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Chapter 1: Introduction

Information theory is the scientific study of the quantification, storage, and transmission of

information. Built on the previous ideas of Nyquist and Hartley, Claude Shannon formulated the

basics of information theory in his ground-breaking 1948 paper titled “A Mathematical Theory

of Communication” [2]. Historically, Shannon’s information theory was developed to study the

fundamental limits of communications from an engineering perspective. Over the past 70 years,

information theory has provided a powerful foundation and paved the way for all modern com-

munication and signal processing technologies. Importantly, information theory has also been

playing key roles and inspirations in the development of many other scientific disciplines beyond

engineering such as computer science, physics, statistics, and biology, just to name a few. A key

measure in information theory is mutual information which quantifies the amount of the shared

information between two random variables. The maximum value of mutual information between

two random variables that model the input and the output of a communication channel is de-

fined as the channel capacity. Based on the well-known Shannon’s channel coding theorem, the

highest achievable rate that information can be transmitted over a noisy channel with arbitrar-

ily small error probability, is the channel capacity. Therefore, maximizing mutual information

between the input and the output of a channel is one of the most useful and interesting prob-

lems in communications and signal processing. That said, the significance of mutual information

extends beyond the fields of communications and signal processing. Indeed, mutual information

is a key metric behind many successful algorithms in statistics and machine learning. To that

end, the central theme of this dissertation is the development of novel information-theoretic based

approach for quantization algorithms (from a signal and communication perspective) and classi-
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fication algorithms (from a statistics and machine learning perspective) that aims to maximize

mutual information between the input and the quantized/classified output.

There are five main contributions of this dissertation. Each contribution is presented in a

separate chapter and can be read as a self-contained article. The first contribution is new closed-

form expressions for channel capacity of a new class of channel matrices. The second contribution

is the discovery of the structure for optimal binary quantizer and the associated methods for

finding an optimal quantizer that maximizes mutual information between the input and output

for a given input distribution. The third contribution is the discovery of the structure for an

optimal K-ary quantizer that maximizes the mutual information subject to an arbitrary constraint

on the output distribution. The fourth contribution is the joint design of an optimal quantizer

that maximizes the mutual information over both the input distribution and the quantization

parameters for an arbitrary binary noisy channel with a given noise density. The last contribution

is the development and analysis of novel efficient classification algorithms for finding the minimum

impurity partition using mutual information as the metric. We now provide an abstract for each

contribution.

First contribution. While capacities of discrete memoryless channels are well studied, it

is still not possible to obtain a closed-form expression for the capacity of an arbitrary discrete

memoryless channel (DMC). In this contribution, we study a class of DMCs whose channel matrix

is an invertible positive matrix. This class of channel matrices can be used to model many real-

world settings. Next, an elementary technique based on Karush-Kuhn-Tucker (KKT) conditions

is used to obtain (1) a good upper bound of channel capacity of a discrete memoryless channel

having an invertible positive channel matrix and (2) a closed-form expression for the capacity if

the channel matrix satisfies certain conditions related to its singular value and its Gershgorin’s

disk.

Second contribution. We consider a channel with a binary input X being corrupted by a
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continuous-valued noise that results in a continuous-valued output Y . An optimal binary quan-

tizer is used to quantize the continuous-valued output Y to the final binary output Z to maximize

the mutual information I(X;Z). We show that when the ratio of the channel conditional density

r(y) = P (Y=y|X=0)
P (Y=y|X=1) is a strictly increasing or decreasing function of y, then a quantizer having a

single threshold can maximize mutual information. Furthermore, we show that an optimal quan-

tizer (possibly with multiple thresholds) is the one with the thresholding vector whose elements

are all the solutions of r(y) = r for some constant r∗ > 0. In addition, we also characterize

necessary conditions using fixed point theorem for the optimality and uniqueness of a quantizer.

Based on these conditions, we propose an efficient procedure for determining all locally optimal

quantizers, and thus, a globally optimal quantizer can be found. Our results also confirm some

previous results using alternative elementary proofs.

Third contribution. We consider a channel whose the input contains K discrete symbols

modeled as a discrete random variableX having a probability mass function p(x)=[p(x1), p(x2), . . . ,

p(xK)] and the received signal Y being a continuous random variable. Y is a distorted version

of X caused by a channel distortion, characterized by the conditional densities p(y|xi) = φi(y),

i = 1, 2, . . . ,K. To recover X, a quantizer Q is used to quantize Y back to a discrete output

Z = {z1, . . . , zN} such that the mutual information I(X;Z) is maximized subject to an arbitrary

constraint on p(z) = [p(z1), p(z2), . . . , p(zN )]. Formally, we are interested in designing an optimal

quantizer Q∗ that maximizes βI(X;Z)−C(p(z)) where β is a positive number that controls the

trade-off between maximizing I(X;Z) and minimizing an arbitrary cost function C(p(z)). Let

p(x|y) = [p(x1|y), p(x2|y), . . . , p(xK |y)] be the posterior distribution of X for given value y, we

show that for any arbitrary cost function C(.), the optimal quantizer Q∗ separates the vectors

p(x|y) into convex regions. Using this result, a method is proposed to determine an upper bound

on the number of thresholds (decision variables on y) which is used to speed up the algorithm for

finding an optimal quantizer. Numerical results are presented to validate the findings.
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Four contribution. We consider a communication channel with a binary input X being

distorted by an arbitrary continuous-valued noise which results in a continuous-valued signal Y

at the receiver. A quantizer Q is used to quantize Y back to a binary output Z. Our goal is

to determine the optimal quantizer Q∗ and the corresponding input probability mass function

p∗X that achieve the capacity. We present two new lower and upper bounds on the capacity in

terms of quantization parameters, based on which we propose an efficient algorithm for finding

the optimal quantizer.

Fifth contribution. Partitioning algorithms play a key role in many scientific and engi-

neering disciplines. A partitioning algorithm divides a set into a number of disjoint subsets or

partitions. Often, the quality of the resulted partitions is measured by the amount of impurity

in each partition, the smaller impurity the higher quality of the partitions. In general, for a

given impurity measure specified by a function of the partitions, finding the minimum impurity

partitions is an NP-hard problem. Let M be the number of N -dimensional elements in a set and

K be the number of desired partitions, then an exhaustive search over all the possible partitions

to find a minimum partition has the complexity of O(KM ) which quickly becomes impractical for

many applications with modest values of K and M . Thus, many approximate algorithms with

polynomial time complexity have been proposed, but few provide the bounded guarantee. In

this paper, we propose a linear time algorithm with bounded guarantee based on the maximum

likelihood principle. Furthermore, the guarantee bound of the proposed algorithm is better than

the state-of-the-art method in [1] for many impurity functions, and at the same time, for K ≥ N ,

the computational complexity is reduced from a polynomial time complexity O(M3) to a linear

time complexity O(NM). Both theoretical and practical results are provided to illustrate the

advantages of the proposed algorithm.
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Chapter 2: Bounds and Closed-Form Expressions for Capacities of Discrete

Memoryless Channels with Invertible Positive Matrices

2.1 Introduction

Discrete memoryless channels (DMC) play a critical role in the early development of information

theory and its applications. DMCs are especially useful for studying many well-known modula-

tion/demodulation schemes (e.g., PSK and QAM) in which the continuous inputs and outputs of

a channel are quantized into discrete symbols. Thus, there exists a rich literature on the capacities

of DMCs [3–9]. In particular, capacities of many well-known channels such as (weakly) symmetric

channels can be written in elementary formulas [3]. However, it is often not possible to express

the capacity of an arbitrary DMC in a closed-form expression [3]. Recently, several papers have

been able to obtain closed-form expressions for a small class of DMCs with small alphabets. For

example, Martin et al. established closed-form expression for a general binary channel [10]. Liang

showed that the capacity of channels with two inputs and three outputs can be expressed as an

infinite series [11]. Paul Cotae et al. found the capacity of two input and two output channels

in term of the eigenvalues of the channel matrices [12]. In [13], the authors used geometric pro-

gramming to construct a simple closed-form expression for the upper bound of the capacity of

an arbitrary DMC. It is worth noting that the approach in [13] based on elementary Lagrange

functions is similar to our approach in this chapter. On the other hand, the problem of finding

the capacity of a discrete memoryless channel can be formulated as a convex optimization prob-

lem [14], [15]. Thus, efficient algorithmic solutions exist. There are also iterative algorithms such
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as Arimoto-Blahut algorithm [4], [5] and other variants for computing channel capacities [16–20].

Even though there exist efficient algorithms for finding the capacity of an arbitrary DMC, there

are a number of reasons why channel capacity or bounds expressed in closed-form expression can

be very useful. These include (1) formulas can often provide a good intuition about the relation-

ship between the capacity and different channel parameters, (2) formulas offer a faster way to

determine the capacity than that of algorithms, and (3) formulas are useful for analytical deriva-

tions where closed-form expression of the capacity is needed in the intermediate steps. Moreover,

the channel capacity or bounds expressed in closed-form expression might be particularly useful

for channels having large alphabet sizes since the well-known Arimoto-Blahut algorithm already

provides the capacity values fairly quickly for channels with small alphabet sizes. In fact, our

work is motivated by our current work on a prototype of a Free Space Optical communication

system called WiFO [21]. WiFO’s transceiver is capable of adjusting transmitting and receiving

parameters for power and coverage optimization. The result is that the channel matrix can be

changed dynamically. For a given channel matrix, we want to know the closed-form expression of

the channel capacity so that a trade-off among power consumption, coverage, and capacity can

be optimized quickly.

To that end, in this chapter we investigate the closed-form expressions for the capacities and

their upper bounds of an important class of DMCs whose channel matrices are invertible positive

matrices. An invertible positive matrix is a square matrix whose entries are strictly greater than

zero and invertible. There are a number of reasons for using an invertible positive matrix to

model many communication channels in real-world settings. First, in most digital communication

systems, the transmitter sends a set of transmitted symbols (inputs) and the receiver aims to

decode the received signals into one of the transmitted symbols (outputs). Consequently, the

channel matrix is a square matrix consisting of the same number of inputs and outputs. Second,

since it is physically impossible to design a communication channel without error, the assumption
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on the entries in the channel matrix to be strictly greater than zero is reasonable. In the case when

an entry is truly zero, it is always possible to approximate the zero with a small positive number.

Third, for a n × n matrix, if the entries are drawn uniformly from a real set (or more precisely

in (0,1) and the rows form a valid conditional pmf), then it can be shown that the probability

of the matrix being invertible is approaching 1 with increasing n. Thus, invertible matrices are

arguably useful to model many communication channels in real-world settings.

Building on the work in [9], our contributions include: (1) we describe an elementary technique

based on the theory of convex optimization, to find the closed-form expression for a good upper

bound on capacities of discrete memoryless channels with positive invertible channel matrix,

and (2) we find the optimality conditions of the channel matrix for which the upper bound is

precisely the capacity. We refine the optimality conditions in [9] and provide additional easy-to-

use conditions for obtaining closed-form expression for capacities. In particular, the optimality

conditions establish a relationship between the singular value and the Gershgorin’s disk of the

channel matrix. Intuitively, this optimality condition of a channel matrix corresponds to the

channel matrix belonging to a subclass of strictly diagonally dominant matrices. Since strictly

diagonally dominant matrices represent reliable channels (to be discussed), our results could

be useful since most communication systems are designed to achieve a certain level of reliability.

Furthermore, our results extend the class of channel matrices, especially the symmetric and weakly

symmetric matrices whose channel capacities can be found in closed-form expressions.

2.2 Preliminaries

In this section, we provide definitions together with elementary results that will aid our discussions.

In particular, we will discuss (1) the optimality KKT conditions and (2) linear algebra results

which we use to derive the closed-form expressions for both the capacity upper bound and exact

capacity.
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2.2.1 Convex Optimization and KKT Conditions

A DMC is characterized by a random variable X ∈ {x1, x2, . . . , xm} for the inputs, a random

variable Y ∈ {y1, y2, . . . , yn} for the outputs, and a channel matrix A ∈ Rm×n. In this chapter,

we consider DMCs with equal number of inputs and outputs n, thus A ∈ Rn×n. The matrix

entry Aij represents the conditional probability that given xi is transmitted, yj is received. Let

p = (p1, p2, . . . , pn)T be the input probability mass vector (pmf) of X, where pi denotes the

probability of xi to be transmitted, then the pmf of Y is q = (q1, q2, . . . , qn)T = AT p and AT

denotes the transpose of A. The mutual information between X and Y is:

I(X;Y ) = H(Y )−H(Y |X), (2.1)

where

H(Y ) = −
n∑
j=1

qj log qj (2.2)

H(Y |X) = −
n∑
i=1

n∑
j=1

piAij logAij . (2.3)

The mutual information function can be written as:

I(X;Y ) = −
n∑
j=1

(AT p)j log (AT p)j +
n∑
i=1

n∑
j=1

piAij logAij , (2.4)

where (AT p)j denotes the jth component of the vector q = (AT p). The capacity C associated

with a channel matrix A is the theoretical maximum rate at which information can be transmitted

over the channel without the error [7], [22], [23]. It is obtained using the optimal pmf p∗ such

that I(X;Y ) is maximized. For a given channel matrix A, I(X;Y ) is a concave function of p [3].
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Therefore, maximizing I(X;Y ) is equivalent to minimizing −I(X;Y ), and finding the capacity

can be cast as the following convex problem:

Minimize:
n∑
j=1

(AT p)j log (AT p)j −
n∑
i=1

n∑
j=1

piAij logAij .

Subject to: 
p � 0

1T p = 1.

The optimal p∗ can be found efficiently using various algorithms such as gradient methods [24],

but in a few cases, p∗ can be found directly using the Karush-Kuhn-Tucker (KKT) conditions [24].

To explain the KKT conditions, we first state the canonical convex optimization problem below:

Problem P1: Minimize: f(x)

Subject to: 
gi(x) ≤ 0, i = 1, 2, . . . n,

hj(x) = 0, j = 1, 2, . . . ,m,

where f(x), gi(x) are convex functions and hj(x) is a linear function.

Define the Lagrangian function as:

L(x, λ, ν) = f(x) +
n∑
i=1

λigi(x) +
m∑
j=1

νjhj(x), (2.5)

then the KKT conditions [24] states that, the optimal point x∗ must satisfy:
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

gi(x
∗) ≤ 0,

hj(x
∗) = 0,

dL(x,λ,ν)
dx |x=x∗,λ=λ∗,ν=ν∗ = 0,

λ∗i gi(x
∗) = 0,

λ∗i ≥ 0,

(2.6)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

2.2.2 Elementary Linear Algebra Results

We first begin with some definitions and preliminaries that will be used to derive our results.

