
AN ABSTRACT OF THE DISSERTATION OF

Neale Ratzlaff for the degree of Doctor of Philosophy in Computer Science presented

on July 19 2021.

Title: Uncertainty in Deep Learning with Implicit Neural Networks

Abstract approved:

Fuxin Li

The ability to extract uncertainties from predictions is crucial for the adoption of deep

learning systems to safety-critical applications. Uncertainty estimates can be used as a

failure signal, which is necessary for automating complex tasks where safety is a concern.

Furthermore, current deep learning systems do not provide uncertainty estimates, and

instead can assign high probability to incorrect predictions. To mitigate this problem

of overconfidence, this dissertation proposes three approaches that leverage the uncer-

tainty within a distribution of models. Specifically, we consider the epistemic uncertainty

given by an approximation to the posterior over model parameters. Prior work approx-

imates this posterior by utilizing analytically known distributions, which are inflexible

and result in underestimation of the uncertainty. Instead, we propose to use implicit dis-

tributions, which are computationally efficient to sample from, and are flexible enough

to parameterize a wide range of distributions. The contributions of this thesis show

that implicit models enable better uncertainty estimates than prior work, and can be

used for open-category prediction, adversarial example detection, and exploration in

reinforcement learning.

We begin by showing that implicit generative models with feature-space regularization

can be used in the open-category setting to detect input distribution shift, while retain-

ing accuracy on training data. Next, we refine our approach by explicitly encouraging

diversity within samples with particle-based variational inference. The uncertainty given

by these diverse models is used for exploration in reinforcement learning. We show that

in the model-based setting we can leverage uncertainty as a novelty signal, compelling

exploration to poorly understood areas of the environment. Third, we turn to the fun-

damental problem of approximate Bayesian inference. We develop a framework for gen-

erative particle-based variational inference that allows for efficient sampling, places no

restrictions on the approximate posterior, and improves our ability to estimate epistemic

uncertainty.

©Copyright by Neale Ratzlaff
July 19 2021

All Rights Reserved

Uncertainty in Deep Learning with Implicit Neural Networks

by

Neale Ratzlaff

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented July 19 2021

Commencement June 2022

Doctor of Philosophy dissertation of Neale Ratzlaff presented on July 19 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Neale Ratzlaff, Author

ACKNOWLEDGEMENTS

First and foremost I thank my advisor Fuxin Li for the support, encouragement, and

mentorship. I count myself lucky to have an advisor enthusiastic about letting me pur-

sue my research direction unencumbered, while providing guidance to shape me into a

researcher. I consider Fuxin a valuable friend and ally as well as an advisor. I want to

express my earnest gratitude for each member of my committee: Tom Dietterich, Alan

Fern, Rakesh Bobba, Geoffrey Hollinger, and Stefano Ermon. Tom and Alan in particu-

lar have provided consistent, invaluable feedback and guidance. They kept me grounded

to the task of solving real problems. I extend a special and sincere thanks to Qinxun Bai.

Qinxun became a mentor when I interned at Horizon Robotics, and our collaboration

has continued ever since. I cannot possibly enumerate everything I have learned from

him. His devotion to details, and his willingness to assist me with any problem at any

time have impacted every aspect of my research ability. I also extend my thanks to the

excellent researchers Wei Xu, Haonan Yu, Haichao Zhang and Le Zhao from Horizon

Robotics. They have my gratitude for contributing to the largest growth period of my

PhD. My excellent friend and mentor Donald Heer deserves a special mention for taking

an uninterested undergraduate, and providing autonomy and support. I directly credit

my interest in AI, work ethic, and technical ability to my time in the TekBots lab. I

made lifelong friends at OSU during my PhD, and I’m grateful for their support, clar-

ity, and enthusiasm. A PhD is an arduous process, made significantly easier with good

friends. I cannot name all of them but I would be remiss if I did not mention (in al-

phabetical order) Aayam Shrestha, Alexander Turner, Anurag Koul, Christopher Buss,

Lawrence Neal, Matthew Olson, Michael Slater, Robert DeBortoli, Risheek Garrepalli,

Saeed Khorram, Taylor Dinkins, and Yilin Yang. I also want to mention my friends and

labmates: Ali, Amin, Hung, Jay, Jialin, Mazen, Michael, Tim, Vijay, Wenxuan, Xinyao,

and Ziwen. They not only helped tremendously with feedback and advice, but they

gracefully listened to the same presentations so many times from me. Last but never

least are those outside of my PhD career. Alex Nolan has been my partner through ev-

erything, enduring the ups and downs of research, publications, and exams. I am forever

grateful for her flexibility, kindness, and support while I pursued my passion. My friends

Aniket, Carly, Christian, Cody, Jessica, Jordan, Serena, Spencer, and Trevor deserve

mention for their interest and tolerance as I worked on near-incomprehensible problems.

I conclude with perhaps the most important people of all: my wonderful parents Jim

and Vicki Ratzlaff, my brothers Chris, Jeff, and Bryan, and sisters Tiffany and Chelsea.

They have made me who I am, and I count myself lucky to be related to them.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Uncertainty in Deep Learning . 1

1.2 Thesis Statement . 4

1.3 Thesis Overview . 6

2 Related Work 9

2.1 Approximate Bayesian Inference for Neural Networks 9

2.1.1 Markov Chain Monte Carlo . 9

2.1.2 Variational Inference . 10

2.1.3 Particle-based Variational Inference 11

2.1.4 Comparison to Proposed Work . 12

2.2 Frequentist Distributions of Neural Networks 12

2.2.1 Comparison to Proposed Work . 13

2.3 Exploration in Reinforcement Learning with Uncertainty 14

2.3.1 Model-Based RL . 14

2.3.2 Model-Free RL . 15

2.3.3 Comparison to Proposed Work . 16

3 Preliminaries 17

3.1 Implicit Generative Models . 17

3.1.1 Generative Adversarial Networks 17

3.1.2 Variational Autoencoders . 18

3.1.3 Wasserstein Autoencoders . 19

3.2 Bayesian Inference . 20

3.2.1 Particle-based Variational Inference 21

3.2.2 Bayesian Neural Networks . 22

3.2.3 Definition of Epistemic Uncertainty 23

3.3 Reinforcement Learning . 24

3.3.1 Problem Statement . 24

3.3.2 Definition of Epistemic Uncertainty 25

4 Implicit Generative Modeling with HyperGAN 26

4.1 Introduction . 26

4.2 HyperGAN . 27

TABLE OF CONTENTS (Continued)
Page

4.2.1 Learning to Generate without Explicit Samples 31

4.3 Experiments . 32

4.3.1 Implementation Details . 32

4.3.2 Classification Accuracy and Diversity 33

4.3.3 1-D Regression . 34

4.3.4 Out of Distribution Detection . 35

4.3.5 Ablation Study . 38

4.3.6 Exemplar Outlier Examples . 40

4.4 Conclusion . 41

5 Efficient Exploration in Reinforcement Learning 42

5.1 Introduction . 42

5.2 Dynamic Model Uncertainty as Intrinsic Reward 44

5.3 Posterior Approximation via Amortized SVGD 45

5.3.1 Implicit Posterior Generator . 45

5.3.2 Training with Amortized SVGD 46

5.3.3 Summary of the Exploration Algorithm 47

5.4 Experimental Results . 48

5.4.1 Toy Task: NChain . 49

5.4.2 Pure Exploration Results . 50

5.4.3 Policy Transfer Experiments . 55

5.4.4 Comparison to Model-Free Exploration Approaches 57

5.5 Conclusion . 58

5.6 Additional Implementation Details . 58

6 Generative Particle-based Variational Inference 62

6.1 Introduction . 62

6.2 Generative Particle Variational Inference . 64

6.2.1 Reparameterization of the Generator 67

6.2.2 Estimating the Jacobian inverse 69

6.2.3 Summary of the algorithm . 70

6.2.4 Comparison with Amortized SVGD 71

6.3 Experiments . 73

6.3.1 Likelihood-based Generative Modeling 73

TABLE OF CONTENTS (Continued)
Page

6.3.2 Direct Generative Modeling . 84

6.4 Conclusion . 89

6.5 Hyperparameter Settings for GPVI . 90

7 Improving GPVI 96

7.1 Introduction . 96

7.2 Improving Generative Particle-based Variational Inference 97

7.2.1 GPVI . 98

7.2.2 A Simplification of the Inverse . 98

7.2.3 Practical Computation of the Inverse 101

7.3 Experiments . 103

7.3.1 5D Density Estimation . 105

7.3.2 Open-Category Prediction . 105

7.3.3 Stacked MNIST . 108

7.4 Conclusion . 109

7.5 Hyperparameter Settings for GPVI+ . 110

8 Future Work and Conclusion 116

Bibliography 119

LIST OF FIGURES
Figure Page

1.1 Neural network classifier performance on never-before-seen inputs. Figure

(a) shows expected behavior on inputs that resemble training data. While

(b) shows prediction on a semantically different input. Predicting a bird

as a “7” is a silent failure. 2

4.1 HyperGAN architecture. The mixer transforms z ∼ Z into latent codes

{q1, . . . , qL}. The L generators each transform the latent subvector qi
into the parameters of the corresponding layer in the target network. The

discriminator D forces Q(s|z) to be well-distributed and according to the

distribution P. 27

4.2 Results of HyperGAN on the 1D regression task. From left to right, we

plot the predictive distribution of 10, 100, and 256 sampled models from a

trained HyperGAN. Within each image, the blue line is the target function

x3, the red circles show the noisy observations, the grey line is the learned

mean function, and the light blue shaded region denotes ±3 standard

deviations . 35

4.3 Out of distribution performance on notMNIST. PDF of the predictive

entropy of all approaches. 36

4.4 Out of distribution performance on CIFAR-10. PDF of the predictive

entropy of all approaches on the 5 classes of CIFAR-10. 36

4.5 Predictive entropy on FGSM and PGD adversarial examples. HyperGAN

generates models that give diverse predictions on adversarial examples.

Note that for large ensembles, it is hard to find adversarial examples with

small norms e.g. ε = 0.01 . 38

4.6 Diversity of predictions on adversarial examples. FGSM and PGD exam-

ples are created against a network generated by HyperGAN, and tested on

500 more generated networks. FGSM transfers better than PGD, though

both attacks fail to cover the distribution learned by HyperGAN 39

LIST OF FIGURES (Continued)
Figure Page

4.7 Ablation studies of HyperGAN accuracy and diversity on CIFAR-10. (a)

HyperGAN without the mixer and without the discriminator, respectively.

(b) HyperGAN diversity on CIFAR-10 given a normal training run, with

the mixer removed, and with the discriminator removed. Diversity is

shown as the standard deviation divided by the norm of the weights,

within a population of 100 generated networks. 40

4.8 Example outliers. Top: MNIST examples that HyperGAN assigns high

entropy to (outlier examples). Bottom: notMNIST examples that are

assigned low entropy (inlier examples) . 41

5.1 Dynamics model generator. Independent noise samples {z1, · · · , zL} are

drawn from a standard Gaussian with diagonal covariance, and input to

layer-wise generators {f1, · · · , fL}. Each generator fj outputs parameters

θj for the corresponding j-th layer of the neural network representing the

dynamic model. 45

5.2 NChain environment. 49

5.3 Results on the 40-link chain environment. Each line is the mean of three

runs, with the shaded regions corresponding to ±1 standard deviation.

Both our method and MAX actively reduce uncertainty in the chain, and

therefore are able to quickly explore to the end of the chain. ε-greedy

DQN fails to explore more than 40% of the chain. 50

5.4 Performance on the Acrobot environment. We average five seeds, with er-

ror bars representing ±1 standard deviation. The length of each horizontal

bar indicates the number of environment steps each agent/method takes

to swing the acrobot to fully horizontal on both (left and right) directions. 52

5.5 We show (a) the U-shaped ant maze. Figures (b-e) show the behavior of

our (Ours) agent at different stages of training, over 5 seeds. Points are

color-coded with blue points occurring at the beginning of the episode,

and red points at the end. 53

LIST OF FIGURES (Continued)
Figure Page

5.6 Ant maze performance. (a) performance of each method with mean and

±1 standard deviation (shaded region) over five seeds. x-axis is the num-

ber of steps the ant has moved, y-axis is the percentage of the U-shaped

maze that has been explored. Figure (b) shows the proposed intrinsic

reward magnitude for each step in the environment, calculated for both

our method and MAX. 54

5.7 We show (a) the Robotic Hand task in motion. (b) Performance of each

method with mean and ±1 standard deviation (shaded region) over five

seeds. x-axis is the number of manipulation steps, y-axis is the number

of rotation states of the block that has been explored. Our method (red)

explores clearly faster than all other methods. 55

5.8 Policy transfer results. Figure (a) shows the performance of SAC baseline

(SAC) and four SAC variants initialized from a 10,000-step exploration

policy trained with different intrinsic reward methods, ICM, Disgreement,

MAX, and our proposed method (Ours) respectively. Figure (b) shows

the performance of downstream SAC policy training initialized with our

proposed exploration policy under different settings of exploration length.

Init-Nk refers to the SAC agent initialized from our exploration policy

which has been trained for N -thousand exploration steps. 56

5.9 Comparison with RND and PSNE on HalfCheetah with external reward

(a), and a pure exploration comparison with RND on Ant Maze (b). . . . 58

6.1 Predictive uncertainty of methods for a 1-D regression task. (a) HMC

predictive posterior matches the uncertainty in the data; (b) SVGD per-

forms comparably to HMC; (c) Our proposed GPVI performs similarly

to SVGD, with the additional capability of sampling new particles during

inference; (d) Amortized SVGD overestimates the uncertainty when the

data is sparse. 65

6.2 Density estimation with the energy potential functions from Rezende and

Mohamed [2015]. 76

6.3 Comparing our helper network with BiCGSTAB in the Bayesian linear

regression setting. 79

LIST OF FIGURES (Continued)
Figure Page

6.4 Predictive uncertainty of each method on the 4-class classification task,

as measured by the standard deviation between predictions of sampled

functions. Regions of high uncertainty are shown as darker, while lighter

regions correspond to lower uncertainty. The training data is shown as

samples from four unimodal normal distributions. It can be seen that

amortized SVGD, BBB and deep ensembles significantly underestimate

the uncertainty in regions with no training data 81

6.5 Predictive uncertainty of each method on the 2-class classification task,

as measured by the standard deviation between predictions of sampled

functions. 82

6.6 GPVI vs GAN for direct generative modeling of 8 Gaussians. 86

6.7 GPVI vs GAN for direct generative modeling of 25 Gaussians. 87

7.1 GPVI+ parameter generation pipeline, by concatenation ⊕ of the output

of g1 and g2. 99

7.2 How we compute the partial Jacobian matrices Jg1 and Jg2 for computa-

tion of the inverse defined in theorem (7.2.1). 102

7.3 Samples drawn after training on Stacked MNIST after 100 epochs. 109

LIST OF TABLES
Table Page

4.1 HyperGAN diversity. 2-norm statistics on the layers of a population of

network parameters sampled from HyperGAN, compared to a 10-network

ensemble, as well as 10 samples from APD. Both HyperGAN and the

standard models were trained on MNIST to 98% accuracy. Its easy to see

that HyperGAN generates more diverse networks under this metric 33

4.2 Classification performance of HyperGAN on MNIST and CIFAR-10. CIFAR-

5 refers to a dataset with only the first 5 classes of CIFAR-10. MNIST

5000 and CIFAR-10 5000 refers to training on only 5000 examples of

MNIST and CIFAR-10, respectively, which has been used in prior work

(e.g. Louizos and Welling [2017]) . 34

6.1 Comparison of generative Particle VI approaches for density estimation

of 2d and 5d Gaussian distributions. 75

6.2 Bayesian linear regression. Reported error is the L2 norm of the difference

between the learned mean and covariance parameters, and the ground

truth after 50000 iterations. 78

6.3 Results for open-category classification on MNIST. We show the result of

standard supervised training (Clean), as well as AUC and ECE statistics

computed from training on a subset of classes and testing on the rest of

the classes as outliers. 83

6.4 Open-category classification on CIFAR-10. We show results of standard

supervised training (Clean), as well as AUC and ECE of each method

trained in the open-category setting. 84

6.5 Error metrics for each method in fitting 8 Gaussians. We show the av-

erage absolute error across modes, in estimating the mean and standard

deviation of each component. 86

6.6 Error metrics for each method in fitting 25 Gaussians. We show the

average absolute error across modes, in estimating the mean and standard

deviation of each component. 87

6.7 Hyperparameters for density estimation of energy potentials. 91

6.8 Hyperparameters for Bayesian linear regression task 92

LIST OF TABLES (Continued)
Table Page

6.9 Hyperparameters for 2/4 class classification task 93

6.10 Hyperparameters for MNIST open category task 94

6.11 Hyperparameters for CIFAR-10 open category task 95

6.12 Hyperparameters for Bayesian linear regression task 95

7.1 Comparison of different inversion methods for fitting a 5D diagonal Gaus-

sian distribution. 105

7.2 Results for open-category classification on MNIST. We show the result of

standard supervised training (Clean), as well as AUC and ECE statistics

computed from training on a subset of classes and testing on the rest of

the classes as outliers. We also compare parameter count of GPVI and

GPVI+ auxiliary networks, as well as LinGPVI+ and EnsembleGPVI+. 107

7.3 Results for open-category classification on CIFAR-10. We show the result

of standard supervised training (Clean), as well as AUC and ECE statistics

computed from training on a subset of classes and testing on the rest of

the classes as outliers. We also compare parameter count of GPVI and

GPVI+ auxiliary networks, as well as LinGPVI+ and EnsembleGPVI+. . 108

7.4 Performance on stacked MNIST. We compute the number of modes cap-

tured by each generative model, along with the reverse KL divergence

between output samples and true samples 109

7.5 Hyperparameters for density estimation. 111

7.6 Hyperparameters for MNIST open category task 113

7.7 Hyperparameters for CIFAR-10 open category task 114

7.8 Hyperparameters for Stacked MNIST task 115

LIST OF ALGORITHMS
Algorithm Page

1 Exploration with an Implicit Distribution 48

2 Generative Particle VI (GPVI) . 70

3 GPVI+ Training Algorithm . 104

Chapter 1: Introduction

All models are wrong but some of

them are useful.

Box, G. E. P. (1976), “Science and statistics”, Journal of the American Statistical As-

sociation

When we build models of the world, either mental or mathematical, we know intuitively

that there are limits to the variables we can observe – our models may never be perfect.

However, the mathematical models we have built have no such understanding. This

thesis examines how to imbue models with this intuition.

1.1 Uncertainty in Deep Learning

Modern society has been transformed by the invention of mechanical thinking power.

Just thirty years ago, the average adult compressed, stored, and optimized for recall

of city maps, basic arithmetic, and vacation memories. Neural circuits once reserved

for these tasks have been handed over to navigation apps, smartphone calculators, and

sprawling cloud photo libraries. Until recently, tasks involving prediction have resisted

the handover. For the most part, humans still drive their own cars, choose their invest-

ments, and prescribe medication.

Recently, deep learning based models have been proposed to automate each of these

tasks. This poses the problem of validation of complex models: how can designers guar-

antee the effectiveness of their models in such safety-critical applications? Such systems

must be safe to use, or else be designed to fail gracefully in a way that allows operators to

respond effectively. Due to the superior predictive power of deep learning systems over

2

traditional approaches, they are a natural choice for automation in domains like medicine

and autonomous driving. In applications where large amounts of data are available, deep

neural networks dominate in terms of accuracy and generalization capabilities. While ac-

curacy and generalization performance are critical to their usefulness, a natural question

is, how do neural networks behave on novel data. For example, what predictions do we

get by prompting a digit classifier with a picture of a bird? Ideally, a failure signal could

be efficiently computed from such predictions. The research community has collectively

asked this question, and it has become clear that test inputs are indiscriminately treated

like samples from the training distribution. On test inputs where this assumption holds,

i.e. laboratory conditions, neural networks generalize well. However, in the event of dis-

tribution shift, where the new input does not resemble the training data, the associated

predictions do not reflect that any such shift has happened. In practice for classification

tasks, neural networks assign high probability to a known yet incorrect class. In regres-

sion tasks, predictions tend toward the mean of the training set, instead of attempting

to extrapolate correctly. This inability to fail gracefully is illustrated in figure 1.1, which

implies that if we query our digit classifier on a bird image, the classifier will confidently

predict our bird is the ideal number “7”.

(a) (b)

Figure 1.1: Neural network classifier performance on never-before-seen inputs. Figure
(a) shows expected behavior on inputs that resemble training data. While (b) shows
prediction on a semantically different input. Predicting a bird as a “7” is a silent failure.

In many real-world scenarios, models are queried for predictions on novel inputs. Given

an anomalous input, we would prefer that the model is uncertain about the input, rather

than broadcast an incorrect prediction. In autonomous driving, the car’s perception

system may encounter an obstruction that it has never seen before. The ability to be

uncertain about this object could save the life of the driver by pulling over, instead

3

of assuming the object is benign and running into it. Although this uncertainty is

fundamental in human reasoning, it has proven difficult to build models with the same

behavior. Neural networks in particular have shown the surprising tendency to give

highly confident predictions on data from outside the training distribution.

Despite its importance in human decision-making, uncertainty is difficult to define as an

algorithmically computable quantity. In general, the uncertainty that we consider has

two components: aleatoric and epistemic uncertainties. Aleatoric uncertainty stems from

the inherent randomness in the environment. This type of uncertainty is irreducible, as

the randomness will persist no matter how a learner models it. Epistemic uncertainty,

also called model uncertainty, refers to a lack of knowledge about the parameter being

estimated. This may be due to limited available data, or else from model misspecification.

Epistemic uncertainty is in principle reducible; given a consistent estimator, the epistemic

uncertainty about the true value of a parameter will decrease as more data is acquired.

For example, if we flip a coin chaotically, the randomness in the coin flip is our aleatoric

uncertainty. But if we want to model the posterior mean over many coin flips, this

epistemic uncertainty will decrease over time as our estimate concentrates around the

true value. This thesis concerns epistemic uncertainty: how can we reason about the

true value of neural network parameters given that we have finite data.

Due to the high dimensionality and extreme non-convexity of neural network loss land-

scapes, it is possible to train randomly initialized networks that achieve similar accuracy,

despite having quite different parameters. Ensembles of these diverse networks are more

robust to novel data (outliers) and can provide uncertainty estimates over their outputs.

The uncertainty associated with a prediction indicates how likely the prediction is to be

correct given the observed data. Here we consider parameterized classifiers, that output

a set of class-conditional probabilities. In this case we use the entropy in the predictive

distribution as our uncertainty statistic. Intuitively, a maximum entropy predictive dis-

tribution indicates that no class is more likely than any other. When the classifier is an

ensemble of models, individual members may be still be overconfident without sacrificing

uncertainty quantification if the predictions are sufficiently diverse. This is analogous to

a panel of expert judges, where each judge confidently disagrees in their verdict. Such

a panel is clearly uncertain, while remaining individually confident. Hence, diversity in

the predictive distributions can be critical to the uncertainty quantification ability of

4

ensembles. To imbue neural networks with the ability to be uncertain on novel data, we

study how to train such diverse neural networks.

1.2 Thesis Statement

In this thesis, we study the problem of uncertainty in deep learning through the lens

of ensembles of diverse models. That is, we consider k-class classification functions

f : Rm → Rk parameterized by θ. Consider the joint distribution (X ,Y) of data

points X and associated labels Y. We can draw a set of data points of interest X =

{x1, x2, . . . , xn} ⊂ X , and a corresponding set of labels Y = {y1, y2, . . . , yn} ⊂ Y. For a

classifier that is trained to infer p(y|x) given access to limited samples drawn i.i.d. from

(X ,Y), we can always find an anomalous input x̄ ∈ X̄, X̄ /∈ supp(X) with true label ȳ.

Since ȳ /∈ Y , the classification arg max
y

p(y|x̄) will be necessarily incorrect. Furthermore,

the corresponding class probability max
y
p(y|x̄) may be arbitrarily close to 1 when fθ is a

nonlinear neural network [Hein et al., 2019]. In this setting, the prediction with respect

to x̄ is guaranteed to be incorrect, yet it is indistinguishable from predictions on data

drawn from X.

We take the view that the predictive distribution p(y|x̄) should not assign high probabil-

ity to any class. In fact, we want this distribution to have high entropy. In practice, this

is not the case for nonlinear neural networks trained with maximum likelihood. How-

ever, we can improve on such models by using an ensemble. We can always construct

an ensemble q(θ) =
∑M

i=1 fθi . For an ensemble q(θ) with M members, we have M

different predictive distributions for a given input. In this case, even if the predictions

maxy p(y|x̄,fθi) are close to 1, we can consider the entropy of the average of the predic-

tive distributions. If each classifier is overconfident, but the members “disagree”, then

the distribution 1
M

∑M
i=1 p(y|x̄,fθi) may still have high entropy.

Naive ensembles, where the parameters for each classification function are initialized

randomly, have been explored in prior work for uncertainty quantification [Lakshmi-

narayanan et al., 2017b]. These ensembles were found to outperform individual models

by a surprising amount, when using predictive entropy as a measure of uncertainty to

detect out-of-distribution (OOD) inputs. While ensembles give reasonable uncertainty

5

estimates, they represent a finite number of solutions that are not regularized to be di-

verse. Whether an ensemble learns diverse functions, or collapses to a single attractive

solution depends on the random initialization and the optimization landscape. Further-

more, ensembles scale linearly in their computational cost, with the number of models in

the ensemble limited by computational budget. For sufficiently complex data, we might

require many models to estimate uncertainty accurately, and we cannot easily generate

another ensemble member.

We take the view that the parameters of any trained classification function represent a

sample from the distribution of parameter vectors p(Θ) that fit the data (with some spec-

ified accuracy) e.g. p(Θ)
d
= p(θ|X,Y). Under this view, a naive ensemble approximates

p(Θ) with an empirical distribution of M samples. We can also find an approximation

p(Θ̃)
d
≈ p(Θ) with a (possibly) simpler analytically known distribution. For example, we

might assume that our target distribution is approximately Gaussian p(Θ)
d
= N (µ,Σ),

but with unknown mean and variance. We could then perform variational inference to

find the parameters of p(Θ̃) that best fit the target p(Θ). The benefits of variational

inference (VI) are twofold; we can encode prior knowledge about the data e.g. we know

the form of the target distribution. VI with a tractable approximating distribution also

allows us to generate additional samples from p(Θ̃), something we could not do with

an ensemble. Of course, in modern deep learning, we do not a priori know the form

of p(Θ), and distributions with analytical forms are likely not flexible enough to be a

very close approximation. Indeed, inflexible variational distributions have been shown to

underestimate the epistemic uncertainty [Minka, 2001, Bishop, 2006, Snoek et al., 2019]

for even low-dimensional functions. We seek to gain the advantages of naive ensembles

and variational methods while avoiding the drawbacks. Hence, we seek a representation

of p(Θ̃) that allows for efficient sampling and accurate uncertainty quantification.

