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Is it possible to determine whether a signal violates a formula in Signal Temporal Logic

(STL), if the monitor only has access to a low-resolution version of the signal? We answer

this question affirmatively by demonstrating that temporal logic has a multiresolution

structure, which parallels the multiresolution structure of signals. A formula in discrete-

time Signal Temporal Logic (STL) is equivalently defined via the set of signals that

satisfy it, known as its language. If a wavelet decomposition x = y + d is performed on

each signal x in the language, we end up with two signal sets Y and D, where Y contains

the low-resolution approximation signals y, and D contains the detail signals d needed

to reconstruct the x’s. This thesis provides a complete computational characterization

of both Y and D using a novel constraint set encoding of STL, s.t. x satisfies a formula

if and only if its decomposition signals satisfy their respective encoding constraints. We

obtain a sequence of lower-resolution formulas ϕ−1, ϕ−2, ϕ−3, ... which thus constitute a

multiresolution analysis of ϕ. This work lays the foundation for multiresolution monitor-

ing in distributed systems. One potential application of these results is a multiresolution

monitor that can detect specification violation early by simply observing a low-resolution

version of the signal to be monitored. We illustrate these results with experiments on

synthetic signals.
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Chapter 1: Introduction

Consider a drone or drone swarm operating with the goal of carrying out some task,

whether it be package delivery, building inspection, agricultural functions, art, or some

other objective. During operation the drones would be sending data streams back to a

central controller or monitor. This could include image/video, telemetry, or environmen-

tal data from an array of sensors. It may be that a human is simply watching the video

feed from a drone under their control while an inspection is taking place. Or it could

be that some central monitor is verifying all drones performing crop dusting services are

spraying the correct fields and avoiding populated areas. Each of these tasks, and indeed

many more, require the sending and receiving of signals.

Signals, whether continuous- or discrete-time, have a multi-resolution structure: a

signal x in an appropriate signal space can be decomposed into the sum x = x−1 + d−1

where x−1 is a low resolution approximation of x, and d−1 contains the detailed features

that are missing from x−1. By iterating this decomposition, we obtain a multiresolution

sequence of approximations x−1, x−2, . . . , x−j , and so on. As j →∞, x−j becomes lower

and lower resolution. This is like walking away from a painting: as we walk further

away from it, its details become blurred and the resolution of viewing decreases. This

multiresolution analysis, obtained by wavelet decomposition, has been heavily leveraged

in Signal Processing: for signal de-noising, enhancement, compression and decompres-

sion [24], and more recently to explain the capabilities of generative neural networks [17].

An example of a decomposition of an image is shown in Fig. 1.1 [18].

In most communication systems, the sender will first decompose its signal x using a

wavelet basis. Rather than send the full-resolution x (which would require more bits),

it sends first a low-resolution approximation x−J (for some J). It then progressively

sends more and more components of the signal so the receiver can progressively build

higher and higher resolution approximations x−J+1, x−J+2... until it has the full x. The

advantage of such an incremental scheme is that if the connection drops at any point,

the receiver has some version of the signal which is hopefully a good approximation of

that signal and sufficient for its task.
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Figure 1.1: 2D Image Wavelet Decomposition

The task of interest in this thesis is runtime monitoring and it is motivated by dis-

tributed applications. An example of a distributed system is the drone swarm presented

at the beginning of this section. In runtime monitoring of distributed systems, geograph-

ically dispersed nodes, such as the drones, send their signals to a monitoring node that

determines whether the signals satisfy a specification in some temporal logic.
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The field of Runtime Verification (RV) is concerned with verifying system behav-

ior during operation using formal specifications. System behavior is typically defined

in terms of some specification, such as ”The car must not exceed 70 mph” or ”The

unmanned aerial vehicle must be at least 10 ft away from any structures at all times.”

Verifying these in real time hopefully allows for correction of undesirable or unsafe system

states.

Up until now, Runtime Verification has not leveraged multiresolution approxima-

tions. We typically start with a signal in the time domain, and at most we assume

the signal is missing samples [25, 15] or is corrupted by stochastic noise [23]. Issues

of filtering, compression and de-compression, wireless transmission, and choice of rep-

resentation, have not played a prominent role in Runtime Verification, despite the fact

that they affect any signal we can practically measure, and therefore pose an a priori

problem to the accuracy of runtime monitoring. Because these operations rely heavily

on non-time-domain representations, most notably the Fourier and Wavelet domains, we

must integrate the languages of signal processing and runtime verification to arrive at a

consistent and practical formalism in which to pose and solve these problems. This paper

focuses on the wavelet-based multiresolution analysis, and its implications for runtime

verification.

Specifically, suppose the receiver has a formula ϕ in discrete-time Signal Temporal

Logic (STL), which formalizes a system specification. Its task is to determine whether

the received signal x violates it. A number of questions naturally arises when we start

thinking about the multiresolution structure of x. First, if the monitor only has access to

a lower resolution approximation x−j , can it still determine whether x violates ϕ? More

generally, if L(ϕ) is the set of signals that satisfy ϕ (known as the language of ϕ) is there

a computational characterization of its approximation L−j at scale −j? In particular, is

there a logical characterization of L−j - i.e. can the lower-resolution set of signals L−j

itself be approximated as the language of some formula?

This thesis gives positive answers to the above questions: it is possible to soundly

detect a violation from coarse approximations of x; the low-resolution approximation

L−j of the language of ϕ can be encoded with mixed-integer constraints obeying certain

properties; and L−j is over-approximated by the language of a certain formula which we

derive.

These answers have important implications for runtime verification: first, the mul-



4

tiresolution analysis (L−j)j∈N serves as a new concept of approximation for temporal

logic. This notion of approximation is more refined than classical entailment, does not

require user input, and is a priori distinct from weakness [7] and entropy [5]. We hope

to leverage this for more efficient monitoring and control synthesis. The logical char-

acterization of approximate languages will also allow a tighter integration of runtime

monitoring in signal processing chains, as it allows us to interpret, in the same logical

formalism, the effects of certain wavelet-domain operations. In particular, many feature

extractors, including certain deep neural networks, use wavelet domain features, and it

would be interesting to provide an interpretation of these features in logic.

In this thesis, defined is an immediate application of the result. In this application, we

show how a monitor which is receiving successive approximations x−j of x, can monitor

each approximation against the formula at scale−j, and determine early (before receiving

the entire signal) whether x violates ϕ.

The remainder of this work is as follows: chapter 2 provides a brief literature re-

view of works that pertain to temporal logic and signal processing techniques, such as

frequency analysis. Chapter 3 provides the necessary technical background on multires-

olution analysis and STL. Chapter 4 contains the central contributions of this work. An

application for low resolution monitoring is described in Chapter 5, after which experi-

ments in monitoring are run on randomly generated signals. Lastly, Chapter 6 concludes

the work with some final remarks and potential future work.

The appendices provide proofs for the theorems and lemma found in Chapter 4.
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Chapter 2: Literature Review

Signal Temporal Logic (STL) [16], like other temporal logics, provides for unambiguous

formal specifications which can be used to verify system behavior. It concerns itself only

with temporal properties and the authors of this work are unaware of any work that

applies STL to low-resolution signals.

There are works that consider run-time verification, using temporal logic formulas,

of signals in which some samples are lost. The work [25] uses a Hidden Markov Model to

determine the probability of satisfaction. The authors use the Hidden Markov Model to

estimate the values of the lost samples, and therefore make a determination about the

probability of satisfaction. The work [15] does not use state estimation, but considers

directly whether a formula can be monitored if samples are lost. Crucially, it is concerned

with only transient loss. The authors introduce an algorithm, which runs offline, to make

this determination. Both of these examples consider chiefly the result of monitoring with

missing samples, rather than monitoring low-resolution signals.

Some works do consider frequency-domain characterization of signals, but consider

a new signal constructed using frequency information over time, rather than a low-

resolution version of the signal. In [10] the authors introduce a variant of STL, called

Time-Frequency Logic (TFL), to explicitly specify properties of the frequency spectrum

of the signal - e.g. one formula might read “|X(ω, t)| > 5 over the next three time units”

(where X(ω, t) is obtained by a windowed Fourier transform). In [20], abnormal behav-

iors of signals are investigated using what the authors call parametric time-frequency

logic (PTFL). PTFL is similar to TFL, with the exception that instead of applying a

windowed Fourier transform, the authors utilize the continuous wavelet transform and

use the resulting coefficients to create a signal containing both spectral and temporal

information. Similar to [10], the work does not consider monitoring low-resolution sig-

nals, nor was that the intention of the work. The works [22] and [14] provide a general

algebraic framework for the semantics of temporal logic based on semi-rings, opening the

way to producing new semantics automatically by concretizing the semi-ring operations.

The work [22], in particular, provides a direct mapping from temporal logic, specifically
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Metric Temporal Logic and Linear Temporal Logic, to time-invariant filters, a very com-

mon signal processing technique. The recent [6] develops a systematic frequency analysis

of temporal logic robustness, and demonstrates its use to design linear filters that can

clean a signal without negatively impacting the accuracy of a temporal logic monitor.

Papers [2, 3] apply the continuous wavelet transform to the problem to detecting

irregularities in heartbeats through peak detection. The authors craft peak detection

algorithms using the CWT and apply this to a formal language, although not a temporal

logic, which allows for efficient expression of numerical queries, such as counting, over

data streams. In [1], the authors demonstrate how different representation and signal

reconstruction schemes can impact Runtime Verification. Specifically, they demonstrate

that the robustness, a measure of how well a signal satisfies a specification or by how

much it violates it, computation can be negatively impacted by this choice.
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Chapter 3: Technical Background

Notation. Let R = (−∞,∞),N = {0, 1, 2, . . .} and Z = N ∪ −N. With two integers

a and b, [a : b] = {a, a + 1, . . . , b} ⊂ Z. Given an integer interval I ⊂ N and t ∈ N,
t + I := {t′ | ∃s ∈ I.t′ = t + s}. Given a real interval [a, b] and scalar c, c[a, b] equals

[ca, cb] if c ≥ 0, otherwise it equals [cb, ca]. Interval addition is defined the natural way:

[a, b] + [c, d] = [a+ c, b+ d].