Definition 2.1. Let A ∈ Rn×n be an invertible channel matrix and H(Ai) = −
∑n

k=1Aik logAik

be the entropy of ith row, define

Kj = −
n∑
i=1

A−1
ji

n∑
k=1

Aik logAik =

n∑
i=1

A−1
ji H(Ai),

where A−1
ji denotes the entry (j, i) of the inverse matrix A−1. Kmax = maxjKj and Kmin =

minjKj are called the maximum and minimum inverse row entropies of A, respectively.

Definition 2.2. Let A ∈ Rn×n be a square matrix. The Gershgorin radius of ith row of A [25]

is defined as:

Ri(A) =
n∑
j 6=i
|Aij |. (2.7)
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The Gershgorin ratio of ith row of A is defined as:

ci(A) =
Aii
Ri(A)

, (2.8)

and the minimum Gershgorin ratio of A is defined as:

cmin(A) = min
i

Aii
Ri(A)

. (2.9)

We note that since the channel matrix is a stochastic matrix, therefore

cmin(A) = min
i

Aii
Ri(A)

= min
i

Aii
1−Aii

. (2.10)

Definition 2.3. Let A ∈ Rn×n be a square matrix.

(a) A is called a positive matrix if Aij > 0 ∀ i, j.

(b) A is called a strictly diagonally dominant positive matrix [26] if A is a positive matrix and

Aii >
∑
j 6=i

Aij ,∀i, j. (2.11)

Lemma 2.1. Let A ∈ Rn×n be a strictly diagonally dominant positive channel matrix then (a)

it is invertible; (b) the eigenvalues of A−1 are 1
λi
∀ i where λi are eigenvalues of A, (c) A−1

ii > 0

and the largest absolute element in the ith column of A−1 is A−1
ii , i.e., A−1

ii ≥ |A
−1
ji | ∀ j.

Proof. The proof is shown in Appendix 2.6.1.

Lemma 2.2. Let A ∈ Rn×n be a strictly diagonally dominant positive matrix, then:

ci(A
−T ) ≥ cmin(A)− 1

(n− 1)
, ∀i. (2.12)
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Moreover, for any rows k and l,

|A−1
ki |+ |A

−1
li | ≤ A

−1
ii

cmin(A)

cmin(A)− 1
, ∀i. (2.13)

Proof. The proof is shown in Appendix 2.6.2.

Lemma 2.3. Let A ∈ Rn×n be a strictly diagonally dominant positive matrix, then:

max
i,j

A−1
ij ≤

1

σmin(A)
, (2.14)

where maxi,j A
−1
ij is the largest entry in A−1 and σmin(A) is the minimum singular value of A.

Proof. The proof is shown in Appendix 2.6.3.

Lemma 2.4. Let A ∈ Rn×n be an invertible channel matrix, then

A−11 = 1,

i.e., the sum of any row of A−1 equals to 1. Furthermore, for any probability mass vector x, sum

of the vector y = A−Tx equal to 1.

Proof. The proof is shown in Appendix 2.6.4.

2.3 Main Results

Our first main result is an upper bound on the capacity of discrete memoryless channels having

invertible positive channel matrices.
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Proposition 2.1 (Main Result 1). Let A ∈ Rn×n be an invertible positive channel matrix and

q∗j =
2−Kj∑n
i=1 2−Ki

, (2.15)

p′ = A−T q∗, (2.16)

then the capacity C associated with the channel matrix A is upper bounded by:

C ≤ −
n∑
j=1

q∗j log q∗j +
n∑
i=1

n∑
j=1

p′iAij logAij . (2.17)

Proof. Let q be the pmf of the output Y , then q = AT p. Thus,

I(X;Y ) = H(Y )−H(Y |X) (2.18)

= −
n∑
j=1

qj log qj +
n∑
i

(A−T q)i

n∑
k

Aik logAik.

We construct the Lagrangian in (2.5) using −I(X;Y ) as the objective function and optimiza-

tion variable qj :

L(qj , λj , νj) = −I(X;Y )−
n∑
j=1

qjλj + ν(

n∑
j=1

qj − 1), (2.19)

where the constraints g(x) and h(x) in problem P1 are translated into −qj ≤ 0 and
∑n

j=1 qj = 1,

respectively.
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Using the KKT conditions in (2.6), the optimal points q∗j , λ
∗
j , ν

∗ for all j, must satisfy:

q∗j ≥ 0, (2.20)
n∑
j=1

q∗j = 1, (2.21)

ν∗ − λ∗j −
dI(X;Y )

dq∗j
= 0, (2.22)

λ∗j ≥ 0, (2.23)

λ∗jq
∗
j = 0. (2.24)

Since 0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1, there exists at least one pi > 0 . Since Aij > 0 ∀i, j, we

have:

q∗j =
n∑
i=1

piAij > 0, ∀j. (2.25)

Based on (2.24) and (2.25), we must have λ∗j = 0, ∀j. Therefore, all five KKT conditions (2.20-

2.24) are reduced to the following two conditions:

n∑
j=1

q∗j = 1, (2.26)

ν∗ − dI(X;Y )

dq∗j
= 0. (2.27)

Next,

dI(X;Y )

dqj
=

n∑
i=1

A−1
ji

n∑
k=1

Aik logAik − (1 + log qj)

= −Kj − (1 + log qj). (2.28)
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Using (2.27) and (2.28), we have:

q∗j = 2−Kj−ν∗−1. (2.29)

Plugging (2.29) to (2.26), we have:

n∑
j=1

2−Kj−ν∗−1 = 1,

ν∗ = log

n∑
j=1

2−Kj−1.

From (2.29),

q∗j = 2−Kj−ν∗−1 =
2−Kj

2ν∗+1
=

2−Kj∑n
j=1 2−Kj

,∀j. (2.30)

We know that a valid optimal input distribution has to satisfy 0 ≤ p∗i ≤ 1 and
∑n

i=1 p
∗
i = 1. If

q∗ is such that p′ = A−T q∗ � 0 and (A−T q∗)T1 =
∑n

i=1 p
′
i = 1, then p′ = p∗ is a valid and optimal

pmf, and Proposition 2.1 will hold with equality by the KKT conditions. Now, the condition∑n
i=1 p

′
i = 1 holds by Lemma 2.4. However, the condition 0 ≤ p′i ≤ 1 may not satisfy. In this

case, maximizing I(X;Y ) in terms of q and ignoring this constraint is equivalent to enlarging the

feasible region. Since maxx∈A f(x) ≥ maxx∈B f(x) if B ⊂ A for any arbitrary f(x), the upper

bound of channel capacity in Proposition 2.1 is achieved by plugging q∗ from (2.15) into (2.16) to

obtain p′, and plugging p′ and q∗ into (2.4).

We note that the closed-form expressions for channel capacity are also described in [6] and [8]

(Section 3.3). However in both [6] and [8], the sufficient conditions for the closed-form expressions

are not fully characterized. We now show another contribution that characterizes the sufficient

conditions on the channel matrix A such that its capacity can be written in closed-form expression,
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specifically the upper bound in (2.17).

Proposition 2.2 (Main Result 2). Let A ∈ Rn×n be a strictly diagonally dominant positive

matrix, if ∀i,

ci(A
−T ) ≥ (n− 1)2Kmax−Kmin , (2.31)

then the capacity of the channel having channel matrix A admits a closed-form expression which

is exactly the upper bound in Proposition 2.1.

Proof. Based on the discussion of the KKT conditions, it is sufficient to show that if p∗ =

A−T q∗ � 0 and
∑n

i=1 p
∗
i = (A−T q∗)T1 = 1 then C has a closed-form expression. The condi-

tion (A−T q∗)T1 = 1 is always true as shown in Lemma 2.4 in the Appendix 2.6.4. Thus, we only

need to show that if ci(A
−T ) ≥ 2Kmax−Kmin , then p∗ = A−T q∗ � 0.

Let q∗min = minj q
∗
j and q∗max = maxj q

∗
j , we have:

p∗i =
∑
j

q∗jA
−1
ji

= q∗iA
−1
ii +

∑
j 6=i

q∗jA
−1
ji

≥ q∗minA
−1
ii − (

∑
j 6=i

q∗j )(
∑
j 6=i
|A−1

ji |) (2.32)

≥ q∗minA
−1
ii − (n− 1)q∗max(

∑
j 6=i
|A−1

ji |), (2.33)

with (2.32) due to A−1
ii > 0 which follows by Lemma 2.1-(c), (2.33) is due to q∗max ≥ q∗j ∀ j. Now
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if we want p∗i ≥ 0, ∀ i, from (2.33), it is sufficient to require that, ∀i,

ci(A
−T ) =

A−1
ii∑

j 6=i |A
−1
ji |

≥ (n− 1)q∗max

q∗min

= (n− 1)

2−Kmin∑n
j=1 2−Kj

2−Kmax∑n
j=1 2−Kj

(2.34)

= (n− 1)2Kmax−Kmin ,

with (2.34) due to (2.30) and q∗max, q∗min are corresponding to Kmin, Kmax, respectively. Thus,

Proposition 2.2 is proven.

We are now ready to state and prove the third main result that characterizes the sufficient

conditions on a channel matrix so that the upper bound in Proposition 2.1 is precisely the capacity.

Proposition 2.3. Let A ∈ Rn×n be a strictly diagonally dominant positive channel matrix and

Hmax(A) be the maximum row entropy of A. The capacity C is the upper bound in Proposition

2.1 i.e., hold with equality if

V

√
cmin(A)− 1

(n− 1)2
≥ 2

nHmax(A)
σmin(A) , (2.35)

where σmin(A) is the minimum singular value of channel matrix A, and

V =
cmin(A)

cmin(A)− 1
. (2.36)
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Proof. From (2.12) in Lemma 2.2 and Proposition 2.2, if we can show that

cmin(A)− 1

(n− 1)
≥ (n− 1)2Kmax−Kmin , (2.37)

then Proposition 2.3 is proven. Suppose that Kmax and Kmin are obtained at rows j = L and

j = S, respectively. We note that from (2.30), qmax = maxj qj and qmin = minj qj correspond to

Kmin and Kmax, respectively. Thus, from the Definition 1, we have:

Kmax−Kmin =

n∑
i=1

A−1
LiH(Ai)−

n∑
i=1

A−1
Si H(Ai)

≤ |
n∑

i=1

A−1
LiH(Ai)|+ |

n∑
i=1

A−1
Si H(Ai)| (2.38)

≤
n∑

i=1

|A−1
Li ||H(Ai)|+

n∑
i=1

|A−1
Si ||H(Ai)| (2.39)

≤ Hmax(A)

n∑
i=1

(|A−1
Li |+ |A

−1
Si |) (2.40)

≤ Hmax(A)

n∑
i=1

A−1
ii

cmin(A)

cmin(A)− 1
(2.41)

≤ nHmax(A)(max
i,j

A−1
ij )

cmin(A)

cmin(A)− 1
(2.42)

≤ nHmax(A)V

σmin(A)
, (2.43)

where (2.38) due to the property of absolute value function, (2.39) due to Schwarz inequality,

(2.40) due to Hmax(A) is the maximum row entropy of A, (2.41) due to (2.13), (2.42) due to

maxi,j A
−1
ij is the largest entry in A−1 and (2.43) is due to Lemma 2.3. Thus,

(n− 1)2
nHmax(A)V
σmin(A) ≥ (n− 1)2Kmax−Kmin . (2.44)
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From (2.37) and (2.44), if

cmin(A)− 1

(n− 1)
≥ (n− 1)2

nHmax(A)V
σmin(A) , (2.45)

then the capacity C is the upper bound in Proposition 2.1. (2.45) is equivalent to (2.35). Thus

Proposition 2.3 is proven.

We note that the condition in Proposition 2.3 is easier to verify than the condition in Propo-

sition 2.2 since it can be performed without requiring matrix inverse. Other easy-to-use versions

of checking condition are stated in Proposition 2.4 and Corollary 2.1.

Proposition 2.4. The capacity C is the upper bound in Proposition 2.1 if

cmin(A)− 1

(n− 1)2
≥ 2

2n logn
σmin(A) . (2.46)

Proof. Similar to Proposition 2.3,

Kmax−Kmin ≤ Hmax(A)

n∑
i=1

(|A−1
Li |+ |A

−1
Si |) (2.47)

≤ Hmax(A)n(2 max
i,j

A−1
ij ) (2.48)

≤ 2n log n

σmin(A)
, (2.49)

with (2.47) is identical to (2.40), (2.48) is due to maxi,j A
−1
ij is the largest entry in A−1, (2.49)

due to Hmax(A) ≤ log n and Lemma 2.3. Thus, by changing nHmax(A)V
σmin(A) in (2.45) by 2n logn

σmin(A) , the

Proposition 2.4 is proven.

A direct result of Proposition 2.3 without using singular value is shown in Corollary 2.1.
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Corollary 2.1. The capacity C is the upper bound in Proposition 2.1 if

V

√
cmin(A)− 1

(n− 1)2
≥ 2

nH∗max(A)

σ∗ , (2.50)

where,

V =
cmin(A)

cmin(A)− 1
, (2.51)

σ∗ =
cmin(A)− n/2
cmin(A) + 1

, (2.52)

H∗max(A) = log(cmin(A) + 1) +
log(n− 1)− cmin(A) log cmin(A)

cmin(A) + 1
. (2.53)

Proof. We will construct the lower bound for σmin(A) and the upper bound for Hmax(A). From

Lemma 2.5 in Appendix 2.6.5

σmin(A) ≥ cmin(A)− n/2
cmin(A) + 1

= σ∗, (2.54)

and

Hmax(A) ≤ log(cmin(A)+1)+
log(n−1)−cmin(A) log cmin(A)

cmin(A) + 1

= H∗max(A). (2.55)

Therefore
nHmax(A)V

σmin(A)
≤ nH∗max(A)

σ∗
. (2.56)

Thus, by changing nHmax(A)
σmin(A) in (2.35) by nH∗max(A)

σ∗ , the Corollary 2.1 is proven.
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We note that, when cmin(A) is relatively larger than the size of matrix n, the lower bound

of σmin(A) goes to 1. We also note that (2.50) can be checked efficiently without requiring both

Hmax(A) and σmin(A) at the expense of a looser upper bound as compare to (2.35).

2.4 Examples and Numerical Results

2.4.1 Example 1: Cooperative Relay-MISO Channels

In this example, we investigate the channel capacity for a class of channels named Relay-MISO

(Relay - Multiple Input Single Output). Relay-MISO channel [27] can be constructed by the

combination of a relay channel [28] [29] and a Multiple Input Single Output channel, as illustrated

in Fig. 2.1.

In a Relay-MISO channel, n senders want to transmit data to a same receiver via n relay base

station nodes. The uplink of these senders using wireless links that are prone to transmission

errors. Each sender can transmit bit “0” or “1” with the probability of bit flipping is α, 0 ≤ α ≤ 1.

For a simplicity, suppose that n relay channels have the same error probability α. Next, all of

the relay base station nodes will relay the signal by a reliable channel such as optical fiber cable

to a same receiver. The receiver adds all the relay signals (symbols) to produce a single output

symbol.