Implicit generative models are functions fη : Rd → Rm that define a deterministic

transformation of samples z from a simple distribution Z via parameters η. Given an

implicit generative model, we can directly generate data as x = fη(z), z ∼ Z, where

supp(Z) ⊆ Rd. We consider the implicit distribution given by samples from fη(z), z ∼ Z
as an approximation of p(Θ) if we let fη generate parameter vectors θ. Additionally,

fη(z) is computationally efficient to sample from and does not assume a constraining

parameterization. However, it is not clear how to train an implicit generative model to

6

approximate p(Θ), or if the resulting approximation will yield useful uncertainties. This

thesis proposes methods to train implicit generative models to do exactly this, and shows

that the resulting samples can be used for accurate uncertainty quantification. The main

statement of this thesis is as follows:

Implicit generative models can be used to learn an approximation of the poste-

rior distribution of neural network parameters that fit the observed data. Sam-

ples from this approximate posterior can be effectively used for uncertainty

quantification, enabling out-of-distribution input detection, defense against

adversarial examples, and exploration of unknown environments.

A large component of this thesis is about showing not just that implicit generative

models can produce diverse models and reasonable uncertainty estimates, but also that

the uncertainty quantification is useful for downstream applications. For instance, a

reinforcement learning agent tasked with exploration may seek out unknown areas by

leveraging its own uncertainty about the environment.

The diversity given by implicit generative models is not only useful for uncertainty

estimation, but also for learning about low-probability data. A generative model that

can produce diverse samples is also broadly useful for tasks such as density estimation

or image generation. Implicit generative models are a key component of modern image

generation algorithms e.g. generative adversarial networks (GANs). However, GANs

are known to suffer from low sample diversity. This means that if GANs are used to

represent human qualities via digital avatars or online shopping applications, low sample

diversity implies that low-density demographics are excluded. Hence, this dissertation

considers these application domains within the overarching question of how to construct

such implicit generative models.

1.3 Thesis Overview

This thesis is organized as a roughly linear road map through our efforts leveraging

implicit generative models for uncertainty quantification in neural networks. Each of

the main ideas corresponds to a published paper, though in some sections we extend

7

our published results to connect related topics and show additional applications of our

work.

We begin with introducing prior work most relevant to this thesis in chapter 2. This

includes a survey of prior methods covering the major topic areas: uncertainty quantifi-

cation, Bayesian neural networks, and exploration in reinforcement learning. In chapter

3 we give a preliminary introduction to the formulation used in this thesis. The notation,

terms, and broad subject ares are introduced here. In order, we cover implicit genera-

tive models, Bayesian inference, particle-based variational inference, and exploration in

reinforcement learning.

In chapter 4, we introduce our first contribution utilizing implicit generative models for

uncertainty quantification. We propose HyperGAN, a generative architecture that trans-

forms a low-dimensional sample of random noise into a full set of parameters for a target

neural network architecture. We regularize the generative model with an adversarial

discriminator to encourage diversity in generated samples. Our experiments show that

HyperGAN generates diverse models that give reasonable uncertainty estimates when

used for out-of-distribution data and adversarial example detection.

In chapter 5 we study how implicit models and uncertainty quantification can be used

for efficient exploration in reinforcement learning. We demonstrate the effectiveness of

implicit generative models in the model-based setting, by leveraging the uncertainty in

an implicit distribution over the transition function to drive exploration. Our agent is

motivated to explore via an intrinsic reward powered by this uncertainty. We target

environments with sparse external rewards, where exploration is difficult. In such en-

vironments, an effective agent must efficiently explore a significant portion of the state

space, since the true reward function may have negligible (or even zero) support over the

state space. Our experiments show that our approach consistently outperforms compet-

ing methods regarding data efficiency in pure exploration.

In chapter 6 we introduce a method for constructing an implicit generative model such

that its samples match an arbitrary target distribution. Our method Generative Particle

Variational Inference (GPVI) minimizes the functional gradient of the KL divergence

between an implicit distribution given by samples from a generative model, and a target

distribution. The benefit over prior work is that GPVI places no restrictions on the

8

form of the generator function, such as invertibility. In tasks such as Bayesian linear

regression, and sampling from energy functionals, we show that GPVI is able to exactly

fit arbitrary target distributions. We further apply it to Bayesian neural networks, and

show that the uncertainty estimates given by the sampled networks outperform prior

work for open-category prediction.

Chapter 7 extends our work on GPVI to GPVI+, and proposes a method to greatly

decrease the difficulty of training GPVI, and improve its space-efficiency. We derive a

new way to invert the Jacobian of the generator network, reducing the dimensionality of

the inversion problem by up to 99%. Our results on low-dimensional density estimation

as well as Bayesian neural networks show substantial gains in efficiency as well as an

improvement in uncertainty estimation ability.

We conclude in chapter 8 with a reflection on the research presented in this thesis and a

discussion of new avenues, such as continual learning, multi-task learning, and transfer

learning.

9

Chapter 2: Related Work

This thesis draws from a variety of fields including Bayesian inference, probabilistic

neural networks, ensemble learning, and reinforcement learning.

2.1 Approximate Bayesian Inference for Neural Networks

Bayesian inference provides a powerful framework for reasoning and prediction under

uncertainty. As such, there is a vast body of work utilizing Bayesian inference for inferring

the parameters of neural networks [Neal, 1994]. Most widely used techniques fall roughly

into the categories of the Laplace approximation, Markov chain Monte Carlo (MCMC)

and variational inference, which we discuss in the following sections.

The Laplace approximation assumes that the posterior distribution can be approximated

well by a Gaussian distribution, where the mean is given by the MAP solution and the

covariance is the inverse of the Fisher Information Matrix (inverse of the Hessian). Imple-

mentation of this method for neural networks is computationally demanding. Therefore,

the following approximations have been proposed. MacKay [1992] used a diagonal ap-

proximation to the Hessian to compute the Laplace approximation for Bayesian neural

networks. Recently, a more scalable version of the Laplace approximation was proposed

by Ritter et al. [2018], by using a Kronecker factored (KFAC) Hessian.

2.1.1 Markov Chain Monte Carlo

Traditionally, MCMC algorithms are employed to simulate drawing samples from arbi-

trary target distributions. As MCMC methods are known to asymptotically converge

given both time and ergodicity, they are useful for both exact and approximate Bayesian

inference. Hamiltonian Monte Carlo (HMC) [Neal et al., 2011] evolves a Markov chain

under Hamiltonian dynamics, resulting in fast convergence due to less correlated sam-

ples. HMC has been extended to gradient-based optimization with SGHMC [Chen et al.,

10

2014]. The noisy gradient estimator proposed for SGHMC allows for sampling weights

for BNNs. Welling and Teh [2011] proposed Stochastic Gradient Langevin Dynamics

(SGLD), a first order approximation to Langevin diffusion for BNN training. RECAST

[Seedat and Kanan, 2019] integrates cosine annealing with the SGLD step size for efficient

exploration of the target posterior distribution.

Ultimately, MCMC based algorithms do not scale well to estimation problems where the

distribution in question has millions of parameters. Some MCMC methods like HMC

are “full-batch”, meaning that we cannot use stochastic gradient approaches which are

critical for training large neural networks. Some approaches like SGHMC or RECAST

support minibatch updates, but demonstrate slower mixing and their performance is

highly dependant on model specification [Yao et al., 2019].

2.1.2 Variational Inference

Variational Inference [Wainwright and Jordan, 2008] transforms intractable Bayesian

inference problems into simpler optimization procedures. Unlike MCMC methods, vari-

ational inference (VI) assumes that the model family of the posterior distribution is

known. VI optimizes for a set of approximating parameters for this distribution, and so

can be more efficient than MCMC. VI for neural network parameters was first proposed

by Hinton and Van Camp [1993] under the minimum description length framework, but

requires a analytic expression of the integral over the variational distribution to perform

updates. Hoffman et al. [2013] and Graves [2011] provide more general VI algorithms,

using MCMC to compute noisy (yet unbiased) estimates of the gradient of the variational

parameters based on subsamples of the data. More recently, variational approximations

have been iterated upon extensively. Bayes by Backprop [Blundell et al., 2015] introduced

a more efficient gradient estimator using the local reparameterization trick from Kingma

et al. [2015] to reduce the number of variational parameters. Probabilistic Backprop-

agation [Hernández-Lobato and Adams, 2015] makes use of the intermediate gradients

computed by the backpropagation algorithm to efficiently update a factorized Gaussian

approximate posterior. Because diagonal Gaussian approximate posteriors do not cap-

ture correlations between weights, structured approximate posteriors have been recently

proposed, making use of matrix Gaussians [Louizos and Welling, 2016], normalizing flows

11

[Louizos and Welling, 2017, Krueger et al., 2017], and hypernetworks [Pawlowski et al.,

2017].

In practice, VI requires approximations to scale to the high dimensionality of neural

networks. The most common assumption is that the form of the posterior can be closely

approximated by a simple analytically-known distribution. This assumption enables

closed-form updates to the variational posterior, and is computationally amenable for

drawing samples. However, common distribution choices such as a diagonal Gaussian

distribution, are insufficient to capture the complex structure of high dimensional model

posterior [Yao et al., 2019]. Even with more structured variational distributions, VI is

known to underestimate the uncertainty in the target distribution [Minka, 2001, Bishop,

2006, Yao et al., 2019].

2.1.3 Particle-based Variational Inference

Very recently, particle-based variational inference (ParVI) methods [Liu and Wang,

2016a, Liu et al., 2019, Liu, 2017] have been proposed that represent the variational

distribution by a set of finite particles (samples) that are updated through a determin-

istic optimization process to approximate the posterior. ParVI methods achieve both

asymptotic accuracy and computational efficiency. Liu and Wang [2016a], Liu [2017]

proposed Stein Variational Gradient Descent (SVGD), that deterministically updates an

empirical distribution of particles toward the target distribution via a series of sequen-

tially constructed smooth maps. Each map defines a perturbation of the particles in the

direction of steepest descent towards the target distribution under the KL-divergence

metric. Liu et al. [2019] cast ParVI as a gradient flow on the space of probability

measures P2 equipped with the W2 Wasserstein metric, and proposed ParVI methods

GFSD and GFSF by smoothing the density and the function respectively. Wasserstein

variational gradient descent [Ambrogioni et al., 2018] transports particles to the target

distribution by minimizing the optimal transport cost between the particles and the

posterior distribution. We make use of ParVI in the following chapters, and seek to

improve on its limitations. One such limitation is the fixed number of particles, i.e., the

lack of ability to draw new samples beyond the initial set. Prior work, amortized SVGD

[Wang and Liu, 2016], proposed to amortize the SVGD gradients to train a neural sam-

12

pler. While being flexible through drawing samples, amortized ParVI methods cannot

match the asymptotic convergence behavior of full ParVI. Another limitation of ParVI

is the restriction of the transport maps to an RKHS. The Fisher neural sampler [Hu

et al., 2018, Grathwohl et al., 2020] lifts the function space of transportation maps to

the space of L2 neural network functions, and performs minimax optimization to find the

optimal perturbation. The benefit over VI and MCMC is that ParVI does not depend

on the specific parameterization of the approximate posterior. In general, ParVI is also

more efficient than MCMC methods due to its deterministic updates and gradient-based

optimization.

2.1.4 Comparison to Proposed Work

The proposed work in this thesis are most similar to variational inference and particle-

based variational inference. Our work differs fundamentally from VI in that we do

not assume any specific parameterization of the approximate posterior. Additionally,

the learned functions in our work are deterministic, and, therefore, do not require the

derivation of exact gradients or Monte Carlo sampling. In one proposed contribution,

we depend on an adversarial discriminator in the feature space of a generator network

to produce diversity. In another, we derive a new method that minimizes the KL diver-

gence between variational and target distributions that does not depend on the specific

parameterization of the variational distribution. Both of our proposed approaches utilize

implicit generative models, where the approximate posterior is obtained through sam-

pling. Because of this ability to sample, our approaches also differ from particle-based

variational inference.

2.2 Frequentist Distributions of Neural Networks

Without taking a probabilistic approach, we can instead use an ensemble of indepen-

dently trained models to compute the epistemic uncertainty. Given that individual mod-

els are diverse with respect to the ensemble, i.e., make uncorrelated errors [Dietterich,

2000], we can average the predicted probabilities to compute the epistemic uncertainty

in the ensemble. More recently, Lakshminarayanan et al. [2017a] proposed Deep En-

sembles of neural networks, where adversarial training was applied to each member.

13

While naive ensemble methods remain a capable baseline, other SGD-based approxi-

mations have been proposed. These methods often focus on the efficiency of forming

an ensemble, as the linear scaling with number of models is expensive for large tasks.

Garipov et al. [2018] propose Fast Geometric Ensembling (FGE); using the insight that

SGD modes have similar performance on training data yet generalize differently, FGE

combines models at multiple local modes. Izmailov et al. [2018] approximates the FGE

ensemble by performing stochastic weight averaging of SGD iterates. SWAG [Mad-

dox et al., 2019] extends this work by parameterizing a low-rank Gaussian model with

statistics of SGD iterates. While SGD-based approximations remain computationally

efficient, their uncertainty estimation capabilities depend on the generalization ability of

the particular SGD trajectory. Similar to SWA, Snapshot ensembles Huang et al. [2017]

aggregate weights from multiple points in the optimization process of a single model to

form an ensemble. A neural network that generates another neural network is sometimes

called a hypernetwork. The original hypernetwork framework [Ha et al., 2016] describes

a larger parent network that supervises the weight updates of a smaller child network.

The two networks are trained jointly, and the child network can be repurposed for fast

inference.

There are also data driven approaches to generating neural network parameters [Jader-

berg et al., 2015, Jia et al., 2016]. In Dynamic filter networks, the convolution filter

parameters of the main network are conditioned on the input data, receiving contex-

tual scale and shift updates from an auxiliary network. Generative adversarial networks

(GANs) are another possible method for sampling from a distribution of model param-

eters. For instance, Wang et al. [2018] propose to model the distribution captured by a

Bayesian neural network trained with SGLD. Adversarial Posterior Distillation (APD)

trains a GAN with parameter vectors sampled from a BNN during training. However,

the training samples from the single SGLD chain are inevitably correlated, potentially

reducing the diversity of generated networks.

2.2.1 Comparison to Proposed Work

Unlike most methods from the ensemble/SGD-approximation literature, our approaches

make use of a generative model that allows us to acquire additional samples. All else

14

being equal, the ability to cheaply acquire additional samples allows our approaches

to achieve a closer approximation to the posterior distribution. The exceptions to this

case are SWAG and APD. Each uses a generative model to acquire posterior samples.

In the case of SWAG, the generative model is a diagonal Gaussian and is limited by

its parameterization, which consists of relatively few samples from the same trajectory

through weight-space. Both SWAG and APD rely on a “main” optimization process

(SGD/SGLD) to produce diverse iterates. This diversity is limited in practice by the

fact that samples only represent one trajectory through weight space. Our approaches

do not rely on SGD or SGLD for diversity, instead we construct explicit repulsive forces

between samples to encourage diversity.

2.3 Exploration in Reinforcement Learning with Uncertainty

Efficient exploration remains a major challenge in deep reinforcement learning [Fortu-

nato et al., 2017, Burda et al., 2018b, Eysenbach et al., 2018, Burda et al., 2018a] One

practical guiding principle for efficient exploration is the reduction of the agent’s epis-

temic uncertainty of the environment. By treating uncertainty as a novelty signal, RL

agents can be encouraged to explore unknown parts of their environment.

2.3.1 Model-Based RL

As a high-level approach, a principled way to take actions under uncertainty is by using

Thompson sampling [Thompson, 1933]. Thompson sampling, sometimes called proba-

bility matching, selects actions according to the probability that they are optimal with

respect to a prior function. This sampling approach implicitly incorporates uncertainty,

as poorly-understood actions are more likely to be taken under an uninformative prior

[Agrawal and Goyal, 2012, Kaufmann et al., 2012]. Thompson sampling has been ex-

tended to the MDP setting in Strens [2000], Osband et al. [2013] under the name pos-

terior sampling (PSRL). PSRL assumes a (Gaussian) prior over MDPs, and samples

one MDP (conditioned on the history) from this distribution each episode. PSRL then

solves for the optimal policy for the sampled MDP, and explores greedily. By sampling

a single random MDP each episode, PSRL recovers the Thompson sampling behavior

of probability matching, and converges to the true optimal policy as the agent collects

15

experience.

Without assuming an explicit model of the MDP, we can model the environmental dy-

namics, and consider the agent’s uncertainty in this dynamics model. One way to leverage

this uncertainty for exploration is to directly use some measure of the uncertainty as an

intrinsic reward. Methods for constructing intrinsic rewards for exploration have become

the subject of increased study. One well-known approach is to use the prediction error

of an inverse dynamics model as an intrinsic reward [Pathak et al., 2017, Schmidhuber,

1991]. Schmidhuber [1991] and Sun et al. [2011] proposed using the learning progress

of the agent as an intrinsic reward. Houthooft et al. [2016] formulate exploration as a

variational inference problem, and use Bayesian neural networks (BNNs) to maintain the

agent’s belief over the transition dynamics. The BNN predictions are used to estimate a

form of information gain called compression improvement [Pathak et al., 2019]. [Shyam

et al., 2019] induce exploration through intrinsic rewards computed from an ensemble

of dynamic models. The Renyi entropy or variance among the ensemble members in

next-state predictions is used as the intrinsic reward.

2.3.2 Model-Free RL

To achieve efficient exploration without explicitly modeling the transition function, we

can instead take a model-free approach and consider the uncertainty over a more abstract

object like the value function. Osband et al. [2017] proposed randomized least-squares

value iteration (RLSVI), which samples statistically plausible value functions and em-

ploys them for performing value iteration. This approach is extended by Osband et al.

[2016] to deep Q-networks (DQN) [Mnih et al., 2013], where a bootstrap ensemble of

DQNs is used to approximate the posterior of the value function. The predictions of the

ensemble are used as an estimate of the agent’s uncertainty, and exploration is performed

by model averaging with a uniform prior. Furthermore, Osband et al. [2018] proposed

to augment the predictions of a bootstrap DQN agent by adding the contribution from a

fixed, untrained prior network. In a similar vein, O’Donoghue [2018] learns a representa-

tion of the cumulant generating function of the posterior over the agent’s Q values, and

derives upper and lower bounds of the agent’s epistemic uncertainty with respect to its

history. Bayesian deep Q learning has been further proposed in numerous other works,

16

for sample-efficient reinforcement learning [Azizzadenesheli et al., 2018, Janz et al., 2019,

Clements et al., 2019]. As an alternative to the Bayesian treatment, Optimism in the

Face of Uncertainty (OFU) approaches upper bound the value function, and act greedily

according to the upper bound [Munos, 2014, Strehl et al., 2006, Szita and Szepesvári,

2010]. These algorithms are optimistic about future value in the sense that actions look

more profitable than the data suggests. UCB1, UCRL, and UCRL2 [Auer et al., 2002,

Ortner and Auer, 2007, Jaksch et al., 2010] provide an exploration bonus proportional

to the visitation count for a chosen action in the bandit and MDP settings respectively.

Due to the difficulty of estimating state visitation frequency in high dimensional MDPs,

pseudo-count methods learn an approximate state count density and apply OFU [Ostro-

vski et al., 2017, Bellemare et al., 2016]. Proposed methods of estimating pseudo-counts

include mixture models [Zhao and Tresp, 2019] and hashing [Tang et al., 2016].

2.3.3 Comparison to Proposed Work

In the model-based RL setting, our work proposes to use an intrinsic reward given

by the uncertainty in the agent’s dynamics model. Hence, our approach is close in

spirit to Shyam et al. [2019] and Pathak et al. [2017], who propose a similar intrinsic

reward formulation. The main difference is that our approach represents the dynamics

model with an implicit generative model, as opposed to a naive ensemble. Given that

RL agents are trained with many similar (non i.i.d.) trajectories and the dynamics

may be arbitrarily simple, a naive ensemble of neural networks can quickly overfit –

removing any epistemic uncertainty. For this reason, our method makes use of particle-

based variational inference, and relies on the repulsive force between particles to ensure

diversity in sampled models.

17

Chapter 3: Preliminaries

This chapter introduces the prerequisite concepts and the notation necessary for this

thesis.

3.1 Implicit Generative Models

For every contribution in this thesis we define an implicit generative model that learns

to sample from a target distribution of model parameters. To denote distributions, we

define a probability space (Ω,F , p), where Ω is a sample space, F is a σ-algebra, and

p(e) is the probability of any measurable event e ∈ F occurring. While p : F → [0, 1] is

a function on F that maps to probabilities, we may use other letters such as q to denote

distributions of interest. Our main task is to learn a generator function f : Z → X
that transforms samples from a simple probability distribution Z on Z ⊂ Rd, to a data

space X ⊆ Rm. We always parameterize f as a neural network with parameters η. q(x)

is an approximating distribution, and the distribution qf (x) is the implicit distribution

represented by samples generated as x = fη(z). In principle, Z may be any probability

distribution, but in practice we draw samples from a standard normal distribution for

computational efficiency: z ∼ Z d
= N (0, Id).

3.1.1 Generative Adversarial Networks

Generative adversarial networks [Goodfellow et al., 2014] learn implicit generative mod-

els fη to sample from a target data density p(x) on X ⊆ X , given access to only a

set of samples from p(x). The main challenge in using implicit models is evaluating

the distribution of samples drawn from fη, which requires integrating over the input

latent variable Z to compute qf (x). This can be done when fη is invertible, but is in

practice often intractable when fη is a neural network. The problem of intractability is

further compounded when the target distribution is high dimensional, or otherwise lacks

an explicit likelihood function. For instance, the distribution of natural images does not

18

have an explicit likelihood, making evaluation of generated samples difficult. GANs take

a likelihood-free approach to circumvent both problems, by training a surrogate to the

likelihood function, called a discriminator. The discriminator D : X → R evaluates sam-

ples x ∈ X , and outputs the probability that x was drawn from the target distribution,

p(y = 1|x). The generator and discriminator are optimized according to the following

minimax objective,

min
fη

max
D

Ex∼p(x)[logD(x)] + Ez∼Z [log 1−D(fη(z))]. (3.1)

Therefore, the goal of the generator is to learn to transform noise samples into data

samples that fool the discriminator, thus minimizing the loss on fη. The discriminator

tries to maximize its ability to tell real images from generated samples. The system

reaches optimality when the implicit distribution qf (x) matches the target p(x). In

the original GAN formulation [Goodfellow et al., 2014], the training objective of the

discriminator optimizes a lower bound on the likelihood p(y|x), and reaches optimality

for a fixed generator at D(x) =
[

p(x)
p(x)+qf (x))

]
. GANs have been refined and elaborated on

extensively, and remain the state of the art in terms of image-generation quality. GANs

are also known to be difficult to train, and suffer from pathologies like mode-collapse,

where the generator maps large regions of Z to a single output [Arjovsky and Bottou,

2017].

3.1.2 Variational Autoencoders

Variational autoencoders (VAEs) [Kingma and Welling, 2013] are a family of regularized

autoencoders that minimize the negative log-likelihood of the data under an implicit

mapping fη : Z → X . VAEs specify a generative model fη that is trained to map

samples from a simple prior Z, to the data space X , yielding the following density,

qf (x) =

∫
Z
qf (x|z)pz(z)dz. (3.2)

Distinct from GANs, VAEs are not likelihood-free. They feature no discriminator func-

tion. VAEs employ an encoder network, E : X → Z, to map data points to samples from

the prior. We denote the conditional distribution of encoded samples as pE(z|x). The

19

autoencoder structure provides a valid likelihood on p(x) and shares the computationally

amenable sampling procedure with GANs. To train fη to approximate the target data

distribution, VAEs minimize

inf
E
−Ex∼p(x)

[
KL(pE(z|x)||Z)−EE(z|x) [log qf (x|z)]

]
, (3.3)

which is equivalent to maximizing a lower bound on the likelihood. The conditional dis-

tribution f(x|z) is parameterized by a neural network, but the prior Z is often assumed

to be a factorized Gaussian distribution to make the KL term tractable. VAEs have

enjoyed success for generative modeling in many domains, but are known to generate

blurry examples when applied to image generation. [Zhao et al., 2017].

3.1.3 Wasserstein Autoencoders

Wasserstein Auto-encoders (WAE) [Tolstikhin et al., 2017] approach generative modeling

from an optimal transport (OT) framework [Villani, 2008], to minimize the difference

between the density given by an implicit generative model qf (x) and the data distribu-

tion p(x). As with VAEs, WAEs define an encoder model E : X → Z that maps data

samples to points in the latent space. The latent space is encouraged to match the prior

distribution Z ⊂ Z, but unlike VAEs, encoded samples do not parameterize the prior

distribution. WAEs minimize the p-Wasserstein distance between the target data distri-

bution and the learned distribution given implicitly through fη, Wp(p(x), qf (x)). Like

VAEs, the discrepancy between the two distributions is minimized via a reconstruction

cost on fη(E(x)), as well as a regularizer to ensure that the conditional distribution

pE(z|x) is well distributed according to Z. In principle, the regularizer Dz(Z, pE(z|x))

could be any distance between probability distributions. WAE uses either MMD or an

adversarial discriminator trained with the GAN loss.

inf
fη

inf
E

Ex∼p(x)EE(z|x)
[
c(x,fη(z))

]
+ λDz(Z, pE(z|x)), (3.4)

where c is any measurable cost function measuring the error between the data x and

reconstruction fη(z), and λ is a hyperparameter. The key difference between WAE and

VAE is that WAE admits deterministic encoders. This means that while the distribution

20

pE(z|x) is encouraged to match pz, it is not explicitly equal. The ability to use degenerate

(deterministic) encoders means that we are less likely to map different inputs to the

same output. In chapter 4, we propose a method that uses a similar regularization term

as WAE to ensure that our generated samples are diverse, by placing an adversarial

discriminator in the feature space of a generative model.

3.2 Bayesian Inference

The majority of our contributions are related to the uncertainty in a learned distribution

of neural network parameters. This notion of uncertainty brings us firmly into the terri-

tory of Bayesian inference. At a high level, Bayesian inference is a way to make inferences

about the conditional probabilities of outcomes that result from uncertainty. Under the

Bayesian view, we are primarily concerned with computing the posterior probability of

some hypothesis H, conditioned on the evidence D. The posterior probability depends

on the likelihood of the data under this hypothesis p(D|H), and the observed evidence

p(D). The subjective Bayesian paradigm also specifies our belief aboutH through a prior

probability p(H). We can relate the posterior probability of H to the data D through

Bayes rule:

p(H|D) =
p(D|H)p(H)

p(D)
, or equivalently, posterior =

likelihood × prior

evidence

Any question about conditional probabilities can be a Bayesian query, for example:

• What is the probability it will rain the day after it was sunny?