The inner product between two elements x and y of an inner product space is written

⟨x, y⟩. E.g. in RN , ⟨x, y⟩ =
∑

n x(n)y(n). Suppose X is an inner product space and

U, V are orthogonal subspaces of X (i.e., for every u ∈ U and v ∈ V , ⟨u, v⟩ = 0).

Then the direct sum of U and V is the set U ⊕ V := {u + v | u ∈ U, v ∈ V }. Note

orthogonal subspaces only intersect at 0. A basis for an N -dimensional vector space X

is a set of N independent vectors that span X. A basis is orthonormal if its vectors

have unit norm and are pairwise orthogonal. The shift operator Ri on RN is defined

by Rix = (x(i), x(i+ 1), . . . , x(N − 1), x(0), . . . , x(i− 1)). The upsample operator, U is

defined by Ux = (x(0), 0, x(1), 0, . . . , x(N), 0). The convolution, denoted with an ∗, is
x ∗ w(n) =

∑N−1
n=0 x(m− n)w(n).

A boolean variable takes values in {0, 1}.

3.1 Wavelets and Multiresolution Analysis in ℓ2(ZN)

All the material in this section is drawn from [11]. To maintain clarity of exposition,

we develop this thesis’ theory in what is perhaps the simplest setting allowing a mul-

tiresolution analysis. Namely, our signals are elements of ℓ2(ZN ), the set of periodic real

sequences with period N

ℓ2(ZN ) := {z = (. . . , z(0), z(1), z(2), . . . , z(N − 1), . . .) |

z(j) ∈ R and z(j + kN) = z(j) ∀k ∈ Z, 0 ≤ j ≤ N − 1}

Thus if z ∈ ℓ2(Z20) then z(−5) = z(15) = z(35). Such a sequence can be viewed as the

result of uniform sampling of a periodic continuous-time signal. If the signals in a given
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application are not periodic we can take N sufficiently large so that the boundary values

do not matter.

Because z is N -periodic, only its values over 0, 1, . . . , N − 1 need to be looked at.

So in what follows we treat an element of ℓ2(ZN ) as being an N -dimensional vector

in RN - this is a standard representation of periodic sequences in signal processing.

(Formally, one can regard z as defined on the equivalence classes of Z mod N). As

such, ℓ2(ZN ) is a normed vector space with the usual inner product: with u, v ∈ ℓ2(ZN ),

⟨u, v⟩ :=
∑N−1

n=0 u(n)v(n).

We are interested in a signal decomposition that separates high-resolution signal

details from low-resolution coarse features. Such a decomposition is captured mathe-

matically through the concept of a Multiresolution Analysis, or MRA [11].

We consider a pth-stage wavelet basis of ℓ2(ZN ). Wavelet basis are constructed by

first considering two 1st-level wavelet filters, u1, v1 ∈ ℓ2(ZN ). u1 is primarily responsible

for retrieving the approximation of a signal, while v1 retrieves the details, or higher

frequency components, of that signal. There are many filter systems known, such as the

Haar and Daubechies’ order 6 filter systems, both of which we make use of here and are

covered in more detail in [11]. Fig. 3.1 shows time-centered u1 and v1 for both of these

wavelets.

Under suitable conditions, u1 and v1 are already enough to construct a first stage

wavelet basis.

B1 = {R2ku1}
N/2−1
k=0 ∪ {R2kv1}

N/2−1
k=0 (3.1)

B1 is orthonormal, so it follows that the sub-spaces

V−1 = span{R2ku1}
N/2−1
k=0 W−1 = span{R2kv1}

N/2−1
k=0

are orthogonal and add back up to the full space: ℓ2(ZN ) = V−1 ⊕W−1. Thus every

signal x ∈ ℓ2(ZN ) can be written as the sum of its orthogonal projections onto V−1 and

W−1:

x = Proj(x, V−1) + Proj(x,W−1) := x−1 + d−1 (3.2)

By convention we set x0 := x. An orthogonal projection is easily computed by projecting
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Figure 3.1: u1 and v1 for Haar and Daubechies’ Order 6.

onto the basis vectors. For example, the projection of x onto W−1 is given by:

Proj(x,W−1) =

N/2−1∑
k=0

⟨z,R2kv1⟩R2kv1 (3.3)

The inner products ⟨z,R2kv1⟩ are known as the wavelet coefficients. The projection oper-

ator is extended to sets of signals in the natural way: Proj(S,W−1) = {Proj(x,W−1) | x ∈
S}.

We can further iterate this decomposition to achieve lower levels of resolution by

considering filters uℓ, vℓ ∈ ℓ2(ZN/2ℓ−1) for higher levels of decomposition. These are

constructed from u1 and v1 in the following manner:

uℓ[n] :=
2ℓ−1−1∑
k=0

u1

[
n+

kN

2ℓ−1

]
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and similar for vℓ. Next it is necessary to define

fℓ := gℓ−1 ∗ U ℓ−1(vℓ) ; gℓ := gℓ−1 ∗ U ℓ−1(uℓ)

We also set f1 = v1, and g1 = u1. This then allows us to use the standard notation

for the elements of a wavelet basis

φ−j,k := R2jkgj ; ψ−j,k := R2jkfj (3.4)

in which the resulting φ−j,k and ψ−j,k are orthonormal at each scale j. This allows

us to iterate this decomposition splitting V−1 = V−2 ⊕W−2 using a 2nd-stage wavelet

basis:

B2 = {ψ−2,k}
N/22−1
k=0 ∪ {φ−2,k}

N/22−1
k=0

V−2 = span{ϕ−2,k}
N/22−1
k=0 W−2 = span{ψ−2,k}

N/22−1
k=0

Thus x = d−1 + x−1 = d−1 + d−2 + x−2. After p iterations, we find the following full

pth-stage basis:

Bp = {φ−p,k}
N/2p−1
k=0 ∪ {ψ−p,k}

N/2p−1
k=0 ∪ · · · ∪ {ψ−1,k}

N/2−1
k=0 (3.5)

and MRA of ℓ2(ZN ):

ℓ2(ZN ) =W−1 ⊕W−2 ⊕ . . .⊕W−p ⊕ V−p (3.6)

where, V−j = span{ϕ−j,k}
N/2j−1
k=0 , W−j = span{ψ−j,k}

N/2j−1
k=0 , and V−j = V−(j+1) ⊕

W−(j+1). It holds that

. . . ⊂ V−(j+1) ⊂ V−j ⊂ . . . V−1 ⊂ ℓ2(ZN ) (3.7)

This MRA is succinctly visualized in Figure 3.2, where arrows indicate how subspaces

add up.

The negative index −j is known as the scale of the subspaces. (Negative indices are

used as in [11] for consistency of notation with the continuous-time case).
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Figure 3.2: MRA of ℓ2(ZN )

Figure 3.3: MRA of signal x [19].

So far we haven’t said much about wavelets, or the basis B1 in Eq. (3.1). The basis is

such that x−1 contains the coarse (or low-resolution) features of x, while d−1 contains its

detailed features. More generally, Bj is such that x−j−1 contains the coarse features of

x−j , while d−j−1 contains its detailed features. This is achieved by having basis vectors

that are well-localized in both the time and Fourier domains, i.e. such that |h(n)| << 1

and |ĥ(ω)| << 1 for all but a few positions n and ω, for all vectors h ∈ Bj . (Here, ĥ is

the Fourier transform of h). An example of this decomposition is provided in Fig. 3.3

to scale −3 using the Daubechies wavelet.

To finish off the wavelet background, we now quickly construct a first stage basis using

the discrete Haar filters in ℓ2(ZN ) and apply the basis to a simple signal. If we take N=4

for simplicity, we have, at first level, u1 = [ 1√
2
, 1√

2
, 0, 0]T and v1 = [ 1√

2
,− 1√

2
, 0, 0]T .

Then, if we recognize, from Eqn. 3.4, that ψ−1,k and φ−1,k are simply rotations by 2

of v1 and u1 respectively, V−1 and W−1 are simply,
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V−1 = span




1√
2
1√
2

0

0




0

0
1√
2
1√
2


 W−1 = span




1√
2

− 1√
2

0

0




0

0
1√
2

− 1√
2




Which creates a full orthonormal basis for ℓ2(Z4). Now we want to find the first level

decomposition of the toy signal

x = [0, 1, 1, 0]T

First we find the approximation of the signal, or the projection onto V−1. A quick

calculation finds that

x−1 = [0.5, 0.5, 0.5, 0.5]T

and the details resulting from projecting onto W−1 are then

d−1 = [−0.5, 0.5, 0.5,−0.5]T

And then a quick sanity check reveals that

x−1 + d−1 = [0, 1, 1, 0]T = x

So we have now deconstructed our signal, and then obtained the original signal by adding

the approximation and the details together. This is a simple toy problem, but illustrates

the basic idea behind a wavelet decomposition well.

3.2 Signal Temporal Logic over Finite Discrete-Time Signals

Signal Temporal Logic (STL) [16, 9] is a logic that allows the succinct and unambiguous

specification of a wide variety of desired system behaviors over time, such as “The vehicle

reaches its destination within 10 time units while always avoiding obstacles” and “While

the vehicle is in Zone 1, it must obey that zone’s velocity constraints.” STL is defined

over continuous-time signals.