It can be shown that the channel matrix of this Relay-MISO channel [27] is an invertible

matrix of size (n+ 1)× (n+ 1) whose Aij can be computed as:

Aij =

s=min(n+1−j,i−1)∑
s=max(i−j,0)

(
j−i+s
n+1−i

)(
s

i−1

)
αj−i+2s(1−α)n−(j−i+2s).

We note that this Relay-MISO channel matrix is invertible and the inverse matrix has the closed-

form expression which is characterized in [27]. For example, the channel matrix of a Relay-MISO
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Figure 2.1: Relay-MISO channel

channel with n = 3 is given as follows:


(1−α)3 3(1−α)2α 3(1−α)α2 α3

α(1−α)2 2α2(1−α) + (1−α)3 2(1−α)2α+α3 (1−α)α2

(1−α)α2 2(1−α)2α+α3 2α2(1−α)+(1−α)3 α(1−α)2

α3 3(1−α)α2 3(1−α)2α (1−α)3


,

where 0 ≤ α ≤ 1. We note that this channel matrix is strictly diagonally dominant matrix when

α is close to 0 or α is close to 1. In addition, for α values that are close to 0 or 1, it can be shown

that channel matrix A satisfies the conditions in Proposition 2.3. Thus, the channel capacity

admits a closed-form expression in Proposition 2.1. For other values of α, e.g. closer to 0.5, the

optimality conditions in Proposition 2.3 no longer holds. In this case, Proposition 2.1 can still be

used as a good upper bound on the capacity.

We show that our upper bound is tighter than existing upper bounds. In particular, Fig.
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2.2 shows the actual capacity and the known upper bounds as functions of parameter α for

Relay-MISO channels having n = 3. The green curve depicts the actual capacity computed using

convex optimization algorithm. The red curve is constructed using our closed-form expression in

Proposition 2.1, and the blue dotted curve is the constructed using the well-known upper bound

result of channel capacity in [13], [30]. Specifically, this upper bound is:

C ≤ log(
n∑
j=1

max
i
Aij). (2.57)

Finally, the red dotted curve shows another well-known upper bound by Arimoto [5] which is:

C ≤ log(n) + max
j

[

n∑
i=1

Aji log(
Aji∑n
k=1Aki

)]. (2.58)

We note that the second term is negative.

Fig. 2.2 shows that our closed-form upper bound is precisely the capacity (the red and green

graphs are overlapped) when α values are close to 0 or 1 as predicted by the optimality conditions

in Proposition 2.3. On the other hand, when α values are closer to 0.5, our optimality conditions

no longer hold. In this case, we can only determine the upper bound. However, it is interesting to

note that our upper bound in this case is tighter than both the Boy-Chiang [13] and Arimoto [5]

upper bounds.

2.4.2 Example 2: Symmetric and Weakly Symmetric Channels

Our results confirm the capacity of the well known symmetric and weakly symmetric channel

matrices. In particular, when the channel matrix is symmetric and positive definite, all our

results are applicable. Indeed, since the channel matrix is symmetric and positive definite, the
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Figure 2.2: Channel capacity and various upper bounds as functions of α

inverse channel matrix exists and also is symmetric. From Definition 2.1, all values of Kj is the

same since they are the same sum of permutation entries. Therefore, from Proposition 2.1, the

optimal output probability mass vector

q∗j =
2−Kj∑n
i=1 2−Ki

(2.59)

are equal each other for all j. As a result, the input probability mass function p∗ = A−T q∗ is the

uniform distribution, and the channel capacity is upper bounded by:

C ≤ −
n∑
j=1

q∗j log q∗j +

n∑
i=1

n∑
j=1

p∗iAij logAij (2.60)

= log n−H(Arow). (2.61)

Interestingly, our result also shows the capacities of many channels that are not weakly sym-
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metric, but admits the closed-form formula of weakly symmetric channels. In particular, consider

a channel matrix called semi-weakly symmetric whose all rows are permutations of each other, but

the sum of entries in each column might not be the same. Furthermore, if the optimal condition

is satisfied (Proposition 2.3), then the channel has closed-form capacity which is identical to the

capacity of a symmetric and weakly symmetric channel:

C = log n−H(Arow). (2.62)

Note that every row of a quasi-symmetric matrix is a permutation of the first row [31]. Thus,

a quasi-symmetric matrix is an example of a semi-weakly symmetric matrix. For example, the

following channel matrix:

A =


0.93 0.04 0.03

0.04 0.93 0.03

0.04 0.03 0.93


is not a weakly symmetric channel even though its rows are permutations of each other since the

column sums are different. However, this channel matrix satisfies Proposition 2.3 and Corollary

2.1 since n = 3, σmin(A) = 0.88916, σ∗ = 0.825, Hmax(A) = 0.43489, H∗max(A) = 0.43592 and

cmin(A) = 13.286. Thus, it has closed-form formula for capacity, and can be easily shown to be

C = log 3−H(0.93, 0.04, 0.03) = 1.1501. The optimal output and input probability mass vectors

can be shown to be:

qT =

[
0.33333 0.33333 0.33333

]
,

pT =

[
0.32959 0.33337 0.33704

]
,

respectively.

The following channel matrix is another example of semi-weakly symmetric matrix whose
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Figure 2.3: Channel capacity of (semi) weakly symmetric channel as a function of γ

entries are controlled by a parameter γ in the range of (0, 1) and given by the following form:


(1− γ)3 3(1− γ)2γ 3(1− γ)γ2 γ3

3(1− γ)2γ (1− γ)3 γ3 3(1− γ)γ2

γ3 3(1− γ)γ2 (1− γ)3 3(1− γ)2γ

γ3 3(1− γ)γ2 3(1− γ)2γ (1− γ)3


.

Fig. 2.3 shows the capacity upper bound of the semi-weakly symmetric channel and the actual

channel capacity as function of γ. Theoretically, the conditions in Proposition 2.3 and Proposition

2.4 can be shown to hold for γ ≤ 0.02. However, for much values of γ, the upper bound is identical

to the actual channel capacity which can be numerically determined using CVX [14]. This happens

because these conditions are sufficient but not necessary.
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2.4.3 Example 3: Unreliable Channels

We now consider an unreliable channel whose channel matrix is:

A =


0.6 0.3 0.1

0.7 0.1 0.2

0.5 0.05 0.45

 .
In this case, our optimality conditions do not satisfy, and the Arimoto upper bound is tightest

(0.17083) as compared to our upper bound (0.19282) and Boyd-Chiang upper bound (0.848).

2.4.4 Example 4: Bounds as Function of Channel Reliability

Since we know that our proposed bounds are tight if the channel is reliable, we want to examine

quantitatively how channel reliability affects various bounds. In this example, we consider a

special class of channel whose channel matrix entries are controlled by a reliability parameter β

for 0 ≤ β ≤ 1 as shown below:

A =



1− β 0.3β 0.4β 0.3β

0.4β 1− β 0.3β 0.3β

0.5β 0.4β 1− β 0.1β

0.1β 0.2β 0.7β 1− β


.

When β is small, the channel tends to be reliable and when β is large, the channel tends to

be unreliable. Fig. 2.4 shows various upper bounds as a function of β together with the actual

capacity. The actual channel capacities for various β are numerically computed using a convex

optimization algorithm [14]. As seen, our closed-form upper bound expression for capacity (red
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Figure 2.4: Channel capacity and various upper bounds functions of β

curve) from Proposition 2.1 is much closer to the actual capacity (black dash curve) than other

bounds for most values of β. When β is small (β ≤ 0.6) or channel is reliable, the closed-form

upper bound is precise the real channel capacity, and we can verify that the optimal conditions

in Proposition 2.3 holds. When the channel becomes unreliable, i.e., β ≥ 0.6, our upper bound

is no longer tight, however, it is still the tightest among all the existing upper bounds. We note

that when the β is small, the channel matrix becomes a nearly diagonally dominant matrix, and

our upper bound is tightest.

2.5 Conclusion

In this chapter, we describe an elementary technique based on Karush-Kuhn-Tucker (KKT) con-

ditions to obtain (1) a good upper bound of a discrete memoryless channel having an invertible

positive channel matrix and (2) a closed-form expression for the capacity if the channel matrix
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satisfies certain conditions related to its singular value and its Gershgorin’s disk. We provide a

number of channels where the proposed upper bound becomes precisely the capacity. We also

demonstrate that our proposed bounds are tighter than other existing bounds for these channels.

2.6 Appendix

2.6.1 Proof of Lemma 2.1

For claim (a), since the channel matrix is strictly diagonally dominant, using Gershgorin circle

theorem [25] that for any eigenvalues λ1, λ2, . . . , λn, we must have:

λi ≥ Aii −
∑
j 6=i
|Aij | > 0.

Thus, det(A) = λ1λ2 . . . λn > 0. Therefore, A is invertible.

Claim (b) is a well-known algebra result [32].

For claim (c), due to AA−1 = I and Aij > 0 ∀ i, j, therefore, ∀ j exists at least i such that

A−1
ij 6= 0. Therefore the largest absolute entry in each column 6= 0. Claim (c) can be obtained

by contradiction. Suppose that the largest absolute entry in jth column of A−1 is A−1
ij in ith row,

that said |A−1
ij | ≥ |A

−1
kj | ∀ k. We suppose that A−1

ij < 0. Thus:

n∑
k=1

AikA
−1
kj ≤ −Aii|A−1

ij |+
n∑

k=1,k 6=i
Aik|A−1

ij | (2.63)

= (−Aii +
n∑

k=1,k 6=i
Aik)|A−1

ij |

< 0, (2.64)
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which contradicts with
∑n

k=1AikA
−1
kj = Iij ≥ 0. Thus, the largest absolute value in each column

of A−1 is positive. That said in jth column, if |A−1
ij | ≥ |A

−1
kj | ∀ k, then A−1

ij > 0.

Now, suppose that the largest absolute element in jth column of A−1, is A−1
ij with i 6= j and

A−1
ij > 0. Then:

0 =

n∑
k=1

AikA
−1
kj

≥ Aii|A−1
ij | −

n∑
k=1,k 6=i

Aik|A−1
ij | (2.65)

= (Aii −
n∑

k=1,k 6=i
Aik)A

−1
ij

> 0, (2.66)

with (2.65) due to A−1
ij is the largest absolute element in jth column and (2.66) due to A is strictly

diagonally dominant matrix. This is a contradiction. Therefore, the largest absolute entry in jth

column of A−1 should be A−1
jj and A−1

jj > 0.

2.6.2 Proof of Lemma 2.2

First, let’s show that the second largest absolute value in each column of A−1 is a negative entry

by contradiction method. Suppose that the second largest absolute value in jth column of A−1 is
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positive and in kth row (k 6= j), A−1
kj ≥ 0. Consider,

0 =
n∑
i=1

AkiA
−1
ij

≥ AkjA
−1
jj +AkkA

−1
kj − |

n∑
i=1,i 6=k;i 6=j

AkiA
−1
ij | (2.67)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i 6=k;i 6=j

|AkiA−1
ij | (2.68)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i 6=k;i 6=j

Aki|A−1
ij | (2.69)

≥ AkjA
−1
jj +AkkA

−1
kj −

n∑
i=1,i 6=k;i 6=j

Aki|A−1
kj | (2.70)

= AkjA
−1
jj +A−1

kj (Akk −
n∑

i=1,i 6=k;i 6=j
Aki) (2.71)

> 0, (2.72)

with (2.67) due to the fact that C ≥ −|C| ∀ C, (2.68) due to the triangle inequality, (2.69) due to

Aki is positive, (2.70) due to A−1
kj is the second largest absolute value in jth column of A−1, (2.71)

due to the assumption that A−1
kj ≥ 0 and (2.72) due to (2.11) such that Akk ≥

∑n
i=1,i 6=k Aki ≥∑n

i=1,i 6=k;i 6=j Aki. Thus, the second largest absolute value in column of A−1 is negative (A−1
kj < 0).
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Due to Lemma 2.1 part (c), A−1
jj is the largest absolute value entry and A−1

jj > 0. Similarly,

0 =
n∑
i=1

AkiA
−1
ij

≤ AkjA
−1
jj +AkkA

−1
kj + |

n∑
i=1,i 6=k;i 6=j

AkiA
−1
ij | (2.73)

≤ AkjA
−1
jj +AkkA

−1
kj +

n∑
i=1,i 6=k;i 6=j

|AkiA−1
ij | (2.74)

≤ AkjA
−1
jj +AkkA

−1
kj +

n∑
i=1,i 6=k;i 6=j

Aki|A−1
ij | (2.75)

≤ AkjA
−1
jj −Akk|A

−1
kj |+

n∑
i=1,i 6=k;i 6=j

Aki|A−1
kj |, (2.76)

with (2.73) due to the fact that C ≤ |C| ∀ C, (2.74) due to the triangle inequality, (2.75) due

to Aki ≥ 0, ∀ i and (2.76) due to A−1
kj < 0 and A−1

kj is the second largest absolute value in jth

column. Hence,

AkjA
−1
jj ≥ Akk|A−1

kj | −
n∑

i=1,i 6=k;i 6=j
Aki|A−1

kj |

A−1
jj ≥

|A−1
kj |(Akk −

∑n
i=1,i 6=k;i 6=j Aki)

Akj

A−1
jj ≥ |A−1

kj |
Akk −

Akk
cmin(A)
Akk

cmin(A)

(2.77)

A−1
jj ≥ |A−1

kj |[cmin(A)− 1], ∀j, (2.78)
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with (2.77) due to Definition 2.2 and (2.9) such that
Akk

cmin(A)
≥
∑n

i=1,i 6=k Aki ≥
∑n

i=1,i 6=k,i6=j Aki.

Thus, we have:

cj(A
−T ) =

A−1
jj∑

k 6=j |A
−1
kj |
≥ cmin(A)− 1

n− 1
. (2.79)

Thus, (2.12) is proven.

Next, we note that from (2.78)

A−1
jj

cmin(A)− 1
≥ |A−1

kj |,∀k. (2.80)

Moreover, from Lemma 2.1, A−1
jj ≥ 0 and is the largest entry in jth row. Thus, for an arbitrary

L and S,

|A−1
Lj |+ |A

−1
Sj | ≤ A−1

jj +
A−1

jj

cmin(A)− 1

= A−1
jj

cmin(A)

cmin(A)− 1
,∀j. (2.81)

Thus, (2.13) is proven.