• How likely is my dog to want to go back outside within 5 minutes of letting her in?

• What is the probability of a set of model parameters, given the observed data?

Naturally, we are most concerned with the third point. Specifically, we are interested

in what Bayes theorem says about the posterior distribution p(θ|D), where θ are model

parameters.

21

3.2.1 Particle-based Variational Inference

Particle-based variational inference (ParVI) was proposed as a family of non-parameteric

methods for fitting a target distribution p(x). In contrast with standard variational in-

ference, ParVI does not assume an analytic form for the approximate posterior. Instead,

ParVI considers the empirical distribution, formed by a set of samples (particles) q(x).

The goal of ParVI is to learn this empirical distribution such that it converges in dis-

tribution to the target distribution. [Liu and Wang, 2016b, Liu et al., 2019, Hu et al.,

2018]. ParVI methods deterministically update an empirical distribution of particles to-

ward the target distribution via a series of sequentially constructed smooth maps. Each

map defines a perturbation of the particles in the direction of steepest descent towards

the target distribution under the KL-divergence metric.

The canonical ParVI algorithm, Stein variational gradient descent (SVGD), represents

q(x) by a set of particles {xi}mi=1, that are updated iteratively by,

xi ← xi + εφ∗(xi), (3.5)

where ε is a step size, and φ∗ : Rd → Rd is a vector field on the space of particles that

corresponds to the optimal direction to perturb particles:

φ∗ = arg min
φ∈F

{
d

dε
KL(q[εφ](x)‖p(x))

∣∣∣∣
ε=0

}
,

where q[εφ](x) is the implicit distribution represented by particles updated by (3.5).

When F is chosen to be the unit ball of some RKHS H with kernel function k(·, ·),
SVGD gives the following closed form solution for φ∗:

φ∗(x) = Ex′∼q
[
∇x′ log p(x′)k(x′,x) +∇x′k(x′,x)

]
. (3.6)

This update reduces to standard MAP ascent when q(x) consists of just a single particle,

and the kernel gradient ∇xk(x,x) = 0. This means that SVGD can be used to inter-

polate between standard supervised training with a single particle (fitting the posterior

mean), and a method for Bayesian inference (fitting the full distribution).

The particle update given in (3.6) can be understood as consisting of two terms: a likeli-

22

hood term and a repulsive force. The likelihood ∇x log p(x) naturally drives the particles

towards regions of high probability under p(x), by following an averaged gradient direc-

tion, that is composed of contributions from all particles in the system. The repulsive

force penalizes similar particle pairs with large k(x, ·), ensuring that all particles do not

collapse to a single mode.

One downside of SVGD is that while SVGD can be viewed as a way to draw samples

from p(x), we have no way of drawing additional samples once the SVGD chain has

converged. This limitation makes it hard to apply ParVI algorithms like SVGD to tasks

like image generation, where we wish to draw a large number of samples. To address

this issue, Wang and Liu [2016] proposed amortized SVGD to learn a sampling function

for the SVGD approximate posterior. Critically, amortised SVGD does not assume a

parametric form of this approximate posterior, but makes use of the particle update

(3.6) to train an implicit generative model fη. Amortized SVGD first samples particles

from fη and then back-propagates the particle gradients (3.6) through the generator

to update the generator parameters. Let x = fη(z), z ∼ N (0, Id) be the particle

generating process, where fη is the generator parameterized by η. Amortized SVGD

updates η by

η ← η + ε
m∑
i=1

∂fη(zi)

∂η
φ∗(fη(zi)), (3.7)

where φ∗(fη(zi)) is computed by (3.6). In chapter 5 we make use of amortized SVGD

for implicit generative modeling in reinforcement learning. In chapter 6 we examine

the limitations of the amortized SVGD approximation, and develop a new method for

generative particle-based variational inference that addresses these limitations. Further

improvements are also explored in chapter 7.

3.2.2 Bayesian Neural Networks

In chapters 5, 6, 7, 8, we perform variational inference via the implicit distribution q(θ).

The main objective we optimize is as follows:

min
fη

KL(q(θ)|θ=fη(z)||p(θ)),

23

where p(θ) is the target distribution, and z is a prior distribution over weights. For BNN

inference, we are interested in sampling from the posterior distribution of model param-

eters conditioned on the data: p(θ|D). To do this, we train fη to generate parameter

vectors θ that we can evaluate through the likelihood function log p(θ). Given that we

want to model p(θ|D), we train the generator fη to output θ such that every sample

from fη achieves low log-loss under the data p(θ), log p(θ)|θ=fη(z) is small.

We are often interested in evaluating the “uncertainty” with respect to fη. Because

epistemic uncertainty is reduced by observing more data, we can measure the predictive

uncertainty by marginalizing over fη. Given that fη is just a generative model for

parameter vectors, we define a prediction network, consisting of the architecture F pa-

rameterized by samples from fη. The prediction network makes predictions with respect

to the observed data, providing a way to evaluate samples from fη.

3.2.3 Definition of Epistemic Uncertainty

We want to compute reliable estimates of the epistemic uncertainty U from the dis-

tribution of samples from fη. In practice, the statistic we compute to represent the

uncertainty depends on the downstream evaluations of the sampled θ. We denote Uclf

as the uncertainty that we compute when θ parameterize classification functions, and

Ureg denotes the uncertainty when θ parameterizes regression functions. If the observed

data D is a joint distribution of data points and associated labels: (X,Y) ⊆ (X ,Y), then

we evaluate samples from fη as Ffη(z)(x), where x ∼ X.

When Ffη(z) is a K-way classification function, the predictive uncertainty Uclf of fη is

given by the Shannon entropy of the predicted probability distribution over classes. We

compute Uclf with the following Monte Carlo integration:

Uclf (fη, X) = −Ez

[
Ex∼X

[
K∑
c=1

σFfη(z)(x)c log σFfη(z)(x)c

]]
. (3.8)

Where σ is the softmax function that maps the outputs of Ffη(z) to the probability

simplex, σ(F (x))i = eF (x)i∑K
j=1 e

F (x)j
for i = 1 . . .K.

When Ffη(z) is a regression function, the epistemic uncertainty Ureg is given by the

24

predictive variance of Ffη(z)(X):

Ureg(fη, X) = Ez

[
n∑
i=1

Var
[
σFfη(z)(xi)

]]
. (3.9)

3.3 Reinforcement Learning

Reinforcement learning (RL) is the problem of learning to maximize returns via sequen-

tial interactions with an unknown environment. Superhuman performance on challenging

tasks such as the games of Atari [Mnih et al., 2013], Go [Silver et al., 2016], and StarCraft

II [Vinyals et al., 2019], has been achieved with RL. While these represent large-scale

successes, there is still room for improvement in the fundamental mechanisms of RL. In

particular, there is a risk-reward trade-off problem of balancing exploitation, where an

agent takes actions it knows will immediately give reward, and exploration, where an

agent bets the possibility of downstream reward on risky actions. Hence, exploration is

important to allow the agent to reveal the reward structure of the environment, without

focusing on well-understood yet relatively low-return behaviors. The cost of exploration

is lower short-term performance, but paying the upfront cost for exploration often results

in higher long-term return in scenarios where the reward is sparse.

An inefficient agent may explore by taking random actions at each state. By doing this,

the agent may happen on some good behavior, but in complex environments, finding

high-reward behavior can take exponentially many time-steps. For example, a rescue

agent tasked with finding lost climbers in a cave benefits from efficient, thorough explo-

ration. Rescue agents that explore via a random walk may provably explore the entire

cave, but this kind of exploration is very inefficient. Therefore, to efficiently learn a good

policy, the agent should maximize return while minimizing the time it takes to find this

reward. Many current RL methods rely on random actions to explore, and take millions

of examples to converge to a high-reward policy.

3.3.1 Problem Statement

Here we formalize the notions of the environment and agent. Consider a Markov Decision

Process (MDP) represented as (S,A, T, r, ρ0), where S is the state space, A is the action

25

space, and T : S × A × S → [0, 1] is the unknown dynamics model, specifying the

probability of transitioning to the next state s′ ∈ S from the current state s ∈ S by

taking the action a ∈ A, as p(s′|s, a). We denote the reward function as r : S ×A → R.

ρ0 : S → [0, 1] is a probability distribution over initial states. A policy is a function

π : S ×A → [0, 1] that outputs a distribution over actions for a given state s. We focus

on finite-horizon MDPs that terminate at time-step L with discount rate γ. We denote

the agent’s history by Ht, that is, all the experience the agent has collected until time

t.

The goal of the agent is to maximize its total expected discounted reward, by learning

an optimal policy π∗ that maps states to the best possible actions for a given time-

step.

3.3.2 Definition of Epistemic Uncertainty

In chapter 5, we propose a method for efficient exploration by leveraging the agent’s

uncertainty in the environment. We study the model-based RL setting, where the agent

learns an approximation to the environment dynamics T . Given a model of the dynamics,

an agent can plan to explore by identifying regions of the state space where the predicted

dynamics do not match the observations. We represent the dynamics as a neural network

F : S×A → S, parameterized by samples from an implicit generative model fη : Z → Θ.

We compute the uncertainty as follows,

U(fη, s, a) = Ez

[
Var

[
Ffη(z)(s, a)

]]
. (3.10)

We use the uncertainty in fη as a proxy for state-visitation frequency. If the uncertainty

in fη given a state-action pair is low, then we assume the agent has explored there

already. Conversely, if the uncertainty is high, then we encourage the agent to visit this

state-action pair again.

26

Chapter 4: Implicit Generative Modeling with HyperGAN

4.1 Introduction

In our first contribution, we build a model from which we can sample sets of parameters

for neural networks. The samples should perform approximately equally well on the

training data, while giving diverse predictions on inputs far from the training distribu-

tion. The goal is to be able to extract uncertainty information from the predictions made

by our model. If the predictions of our model agree, then we trust that our model is

confident in its prediction. However, if the predictions of samples are diverse on outlier

data, then a set of samples in disagreement is indicative of that example being an outlier.

In real-world applications, we believe its reasonable that safety-critical decisions should

be determined by models that have the ability to be uncertain about their predictions.

Models that are always confident yet only often correct, may be dangerous to use in

applications where safety is at risk.

To construct a sampler for neural network parameters, we choose a generative archi-

tecture where the weights of the generator combined with a sampling distribution form

an implicit distribution over the generated parameters. One of the issues in generating

weights is the connectivity of the network. Namely, the output of the previous layer be-

comes the input of the next layer, hence the network weights must be correspondent to

yield valid results. In our approach, we sample from a simple multi-dimensional isotropic

Gaussian distribution, and propose to transform this sample into multiple different vec-

tors. We call this procedure a mixer since it introduces correlations to the otherwise

independent components of the noise sample. Then each random vector is used to gen-

erate all the weights within one layer of a deep network. The generator is trained with

conventional maximum likelihood (classification/regression) with respect to the gener-

ated weights, and an adversarial regularization encourages diversity in the samples. In

this way, we generate networks that are much larger than the dimensionality of the la-

tent code, making our approach capable of generating all the weights of a deep network

27

with a single GPU. As an example, in our experiments on CIFAR-10 we start from a

256-dimensional latent vector and generate all 50, 000+ weights in one pass.

Somewhat surprisingly, with just this approach we can already generate complete, multi-

layer convolutional networks which do not require additional fine-tuning. We are able

to easily sample many well-trained networks from the generator which each achieve low

loss on the dataset the generative model is trained on. Moreover, we propose diversity

constraints that result in sampled models significantly more diverse than traditional

training with multiple random starts, dropout, or adding scaling factors to the weights.

We show through a variety of experiments that populations of diverse networks sampled

from our model are able to generate reasonable uncertainty estimates by calculating the

entropy of the predictive distribution of sampled networks. Our uncertainty estimates

allow us to detect out of distribution samples as well as adversarial examples. Our

method is straightforward, as well as easy to train and sample from.

Figure 4.1: HyperGAN architecture. The mixer transforms z ∼ Z into latent codes
{q1, . . . , qL}. The L generators each transform the latent subvector qi into the parameters
of the corresponding layer in the target network. The discriminator D forces Q(s|z) to
be well-distributed and according to the distribution P.

4.2 HyperGAN

Taking note from the original hypernetwork framework for generating neural networks

[Ha et al., 2016], we coin our approach HyperGAN. The key idea for HyperGAN is to

28

leverage a GAN-style sampling approach to directly generate discriminative networks.

To do this, the straightforward approach would be to acquire a large set of trained neural

networks and use those as training data to the GAN Wang et al. [2018]. However, a large

collection of neural networks would be extremely costly to build. Another approach,

proposed in Wang et al. [2018] is to train a single Bayesian neural network with SGLD.

Intermediate samples from the SGLD chain are then aggregated to form a training

set of functions, used as examples to train a GAN. However, such a dataset consists

of highly correlated samples, without the necessary diversity to approximate the full

distribution.

Instead, we propose to directly optimize the supervised learning objective instead of

focusing on reconstruction error on the training for the generator, as in normal GANs.

Similar to a standard GAN, we start by drawing a random sample z ∼ Z = N (0, Id),

where 0 is an all-zero vector and Id is a d × d identity matrix. The idea is that this

random sample would provide enough diversity to generate diverse parameter vectors.

If we can maintain such diversity while optimizing on the supervised learning objective,

we can generate networks that all optimize the loss function well, but are sufficiently

diverse because they are generated from different Gaussian random vectors.

Figure 5.1 shows the HyperGAN architecture. We begin by defining a neural network

as a function Fθ : X → Y parameterized by θ, consisting of a given architecture with

L layers, that maps data points x ∈ X to corresponding labels y ∈ Y . We further

suppose that there exists a distribution of parameters Θ, where samples θ ∼ Θ achieve

arbitrarily high performance on the given task. Under this view, standard training

of neural networks amounts to drawing a single sample from Θ. To learn to draw

samples from Θ, we modify a standard GAN to output parameter vectors. Distinct

from the architecture of the standard GAN, we propose a Mixer Q : Z → S which

is a fully-connected network that maps noise samples z ∼ Z to a mixed latent space

S ⊂ RLd. The mixer is motivated by the observation that weight parameters between

network layers must be strongly correlated as the output of one layer needs to be the

input to the next one. Hence, it is likely that some correlations are also needed in

the latent vectors that generate those weight parameters. Our Ld-dimensional mixed

latent space Q(z) contains vectors that are all correlated, which we then partition into

L layer embeddings [q1, . . . , qL], each being a d-dimensional vector. Finally, we use L

29

parallel generators f = {f1(q1) . . . fL(qL)} to generate the parameters θ for all layers in

F . This approach is also memory efficient since the extremely high dimensional space of

the weight parameters are now separately connected to multiple latent vectors, instead

of fully-connected to the latent space.

After generating a parameter vector θ, we can evaluate the new model Fθ(x) on the

training set. We define an objective which minimizes the error of generated parameters

with respect to a task loss L:

inf
fη ,Q

E
z∼Z

E(x,y)∼(X,Y) [L(F (x;f(Q(z))),y)] (4.1)

At each training step we generate a different network f(Q(z)) from a noise sample

z ∼ Z, and then evaluate the loss function on a mini-batch from the training set. The

resulting loss is backpropagated through the generators until Fθ minimizes the target

loss L.

The main concern about directly optimizing the formulation in (4.1) would be that the

codes sampled from Q(z) may collapse to the maximum likelihood estimate, when L is

a log-likelihood. This means that the generators may learn a very narrow approxima-

tion of Θ. On the other hand, one can think of the training process as simultaneously

starting from many starting points (since we sample different z for each mini-batch) and

attempting to obtain an optimum on all of them. Because deep networks are extremely

overparameterized and it is often the case that many global optima exist [Choromanska

et al., 2015], the optimization may indeed converge to different optima from different

random z.

The mixer may make the training process easier by building in the required correlations

into the latent code, hence improve the chance the optimization converges to different

optima from different random z. Similar to Wasserstain autoencoders [Tolstikhin et al.,

2017], we ensure that the parameters are well distributed by adding an adversarial con-

straint on the mixed latent space D(Q(z)) and encourage it to not deviate too much from

a Gaussian prior P. This constraint is closer to the generated parameters and ensures

that Q(z) itself does not collapse to always outputting the same latent code. With this

30

we arrive at the HyperGAN objective:

inf
f ,Q

E
z∼Z

E(x,y)∼(X,Y) [L(F (x;f(Q(z))), y)]− βD(Q(z),P) (4.2)

Where β is a hyperparameter, and D is the regularization term which penalizes the dis-

tance between the prior and the distribution of latent codes. In practice D could be any

distance function between two distributions. We choose to parameterize D as a discrim-

inator network D that outputs probabilities, and use the adversarial loss [Goodfellow

et al., 2014] to approximate D(Q(z),P).

D := −
N∑
i=1

(logD(pi) + log(1−D(qi))) (4.3)

Note that while P and Z are both multivariate Gaussians, they are of different dimen-

sionality and covariance.

Note that we find it difficult to learn a discriminator in the output (parameter) space

because the dimensionality is high and there is no structure in θ to be utilized as in

images (where CNNs can be trained). Our experiments show that regularizing in the

latent space works well, which matches results from recent work in implicit generative

models [Tolstikhin et al., 2017].

This framework is general and can be adapted to a variety of tasks and losses. In this

work, we show that HyperGAN can operate in both classification and regression settings.

For multi-class classification, the generators and mixer are trained with the cross entropy

loss function:

LH =
1

N

N∑
i=1

yi log
(
F (xi;θ)

)
θ = {f1(q1), . . . ,fL(qL)}

(4.4)

For regression tasks we replace the cross entropy term with the mean squared error

31

(MSE):

LMSE =
1

N

N∑
i=1

(yi − F (xi;θ))2

θ = {f1(q1), . . . ,fL(qL)}

(4.5)

4.2.1 Learning to Generate without Explicit Samples

In generative models such as GAN [Goodfellow et al., 2014] or WAE [Tolstikhin et al.,

2017], it’s necessary to have a collection of data points to train with, which come from

the distribution that is being estimated, so that such training examples can be sampled

from the generator. HyperGAN does not have a given set of samples to train with.

Instead, it optimizes a supervised learning objective such as maximum likelihood. To

draw a connection between this objective and the traditional reconstruction objective in

GAN, we note that after training, a generated θf represents the maximum likelihood

estimate of F (x;θ), which has a well-known link to KL-divergence:

inf
θf
DKL(p(x|θ)||p(x|θf)) (4.6)

= inf
θf

Ep(x|θf) [log p(x|θ)− log p(x|θf)]

= inf
θf

Ep(x|θf) [− log p(x|θf)]

(4.6) shows that by minimizing the error of the MLE on the log-likelihood, we are

indeed minimizing the KL divergence between the unknown true parameter distribution

Θ and the distribution of generated samples Θf . Hence, we can view HyperGAN also

as approximating a target distribution of the neural network parameters. However,

HyperGAN only assumes the target distribution exists, and update our approximation

Θf via maximum likelihood to better match the unknown Θ.

32

4.3 Experiments

We conduct a variety of experiments to test HyperGAN’s ability to achieve both high

accuracy and obtain accurate uncertainty estimates. First we show classification per-

formance on both MNIST and CIFAR-10 datasets. Next we examine HyperGAN’s ca-

pability to learn the variance of a simple 1D dataset. We then perform experiments on

anomaly detection by testing HyperGAN’s ability to discriminate between training data

and out-of-distribution examples. For models trained on MNIST we test on the notM-

NIST dataset. For CIFAR-10 experiments we train on the first 5 classes of CIFAR-10

(airplane, automobile, bird, cat, deer), then test whether the classifier can detect out-

of-distribution images from the 5 remaining classes not shown during training. Finally,

we test our robustness to adversarial examples as extreme cases of out-of-distribution

data.

In the following experiments we compare against APD [Wang et al., 2018], MNF [Louizos

and Welling, 2017], and MC Dropout [Gal and Ghahramani, 2016]. We also evaluate

standard ensembles as a baseline. The target architecture used is the same across all

approaches. For APD we train both MNIST and CIFAR networks with SGLD for 100

epochs, saving intermediate parameters as a training set. We then train a GAN on the

SGLD samples given the architectures and hyperparameters specified in [Wang et al.,

2018] until convergence. For MNF we use the code provided in [Louizos and Welling,

2017], and we train the model for 100 epochs. MC dropout is trained and sampled from

as described in [Gal and Ghahramani, 2016], with a dropout rate of π = 0.5. In all

experiments, unless otherwise stated, we draw 100 networks from the posterior to form

the predictive distribution for each approaches.

4.3.1 Implementation Details

HyperGAN models for MNIST and CIFAR-10 take a 256 dimensional sample of Z as

input, but have different sized mixed latent spaces. The HyperGAN for the MNIST

setting consists of three weight generators, each using a 128 dimensional latent vector as

input. The target network for the MNIST experiments is a small two layer convolutional

network followed by 1 fully-connected layer, using leaky ReLU activations and 2x2 max

pooling after each convolutional layer. Our HyperGAN trained on CIFAR-10 use 5

33

weight generators and latent dimensonality of 256. The target architecture for CIFAR-

10 consists of three convolutional layers, each followed by leaky ReLU and 2x2 max

pooling, with 2 fully connected layer after the convolutional layers.

The mixer, generators, and discriminator are each a 2 layer MLP with 512 units in each

layer and ReLU nonlinearity. We found that larger networks offered little performance

benefit, and ultimately hurt scalability. It should be noted that larger networks do

not harm the capability of HyperGAN to model the target distribution. We trained

our HyperGAN on MNIST using less than 1.5GB of memory on a single GPU, while

CIFAR-10 used just 4GB, making HyperGAN surprisingly scalable.

HyperGAN Ensemble APD

Conv1 Conv2 Linear Conv1 Conv2 Linear Conv1 Conv2 Linear

Mean 7.49 51.10 22.01 27.05 160.51 5.97 2.63 5.01 17.4
σ 1.59 10.62 6.01 0.31 0.51 0.06 0.22 0.41 1.43

Table 4.1: HyperGAN diversity. 2-norm statistics on the layers of a population of
network parameters sampled from HyperGAN, compared to a 10-network ensemble, as
well as 10 samples from APD. Both HyperGAN and the standard models were trained
on MNIST to 98% accuracy. Its easy to see that HyperGAN generates more diverse
networks under this metric

4.3.2 Classification Accuracy and Diversity

First we evaluate the classification accuracy of HyperGAN on MNIST and CIFAR-10.

Classification serves as the entrance into our other experiments, as the distribution we

want to learn is over parameters which can effectively solve the classification task. We

test with both single network samples, and ensembles. For our ensembles we average pre-

dictions from M sampled models with the scoring rule p(y|x) = 1
M

∑M
m=1 pm(y |x,θm).

It should be noted that we did not perform fine tuning, or any additional training on the

sampled networks. The results are shown in Table 4.2. We generate ensembles of dif-

ferent sizes and compare against APD [Wang et al., 2018], MNF [Louizos and Welling,

2017], and MC dropout [Gal and Ghahramani, 2016]. For each method we draw 100

samples from the learned posterior to generate the predictive distribution and use the

above averaging to compute the classification score.

34

Method MNIST MNIST 5000 CIFAR-5 CIFAR-10 CIFAR-10 5000

1 network 98.64 96.69 84.50 76.32 76.31
5 networks 98.75 97.24 85.51 76.84 76.41
10 networks 99.22 97.33 85.54 77.52 77.12
100 networks 99.31 97.71 85.81 77.71 77.38
APD 98.61 96.35 83.21 75.62 75.13
MNF 99.30 97.52 84.00 76.71 76.88
MC Dropout 98.73 95.58 84.00 72.75 70.10

Table 4.2: Classification performance of HyperGAN on MNIST and CIFAR-10. CIFAR-5
refers to a dataset with only the first 5 classes of CIFAR-10. MNIST 5000 and CIFAR-10
5000 refers to training on only 5000 examples of MNIST and CIFAR-10, respectively,
which has been used in prior work (e.g. Louizos and Welling [2017])

In Table 4.1 we show some statistics of the networks generated by HyperGAN on MNIST.

We note that HyperGAN can generate very diverse networks, as the variance of network

weights generated by the HyperGAN is significantly higher than standard training from

different random initializations, as well as APD. More insights on the diversity of Hy-

perGAN samples can be found in Section 4.3.5.

4.3.3 1-D Regression

We next evaluate the capability of HyperGAN to fit a simple 1D function from noisy sam-

ples and generate reasonable uncertainty estimates on regions with few training samples.

This dataset was first proposed by [Hernández-Lobato and Adams, 2015], and consists

of a training set of 20 points drawn uniformly from the interval [−4, 4]. The targets

are given by y = x3 + ε where ε ∼ N (0, 32). We used the same target architecture as

in [Hernández-Lobato and Adams, 2015] and [Louizos and Welling, 2017]: a one layer

neural network with 100 hidden units and ReLU nonlinearity trained with MSE. For Hy-

perGAN we use two layer generators, and 128 hidden units across all networks. Because

this is a small task, we use only a 64 dimensional latent space.

Figure 4.2 shows that HyperGAN clearly learns the target function and captures the

variation in the data. Furthermore, sampling more (100) networks to compose a larger

ensemble improves the predicted uncertainty in regions with few training examples.

35

Figure 4.2: Results of HyperGAN on the 1D regression task. From left to right, we plot
the predictive distribution of 10, 100, and 256 sampled models from a trained HyperGAN.
Within each image, the blue line is the target function x3, the red circles show the noisy
observations, the grey line is the learned mean function, and the light blue shaded region
denotes ±3 standard deviations

4.3.4 Out of Distribution Detection

To measure the uncertainty given on out of distribution data, we measure the total

predictive entropy given by HyperGAN-generated ensembles. For MNIST experiments

we train a HyperGAN on the MNIST dataset, and test on the notMNIST dataset: a 10-

class set of 28x28 grayscale images depicting the letters A - J. In this setting, we measure

the entropy in the predictive distribution as our uncertainty statistic. On inlier data,

the entropy of HyperGAN’s predictive distribution be low, with all networks predicting

the true class with high confidence. While on out-of-distribution data, we want to

have disagreement across the models drawn from HyperGAN, which corresponds to a

high entropy predictive distribution. As with MNIST, we test our CIFAR-10 model by

training on the first 5 classes, and using the latter (unseen) 5 classes as out of distribution

examples. To build an estimate of the predictive entropy we sample multiple networks

from HyperGAN, evaluate them on each example, and measure their predictive entropy.

We compare our uncertainty measurements with those of APD, MNF, MC dropout,

and standard ensembles. Unless otherwise noted, we compute the entropy based on 100

networks.

