored.

My multiview CGM research helps to address the issue of missing data that is inherent

in most CGM applications. Previously, parameter sharing has been the primary method

for dealing with this missing data, trading generality in order to reduce the number

of learned parameters. Multiview learning is a natural approach to this as well, as

the additional information from multiple data views, if incorporated correctly, can help

account for a lack of observed information. The Bayesian multiview method presented is

able to accurately learn multiple CGMs at the same time, and has potential to be useful

in the single CGM setting as well. Since the method works by transforming transition

correlations into distribution priors, it can also be applied if one of the CGM views is

fully observed, or if a view consists of non-population based observations. For example, if

the primary view of interest was a CGM for migrating bird populations, the other views

could be measures of change in different habitat variables (greenness, land cover, etc)

between locations and times. Whether incorporating this information as a multiview

prior is more informative than using it as a covariate in the transition distribution is a

matter of future research.
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Appendix A: Partial AUC Calculation

For our simulation experiments we evaluate each algorithm by computing the partial

AUC of the TPR vs FPR graph, over the FPR range [0,0.2]. For each of the 30 datasets

in each experiment setup, each algorithm reports the best region discovered, which we

denote as C∗. Any points in C∗ that are generated from the shifted distribution are

true positives (TP), while all other points in C∗ are false positives (FP). Points outside

C∗ generated by the shifted distribution are false negatives (FN), while the other data

points outside C∗ are true negatives (TN).

For each dataset, we compute the TPR and FPR of the best region from each al-

gorithm as tpr = TP
TP+FN and fpr = FP

FP+TN . In our setup we must either accept the

entire region or none of it. This means that TPR = 0 when FPR < fpr, and TPR = tpr

when FPR ≥ fpr. This produces a step graph for each algorithm on each dataset. We

calculate the partial AUC as the area under each graph in the FPR range [0,0.2]. Note

that if fpr > 0.2, then the partial AUC is 0. We report the average partial AUC over

all 30 datasets for each algorithm.

In our synthetic experiments, the highest possible partial AUC score is 0.2, if TPR

= 1. This value is extremely unlikely, since our true positive points are not perfectly

grouped together. Any region that overlaps all true positive points will almost certainly

overlap negative points as well.
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Appendix B: PCCA Likelihood Gradient

An intuitive method for implementing a multiview CGM framework that accounts for

view correlation is to incorporate the probabilistic CCA model into the CGM likelihood.

The latent variables of PCCA would be shared by the CGM parameters θ1 and θ2, as

these are the only CGM values not skewed by the population size. This utilizes the

CCA likelihood as an additional term in the objective to shape the maximizing values

of M1 and M2. This multiview CGM can still be solved using the NLBP algorithm, as

NLBP utilizes the gradient of the log-likelihood with respect to M . Thus, this multiview

implementation can be realized by calculating the gradient of the PCCA additions to

the model. Specifically, P (θ1,θ2|S)P (S).

We start with a reparameterization. Our CCA model works on the additive log

transform of the transition probabilities θ. This moves the values into the real space,

which CCA is more suitably used for, by dividing by an arbitrary index D in the vector.

Let φ = log
(
θ−D

θD

)
. P (θ|S) follows a logistic normal distribution, which has the form

P (θv|S) =
1

(2πk|Φv|)1/2

1∏k
j=1 θ

v
j

exp

(
−1

2
(φv − µv)′Φv(φv − µv)

)
(B.1)

In order to fully describe the model in terms of the transtition estimates, we will

rewrite θ in terms of M , θ(i,j,t) =
M(i,j,t)∑
f M(i,f,t)

. This gives the equality φit = log
(
Mit/D

M(i,D,t)

)
,

which we will use for shorthand.