We use a variant of STL which applies to discrete-time signals, such as the elements

of ℓ2(ZN ). For simplicity in this thesis we work with scalar-valued signals. Formally,
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let X ⊂ R be the state-space. A signal x is an element of ℓ2(ZN ) s.t. x(j) ∈ X for

all j. We will write ℓ2(ZN → X) for the signal space. Let {µ1, . . . , µL} be a set of

real-valued functions of the state: µℓ : X → R. Let AP = {p1, . . . , pL} be a set of atomic

propositions.

Definition 1 (Discrete-time STL (DT-STL)) The syntax of the logic is given by

ϕ := ⊤ | p | ¬p | ϕ1 ∨ϕ2 | ϕ1 ∧ϕ2 | ϕ1 UI ϕ2 | ϕ1RIϕ2

where p ∈ AP and I ⊆ N is an integer interval. The semantics are given relative to

signals as follows.

(x, t) |= ⊤

(x, t) |= pℓ iff µℓ(x(t)) ≥ 0

(x, t) |= ¬pℓ iff (x, t) ̸|= pℓ

(x, t) |= ϕ1 ∧ϕ2 iff (x, t) |= ϕ1 and (x, t) |= ϕ2

(x, t) |= ϕ1 ∨ϕ2 iff (x, t) |= ϕ1 or (x, t) |= ϕ2

(x, t) |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I . (x, t′) |= ϕ2 and

∀t′′ ∈ [t : t′ − 1], (x, t′′) |= ϕ1

(x, t) |= ϕ1RIϕ2 iff EITHER ∀t′ ∈ t+ I . (x, t′) |= ϕ2 OR

∃t′ ∈ t+ I. (x, t′) ̸|= ϕ2 and ∃t′′ ∈ [t : t′), (x, t′′) |= ϕ1

The language of ϕ is L(ϕ) := {x ∈ ℓ2(ZN → X) | (x, 0) |= ϕ}.

The Eventually and Always operators are derived from Until. Because we will often

use them, we give their semantics explicitly. For eventually we have

(x, t) |= I ϕ iff ∃t′ ∈ t+ I . (x, t′) |= ϕ

The Always is given by I ϕ := ¬ I ¬ϕ and it’s semantics are

(x, t) |= I ϕ iff ∀t′ ∈ t+ I . (x, t′) |= ϕ

We use the shorthand notation n for [n,n]; when n = 0 then 0 ϕ = ϕ.
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We make the following assumptions. The state space X is bounded. The

functions µℓ are continuous and have bounded variation [13]. µℓ : [a, b] → R is of

bounded variation iff
∑n

i=0 |µℓ(xi)−µℓ(xi−1)| ≤M for some M > 0 and for all a < x1 <

x2 < . . . <n< xb [12].

Because of the periodicity of signals in ℓ2(ZN → X), an unbounded formula (with

unbounded temporal intervals I) can always be re-expressed as a boolean combination

of bounded formulas that constrain one period (x(0), . . . , x(N − 1)). So without loss of

generality, we may consider that all formulas are bounded and constrain one period.

Discrete-time STL has been used extensively in control synthesis such as in [21],

although it is usually referred to as (plain) STL in those papers. STL, however, is a logic

over continuous-time or time-stamped sequences. Because in future work we will extend

our MRA to continuous-time STL, in this thesis we explicitly say ‘DT-STL’.

In what follows we will make extensive use of the following construct. Recall the

definitions of spaces V−j and W−j from Section 3.1.

Definition 2 (Projected Language) Given a DT-STL formula ϕ and an MRA of

ℓ2(ZN ), define L−j := Proj(L(ϕ), V−j) and K−j := Proj(L(ϕ),W−j). Thus L(ϕ) =

L−j ⊕K−j.

In words, L−j contains the scale-(−j) coarse approximations of signals that satisfy ϕ,

and K−j contains the corresponding details.
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Chapter 4: Multiresolution Analysis of a DT-STL Formula

Recall the three questions posed in the Introduction: If the monitor only has access to

a lower resolution approximation x−j of x, is it still possible to determine whether x

violates ϕ? If L(ϕ) is the language of ϕ, is there a computational characterization of its

projection L−j onto V−j? In particular, can the lower-resolution set of signals L−j itself

be approximated as the language of some formula ϕ−j? We answer these three questions

in the following sections.

4.1 Logical Characterization of Projected Languages

Theorem 1 (Approximate MRA of DT-STL) Fix an MRA of ℓ2(ZN ), and let x ∈
ℓ2(ZN → X) be a signal with decomposition x = x−J+d−J+ . . .+d−1 in the given MRA.

Let ϕ be a DT-STL formula. Then there exist DT-STL formulas ϕ−j and δ−j, given by

Algorithm 1, s.t. x |= ϕ only if x−j |= ϕ−j and d−j |= δ−j.

The proof is in the Appendix. Thus application of the theorem yields an approximate

MRA (ϕ−j)j of ϕ.

The reason we call this an ‘approximate’ MRA is that the implication is one-sided:

we can go from φ to φ−j but not the other way around. In the next section we show a

different characterization (using mixed-integer constraints) that gives a two-sided impli-

cation.

This theorem provides an answer to the first question above: it is possible to soundly

detect a violation from coarse approximations of x. Namely, x−j is monitored against

ϕ−j . By Thm. 1, if there exists j s.t. x−j ̸|= ϕ−j or d−j ̸|= δ−j , then x ̸|= ϕ.

Secondly, the scale-(−j) approximation of L(ϕ), L−j , does have a logical characteri-

zation. Indeed, suppose y ∈ L−j . Then there exists an x ∈ L(ϕ) s.t. y = Proj(x, V−j),

and by the theorem, y |= ϕ−j . Thus L−j ⊆ L(ϕ−j).

We now turn our attention to the algorithm MRA-DT-STL, which computes ϕ−j , δ−j

and is recursive over the structure of the formula. In brief, the algorithm takes in V−j ,

W−j , a formula ϕ, a position n in which the ϕ is applied to, and state bounds. It then
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Algorithm 1: MRA-DT-STL.

Data: A DT-STL formula ϕ, a jth-level MRA V−j and W−j , orthonormal bases

{φ−j,k}
N/2−1
k=0 of V−j and {ψ−j,k}

N/2−1
k=0 of W−j , state-space bounds

X = [−a, a] (i.e. for any signal, |x(m)| ≤ a for all m), a position n which
ϕ is applied to

Result: (ϕ−j , δ−j): an ordered pair of DT-STL formulas s.t.
Proj(L(ϕ), V−j) ⊆ L(ϕ−j) and Proj(L(ϕ),W−j) ⊆ L(δ−j)

// Base case 1

1 if ϕ = ⊤ then
33 Set ϕ−j = ⊤ and δ−j = ⊤. Return (ϕ−j , δ−j)

// Base case 2

4 else if ϕ = p for some atomic proposition p = (µ(x) ≥ 0) then
5 Let vm,ℓ :=

∑
k φ−j,k(ℓ)φ−j,k(m) and wm,ℓ :=

∑
k ψ−j,k(ℓ)ψ−j,k(m) for

0 ≤ ℓ,m ≤ N − 1
77 Express L(p) = {x ∈ [−a, a] | µ(x) ≥ 0} as the union of disjoint intervals

Si, i = 1 . . .K
99 Set h = n mod 2j

10 for i = 1 . . .K do
11 for 0 ≤ m ≤ N − 1 do
1313 Let Si

−j [m+ h, h] := vm+h,hS
i +

∑
ℓ ̸=h vm+h,ℓ[−a, a]

1515 Let Di
−j [m+ h, h] := wm+h,hS

i +
∑

ℓ̸=hwm+h,ℓ[−a, a]
1717 Define atomic proposition sm+h,h := x ∈ Si

−j [m+ h, h]

1919 Define atomic proposition qm+h,h := x ∈ Di
−j [m+ h, h]

20 end
2222 Set ϕi−j = ∧0≤m<N m sm+h,h and δi−j = ∧0≤m<N m qm+h,h

23 end
2525 Set ϕ−j =

∨
i ϕ

i
−j and δ−j =

∨
i δ

i
−j . Return (ϕ−j , δ−j)

2727 else if ϕ = ¬p then
// Similar to case ϕ = p above

2929 else if ϕ = I η then
3131 for i = 0 . . . 2j − 1 do
3333 Set (η−j(i), α−j(i)) = MRA-DT-STL(η, n = n+ i)// Other inputs

unchanged

3535 Set I(i) = {m ∈ I|m = i+ 2jy, y ∈ N}
36 end
37 Return ϕ−j =

∨
0≤i<2j I(i) η−j(i) and δ−j =

∨
0≤i<2j I(i) η−j(i)

3939 else if ϕ = I η then
// Lines 31 - 35

4141 Return ϕ−j =
∧

0≤i<2j I(i) η−j(i) and δ−j =
∧

0≤i<2j I(i) η−j(i)

4343 else if ϕ = η Op ξ for DT-STL formulas η, ξ and Op ∈ {∧,∨} then
44 Set (η−j , α−j) = MRA-DT-STL(η,n)
45 Set (ξ−j , β−j) = MRA-DT-STL(ξ,n)
46 Return ϕ−j = η−j Op ξ−j and δ−j = α−j Op β−j
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walks down the structure of the formula, starting from the outside and working towards

the proposition, recursively returning the correct ϕ−j(n) and δ−j(n). In this manner

it returns the scale−j low-resolution formulas. The proof of Thm. 1 will establish the

algorithm’s correctness. Some remarks are in order:

1. The algorithm gives the scale-(-j) decomposition of the formula. It must be re-

peated for j = 1 . . . J to build the full MRA of ϕ.