Fig. 4.3 shows that HyperGAN is overall less confident on outlier samples than other

approaches on the notMNIST dataset. Standard ensembles overfit considerably, as ex-

pected. Furthermore, table 4.1 shows that the diversity of standard ensembles is quite

low. Fig. 4.4 shows similar behavior on CIFAR-10. Hence HyperGAN can better separate

inliers from outliers when out-of-distribution examples are present.

36

Figure 4.3: Out of distribution performance on notMNIST. PDF of the predictive entropy
of all approaches.

Figure 4.4: Out of distribution performance on CIFAR-10. PDF of the predictive entropy
of all approaches on the 5 classes of CIFAR-10.

Adversarial Example Detection

We employ the same experimental setup to the detection of adversarial examples, an

extreme type of out-of-distribution data. Adversarial examples are often optimized to

37

lie within a small neighborhood of a real data point, so that it is hard for humans to

detect them visually. They are created by adding perturbations in the direction of the

greatest loss with respect to the parameters of the model. Because HyperGAN learns

a distribution over parameters, it should be more robust to adversarial attacks with

respect to a single set of parameters. We generate adversarial examples using the Fast

Gradient Sign method (FGSM) [Goodfellow et al., 2015] and Projected Gradient Descent

(PGD) [Madry et al., 2017]. FGSM adds a small perturbation ε to the target image in

the direction of greatest loss. FGSM is known to underfit to the target model, hence it

may transfer better across many similar models. In contrast, PGD takes many steps in

the direction of greatest loss, producing a stronger adversarial example, at the risk of

overfitting to a single set of parameters. This poses the following challenge: to detect

attacks by FGSM and PGD, HyperGAN will need to generate diverse parameters to

avoid both attacks.

To detect adversarial examples, we first hypothesize that a single adversarial example

will not fool the entire space of parameters learned by HyperGAN. If we then evaluate

adversarial examples against many newly generated networks, then we should see a high

entropy among predicted probabilities for any individual class.

Adversarial examples have been shown to successfully fool ensembles [Dong et al., 2017],

but with HyperGAN one can always generate more models that can be added to the

ensemble for the cost of one forward pass, making it hard to fully attack. We compare

the performance of HyperGAN with ensembles of M ∈ {5, 10} models trained on MNIST

with normal supervised training. We fuse their logits (unnormalized log probabilities)

together as l(x) =
∑M

m=1wnlm(x) where wm is the mth model weighting, and lm is the

logits of the mth model. In all experiments we consider uniformly weighted ensembles.

For HyperGAN we sample from the generative model to create as many parameter

vectors as we need, then we fuse their resulting logits together. Specifically we test

HyperGAN-created ensembles with M ∈ {5, 10, 100, 1000} members each. Adversarial

examples are generated by attacking the ensemble directly until the generated image

completely fools the whole ensemble. For HyperGAN, we attack the full ensemble, but

test with a new ensemble of equal size. For other methods we first attack a single model,

then test with 100 samples unless otherwise specified.

38

Figure 4.5: Predictive entropy on FGSM and PGD adversarial examples. HyperGAN
generates models that give diverse predictions on adversarial examples. Note that for
large ensembles, it is hard to find adversarial examples with small norms e.g. ε = 0.01

For the purpose of detection, we compute the entropy within the predictive distribu-

tion of the ensemble to score the example on how likely it was to be drawn from the

training distribution. Figure 4.5 shows that HyperGAN predictions on adversarial ex-

amples have high entropy, performing better than other methods as well as standard

ensembles. HyperGAN is well-suited to this task as adversarial examples are optimized

against a set of parameters - parameters which HyperGAN can change. Because Hyper-

GAN can generate diverse models, it is difficult for an adversarial example to fool the

ever-changing ensemble generated by HyperGAN. In some sense, adversarial attacks are

always transfer-style attacks with respect to HyperGAN.

As an ablation study, in Fig. 4.6 we show the diversity of the HyperGAN predictions

against adversarial examples generated to fool one network. It is shown that while those

examples can fool 50%− 70% of the networks generated by HyperGAN, they usually do

not fool all of them.

4.3.5 Ablation Study

The proposed architecture for HyperGAN is motivated by two requirements. First, we

want to generate parameters for a target architecture which can solve a task specified by

the data and the loss function. Second, we want the generated networks to be diverse.

39

Figure 4.6: Diversity of predictions on adversarial examples. FGSM and PGD examples
are created against a network generated by HyperGAN, and tested on 500 more generated
networks. FGSM transfers better than PGD, though both attacks fail to cover the
distribution learned by HyperGAN

The two specific constructs in the paper are the mixer, which introduces the necessary

correlations between generated layers, and an adversarially trained discriminator to en-

force that samples from the mixed latent space are well-distributed according to the

prior. In this section we test and discuss the validity and effect of these two components

by removing each one respectively and check the classification accuracy and the diversity

of HyperGAN after the removal.

Training without a discriminator is the simpler of the two experiments. The only modi-

fication made to the training procedure is that we remove the distributional constraint

on Z. We can see in figure (4.7(a)) that the classification accuracy of the generated

networks is unaffected, while the diversity shown in figure (4.7(b)) decreases, showing

that by making the mixed latent space well-distributed, the discriminator is having a

positive effect in improving the diversity of the generated models. This is similar to the

prevention of mode collapse in adversarial [Makhzani et al., 2015] and Wasserstein au-

toencoders [Tolstikhin et al., 2017]. We can also see that through the training, diversity

does indeed decrease, which is also common in GAN training. Hence, early stopping

the training when accuracy has just converged may be key to maintaining diversity as

well. We would like to study the effect of early stopping more from the theoretical side

in future work.

40

Figure 4.7: Ablation studies of HyperGAN accuracy and diversity on CIFAR-10. (a)
HyperGAN without the mixer and without the discriminator, respectively. (b) Hyper-
GAN diversity on CIFAR-10 given a normal training run, with the mixer removed, and
with the discriminator removed. Diversity is shown as the standard deviation divided
by the norm of the weights, within a population of 100 generated networks.

Next we train HyperGAN without the Mixer Q, or the mixed latent space. In this case,

the generator for each layer takes as input an independent d-dimensional sample from a

Gaussian distribution. From figure (4.7(a)), we see that even in this case we can obtain

similar classification accuracy. However, from figure (4.7(b)) we see that without the

mixer, diversity suffers significantly. We hypothesize that without the mixer, a valid

optimization trajectory is difficult to find (figure 4.7(a)) also shows that the HyperGAN

with no mixer starts with low accuracy for a longer period); when one trajectory is

finally found, the optimizer will prioritize classification loss over diversity. When the

mixer is included, the built-in correlation between the parameters of different layers may

have made optimization easier, hence diverse good optima are found even from different

random starts.

4.3.6 Exemplar Outlier Examples

In figure (4.8) we show images of examples which do not behave like other examples

from their of their respective distribution. On top are MNIST images which HyperGAN

generated ensembles yield a high-entropy predictive distribution. We can see that their

semantic content is generally ambiguous and do not fit with the rest of the training data.

The bottom row shows notMNIST examples with low-entropy predictive distributions

from HyperGAN. It can be seen that these examples look like they could come from

41

the MNIST training distribution. This serves as a qualitative example of reasonable

uncertainty estimates from HyperGAN.

(a)

(b)

Figure 4.8: Example outliers. Top: MNIST examples that HyperGAN assigns high
entropy to (outlier examples). Bottom: notMNIST examples that are assigned low
entropy (inlier examples)

4.4 Conclusion

In this chapter we proposed HyperGAN, an implicit generative model for learning to sam-

ple from the distribution of neural network parameters that fit the data. By training a

GAN to learn a probability distribution over neural networks, we can non-deterministically

sample diverse, performant networks which we can use to form ensembles that obtain

better classification accuracy and uncertainty estimates. Our method is ultimately scal-

able in terms of the number of networks in the predicting ensemble, requiring just one

forward pass to generate a new performant network and a low GPU memory footprint.

We have also shown the uncertainty estimates from the generated ensembles are capable

of detecting out-of-distribution data and adversarial examples.

42

Chapter 5: Efficient Exploration in Reinforcement Learning

5.1 Introduction

In this work we focus on the application of uncertainty quantification to exploration in

reinforcement learning. We present an algorithm for efficient exploration in unknown

environments by leveraging the agent’s uncertainty in the dynamics of the environment.

As in our previous work, we are primarily interested in the epistemic uncertainty, or the

variance in parameters that comes from estimation with finite data. This is in contrast

to aleatoric uncertainty, which models the stochastic realizations of an unknown random

variable, due to inherent randomness. In this context, the epistemic uncertainty is best

thought of as the agent’s uncertainty about the environment dynamics. The epistemic

uncertainty can thus be reduced by acquiring additional data. Aleatoric uncertainty

is due to some stochastic component of the returns or the environment, and is it not

reducible given additional data. Exploration methods that do not separate epistemic

from aleatoric uncertainty will be inefficient, as they will spend time collecting data to

reduce the irreducible aleatoric component of the uncertainty. In the literature, efforts to

estimate both components of uncertainty have been used to increase performance in RL

agents. Agents seeking to minimize epistemic uncertainty typically explore states where

the variance in model predictions/parameters is high, as this reflects a lack of knowl-

edge [O’Donoghue et al., 2017, O’Donoghue, 2018, Osband et al., 2017, 2018, Shyam

et al., 2019, Pathak et al., 2019]. Agents that model uncertainty in the returns due

to a stochastic environment (aleatoric) seek actions with high probability of receiving

reward. Some examples are Distributional RL [Bellemare et al., 2017, Dabney et al.,

2018a,b]. Given that epistemic (model) uncertainty can be reduced with more data,

modeling this uncertainty is useful for driving efficient exploration. While modeling the

aleatoric uncertainty can be used to aid exploitation, i.e. choosing the best action at any

time-step. In the following sections, we present a method for efficient exploration that

leverages model uncertainty to explore unknown or poorly-understood states. To do so,

we learn a distribution over the transition function. In our work, we draw samples from

43

this distribution to evaluate the uncertainty with respect to a given state, and explore

accordingly. A key component is how we learn this distribution. The exact form of the

transition function is unknown, and it differs between environments. It is important

that any distributional representation be flexible and expressive. To this end, we use

an implicit distribution to approximate the posterior distribution over transition func-

tions. Implicit distributions are computationally amenable to sampling, and can learn

to represent multi-modal distributions. By exploring according to the epistemic uncer-

tainty in the implicit distribution, we show that agents can efficiently explore difficult

environments.

We focus on the problem of learning to explore in environments with sparse external

rewards. In contrast to our previous work, here we treat outlier data as desirable,

and actively seek out data on which our model is uncertain. In environments without

external reward, it is important for an effective agent to methodically explore a significant

portion of the state space, since there are not enough external signals to indicate how to

obtain reward. We follow previous work by constructing an “intrinsic” reward, driven

by the uncertainty in the agent’s belief of the environment state [Pathak et al., 2019,

Shyam et al., 2019]. In this setup, any training signal will be purely a function of

the intrinsic reward, and the agent’s ability to perform well in these environments is

inherently tied to the quality of our uncertainty estimates. Intuitively, agents should

explore more thoroughly in states where they are not certain whether exploration could

lead to a previously unknown consequence – which could be an unexpected extrinsic

reward. However, uncertainty modeling from a deep network has proven to be difficult,

with no approach [Snoek et al., 2019] that is proven to be universally applicable.

In this work, we introduce a new framework of Bayesian uncertainty modeling for ex-

ploration in deep RL driven by an intrinsic reward. Our framework characterizes the

uncertainty in the agent’s belief of the environment dynamics in a non-parametric man-

ner to enable flexibility and expressiveness. The main component of our framework is a

network generator, each draw of which is a neural network that serves as the dynamics

model for RL. Multiple draws approximate a posterior of the dynamics model, and the

variance in future state prediction based on this posterior is used as an intrinsic reward for

exploration. The generative approach avoids making restrictive distributional assump-

tions on the likelihood or approximate posterior. Consequently, it provides a significantly

44

larger model space than previous approaches. Recently, it has been shown [Ratzlaff and

Fuxin, 2019] that training such generators can be done in classification problems, and

the resulting draws of networks can represent a rich distribution of diverse networks that

perform approximately equally well on the classification task.

5.2 Dynamic Model Uncertainty as Intrinsic Reward

To train our generator for the dynamics model, we propose a new algorithm to opti-

mize the KL divergence between the implicit distribution (represented by draws from

the generator) and the true posterior of the dynamics model (given the agent’s experi-

ence) via amortized Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016b,

Feng et al., 2017]. Amortized SVGD allows direct minimization of the KL divergence

between the implicit approximate posterior and true posterior without any parametric

assumptions, and further projects the infinite dimensional functional gradient computed

by SVGD to a finite-dimensional parameter update.

Let F : S ×A → S denote a model of the environment dynamics (usually represented by

a neural network) that we want to learn based on the agent’s experience H. We design

a generator module fη : Z → Θ that takes a random draw from the normal distribution

Z and outputs a sample vector of parameters θ ∈ Θ that determines F (denoted as

Fθ). If samples from fη represent the posterior distribution p(Fθ|H), then given (st, at),

the uncertainty in the output of the dynamics model can be computed by the following

variance among a set of samples {θi}mi=1 from fη, and used as an intrinsic reward rin

for learning an exploration policy,

rint =
1

m

∑m

i=1

∥∥∥∥Fθi(st, at)− 1

m

∑m

`=1
Fθ`(st, at)

∥∥∥∥2 . (5.1)

In learning the exploration policy, this intrinsic reward can be computed with either

actual rollouts in the environment or simulated rollouts generated by the estimated

dynamic model.

45

Figure 5.1: Dynamics model generator. Independent noise samples {z1, · · · , zL} are
drawn from a standard Gaussian with diagonal covariance, and input to layer-wise gen-
erators {f1, · · · , fL}. Each generator fj outputs parameters θj for the corresponding
j-th layer of the neural network representing the dynamic model.

5.3 Posterior Approximation via Amortized SVGD

In this section, we introduce the core component of our exploration agent, the dynamic

model generator f . In the following subsections, we first introduce the design of this

generator and then describe its training algorithm in detail. A summary of our algorithm

is given in the last subsection.

5.3.1 Implicit Posterior Generator

As shown in Fig. 5.1, the dynamic model is defined as an L-layer neural network function

Fθ(s, a), with input (state, action) pair (s, a) and model parameters θ = (θ1, · · · , θL),

where θj represents network parameters of the j-th layer. The generator module f

consists of exactly L layer-wise generators, {f1, · · · , fL}, where each fj takes a random

noise vector zj ∈ Rd and outputs the corresponding parameter vector θj = fj(z
j ; ηj),

where ηj are the parameters of fj . Note that zjs are generated independently from a

d-dimensional standard normal distribution, rather than jointly.

As mentioned in Section. 5.2, this framework has advantages in flexibility and efficiency,

comparing with ensemble-based methods [Shyam et al., 2019, Pathak et al., 2019], since

it maintains only parameters of the L generators, i.e., η = (η1, · · · , ηL), and enables

46

drawing an arbitrary number of sample networks to approximate the posterior of the

dynamic model.

5.3.2 Training with Amortized SVGD

We now introduce the training algorithm of the generator module fη. Assuming that

the true posterior of the dynamic model given agent’s experience H is p(F |H), and the

implicit distribution of Fθ captured by fη is q(Fθ). We want q(Fθ) to be as close

as possible to p(F |H), such closeness is commonly measured by the KL divergence

DKL [q(Fθ)‖p(F |H)]. The traditional approach for finding the distribution q that min-

imizes DKL [q(Fθ)‖p(F |H)] is variational inference, where an ELBO is maximized [Blei

et al., 2017]. Recently, a nonparametric variational inference framework, Stein Varia-

tional Gradient Descent (SVGD) [Liu and Wang, 2016b], was proposed, which represents

q with a set of particles rather than making any parametric assumptions, and approx-

imates the functional gradient descent w.r.t. DKL [q(Fθ)‖p(F |H)] by iterative particle

evolution. We apply SVGD to our sampled network functions, and follow the idea of

amortized SVGD [Feng et al., 2017] to project the functional gradients to the parameter

space of η by back-propagation through the generators.

Given a set of dynamic functions {Fθi}mi=1 sampled from fη, SVGD updates each function

by

Fθi ← Fθi + εφ∗(Fθi), i = 1, · · · ,m,

where ε is a step size, and φ∗ is the function in the unit ball of a reproducing kernel Hilbert

space (RKHS) H, that maximally decreases the KL divergence between the distribution

q represented by {Fθi}mi=1 and the target posterior p,

φ∗ = max
φ∈H

{
− d

dε
DKL(q||p), s.t.||φ||H ≤ 1

}
.

This optimization problem has a closed form solution,

φ∗(Fθi) = EFθ∼q [∇θ log p(F)k(F, Fθi) +∇θk(F, Fθi)] , (5.2)

where k(·, ·) is the positive definite kernel associated with the RKHS. The log-likelihood

47

term for Fθ corresponds to the negation of the regression loss of future state prediction

for all transitions in H, i.e., log p(Fθ) = −
∑

(s,a,s′)∈H L(Fθ(s, a), s′). Given that each θi

is generated by f(z;η), the update rule for η can be obtained by by the chain rule,

η ← η + ε

m∑
i=1

∇ηf(zi;η)φ∗(θi), (5.3)

where φ∗(θi) can be computed by (5.2) using empirical expectation from sampled batch

{θi}mi=1,

φ∗(θi) =
1

m

m∑
`=1

−
 ∑
(s,a,s′)∈H

∇θ`L(Fθ`(s, a), s′)

 (5.4)

· k(Fθ`(s,a), Fθi(s,a)) +∇θ`k(Fθ`(s,a), Fθi(s,a))

}
, (5.5)

where k(·, ·) is the RBF kernel evaluated at function outputs, which is in the state

space.

5.3.3 Summary of the Exploration Algorithm

To condense what we have proposed so far, we summarize in Algorithm 1 the procedure

used to train the generator of dynamic models and the exploration policies.

Our algorithm starts with a buffer H of random transitions and explores for some fixed

number of episodes. For each episode, our algorithm samples a set of dynamic models

FΘ = {Fθi} from the generator fη, and updates the generator parameters η using

amortized SVGD (5.3) and (5.5). For the policy update, the intrinsic reward (5.1) is

evaluated on the actual experience H and the simulated experience H̃ generated by Fθi .

The exploration policy is then updated using a model-free RL algorithm on the collected

experience Hπ and intrinsic rewards Rπ. The updated exploration policy is then used to

rollout in the environment for T steps so that new transitions are collected and added

to the buffer H for subsequent iterations. We repeat the process, until the episode is

done.

48

Algorithm 1 Exploration with an Implicit Distribution

Initialize Generator fη, parameters T,m

Initialize Policy π, Experience buffer H

while True do

while episode not done: do

FΘ ← f(z;η), z ∼ N (0, Id)

η ← evaluate (5.3), (5.5) on H

Hπ ← H ∪ H̃,
H̃ ∼ MDP(FΘ)

Rπ ← rin(Fθ, s, a|(s, a) ∼ Hπ) by (5.1)

π ← update policy on (Hπ, Rπ)

HT ← rollout π for T steps

H ← H ∪HT

end

end

5.4 Experimental Results

In this section we conduct experiments to compare our approach to existing state-of-the-

art in efficient exploration with intrinsic reward to show the following:

• An agent with an implicit posterior over dynamic models explores more effectively

and efficiently than agents using a single model or a static ensemble.

• Agents seeking external reward find better policies when initialized from powerful

exploration policies. Our ablation study shows that the better the exploration

policy as an initialization, the better the downstream task policy can learn.

To isolate our main claim of the superior exploration efficiency of the proposed method,

we first consider exploration tasks agnostic of any external reward. In this setting, the

agent explores the environment irrespective of any downstream task. Then, to further

investigate the potential of our exploration policies, we consider transferring the learned

exploration policy to downstream task policies where a dense external reward is provided.

Note that both cases are important for understanding and applying exploration policies.

In sparse reward settings, such as a maze, the reward could occur at any location, with-

49

out informative hints accessible at other locations. Therefore an effective agent must

be able to efficiently explore the entire state space in order to consistently find rewards

under different task settings. In dense reward settings, the trade-off between exploration

and exploitation plays a central role in efficient policy learning. Our experiments show

that even for a state-of-the-art model-free algorithm like the Soft Actor-Critic (SAC)

[Haarnoja et al., 2018], which already incorporates a strong exploration mechanism (the

maximum entropy framework), spending some initial rollouts to learn a powerful ex-

ploration policy as an initialization of the task policy still considerably improves the

learning efficiency.

5.4.1 Toy Task: NChain

Figure 5.2: NChain environment.

As a sanity check, we first follow MAX [Shyam et al., 2019], and evaluate our method

on a stochastic version of the toy environment NChain. As shown in Fig. 5.2, the chain

is a finite sequence of N states. Each episode starts from state 1 and lasts for N + 9

steps. For each step, the agent can move forward to the next state in the chain or

backward to the previous state. Attempting to move off the edge of the chain results

in the agent staying still. Reward is only afforded to the agent at the edge states: 0.01

for reaching state 0, and 1.0 for reaching state N − 1. In addition, there is uncertainty

built into the environment: each state is designated as a flip-state with probability 0.5.

When acting from a flip-state, the agent’s actions are reversed, i.e., moving forward will

result in movement backward, and vice-versa. Given the (initially) random dynamics

and a sufficiently long chain, we expect an agent using an ε-greedy exploration strategy

to exploit only the small reward of state 0. In contrast, agents with exploration policies

which actively reduce uncertainty can efficiently discover all states in the chain. Fig. 5.3

shows that our agent navigates the chain in less than 15 episodes, while the ε-greedy

50

agent (double DQN) does not make meaningful progress.

Figure 5.3: Results on the 40-link chain environment. Each line is the mean of three runs,
with the shaded regions corresponding to ±1 standard deviation. Both our method and
MAX actively reduce uncertainty in the chain, and therefore are able to quickly explore
to the end of the chain. ε-greedy DQN fails to explore more than 40% of the chain.

5.4.2 Pure Exploration Results

For pure exploration experiments, we consider three challenging continuous control tasks

in which efficient exploration is known to be difficult. In each environment, the dynam-

ics are nonlinear and cannot be solved with simpler (efficient) tabular approaches. As

explained in the beginning of Section. 5.4, the external reward is completely removed;

the agent is motivated purely by the uncertainty in its belief of the environment.

Experimental setup

To validate the effectiveness of our method, we compare with several state-of-the-art

formulations of intrinsic reward. Specifically, we conduct experiments comparing the

following methods:

• (Ours) The proposed intrinsic reward, using the estimated variance of an implicit

distribution of the dynamic model.

• (Random) Random exploration as a naive baseline.

• (ICM) Error between predicted next state and observed next state [Pathak et al.,

2017].

51

• (Disagreement) Variance of predictions from an ensemble of dynamic models [Pathak

et al., 2019].

• (MAX) Jensen-Renyi divergence between predictions from an ensemble of dynamic

models [Shyam et al., 2019].

Implementation details

Given our goal is to compare the performance across different intrinsic rewards, we fix the

model architecture, training pipeline, and hyper-parameters across all methods. Shared

hyper-parameters follow the MAX default settings. For the purpose of computing the

information gain, dynamic models for MAX predict both mean and variance of the next

state, while for other methods, dynamic models predict only the mean. Since our method

trains a generator of dynamic models instead of a fixed-size ensemble, we fix the number

of models we sample from the generator at m = 32, which equals the ensemble size for

MAX, ICM, and Disagreement. For all experiments, we use SAC as the model-free RL

algorithm used to train the exploration policies.

Acrobot Control

Our first environment is a modified continuous control version of the Acrobot. As shown

in Figure 5.4, the Acrobot environment begins with a hanging down pendulum which

consists of two links connected by an actuated joint. Normally, a discrete action a ∈
{−1, 0, 1} either applies a unit force on the joint in the left or right direction (a = ±1),

or not (a = 0). We modify the environment such that a continuous action a ∈ [−1, 1]

applies a force |a| in the corresponding direction.

To focus on efficient exploration, we test the ability of each exploration method to sweep

the entire lower hemisphere: positioning the acrobot completely horizontal towards both

(left and right) directions. Given this is a relatively simple task and can be solved by

random exploration, as shown in Figure 5.4, all four intrinsic reward methods solve it

within just hundreds of steps and our method is the most efficient one. The takeaway

here is that in relatively simple environments where there might be little room for im-

provement over state-of-the-art, our method still achieves a better performance due to

its flexibility and efficiency in approximating the model posterior. As we will see in

52

Figure 5.4: Performance on the Acrobot environment. We average five seeds, with error
bars representing ±1 standard deviation. The length of each horizontal bar indicates
the number of environment steps each agent/method takes to swing the acrobot to fully
horizontal on both (left and right) directions.

subsequent experiments, this observation scales well with the increasing difficulty of the

environments.

Ant Maze Navigation

Next, we evaluate on the Ant Maze environment. In the Ant control task, the agent

provides torques to each of the 8 joints of the ant. The provided observation contains

the pose of the torso as well as the angles and velocities of each joint. For the purpose

of exploration, we place the Ant in a U-shaped maze, where the goal is to reach the

end of the maze, discovering all the states. The agent’s performance is measured by

the percentage of the maze explored during evaluation. Figure 5.6(a) shows the result

of each method over 5 seeds. Our agent consistently navigates to the end of the maze

faster than the other competing methods. To see that our agent fully explores the maze

environment, we include state visitation diagrams in figure 5.5.

While MAX [Shyam et al., 2019] also navigates the maze, the implicit uncertainty mod-

eling scheme in our method allows our agent to better estimate the state novelty, which

leads to a considerably faster exploration. To provide a more intuitive understanding of

the effect of an intrinsic reward and how it might correlate to the performance, we also

plot in Figure 5.6(b) the intrinsic reward observed by our agent at each exploration step,

compared with that observed by the MAX agent. For fair comparison we plot the intrin-

53

(a) Ant Maze (b) 2500 Steps (c) 5000 Steps (d) 7500 Steps (e) 10000 Steps

Figure 5.5: We show (a) the U-shaped ant maze. Figures (b-e) show the behavior of our
(Ours) agent at different stages of training, over 5 seeds. Points are color-coded with
blue points occurring at the beginning of the episode, and red points at the end.

sic reward from Eq.(5.1) for both methods. We can see that after step 2,000, predictions

from the MAX ensemble start to become increasingly similar, leading to a decline in

intrinsic reward (Fig. 5.6(b)) as well as a slow-down in exploration speed (Fig. 5.6(a)).

We hypothesize this is because in a regular ensemble, all members are updating their

gradients on the same experiences without an explicit term to match the real posterior,

leading to eventually all agents converging to the same one. By contrast, our intrinsic

reward keeps increasing around step 2,000 and remains high as we continue to quickly

explore new states in the maze, only starting to decline once we have solved the maze

at approximately step 5,000.