Using the logistic normal distribution for P (θ|S), a standard normal for S, and the

parameters associated with probabilistic CCA, our full log likelihood can be written as
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L(S) + L(θ1|S) + L(θ2|S) = (B.2)∑
t

∑
i

−1

2
log(2πk)− 1

2
S′itSit +

∑
v=1,2

∑
t

∑
i

−1

2
log(2πk|Φv|)−

∑
j

log

(
Mv

(i,j,t)∑
f M

v
(i,f,t)

)
(B.3)

− 1

2

(
log

(
M v

it/D

Mv
(i,D,t)

)
− SitW v − µv

)
(Φv)−1

(
log

(
M v

it/D

M(i,D,t)

)
− SitW v − µv

)′
(B.4)

(B.5)

Now, we can start to take the derivative of the likelihood with respect to Mv
(i,j,t).

We will use the shorthand ijt = (i, j, t) for the index of the derivative argument, and

m1
it =

(
log

(
M1

it/D

M1
(i,D,t)

)
− SitW 1 − µ1

)
. Note that the CCA parameters S, W , Φ, and

µ all depend on φ, and thus depend on M .

∂(L(S) + L(θ1|S) + L(θ2|S))

∂M1
ijt

= (B.6)

−
∑
f

S′(i,f,t)
∂S(i,f,t)

∂M1
ijt

− n

2
tr

(
(Φ1)−1 ∂Φ1

M1
ijt

)
− n

2
tr

(
(Φ2)−1 ∂Φ2

M1
ijt

)
− 1

M1
ijt

+
k∑

f M
1
(i,f,t)

(B.7)

−m1
it(Φ

1)−1

(
I1
ijt −

∂Sit
∂M1

ijt

W 1 − Sit
∂W 1

∂M1
ijt

− ∂µ1

∂M1
ijt

)′
+

1

2
m1

it(Φ
1)−1 ∂Φ1

M1
ijt

(Φ1)−1m1′
it

(B.8)

−m2
it(Φ

2)−1

(
− ∂Sit
∂M1

ijt

W 2 − Sit
∂W 2

∂M1
ijk

)′
+

1

2
m2

it(Φ
2)−1 ∂Φ2

M1
ijt

(Φ2)−1m2′
it (B.9)

The vector Ivijt represents the derivative ∂
∂Mv

ijt
log

(
Mv

it/D

Mv
(i,D,t)

)
. If j 6= D, Ivijt is a vector

of zeros with the jth element equal to 1
Mv

ijt
. If j = D then every element of Ivijt is equal

to −1
Mv

ijt
.
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What remains to fill in are the partial derivatives of the CCA parameters with respect

to Mv
ijt. Those are derived in the following sections.

B.1 CCA Parameter Derivatives

Bach and Jordan derived the closed form solution for the CCA parameters that maximize

the joint likelihood. We will use those forms to find their derivatives with respect to Mv
ijt.

W : This variable depends on the covariance matrix of φv, denoted as Σv, the canonical

vector matrix U v, and the diagonal matrix of correlation coefficients P .

W v =
√
PU v′Σv (B.10)

∂W v

∂Mv
ijt

=
√
PU v′ ∂Σv

∂Mv
ijt

+
√
P
∂U v

∂Mv
ijt

′
Σv +

∂
√
P

∂Mv
ijt

U v′Σv (B.11)

=
√
PU v′ ∂Σv

∂Mv
ijt

+
√
P
∂U v

∂Mv
ijt

′
Σv +

1

2
diag

(
(p)−1/2 ∂p

∂Mv
ijt

)
U v′Σv (B.12)

∂W f

∂Mv
ijt

=
√
P
∂U f

∂Mv
ijt

′

Σf +
1

2
diag

(
(p)−1/2 ∂p

∂Mv
ijt

)
U f ′Σf (B.13)

∂Σv

∂Mv
ijt

=
∂

∂Mv
ijt

1

nv
(φv − µv)′(φv − µv) (B.14)

=
1

nv
∂(φvit − µv)
∂Mv

ijt

′
(φv − µv) +

1

nv
(φv − µv)′∂(φvit − µv)

∂Mv
ijt

(B.15)