2. Line 7 simply expresses the fact that the set L(p) is necessarily the finite union of

disjoint bounded closed intervals (see Appendix A).

3. Lines 13 and 15 use interval arithmetic: given an interval [a, b] and scalar v, the

set v[a, b] equals [va, vb] if v ≥ 0 and [vb, va] otherwise. Further, [a, b] + [c, d] =

[a+ c, b+ d].

4. When ϕ is an atomic proposition p, its scale-(-j) approximation p−j (line 25) is not

an atomic proposition - i.e. it is not a constraint on x−j(n) alone. A priori, p−j

constrains every time step x−1(m), as can be seen on Line 22. This is a result of the

coarsening (or averaging) that happens when going down in scale −j. The extent

to which this happens depends on how concentrated in time are the functions ψ−j,k

and φ−j,k: the more concentrated, the less the effect of constraint x(n) ∈ Si on

far-away time steps |n| >> 0. Wavelets ψ−j,k are designed to be concentrated

around n = 2jk, which gives a handle on how quickly the effect of the constraint

disappears.

5. Also in the case ϕ = p, the formulas ϕ−j and δ−j are built from the new atoms

sm,n, qm,n, not the atoms of ϕ (lines 17-19).

6. It may be helpful to think of ϕi−j as an ‘extended atomic proposition’, in the sense

that it is the most basic constraint induced by ϕ on the states of x−j . Similarly

for δi−j .

7. In Lines 29-41 we recursively call MRA-DT-STL on each sub-formula of ϕ, each

time setting n = n + i as shown in Line 33. This reflects the need to place the

extended proposition at the correct location and therefore the dependence of the

sub-formulas on the positions to which they are being applied, as is shown in

Appendix A.
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This does establish that there is some multiresolution structure to DT-STL formulas.

Meaning that given x−j |= ϕ−j , we can find a ϕ−j−1 such that x−j−1 |= ϕ−j−1 and

d−j−1 |= δ−j−1. We may visualize this idea with the following diagram, which should be

compared to Fig. 3.2:

. . .←− ϕ−3←− ϕ−2←− ϕ−1 ←− ϕ

. . .↙ δ−3 ↙ δ−2 ↙ δ−1 ↙ (4.1)

The direction of the arrows, right to left, indicates that given ϕ−j we can obtain its

lower-scale decomposition. However, we are not yet able to combine ϕ−j−1 and δ−j−1

to obtain ϕ−j . I.e. given signals y and z that satisfy ϕ−j−1 and δ−j−1 respectively, it is

not necessarily the case that y+ z satisfies ϕ−j . We can think of ϕ as providing a logical

representation of the set of signals L(ϕ). In Section 4.2, using a different representation

of L(ϕ), we obtain the ability to traverse the diagram in both directions.

In the next two subsections, we provide examples of the construction of these ex-

tended propositions and low-resolution formulas.

4.1.1 Extended Propositions

In this section, provided are examples of these extended propositions, as defined by Eqn.

A.7 in Appendix A.

When plotting the extended propositions, the bounds are plotted as points at each

time-step. This allows for a more direct comparison between similar extended proposi-

tions and cleaner plots when considering monitoring examples, which will come later in

the following chapter.

Figure 4.1 shows the extended propositions resulting from the proposition p := x >

0.5 created using both the Haar and Daubechies’ first level wavelets. State bounds [−1, 1]
were used here, and this same choice will be made for all subsequent figures.

This figure illustrates a few important points. Firstly, and most importantly, it

illustrates that the choice of wavelet matters. At every position of the two extended

propositions, the ones created using the Haar wavelet result in tighter constraints than

those created using the Daubechies’ wavelet. Second, notice how the constraints resulting

from the Haar wavelet are much more uniform than those of the Daubechies’ wavelet.
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Lastly, the figure demonstrates the necessity of either the over-approximation or the

use of two extended propositions, both of which are described in Appendix A. p−1(0)

is clearly not the same as p−1(1). Using the Haar wavelet, they look to differ in only a

time shift, but simply shifting the Daubechies p−1(1) will not result in achieving exactly

p−1(0). So it is necessary to use both in order to have the best chance of detecting

violations.

Figure 4.1: Extended propositions from p := x > 0.5

Now we turn our attention to Figure 4.2 and compare it to Figure 4.1. Figure 4.2

was created using the same wavelets, but the original proposition was r := x < 0. So

the constraint due to r on the original signal is smaller than that induced by p, and in

the opposite direction. Importantly, both r−1(0) and r−1(1), for either choice of wavelet

reflect these differences. The atomic proposition making up r−1 are both more relaxed

and in the opposite direction than those due to p−1.

4.1.2 Low-Resolution Formulas

Here we give three example formulas and their corresponding low-resolution formulas to

only a 1st level of decomposition for simplicity. We will not be calculating the extended

propositions here, but will assume that they are already known.

Let us start with x, 0 |= [0,5] p. The resulting low-resolution formula is then
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Figure 4.2: Extended propositions from r := x < 0

x−1, 0 |= ϕ−1(0) = {0,2,4} p−1(0)∧ {1,3,5} p−1(1)

From the result of Equation A.9. The way to interpret {0, 2, 4} is not as an interval,

but as containing each time-step the operator is concerned with. So {0,2,4} p−j(0) applies

the extended proposition only to 0, 2, and 4 time-steps in the future. It does not check

1 or 3 time-steps in the future.

Similarly, from Equation A.8, if our formula is x, 0 |= [0,5] p, then we find

ϕ−1(0) = {0,2,4} p−1(0)∨ {1,3,5} p−1(1).

Now let’s look at the case of nested operators, namely x, 0 |= [0,5] [1,3] p. We find

that, defining η = [1,3] p for clarity,

ϕ−1(0) = {0,2,4} η−1(0)∧ {1,3,5} η−1(1)

= {0,2,4}
(

{0,2} p−1(0)∨ 1 p−1(1)
)
∧ {1,3,5}

(
{0,2} p−1(1)∨ 1 p−1(0)

)
Crucially, the result here is that p−1(0) is only applied to even time-steps and p−1(1)

is only applied to odd. Each of the low-resolution formulas presented here are for mon-

itoring x−1. The corresponding low-resolution formulas for monitoring d−1, which we

call δ−1, have the same structure which we have seen. We simply switch out p−1 for q−1,
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which are the extended propositions for monitoring d−1.

4.2 Mixed-Integer Encoding of DT-STL and Projected Languages

We now provide a different representation of the language L(ϕ) using a novel mixed-

integer constraint encoding of DT-STL semantics. It is then possible to easily obtain the

encodings of L−1 and K−1 from that of L(ϕ). The main benefit of this representation

is that given arbitrary signals y and z that satisfy the constraints encoding of L−1 and

K−1, respectively, it holds that y + z satisfies the constraints encoding of L(ϕ), and

therefore satisfies ϕ. Thus we have a true multi-resolution analysis of L(ϕ), completely

paralleling the MRA of ℓ2(ZN ). We can traverse the MRA diagram in both directions.

The disadvantage of this constraints representation is that it requires new monitoring

algorithms - namely, monitoring reduces to solving the mixed-integer constraints. The

logical representation of the previous section, of course, can be monitored using classical

algorithms like those found in the toolboxes S-TaLiRo and Breach.

We first encode a formula as a set of Mixed Integer Constraints (MICs), i.e. a

set of inequalities over real-valued and boolean variables. The MICs give an explicit

characterization of L(ϕ) which is easier to work with.

Definition 3 (Mixed Integer Constraints) A MIC set M is a set of inequalities

over real and boolean variables. We write M.B for the boolean variables, M.BC for the

purely boolean constraints, and M.C for the mixed constraints.

An assignment is a map A : M.B → {0, 1}. A feasible assignment is one that respects

M.BC. If every boolean b in M.B is replaced by A(b), we obtain a set of inequalities

over real variables, denoted M [A].

Given a MIC set M over the elements of signal x and some booleans, x is said to

satisfy M if there exists a feasible assignment A to M.B s.t. x satisfies the resulting

inequalities M [A]. Assignment A is then said to be a witness for satisfaction. We write

the satisfaction relation as x |= M and refer to the language L(M) of M as being the

set of all signals that satisfy M .

E.g. the length-2 signal x = (2, 2.7) satisfies the MIC bx(0) + 1 ≤ x(1) since setting

the boolean b = 0 yields 1 ≤ x(1) which is indeed satisfied by x. The set of all solutions
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is L(M) = {x ∈ ℓ2(Z2) | x(0) + 1 ≤ x(1) or 1 ≤ x(1)}.

Lemma 1 Let ϕ be a DT-STL formula. Then there exists a set MICϕ of mixed integer

constraints s.t.

1. (Equivalence) a signal satisfies ϕ iff it satisfies MICϕ - i.e., L(ϕ) = L(MICϕ).

2. (State-Independence) Every constraint that is not purely boolean is of the form

cn ≤ x(n) ≤ dn where cn and dn are expressions that do not involve x(m) for any

value of m. (They might, however, involve the boolean variables).

3. (One-Per-n) For any n, x(n) appears in at most one mixed constraint.

Proofs are in the Appendix. Previous work [21] also gave a mixed integer encoding

of DT-STL semantics, but the two encodings are different because they serve different

purposes: control synthesis in their case, wavelet decomposition in ours. Whereas they

only needed their encoding to have the Equivalence property, we need ours to also have

the State Independence and One-Per-n properties. As we will see, these two proper-

ties make every formula, no matter how complicated, look like a conjunction of atomic

propositions:

c0 ≤ x(0) ≤ d0, c1 ≤ x(1) ≤ d1, . . . , cN−1 ≤ x(N − 1) ≤ dN−1

This will be key to deriving the MIC for L−j .