Robotic Manipulation

The final task is an exploration task in a robotic manipulation environment, HandMa-

nipulateBlock. As shown in Figure 5.7(a), a robotic hand is given a palm-sized block for

manipulation. The agent has actuation control of the 20 joints that make up the hand,

and its exploration performance is measured by the percentage of possible rotations of

the cube that the agent performs. This is different from the original goal of this environ-

ment since we want to evaluate task-agnostic exploration rather than goal-based policies.

In particular, the state of the cube is represented by Cartesian coordinates along with a

quaternion to represent the rotation. We transform the quaternion to Euler angles and

discretize the resulting state space by 45 degree intervals. The agent is evaluated based

on how many of the 512 total states are visited.

This task is far more challenging than previous tasks, having a larger state space and

54

(a) Ant Navigation Task Results

(b) Ant Intrinsic Rewards

Figure 5.6: Ant maze performance. (a) performance of each method with mean and ±1
standard deviation (shaded region) over five seeds. x-axis is the number of steps the ant
has moved, y-axis is the percentage of the U-shaped maze that has been explored. Figure
(b) shows the proposed intrinsic reward magnitude for each step in the environment,
calculated for both our method and MAX.

action space. Additionally, states are more difficult to reach than the Ant Maze envi-

ronment: requiring manipulation of 20 joints instead of 8. In order to explore in this

environment, an agent must also learn how to rotate the block without dropping it. Fig-

ure 5.7(b) shows the performance of each method over 5 seeds. This environment proved

very challenging for all methods, none succeeded in exploring more than half of the state

space. Still, our method performs the best by a clear margin.

55

(a) Robotic Hand (b) Manipulation Task Results

Figure 5.7: We show (a) the Robotic Hand task in motion. (b) Performance of each
method with mean and ±1 standard deviation (shaded region) over five seeds. x-axis is
the number of manipulation steps, y-axis is the number of rotation states of the block
that has been explored. Our method (red) explores clearly faster than all other methods.

5.4.3 Policy Transfer Experiments

So far, we have demonstrated that the proposed implicit generative modeling of the

posterior over dynamic models leads to more effective and efficient pure exploration

policies. While the efficiency of pure exploration is important under sparse reward set-

tings, a natural follow-up question is whether a strong pure exploration policy would also

be beneficial for downstream tasks where dense rewards are available. We give an answer

to this question by performing the following experiments in the widely-used HalfCheetah

environment.

We first train a task-agnostic exploration policy following Algorithm 1 for 10,000 envi-

ronment steps. The trained policy is then used to initialize the (downstream) task policy,

followed by standard training of the task policy using external rewards. In particular, we

use SAC for both exploration policy and task policy. In our comparison experiments, we

initialize the task policy using exploration policies trained by MAX, ICM, Disagreement,

and Ours respectively, we also include the standard SAC (without exploration policy ini-

tialization) as a baseline. For the training of the task policy, we follow the recommended

settings for HalfCheetah given in the original SAC method.

Figure 5.8(a) shows the performance of all compared methods on HalfCheetah-v2. We

can see that the comparatively small number of initial steps spent on pure exploration

56

(a) Policy Transfer Performance (b) Policy Transfer with Varying Exploration Time

Figure 5.8: Policy transfer results. Figure (a) shows the performance of SAC baseline
(SAC) and four SAC variants initialized from a 10,000-step exploration policy trained
with different intrinsic reward methods, ICM, Disgreement, MAX, and our proposed
method (Ours) respectively. Figure (b) shows the performance of downstream SAC
policy training initialized with our proposed exploration policy under different settings
of exploration length. Init-Nk refers to the SAC agent initialized from our exploration
policy which has been trained for N -thousand exploration steps.

pays off when the agent switches to the downstream task. Even though SAC is widely

regarded as a strong baseline with maximum entropy-based exploration mechanism, all

intrinsic reward methods are able to improve the baseline more or less, by introducing

a pure exploration stage before standard training of SAC. We also observe that the

stronger the pure exploration policy is, the more it can improve the training efficiency

of the downstream task. Task policies initialized with our exploration policy (Ours) still

perform the best with a clear margin.

We also conduct an ablation study to better understand the relation between the num-

ber of initial exploration steps and the improvement it brings to the downstream task

training. We compare multiple variants of Ours in Figure 5.8(a), with different numbers

of initial exploration steps: 2,000, 4,000, 6,000, 8,000, and 10,000 steps. As shown in

Figure 5.8(b), with more than 4,000 steps of initial exploration, our approach is able

to improve upon the SAC baseline in the downstream task. The longer our exploration

policy is trained, the more beneficial it is to the training of the downstream task. 2,000

steps of initial exploration, on the other hand, harms the downstream task training, since

it could be too short to obtain any reasonable exploration policy.

57

5.4.4 Comparison to Model-Free Exploration Approaches

Here we compare our method to two other representative exploration methods. Param-

eter Space Noise for Exploration (PSNE) Plappert et al. [2017] adds parametric noise

to the weights of an agent, similar to Fortunato et al. [2017]. The noise parameters

are learned by gradient descent, and the additional stochasticity in the induced policy

is responsible for increased exploration ability. Random Network Distillation (RND) is

another well-known method Burda et al. [2018b] that introduces a randomly initialized

function g : S → Rk which maps states s to a k-dimensional vector, similar to Osband

et al. [2018]. A second function ĝ : S → Rk is trained to match the predictions given

by f . The prediction error ˆg(s) − g(s) is used as an exploration bonus to the reward

during training, similar to the psuedo-count based exploration bonus in Bellemare et al.

[2016]. RND has been shown to be a strong baseline for both task-specific environments

and pure exploration.

In Figure 5.9(a), we first compare our method with PSNE and RND on the HalfCheetah

environment, as both can used to learn task-specific policies. For both methods, we use

the author provided codes to run our experiments. Because RND is initially designed

for discrete actions, we modify the policy to handle continuous action spaces. However,

we were unable to recover the reported results from PSNE using the provided code.

In Figure 5.9(b), we further compare with RND in the pure exploration setting. We

omit PSNE from this experiment, as PSNE does not have intrinsic reward, or another

mechanism that can be directly used for pure exploration in the Ant Maze environment.

For Ant Maze, each method runs for 10k steps for pure exploration, without external

reward.

These methods lack an explicit model of the environment dynamics. It has been shown

that model-based methods have a considerable advantage in sample efficiency. RND in

particular, takes hundreds of millions of environment steps to achieve its performance.

We show in Figure 5.9(a) and 5.9(b) that our method enables superior downstream task

performance, and better sample efficiency in exploration, respectively.

58

(a) Baseline comparison on HalfCheetah (b) Baseline comparison on Ant Maze

Figure 5.9: Comparison with RND and PSNE on HalfCheetah with external reward (a),
and a pure exploration comparison with RND on Ant Maze (b).

5.5 Conclusion

In this work, we introduced a new method for representing the agent’s uncertainty of the

environment dynamics. Utilizing amortized SVGD, we learned an approximate poste-

rior over dynamics models. We use this approximate posterior to formulate an intrinsic

reward based on the uncertainty estimated from samples of this distribution, enabling

efficient exploration in difficult environments, Future work in this direction includes in-

vestigating more efficient sampling techniques to reduce the computational cost inherent

to many model-based algorithms. We would also investigate principled methods of com-

bining intrinsic and external rewards, and how different exploration policies influence

the downstream task performance.

5.6 Additional Implementation Details

Here we describe in more detail the various implementation choices we used for our

method as well as for the baselines. We describe additional details of the environments

that we evaluated in, as well as hyperparameters and algorithm design choices.

Toy Chain Environment

The chain environment is implemented based on the NChain-v0 gym environment. We

alter NChain-v0 to contain 40 states instead of 10 to reduce the possibility of solving

the environment with random actions. We also modify the stochastic ’slipping’ state

behavior by fixing the behavior of the states respect to reversing an action. For both our

59

method and MAX, we use ensembles of 5 deterministic neural networks with 4 layers,

each is 256 units wide with tanh nonlinearities. As usual, our ensembles are sampled

from the generator at each timestep, while MAX uses a static ensemble. We generate

each layer in the target network with generators composed of two hidden layers, 64 units

each with ReLU nonlinearities. Both models are trained by minimizing the regression

loss on the observed data. We optimize using Adam with a learning rate of 10−4, and

weight decay of 10−6. We use Monte Carlo Tree Search (MCTS) to find exploration

policies for use in the environment. We build the tree with 25 iterations of 10 random

trajectories, and UCB-1 as the selection criteria. Crucially, when building the tree, we

query the dynamic models instead of the simulator, and we compute the corresponding

intrinsic reward. For intrinsic rewards, MAX uses the Jensen Shannon divergence while

our method uses the variance in the predictions within the ensemble. After building the

tree we take an action in the real environment according to our selection criteria. There

is a small discrepancy between the numbers reported in the MAX paper for the chain

environment. This is due to using UCB-1 as the selection criteria instead of Thompson

sampling as used in the MAX paper. We take actions in the environment based on the

children with the highest value. The tree is then discarded after one step, after which,

the dynamic models are fit for 10 additional epochs.

Continuous Control Environments

For each method where applicable, we use the method-specific hyperparameters given by

the authors. Due to experimenting on potentially different environments, we search for

a suitable learning rate which works the best for each method across all tasks. The com-

mon details of each exploration method are as follows. Each method uses (or samples)

an ensemble of dynamic models to approximate environment dynamics. An ensemble

consists of 32 networks with 4 hidden layers, 512 units wide with ReLU nonlinearities,

except for MAX which uses swish1. ICM, Disagreement, and our method use ensembles

of deterministic models, while MAX uses probabilistic networks which output a Gaussian

distribution over next states. The approximate dynamic models (ensembles/generators)

are optimized with Adam, using a minibatch size of 256, a learning rate of 1.0−4, and

weight decay of 1.0−5.

1Swish refers to the nonlinearity proposed by [Ramachandran et al., 2017] which is expressed as a
scaled sigmoid function: y = x+ sigmoid(βx)

60

For our dynamic model, each layer generator is composed of two hidden layers, 64 units

wide and ReLU nonlinearity. The output dimensionality of each generator is equal

to the product of the input and output dimensionality of the corresponding layer in

the dynamic model. To sample one dynamic model, each generator takes as input an

independent draw from z ∼ Z where Z = N (032, I32). We sample ensembles of a given

size m by instead providing a batch {zi}mi=1 as input. To train the generator such that

we can sample accurate transition models, we update according to equation (4) in the

main text; we compute the regression error on the data, as well as the repulsive term

using an appropriate kernel. For all experiments we use a standard Gaussian kernel

K(Fθi , Fθj) = exp (−d(Fθi , Fθj)/h), where d(Fθi , Fθj) = 1
n

n∑
l=1

‖Fθi(xl)−Fθj (xl)‖22 for a

training batch {xl}nl=1. Where h is the median of the pairwise distances between sampled

particles {Fθ}mi=1. Because we sample functions Fθ instead of data points, the pairwise

distance is computed by using the likelihood of the data x under the model.

For MAX, we use the code provided from [Shyam et al., 2019]2. Each member in the

ensemble of dynamic models is a probabilistic neural network that predicts a Gaussian

distribution (with diagonal covariance) over the next state. The exploration policy is

trained with SAC, given an experience buffer of rollouts H̄ = {s, a, s′} ∪ Rπ performed

by the dynamic models, where Rπ is the intrinsic reward: the Jensen-Renyi divergence

between next state predictions of the dynamic models. The policy trained with SAC acts

in the environment to maximize the intrinsic reward, and in doing so collects additional

transitions that serve as training data for the dynamic models for the subsequent training

phase.

For Disagreement [Pathak et al., 2019], we implement this method under the MAX

codebase, following the implementation given by the authors3. The intrinsic reward

is formulated as the predictive variance of the dynamic models, where the models are

represented by a bootstrap ensemble.

Policy Transfer with Warm-up

The exploration policies for our method, MAX, ICM, and Disagreement were trained

exactly as in the pure exploration experiments. We trained each exploration policy for

2https://github.com/nnaisense/max
3https://github.com/pathak22/exploration-by-disagreement

61

10k steps. We then initialize a new SAC agent with the exploration policy. This agent

is initialized within the HalfCheetah environment that includes the external reward.

Given that the new agent has an empty replay buffer, we perform a warm-up stage

to collect initial data before performing any parameter updates. We collect this initial

data by rolling out the pure exploration policy for 10K steps, and storing the observed

transitions in the fresh agent’s replay buffer. Note that the policy is frozen during the

warm-up. After this initial warm-up stage, we allow the fresh agent to train as normal

for 1M steps (including the steps taken during warm-up and pure exploration), with

respect to the external reward.

Policy Transfer Without Warm-up

The policy transfer experiments without the warm-up stage are similar in that the pure

exploration polices are trained for 10K steps, agnostic of the downstream task, then

frozen. However, instead of training a new SAC agent on transitions obtained via a

warm-up stage, we only transfer the parameters of the pure exploration policy to the

fresh SAC agent. Then the transition buffer is cleared, and the agent is trained in the

standard setting with external reward for 1M steps (including the steps already taken

during pure exploration).

62

Chapter 6: Generative Particle-based Variational Inference

6.1 Introduction

In this chapter we revisit the topic of particle-based variational inference (ParVI) directly

from a Bayesian inference perspective. We examine the approximations made in amor-

tized ParVI methods, and we propose a new generative ParVI approach that improves

on these limitations.

Bayesian inference provides a powerful framework for reasoning and prediction under

uncertainty. However, computing the posterior is tractable with only a few parametric

distributions, making wider applications of Bayesian inference difficult. Traditionally,

MCMC and variational inference methods are utilized to provide tractable approximate

inference, but these approaches face their own difficulties if the dimensionality of the

space is extremely high. For example, a recent case of interest is Bayesian neural networks

(BNNs), which applies Bayesian inference to deep neural network training in order to

provide a principled way to assess model uncertainty. The goal in this regime is to

model the posterior of every parameter in all the weight tensors from every layer of a

deep network. However, developing efficient computational techniques for approximating

this intractable posterior with extremely high dimensionality remains challenging. In

this work we take a closer look at particle-based variational inference. ParVI methods

[Liu and Wang, 2016a, Liu et al., 2019, Liu, 2017] have been proposed to represent the

variational distribution by a set of particles and update them through a deterministic

optimization process to approximate the posterior. While achieving both asymptotic

accuracy and computational efficiency, ParVI methods are restricted by the fixed number

of particles and lack the ability of drawing new samples beyond the initial set of particles.

To address this issue, amortized ParVI methods Wang and Liu [2016] have been proposed

to amortize the ParVI gradients in training a neural sampler. While being flexible in

drawing samples, in Sec. 4 we show that amortized ParVI methods cannot match the

convergence behavior of ParVI methods.

63

This work proposes a new method for learning to approximately sample from the pos-

terior distribution. We construct a neural sampler that is trained with the functional

gradient of the KL-divergence between the empirical sampling distribution and the tar-

get distribution, assuming the gradient resides within a reproducing kernel Hilbert space.

Our generative ParVI (GPVI) approach maintains the asymptotic performance of ParVI

methods while offering the flexibility of a generative sampler. Through carefully con-

structed experiments, we show that GPVI outperforms previous generative ParVI meth-

ods such as amortized SVGD, and is competitive with ParVI as well as gold-standard

approaches like Hamiltonian Monte Carlo for fitting both exactly known and intractable

target distributions.

In this work, we propose a generative particle variational inference (GPVI) approach

that addresses those issues. GPVI trains a neural sampler network by directly estimating

the functional gradient with respect to the KL-divergence between the distribution of

generated particles and the target distribution, and pulls it back to update the neural

sampler. As such it allows the neural sampler to directly generate particles that match

the posterior distribution, hence achieving the asymptotic accuracy and computational

efficiency of ParVI methods. In figure ??, we show that the predictive distribution of 1D

regression functions sampled from GPVI nearly matches that from the ParVI solution,

while amortized SVGD fails.

The main computational challenge lies in a reliable estimate of the functional gradient

that involves the inverse of the input-output Jacobian of the neural sampler. Instead of

directly computing this term and paying a high computational cost, we introduce a helper

network to estimate the inverse Jacobian vector product and train the helper network

via gradient descent. By alternating between this gradient step and the gradient update

of the sampler network, the computational cost is distributed over the whole training

procedure.

In experiments, our proposed approach achieves comparable convergence performance as

ParVI methods. It is considerably superior than that of amortized ParVI methods, while

still allowing efficient sampling from the posterior. By directly applying our approach

as a hypernetwork to generate BNNs, we achieve competitive performance regarding

uncertainty estimation.

64

In summary, our contributions are three-fold,

• We propose GPVI, a new variational inference approach that trains a neural sam-

pler to generate particles from any posterior distribution. GPVI estimates the

functional gradient and uses it to update the neural sampler. It enjoys the asymp-

totic accuracy and computational efficiency of ParVI methods. Comparing with

existing amortized ParVI methods, our approach enjoys the same efficiency and

flexibility while showing considerable advantage in convergence behavior.

• We design careful techniques for efficient gradient estimates that address the chal-

lenges in approximating the product between the inverse of the Jacobian and a

vector.

• We apply our approach to BNNs and achieve competitive uncertainty estimation

quality for deep neural networks.

6.2 Generative Particle Variational Inference

We want to learn a parametric generator: fη : Z → Rm, parameterized by η, where

Z ⊂ Rm is the convex space of input noise and x = fη(z) generates a sample x from

an input noise z. Let q(x) represents the implicit distribution of samples generated by

fη(z), where z ∼ N(0, Im). Let p(x) be the target distribution, we want to solve for

fη that minimizes the objective KL (q(x)‖p(x)). Given that a prior over functions that

can be represented by fη is difficult to specify, we consider an uninformative prior on

fη.

Our approach treats this problem from a functional optimization perspective, by first

computing the functional gradient of the objective, and then pulling it back to parameter

space through the function parameterization. In the rest of this section we introduce our

algorithm in detail and compare it with amortized ParVI approaches.

65

(a) HMC (b) SVGD

(c) GPVI (d) Amortized SVGD

Figure 6.1: Predictive uncertainty of methods for a 1-D regression task. (a) HMC
predictive posterior matches the uncertainty in the data; (b) SVGD performs comparably
to HMC; (c) Our proposed GPVI performs similarly to SVGD, with the additional
capability of sampling new particles during inference; (d) Amortized SVGD overestimates
the uncertainty when the data is sparse.

Functional gradient and its pullback

Let J (f) = KL (q(x)‖p(x)) be the objective, where x = f(z). If f is injective, by

change of variables for probability measure,

q(x) =
pz(z)∣∣∣det
(
∂f
∂z

)∣∣∣ , (6.1)

66

where pz(z) is the distribution from which z is sampled. The minimization objective

becomes,

J (f) = Ez

− log p(f(z)) + log
pz(z)∣∣∣det
(
∂f
∂z

)∣∣∣
 . (6.2)

Consider some function approximation of f , say f = fη, then the minimization objective

becomes,

J (η) = Ez

− log p(fη(z)) + log
pz(z)∣∣∣det
(
∂fη
∂z

)∣∣∣
 . (6.3)

Directly computing the gradient of J (η) with respect to η involves not only an inverse

of the Jacobian
(
∂f
∂z

)−1
, but also second derivatives of fη, which is overly expensive to

compute in practice.

We propose, instead, to first compute the functional gradient of (6.2) w.r.t. f , i.e.,

∇fJ (f), and then back-propagate it through the generator to get the gradient w.r.t. η,

i.e.,

∇ηJ = Ez

[
∂f(z)

∂η
∇fJ (f)(z)

]
. (6.4)

The following theorem gives an explicit formula for computing the functional gradient

∇fJ (f) when f is chosen from a Reproducing kernel Hilbert space (RKHS).

Theorem 6.2.1. Let x = f(z), where z ∼ pz(z), vector function f = (f1, . . . , fm) ∈ Hd

with f i ∈ H, where H is the RKHS with kernel k(·, ·), Hm is equipped with inner product

〈f , g〉Hm =
∑d

i=1〈f i, gi〉H. For J (f) well-defined by (6.2), we have

∇fJ (f)(z) = Ez′

[
−∇x log p(x)

∣∣∣∣
x=f(z′)

k(z′, z)−
(
∂f

∂z′

)−1
∇z′k(z′, z)

]
. (6.5)

Proof To compute the gradient of J (f) = Ez

[
− log p(f(z)) + log pz(z)

|det(∂f
∂z)|

]
, for any

67

φ ∈ TfH,

dJf (φ) =
d

dt

∣∣∣∣
t=0

J (f + tφ)

1
= Ez

[
d

dt

∣∣∣∣
t=0

(− log p((f + tφ)(z)))

]
−Ez

[
d

dt

∣∣∣∣
t=0

log

∣∣∣∣det

(
∂(f + tφ)

∂z

)∣∣∣∣]
= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

d

dt

∣∣∣∣
t=0

(f i + tφi)(z)

]
−Ez

[
Tr

((
∂f

∂z

)−1 d
dt

∣∣∣∣
t=0

∂(f + tφ)

∂z

)]

= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

φi(z)

]
−Ez

((∂f
∂z

)−1)j
i

∂φi

∂zj


2
= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

〈k(z, ·), φi(z)〉H

]
−Ez

〈((∂f
∂z

)−1)j
i

∇zjk(z, ·), φi(z)

〉
H


=

〈
Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

k(z, ·)−

((
∂f

∂z

)−1)j
i

∇zjk(z, ·)

]
, φi

〉
H

,

the following identities are used in step 1 and 2 ,

d log |detA| = Tr(A−1dA),

φi(z) = 〈k(z, ·), φi(z)〉H ,

∇zjφi(z) = 〈∇zjk(z, ·), φi(z)〉H .

By definition of the gradient,

∇fJ (f)(z) = Ez′

[
−∇x log p(x)

∣∣∣∣
x=f(z′)

k(z′, z)−

((
∂f

∂z′

)−1)
∇z′k(z′, z)

]
.

6.2.1 Reparameterization of the Generator

There are two considerations for reparameterizing f . Firstly, in order for the inverse(
∂f
∂z′

)−1
in (6.5) to be well-defined, the Jacobian ∂f

∂z′ should be a square matrix, i.e.,

input noise z should have the same dimension as the output x = f(z). In practice,

68

especially those applications involving BNNs, each x represents parameters of a sampled

neural network and therefore can be extremely high dimensional. As a result, a high

dimensional f can be computationally prohibitive. Secondly, in order for the change of

variables density formula (6.1) to hold, f needs to be injective, which is in general not

guaranteed for an arbitrary neural network function.

To overcome the above two concerns, we consider the following parameterization,

fη(z) = gη

(
z(:d)

)
+ λz, ∀z ∈ Rm, (6.6)

where z(:d) ∈ Rd denotes the vector consisting of the first d components of m, and gη :

Rd → Rm with parameters η is a much slimmer neural network. In our experiments, gη

is designed with an input dimension d less than 30% the size of m. For high dimensional

open-category experiments where m > 60, 000, we use a d of less than 2% of m. For fη

defined by (6.6), the Jacobian is,[
∂fη
∂z

]
m×m

=

[[
∂gη

∂z(:d)

]
m×d

∣∣∣∣0m×(m−d)]
m×m

+ λIm, (6.7)

where λ is a hyper-parameter.

Lemma 6.2.2. If the domain Z of the input noise z is convex, fη is defined as Eq. (6.6),

and the Jacobian Jf is given by Eq. (6.7) then fη is injective.

Proof

For any two different points z1, z2 ∈ Z, consider the line segment z1+t(z2−z1), t ∈ [0, 1],

that lie in Z given the convexity of Z. From the Fundamental Theorem of calculus,

(z2 − z1)T (f (z2)− f(z1)) =(z2 − z1)T
(∫ 1

0
Jf (z1 + t(z2 − z1))dt

)
· (z2 − z1)

=

∫ 1

0
(z2 − z1)TJf (z1 + t(z2 − z1))(z2 − z1)dt > 0,

where the last inequality is due to the positive definiteness of Jf on Z. Therefore,

f(z1) 6= f(z2), f is injective. In practice we set λ to be 1.0 and find it sufficient

throughout our experiments.

69

6.2.2 Estimating the Jacobian inverse

The main computational challenge of (6.5) lies in computing the term

(
Jf (z′)

)−1∇z′k(z′, z), (6.8)

where Jf (z′) = ∂f
∂z′ , especially considering that we need an efficient implementation for

batched z and z′.

Directly evaluating and storing the full Jacobian Jf (z′) for each z′ of the sampled batch

is not acceptable from the standpoint of either time or memory consumption. There

exist iterative methods for solving the linear equation system y = (Jf (z′))−1∇z′k(z′, z)

[Young, 1954, Fletcher, 1976], which involves computing the vector-Jacobian product

Jf (z′)∇z′k(z′, z) at each iteration. By alternating between this iterative solver and

the gradient update (6.4), it is possible to get a computationally amenable algorithm.

However, as shown in figure 6.3.1, such an algorithm does not converge to the target

distribution p even for a simple Bayesian linear regression task. This is due to the

fact that batches of both z and z′ for evaluating (6.5) need to be re-sampled for each

gradient update (6.4) to avoid the cumulative sampling error. Therefore, the above

alternating procedure of iterative solver for y = (Jf (z′))−1∇z′k(z′, z) ends up shooting

a moving target for different batches of z and z′ at each iterate, which is difficult for

convergence.

To overcome this computational challenge, we propose a helper network, denoted by

hψ(z′,∇z′k), and parameterized by ψ, that consumes both z′ and ∇z′k(z′, z) and pre-

dicts (Jf (z′))−1∇z′k(z′, z). With the helper network, the functional gradient (6.5) can

be computed by,

∇fJ (f)(z) = Ez′

[
−∇x log p(x)

∣∣∣∣
x=f(z′)

k(z′, z)− hψ
(
z′,∇z′k(z′, z)

)]
. (6.9)

We use the following loss to train the helper network,

L(η) = ‖Jf (z′)hψ(z′,∇z′k(z′, z))−∇z′k(z′, z)‖2, (6.10)

where Jf (z′)hψ can be computed by the following formula given the reparameteriza-

70

tion (6.6) of fη,

hTψ

(
∂fη
∂z′

)
= hTψ

(
∂gη

∂z′(:d)

)
+ λhTψ, (6.11)

where the Vector-Jacobian Product (VJP) hTψ

(
∂gη
∂z′(:d)

)
can be computed by one back-

ward pass of the function gη.

6.2.3 Summary of the algorithm

Both gη and hψ can be trained with stochastic gradient descent (SGD), and our algo-

rithm alternates between the SGD updates of gη and hψ. Note that the helper net-

work hψ only has to chase the update of gη, but no more extra moving targets due

to re-sampling of z and z′. Our experiments in Sec. 6.3 show that the helper network

is able to efficiently approximate (6.8) which enables the convergence of the gradient

update (6.4). Our overall Generative Particle VI (GPVI) algorithm is summarized in

Algorithm 2.