2.6.3 Proof of Lemma 2.3

Consider the matrix B = A−1A−T , B is symmetric, all its eigenvalues are real and satisfy the

Rayleigh quotient [33]. Let λmaxB be the maximum eigenvalue of B then from [33]

R(B, x) =
x∗Bx

x∗x
≤ λmaxB . (2.82)
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Consider the unit vector e = [0, . . . , 1, . . . , 0]T with entry “1” is in the ith column. Let x = e

in (2.82), we have:

Bii ≤ λmaxB . (2.83)

Thus,

λmaxB ≥ Bii

=

n∑
j=1

A−1
ij A

−1
ij

≥ (A−1
ii )

2
. (2.84)

Now since B is a symmetric matrix λmaxB = σmax(B) [32]. However, from [32], σmax(B) =

σmax(A−1A−T ) = σ2
maxA

−1 and σmaxA
−1 =

1

σmin(A)
. Thus:

1

σmin(A)
≥ A−1

ii . (2.85)

From Lemma 2.1-(c), the largest entry in A−1 must be a diagonal element, thus

max
i,j

A−1
ij ≤

1

σmin(A)
.

2.6.4 Proof of Lemma 2.4

For the first claim, since A is a stochastic matrix,

A1 = 1.
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Left multiply both sides by A−1 results in 1 = A−11. For the second claim, left multiplying

y = A−Tx by 1T , we have:

1T y = 1TA−Tx = xTA−11 = xT1 = 1,

where we use A−11 = 1 in the previous claim.

Thus, we have
∑n

i=1 p
∗
i = 1 since from (2.30), q∗ is a probability mass vector.

2.6.5 Proof of Corollary 2.1

Lemma 2.5. Lower bound of σmin(A) and upper bound of Hmax(A) are σ∗ and H∗max(A), respec-

tively

σmin(A) ≥ σ∗ =
cmin(A)− n/2
cmin(A) + 1

, (2.86)

and

Hmax(A) ≤ H∗max(A), (2.87)

where

H∗max(A)=log(cmin(A) + 1) +
log(n−1)−cmin(A) log cmin(A)

cmin(A)+1
. (2.88)

Proof. Due to the channel matrix is a strictly diagonally dominant positive matrix. Thus, we

have

Akk ≥
cmin(A)

cmin(A) + 1
, (2.89)

Rk(A) = 1−Akk ≤ 1− cmin(A)

cmin(A) + 1
=

1

cmin(A) + 1
, (2.90)
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Ck(A) =

j=n∑
j=1,j 6=k

Ajk ≤
j=n∑

j=1,j 6=k
Rj(A) ≤ n− 1

cmin(A) + 1
, ∀k, (2.91)

with (6.65) due to (2.10), (2.90) due to (6.65), (2.91) due to the fact that ∀ j 6= k, Ajk ≤∑
j 6=k Ajk = Rj(A) and each Rj(A) ≤ 1

cmin(A) + 1
which is proven in (6.65). Now, we are ready

to establish the upper bound of Hmax(A) and the lower bound of σmin(A), respectively.

• Suppose that Hmax(A) achieves at kth row, then

Hmax(A) = −(

n∑
i=1

Aki logAki)

= −(Akk logAkk +

n∑
i=1,i6=k

Aki logAki)

= −Akk logAkk

− (1−Akk)

n∑
i=1,i6=k

Aki

1−Akk
(log

Aki

1−Akk
+log(1−Akk))

= −Akk logAkk

− (1−Akk)

n∑
i=1,i6=k

Aki

1−Akk
log

Aki

1−Akk

− (1−Akk) log(1−Akk)

≤ −Akk logAkk + (1−Akk) log(n− 1)

− (1−Akk) log(1−Akk) (2.92)

= −(Akk logAkk + (1−Akk) log(
1−Akk

n− 1
))

≤ −(
cmin(A)

cmin(A) + 1
log

cmin(A)

cmin(A) + 1

+ (1− cmin(A)

cmin(A) + 1
) log

1− cmin(A)

cmin(A) + 1

n− 1
) (2.93)

= log(cmin(A)+1)+
log(n−1)−cmin(A) log cmin(A)

cmin(A) + 1
,

with (2.92) is due to −
∑n

i=1,i 6=k
Aki

1−Akk
log

Aki
1−Akk

is the entropy of n − 1 elements which is

bounded by log(n − 1). For (2.93), first we show that f(x) = −(x log x + (1 − x) log(
1− x
n− 1

)) is
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monotonically decreasing function for
x

1− x
≥ n− 1. Indeed,

d(f(x))

d(x)
= log x− log(1− x)− log(n− 1)

= −(log
x

1− x
− log(n− 1)).

Thus, if
x

1− x
≥ n− 1 then

d(f(x))

d(x)
≤ 0. However, from (6.65),

Akk
1−Akk

≥

cmin(A)

cmin(A) + 1

1− cmin(A)

cmin(A) + 1

= cmin(A). (2.94)

From (2.50)

cmin(A) ≥ 1 + (n− 1)22
nH∗max(A)

σ∗ ≥ 1 + (n− 1)2 > n− 1, (2.95)

due to nH∗max(A)
σ∗ ≥ 0 and n ≥ 2. Thus,

Akk
1−Akk

> n−1. From (2.94) and (2.95), f(x) is decreasing

function and (2.93) is constructed by plugging the lower bound of Akk in (6.65).

• Secondly, the lower bound of σmin(A) can be found in [34] (Theorem 3)

σmin(A) ≥ min
1≤k≤n

|Akk| −
1

2
(Rk(A) + Ck(A)), (2.96)

or in [35] (Theorem 0)

σmin(A)≥ min
1≤k≤n

1

2
({4|Akk|2+(Rk(A)−Ck(A))2}1/2−[Rk(A)+Ck(A)]), (2.97)

with Rk(A) =
∑j=n

j=1,j 6=k |Akj | and Ck(A) =
∑j=n

j=1,j 6=k |Ajk|, respectively. Thus, if we use the lower
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bound established in (2.97),

σmin(A) ≥ 1

2
({4[

cmin(A)

cmin(A) + 1
]2}1/2

− [
1

cmin(A) + 1
+

n− 1

cmin(A) + 1
]) (2.98)

=
cmin(A)− n/2
cmin(A) + 1

= σ∗,

with (2.98) due to (6.65), (2.90), (2.91) and the fact that {Rk(A)− Ck(A)}2 ≥ 0.

A similar lower bound can be constructed using (2.96)

σmin(A) ≥ cmin(A)

cmin(A) + 1

− 1

2
(

1

cmin(A) + 1
+

n− 1

cmin(A) + 1
) (2.99)

=
cmin(A)− n/2
cmin(A) + 1

= σ∗,

with (2.99) due to (6.65), (2.90) and (2.91). As seen, both our approaches yield a same lower

bound of σmin(A). However, (2.97) is tighter than (2.96) due to {Rk(A)− Ck(A)}2.
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Chapter 3: Binary Quantizer Designing For Maximizing Mutual

Information

3.1 Introduction

Quantization techniques play a vital role in signal processing, communication, and information

theory. A classical quantization technique maps a given real number to an element in a given finite

discrete set that minimizes/maximizes a certain objective. In compression, quantization is often

used to minimize the distortion (e.g. mean square error (MSE)) between the original data and its

quantized version [36, 37]. In graphics, color quantization is used to reduce the number of colors

in the images for displays with various capabilities [38]. In communication, quantization is often

used to minimize the decoding errors. Broadly, any conversion of a high-resolution signal to a low-

resolution signal requires quantization. In this chapter, we consider the quantization in the context

of a communication channel where the transmitted binary signal is corrupted by a continuous

noise, resulting in a continuous-valued signal at the receiver. To recover the transmitted signal,

the receiver performs a quantization algorithm that maps the received continuous-valued signal

to the quantized signal such that the objective function between the input and the quantized

output is maximized/minimized. There is a rich literature on quantizer design that minimizes

various objectives. One popular objective is to minimize the average decoding error. Another

fundamental objective is to maximize the mutual information between the discrete transmitted

inputs and the quantized outputs. Equivalently, this objective minimizes the information loss

between the inputs and the outputs, and is related to the capacity of the channel. Specifically,
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for a given discrete memoryless channel (DMC) specified by a channel matrix M , its capacity

is found by maximizing the mutual information between the input and the output with respect

to the input distribution p [3], [9]. On the other hand, our work is focused on maximizing the

mutual information with respect to the quantization parameters, i.e, it is equivalent to designing

a channel matrix M for a fixed distribution p that maximizes the capacity. This situation often

arises in real-world scenarios where the distribution of input is already given. In addition, many

recent works have proposed to use quantization strategies that maximize the mutual information

in the designs of low density parity check codes (LDPC) [39,40] and polar codes [41].

We consider a channel with binary input X that is corrupted by a given continuous noise to

produce continuous-valued output Y . An optimal binary quantizer is then used to quantize the

continuous-valued output Y to the final binary output Z to maximize the mutual information

I(X;Z). We show that when the ratio of the channel conditional density r(y) = P (Y=y|X=0)
P (Y=y|X=1) is

a strictly increasing or decreasing function of y, then a quantizer having a single threshold can

maximize mutual information. Furthermore, we show that an optimal quantizer (possibly with

multiple thresholds) is the one with the thresholding vector whose elements are all the solutions

of r(y) = r∗ for some constant r∗ > 0. In addition, we characterize necessary conditions for

optimality and uniqueness of a quantizer via a fixed point theorem. Based on this, we propose

an efficient algorithm that is able to determine all of the locally optimal quantizers that finally

results in the globally optimal quantizer. Our results also confirm some previous results using

alternative elementary proofs.

The outline of this chapter is as follows. First, we discuss a few related works in Section 3.2.

In Section 3.3, we formulate the problem of designing the optimal quantizer that maximizes the

mutual information. In Section 3.4, we describe the structure of optimal quantizers. In Section 3.5,

we describe the sufficient conditions via the fixed point theorem for the optimality and uniqueness

of a quantizer, together with an efficient procedure for finding the optimal quantizer.
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3.2 Related Work

Research on quantization techniques has a long history, including many earliest works in 1960s [42]

that aim to minimize the distortion between the original signal and the quantized signal. From a

communication perspective, designing the quantizers that maximize the information capacity for

Gaussian channels have also been proposed in 1970s [43]. Recently, in constructing efficient codes

such as LDPC and polar codes, a number of works have made use of quantizers that maximize

the mutual information [39–41]. Many advanced quantization algorithms have also been proposed

to maximize the mutual information between the input and the quantized output over the past

decade [44–49]. In [44], the channel is assumed to have discrete input and discrete output, and

the optimal quantizers can be found efficiently using dynamic programming that has polynomial

time complexity [50]. On the other hand, we study the channels with discrete binary inputs

and continuous-valued outputs which are then quantized to binary outputs. The continuous-

valued output is a direct result of the conditional channel density. We note that it is possible

to first discretize the continuous-valued output, then use the existing quantization algorithms for

the discrete input-discrete output channels [44]. However, in many scenarios, this may result in

loss of efficiencies. In particular, many analytical and computational techniques for dealing with

continuous-valued functions are more efficient than their discrete counterparts.

Our work is also related to the classification problem in learning theory. Burshtein et al.

gave the condition on the existence of an optimal quantizer which minimizes the impurity of

partitions [51]. Because of the similarity between maximizing mutual information and minimizing

conditional entropy function [44], [52], the result in [51] can be applied for finding the optimal

quantizer. A similar result also can be found in [53]. In [54], Zhang et al. show that finding

an optimal quantizer is equivalent to finding an optimal clustering. Therefore, a locally optimal

solution can be found using k-means algorithm with the Kullback-Leibler (KL) divergence as
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the distance metric. Recently, there have also been many works on approximating the optimal

clustering that minimize the impurity function for high dimensional data [55], [56], [1].

There are also works on finding channel capacity by maximizing the mutual information over

both input probability mass function (pmf) and thresholds variables. This problem remains a

hard problem [45], [57], [58], [59], [60]. Although the mutual information is a convex function

in the input pmf, it is not a convex function in the quantization parameters. As such, many

successful convex optimization techniques for finding the optimal solution are not applicable.

In [57], a heuristic near optimal quantization algorithm is proposed. However, the algorithm

only works well when the SNR ratio is high. In [45], R. Mathar et al. investigated an optimal

quantization strategy for binary input-multiple output channels using two support points. These

results are only applicable to approximate the optimal point between two supporting points.

In [52], Kurkoski et al. constructed a sufficient condition such that a single threshold quantizer is

optimal for arbitrary binary-input, continuous-output channels based on Burshtein et al.’s theorem

on optimal classification [51]. On the other hand, our work describes the generalized conditions

for the existence of a single threshold optimal quantizer together with a simple procedure that is

able to find the globally optimal quantizer efficiently.

3.3 Problem description

We consider the channel shown in Fig. 3.1 where the binary signals x ∈ X = {0, 1} are transmitted

and corrupted by a continuous noise source to produce a continuous-valued output y ∈ R at the

receiver. Specifically, y is specified by the a channel conditional density p(y|x). p(y|x) models

the distortion caused by noise. The receiver recovers the original binary signal x by decoding

the received continuous-valued signal y to z ∈ Z = {0, 1} using a quantizer Q. Since y ∈ R, the
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Figure 3.1: Channel model: binary input X is corrupted by continuous noise to result in
continuous-valued Y at the receiver. The receiver attempts to recover X by quantizing Y into
binary signal Z.

quantization parameters can be specified by a thresholding vector

h = (h1, h2, . . . , hn) ∈ Rn,

with h1 < h2 < · · · < hn−1 < hn, where n is assumed a finite number. Theoretically, it might

be perceivably possible to construct the conditional densities p(y|x0) and p(y|x1) such that the

optimal quantizer might consist an infinite number of thresholds. On the other hand, for a

practical implementation, especially when the quantizer is implemented using a lookup table, then

a finite number of thresholds must be used. To that end, the optimal quantizer in this chapter

refers to the best quantizer in the class of all quantizers with a finite number of thresholds.

In particular, h induces n+ 1 disjoint partitions:

H1 =(−∞, h1), H2 =[h1, h2), . . . ,Hn =[hn−1, hn), Hn+1 =[hn,∞).

Let H =
⋃
i∈oddHi and H̄ =

⋃
i∈evenHi, then H ∩ H̄ = ∅ and H ∪ H̄ = R.

The receiver uses a quantizer Q : Y → Z to quantize Y to Z as:

Z =


0 if Y ∈ H,

1 if Y ∈ H̄.
(3.1)
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Note that we can also switch the rule such that Q quantizes Y to Z = 1 if y ∈ H and quantizes

Y to Z = 0 if y ∈ H̄. The main point is that h divides R into n+ 1 contiguous disjoint segments,

each maps to either 0 or 1 alternatively. Our goal is to design an optimal quantizer Q∗, specifically

h∗ that maximizes the mutual information I(X;Z) between the input X and the quantized output

Z:

h∗ = arg max
h

I(X;Z). (3.2)

We note that both the values of thresholds hi’s and the number of thresholds n are the opti-

mization variables. The maximization in (3.2) assumes that the input probability mass function

p(x) and the channel conditional density p(y|x) are given.

3.4 Optimal Quantizer Structure

For convenience, we use the following notations:

1. p = (p0, p1) denotes the probability mass function for the input X, with p0 = P (X = 0)

and p1 = P (X = 1).