Next, we show that a MIC encoding of a formula can be decomposed into two scale-

(-1) MICs (the analysis step), and that the scale-(-1) MICs can be re-composed to yield

the encoding (the synthesis step).

Theorem 2 Given a DT-STL formula ϕ and a signal x that satisfies it (equivalently,

satisfies MICϕ), then

1. (Analysis) there exist two MIC sets MICV
−1 and MICW

−1 such that x−1 satisfies

MICV
−1 and d−1 satisfies MICW

−1.

2. (Synthesis) For any two signals z and y which satisfy MICV
−1 and MICW

−1, respec-

tively, z + y satisfies MICϕ.
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The proof of Thm. 2 in the appendix gives an explicit construction of MICV
−1 and

MICW
−1. It can be illustrated using another MRA diagram, this time over MIC sets. This

should be compared to the diagram in Fig. 3.2.

. . . −→MICV
−3 −→MICV

−2 −→ MICV
−1 −→ L(ϕ)

. . .↗ MICW
−3 ↗ MICW

−2 ↗ MICW
−1 ↗ (4.2)

Theorems 1 and 2 are summarized in this diagram.

x |= ϕ ←→ x |=MICϕ

↓ ↕

x−1 |= ϕ−1 x−1|=MICV
−1 (4.3)

d−1 |= δ−1 d−1 |=MICW
−1

The diagram only shows the case j = −1 but as usual, the same applies at every

scale.

The arrow directions emphasize that working with the MICs (right column), we

can decompose the formula’s encoding and re-synthesize it. Working with the logical

expressions (left column) we are able to decompose, but we cannot somehow combine

ϕ−1 and δ−1 to yield back ϕ. This has practical implications which we explore in the

next section.
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Chapter 5: Application and Experiments

In this chapter, an application of the result of Section 4.1 is presented. This application

is then demonstrated in three separate instances. We next perform an experiment on

20,000 randomly generated signals.

5.1 Early Violation Detection

We propose an application of our results: the ability to detect violations of a formula

through coarse observations of the signal without reconstructing the signal.

The application requires an understanding of a typical wavelet-based communication

system: in such as system, a signal x is transmitted in stages. First the wavelet coeffi-

cients of x−J are sent, namely ⟨x, φ−J,k⟩, 0 ≤ k ≤ N/2J−1. (Here J is some pre-specified

maximum decomposition level). From these the receiver reconstructs x−J using Eq. (3.3).

Then the coefficients ⟨x, ψ−J,k⟩ of d−J are sent so the receiver reconstructs x−J+1. Then

the coefficients ⟨x, ψ−J+1,k⟩ of d−J+1 are sent so the receiver reconstructs x−J+2, and

so on for a total of J stages. Thus the receiver builds progressively higher-resolution

approximations of x: x−J , x−J+1, . . . , x−1 and finally x.

The incremental transmission scheme described above makes sense only if the partial

approximations x−j are still useful to the receiver. E.g., in a phone call, if the connection

quality suddenly drops, the receiver can still make out the broad outlines of what her

interlocutor was saying based on what she has already received. So far in the literature,

runtime monitoring was all-or-nothing: you needed the whole signal (or the ability to

estimate missing values) to perform monitoring.

We now leverage Thm. 1 to monitor x using only its approximations and details,

and so detect violations early. Figure 5.1 depicts this process. The monitor receives the

approximation and then each subsequent level of details, monitoring each until it either

finds a violation or until x is fully reconstructed. At this point the monitor simply checks

whether x |= ϕ, thus finding the answer as is usual in runtime verification.

This multiresolution monitoring of the logical expressions is only ‘half-sound’: a
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Figure 5.1: Early Violation Detection

violation at scale −j implies violation of ϕ, but it is possible that x−1 |= ϕ−1 and

d−1 |= δ−1 but x ̸|= ϕ. On the other hand, monitoring the logical expression can be

done fast (linear time in signal length) using established toolboxes like S-TaLiRo [4] and

Breach [8].

To avoid this half-soundness, an alternative is to use the MIC representation of ϕ and

its projected languages (right column of (4.3)). To determine whether x−j |= MICV
−j ,

say, requires solving a SAT instance (or solving a mixed-integer program). MIC-based

multiresolution monitoring is fully sound: if x−1 |= MICV
−1 and d−1 |= MICW

−1 then we

know that x |= ϕ, and similarly in case of violation. However, SAT solving (or mixed

integer programming) can take too much time depending on problem size. Interesting

future work would be to try and ‘reverse-engineer’ the MIC to get a DT-STL formula

out of it and run a classical monitor on it.

5.2 Examples in Monitoring

In this section, three examples of monitoring are provided which demonstrate early

violation detection as well as the benefits and limitations of monitoring in the wavelet



26

domain. 5.2.1 shows an example where a violation of a formula is found. In 5.2.2

satisfaction is correctly determined when monitoring x−1. Lastly, 5.2.3 shows an example

where a violation is missed, and would thus require the full reconstruction of the original

signal in order find the violation.

5.2.1 Finding A Violation

We consider the formula ϕ = [0,2] x > 0.5. The corresponding low-resolution formula

is ϕ−1(0) = {0,2} p−1(0)∧ 1 p−1(1). Plot (a) of Fig. 5.2 shows the signal and the

amplitude of the proposition. We can see immediately that x ̸|= ϕ as positions 0 and

1 do not satisfy the proposition. The hope is that we catch this when we monitor x−1

against ϕ−1.

Looking at plot (b) of Fig. 5.2, we see that we catch a violation immediately during

the first check. x−1, 0 ̸|= p−1(0). So a violation is found, and we can stop monitoring at

plot (b). Not only are we done monitoring x−1, but we no longer need to monitor d−1

or fully reconstruct x. We know at this point x ̸|= ϕ

However, plots (c) and (d) demonstrate a couple of additional points. In plot (c),

x−1, 1 ̸|= p−1(1) which is good. This is another violation caught. Crucially, we do not

see a violation in plot (d). Here x−1, 2 |= p−1(0) which it has to, because x, 2 |= p.

5.2.2 Finding Satisfaction

We now consider the formula ϕ = [0,2] x > 0.5 and the same signal as in Section 5.2.1.

We now find ϕ−1(0) = {0,2} p−1(0)∧ 1 p−1(1). Now, mechanically we check the same

positions of x−1 as before so we can again look to Fig. 5.2.

Plot (a) tells us that x, 0 |= ϕ, as x, 2 |= p, so we do not expect to find a violation

here. And we don’t. x−1, 2 |= p−1(0) so ϕ−1(0) is satisfied.

However, just because we found satisfaction while monitoring x−1 does not mean we

are done.

We next monitor the details, shown in Fig. 5.3. Here we see that d−1 satisfies the

appropriate extended propositions at each time-step, shown in plots (b), (c), and (d).

So d−1 |= δ−1(0).

We are still not done at this point. To determine satisfaction with certainty, we need
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Figure 5.2: Monitoring x−1 in which a violation is found in plots (b) and (c).

to then fully reconstruct the signal to verify satisfaction.

5.2.3 Missing a Violation

Here we monitor against the same formula as in 5.2.2, but we tweak x such that the

signal no longer satisfies the formula. This is shown in plot (a) of Fig. 5.4. x ̸|= p at

time-steps 0, 1, and 2.

Now monitoring similarly to before, we see violations of the extended propositions

in plots (b) and (c), but we miss the violation in plot (d). Because x−1, 2 |= p−1(0),

x−1, 0 |= ϕ−1(0). Thus we have missed the violation and will now need to check the

details.

In Figure 5.5, we see that we miss violations in two positions, plots (b) and (d) when

monitoring the details, so the details formula, δ−1 is also satisfied.

This means that we need to, in this case, fully reconstruct x in order to detect this



28

Figure 5.3: Satisfaction found while monitoring d−1.

particular violation.

5.3 Experiments in Monitoring

To test the usefulness of our monitoring application we randomly generate signals and

monitor against two formulas. ϕ1 = [0,5] x >= 0.5 and ϕ2 = [0,5] x >= 0.5.

We consider two types of signals. The first is pure noise. At each n we randomly

generate a real number in [−1, 1], which are our state bounds. The second is a sum of

sines such that

x[n] =

4∑
k=1

0.25sin(ωkn+ tk)
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Figure 5.4: Monitoring x−1 in which a violation is missed in plot (d).

This keeps the amplitude of the total wave in [−1, 1], thus not violating the state bounds.

The next section details the procedure and the following section presents some results.

5.3.1 Experimental Procedure

We define the above formulas and set the signal length to 512. We set the maximum

decomposition level to J = 5. We choose the Haar and Debauches’ order 6 wavelets.

From here we construct our low resolution formulas, as in Section 4.1.2, for each

level of decomposition and for both the details and approximations. We find a list of

low-resolution formulas

ϕ−5, δ−5, ϕ−4, δ−4, ϕ−3, δ−3, ϕ−2, δ−2, ϕ−1, δ−1

We then repeat the following steps 10,000 times for each class of signal, monitoring
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Figure 5.5: Monitoring d−1 in which a violation is missed.

each signal against both ϕ1 and ϕ2.

1. Generate a randomized signal x. This generation sets x[n] to a random number

between [−1, 1] if we are generating the signals that are simply noise. If we are

generating sinusoidal signals, we randomly generate wk ∈ [0, 0.1] and tk ∈ [−5, 5].

2. Check x |= ϕ and record the result.

3. Decompose x = x−5 + d−5 + . . .+ d−1 using the chosen wavelet basis.

4. Perform monitoring as presented in Figure 5.1. If a violation is caught, record at

what level of decomposition.