Algorithm 2 Generative Particle VI (GPVI)

Initialize generator gη, helper hψ, and learning rate ε

while not converged do
1. sample two batches {zi}, {z′i} ∼ N(0, Im)

2. compute k(z′, z) and ∇z′k(z′, z)

3. forward gη to compute fη(z) and fη(z′) by (6.6)

4. forward hψ to compute hψ(z′,∇z′k(z′, z))

5. backward gη to compute the VJP hTψ

(
∂gη

∂z′(1:d)

)
and then construct Jf (z′)hψ by (6.11),

6. update hψ by ψ ← ψ − ε∇ψL,

where ∇ψL is computed by back-propagating (6.10)

7. compute the functional gradient by (6.9)

8. update η by η ← η − ε∇ηJ ,

where ∇ηJ is computed by (6.4)

end

71

6.2.4 Comparison with Amortized SVGD

Stein variational gradient descent (SVGD) represents q(x) by a set of particles {xi}ni=1,

which are updated iteratively by,

xi ← xi + εφ∗(xi), (6.12)

where ε is a step size and φ∗ : Rd → Rd is a vector field (perturbation) on the space of

particles that corresponds to the optimal direction to perturb particles, i.e.,

φ∗ = arg min
φ∈F

{
d

dε
KL(q[εφ](x)‖p(x))

∣∣∣∣
ε=0

}
,

where q[εφ](x) denotes the density of particles updated by (6.12) using the perturbation

φ, where the density of original particles is q(x). When F is chosen to be the unit ball of

some RKHS H with kernel function k(·, ·), SVGD gives the following closed form solution

for φ∗,

φ∗(x) = Ex′∼q
[
∇x′ log p(x′)k(x′,x) +∇x′k(x′,x)

]
. (6.13)

To turn SVGD into a neural sampler, Amortized SVGD [Wang and Liu, 2016] first sam-

ples particles from a generator and then back-propagates the particle gradients (6.13)

through the generator to update the generator parameters. Let x = fη(z), z ∼ N(0, Im)

be the particle generating process, where fη is the generator parameterized by η, amor-

tized SVGD updates η by,

η ← η + ε

n∑
i=1

∂fη(zi)

∂η
φ∗(fη(zi)), (6.14)

where φ∗(fη(zi)) is computed by (6.13).

The following Lemma gives an explicit view regarding what functional gradient amortized

SVGD back-propagates through the generator.

Lemma 6.2.3. If particles are generated by x = f(z), z ∼ pz(z), eq. (6.13) is the

72

functional gradient of the objective w.r.t. the perturbation function φ : Rm → Rm, i.e.,

∇φ
∣∣∣∣
φ=id

KL (q(x)‖p(x)) = −φ∗, (6.15)

where x = φ(f(z)) and φ = (φ1, . . . , φm) ∈ Hm with φi ∈ H, where H is the RKHS

with kernel k(·, ·), Hm is equipped with inner product 〈φ, ξ〉Hm =
∑m

i=1〈φi, ξi〉H.

Proof

To compute the gradient of J (φ) = Ez

[
− log p(φ (f(z))) + log pz(z)∣∣∣det(∂(φ◦f)

∂z

)∣∣∣
]

at φ = id,

for any v ∈ TφH,

dJφ(v) =
d

dt

∣∣∣∣
t=0

J (φ+ tv)

∣∣∣∣
φ=id

= Ez

[
d

dt

∣∣∣∣
t=0

(− log p((f + tv ◦ f)(z)))

]
−Ez

[
d

dt

∣∣∣∣
t=0

log

∣∣∣∣det

(
∂(f + tv ◦ f)

∂z

)∣∣∣∣]
= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

d

dt

∣∣∣∣
t=0

(f i + t(v ◦ f)i(z)

]
−Ez

[
Tr

((
∂f

∂z

)−1 d
dt

∣∣∣∣
t=0

∂(f + tv ◦ f)

∂z

)]

= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

vi(f(z))

]
−Ez

((∂f
∂z

)−1)j
i

∂fk

∂zj
∂vi

∂xk


= Ez

[
−∇xi log p(x)

∣∣∣∣
x=f(z)

〈k(f(z), ·), vi(f(z))〉H

]
−Ez

[〈
∇xik(x, ·)

∣∣∣∣
x=f(z)

, vi(f(z))

〉
H

]

=

〈
Ex=f(z) [−∇xi log p(x)k(x, ·)−∇xik(x, ·)] , vi

〉
H
.

By definition of the gradient,

∇φJ (φ)(x)
∣∣∣
φ=id

= Ex′
[
−∇x′ log p(x′)k(x′,x)−∇x′k(x′,x)

]
,

where x = f(z) and x′ = f(z′).

Therefore, rather than back-propagating the functional gradient with respect to the

generator function as our approach, the amortized SVGD back-propagates the functional

gradient with respect to a perturbation function applied after the generator, which is in

73

general not the steepest descent direction for the generator function f , except for the

situation f = id, where (6.5) and (6.13) are equivalent because z = x and the Jacobian is

identity. Note that such difference in functional gradient computation leads to different

choices of RKHS kernel between (6.5) and (6.13).

The amortizing step applied in both methods, i.e., back-propagating some functional

gradient to update the generator parameters, is in general not guaranteed to keep the

original descent direction of the functional gradient. However, GPVI amortizes the steep-

est descent direction which is optimal in first order sense, while amortized SVGD amor-

tizes a non-steepest descent direction, which is more likely to result in a non-descending

direction after amortizing. In practice, as shown in the next section, our approach con-

sistently outperforms amortized SVGD in approximating the target distribution and

capturing model uncertainty.

6.3 Experiments

To demonstrate the effectiveness of our approach for approximate Bayesian inference,

we evaluated GPVI in two different settings: learning from a likelihood function, and

direct generative modeling. In the former setting, we know how to compute log p(x),

and we are able to exactly optimize according to Eq.(6.5). In the direct generative

modeling case, we have only samples from the target distribution. This is the setting

of image generation, and similar to GANs, we resort to an adversarial discriminator to

approximate the likelihood function.

6.3.1 Likelihood-based Generative Modeling

In this setting we evaluate GPVI for both density estimation and Bayesian neural net-

works. In our density estimation experiment, we trained our generator to draw samples

from a target distribution, showing that GPVI learns an accurate posterior fit by maxi-

mizing the likelihood of samples. For our BNN experiments, we evaluated on regression,

classification, and high dimensional open-category tasks. Our experiments show that

among all methods compared, GPVI is the only method to excel in both sampling ef-

ficiency and asymptotic performance. We compare GPVI with ParVI methods: SVGD

[Liu and Wang, 2016a], GFSF [Liu et al., 2019], and KSD [Hu et al., 2018, Grathwohl

74

et al., 2020], as well as their corresponding amortized versions. We also compared with

Bayes by Backprop (BBB) [Blundell et al., 2015], deep ensembles [Lakshminarayanan

et al., 2017b], and HMC [Neal et al., 2011]. We emphasize that our aim is not to only

maximize the likelihood of generated samples, rather we want to closely approximate the

posterior of parameterized functions given the data. Thus, predictions w.r.t data unseen

during training should reflect the epistemic uncertainty of the posterior.

For BNN experiments, we parameterized samples from the target distribution as neural

networks with a fixed architecture. In the low dimensional regression and classification

settings, we drew 100 samples from the approximate posterior for both training and eval-

uation, allowing us to compute the predictive mean and variance. For methods without

a sampler e.g. ParVI and deep ensembles, we initialized a 100 member ensemble. In

the high dimensional open-category tasks, we instead used 10 samples due to the larger

computation cost. For methods that utilize a hypernetwork such as GPVI and amortized

ParVI, we used Gaussian input noise z ∼ N (0, I) and varied the hypernetwork archi-

tecture depending on the task. For ParVI and deep ensembles we randomly initialized

each member of the ensemble. In all methods except HMC we used the Adam optimizer

[Kingma and Ba, 2014] to train any neural networks.

For HMC we use the same settings for the Bayesian linear regression and BNN tasks.

We sampled the momentum from a standard normal distribution, and used 25 leap-frog

steps per sample. We ran each experiment for 25K steps in total, with a burn-in of 20K

steps, and a step size of 0.0005. We thinned each chain after burn-in, and tuned the

number of leapfrog steps and step-size for each experiment. To assess convergence, we

checked that the means of each chain were similar, indicating mixing.

Density Estimation

We first evaluate the ability of generative approaches to fit a target distribution from

data. We used 2D and 5D zero mean Gaussian distributions with non-diagonal covari-

ances as our target distributions. The target covariance we wish to fit is computed as

Σ∗ = ΣΣT ,Σ ∼ N (0, Im),m ∈ {2, 5}. We use an MLP with 1 hidden layer to ap-

proximately sample from a unimodal Gaussian distribution with covariance Σ∗. Given

Gaussian input noise, the variance of the output distribution of the linear generator

75

Method Σ error (2d) ↓ Σ error (5d) ↓
Amortized SVGD 0.10 ± .09 0.37 ± .32

Amortized GFSF 0.18 ± .04 0.21 ± .13

Amortized KSD 0.28 ± .32 1.68 ± .52

GPVI Exact Jac 0.15 ± .09 0.49 ± .17

GPVI 0.14 ± .08 0.14 ± .04

Table 6.1: Comparison of generative Particle VI approaches for density estimation of 2d
and 5d Gaussian distributions.

is computed as W TW , which should match Σ∗ after training. As shown in Table 6.1,

the estimation problem becomes harder with increased dimension, yet GPVI performs

consistently well while amortized ParVI methods suffer more or less from a performance

drop and end up inferior to our approach. We also compare GPVI with a variant where

the Jacobian and its inverse are explicitly computed. The inverse is computed with the

PyTorch [?] function torch.inverse, which uses LAPACK routines getrf and getri.

We can see that GPVI is competitive with the “Exact-Jac” variant in the 2D setting, and

even performs better in the 5D setting. This is unexpected, as explicitly computing the

Jacobian and its inverse should be the correct way to compute the functional gradient.

We hypothesize that the Jacobian of our generator network is ill-conditioned. In this

case any inversion algorithm is more prone to large numerical error. Because our helper

network is updated once per training iteration, we may avoid the large gradients that

come from numerical error. The increased performance of GPVI over the “Exact-Jac”

variant in the 5D setting may be due to this smoother training.

Next, we evaluate GPVI on the four non-Gaussian energy potentials defined in Rezende

and Mohamed [2015]. In figure 6.2, we see (from left to right) the target density, GPVI,

amortized SVGD, and normalizing flows [Rezende and Mohamed, 2015]. We found that

while our method has more parameters, we don’t need nearly as deep a model as with

normalizing flows. We used just 2 hidden layers for GPVI, while we needed a flow of

depth 32 to get comparable performance. We trained each method for 200000 steps

with a batch size of 100. To generate plots, we sampled 20000 points from each model.

We detail the rest of the hyperparameters in section 6.5. In figures 6.2 we see that

GPVI is able to capture the variance of the target distribution, while amortized SVGD

samples mostly from the mean. For the Sin Bisect setting, GPVI is the only method that

76

captures some of both halves of the middle section. But in Sin Split, only normalizing

flows capture both halves of the split section.

Twin Moons Target GPVI Amortized SVGD Normalizing Flow

Sinusoid Target GPVI Amortized SVGD Normalizing Flow

Sin Bisect Target GPVI Amortized SVGD Normalizing Flow

Sin Split Target GPVI Amortized SVGD Normalizing Flow

Figure 6.2: Density estimation with the energy potential functions from Rezende and
Mohamed [2015].

1D Regression

In figure (6.1), we show quantitative results for GPVI, HMC, SVGD, and amortized

SVGD applied to learning a distribution over 1D regression functions. We generate a

dataset of 80 samples X with targets Y . We draw 76 samples of X uniformly from

[−6,−2] ∪ [2, 6], and draw the 4 remaining samples from [−2, 2]. The targets Y are

77

computed as Y = −(1 + X) sin(1.2X) + ε, where ε ∼ N (0, 0.04). For all methods we

use 100 posterior samples, and train for 50K iterations. For GPVI and amortized SVGD

we use a generator with two linear layers [32, 32] and Gaussian input noise of the same

dimension. We can see that HMC and SVGD both give reasonable uncertainty estimates,

given the variance in the observed data. GPVI learns an approximate posterior that is

competitive with SVGD, while amortized SVGD overestimates the variance.

Bayesian Linear Regression

We evaluated all methods on Bayesian linear regression to investigate how well each

method can fit a unimodal normal distribution over linear function weights. The target

function is a linear regressor with parameter vector β ∈ Rd, i.e., y = Xβ+ε, where X ∼
N (0, Id), ε ∼ N (0, I), and βi ∼ U(0, 1)+5. We chose such linear Gaussian settings where

we can explicitly compute the target posterior p(β|X,y) ∼ N ((XTX)−1XTy,XTX)

given observations (X,y), allowing us to numerically evaluate how well each method fits

the target distribution. Each method was trained to regress y from X. For GPVI and

amortized ParVI methods that make use of a hypernetwork, we used a linear generator

with input noise z ∈ Rd. In this setting, the output of a generator with bias b and weights

W follows the distribution N (b,WW T), which should match the posterior p(β|X,y).

For ParVI methods and deep ensembles, we initialized an ensemble of linear regressors

with d parameters. We computed the mean and covariance of the learned parameters

to measure the quality of posterior fit. For BBB we chose a standard normal prior

on the weights, and likewise computed the mean and covariance of weight samples to

measure posterior fit. We set d = 3 in our experiments. While simple, this quantitative

sanity check is crucial before evaluating on more complicated domains where the true

posterior is not available. It will be evident in later experiments that the ability to closely

approximate the true posterior under this simple setup is indicative of performance on

higher dimensional tasks.

Results are shown in table 6.2. Our GPVI outperforms amortized ParVI, BBB, and sur-

prisingly even HMC. GPVI is also very competitive with the best ParVI methods, SVGD

and GFSF. Finally, as deep ensembles lacks any mechanism for correctly estimating the

covariance, it fails as expected.

78

Method µ error ↓ Σ error ↓
SVGD 0.006 ± .0024 0.125 ± .03

GFSF 0.003 ± .0014 0.139 ± .07

KSD 0.009 ± .0006 0.373 ± .11

Amortized SVGD 0.002 ± .0009 0.158 ± .04

Amortized GFSF 0.002 ± .0003 0.209 ± .05

Amortized KSD 0.004 ± .0007 0.430 ± .10

BBB 0.004 ± .0035 0.303 ± .04

Deep Ensemble 0.004 ± .0002 1.0 ± 0

HMC 0.009 ± .0003 0.181 ± .05

GPVI 0.002 ± .0007 0.128 ± .04

GPVI Exact Jac 0.002 ± .0004 0.106 ± .07

Table 6.2: Bayesian linear regression. Reported error is the L2 norm of the difference
between the learned mean and covariance parameters, and the ground truth after 50000
iterations.

Comparing with Linear Solver for the Inverse Vector Jacobian Prod-

uct

In the same Bayesian linear regression setting, we justify the use of our helper network

hψ, by comparing its performance to a more traditional linear solver: the stabilized

biconjugate gradient method (BiCGSTAB) [Saad, 2003]. BiCGSTAB is a well-known

iterative algorithm for solving systems of the form Ax = b. It is similar to the con-

jugate gradient method, but does not require A to be self-adjoint, giving BiCGSTAB

wider applicability. In figure 6.3, we see the results of GPVI with the helper network

(“Network”), against BiCGSTAB. For BiCGSTAB, we solve B ∗B systems of the form(
∂f
∂z′

)(
∂f
∂z′

)−1
∇z′k(z′, z) = ∇z′k(z′, z) for each iteration of training our generator,

where B ∗ B is the effective batch size of ∇z′k(z′, z). Due to the greatly increased

training time from solving B ∗ B independent problems per training iteration, we only

run BiCGSTAB for one step, and warm start from the previous solution at each new

generator training iteration. In addition to increased training time, BiCGSTAB suffers

from instability due to the constantly changing ∂f
∂z′ as well as ∇z′k(z′, z), due to the

resampling of z and z′ at each step. As seen in figure 6.3, when using BiCGSTAB, GPVI

is unable to fit the target distribution, while using our helper network (“Network”) we

are able to efficiently minimize the mean and covariance error.

79

We also considered using a normalizing flow as a replacement for our generator network,

as normalizing flows are invertible with lower triangular Jacobians. Unfortunately, the

efficiency of normalizing flows comes from setting the input-output dimensionality to be

equal to force the Jacobian to be square. When using our method for BNNs, we cannot

afford to store a generator with equal input-output dimensionality, making normalizing

flows an inefficient choice at best for our own method. Our helper network stands as

an efficient, novel solution for explicitly estimating the Jacobian inverse vector product

when needed. Nevertheless, we compare GPVI with normalizing flow method for density

estimation in the next section.

(a) Mean Error (b) Cov Error

Figure 6.3: Comparing our helper network with BiCGSTAB in the Bayesian linear re-
gression setting.

Multimodal Classification

While the Bayesian linear regression setting comes with an analytically known target

distribution, most problems of interest involve distributions without closed-form rep-

resentations. Therefore, we further tested on a 2-dimensional, 4-class classification

problem, where each class consists of samples from one component of a mixture dis-

tribution. The mixture distribution is defined as p(x) =
∑4

i=1N (µi, 0.3), with means

µi ∈ {(−2,−2), (−2, 2), (2,−2), (2, 2)}. We assigned labels yi ∈ {1, 2, 3, 4} according to

the index of the mixture component the samples were drawn from. For this task, sam-

ples are weight parameters θ’s representing classification functions, which are two-layer

neural networks with 10 hidden units in each layer and ReLU activations, denoted by

80

fη : R2 → R4.

To train each method, we drew a total of 100 training points, and 200 testing points from

the target distribution. To evaluate the posterior predictive distribution, we drew points

from a grid spaced from {−10, 10}, then plot the predictive distribution as measured by

the standard deviation in predictions among model samples in figure 6.4.

In this setting, the true posterior p(θ|X, y) is unknown and past work often relies on

“gold-standard” approaches like HMC to serve as the ground truth. In the previous

Bayesian linear regression tests, however, we saw that HMC was outperformed by GPVI

as well as ParVI methods SVGD and GFSF. In the current test, intuitively, a “gold-

standard” approach should yield a predictive distribution with high variance (high un-

certainty) in regions far from the training data, and low variance (low uncertainty) in

regions near each mixture component. As shown in figure 6.4, GPVI and SVGD both

have higher uncertainty in no-data regions than HMC, while remaining confident on the

training data. On the other hand, BBB and amortized SVGD both dramatically un-

derestimate the uncertainty. The performance of BBB is as expected, as mean-field VI

approaches are known to underestimate uncertainty.

We also show results on a simpler two class variant in figure 6.5. In this setting,

we generate data in the same way as in the four-class setting, but we use a mixture

distribution with two components. Specifically, the mixture distribution is defined

as p(x) =
∑2

i=1N (µi, 0.3), with means µi ∈ {(−2,−2), (2, 2)}. We assigned labels

yi ∈ {1, 2} according to the index of the mixture component the samples were drawn

from. We show the results of each method in figure 6.5. We can see that GPVI again

gives better uncertainty estimates than other sampling based approaches. Again, we do

not know what the true posterior over classifications looks like, but GPVI and RKHS-

based ParVI approaches give uncertainty estimates that closely match our intuition for

this problem.

Open Category Prediction

To evaluate the scalability of our approach we turn to large-scale image classification

experiments. In this setting, it is not possible to exactly measure the accuracy of posterior

81

(a) GPVI (b) SVGD (c) GFSF (d) KSD

(e) HMC (f) Amortized SVGD (g) Amortized GFSF (h) Amortized KSD

(i) BBB (j) Deep Ensembles

Figure 6.4: Predictive uncertainty of each method on the 4-class classification task, as
measured by the standard deviation between predictions of sampled functions. Regions
of high uncertainty are shown as darker, while lighter regions correspond to lower uncer-
tainty. The training data is shown as samples from four unimodal normal distributions.
It can be seen that amortized SVGD, BBB and deep ensembles significantly underesti-
mate the uncertainty in regions with no training data

fit. We utilize the open-category task to test if our uncertainty estimations can help

detect outlier examples. The open category task defines a set of inlier classes that are

seen during training, and a set of outlier classes only used for evaluation. While in

principle, the content of the outlier classes can be arbitrary, we use semantically similar

outlier classes by splitting the training dataset into inlier and outlier classes. This setup

is in general more difficult than out-of-distribution experiments where different datasets

are used as outlier classes, since distributions of categories from the same dataset may

be harder to discriminate.

We evaluated on the MNIST and CIFAR-10 image datasets, following Neal et al. [2018] to

split each dataset into 6 inlier classes and 4 outlier classes . We performed standard fully

82

(a) GPVI (b) SVGD (c) GFSF (d) KSD

(e) HMC (f) Amortized SVGD (g) Amortized GFSF (h) Amortized KSD

(i) BBB (j) Deep Ensembles

Figure 6.5: Predictive uncertainty of each method on the 2-class classification task, as
measured by the standard deviation between predictions of sampled functions.

supervised training on the 6 inlier classes, and measured uncertainty in the 4 unseen

outlier classes. We evaluated the uncertainty using two widely-used statistics: area

under the ROC curve (AUC), and the expected calibration error (ECE). The AUC score

measures how well a binary classifier discriminates between predictions made on inlier

inputs, vs predictions made on outlier inputs. A perfect AUC score of 1.0 indicates a

perfect discrimination, while a score of 0.5 indicates that the two sets of predictions are

indistinguishable. ECE partitions predictions into equally sized bins, and computes the

L1 difference in expected accuracy and confidence between bins, which represents the

calibration error of the bin. ECE computes a weighted average of the calibration error

of each bin. Together AUC and ECE tell us how well a model can detect outlier inputs,

as well as how well the model fits the training distribution.

MNIST consists of 70,000 grayscale images of handwritten digits at 28x28 resolution, di-

83

vided into 60,000 training images and 10,000 testing images. We further split the dataset

by only using the first six classes for training and testing. The remaining four classes

are only used to compute the AUC and ECE statistics. We chose the LeNet-5 classifier

architecture for all models, and trained for 100 epochs. Due to the larger computational

burden, we only consider 10 samples from each method’s approximate posterior for both

training and evaluation. Note that our approach is capable of generating many more,

but it would be computationally costly to train much more for ensembles and particle

VI approaches. For GPVI and amortized ParVI methods we used a 3 layer MLP hyper-

network with layer widths [256, 512, 1024], ReLU activations, and input noise z ∈ R256.

We did not test HMC in this setting, as the computational demand is too high.

Table 6.3 shows the results. All RKHS-based methods (GPVI, ParVI, amortized ParVI)

as well as deep ensembles achieve high supervised (“clean“) accuracy with the LeNet

architecture. BBB underfits slightly, while KSD struggled to achieve competitive accu-

racy even after 100 epochs. All methods achieved an AUC over 0.95, but SVGD, GFSF

and GPVI have the highest AUC scores, respectively. In terms of calibration, GPVI and

RKHS-based ParVI methods are the best calibrated. KSD is the worst calibrated model,

and deep ensembles/BBB have middling performance.

Method Clean AUC↑ ECE ↓
SVGD 99.3 .989 ± .001 .001 ± .0002

GFSF 99.2 .988 ± .003 .002 ± .0003

KSD 97.7 .964 ± .005 .014 ± .0007

Amortized SVGD 99.1 .958 ± .015 .002 ± .0007

Amortized GFSF 99.2 .978 ± .005 .004 ± .0013

Amortized KSD 97.7 .951 ± .008 .017 ± .0010

BBB 98.6 .951 ± .008 .014 ± .0027

Deep Ensemble 99.3 .972 ± .002 .008 ± .0060

GPVI 99.3 .988 ± .001 .001 ± .0005

Table 6.3: Results for open-category classification on MNIST. We show the result of
standard supervised training (Clean), as well as AUC and ECE statistics computed
from training on a subset of classes and testing on the rest of the classes as outliers.

CIFAR-10 consists of 60,000 RGB images depicting 10 object classes at 32x32 reso-

lution, divided into 50,000 training images and 10,000 testing images. We adopted the

84

Method Clean AUC ↑ ECE ↓
SVGD 80.3 .683 ± .008 .055 ± .004

GFSF 80.6 .681 ± .004 .068 ± .012

Amortized SVGD 71.12 .636 ± .018 .073 ± .029

Amortized GFSF 71.09 .583 ± .007 .042 ± .029

BBB 70.0 .649 ± .006 .016 ± .002

Deep Ensemble 73.54 .652 ± .018 .033 ± .011

GPVI 76.2 .677 ± .008 .018 ± .015

Table 6.4: Open-category classification on CIFAR-10. We show results of standard
supervised training (Clean), as well as AUC and ECE of each method trained in the
open-category setting.

same 6 inlier / 4 outlier split used in Neal et al. [2018] for the open-category setting.

For this task we used a CNN with 3 convolutional layers and two linear layers, which is

much smaller than SOTA classifiers for CIFAR-10. Though the classification accuracy

would suffer, it allows us to clearly evaluate our method without considering interactions

with architectural components such as BatchNorm or residual connections. We also used

10 samples from each method’s approximate posterior for training and evaluation. For

GPVI and amortized ParVI methods we used the same hypernetwork architecture as

in the MNIST setup. Table 6.4 shows the results where it can be seen that our GPVI

almost match the performance of SVGD and GFSF in terms of AUC while doing a bit

better on ECE.

6.3.2 Direct Generative Modeling

In this section we show how we can use GPVI for direct generative modeling, where we

do not have an explicit likelihood function defined. This setting arises naturally when

considering data such as natural images; to learn to generate natural images we must

learn to approximate the likelihood. Generative adversarial networks (GANs) are an

example of a family of methods that does exactly this. Similar to our method, GANs

employ an implicit generative model fη that takes as input realizations of a random

variable z ∼ Z ⊂ Rm. the input z is mapped to the output data space X ⊆ Rm

as x = fη(z). To fit the target distribution, GANs forgo an explicit likelihood in

favor of an adversarial discriminator. In GAN [Goodfellow et al., 2014] and DCGAN

85

[?], the discriminator function D : X → (0, 1) maps data samples to class-conditional

probabilities i.e. p(y = 1|x). The discriminator is trained with the following loss to

discriminate between generated (y = 0) and real (y = 1) samples,

L(D) = Ex∼pdata logD(x) + Ex∼fη log(1−D(x)), (6.16)

while the generator is trained to generate realistic enough samples to fool the discrimi-

nator. At optimality, the discriminator learns a lower bound on the likelihood. To see

this, note that p(x|y) = p(y|x) + p(x)− p(y), where p(y) is a constant.