∂φvit
∂Mv

ijt

=
∂

∂Mv
ijt

log

(
M v

it/D

Mv
(i,D,t)

)
= Ivijt (B.16)

(B.17)

U1 and P are found using the eigenvalue problem solutions of the matrix

(Σ11)−1Σ12(Σ22)−1Σ21, with a symmetric matrix for the second viewpoint. U v is a

matrix of all the eigenvectors, while P is a diagonal matrix of the square root of the

corresponding eigenvalues. Finding the derivative of these eigenvectors and eigenvalues

is detailed in later subsections of this appendix.
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Φ:

Φv = Σv −W v′W v (B.18)

∂Φv

∂Mv
ijt

=
∂Σv

∂Mv
ijt

− ∂W v

∂Mv
ijt

′
W v −W v′ ∂W

v

∂Mv
ijt

(B.19)

∂Φf

∂Mv
ijt

= − ∂W
f

∂Mv
ijt

′

W f −W f ′ ∂W
f

∂Mv
ijt

(B.20)

We can substitute in our derivatives of W v and Σv from the previous section.

µ:

µv =
1

nv

∑
it

φvit (B.21)

∂µv

∂Mv
ijt

=
1

nv
Ivijt (B.22)

S: We start with the closed form solution we derived for S at a given time and location.

Recall that S ∼ N(0, I).
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Sit =

∑2
v=1(φvit − µv)(Φv)−1W v′

I +
∑2

v=1W
v(Φv)−1W v′

= ND−1 (B.23)

∂Sit
∂M1

ijt

= −ND−1 ∂D

∂M1
ijt

D−1 +
∂N

∂M1
ijt

D−1 (B.24)

∂D

∂M1
ijt

=
∑
v

W v(Φv)−1

(
∂W v

∂M1
ijt

)′
+

(
∂W v

∂M1
ijt

)
(Φv)−1W v′ (B.25)

−W v(Φv)−1 ∂Φv

∂M1
ijt

(Φv)−1W v′ (B.26)

∂N

∂M1
ijt

= (φ1
it − µ1)(Φ1)−1

(
∂W 1

∂M1
ijt

)′
+
∂(φ1

it − µ1)

∂M1
ijt

(Φ1)−1W 1′ (B.27)

− (φ1
it − µ1)(Φ1)−1 ∂Φ1

∂M1
ijt

(Φ1)−1W 1′ (B.28)

+ (φ2
it − µ2)(Φ2)−1

(
∂W 2

∂M1
ijt

)′
− (φ2

it − µ2)(Φ2)−1 ∂Φ2

∂M1
ijt

(Φ2)−1W 2′ (B.29)

B.2 Eigenvector and Eigenvalue Derivative

These derivatives are derived using the process presented in Fox and Kapoor [1968].

Let A be a square matrix with eigenvalues λ1, ..., λk and eigenvectors v1, ...,vk, where

each eigenvector has unit norm and the eigenvalues are distinct. From the definition of

eigenvalues, we have

Avi = λivi (B.30)

AV = V Λ (B.31)

Here V is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. It

can easily be shown that V −1 is the set of left eigenvectors, as V −1A = ΛV −1. Assume

that A, and by extension λ and v, can be parameterized by the scalar t. If we take the

partial with respect to t on both sides of equation (B.30) we get
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∂A

∂t
vi +A

∂vi
∂t

=
∂λi
∂t
vi + λi

∂vi
∂t

(B.32)

We can pre-multiply both sides by v−1
i , which is the ith row of V −1, and then

simplify. Recall that v−1
i A = λiv

−1
i , since V −1 are the left eigenvectors of A.

v−1
i

∂A

∂t
vi + v−1

i A
∂vi
∂t

= v−1
i

∂λi
∂t
vi + v−1

i λi
∂vi
∂t

(B.33)

v−1
i

∂A

∂t
vi + λiv

−1
i

∂vi
∂t

=
∂λi
∂t

+ λiv
−1
i

∂vi
∂t

(B.34)

v−1
i

∂A

∂t
vi =

∂λi
∂t

(B.35)

This gives us the derivative of the eigenvalues with respect to A and t.