2. q = (q0, q1) denotes probability mass function for the output Z, with q0 = P (Z = 0) and

q1 = P (Z = 1).

3. φ0(y) = p(y|x = 0) and φ1(y) = p(y|x = 1) denote conditional density functions of the

received signal Y given the input signal X = 0 and X = 1, respectively.

Furthermore, we make two following assumptions:

Assumptions:

1. r(y) =
φ0(y)

φ1(y)
will play a central role in this chapter. All the results assume that r(y) is a

continuous function, and has a finite number of stationary points. Equivalently, r(y) = r′
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has a finite number of solutions for any constant r′ > 0. Note that this assumption will hold

for most φ0(y) and φ1(y).

2. Both φ0(y) and φ1(y) are differentiable everywhere.

Using the notations and the assumptions above, a 2×2 channel matrix A associated with a

discrete memoryless channel (DMC) with input X and output Z is:

A =

 A11 1−A11

1−A22 A22

 ,
where

A11 =

∫
y∈H

φ0(y)dy, (3.3)

A22 =

∫
y∈H̄

φ1(y)dy. (3.4)

The simplest quantizer (decoding scheme) uses only a single threshold to quantize a continuous

received signal into binary outputs. Specifically,

Z =


0 if Y < h1,

1 otherwise.

In general, this quantizer is not optimal, i.e., does not maximize the mutual information I(X;Z).

Using the results of Burshtein et al. [51], Kurkoski et al. [52] showed a sufficient condition on p(y|x)

for which the single threshold quantizer is indeed an optimal quantizer. Our first contribution is

to show that the optimal binary quantizer with multiple thresholds, specified by a thresholding

vector h∗ = (h∗1, h
∗
2, . . . , h

∗
n) with h∗i < h∗i+1, must satisfy the conditions stated in the Theorem

3.1.
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Theorem 3.1. Let h∗ = (h∗1, . . . , h
∗
n) be a thresholding vector of an optimal quantizer Q∗, then:

φ0(h∗i )

φ1(h∗i )
=
φ0(h∗j )

φ1(h∗j )
= r∗, (3.5)

for ∀ i, j ∈ {1, 2, . . . , n} and some optimal constant r∗ > 0.

Proof. We note that using the optimal thresholding vector h∗, the quantization mapping follows

(3.1). h∗ divides R into n+1 contiguous disjoint segments, each maps to either 0 or 1 alternatively.

The overall DMC in Fig. 3.1 has the channel matrix

A∗ =

A11 A12

A21 A22

 ,
and the mutual information can be written as a function of h as:

I(h) = H(Z)−H(Z|X) = H(q0)− [p0H(A11) + p1H(A22)], (3.6)

where for any w ∈ [0, 1], H(w) = −[w log(w) + (1 − w) log(1 − w)] and q0 = P (Z = 0) =

p0A11 + p1A21.

This is an optimization problem that maximizes I(h). The theory of optimization requires

that an optimal point must satisfy the KKT conditions [24]. In particular, define the Lagrangian

function as:

L(h, λ) = I(h) +

n−1∑
i=1

λi(hi − hi+1), (3.7)

then the KKT conditions [24] states that, an optimal point h∗ and λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
n−1) must
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satisfy: 

∂L(h,λ)
∂hi

|h=h∗,λ=λ∗ = 0, i = 1, 2, . . . , n− 1,

λ∗i (hi − hi+1) = 0, i = 1, 2, . . . , n− 1,

λ∗i ≥ 0, i = 1, 2, . . . , n− 1.

(3.8)

Since the structure of the quantizer requires that hi < hi+1, the second and the third conditions

in (3.8) together imply that λ∗i = 0, i = 1, 2, . . . , n − 1. Consequently, from (3.7) and the first

condition in (3.8), we have:

∂L(h, λ)

∂hi
|h=h∗,λ=λ∗ =

∂I(h)

∂hi
|h=h∗ = 0.

The stationary points can be found by setting the partial derivatives with respect to each hi

to zero:

∂I(h)

∂hi
= (log

1− q0

q0
)
∂q0

∂hi
− p0(log

1−A11

A11
)
∂A11

∂hi

− p1(log
1−A22

A22
)
∂A22

∂hi

= (log
1− q0

q0
)(p0

∂A11

∂hi
− p1

∂A22

∂hi
)

− p0(log
1−A11

A11
)
∂A11

∂hi
−p1(log

1−A22

A22
)
∂A22

∂hi
(3.9)

= p0
∂A11

∂hi
(log

1− q0

q0
− log

1−A11

A11
)

− p1
∂A22

∂hi
(log

1− q0

q0
+ log

1−A22

A22
) = 0, (3.10)

with (3.9) due to q0 = p0A11 + p1A21 = p0A11 + p1(1−A22).
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Since ∂A11
∂hi

= φ0(hi) and ∂A22
∂hi

= −φ1(hi), from (3.10), we have:

φ0(h∗i )

φ1(h∗i )
= −p1

p0

log
1− q0

q0
+ log

1−A22

A22

log
1− q0

q0
− log

1−A11

A11

= r∗. (3.11)

Since r∗ > 0 (please see Appendix 3.7.5) and (3.11) holds for ∀ i, the RHS of (3.11) equals to

some constant r∗ > 0 for a quantizer Q∗. Theorem 3.1 follows.

Remark: The importance of Theorem 3.1 is as follows. Suppose the optimal value r∗ is given

and the equation r(y) = r∗ has m solutions: y1 < y2 < · · · < ym. Then, Theorem 3.1 says that

the optimal quantizer must either have its thresholding vector be (y1, y2, . . . , ym) or one of its

ordered subsets, e.g., (h∗1, h
∗
2) = (y1, y3), or both. In Theorem 3.2 below, we will show that the

quantizer whose thresholding vector is all the solutions of r(y) = r∗, will be at least as good as

any quantizer whose thresholding vector is an ordered subset of the set of all solutions. Moreover,

we will show that under some sufficient conditions via Banach’s fixed point theorem, r∗ is unique,

and describe an efficient procedure for finding r∗ in Section 3.5.

Theorem 3.2. Let y∗1 < y∗2 < · · · < y∗n be the solutions of r(y) = r∗ for the optimal constant

r∗ > 0. Let Qnr∗ be the quantizer whose thresholding vector is all the solutions, i.e., h∗i = y∗i , i =

1, 2, . . . , n, then for k < n, Qnr∗ is at least as good as any quantizer Qkr∗ whose thresholding vector

is an ordered subset of k elements of the set of (h∗1, h
∗
2, . . . , h

∗
n).

Proof. Let (h∗1, h
∗
2, . . . , h

∗
m) be an optimal thresholding vector for all the quantizers having m

thresholds (m ≤ n). Let (z∗1 , z
∗
2 , . . . , z

∗
m−1) be an optimal thresholding vector for all quantizers

having m − 1 thresholds. The mutual information can be written as a function of these quan-

tizers as: I(h∗1, h
∗
2, . . . , h

∗
m) and I(z∗1 , z

∗
2 , . . . , z

∗
m−1). We will first show that I(h∗1, h

∗
2, . . . , h

∗
m) ≥

I(z∗1 , z
∗
2 , . . . , z

∗
m−1), for any m > 0. This will be proved using contradiction.
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Assume that I(h∗1, h
∗
2, . . . , h

∗
m) < I(z∗1 , z

∗
2 , . . . , z

∗
m−1), then

I(z∗1 , z
∗
2 , . . . , z

∗
m−1) = I(h∗1, h

∗
2, . . . , h

∗
m) + δ, (3.12)

where δ is a positive constant.

Since (h∗1, h
∗
2, . . . , h

∗
m) is optimal,

I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(h1, h2, . . . , hm−1, hm), (3.13)

for any hi < hi+1, i = 1, 2, . . . ,m− 1.

Now replacing hi = z∗i , for i = 1, 2, . . . ,m− 1 into (3.13), we have:

I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(z∗1 , z

∗
2 , . . . , z

∗
m−1, hm). (3.14)

Since
∫∞
−∞ φi(y)dy = 1, ∀ i = 1, 2,

lim
y→∞

φi(y) = 0, i = 1, 2.

Consequently,

lim
hm→∞

I(z∗1 , z
∗
2 , . . . , z

∗
m−1, hm) = I(z∗1 , z

∗
2 , . . . , z

∗
m−1).

Equivalently, there exists an hm > Nε such that

|I(z∗1 , z
∗
2 , . . . , z

∗
m−1, hm)− I(z∗1 , z

∗
2 , . . . , z

∗
m−1)| ≤ ε, (3.15)
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for any ε > 0. Next, we pick a Nε such that ε < δ. Then,

I(h∗1, h
∗
2, . . . , h

∗
m) (3.16)

= I(z∗1 , . . . , z
∗
m−1)+I(h∗1, h

∗
2, . . . , h

∗
m)−I(z∗1 , z

∗
2 , . . . , z

∗
m−1)

≥ I(z∗1 , . . . , z
∗
m−1)−|I(h∗1, h

∗
2, . . . , h

∗
m)−I(z∗1 , z

∗
2 , . . . , z

∗
m−1)|

≥ I(h∗1, h
∗
2, . . . , h

∗
m) + δ − ε, (3.17)

where (3.17) is due to (3.12) and (3.15). Since δ − ε > 0 by assumption, (3.17) indicates that

I(h∗1, h
∗
2, . . . , h

∗
m) is strictly greater than itself which is a contradiction. Thus, I(h∗1, h

∗
2, . . . , h

∗
m) ≥

I(z∗1 , z
∗
2 , . . . , z

∗
m−1).

Next, since (z∗1 , z
∗
2 , . . . , z

∗
m−1) is an optimal thresholding vector for all quantizers having m−1

thresholds, I(z∗1 , z
∗
2 , . . . , z

∗
m−1) ≥ I(h̄∗1, h̄

∗
2, . . . , h̄

∗
m−1) where (h̄∗1, h̄

∗
2, . . . , h̄

∗
m−1) is an arbitrary sub-

set of (h∗1, h
∗
2, . . . , h

∗
m). Thus, I(h∗1, h

∗
2, . . . , h

∗
m) ≥ I(z∗1 , z

∗
2 , . . . , z

∗
m−1) ≥ I(h̄∗1, h̄

∗
2, . . . ,

¯h∗m−1). Con-

sequently, the optimal quantizer having n thresholds is at least as good as the optimal quantizer

having n − 1 thresholds. Similarly, the optimal quantizer having n − 1 thresholds is at least as

good as the optimal quantizer having n − 2 thresholds and so on. Thus, by induction, Qnr∗ is at

least as good as any quantizer Qkr∗ , ∀ k < n.

Corollary 3.1. If

r(y) =
φ0(y)

φ1(y)
(3.18)

is a strictly increasing or decreasing function, then the optimal quantizer consists of only a single

threshold h∗1.

Proof. Noting that since r(y) is a strictly increasing or decreasing function. Therefore, r(y1) 6=

r(y2) for y1 6= y2. Thus, (3.5) will not hold for h∗1 6= h∗2. Consequently, the optimal quantizer has
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only a single threshold.

We note that in a previous result [52], an optimality condition for a single threshold quantizer

is that:

s(y) = log
φ0(y)

φ1(y)
(3.19)

is a monotonic function. If
φ0(y)

φ1(y)
is a strictly monotonic function, then previous result is a

consequence of Corollary 3.1 since log(.) is a strictly monotonic function, any strictly monotonic

function
φ0(y)

φ1(y)
results in a strictly monotonic function s(y).

Corollary 3.2. If

φ0(y − µ) = φ1(y) for some constant µ, (3.20)

and φ0(y) is a strictly log-concave or log-convex function, then using a single threshold quantizer

is optimal.

Proof. Taking derivative of r(y), we have:

dr(y)

dy
=
φ′0(y)φ1(y)− φ0(y)φ′1(y)

φ1(y)2
> 0, (3.21)

which is equivalent with:

φ′0(y)

φ0(y)
>
φ′1(y)

φ1(y)
. (3.22)

Using (3.20), we have:

φ′0(y)

φ0(y)
>
φ′0(y − µ)

φ0(y − µ)
. (3.23)

Now, a function f(x) is strictly log-convex if and only if
f ′(x)

f(x)
is a strictly increasing function
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[24]. Thus, if φ0(y) is strictly log-convex, then

φ′0(y)

φ0(y)
>
φ′0(y − µ)

φ0(y − µ)
. (3.24)

Thus, r′(y) > 0 or r(y) is a strictly increasing function which satisfies the condition for having

an optimal single threshold quantizer in Corollary 3.1. A similar proof can be established for

log-concave functions.

3.5 Necessary Conditions For Optimality and Uniqueness of a Quantizer

Via Fixed Point Theorem and Fixed Point Algorithm

In this section, we characterize necessary conditions for optimality and uniqueness of a quantizer

via a fixed point theorem. Using this new conditions, we describe an efficient procedure based on

fixed point algorithm for finding all the possible r∗ that results in a globally optimal quantizer

Q∗.

3.5.1 Necessary Conditions for Optimality via Fixed Point Theorem

For ease of analysis, we define a new variable a as:

a =
p1φ1(y)

p0φ0(y) + p1φ1(y)
=

1

1 +
p0φ0(y)

p1φ1(y)

=
1

1 +
(p0

p1

)
r
, (3.25)

where

r =
φ0(y)

φ1(y)
.
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We note that a ∈ (0, 1). In addition, the mapping from r to a is a one-to-one mapping.

Furthermore, each value of a corresponds to a different value of r which in turn, corresponds to

a quantizer in a set of possible quantizers that contains an optimal quantizer. As an example,

Fig. 3.2 shows two conditional densities φ0(y) and φ1(y), and the corresponding r(y) and u(y)

are shown in Fig. 3.3 and Fig. 3.4, respectively. Now, the mutual information I(X;Z) can be re-

written as a function of a, and is denoted as I(X;Z)a. Thus, finding the optimal r∗ is equivalent

to finding the optimal a∗ that maximizes I(X;Z)a. Furthermore, the optimal thresholds h∗ =

(h∗1, . . . , h
∗
n) can be directly determined as the solutions of

p1φ1(h)

p0φ0(h) + p1φ1(h)
= a∗. (3.26)

First, let

u(y) =
p1φ1(y)

p0φ0(y) + p1φ1(y)
. (3.27)

For given a, define Ha = {y : u(y) < a} and H̄a = {y : u(y) ≥ a}. The sets Ha and H̄a

together specify a binary quantizer that maps y to z ∈ {0, 1}, depending on whether y belongs to

Ha or H̄a as shown in Fig. 3.4.