We adapt GPVI to this setting by learning to generate data purely from observed sam-

ples. To train GPVI, computing the functional gradient (??) requires the evaluation

of log p(x|y = 1), which is unavailable in this setting. We instead opt for a surrogate

to the likelihood, and make use of the aforementioned adversarial discriminator as an

approximation. In the following experimental settings, we evaluate GPVI as in Sec. 6.3.1

but train a discriminator D to evaluate generated samples. This discriminator is trained

with the loss given by (6.16), as in GAN and DCGAN.

Synthetic Data

We evaluate GPVI for learning to fit multimodal 2D data drawn from mixture distribu-

tions with 8 and 25 components. We compare GPVI to the corresponding GAN models,

to evaluate quantitatively well each method fits the target distribution. Our goal is to

show that even with a surrogate likelihood, GPVI learns a close approximation to the

data distribution. Given that the GAN generator only maximizes the data probability

according to the discriminator, we expect the data distribution learned by GANs will

overfit to the modes.

In figure 6.6, we show the results of learning to sample from a mixture of 8 2D Gaussian

distributions. We can see that GAN methods suffer from various pathologies that are

undesirable in practice. Figure 6.6(a) shows that GAN only fits a single mode of the

target distribution, which is consistent with the results reported by Srivastava et al.

[2017]. This effect is commonly known as mode-collapse, and is a well known problem in

vanilla GANs [Arjovsky and Bottou, 2017]. In contrast, figure 6.6(b) qualitatively show

86

(a) GAN (b) GPVI (GAN)

Figure 6.6: GPVI vs GAN for direct generative modeling of 8 Gaussians.

Method # Modes ↑ |Mean error| ↓ |STD error| ↓
GAN 1 .05 2.62

GPVI (GAN) 8 .003 1.08

Table 6.5: Error metrics for each method in fitting 8 Gaussians. We show the average
absolute error across modes, in estimating the mean and standard deviation of each
component.

that GPVI is able to consistently fit the target distribution better than corresponding

GAN approaches. We also show a quantitative evaluation of the distribution learned by

each method in table 6.5. Given that the target distribution is a mixture of Gaussians,

we can evaluate an approximating distribution by measure the error in the first two

moments. For each method, we sample 20, 000 points, and sort each point into a bin

corresponding to the nearest mode. We report the average absolute difference in mean

(“Mean Error”) and standard deviation (“STD Error”) from each component of the

target distribution. Table 6.5 shows that GPVI improves on GAN approaches with

respect to both metrics. In particular, the gain over standard GAN is significant given

that the standard GAN only fits to a single mode.

Next we present results for an analogous experiment on a 25 component mixture distri-

bution. In figure 6.7 we can see that GAN undergoes mode-collapse, only learning to

sample from a single component. Qualitatively, while GPVI does not achieve as close an

87

Method # Modes ↑ | Mean error | ↓ STD error ↓
GAN 1 .09 1.75

GPVI (GAN) 25 .004 0.30

Table 6.6: Error metrics for each method in fitting 25 Gaussians. We show the average
absolute error across modes, in estimating the mean and standard deviation of each
component.

approximation to the target as in the previous setting with 8 components, it still out-

performs GAN in terms of resembling the target distribution. Quantitatively, according

to table 6.6, GPVI learns a closer approximation to the target distribution the standard

GAN approach in this more difficult setting.

(a) DCGAN (b) GPVI (DCGAN)

Figure 6.7: GPVI vs GAN for direct generative modeling of 25 Gaussians.

Discussion

The quality of generative models can be difficult to assess. For this reason we evaluated

GPVI in a range of experimental settings, from fitting explicitly known distributions, to

Bayesian neural networks, even to learning from samples with a surrogate likelihood. We

believe that the experiments shown in section 6.3 demonstrate that GPVI is a flexible,

robust approach to generative modeling.

Much of the focus regarding recent work on Bayesian neural networks concerns their

88

performance on open-category and out-of-distribution tasks with high dimensional image

datasets. Instead, we show that our method closely approximates the target posterior,

both in tasks where the posterior is explicitly known, as well as when it is intractable. The

Bayesian linear regression and density estimation tasks served as sanity checks. Because

the posterior was known explicitly, we could quantitatively test how well each method

fit the posterior. For density estimation, GPVI outperforms amortized approaches at

matching the target covariance (Table 6.1). In Bayesian linear regression, while the

approximation was close for all methods, there was a clear hierarchy in terms of which

types of methods produced the tightest approximation (Table 6.2). GPVI and RKHS-

based ParVI achieved the best posterior fit overall, and we see in further experiments

that quality of fit here is indicative of performance in more difficult tasks.

The four-class classification problem (Fig. 6.4), while seemingly simple, is particularly

difficult for most methods we evaluated since many methods tend to overgeneralize to

the corners. BBB underestimates the uncertainty as expected [Yao et al., 2019, Minka,

2001, Bishop, 2006]. Notably, amortized SVGD also dramatically underestimates the

uncertainty, with a predictive distribution resembling that of a standard ensemble. We

believe this is due to the compounding approximation error explained in Section 6.2.4,

i.e., naively back-propagating the Stein variational gradient to update the generator is

more likely to end up with a non-descent direction compared with back-propagating the

exact functional gradient as GPVI. As shown in Fig. 6.4, the posterior approximation

of GPVI is tighter, with uncertainty that better matches the data distribution. SVGD

performs the best in this task, with high uncertainty everywhere except in regions near

observed data. Surprisingly, GPVI and SVGD outperform HMC here, with clearly higher

uncertainty near the corners of the sample space. Note that with the functional approx-

imation by neural networks, it is hard to determine if the true posterior exactly matches

the intuitively “ideal” uncertainty plot where low variance only shows up around each

mixture component. On the other hand, while HMC is guaranteed to converge to the

true posterior over time [Durmus et al., 2017], with a fixed computational budget, it

is possible that GPVI or SVGD could achieve better performance. GPVI also has the

extra benefit of the ability to draw additional samples, which is not possible with ParVI

or HMC.

Our experiments in the open-category setting reveal that GPVI consistently has a higher

89

AUC than other scalable sampling approaches. On the MNIST dataset, GPVI is among

the overall top performers, together with two ParVI methods SVGD and GFSF. On

CIFAR-10, GPVI is among the top two performers in ECE and performs only slightly

behind the two best ParVI methods in AUC. Most importantly, GPVI outperforms with

clear margins all amortized ParVI methods on both datasets under all metrics, except for

the ECE of MNIST, where both methods achieve very close top scores. This is consistent

with all other qualitative and quantitative experiments we have conducted, which again

shows the advantage of GPVI over existing generative ParVI methods.

We found that KSD completely failed in CIFAR-10, achieving slightly better than ran-

dom accuracy. We believe this is due to the way that KSD performs the particle update.

Where SVGD has a closed form expression for the particle transportation map, KSD

parameterizes it with a critic network that has the input-output dimensionality of the

particle parameters. Training this critic naturally becomes difficult when applying to

neural network functions.

Finally, we showed that GPVI is even amenable to learning from a surrogate likelihood

function. We showed that by integrating an adversarial discriminator with GPVI, we

were able to outperform GANs for fitting mixtures of Gaussians. Surprisingly, we found

that GPVI greatly improved over standard GAN, both in terms of the mean/STD error

metrics as well as a qualitative evaluation.

To summarize the evidence from all experiments, GPVI and RKHS-based ParVI are

accurate and versatile approaches to Bayesian deep learning. They consistently outper-

formed other approaches in all experiments, sometimes by significant margins, such as

in the four-class classification setting (Fig. 6.4). Comparing with ParVI methods such

as SVGD and GFSF, GPVI has the additional advantage of being able to sample new

particles.

6.4 Conclusion

We have presented a new method that fuses the best aspects of parametric VI with

non-parametric ParVI. GPVI has asymptotic convergence on par with ParVI. Addi-

tionally, GPVI can efficiently draw samples from the posterior. We also presented a

90

method for efficiently estimating the inverse of the jacobian of a deep network. Our ex-

periments showed that GPVI performs on par with ParVI, and outperforms amortized

ParVI and other competing methods in Bayesian linear regression, a classification task,

open-category tasks on MNIST and CIFAR-10, and learning to sample from data. In

the future we want to explore the efficacy of our method applied to large scale tasks like

image generation.

6.5 Hyperparameter Settings for GPVI

In tables 6.7 - 6.12 we detail the hyperparameters chosen for each method in each exper-

imental setting. We refer to the sampler network as g, and the predicting classifier as F .

We use the same structure of g and input noise for GPVI and amortized ParVI.

Density Estimation (energy potentials)

Hyperparameter Value

Common

Posterior Samples 20000

Learning Rate 1e− 4

g Hidden Layers 2

g Hidden Width [500, 500]

g Input Noise Stdev σ ∈ {1.0, 2.0, 6.0}
Training Steps 200e3

Minibatch Size 100

GPVI

Optimizer Adam

hψ Hidden Width 500

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

Normalizing Flow

Optimizer RMSProp

Flow Length 32

Weight Decay 1e− 3

91

Base Dist Stdev σ ∈ {1.0, 2.0, 6.0}
Flow Architecture Planar Flow

Table 6.7: Hyperparameters for density estimation of energy potentials.
.

Bayesian Linear Regression

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 100

Learning Rate 1e− 3

g Hidden Layers None

g Input Noise z N (0, I3)

F Hidden Layers None

Training Steps 50e3

Minibatch Size 10

GPVI

hψ Hidden Width 10

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

KSD (Amortized and ParVI)

Critic Hidden Layers 1

Critic Hidden Width 100

Critic Learning Rate 1e− 3

Critic L2 Weight 10

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

Mixture Weight π 0.5

σ1 1.0

92

σ2 0

Table 6.8: Hyperparameters for Bayesian linear regression task
.

4/2-class Classification

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 100

Learning Rate 1e− 3

Training Steps 500e3

Minibatch Size 100

g Hidden Layers 2

g Hidden Width 64

g Nonlinearity ReLU

g Input Noise z N (0, I64)

F Hidden Layers 2

F Hidden Width 10

F Nonlinearity ReLU

GPVI

hψ Hidden Width 544

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

KSD (Amortized and ParVI)

Critic Hidden Layers 2

Critic Hidden Width 100

Critic Learning Rate 1e− 3

Critic L2 Weight 10

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

Mixture Weight π 0.5

93

σ1 1.0

σ2 exp (−6)

Table 6.9: Hyperparameters for 2/4 class classification task
.

Open-Category (MNIST)

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 10

Training Epochs 100

Minibatch Size 50

g Learning Rate 1e− 5

g Hidden Layers 3

g Hidden Width [256, 512, 1024]

g Nonlinearity ReLU

g Input Noise z N (0, I256)

F Learning Rate 1e− 5

F Architecture LeNet-5

F Nonlinearity ReLU

GPVI

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

KSD (Amortized and ParVI)

Critic Hidden Layers 2

Critic Hidden Width 512

Critic Learning Rate 1e− 4

Critic L2 Weight 1.0

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

94

Mixture Weight π 0.5

σ1 1.0

σ2 exp (−6)

Table 6.10: Hyperparameters for MNIST open category task
.

Open-Category (CIFAR-10)

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 10

Training Epochs 200

Minibatch Size 50

g Learning Rate 1e− 5

g Hidden Layers 3

g Hidden Width [400, 600, 1000]

g Nonlinearity ReLU

g Input Noise z N (0, I400)

F Hidden Layers 3 conv, 2 linear

F Hidden Width [32, 64, 64, 128, 10]

F Nonlinearity ReLU

GPVI

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

KSD (Amortized and ParVI)

Critic Hidden Layers 2

Critic Hidden Width 512

Critic Learning Rate 1e− 4

Critic L2 Weight 1.0

95

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

Mixture Weight π 0.5

σ1 1.0

σ2 exp (−6)

Table 6.11: Hyperparameters for CIFAR-10 open category task
.

Direct Generative Modeling

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 64

Learning Rate 1e− 4

g Hidden Layers 4

g Hidden Width [256, 256, 256, 256]

g Input Noise z N (0, I2)

g Nonlinearity ReLU

Training Steps 10e3

Discriminator Hidden Layers 4

Discriminator Hidden Width [256, 256, 256, 256]

Discriminator Training Iters 5

GPVI

hψ Hidden Width 5

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

Table 6.12: Hyperparameters for Bayesian linear regression task
.

96

Chapter 7: Improving GPVI

7.1 Introduction

In this chapter we present an improvement to the efficiency of our previous method GPVI.

The benefit of GPVI is that it approximately samples from a posterior distribution,

while achieving competitive performance with full ParVI methods. However, GPVI has

an efficiency bottleneck in the computation of the functional gradient, which involves

the evaluation of the inverse of the Jacobian of the generator. This Jacobian matrix

is quadratic in dimensionality as the distribution to be generated; GPVI approximates

the inverse of this Jacobian through an auxiliary network, An auxiliary MLP trained to

estimate this inverse poses two difficulties. First, inverse estimators are well-known to be

sensitive to numerical error, becoming more unstable as the matrix dimension increases.

Second, the parameter count of the auxiliary network required to compute the inverse

of the Jacobian is on par with the generator itself. This potential instability as well as

the space-inefficiency are barriers to the efficient, accurate inference that we seek.

We propose to improve the approximation to the Jacobian inverse, as well as the amount

of computational resources required to compute the estimate. Our approach allows for

more efficient inference by reducing the number of parameters in the auxiliary network

by at least 50% on small problems, and over 87% on larger Bayesian neural network

tasks. We achieve this efficiency by utilizing a novel block-matrix inversion theorem that

solves for most of the blocks in closed form. We are just left with a square matrix of

the same dimension as the input of the generator (dimensionality of the latent space) to

invert with the auxiliary network. We show that the resulting minimization problem is

more stable as well as cheaper to train. In addition, we show that our method results in

better performance for the open-category prediction tasks performed in [Ratzlaff et al.,

2021].

We also apply our methods in the direct generative modeling setting, where we only have

access to posterior samples, and there is no tractable expression for the density. Here,

97

we use an adversarial discriminator to approximate a lower bound of the likelihood, and

show improvement over standard GANs. The original GAN loss in particular is known

to suffer from both mode collapse, and low diversity within the sampled modes. We

show through experiments on the stacked MNIST experiment that GPVI+ improves

mode-collapse, and fits the target distribution better than GANs.

The contributions of this work are two-fold:

• We propose GPVI+, a generative ParVI algorithm that improves the efficiency

and stability of GPVI. We derive a new form for the inverse of an input-output

Jacobian matrix, and propose an algorithm to approximate the solution with a

network.

• We demonstrate improved uncertainty estimation capabilities for BNNs, as well as

improvements to mode-collapse and inter-mode diversity over GANs when applied

to image generation.

7.2 Improving Generative Particle-based Variational Inference

In generative particle-based variational inference, our main goal is to learn a generator

function f : Z → X that maps from a low dimensional noise distribution Z ∈ Rd, to data

space X ∈ Rm. We parameterize f as a neural network with parameters η, and consider

the distribution q(x) as the implicit distribution of samples generated by fη(z). Z can

be any uninformative noise distribution, but in practice we sample z ∼ Z = N (0, Id).

As this is variational inference, we want to minimize KL(q(x)||p(x)), where p(x) is the

target distribution. In this work, p(x) may be specified by a likelihood function for BNN

inference, or else by samples for image generation.

98

7.2.1 GPVI

With GPVI [Ratzlaff et al., 2021] we derived the following functional gradient of the KL

objective with respect to f .

J (f) = Ez

− log p(f(z)) + log
pz(z)∣∣∣det
(
∂f
∂z

)∣∣∣
 . (7.1)

This is the same gradient given in Liu and Wang [2016a], where the generator function

in SVGD can be thought of as the identity function. If we instead take f to be a

parameterized function drawn from a vector-valued RKHS, then the functional gradient

∇fJ (f) with respect to f is as follows:

∇fJ (f)(z) = Ez′

[
−∇x log p(x)

∣∣∣∣
x=f(z′)

k(z′, z)−
(
∂f

∂z′

)−1
∇z′k(z′, z)

]
. (7.2)

Where k(z′|·) is the kernel induced by the RKHS, in practice this is an RBF kernel

with data-dependant bandwidth [Liu and Wang, 2016a]. Similar to amortised SVGD

[Wang and Liu, 2016], the GPVI update is passed to the generator parameters η via

backpropagation:

∇ηJ = Ez

[
∂f(z)

∂η
∇fJ (f)(z)

]
. (7.3)

7.2.2 A Simplification of the Inverse

Inverting the Jacobian of f is poses two distinct challenges. First, it can be difficult to

compute the full Jacobian for arbitrary neural networks. The Vector-Jacobian Product

(VJP) computed by the (reverse mode) backward pass reveals only one column of the

Jacobian at a time, requiring m backward passes to obtain the full Jacobian. The

problem is compounded by the difficulty of computing an inverse of this m×m matrix,

where m may be in the millions.

Still, network architectures in practice have non-square Jacobians, and thus have no

defined inverse. To avoid limiting the generator architecture to bijections, we consider

99

the following parameterization of f ,

f(z) = g
(
z1:d

)
+ λz1:m, ∀z ∈ Rm. (7.4)

Where z is a vector of components
(
z1, . . . zd, . . . zm

)
, and z1:d, z1:m are vectors that

consist of the first d components, and the full z sample respectively. We show in figure 7.1

how this parameterization is used to generate samples from GPVI. The (non-square)

generator function is defined as g : Rd → Rm. We can write the Jacobian of f as

Jf (z) =

[
∂f

∂z

]
=

[[
∂g

∂z1:d

] ∣∣∣∣0m−d]+ λIm. (7.5)

(a) GPVI+ Parameter Generation

Figure 7.1: GPVI+ parameter generation pipeline, by concatenation ⊕ of the output of
g1 and g2.

To help introduce our method we split g into two functions g1 : Rd → Rd and g2 : Rd →
Rm−d, where g1, g2 may share parameters, or be separate functions entirely. We define

the following Jacobian matrices of g1, g2 with respect to input z1:d.

Jg1(z1:d) =
∂g1
∂z1:d

, Jg2(z1:d) =
∂g2
∂z1:d

, (7.6)

100

To approximate the inverse Jf (z′)−1, GPVI introduces an auxiliary network hψ : Rm →
Rm, that takes inputs (z′,∇z′k(z′, z)), and is trained to output Jf (z′)−1∇z′k(z′, z).

The auxiliary network is trained jointly with f to minimize the following loss,

min
ψ

L(hψ), L(hψ) = ‖Jfη(z′)hψ(z′,∇z′k(z′, z))−∇z′k(z′, z)‖2. (7.7)

This method is more efficient than computing the full Jacobian via auto-differentiation

– then computing its inverse with a linear solver like Conjugate Gradient. But it may

still be inefficient for large problems. The main issue lies in the size of hψ, which may

have as many parameters as fη. For BNN inference problems i.e. m is large, training

two fη-sized networks may not be feasible. Additionally, neural network Jacobians are

prone to poor conditioning, increasing the sensitivity of the inverse to numerical error.

Its therefore advantageous for speed and stability to reduce the complexity of the inverse

approximation.

We propose to represent the inverse as a block partitioned matrix, and solve for subma-

trices in closed form. At the end we are left with a single block of size d × d to invert

with the (much smaller) auxiliary network.

The following theorem gives our main result for computing the inverse of the Jacobian

matrix.

Theorem 7.2.1. Let f be a function Rm → Rm, that is parameterized as in Eq.(7.4).

Furthermore, let the Jacobian of f w.r.t. input z ∈ Rd be given as Eq (7.5), such that

∂f

∂z
=

[
Jg1(z1:d), 0

Jg2(z1:d), 0

]
+ λI (7.8)

Then the inverse of the Jacobian of f , evaluated at z, is given by the following block-

partitioned matrix,

∂f

∂z

−1
=

 (Jg1(z1:d) + λI)−1, 0

− 1
λJg2(z1:d)(Jg1(z1:d) + λI)−1, (1/λ)I

 (7.9)

101

Proof

We can express the inverse of Eq(7.8) as a block partitioned matrix:

∂f

∂z

−1
=

[
C, E

D, F

]

Once in the block-partitioned form, we know that (∂f/∂z)−1(∂f/∂z) = I, so we can

solve for the form of block matrix that yields I,

I =

[
C, E

D, F

]([
Jg1(z1:d), 0

Jg2(z1:d), 0

]
+ λI

)

We can now solve for the submatrices C,D,E, F , and are only left to invert Jg1(z1:d)+λI.

To see this, note that E = 0, F = (1/λ)I, and so the following is true

I =

 CJg1(z1:d), 0

DJg1(z1:d) + 1
λJg2(z1:d), 0

+ λ

C, 0

D, 1
λI


=

 CJg1(z1:d) + λC, 0

DJg1(z1:d) + 1
λJg2(z1:d) + λD, I


→ DJg1(z1:d) +

1

λ
Jg2(z1:d) + λD = 0

Of the four submatrices necessary to compute the inverse, we have E = 0, F = (1/λ)I, C =

(Jg1(z1:d) + λI)−1, and D = 1
λ(Jg1(z1:d) + λI)−1Jg2(z1:d). Hence, it is only necessary

that we invert (Jg1(z1:d) + λI), where Jg1(z1:d) represents the first d components of

(∂g/∂z) from Eq (7.5).

7.2.3 Practical Computation of the Inverse

While theorem 7.2.1 enables a more efficient computation of the inverse, there are prac-

tical challenges in the way of an algorithm. To compute the functional gradient from

102

Eq (7.2), our main challenge is the evaluation of Jf (z′)−1∇k. For convenience of nota-

tion, we note that the kernel gradient ∇k is a m-dimensional vector

∇k =
(
∇z′k(z′, z)1, . . .∇z′k(z′, z)d, . . .∇z′k(z′, z)m

)
,

where ∇k1:d,∇kd+1:m denote the first d components, and last m− d components of ∇k
respectively.

Jf (z)−1∇k =

 (Jg1(z1:d) + λI)−1, 0

− 1
λJg2(z1:d)(Jg1(z1:d) + λI)−1, I

λ


 ∇k1:d

∇kd+1:m



=

 (Jg1(z1:d) + λI)−1∇k1:d

−λJg2(z1:d)(Jg1(z1:d) + λI)−1∇k1:d + 1
λ∇k

d+1:m

 , (7.10)

Our two challenges are to compute the top and bottom terms of Eq (7.10). Computing

the top term (TOP) is the first priority, as it is also involved in evaluating the bottom

term (BOTTOM). We can solve for TOP by making use of the auxiliary network hψ.

In this case, hψ takes as input
(
z′1:d,∇k1:d

)
, and predicts (Jg1(z1:d) + λI)−1∇k1:d. To

train hψ, we use the same loss as in Eq (7.7). Note that hψ now has a small memory

cost, as the target VJP is a vector of size d.

(a) Computation of Jg1 and Jg2

Figure 7.2: How we compute the partial Jacobian matrices Jg1 and Jg2 for computation
of the inverse defined in theorem (7.2.1).

103

The second challenge lies in the bottom term of the expression, particularly in how

to compute Jg2(z1:d)(Jg1(z1:d) + λI)−1∇k1:d. In figure 7.2 we show how the terms of

Eq.(7.10) are computed. First, we know that (Jg1(z1:d) + λI)−1∇k1:d is a vector, and

that Jg2(z1:d) represents the last m − d dimensions of the Jacobian of g. We can then

compute the Jacobian-Vector product (JVP):

Jg2(z1:d)hψ(z′1:d,∇k1:d).

BOTTOM is fully computed with the addition of the last m−d components of 1
λ∇k. We

emphasize that the full Jacobian is never computed, nor do we invert a matrix larger than

d dimensions. An algorithm summarizing our approach, with practical considerations,

is shown in Algorithm 3.

7.3 Experiments

We show the efficacy of our approach in two general domains: where the target p(x) is

defined through a likelihood function, and learning purely from samples. We initially

validate our approach through a toy example: fitting an analytically known posterior

distribution. We also evaluate our approach for Bayesian neural networks through the

same open-category prediction tasks given in Ratzlaff et al. [2021]. For both tasks we

show an improvement over GPVI in parameter efficiency, and in most cases a closer

approximation of the ParVI solution [Liu and Wang, 2016a, Liu et al., 2019]. Second, we

once again follow Ratzlaff et al. [2021], and show that GPVI+ is capable of learning from

samples, where the likelihood function is approximated with an adversarial discriminator.

Here, we show that GPVI+ can fit distributions of samples without suffering from the

various pathologies of implicit generative models such as GANs e.g. mode-collapse. With

experiments on stacked MNIST, we provide empirical evidence that GPVI+ samples can

fit more modes than DCGANs.

For all tasks, we hold network architectures, learning rates, and other common hyperpa-

rameters consistent across methods. An overview of our architectures, hyperparameters,

and experiment-specific settings can be found in the following section.

104

Algorithm 3 GPVI+ Training Algorithm

Init generator fη, auxiliary net hψ, learning rate α, noise dim d, and output dim m

Function Update Aux(hψ, z′, vd):

1. Forward hψ(z′,vk) to get (Jg1(z1:d) + λI)−1vd

2. Backward to get VJP h>ψJfη(z′)

3. Update hψ by ψ ← ψ − α∇ψL(hψ)

/* ∇ψL is computed by backprop of (7.7) */

Function Jac Inverse(hψ, x′, z′, vd, vm):

1. Compute TOP: (Jg1(z1:d) + λI)−1vd) = hψ(z′,vd)

2. Compute BOTTOM: Jg2(z1:d) TOP

/* This JVP can be done cheaply in JAX, or by a double-backward in

PyTorch */

3. BOTTOM = −λBOTTOM+(1/λ)vm

4. Jf (z′)−1∇z′k(z′, z) = [TOP, BOTTOM]

5. return Jf (z′)−1∇z′k(z′, z)

while Not Done do

1. Sample input noise z, z′ ∼ N(0, Id)

2. x = fη(z)

3. x′ = fη(z′)

4. Compute k(z′, z) and ∇z′k(z′, z)

5. vd = ∇z′k(z′, z)[1:d]

6. vm = ∇z′k(z′, z)[d+1:m]

7. Update Aux(hψ, x′, z′, vd)

8. Jf (z′)−1∇z′k(z′, z) = Jac Inverse(hψ, z′, vd, vm)

9. Compute functional gradient ∇fJ (f) by (7.2)

10. Update fη by η ← η − α∇ηJ ,

/* where ∇ηJ is computed by (7.3) */

end

105

7.3.1 5D Density Estimation

Method Σ error ↓ Time (ms)

GPVI Exact 0.981 ± .01 194.98 ± .19

GPVI 0.954 ± .05 15.67 ± .06

GPVI+ 0.727 ± .18 18.99 ± .03

Table 7.1: Comparison of different inversion
methods for fitting a 5D diagonal Gaussian
distribution.