5. Repeat 1-4 until all 10,000 signals have been generated and monitored against both

ϕ1 = [0,5] x >= 0.5 and ϕ2 = [0,5] x >= 0.5.
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5.3.2 Results

Table 5.1 displays how many signals of each type violate each formula. It’s perhaps

surprising that ϕ1 was violated far less frequently by the noisy signal. ϕ1 is easier to

satisfy in a sense. It only requires that a single time-step in the interval results in

satisfaction. The purely random signal has good odds of producing at least a single

satisfying point over the course of the 6 time-steps the interval is concerned with.

Sinusoidal Noise

# signals generated 10000 10000

# violating ϕ1 9064 1785

# violating ϕ2 9431 9998

Table 5.1: Violating signal counts for each signal type and formula.

The number of violations caught for each formula by each wavelet are shown in

Tables 5.2 and 5.3. They illustrate the point in Section 4.1.1 well: the choice of wavelet

matters. Clearly, for both of these signal types and formulas, low-resolution monitoring

using the Haar wavelet was more effective than when using the Daubechies’ wavelet. In

fact, the Daubechies’ wavelet did not catch a single violation of ϕ1 while 2661 of 10849

total violations were caught by using the Haar wavelet, which is still only about 25% of

the violations in this experiment.

These two tables also seem to suggest that the effectiveness of monitoring using

these low-resolution formulas is not only dependent on the features of the signal and

wavelet used, but also on ϕ itself. Monitoring the same signals against different formulas

produces very different ability to catch violations. For example, the Haar wavelet catches

the majority of violations, due to noisy signals, of ϕ2, while missing the majority of ϕ1.

All that was changed was the temporal operator. In fact, switching the globally operator

improved the ability of both wavelets to catch a violation.

Tables 5.4 through 5.7 breakdown these violations by level of decomposition they

were caught at. They suggest that, at least for these two types of signals, violations are

most likely to be caught at a lower level of decomposition. Meaning that scale −j is

more likely to catch a violation than scale −j − 1. In each table, scale −1 detects more

violations than scale −2. The same can be said for scale −2 when compared to scale

−3 and so on, whenever violations are still being caught. Note that we do not find a
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Sinusoidal Noise

# violations of ϕ1 9064 1785

# caught using Haar Wavelet 2449 212

# missed using Haar Wavelet 6615 1573

# caught using Daubechies’ Wavelet 0 0

# missed using Daubechies’ Wavelet 9064 1785

Table 5.2: Violations of ϕ1 caught and missed by each wavelet.

Sinusoidal Noise

# violations of ϕ2 9431 9998

# caught using Haar Wavelet 3101 9784

# missed using Haar Wavelet 6330 214

# caught using Daubechies’ Wavelet 162 1535

# missed using Daubechies’ Wavelet 9269 8463

Table 5.3: Violations of ϕ2 caught and missed by each wavelet.

violation at scale −5 here. This does not mean that we won’t, but it could be the case

that it happens too rarely to be seen after creating only 10000 signals.

Scale Haar Violations DB6 Violations

1 2063 0

2 271 0

3 96 0

4 19 0

5 0 0

Total 2449 0

Table 5.4: Violations, by sinusoidal signals, of ϕ1 found at each scale during low resolution
monitoring out of 9064 total violations.
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Scale Haar Violations DB6 Violations

1 212 0

2 0 0

3 0 0

4 0 0

5 0 0

Total 212 0

Table 5.5: Violations, by noisy signals, of ϕ1 found at each scale during low resolution
monitoring out of 1785 total violations.

Scale Haar Violations DB6 Violations

1 2515 162

2 471 0

3 96 0

4 19 0

5 0 0

Total 3101 162

Table 5.6: Violations, by sinusoidal signals, of ϕ2 found at each scale during low resolution
monitoring out of 9431 total violations.

Scale Haar Violations DB6 Violations

1 9115 1533

2 669 2

3 0 0

4 0 0

5 0 0

Total 9784 1535

Table 5.7: Violations, by noisy signals, of ϕ2 found at each scale during low resolution
monitoring out of 9998 total violations.
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Chapter 6: Conclusion

We demonstrated that DT-STL formulas have a multi-scale structure that parallels that

of signals, and leveraged it to define the application Early Violation Detection, in which

we monitor low-resolution signals. We demonstrated that this application does have the

potential to catch violations without fully reconstructing the signal, but that it can also

miss violations requiring us to fully reconstruct the signal to verify satisfaction. We

show that the effective ability to catch violations while monitoring low-resolution signals

is seemingly dependent on wavelet, signal, and formula. Regardless of the choice between

these three, violations are most likely to be caught at lower levels of decomposition. We

constructed a mixed integer encoding that is capable of telling with certainty, given x−1

and d−1, whether x |= ϕ and also giving the capability to detect violations.

Future work is to also extend this MRA of DT-STL formulas into continuous-time

and non-periodic discrete time.

Our methodology could also be applied to robust semantics, in order to study the

rate of convergence of the multi-scale monitor to the correct answer. It may also be

interesting to study how the robustness of the signal is related to the satisfaction value

of the decomposed signal and vice-versa. In other words, is a violation of a specification

more likely to be found in the low resolution domain by a signal which results in a low

robustness value, than by one with a higher robustness value, despite both violating

the specification? Or if we see satisfaction of the low-resolution formula with only a

small, or relatively near zero, robustness value, can we say anything about how likely

the reconstructed signal is to then violate the specification?

Also interesting would be to investigate how these low-resolution formulas interact

with TFL as presented by [10], or how they can describe frequency characteristics of a

formal specification on their own.
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Appendix A: Proof of Theorem 1

Recall Thm. 1.

Fix an MRA of ℓ2(ZN ), and let x ∈ ℓ2(ZN → X) be a signal with decomposition

x = x−J + d−J + . . .+ d−1 in the given MRA. Let ϕ be a DT-STL formula. Then there

exist DT-STL formulas ϕ−j and δ−j, given by Algorithm 1, s.t. x |= ϕ only if x−j |= ϕ−j

and d−j |= δ−j.

The proof proceeds by induction on the structure of the formula. The proof for ϕ−j

and x−j is identical to that for δ−j and d−j (except using the ψ−j,k basis) so we only

give the proof for ϕ−j .

We will actually need to prove something slightly more general: namely, that given

formula ϕ, for all n, we can find a formula ϕ−j(n) s.t. if x, n |= ϕ, then x−j , n |= ϕ−j(n).

(The theorem statement only concerns the case n = 0).

Case ϕ = ⊤ Since ⊤ imposes no constraints on x, then x−j is similarly unconstrained.

Case ϕ = p = µ(x) ≥ 0 By continuity of µ, L(p) is a union of disjoint intervals Si,

and by bounded variation of µ, there is only a finite number of Si’s. Because the state

space X is bounded, so is every Si. Therefore, by continuity of µ again, every Si is

closed.

Suppose for now that L(p) consists of only one interval S, thus p specifies that

x(0) ∈ S. Recall that

x−j(m) =
∑
k

⟨x, φ−j,k⟩φ−j,k(m) =
∑
k

∑
ℓ

x(ℓ)φ−j,k(ℓ)φ−j,k(m)

=
∑
ℓ

x(ℓ)
∑
k

φ−j,k(ℓ)φ−j,k(m) =
∑
ℓ

x(ℓ)vm,ℓ

= vm,nx(n) +
∑
ℓ̸=n

vm,ℓx(ℓ)
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x, n |= p iff x(n) ∈ S, we have that

x−j(m) ∈ vm,nS +
∑
ℓ̸=n

vm,ℓ[−a, a] := S−j [m,n] (A.1)

Thus every element of x−j is constrained, even though the formula p constrains only

x(n).

For the purposes of the induction argument, we are not done. We haven’t yet

established the induction hypothesis for this base case, since Eq. (A.1) states that

x−j ,m |= (x−j ∈ S−j [m,n]), which depends on both m and n, while the induction

hypothesis requires ϕ−j to be independent of m.

We start by defining new atomic propositions sm,n := (x−j ∈ S−j [m,n]) for a con-

straint applied to a given n. We then find that

ϕ−j(n) = ∧m m sm,n︸ ︷︷ ︸
p−j(n)

(A.2)

applying each constraint to the appropriate position of x−j . The case of interest for

monitoring is n = 0, so considering

ϕ−j(0) = p−j(0)

is sufficient for the base case. Once we begin to consider temporal operators, in the

following cases, we will see that considering only n = 0 is no longer sufficient.

We call p−j(n) an ”extended proposition” as it constrains every time-step of x−j .

If L(p) consists of K > 1 intervals, then p is equivalent to (x(0) ∈ S1)∨(x(0) ∈
S2)∨ ...∨(x(0) ∈ SK). Using the above expression for each Si yields the formulas on

Line 25.

Case ϕ = ¬p L(¬p) is a finite union of disjoint open bounded intervals. Therefore

the above reasoning for p applies mutatis mutandis to this case.

Case ϕ = η ∨ ξ If x, n |= η ∨ ξ then by the induction hypothesis x−j , n |= η−j(n) or

x−j , n |= ξ−j(n), therefore x−j , n |= η−1(n)∨ ξ−1(n).

Case ϕ = η ∧ ξ Similar to previous case.
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Case ϕ = I η We now need to be careful when considering I η. Temporal opera-

tors, such as the eventually operator, apply formulas, and thus propositions, to different

time-steps. In the base case of ϕ = p above, we only consider when p is applied to n = 0.

Because temporal operators shift this constraint, we need to consider the constraints

induced on x−j when the proposition is applied to x(n ̸= 0).