For the eigenvector derivative we first rearrange equation (B.30), take the derivative

with respect to t, and substitute in the the eigenvalue derivative from above.

(A− λiI)vi = 0 (B.36)

(A− λiI)
∂vi
∂t

+

(
∂A

∂t
− ∂λi

∂t
I

)
vi = 0 (B.37)

(A− λiI)
∂vi
∂t

= −
(
∂A

∂t
− v−1

i

∂A

∂t
viI

)
vi = fi (B.38)

This is a k x k system of equations, but it is not well defined because the matrix

A− λiI has rank k− 1. We will have to use this system along with the norm constraint

on vi to fully solve for ∂vi
∂t .

Since V forms a basis, we can rewrite ∂vi
∂t as a linear combination of the eigenvectors.

∂vi
∂t

=
k∑
i=1

civi = V c (B.39)

This shifts our task into solving for the vector c to find ∂vi
∂t . Substituting this value

into (B.38) and premultiplying by V −1 we get
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V −1(A− λiI)V c = V −1fi (B.40)

(Λ− λiI)c = V −1fi (B.41)

cj =
v−1
j fi

λj − λi
(B.42)

This gives us the values of c except for ci. A constraint of the CCA formulation is the

unit variance of the projections. More concretely, we must have V such that V ′ΣV = I,

where Σ is the covariance of the corresponding viewpoint. Utilizing this constraint, we

can derive an expression for ci. We start with the constraint for vi, and then take the

derivative with respect to t.

v′iΣvi = 1 (B.43)

2v′iΣ
∂vi
∂t

+ v′i
∂Σ

∂t
vi = 0 (B.44)

2v′iΣV c = −v′i
∂Σ

∂t
vi (B.45)∑

j 6=i

(
2v′iΣvjcj

)
+ 2v′iΣvici = −v′i

∂Σ

∂t
vi (B.46)

2ci = −v′i
∂Σ

∂t
vi (B.47)

ci = −1

2
v′i
∂Σ

∂t
vi (B.48)

Note that we make use of the fact that V ′ΣV = I, which means v′iΣvi = 1 and

v′iΣvj = 0. With every value of c defined, we now have an expression for ∂vi
∂t .

In the previous sections we required the derivative of the canonical vectors U i

and canonical correlations p for CCA. For this problem, let t = M1
ijt and A1 =

(Σ11)−1Σ12(Σ22)−1Σ21. Then the canonical vectors are the eigenvectors of Ai, and

the canonical correlations are the square root of the eigenvalues. This means that

∂pk = ∂(
√
λk) = ∂λk

2
√
λk

. Both the eigenvector and eigenvalue derivatives depend on

the derivative of A, which we must also derive.
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∂A1

∂M1
ijt

= −(Σ11)−1 ∂Σ11

∂M1
ijt

(Σ11)−1Σ12(Σ22)−1Σ21 (B.49)

+ (Σ11)−1∂(φ1 − µ1)′

∂M1
ijt

(φ2 − µ2)

n
(Σ22)−1Σ21 (B.50)

+ (Σ11)−1Σ12(Σ22)−1 (φ2 − µ2)′

n

∂(φ1 − µ1)

∂M1
ijt

(B.51)

∂A2

∂M1
ijt

= (Σ22)−1 (φ2 − µ2)′

n

∂(φ1 − µ1)

∂M1
ijt

(Σ11)−1Σ12 (B.52)

− (Σ22)−1Σ21(Σ11)−1 ∂Σ11

∂M1
ijt

(Σ11)−1Σ12 (B.53)

+ (Σ22)−1Σ21(Σ11)−1∂(φ1 − µ1)′

∂M1
ijt

(φ2 − µ2)

n
(B.54)

This is the final piece to construct the full gradient from equation B.9.
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