Without the loss of generality, suppose we use the following quantizer:

z =


0 y ∈ Ha,

1 y ∈ H̄a,

(3.28)

then the channel matrix of the overall DMC is:

A =

 f(a) 1− f(a)

1− g(a) g(a)

 ,
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Figure 3.4: Illustration of the sets Ha and H̄a. Ha consists of solid red segments while H̄a

consists of green dotted segments. In this example, there exists a quantizer with 6 thresh-
olds h1, h2, . . . , h6 that correspond to a specific value of a = 0.5. p0 = p1 = 0.5, φ0(y) =
0.3N(0,

√
0.3) + 0.4N(−3,

√
0.2) + 0.3N(3,

√
0.1), φ1(y) = N(−2, 3).

where f(a)
4
= p(z = 0|x = 0) and g(a)

4
= p(z = 1|x = 1). f(a) and g(a) can be written in terms

of φ0(y) and φ1(y) as:

f(a) =

∫
y∈Ha

φ0(y)dy, (3.29)

g(a) =

∫
y∈H̄a

φ1(y)dy. (3.30)

Now, let us consider the special cases where a = 1 or a = 0. In these cases, I(X;Z) = 0 due

to f(a) = 1 and g(a) = 0 or vice-versa. Therefore, a = 1 and a = 0 cannot be the optimal points.

Thus, we can assume that a ∈ (0, 1) and 0 < f(a), g(a) < 1. Lemmas 3.1 and 3.2 below provide

the properties of f(a) and g(a) and the relationship with each other.

Lemma 3.1. Derivatives of f(a) and g(a) are related through the following equation:

dg(a)

da
= − ap0

(1− a)p1

df(a)

da
. (3.31)
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Proof. Please see the proof in Appendix 3.7.1.

Lemma 3.2. For ∀ a ∈ (0, 1),

(1) g′(a) < 0 and f ′(a) > 0.

(2) f(a) + g(a) > 1.

Proof. Please see the proof in Appendix 3.7.2.

Define

la = [
p0f(a)

p0f(a) + p1(1− g(a))
,

p1(1− g(a))

p0f(a) + p1(1− g(a))
],

ra = [
p0(1− f(a))

p0(1− f(a)) + p1g(a)
,

p1g(a)

p0(1− f(a)) + p1g(a)
],

a = [1− a, a].

Let DKL(x,y) denote the Kullback-Leibler (KL) divergence between two vectors x = [1−x, x]

and y = [1− y, y] for x, y ∈ (0, 1),

DKL(x||y) = x log(
x

y
) + (1− x) log(

1− x
1− y

). (3.32)

Lemma 3.3. Each optimal quantizer Q∗ (local or global) corresponds to an optimal a∗ such that

DKL(a∗||la∗) = DKL(a∗||ra∗).
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Proof. Using Lemma 3.1, setting derivative of I(X;Z)a to zero, we have:

dI(X;Z)a
da

= p1g
′(a)

[a− 1

a

(
log(

f(a)

1− f(a)
) (3.33)

− log(
p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)
)

+ log(
g(a)

1− g(a)
) + log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)
]

= p1g
′(a)F (a) = 0, (3.34)

where

F (a) =
a− 1

a
log(

f(a)

1− f(a)
) + log(

g(a)

1− g(a)
)

+
1

a
log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
). (3.35)

From Lemma 3.2 g′(a) < 0 and p1 > 0, thus, the stationary points of I(X;Z)a must occur at

F (a) = 0. Applying definitions of a, la, ra, and KL divergence, it can be shown that

F (a) =
1

a

[
DKL(a||la)−DKL(a||ra)

]
.

Please see the proof in Appendix 3.7.3. Thus,

F (a) = 0↔
[
DKL(a||la)−DKL(a||ra)

]
= 0.

In other words, each optimal quantizer Q∗ (local or global) corresponds to an optimal a∗ such

that

DKL(a∗||la∗) = DKL(a∗||ra∗).
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Lemma 3.4. Let ca = [1− c(a), c(a)] then

c(a) =

log(
1− f(a)

f(a)

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)

log(
1− f(a)

f(a)

1− g(a)

g(a)
)

(3.36)

if and only if

DKL(ca||la) = DKL(ca||ra).

Proof. By using the definitions of ca, la, ra, and KL divergence, (3.37) follows. Now, (1 −

f(a))(1 − g(a)) = 1 − f(a) − g(a) + f(a)g(a) < f(a)g(a) due to f(a) + g(a) > 1. Thus,

log((
1− f(a)

f(a)
)(

1− g(a)

g(a)
)) 6= 0. Therefore, DKL(ca||la) − DKL(ca||ra) = 0 if and only if c(a)

satisfies (3.36).

We now characterize the optimality condition for a quantizer via the fixed point theorem.

Theorem 3.3. Let a quantizer Q∗ be an optimal quantizer with an optimal a∗, then c(a∗) = a∗

where c(a) is defined in (3.36).

Proof. From Lemma 3.3, the optimal quantizer Q∗ corresponds to an optimal vector a∗ = [1 −

a∗, a∗] must have DKL(a∗||la∗) = DKL(a∗||ra∗). Now, from Lemma 3.4 for given la∗ and ra∗ , there

exists a unique vector ca∗ = [1− c(a∗), c(a∗)] such that DKL(ca∗ ||la∗) = DKL(ca∗ ||ra∗) where c(a)

is defined in (3.36). Combining Lemma 3.3 and 3.4, we have c(a∗) = a∗.

We will use Theorem 3.3 in our algorithm for finding optimal quantizers. To do that, we will

show some interesting properties of c(a) in Theorem 3.4 and Theorem 3.5 below.

Theorem 3.4. c(a) ∈ (0, 1) and is a smooth (derivative exists), non-decreasing function of a.

Proof. Please see Appendix 3.7.4 for the proof.
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DKL(ca||la)−DKL(ca||ra)

=
(
c(a) log(

c(a)

p1(1− g(a))

p0f(a) + p1(1− g(a))

) + (1− c(a)) log(
1− c(a)

p0f(a)

p0f(a) + p1(1− g(a))

)
)

−
(
c(a) log(

c(a)

p1g(a)

p0(1− f(a)) + p1g(a)

) + (1− c(a)) log(
1− c(a)

p0(1− f(a))

p0(1− f(a)) + p1g(a)

)
)

= c(a) log(

p1g(a)

p0(1− f(a)) + p1g(a)

p1(1− g(a))

p0f(a) + p1(1− g(a))

) + (1− c(a)) log(

p0(1− f(a))

p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)

= log(

p0(1− f(a))

p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)− c(a)
(

log(

p0(1− f(a))

p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)

− log(

p1g(a)

p0(1− f(a)) + p1g(a)

p1(1− g(a))

p0f(a) + p1(1− g(a))

)
)

= log((
1− f(a)

f(a)
)(
p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
))− c(a) log((

1− f(a)

f(a)
)(

1− g(a)

g(a)
))

= log((
1− f(a)

f(a)
)(

1− g(a)

g(a)
))
( log((

1− f(a)

f(a)
)(
p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
))

log((
1− f(a)

f(a)
)(

1− g(a)

g(a)
))

)− c(a)
)
.

(3.37)
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Lemma 3.5. The sequence ai+1 = c(ai) must converge to a fixed point a∗ for any initial point

a0 ∈ (0, 1).

Proof. From Theorem 3.4, c(a) is a non-decreasing function and c(a) ∈ (0, 1). Thus, the sequence

generated by ai+1 = c(ai), starting from any a0 is monotone, i.e., ai+1 ≥ ai ∀ i or ai+1 ≤ ai ∀ i.

Specifically, if a1 ≤ a0, then a2 = c(a1) ≤ c(a0) = a1, therefore, a2 ≤ a1. By induction method,

if a1 ≤ a0 then ai+1 ≤ ai ∀ i. Similarly, if a1 ≥ a0 then ai+1 ≥ ai ∀ i. Thus, the sequence ai

is monotone. From Theorem 3.4, c(ai) ∈ (0, 1) or the sequence ai is bounded in (0, 1). Thus,

sequence ai has a limit a∗ such that a∗ = c(a∗).

Theorem 3.5. For any initial point a0 ∈ (0, 1), if limi→+∞ a
i = a∗ where ai+1 = c(ai), then

there is no other solution a′ such that a′ = c(a′) between a0 and a∗.

Proof. We will prove by contradiction. For the case where a0 ≤ a∗, assume that there is a a′ such

that a′ = c(a′) and a0 < a′ < a∗. Since the sequence ai is monotone, there exists an i such that

ai < a′ < ai+1. Since c(a) is non-decreasing, we have ai+1 = c(ai) ≤ c(a′) = a′ which contradicts

the assumption that a′ < ai+1. Similarly, we can show that there is no other solution a′ in the

interval (a∗, a0) for the case a0 > a∗.

Fig. 3.5 illustrates the convergence of sequence ai to a∗ from the initial point a0.

3.5.2 Outline of Algorithm for Finding All Solutions to a∗ = c(a∗)

A straightforward way of computing the optimal a∗ is the iteration method by starting with a0.

However, depending on the starting point a0, the iterations may lead to a local optimal solution.

In other words, when the equation a = c(a) has more than one solution, we need a procedure

capable of finding all the solutions of a = c(a). Using Theorem 3.5, we outline an efficient

procedure that can find all the solutions to a = c(a). A global solution then can be chosen among
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Figure 3.5: Illustration of the convergence of sequence ai to a∗ from the initial point a0.

these solutions that maximize the mutual information.

Our procedure initiates two iteration loops using two starting points a0
l = ε and a0

r = 1 − ε

where ε is a small number. Suppose that the first iteration loop converges to a∗l , and the second

iteration loop converges to a∗r . If a∗l = a∗r , then the procedure terminates with a∗ = a∗r being the

optimal point. This is due to Theorem 3.5 which states that there is no solution of a = c(a) in

either (ε, a∗) or (a∗, 1− ε). We assume that the optimal solution is not in (0, ε) or (1− ε, 1) since

we can make ε arbitrarily small. Otherwise, if a∗l < a∗r , we need to check whether or not there

exists some other solutions in the interval (a∗l , a
∗
r). In order to find them, the procedure initiates

another iteration loop using a starting point a0 = (a∗l +a∗r)/2 . After this iteration loop converges

to a∗c , one needs to run the iterations over two intervals (a∗l ,min(a0, a∗c)) and (max(a0, a∗c), a
∗
r). If

any of these intervals is nonempty, then the procedure recursively repeats the previous steps until

the whole interval (0, 1) has been completely searched. When all a∗’s are found, we pick the one

that maximizes the mutual information. Note that this fixed point method is much faster than

an exhaustive search through all the values of a. Finally, we note that our procedure is based on

the algorithm in [61].
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Next, we state a sufficient condition for which a∗ is unique.

Corollary 3.3. Let d(x, y) is an arbitrary distance metric between x and y. If there exists a

q ∈ [0, 1) such that for all x, y ∈ (0, 1)

d(c(x), c(y)) ≤ qd(x, y), (3.38)

then there exists a unique a∗ such that c(a∗) = a∗.

Proof. From Theorem 3.4, obviously that a ∈ (0, 1) and c(a) ∈ (0, 1). Thus, c(a) maps to

itself. If existing q and d(, ) such that d(c(x), c(y)) ≤ qd(x, y) for all x, y ∈ (0, 1) then c(.) is a

contraction mapping. From Banach’s fixed point theorem [62], there exists a unique a∗ such that

c(a∗) = a∗.

Note that if we use d(x, y) = |x− y|, then it is straight forward to show that if 0 < c′(a) < 1,

then a∗ is unique.

3.6 Conclusion

In this chapter, we show that if the ratio of the channel conditional densities of the inputs

r(y) = P (Y=y|X=0)
P (Y=y|X=1) is a strictly increasing or decreasing function, then the quantizers having a

single threshold are optimal. Furthermore, we show that an optimal quantizer (possibly with

multiple thresholds) is the one with the thresholding vector whose elements are all the solutions

of r(y) = r∗ for some constant r∗ > 0. We also describe a necessary condition for optimality,

a sufficient condition for uniqueness via a fixed point theorem, together with an algorithm for

finding the globally optimal quantizer.
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3.7 Appendix

3.7.1 Proof for Lemma 3.1

From (3.25), we have:

φ1(hi) =
ap0

(1− a)p1
φ0(hi), ∀i ∈ {1, 2, . . . , n}. (3.39)

Now, suppose that u(y) = a having n solutions {h1, h2, . . . , hn}. Without loss of generality,

suppose that Ha = {(−∞, h1) ∪ [h2, h3)∪ · · ·∪ [hn,+∞)} and H̄a = R\Ha = {[h1, h2)∪ [h3, h4)∪

· · · ∪ [hn−1, hn)}. From (3.29) and (3.30)

df(a)

da
=
∂f(a)

∂h

∂h

∂a
=+φ0(h1)

∂h1

∂a
−φ0(h2)

∂h2

∂a
+. . .−φ0(hn)

∂hn
∂a

, (3.40)

dg(a)

da
=
∂g(a)

∂h

∂h

∂a
=−φ1(h1)

∂h1

∂a
+φ1(h2)

∂h2

∂a
−. . .+φ1(hn)

∂hn
∂a

. (3.41)

Combining Eqs. (3.39), (3.40) and (3.41), we have the desired proof. We note that f ′(a) and

g′(a) have the opposite sign. As a result, if f(a) increases, then g(a) decreases and vice-versa.

�

3.7.2 Proof for Lemma 3.2

(1) From (3.26), f(a) represents the quantized bit “0” which is the area of u(y) (defined in (3.27))

where u(y) < a. Therefore, if a is increasing, f(a) is obviously increasing. Thus, f ′(a) > 0. A

similar proof can be established for g(a) which corresponds to the area of u(y) where u(y) ≥ a.

(2) We note that f(a) and g(a) represent the quantized bits “0” and “1” which correspond to

the areas of u(y) < a and u(y) ≥ a, respectively. Let Ha = {y|u(y) < a} and H̄a = {y|u(y) ≥ a}.
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From (3.26)

ap0φ0(y) > (1− a)p1φ1(y), ∀y ∈ Ha, (3.42)

ap0φ0(y) ≤ (1− a)p1φ1(y),∀y ∈ H̄a. (3.43)

We consider two possible cases: a > p1 and a ≤ p1. In both cases, we will show that

f(a) + g(a) > 1.

• If a < p1 then 1−a > 1−p1 = p0. Thus, from (3.42), φ0(y) > φ1(y) for ∀ y ∈ Ha. Therefore,

f(a) + g(a) =

∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ1(y)dy (3.44)

>

∫
y∈Ha

φ1(y)dy +

∫
y∈H̄a

φ1(y)dy (3.45)

= 1. (3.46)

• If a ≥ p1 then 1−a ≤ 1−p1 = p0. Thus, from (3.43), φ0(y) ≤ φ1(y) for ∀ y ∈ H̄a. Therefore,

f(a) + g(a) =

∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ1(y)dy (3.47)

≥
∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ0(y)dy (3.48)

= 1. (3.49)

�

Remark: The necessary condition for inequality (3.49) becomes equality is φ0(y) = φ1(y) for

∀ y ∈ H̄a that contradicts to the assumption that r(y) has a finite number of stationary points.