Unfortunately sm,0 ̸= sm+n,n for at least some n. This is the requirement needed

in order to use the same extended proposition on all positions of x−j and still result in

sound monitoring. So we cannot make a statement such as x, n |= I p implies that

x−j , n |= I p−j(0). This would suggest that we could potentially need a unique

p−j(n
′) ∀ n′ ∈ I (A.3)

from Eqn. A.2, which is undesirable. We now have two options.

The first is that we introduce an over-approximation S̄ of all sets S−j [m,n],

x−j(m) ∈ S−j [m,n] =⇒ x−j(m) ∈ S̄

thereby allowing us to only consider the case of s̄ := (x−j ∈ S̄). Then we could set

ϕ−j = ∧m m s̄. One example is introducing v̄ =maxm
∑

ℓ̸=n |vm,ℓ|. Then we have

S−j [m,n] ⊆ ∪mvm,nS + [−av̄, av̄] := S̄. However, introducing this over-approximation

would result in less accurate monitoring, meaning that violations could be caught less

often.

The second option is that we attempt to reduce the number of n′ ∈ I we must

consider in Eqn. A.3. The rotational nature of the wavelet basis does provide some

consolation in this regard.

It is the case that sm,n = sm+2j ,n+2j , which suggests we can limit the number of

extended propositions, p−j(n), needed to 2j . We prove this by first considering φ−j,k.

φ−j,k is simply a rotation of φ−j,0 by 2jk and thus, φ−j,k(m) = φ−j,0(m+2jk). Now,
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from Eqn. A.1, we consider the summations.

vm,n =

N/2j−1∑
k=0

φ−j,k(m)φ−j,k(n)

vm+2j ,n+2j =

N/2j−1∑
k=0

φ−j,k(m+ 2j)φ−j,k(n+ 2j)

Considering the upper sum first.

vm,n =

N/2j−1∑
k=0

φ−j,k(m)φ−j,k(n) =

N/2j−1∑
k=0

φ−j,0(m+ 2jk)φ−j,0(n+ 2jk) (A.4)

And now the lower sum.

vm+2j ,n+2j =

N/2j−1∑
k=0

φ−j,k(m+ 2j)φ−j,k(n+ 2j)

=

N/2j−1∑
k=0

φ−j,0(m+ 2j(k + 1))φ−j,0(n+ 2j(k + 1))

=

N/2j∑
k=1

φ−j,0(m+ 2jk)φ−j,0(n+ 2jk) (A.5)

By periodicity

φ−j,0(m+ 0) = φ−j,0(m+N) = φ−j,0(m+ 2j
N

2j
)

Which means we can rewrite Eqn. A.5 as

N/2j−1∑
k=0

φ−j,0(m+ 2jk)φ−j,0(n+ 2jk)

thereby establishing that vm,n = vm+2j ,n+2j for any wavelet basis.

Then the equality
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vm,nS +
∑
l ̸=n

vm,l[−a, a] = vm+2j ,n+2jS +
∑

l ̸=n+2j

vm+2j ,l+2j [−a, a]

S−j [m,n] = S−j [m+ 2j , n+ 2j ] (A.6)

is immediate. This means that the constraint on x−j(m) due to a constraint on x(n) is

the same as the constraint on x−j(m+ 2j) due to a constraint on x(n+ 2j).

Once we define

hi := (n+ i) mod 2j

which we use throughout the rest of this proof, this allows us to write

x−j , n |= ∧m m sm+h0,h0︸ ︷︷ ︸
p−j(h0)

(A.7)

which gives us 2j extended propositions. Each p−j(n) can then be used to monitor

x−j , (n+ c2j), where c is a positive integer.

For the purposes of Algorithm MRA-DT-STL (Algorithm 1), Eq. (A.7) is now suf-

ficient. Indeed, we now only need to compute p−j(n) for the cases n = 0, 1, . . . , 2j − 1.

We then just need to construct our low-resolution formulas such that they consider the

correct extended propositions at the correct time-steps.

For example, in the case of a first level decomposition, we would have a p−1(0) and a

p−1(1). Then, we simply choose the appropriate extended proposition, p−1(0/1) for the

constraint applied to each x(n). Where n is odd we would use p−1(1). Similarly when n

is even we monitor against p−1(0).

For the remainder of this proof, we assume this p−j(h0) formulation, rather than the

over-approximation.

Now we go back to proving the Eventually case. By definition, x, n |= I η iff ∃n′ ∈ I
s.t. x, n+n′ |= η. Then, by the induction hypothesis ∃n′ ∈ I s.t. x−j , n+n

′ |= η−j(n+n
′).

Define

I(m) :=
{
i : i ∈ I, i = m+ 2jy, y ∈ N

}
I(m) is the set of indices such that η−j(n +m) = η−j(n + i) for all i ∈ I(m) as a

result of Eqn. A.6.
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∃n′ ∈ I(m) s.t. x, n + n′ |= η−j(hn′) is then the definition of I(m) η−j(hm). The

induction hypothesis only requires that a single n′ ∈ I results in satisfaction. So we only

require that a single I(m) η−j(hm) returns satisfaction for m = 0, 1, . . . , 2j − 1.

This is then the definition of the low resolution formula

ϕ−j(n) = I(0) η−j(h0)∨ I(1) η−j(h1)∨ . . . (A.8)

∨ I(2j−1) η−j(h2j−1)

where I(m) and hi are defined as above. This simply groups intervals of 2j . For the

example of j = 1, one grouping would contain all the evens in I, while another would

contain all the odds. Which contains the odds and which contains the evens is dependent

on the current observation moment. This construction ensures that the correct p−1(n)

is used during monitoring.

Case ϕ = I η By definition, x, n |= I η iff ∀n′ ∈ I x, n + n′ |= η. Then, by the

induction hypothesis ∀n′ ∈ I x−j , n+ n′ |= η−j (n+ n′).

The corresponding low resolution formula for the always case is then similar to that

of the eventually case above. We now require all n′ ∈ I result in satisfaction, so we trade

out each for and each ∨ for ∧. We then have

ϕ−j(n) = I(0) η−j(h0)∧ I(1) η−j(h1)∧ . . . (A.9)

∧ I(2j−1) η−j(h2j−1)

where I(m) and hi are defined as in the eventually case.

Case ϕ = ηUIξ. By periodicity we can always consider I ⊂ [0 : N −1]. The construc-

tion of ϕ−j(n) then follows from the constructions of the always and eventually cases

above. If I = [a, b], UI can be rewritten in terms of always and eventually.

ξU[a,b]η = ( a η)∨( [a,a] ξ ∧ a+1 η)∨ . . .∨( [a,b−1] ξ ∧ b η)

This then allows us to use the previous cases to construct a low resolution formula

for until. It is perhaps inefficient, but suffices for the proof.
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Case ϕ = ηRIξ. This is handled similarly to the Until case.
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Appendix B: Proof of Lemma 1

Recall Lemma 1.

Let ϕ be a DT-STL formula. Then there exists a set MICϕ of mixed integer constraints

s.t.

1. (Equivalence) a signal satisfies ϕ iff it satisfies MICϕ - i.e., L(ϕ) = L(MICϕ).

2. (State-Independence) Every constraint that is not purely boolean is of the form

cn ≤ x(n) ≤ dn where cn and dn are expressions that do not involve x(m) for any

value of m. (They might, however, involve the boolean variables).

3. (One-Per-n) For any n, x(n) appears in at most one mixed constraint.

The set of constraints is obtained by an application of the semantics.

Recall the definitions and notation in Def. 3. Define the shift operator Rt by Rtx =

(x(N − t), x(N − t + 1), . . . , x(N − 1), x(0), x(1), . . . , x(N − t − 1)). For integers n, q,

(n) mod q is the remainder of dividing n by q.

Case ϕ = ⊤ MIC⊤ = 0 ≤ 1.

Case ϕ = p ∈ AP Write L(p) = S1 ∪ . . . SK where Si = [ci, di] is a compact inter-

val (this is always the case - see Proof of Thm. 1). Then p is equivalent to x(0) ∈
[c1, d1]∨x(0) ∈ [c2, d2] . . .∨x(0) ∈ [cK , dK ]. Since the Si’s are disjoint at most one of

these disjuncts is true. Thus p is in turn equivalent to the MIC

K∑
i=1

bici ≤ x(0) ≤
K∑
i=1

bidi (B.1)

bi ∈ {0, 1},
∑
i

bi = 1 (B.2)

This MIC satisfies the three properties listed in the Lemma (Equivalence, One-Per-n and

State-Independence).

Case ϕ = ¬p Write L(¬p) = S1 ∪ . . . SK where Si = (ci, di) is a bounded interval

(this is always the case - see Proof of Thm. 1). Thus this can be treated in the same

way as the p case, but using strict inequalities.
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Case ϕ = η ∧ ξ We build MICϕ as follows: it contains all the purely boolean con-

straints from MICη and MICξ. It also contains all the mixed constraints; if both MICη

and MICξ have a constraint on x(n), then in MICϕ these are replaced by one constraint

which uses the max of the lower bounds, and the min of the upper bounds. This com-

bining ensures MICϕ has property One-Per-n. Moreover MICϕ inherits the properties of

Equivalence and State-Independence from MICη and MICξ.

Case ϕ = η ∨ ξ Let cn ≤ x(n) ≤ dn be the mixed constraint on x(n) from MICη, and

let en ≤ x(n) ≤ fn be the mixed constraint from MICξ. By the One-Per-n property,

these are the only constraints (if any) involving x(n). Create a fresh boolean variable b0

(not used in either MICη or MICξ), and define MICϕ as follows. MICϕ has all the purely

boolean constraints of MICη and MICξ, and for every n it contains

b0cn + (1− b0)en ≤ x(n) ≤ b0dn + (a− b0)fn (B.3)

MICϕ has the Equivalence property. Indeed, if x |= η ∨ ξ, it satisfies either formula,

or both. If it satisfies η then by the induction hypothesis there exists an assignment A

to the booleans of MICη s.t. x satisfies the resulting constraints. Then the assignment

b0 = 1, combined with A, shows that x satisfies MICϕ. Similarly if it satisfies ξ. If it

satisfies both, then a fortiori it satisfies η, and we use the preceding reasoning.