We first evaluate how each generative ap-

proach can fit a 0-mean 5-D target Normal

distribution N (0,Σ). For each target we

randomly initialize a diagonal covariance

Σ. We parameterize f as a linear func-

tion with parameters η, where the output

distribution of f is given as ηηT . In Ta-

ble 7.1, we measure the fit of the approxi-

mate posterior as the average per-dim er-

ror in the estimated Σ, as well as the wall

clock time-per-iteration. We compare GPVI+ with GPVI, and a variant of our method

that uses the exact inverse of the Jacobian instead of the auxiliary network (“GPVI-

Exact”). For all methods, we use input noise z ∼ N (0, I2). We perform each experiment

5 times, and report the mean ± one standard deviation. We find that GPVI+ performs

as expected, learning a closer approximation to the target than GPVI, while taking only

slightly more time computationally. In the following experiments, we will see that this

extra time is worth the marginal cost, considering the efficiency and performance gain

of GPVI+. We note that GPVI-Exact is far too slow to be practical, given that it must

explicitly compute the full Jacobian of f .

7.3.2 Open-Category Prediction

To evaluate the scalability of our approach we turn to large-scale image classification

experiments. We utilize the open-category task to test if our uncertainty estimations can

help detect outlier examples. The open category task defines a set of inlier classes that are

seen during training, and a set of outlier classes only used for evaluation. We evaluated

on the MNIST and CIFAR-10 image datasets, following Neal et al. [2018] to split each

dataset into 6 inlier classes and 4 outlier classes. We performed standard fully supervised

training on the 6 inlier classes, and measured uncertainty in the 4 unseen outlier classes.

We evaluated the uncertainty of our models with the AUC and ECE metrics respectively.

Where AUC measures the ability of a model to discriminate between inlier and outlier

106

classes, and ECE measures the calibration error. For the AUC metric, we report the

AUC using both the entropy, and the variance of the posterior predictive distribution,

as these statistics often favor one method over another.

In light of the computational difficulties that arise when evaluating BNNs on high dimen-

sional datasets, its natural to ask whether we can achieve similar performance at a lower

computational cost. One way to do this is to learn a distribution over linear functions

that maps a featurized representation to output predictions. In practice, this amounts

to jointly training a single deterministic “body” network with standard SGD, and the

output linear layer with generative ParVI. We evaluate this method in two settings, by

training the last layer with GPVI, and also GPVI+. We evaluate this method, that we

call LinGPVI and LinGPVI+ respectively, on the open-category prediction task. We ex-

pect that the respective methods will be computationally cheaper than either GPVI and

GPVI+, and enable the use of deeper networks for prediction. The possible disadvantage

of this strategy is that we may lose critical diversity in the feature representation. Toward

recovering some diversity in the feature representation while retaining a computationally

cheaper method, we also evaluate a method we call EnsembleGPVI+. In this method,

instead of representing the “body” of the network with a single deterministic network

as in LinGPVI or LinGPVI+, we use a deep ensemble of randomly initialized networks.

The output of the deep ensemble is used as input to the final classification layer that

we train with GPVI+. LinGPVI, LinGPVI+ and EnsembleGPVI+ are computationally

lighter than GPVI or full GPVI+ in both parameter count and time complexity.

MNIST consists of 70,000 grayscale images of handwritten digits at 28x28 resolution

We partition the dataset by only using the first six classes for training and testing. The

remaining four classes are used to compute the AUC and ECE statistics. We chose

the LeNet-5 classifier architecture for all models, and trained for 100 epochs. For all

methods, we draw 10 posterior samples for both training and evaluation. Table 7.2

shows the results of open-category prediction for each method. Our results show that

once again, full ParVI methods like SVGD and GFSF are the best performing methods

for open-category prediction. Notably, GPVI outperforms GPVI+ here with regard

to AUC (entropy), though the gap between them is relatively small. Where GPVI+

excels is in space-efficiency, where we need just 1M parameters for auxiliary network

hψ, compared to the 48M parameters used by GPVI. On MNIST, BBB, a mean-field VI

107

Method Clean AUC (Ent) AUC (Var) ECE hη weights

SVGD 99.3 .987 ± .001 .986 ± .003 .002 ± .0005 N/A

GFSF 99.2 .986 ± .003 .985 ± .002 .002 ± .0003 N/A

BBB 98.6 .951 ± .008 .965 ± .004 .014 ± .0027 N/A

GPVI 99.3 .986 ± .002 .980 ± .003 .002 ± .0005 48M

LinGPVI+ 99.3 .980 ± .004 .977 ± .006 .002 ± .0002 .2M

EnsembleGPVI+ 99.3 .979 ± .007 .984 ± .007 .002 ± .0004 .2M

GPVI+ 99.3 .980 ± .001 .946 ± .009 .002 ± .0008 1M

Table 7.2: Results for open-category classification on MNIST. We show the result of
standard supervised training (Clean), as well as AUC and ECE statistics computed
from training on a subset of classes and testing on the rest of the classes as outliers.
We also compare parameter count of GPVI and GPVI+ auxiliary networks, as well as
LinGPVI+ and EnsembleGPVI+.

method has lacking performance under both AUC and ECE statistics. LinGPVI+ and

EnsembleGPVI+ are efficient, requiring just 0.2M parameters for the auxiliary network.

The AUC of LinGPVI+ performs worse than its counterparts, while EnsembleGPVI+

has competitive performance with regard to AUC (variance), even outperforming GPVI

and GPVI+ under this metric.

CIFAR-10 consists of 60,000 RGB images depicting 10 object classes at 32x32 resolu-

tion. We adopted the same 6 inlier / 4 outlier split used in the previous MNIST exper-

iment for the open-category setting. We also used the same hypernetwork architecture

as in the MNIST setup, drawing 10 samples from each method’s approximate posterior

for training and evaluation. We report the clean accuracy, AUC (entropy/variance), and

ECE statistics in table 7.3. Our CIFAR-10 results show that GPVI+ outperforms GPVI

in AUC (entropy), and even outperforms the full ParVI method GFSF. However, GPVI+

is slightly less calibrated than GPVI, while still being better calibrated than GFSF. Once

again, the space-efficiency of GPVI+ shines, where we save 69M parameters for our auxil-

iary network over GPVI. BBB once again has worse AUC performance, but is noticeably

better calibrated compared to its performance on MNIST. Again, LinGPVI+ does not

fare so well on any metric except hη parameter count, although it does perform slightly

108

Method Clean AUC (Ent) AUC (Var) ECE hη weights

SVGD 80.3 .688 ± .008 .679 ± .007 .042 ± .004 N/A

GFSF 80.6 .681 ± .004 .657 ± .014 .068 ± .011 N/A

BBB 70.0 .649 ± .006 .599 ± .014 .016 ± .002 N/A

GPVI 76.2 .677 ± .008 .629 ± .007 .018 ± .015 70M

LinGPVI 72.5 .603 ± .006 .608 ± .040 .136 ± .109 .25M

LinGPVI+ 75.0 .621 ± .004 .608 ± .029 .143 ± .122 .2M

EnsembleGPVI+ 80.7 .615 ± .002 .675 ± .013 .154 ± .191 .2M

GPVI+ 76.4 .686 ± .007 .601 ± .014 .055 ± .025 1M

Table 7.3: Results for open-category classification on CIFAR-10. We show the result
of standard supervised training (Clean), as well as AUC and ECE statistics computed
from training on a subset of classes and testing on the rest of the classes as outliers.
We also compare parameter count of GPVI and GPVI+ auxiliary networks, as well as
LinGPVI+ and EnsembleGPVI+.

better than LinGPVI. EnsembleGPVI+ again performs competitively with SVGD in

AUC (variance), making it a viable option for efficient generative ParVI. Its worth not-

ing that LinGPVI, LinGPVI+ and EnsembleGPVI+ are not as well calibrated as the

other ParVI methods.

7.3.3 Stacked MNIST

We also train on real image data, to evaluate how well GPVI+ can fit extremely multi-

modal data. Stacked MNIST consists of 128k RGB images of handwritten digits. Each

channel of a stacked MNIST image is random MNIST digit (0 − 9). Hence, stacked

MNIST has 1000 modes, where each mode can be identified by querying a pretrained

MNIST classifier on each channel. The goal is to train a generative model that not

only captures all the modes, but has relatively equal probability of generating any one

mode. In figure 7.3 we show the results of training GPVI+ as well as corresponding

GAN models on Stacked MNIST. We can see that all GPVI+ variants learn to generate

high quality images. GPVI+ also learns to sample relatively even from each mode, while

DCGAN is more likely to repeat generated digits. In table 7.4 we sample 100K images

109

(a) DCGAN (b) GPVI+ (DCGAN)

Figure 7.3: Samples drawn after training on Stacked MNIST after 100 epochs.

Method # Modes ↑ Reverse KL ↓

DCGAN 924 0.253 ± 0.010

GPVI+ (DCGAN) 1000 0.185 ± 0.044

Table 7.4: Performance on stacked MNIST. We compute the number of modes captured
by each generative model, along with the reverse KL divergence between output samples
and true samples

from each model, and report quantitative metrics such as number of modes fit by each

method, as well as the reverse KL divergence between the generated modes and the target

modes. To evaluate the number of modes, we pretrain an MNIST classifier to 99.3%

accuracy, and classify each channel of the generated stacked MNIST digits. To compute

the reverse KL divergence, we find the distribution of modes w.r.t the generated samples

qmodes, and initialize the “ideal” distribution p = [1
1000 ,

1
1000 . . .

1
1000] ∈ R1000. We then

compute KL
[

qmodes∑
qmodes

, p
]
. The results in table 7.4 show that GPVI with a discriminator

trained with the DCGAN loss is able to outperform DCGAN in terms of both number

of generated modes, and reverse KL divergence. GPVI+ is able to generate all 1000

modes.

7.4 Conclusion

We proposed GPVI+ to alleviate an inefficiency of training GPVI. GPVI requires an

auxiliary network of the same size as its generator network. Accordingly, the size of this

auxiliary network will scale with the dimensionality of the target data distribution. Our

110

method GPVI+ achieves space-efficiency over GPVI by deriving a new way to compute

the inverse of the Jacobian of the generator. Our approach reduces the size of the

inverse problem from the dimensionality of the generator output, to the dimensionality

of its input. The savings in parameter count from our method was over 98% in our

largest open-category experimental setting. In both density estimation experiments, as

well as open-category prediction for CIFAR-10, we were able to improve on GPVI and

even match the full ParVI method GFSF. The limitation of our method is showcased

in the density estimation experiment in table 7.1, where our method is slightly slower

than GPVI due to the computation of an additional Jacobian-vector product during

training. Considering the experimental evidence given by the density estimation and

open-category experiments, GPVI+ maintains or exceeds the performance of GPVI,

while saving significant space over GPVI. That being said, we would like to explore

ways to improve the efficiency of the generator network in the Bayesian neural network

setting. We would also like to apply GPVI+ to domains like multi-task and continual

learning.

7.5 Hyperparameter Settings for GPVI+

In tables 7.5 - 7.7 we detail the hyperparameters chosen for each method in each ex-

perimental setting. We refer to the sampler network as g, and the predicting classifier

as F . We use the same structure of g and input noise for GPVI and amortized ParVI.

In general, we use the same hyperparameters for GPVI and GPVI+, unless otherwise

indicated.

Density Estimation

Hyperparameter Value

Common

Posterior Samples 20000

Learning Rate 1e− 4

g Hidden Layers 2

111

g Hidden Width [500, 500]

g Input Noise Stdev σ ∈ {1.0, 2.0, 6.0}

Training Steps 200e3

Minibatch Size 100

GPVI

Optimizer Adam

hψ Hidden Width 500

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 1.0

GPVI+

hψ Hidden Width 500

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 0.005

Table 7.5: Hyperparameters for density estimation.
.

Open-Category (MNIST)

Common

Optimizer (all) Adam

Posterior Samples 10

Training Epochs 100

Minibatch Size 50

112

g Learning Rate 1e− 5

g Hidden Layers 3

g Hidden Width [256, 512, 1024]

g Nonlinearity ReLU

g Input Noise z N (0, I256)

F Learning Rate 1e− 5

F Architecture LeNet-5

F Nonlinearity ReLU

GPVI

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 1.0

GPVI+

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 0.01

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

Mixture Weight π 0.5

σ1 1.0

σ2 exp (−6)

113

Table 7.6: Hyperparameters for MNIST open category task
.

Open-Category (CIFAR-10)

Common

Optimizer (all) Adam

Posterior Samples 10

Training Epochs 200

Minibatch Size 50

g Learning Rate 1e− 5

g Hidden Layers 3

g Hidden Width [400, 600, 1000]

g Nonlinearity ReLU

g Input Noise z N (0, I400)

F Hidden Layers 3 conv, 2 linear

F Hidden Width [32, 64, 64, 128, 10]

F Nonlinearity ReLU

GPVI

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 1.0

GPVI+

hψ Hidden Width 512

114

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 0.001

BBB (Bayes by Backprop)

Weight Prior Scale Mixture

Mixture Weight π 0.5

σ1 1.0

σ2 exp (−6)

Table 7.7: Hyperparameters for CIFAR-10 open category task
.

Stacked MNIST

Hyperparameter Value

Common

Optimizer (all) Adam

Posterior Samples 64

Learning Rate 1e− 4

g Conv Transpose Layers 3

g Conv Transpose Channels [256, 128, 64]

g Input Noise z N (0, I64)

g Nonlinearity ReLU

Training Steps 78e3

Discriminator Conv Layers 3

Discriminator Conv Channels [64, 128, 256]

115

Discriminator FC Layers 1

Discriminator FC Width 4096

Discriminator Training Iters 5

GPVI+

hψ Hidden Width 512

hψ Hidden Layers 3

hψ Learning Rate 1e− 4

λ value 0.01

Table 7.8: Hyperparameters for Stacked MNIST task
.

116

Chapter 8: Future Work and Conclusion

In this dissertation we have shown that implicit generative models can be effectively

applied to enable uncertainty estimation in neural networks.

First, we proposed HyperGAN, a generative architecture used to sample from a distribu-

tion of model parameters that fit the data. We showed that such a neural sampler could

be trained without prohibitive computational overhead, or limiting form of the approxi-

mating distribution. Samples from HyperGAN performed as well as their point-estimate

counterparts on supervised learning tasks, in addition to providing better uncertainty

estimates on out-of-distribution data. When we applied HyperGAN for detecting ad-

versarial examples, we found that HyperGAN was hard to fool with standard white-box

attacks. This was due to the fact that HyperGAN can always sample additional mod-

els, in addition to the attacked model. Second, we used the lessons learned from Hy-

perGAN, and applied uncertainty quantification through implicit generative models to

reinforcement learning. RL represents an area that naturally benefits greatly from mod-

els that leverage uncertainty. We showed that implicit distributions of neural networks

are greatly useful in the model-based setting. By leveraging the epistemic uncertainty

of a distribution over dynamic models to explore environments, our agents were able

to explore more efficiently than point-estimate or ensemble-based approaches. In this

method we leveraged particle-based varitaional inference to incorporate an explicit di-

versity term that was missing from HyperGAN. Our method also enables a RL agents

to accrue high reward when the reward function is known exactly, by first exploring

according to its uncertainty. This initial exploration period is important to collect the

most useful data to reduce its own uncertainty in the environment. Third, we proposed

a new method for approximate Bayesian inference: GPVI. GPVI is in some sense the

culmination of the work presented here. GPVI is a generative counterpart to particle-

based variational inference, that allows for acquiring additional samples, without a large

performance cost. GPVI also showed improvements over amortized particle-based vari-

ational inference in all our evaluations, giving an ideal opportunity to revisit our work

117

in reinforcement learning. We also found that GPVI was amenable to GAN-style train-

ing, where a discriminator is used as a surrogate likelihood function. We found that

GPVI with a discriminator was able to fit target distributions much more accurately

than standard GANs, without suffering from mode collapse. We further improved on

GPVI by reducing the dimensionality of the inversion problem posed by GPVI training.

Our improved approach GPVI+ showed dramatic savings in space-efficiency over GPVI,

along with improvements to open-category prediction on CIFAR-10. These results are

encouraging, and we are eager to apply GPVI+ to higher dimensional image recognition

and open-category prediction tasks.

The work above has laid the foundation for an ongoing research agenda. We are in-

terested in both improving our work in uncertainty estimation, and in applying the

aforementioned implicit generative models to new tasks. A clear line of improvement

lies in the efficiency of Bayesian neural network inference. Currently, our methods use

generative models where the number of parameters scale linearly with the output di-

mensionality. To apply our work to the current state of the art architectures, we must

improve the scalability of our methods. We are also interested in application of GPVI(+)

to model-free reinforcement learning. We believe that learning an implicit distribution

over an agent’s value function or policy may allow agents to efficiently explore without

resorting to common exploration heuristics. Beyond the applications presented here, we

are also interested in multi-task and continual learning. We believe that the implicit

generative models presented here are a natural fit for learning a conditional distribution

of task-based functions given some environmental input. Furthermore, continual learn-

ing represents a component of Bayesian reasoning not explored in our Bayesian neural

network experiments. Recognizing and incorporating novel data for downstream predic-

tions should be within the range of capabilities of the systems we have presented. The

future of uncertainty-aware deep learning is indeed exciting.

The work presented in this dissertation was published in the following venues.

• Ratzlaff, Neale, and Li Fuxin. ”HyperGAN: A generative model for diverse, per-

formant neural networks.” International Conference on Machine Learning. PMLR,

(ICML, 2019).

• Ratzlaff, Neale, et al. ”Implicit generative modeling for efficient exploration.”

118

International Conference on Machine Learning. PMLR, (ICML, 2020).

• Ratzlaff, Neale*, Bai, Qinxun* et al. ”Generative Particle Variational Inference

via Estimation of Functional Gradients.” International Conference on Machine

Learning. PMLR, (ICML, 2021).

* equal contribution.

119

Bibliography

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In Conference on learning theory, pages 39–1, 2012.

Luca Ambrogioni, Umut Guclu, Yagmur Gucluturk, and Marcel van Gerven. Wasser-
stein variational gradient descent: From semi-discrete optimal transport to ensemble
variational inference. arXiv preprint arXiv:1811.02827, 2018.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient ex-
ploration through bayesian deep q-networks. In 2018 Information Theory and Appli-
cations Workshop (ITA), pages 1–9. IEEE, 2018.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances
in Neural Information Processing Systems, pages 1471–1479, 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on re-
inforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 449–458. JMLR. org, 2017.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424, 2015.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A
Efros. Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355,
2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018b.

120

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte
carlo. In International conference on machine learning, pages 1683–1691. PMLR, 2014.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann Le-
Cun. The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics,
pages 192–204, 2015.

William R Clements, Bastien Van Delft, Benôıt-Marie Robaglia, Reda Bahi Slaoui, and
Sébastien Toth. Estimating risk and uncertainty in deep reinforcement learning. arXiv
preprint arXiv:1905.09638, 2019.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks
for distributional reinforcement learning. arXiv preprint arXiv:1806.06923, 2018a.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional re-
inforcement learning with quantile regression. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018b.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop
on multiple classifier systems, pages 1–15. Springer, 2000.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Discov-
ering adversarial examples with momentum. CoRR, abs/1710.06081, 2017. URL
http://arxiv.org/abs/1710.06081.

Alain Durmus, Eric Moulines, and Eero Saksman. On the convergence of hamiltonian
monte carlo. arXiv preprint arXiv:1705.00166, 2017.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all
you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070,
2018.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein
variational gradient descent. arXiv preprint arXiv:1707.06626, 2017.

Roger Fletcher. Conjugate gradient methods for indefinite systems. In Numerical anal-
ysis, pages 73–89. Springer, 1976.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband,
Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy
networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

121

model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059, 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gor-
don Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. arXiv
preprint arXiv:1802.10026, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2672–2680. 2014.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015.
URL http://arxiv.org/abs/1412.6572.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, and
Richard Zemel. Learning the stein discrepancy for training and evaluating energy-
based models without sampling. In International Conference on Machine Learning,
pages 3732–3747. PMLR, 2020.

Alex Graves. Practical variational inference for neural networks. Advances in neural
information processing systems, 24:2348–2356, 2011.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106,
2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks
yield high-confidence predictions far away from the training data and how to mitigate
the problem. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 41–50, 2019.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for
scalable learning of bayesian neural networks. In International Conference on Machine
Learning, pages 1861–1869, 2015.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimiz-
ing the description length of the weights. In Proceedings of the sixth annual conference
on Computational learning theory, pages 5–13, 1993.

122

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic varia-
tional inference. Journal of Machine Learning Research, 14(5), 2013.

Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and
Pieter Abbeel. Vime: Variational information maximizing exploration. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 1109–1117. Curran Associates, Inc., 2016.

Tianyang Hu, Zixiang Chen, Hanxi Sun, Jincheng Bai, Mao Ye, and Guang Cheng. Stein
neural sampler. arXiv preprint arXiv:1810.03545, 2018.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-
berger. Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gor-
don Wilson. Averaging weights leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer net-
works. In Advances in neural information processing systems, pages 2017–2025, 2015.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for rein-
forcement learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

David Janz, Jiri Hron, Przemys law Mazur, Katja Hofmann, José Miguel Hernández-
Lobato, and Sebastian Tschiatschek. Successor uncertainties: exploration and uncer-
tainty in temporal difference learning. Advances in Neural Information Processing
Systems, 32:4507–4516, 2019.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks.
In Advances in Neural Information Processing Systems, pages 667–675, 2016.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence
bounds for bandit problems. In Artificial intelligence and statistics, pages 592–600,
2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local

123

reparameterization trick. Advances in neural information processing systems, 28:2575–
2583, 2015.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and
Aaron Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in Neural
Information Processing Systems, pages 6402–6413, 2017a.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in neural
information processing systems, pages 6402–6413, 2017b.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understanding
and accelerating particle-based variational inference. In International Conference on
Machine Learning, pages 4082–4092. PMLR, 2019.

Qiang Liu. Stein variational gradient descent as gradient flow. In Advances in neural
information processing systems, pages 3115–3123, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose
bayesian inference algorithm. Advances in neural information processing systems, 29:
2378–2386, 2016a.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose
bayesian inference algorithm. In Advances in neural information processing systems,
pages 2378–2386, 2016b.

Christos Louizos and Max Welling. Structured and efficient variational deep learning
with matrix gaussian posteriors. In International Conference on Machine Learning,
pages 1708–1716, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational
bayesian neural networks. arXiv preprint arXiv:1703.01961, 2017.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gor-
don Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in
Neural Information Processing Systems, 32:13153–13164, 2019.

124

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards Deep Learning
Models Resistant to Adversarial Attacks. ArXiv e-prints, June 2017.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfel-
low. Adversarial autoencoders. CoRR, abs/1511.05644, 2015. URL
http://arxiv.org/abs/1511.05644.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Rémi Munos. From bandits to monte-carlo tree search: The optimistic principle applied
to optimization and planning. 2014.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set
learning with counterfactual images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 613–628, 2018.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29–53. Springer, 1994.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain
monte carlo, 2(11):2, 2011.

Brendan O’Donoghue. Variational bayesian reinforcement learning with regret bounds.
arXiv preprint arXiv:1807.09647, 2018.

Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty
bellman equation and exploration. arXiv preprint arXiv:1709.05380, 2017.

P Ortner and R Auer. Logarithmic online regret bounds for undiscounted reinforcement
learning. Advances in Neural Information Processing Systems, 19:49, 2007.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learn-
ing via posterior sampling. In Advances in Neural Information Processing Systems,
pages 3003–3011, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped dqn. In Advances in neural information processing systems,
pages 4026–4034, 2016.

125

Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng Wen. Deep exploration via
randomized value functions. arXiv preprint arXiv:1703.07608, 2017.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pages
8617–8629, 2018.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-
based exploration with neural density models. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2721–2730. JMLR. org, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. In International Conference on Machine Learning, pages 5062–5071,
2019.

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker.
Implicit weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space
noise for exploration. arXiv preprint arXiv:1706.01905, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.
arXiv preprint arXiv:1710.05941, 2017.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant
neural networks. arXiv preprint arXiv:1901.11058, 2019.

Neale Ratzlaff, Qinxun Bai, Li Fuxin, and Wei Xu. Generative particle variational
inference via estimation of functional gradients. arXiv preprint arXiv:2103.01291,
2021.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approxima-
tion for neural networks. In 6th International Conference on Learning Representa-
tions, ICLR 2018-Conference Track Proceedings, volume 6. International Conference
on Representation Learning, 2018.

126

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international
joint conference on neural networks, pages 1458–1463, 1991.

Nabeel Seedat and Christopher Kanan. Towards calibrated and scalable uncertainty
representations for neural networks. arXiv preprint arXiv:1911.00104, 2019.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active explo-
ration. In International Conference on Machine Learning, pages 5779–5788, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian
Nowozin, D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your
model’s uncertainty? evaluating predictive uncertainty under dataset shift. In Ad-
vances in Neural Information Processing Systems, pages 13969–13980, 2019.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton.
Veegan: Reducing mode collapse in gans using implicit variational learning. arXiv
preprint arXiv:1705.07761, 2017.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international con-
ference on Machine learning, pages 881–888, 2006.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume
2000, pages 943–950, 2000.

Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Opti-
mal bayesian exploration in dynamic environments. In International Conference on
Artificial General Intelligence, pages 41–51. Springer, 2011.

István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight
exploration complexity bounds. In ICML, 2010.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John
Schulman, Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based
exploration for deep reinforcement learning. arXiv preprint arXiv:1611.04717, 2016.

127

William R Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. Wasserstein Auto-Encoders.
ArXiv e-prints, November 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

Martin J Wainwright and Michael Irwin Jordan. Graphical models, exponential families,
and variational inference. Now Publishers Inc, 2008.

Dilin Wang and Qiang Liu. Learning to draw samples: With application to amortized
mle for generative adversarial learning. arXiv preprint arXiv:1611.01722, 2016.

Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel.
Adversarial distillation of bayesian neural network posteriors. In International Con-
ference on Machine Learning (ICML), 2018.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynam-
ics. In Proceedings of the 28th international conference on machine learning (ICML-
11), pages 681–688, 2011.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty
quantification for bayesian neural network inference. arXiv preprint arXiv:1906.09686,
2019.

David Young. Iterative methods for solving partial difference equations of elliptic type.
Transactions of the American Mathematical Society, 76(1):92–111, 1954.

Rui Zhao and Volker Tresp. Curiosity-driven experience prioritization via density esti-
mation. arXiv preprint arXiv:1902.08039, 2019.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards deeper understanding of
variational autoencoding models. arXiv preprint arXiv:1702.08658, 2017.