Thus, f(a) + g(a) > 1.
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1

a

[
DKL(a||la)−DKL(a||ra)

]
=

1

a

[(
a log(

a

p1(1− g(a))

p0f(a) + p1(1− g(a))

) + (1− a) log(
1− a
p0f(a)

p0f(a) + p1(1− g(a))

)
)

−
(
a log(

a

p1g(a)

p0(1− f(a)) + p1g(a)

) + (1− a) log(
1− a

p0(1− f(a))

p0(1− f(a)) + p1g(a)

)
)]

=
1

a

[
−
(
a log(

p1(1− g(a))

p0f(a) + p1(1− g(a))
) + (1− a) log(

p0f(a)

p0f(a) + p1(1− g(a))
)
)

+
(
a log(

p1g(a)

p0(1− f(a)) + p1g(a)
) + (1− a) log(

p0(1− f(a))

p0(1− f(a)) + p1g(a)
)
)]

(3.50)

=
1

a

[
(1− a) log(

p0(1− f(a))

p0f(a)
) + a log(

p1g(a)

p1(1− g(a))
) + log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)
]

=
1

a

[
(a− 1) log(

f(a)

1− f(a)
) + a log(

g(a)

1− g(a)
) + log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)
]

(3.51)

=
a− 1

a
log(

f(a)

1− f(a)
) + log(

g(a)

1− g(a)
) +

1

a
log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
) (3.52)

= F (a), (3.53)

3.7.3 Proof of Lemma 3

By using the definitions of a, la, ra and KL divergence, it can be shown that (3.53) holds with

(3.50) due to a log a + (1 − a) log(1 − a) is cancelled after summing up, (3.51) and (3.52) due to

a bit of algebra, (3.53) due to the definition of F (a) in (3.35).

3.7.4 Proof Theorem 3.4

We will use the following lemmas and the order notion of 2-dimensional vector below to prove

Theorem 3.4.
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Vector Order. Consider two binary probability vectors x = [1 − x, x] and y = [1 − y, y],

x, y ∈ (0, 1), we define the vector order y ≥ x if and only if y ≥ x.

Lemma 3.6. For any three binary probabiity vectors a = [1−a, a], b = [1− b, b] and c = [1− c, c]

such that a ≤ b ≤ c (or a ≤ b ≤ c), then

• (a) DKL(a||b) ≤ DKL(a||c)

• (b) DKL(c||b) ≤ DKL(c||a)

• (c) DKL(b||a) ≤ DKL(c||a)

• (d) DKL(b||c) ≤ DKL(a||c)

Proof. Proof of (a). For a given a, we show that DKL(a||b) is a non-decreasing function of b. Let

D(b) = DKL(a||b) = a log(
a

b
) + (1− a) log(

1− a
1− b

)

D′(b) =
1− a
1− b

− a

b
. (3.54)

Since a ≤ b then 1 − a ≥ 1 − b, thus
1− a
1− b

≥ 1 ≥ a

b
and D′(b) ≥ 0 ∀ b ≥ a. Since b ≤ c,

D(b) ≤ D(c) or DKL(a||b) ≤ DKL(a||c). The equality happens if and only if b = c.

We omit the proofs of (b), (c), and (d) since they are similar to the proof of (a).

Lemma 3.7. If DKL(ca||la) = DKL(ca||ra), then la ≤ ca ≤ ra

Proof. First, we show that la < ra, ∀ a. Indeed, consider
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p1g(a)

p0(1− f(a)) + p1g(a)
− p1(1− g(a))

p0f(a) + p1(1− g(a))

=
p0p1(g(a)f(a)− (1− g(a))(1− f(a)))

(p0(1− f(a)) + p1g(a))(p0f(a) + p1(1− g(a)))

=
p0p1(f(a) + g(a)− 1)

(p0(1− f(a)) + p1g(a))(p0f(a) + p1(1− g(a)))

> 0,

where the last inequality is due to f(a) + g(a) > 1 (Lemma 2), and all other terms in the last

equation are positive. Thus, the second entry of ra is strictly greater than the second entry of la

or ra > la.

Now, suppose that ca < la < ra, by Lemma 6 part (a), DKL(ca||la) < DKL(ca||ra) that

contradicts to DKL(ca||la) = DKL(ca||ra). Thus, la ≤ ca. A similar proof can be constructed to

show that ca ≤ ra. Thus, la ≤ ca ≤ ra.

Lemma 3.8. Consider a1 and a2 such that 0 < a1 ≤ a2 < 1, then la1 ≤ la2 and ra1 ≤ ra2.

Proof. First, we show that la1 ≤ la2 . Indeed, consider the function s(a) as the ratio of the second

entry over the first entry of la, i.e., s(a) =
p1(1− g(a))

p0f(a)
. We have

s′(a) =
−p1g

′(a)p0f(a)− p1(1− g(a))p0f
′(a)

(p0f(a))2

= p0p1f
′(a)
( ap0

(1− a)p1
f(a)− (1− g(a))

)
, (3.55)

with (3.55) due to Lemma 3.2. Also from (3.42),

φ1(y) <
ap0

(1− a)p1
φ0(y),∀y ∈ Ha.

Moreover, from the definitions of f(a) and g(a) in (3.29) and (3.30), f(a) and 1− g(a) are the
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integrals of φ0(y) and φ1(y), respectively over Ha, respectively. Thus,
ap0

(1− a)p1
f(a)−(1−g(a)) >

0. From Lemma 3.2 f ′(a) > 0, thus s′(a) > 0. That said, the ratio of the second entry over the

first entry of la is an increasing function of a. Furthermore, la is a probability vector, i.e., the

summation of the first entry and the second entry equals one. Therefore, the second entry of la

is an increasing function of a or la1 ≤ la2 .

A similar proof can be constructed to show that ra1 ≤ ra2 .

Lemma 3.9. Consider 4 vectors a = [1− a, a], b = [1− b, b], c = [1− c, c] and d = [1− d, d] such

that a ≤ b ≤ c ≤ d (or a ≤ b ≤ c ≤ d), then

• (a) DKL(d||a) ≥ DKL(c||b).

• (b) DKL(a||d) ≥ DKL(b||c).

Proof. Proof of (a). We have DKL(c||b) ≤ DKL(c||a) and DKL(c||a) ≤ DKL(d||a) due to Lemma

3.6 part (b) and (c), respectively. Thus, DKL(d||a) ≥ DKL(c||b). The equality happens if and

only if a = b and c = d.

Proof of (b). Similar to proof of part (a), DKL(a||d) ≥ DKL(b||d) and DKL(b||d) ≥

DKL(b||c) due to Lemma 3.6 part (a) and (d), respectively. Thus, DKL(a||d) ≥ DKL(b||c).

The equality happens if and only if a = b and c = d.

Now, we are ready to prove Theorem 3.4.

Proof of c(a) ∈ (0, 1).

From Lemma 3.7, we have la ≤ ca ≤ ra. Equivalently,

0 <
p1(1− g(a))

p0f(a) + p1(1− g(a))
≤ c(a) ≤ p1g(a)

p0(1− f(a)) + p1g(a)
< 1. (3.56)
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Proof for the smoothness of c(a). Since 0 < f(a), g(a) < 1, p0(1− f(a)) + p1g(a) > 0 and

f(a)g(a) > 0, thus all of the denominators of (3.36) is positive. In addition, one can verify that

(1− f(a))(1− g(a)) = 1− f(a)− g(a) + f(a)g(a) < f(a)g(a).

Thus, log(
(1− f(a))(1− g(a))

f(a)g(a)
) is non-zero. In addition, if f ′(a) and g′(a) exist, it is straight

forward to show that c′(a) also exists. Therefore, c(a) is a well-defined and smooth function of a.

Proof for the non-decreasing of c(a).

Suppose that there exists a1 ≤ a2 such thatDKL(ca1 ||la1) = DKL(ca1 ||ra1) andDKL(ca2 ||la2) =

DKL(ca2 ||ra2) but c(a1) > c(a2). From Lemma 3.8, la1 ≤ la2 , ra1 ≤ ra2 . From Lemma 3.7,

la1 ≤ ca1 ≤ ra1 and la2 ≤ ca2 ≤ ra2 . From the assumption that ca1 > ca2 , ca1 > ca2 . Therefore,

la1 ≤ la2 ≤ ca2 < ca1 ≤ ra1 ≤ ra2 .

Now, using Lemma 3.9 part (a) for la1 ≤ la2 ≤ ca2 < ca1 ,

DKL(ca1 ||la1) > DKL(ca2 ||la2). (3.57)

Similarly, using Lemma 3.9 part (b) for ca2 < ca1 ≤ ra1 ≤ ra2 ,

DKL(ca1 ||ra1) < DKL(ca2 ||ra2). (3.58)

From (3.57) and (3.58),

DKL(ca1 ||la1)>DKL(ca2 ||la2)=DKL(ca2 ||ra2)>DKL(ca1 ||ra1)

that contradicts to our assumption thatDKL(ca1 ||la1) = DKL(ca1 ||ra1). By contradiction method,
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c(a1) ≤ c(a2) if a1 ≤ a2. Thus, c(a) is a non-decreasing function of a. Combining with (3.56), we

have the proof for Theorem 3.4.

3.7.5 Proof of r∗ > 0

From (3.11) and p0 > 0, p1 > 0, r∗ > 0 is equivalent to

−
log

1− q0

q0
+ log

1−A22

A22

log
1− q0

q0
− log

1−A11

A11

> 0.

Thus, we need to show that

log(
1− q0

q0

1−A22

A22
) log(

q0

1− q0

1−A11

A11
) > 0.

Since log(x) > 0 if and only if x > 1, we can show that

(
1− q0

q0

1−A22

A22
− 1)(

q0

1− q0

1−A11

A11
− 1) > 0.

Using a bit of algebra, (3.59) is equivalent to

(A11 − q0)(A22 − q1) > 0. (3.59)

However, A11 = f(a), A22 = g(a), thus A11 + A22 > 1 by Lemma 2. From A21 + A22 = 1 <

A11 +A22, A21 < A11. Similarly, A12 < A22. Therefore,

q0 = p0A11 + p1A21 < p0A11 + p1A11 = A11, (3.60)
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q1 = p0A12 + p1A22 < p0A22 + p1A22 = A22. (3.61)

Combining (3.60) and (3.61), (3.59) follows. The proof is complete.
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Chapter 4: Optimal Quantizer Structure for Maximizing Mutual

Information Under Constraints

4.1 Introduction

Motivated by the development of polar codes [63] and LDPC codes [39], finding optimal quantizers

that maximize the mutual information between the input and output has been a topic of interest

in recent years. Many practical algorithms and theoretical results for such optimal quantizers have

been proposed over the past decade [44, 45, 52, 54, 57, 64, 65]. Finding an optimal quantizer that

maximizes the mutual information in a general setting is an NP-hard problem [60]. Consequently,

using an exhaustive search is intractable even for the modest size of the input and output sets.

Therefore, existing algorithms typically find an approximate solution [54], [45], [57]. On the

other hand, under certain restrictions e.g., binary input channel, there exist polynomial-time

algorithms [44], [52], [66] for finding the exact solution.

While there exist many exact and approximate algorithms for finding an optimal quantizer

that maximizes the mutual information between the input and output under different settings, the

problem of finding an optimal quantizer that maximizes the mutual information subject to some

constraints on the output, receives less attention. In this chapter, we are interested in studying

the optimal quantizers in the following communication setting. We consider a sender transmits

K discrete symbols modeled as a discrete random variable X having a probability mass function

p(x) = [p(x1), p(x2), . . . , p(xK)] over an arbitrary continuous channel. As such, the received signal

Y is a distorted version of X caused by the channel distortion that is characterized by the condi-
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tional densities p(y|xi) = φi(y), i = 1, 2, . . . ,K. To recover X, a quantizer Q is used to quantize

Y back to a discrete output Z = {z1, z2, . . . , zN} such that the mutual information I(X;Z) is

maximized subject to an arbitrary constraint on p(z) = [p(z1), p(z2), . . . , p(zN )]. Formally, we

are interested in designing an optimal quantizer Q∗ that maximizes βI(X;Z)−C(p(z)) where β

is a positive number that controls the trade-off between maximizing I(X;Z) and minimizing an

arbitrary cost function C(p(z)).

This problem is a generalized version of the Deterministic Information Bottleneck [67], and

has many applications. Specifically, using the entropy constraint on Z, our problem is exactly the

DIB. Imposing entropy constraint on Z is useful in many applications that use low-bandwidth

channels or limited storage systems. For example, suppose one wants to quantize a continuous

data source before applying entropy coding, e.g., Huffman code, to gain compression. Ideally, one

wants to minimize the distortion between the original continuous data and the quantized data.

However, minimizing the distortion may result in a high entropy of the quantized data which

may exceed a given storage capacity after compression. Thus, one needs to impose a constraint

on the entropy of the quantized data to guarantee that the size of the resulted compressed data

is below the storage capacity while retaining much information in the original source. Similarly,

if the quantized data must be transmitted over a limited bandwidth channel, it is important to

reduce the entropy of the data source below a certain threshold in order to reduce the bit rate to

match the limited channel bandwidth.

To that end, the contributions of this chapter are as follows. We showed that there exists a

convex quantizer that is optimal. Specifically, let p(x|y) = [p(x1|y), p(x2|y), . . . , p(xK |y)] be the

posterior distribution of X for a given value of y, we show that for any arbitrary cost function

C(.), the optimal quantizer Q∗ separates the vectors p(x|y) into convex cells. Although using a

different approach, our result is similar to the result previously established for the quantization

problems without the constraint [44,51]. In particular, we show that for any given quantizer Q(y),
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there exists a convex quantizer Q̃(y) such that: (1) Q̃(y) produces the same p(z) as that of Q(y),

therefore, the same cost function C(p(z)), and (2) I(X;Z) produced by Q̃(y) is at least as large

as that produced by Q(y). Therefore, a class of convex quantizers should contain at least one

optimal quantizer. In addition, using this result, we describe a method for determining an upper

bound on the number of thresholds used in a convex quantizer, which narrows down the search

space for finding an optimal quantizer. Numerical results are presented to validate the findings.

4.2 Related work

When the input is binary, it can be shown that an optimal quantizer (without output constraints)

has the structure of convex cells in the space of posterior distribution [44], [52], [66]. Based

on this optimality structure, an optimal quantizer can be found efficiently in polynomial time

via dynamic programming technique [44]. In particular, the structure of optimal binary-input

quantizers in [44] and [52] is constructed based on the well-known result in [51] for the K-ary

inputs. The results in [51] and [68] showed that for K-ary input, an optimal quantizer separates

space of the posterior probability distribution into convex cells via a number of hyper-plane cuts.

The number of hyper-plane cuts can be shown to be polynomial in the data size. Thus, there

exists a polynomial time algorithm to find an optimal quantizer by exhaustively searching over

all the possible hyper-plane cuts in the posterior distribution space [51].