Now suppose x satisfies MICϕ, and let A be the boolean assignment that witnesses

that. If A(b0) = 0 then x satisfies MICξ, therefore (by the induction hypothesis) satisfies

ξ and so ϕ. If b0 = 1 in A then x satisfies MICη, therefore x satisfies η and so ϕ.

Moreover MICϕ has the State-Independence property: by the induction hypothesis,

cn, dn, en, fn do not depend on the state x, and so neither do the bounds in Eq. (B.3).

Finally, it’s obvious from Eq. (B.3) that it has One-Per-n.

Even though the Always and Eventually operators are derived from the Until, we give

these two cases explicitly here, because we will use them to do the proof for the Until

case.

Case ϕ = I η By periodicity we may consider, without loss of generality, that I ⊂
[0 : N − 1], say I = [ℓ : k]. Let

cn(B) ≤ x(n) ≤ dn(B), 0 ≤ n ≤ N − 1 (B.4)
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be the mixed constraints in MICη, where B = MICη.B. The B variables are constrained

by purely boolean constraints which we denote BC. By State Independence x does not

appear in the bounds.

To derive the MIC set for ϕ we simply replicate the η bounds k − ℓ+ 1 times, from

n = ℓ to n = k. For example: if an η constraint is 2b+ 3b′ ≤ x(2) ≤ 2(1− b), b+ b′ ≥ 1,

and I = [2, 3] then we construct

2b2 + 3b′2 ≤ x(2 + 2) ≤ 2(1− b2)

2b3 + 3b′3 ≤ x(2 + 3) ≤ 2(1− b3)

b2 + b′2 ≥ 1, b3 + b′3 ≥ 1

In general, let Bℓ+j
m be a fresh copy of the variables in B, for 0 ≤ j ≤ k − ℓ,

ℓ+ j ≤ m ≤ (ℓ+ j +N − 1) mod N .

Then MICϕ has the following constraints: every Bℓ+j
m is constrained by MICη.BC ;

and

cm−(ℓ+j−1)(B
ℓ+j
m ) ≤ x(m) ≤ dm−(ℓ+j−1)(B

ℓ+j
m )

As with the AND case, if x(n) appears in more than one inequality, we substitute

them all with an inequality that uses the minimum of the right-hand sides and the max

of the left-hand sides, thus meeting One-Per-n. State Independence is inherited from

MICη. Equivalence can be seen to hold by inspection.

Even though Eventually and Always are derived operators we will give them explicitly

since it is easier to prove the Until case from them.

Case ϕ = I η We re-use the definitions from the Always case. Recall the state-

space bounds |x| ≤ a. To derive the MIC set for ϕ we create a choice over the moment

where the η bounds apply, from n = ℓ to n = k. For example: if an η constraint is

2b+3b′ ≤ x(2) ≤ 2(1− b), b+ b′ ≥ 1, and I = [2, 3] then we introduce the new booleans

g2, g3 (choice of time moment), b2, b
′
2, b3, b

′
3 (copies of the original booleans) and construct

the inequalities:

g2(2b2 + 3b′2)− (1− g2)a ≤ x(2 + 2) ≤ g2(2(1− b2)) + (1− g2)a

g3(2b3 + 3b′3)− (1− c3)a ≤ x(2 + 3) ≤ g3(2(1− b3)) + (1− g3)a
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b2 + b′2 ≥ 1, b3 + b′3 ≥ 1 (copies of constraints)

g2 + g3 ≥ 1 (at least one time step witnesses satisfaction of η)

Thus if gt = 1, it follows that Rtx |= η, and so on.

In general, let Bℓ+j
m be a fresh copy of the variables in B, for 0 ≤ j ≤ k − ℓ,

ℓ+ j ≤ m ≤ (ℓ+ j +N − 1) mod N . Let gℓ, . . . , gk be fresh booleans. Then MICϕ has

the following constraints:

a) every Bℓ+j
m is constrained by MICη.B, and by

∑
i gi ≥ 1;

b) for 0 ≤ j ≤ k − ℓ (every step in I) and for ℓ+ j ≤ m ≤ (ℓ+ j +N − 1) mod N (over

the entire length of the shifted trajectory Rℓ+jx)

gℓ · cm−(ℓ+j−1)(B
ℓ+j
m )− (1− gℓ) · a ≤ x(m) (B.5)

x(m) ≤ gℓ · dm−(ℓ+j−1)(B
ℓ+j
m ) + (1− gℓ) · a (B.6)

(We broke the inequality into two for better presentation). This MIC set can be seen to

have the Equivalence property: e.g., if x |= I η then Rix |= η for some i ∈ I, and by

the induction hypothesis there exists an assignment A : B → {0, 1} s.t. Rix |= MICη,

i.e. s.t. Eq. (B.4) is satisfied. This can be completed arbitrarily to an assignment to the

full set of variables {Bℓ+j
m }, and with gi = 1, to yield a witness assignment for MICϕ.

The reverse direction is analogous. State Independence and One-Per-n are easily seen

to hold.

Case ϕ = ηUIξ By periodicity of x we may consider, without loss of generality, I ⊂
[0 : N − 1], say I = [ℓ : m]. Then we can re-write ϕ as

ϕ = ( [0,ℓ−1] η ∧ ℓ ξ)∨( [0,ℓ] η ∧ ℓ+1 ξ)∨ . . .

∨( [0,m−1] η ∧ m ξ)

(This is an inefficient encoding, but it suffices for the proof). We can now re-use the

above results to get the encoding for the Until.

Case ϕ = ηRIξ Similar to the Until case.
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Appendix C: Proof of Theorem 2

Given a DT-STL formula ϕ and a signal x that satisfies it (equivalently, satisfies MICϕ),

then

1. (Analysis) there exist two MIC sets MICV
−1 and MICW

−1 such that x−1 satisfies

MICV
−1 and d−1 satisfies MICW

−1.

2. (Synthesis) For any two signals z and y which satisfy MICV
−1 and MICW

−1, respec-

tively, z + y satisfies MICϕ.

In what follows we give the proof for MICV
−1. The proof for MICW

−1 is identical so

we skip it. Recall the notation introduced in Def. 3. Let vn,m :=
∑

k φk(n)φk(m) and

wn,m :=
∑

k ψk(n)ψk(m) for 0 ≤ n,m ≤ N − 1. So we can write x−1(m) =
∑

n vm,nx(n)

and d−1(m) =
∑

nwm,nx(n).

Proof for the Analysis step

Case ϕ = ⊤ We define MICV
−1 = MICW

−1 = 0 ≤ 1.

We now tackle all the remaining cases in one go. Let ϕ be a DT-STL formula with

MIC set M . Lemma 1 established that M has at most N mixed constraints of the form

cn ≤ x(n) ≤ dn (C.1)

where cn, dn are expressions over constants and booleans but not states, and the booleans

are constrained by M.BC. Thus from the perspective of projection onto V−1, the

bounding quantities cn, dn are constant. Since x−1(m) =
∑

n vm,nx(n) it follows that

x−1(m) ∈
∑

n vm,n[cn, dn] (in interval arithmetic). Thus

M−1.C :=

{
x−1(m) ∈

∑
n

vm,n[cn, dn] | 0 ≤ m ≤ N − 1

}
M−1.BC := M.BC

Proof for the Synthesis step
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We will first need the following simple facts about orthonormal basis matrices. Define

matrices Φ = [φ1, . . . φN/2−1] and Ψ = [ψ1, . . . , ψN/2−1]. Then it is easily seen that

x−1 = ΦΦTx and d−1 = ΨΨTx. Since x = x−1 + d−1 = (ΦΦT + ΨΨT )x for any x, it

holds that ΦΦT +ΨΨT = I, the identity matrix. Therefore, denoting by Φi: (resp. Ψi:)

the ith row of Φ (resp. Ψ), we have that

ΦT
m:Φn: +ΨT

m:Ψn: =

{
1, m = n

0, m ̸= n
(C.2)

Finally note that vm,n = ΦT
m:Φn: and wm,n = ΨT

m:Ψn: so

vm,n + wm,n =

{
1, m = n

0, m ̸= n
(C.3)

Eq. (C.3) allows us to conclude that when m ̸= n, if vm,n ≥ 0 then wm,n ≤ 0.

Now let ϕ be a DT-STL formula with MIC encoding M = {cn ≤ x(n) ≤ dn | 0 ≤
n ≤ N − 1}, with projections MICV

−1 and MICW
−1. Define the index sets Pn := {m ̸=

n | vm,n ≥ 0} and Nn := {m ̸= n | vm,n < 0}. Let y be an arbitrary element of L(MICV
−1)

and z an arbitrary element of L(MICW
−1). From the Analysis step and Eq. C.3 we know

that

y(n) ∈ vn,n[cn, dn] +
∑
m∈Pn

[vm,ncn, vm,ndn] +
∑

m∈Nn

[vm,ndn, vm,ncn]

z(n) ∈ wn,n[cn, dn] +
∑

m∈Nn

[wm,ncn, wm,ndn] +
∑
m∈Pn

[wm,ndn, wm,ncn]

Adding the two inequalities and leveraging Eq. C.3, it comes that (y + z)(n) ∈
(vn,n + wn,n)[cn, dn] = [cn, dn]: thus we recover exactly the MIC encoding of ϕ.
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