There also exist a few results on finding a quantizer that maximizes the mutual informa-

tion subject to some constraints on the output. Finding an optimal quantizer for maximiz-

ing/minimizing an objective function other than the mutual information subject to certain output

constraints, has a long history. For example, the problem of entropy-constrained scalar quanti-

zation [69, 70] and entropy-constrained vector quantization [71], [72] have been well established.

The objectives in these problems are minimizing a specific distortion function, typically the mean
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square error (MSE) between the input and the output while keeping the output entropy less than

a certain threshold. The imposed entropy constraint is crucial in applications that use limited

communication channels and limited storage systems. Notably, the Deterministic Information

Bottleneck (DIB) method of Strouse et al. [67] is most related to our work. Strouse et al. pro-

posed a linear time iterative algorithm to find a locally optimal quantizer that maximizes the

mutual information under the entropy constraint of the output. On the other hand, our work

is focused on the structure of the optimal quantizer, and can find the exact solution albeit with

higher complexity. Our results also generalize the result in [51] for the problem of minimizing

impurity without constraints. Specifically, the result in [51] states that the optimal partitions

are separated by hyper-plane cuts in the space of the posterior distribution. We show that this

structure is also valid for the problem of maximizing mutual information subject to any output

constraints. Finally, we note that this work generalized our previous result in [73] for the case of

binary input channels.

4.3 Problem Formulation

We consider a discrete input source modeled as a discrete random variable X consisting K discrete

symbols {x1, x2, . . . , xK} with a given p.m.f p(x) = [p(x1), p(x2), . . . , p(xK)]. xi is transmitted

over a given arbitrary continuous channel that distorts/maps xi to a continuous value y ∈ R at the

receiver. Let Y be a random variable that models the received signal, then the channel distortion

is characterized by K conditional densities p(y|xi) = φi(y), i = 1, 2, . . . ,K. A quantizer Q is

used to map the continuous random variable Y to a discrete random variable Z consisting of N

discrete outcomes z1, z2, . . . , zN with the p.m.f p(z) = [p(z1), p(z2), . . . , p(zN )]. We note that p(z)

depends on Q. Let C(p(z)) be an arbitrary cost function of p(z). Our goal is to find an optimal

quantizer Q∗ that maximizes the trade-off between the mutual information I(X;Z) and the cost



76

function C(p(z)). Formally, we want to solve the following optimization problem:

Q∗ = max
Q

βI(X;Z)− C(p(z)), (4.1)

where β is a pre-specified positive number that controls the trade-off between maximizing I(X;Z)

and minimizing C(p(z)). A well-known constraint C(p(z)) on the quantized-output is the entropy

H(Z) = −
∑N

i=1 p(zi) log p(zi) which we will be used to validate our findings in Section 4.7.

4.4 Preliminaries

4.4.1 Notations and definitions

For convenience, we use the following notations and definitions:

1. p(x)=[p(x1), p(x2), . . . , p(xK)] = [p1, p2, . . . , pK ] denotes the p.m.f of the input source X.

2. p(y|xi) = φi(y), i = 1, 2, . . . ,K denotes the conditional density of received-output y for a

given transmitted input xi. Unlike a AWGN channel, φi(y) and φj(y) can be quite different

as the channel may distort signals xi and xj differently. We assume that φi(y) is a continu-

ous, positive, and differentiable function.

3. µ(y) denotes the density function of y. Specifically,

µ(y) =
K∑
i=1

piφi(y). (4.2)

4. p(x|y) = [p(x1|y), p(x2|y), . . . , p(xK |y)] denotes the conditional probability vector ofX given
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a y ∈ Y where,

p(xi|y) =
piφi(y)∑K
j=1 pjφj(y)

. (4.3)

5. The output set Zi denotes the set of y’s that is mapped to the ith output zi by Q(y).

Formally,

Zi = {y : Q(y) = zi}. (4.4)

Definition 4.1. (Convex quantizer ( ˜quantizer˜quantizer˜quantizer)) Let Z1, Z2, . . . , ZN be the N sets induced

by a quantizer Q(y). Q(y) is a convex quantizer (denoted by ˜quantizer) if for any Zi and Zj,

i 6= j, there exists a hyper-plane that separates the two conditional probability vectors p(x|yi) and

p(x|yj), ∀yi ∈ Zi,∀yj ∈ Zj.

We note that a ˜quantizer produces the N convex regions in the K dimensional space of the

posterior distribution p(x|y), but not the N convex regions in y.

Definition 4.2. (Kullback-Leibler (KL) divergence) The KL divergence of two probability

vectors a = (a1, a2, . . . , aK) and b = (b1, b2, . . . , bK) is defined by:

D(a||b) =
K∑
i=1

ai log(
ai
bi

). (4.5)

Definition 4.3. (Centroid) The centroid of output set Zi is a K-dimensional probability vector

ci = [c1
i , c

2
i , . . . , c

K
i ] that minimizes the total KL divergence from p(x|y) to ci, ∀y ∈ Zi. Formally,

ci = arg min
c

∫
y∈Zi

D(p(x|y)||c)µ(y)dy. (4.6)

Definition 4.4. (Distortion measurement) The distortion of a quantizer Q that induces N
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output sets {Z1, Z2, . . . , ZN} is:

D(Q) =

N∑
i=1

D(QZi) =

N∑
i=1

∫
y∈Zi

D(p(x|y)||ci)µ(y)dy, (4.7)

where ci is the centroid of Zi and D(QZi) is the distortion induced for each Zi,

D(QZi) =

∫
y∈Zi

D(p(x|y)||ci)µ(y)dy. (4.8)

4.4.2 Optimal quantizer and optimal clustering using Kullback-Leibler di-

vergence

It is well-known that finding an optimal quantizer that minimizes a concave impurity function

can be solved using an iterative clustering algorithm with a suitable distance from a data point to

its centroid [74]. In a special case where the impurity function is the entropy, minimizing entropy

impurity is equivalent to maximizing mutual information [44], [54]. Consequently, Zhang and

Kurkoski showed that finding an optimal quantizer Q∗ that maximizes the mutual information

between the input and the output is equivalent to determining the optimal clustering that mini-

mizes the distortion using KL divergence as the distance [54]. The result in [54] was constructed

for discrete domain but it can be extended to continuous domain. For ease of analysis, we will

provide a proof sketch. For a given y and a given quantizer Q that maps y to Zi with centroid ci,

the KL-divergence between the posterior distribution p(x|y) and ci is denoted by D(p(x|y)||ci).

If the expectation is taken over Y , from Lemma 1 in [54], we have:

EY [D(p(x|y)||ci)] = I(X;Y )− I(X;Z).
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Since p(x) and φi(y) are given, I(X;Y ) is given and independent of the quantizer Q. Thus,

maximizing I(X;Z) over Q is equivalent to minimizing EY [D(p(x|y)||ci)] with an optimal quan-

tizer being a solution to:

Q∗ = min
Q

EY [D(p(x|y)||ci)] (4.9)

= min
Q

N∑
i=1

∫
y∈Zi

D(p(x|y)||ci)µ(y)dy, (4.10)

where µ(y) is the density of Y . Now, the problem of finding the optimal quantizer maximizing

mutual information can be cast as the problem of finding the optimal clustering that minimizes

the KL divergence. Thus, in the rest of this chapter, we will focus on finding the optimal clustering

minimizing the KL divergence. Also, KL divergence is a special case of Bregman divergence, and

for a given quantized-output set Zi, its centroid ci can be computed by a closed-form expression

(Proposition 1, [75]).

4.5 Structure of optimal quantizer

We show that an optimal quantizer can be found within a class of convex quantizers as defined in

Definition 4.1. Our approach is to show that any quantizer can be replaced by an equal or better

convex quantizer that maximizes the objective function βI(X;Z)−C(p(z)). Specifically, we show

that for any quantizer Q, there exists a convex quantizer Q̃ such that: (1) Q̃ produces the same

output distribution as Q and (2) the total distortion induced by D(Q̃) is less than or equal to

D(Q), or equivalently I(X;Z) produced by Q̃ is at least as large as that produced by Q. Thus,

the optimal quantizer that maximizes βI(X;Z) − C(p(z)) must belong to the class of convex

quantizers. Consequently, an algorithm for finding the best quantizer in the set of all convex

quantizers will find an optimal quantizer. The main point for doing this is that it is easier from
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an algorithmic viewpoint to search for an optimal quantizer in a set of convex quantizers than to

search through all the possible quantizers. We now consider a simple case of binary quantization.

4.5.1 Structure of an optimal quantizer for binary output (N = 2)

Theorem 4.1. Let Q be an arbitrary quantizer that induces two disjoint discrete output sets Z1

and Z2 with two corresponding centroids c1 = [c1
1, c

2
1, . . . , c

K
1 ], c2 = [c1

2, c
2
2, . . . , c

K
2 ]. There exists a

convex quantizer Q̃ associated with a hyper-plane that separates the space of the posterior distri-

bution p(x|y) into two discrete sets {Z̃1, Z̃2} having the corresponding centroids {c̃1, c̃2} such that

(1) p(Zi)
4
= P (y ∈ Zi) = p(Z̃i)

4
= P (y ∈ Z̃i), i = 1, 2, and (2) D(Q̃) ≤ D(Q).

Proof. Let Q be a given arbitrary quantizer. Q induces Z1, Z2, c1 and c2. Let F (p(x|y)) =

D(p(x|y)||c1)−D(p(x|y)||c2), then:

F (p(x|y)) = D(p(x|y)||c1)−D(p(x|y)||c2)

=

K∑
i=1

p(xi|y) log
p(xi|y)

ci1
−

K∑
i=1

p(xi|y) log
p(xi|y)

ci2

=
K∑
i=1

p(xi|y) log
ci2
ci1

= aTp(x|y), (4.11)

where a = [a1, a2, . . . , aK ] be a K-dimensional vector where ai = log
ci2
ci1

, i = 1, 2, . . . ,K.

Now, let us consider a family of hyper-planes H(h) in the K-dimensional space parameterized

by h ∈ R in the following equation:

aTp(x|y) = h. (4.12)

For a given h, the hyper-plane H(h) separates the K-dimensional posterior distribution p(x|y)

into two disjoint sets corresponding to F (p(x|y)) ≤ h and F (p(x|y)) > h. Based on Definition



81

4.1, there is also a family of convex quantizers Q̃ for each h. Our goal is to show that there exists

a hyper-plane H(h̃) associated with a convex quantizer Q̃ that separates the space of posterior

distribution into two disjoint sets {Z̃1, Z̃2} such that p(Zi) = p(Z̃i), and D(Q̃) ≤ D(Q).

Proof of claim (1). Assume that Q produces two output sets Z1 and Z2 with the probability

p(Z1) and p(Z2), p(Z1)+p(Z2) = 1. Our first claim is that one can always find a convex quantizer

Q̃ corresponding to a hyper-plane H(h̃) that produces Z̃1 and Z̃2 such that p(Z̃1) = p(Z1) and

p(Z̃2) = p(Z2).

Consider the following convex quantizer:

Q̃(y) =


Z̃1 if F (p(x|y)) ≤ h,

Z̃2 if F (p(x|y)) > h.

(4.13)

By increasing value of h, h ∈ (−∞,+∞), the set Z̃1 must enlarge while Z̃2 must reduce. Thus, by

increasing/decreasing the value of h, one can always choose an appropriate value of h = h̃ such

that p(Z̃1) = p(Z1) and p(Z̃2) = p(Z2). h̃ corresponds to the hyper-plane H(h̃) of the convex

quantizer Q̃.

Proof of claim (2). Our second claim is that D(Q̃) ≤ D(Q). Indeed, using the hyper-plane

H(h̃) in the proof of claim (1) which produces two discrete output sets Z̃1 and Z̃2. Let A = Z̃1∩Z2

and B = Z̃2 ∩ Z1. Note that if A or B is empty set then Q can be readily shown to be a convex

quantizer. Let p(A) = P (y ∈ A) and p(B) = P (y ∈ B). We first show that p(A) = p(B) as

follows.

p(Z1)
Z̃1∩Z̃2=∅

= p((Z1 ∩ Z̃1) ∪ (Z1 ∩ Z̃2)) = p(Z1 ∩ Z̃1) + p(Z1 ∩ Z̃2) = p(Z1 ∩ Z̃1) + p(B). (4.14)
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Similarly,

p(Z̃1)
Z1∩Z2=∅

= p((Z1 ∩ Z̃1) ∪ (Z̃1 ∩ Z2)) = p(Z1 ∩ Z̃1) + p(Z̃1 ∩ Z2) = p(Z1 ∩ Z̃1) + p(A). (4.15)

Since p(Z1) = p(Z̃1), from (4.14) and (4.15), we have p(A) = p(B).

Next, let µ(y) be the density of Y . From F (p(x|yi)) ≤ h̃ < F (p(x|yj)), ∀yi ∈ Z̃1 and ∀yj ∈ Z̃2,

together with A = Z̃1 ∩ Z2 and B = Z̃2 ∩ Z1, then F (p(x|yi)) ≤ h̃ < F (p(x|yj)), ∀yi ∈ A and

∀yj ∈ B, (4.16) is established.

Next, by adding
∫
y∈{Z1∩Z̃1}D(p(x|y)||c1)µ(y)dy +

∫
y∈{Z2∩Z̃2}D(p(x|y)||c2)µ(y)dy to both

sides of (4.16), we obtain (4.17).

By moving −
∫
y∈AD(p(x|y)||c2)µ(y)dy to the right hand side and −

∫
y∈B D(p(x|y)||c2)µ(y)dy

to the left hand side of (4.17), we obtain (4.18).

Now, since Z1 ∩ Z2 = ∅, A ∩ {Z1 ∩ Z̃1} = {Z̃1 ∩ Z2} ∩ {Z1 ∩ Z̃1} = ∅. Thus, the integral

over A and {Z1 ∩ Z̃1} is equivalent to the integral over A ∪ {Z1 ∩ Z̃1} = Z̃1. Similarly, using

B ∪ {Z2 ∩ Z̃2} = Z̃2, B ∪ {Z1 ∩ Z̃1} = Z1 and A∪ {Z2 ∩ Z̃2} = Z2, (4.19) is obtained from (4.18).

Let c̃1 and c̃2 be the new centroids of Z̃1 and Z̃2. From Definition 4.3, (4.20) follows.

Finally, from (4.19) and (4.20), (4.21) is established. Combining (4.21) and Definition 4.4,

D(Q̃) ≤ D(Q). Therefore, for any arbitrary quantizer Q, there exists a convex quantizer Q̃ that

produces the same output distribution together with a distortion is equal or smaller than that of

Q.

4.5.2 Structure of an optimal quantizer for N > 2 quantization levels

Theorem 4.2. Let Q be an arbitrary quantizer having discrete output sets {Z1, Z2, . . . , ZN} with

N centroids c1, c2, . . . , cN , there exists a convex quantizer Q̃ with N output sets {Z̃1, Z̃2, . . . , Z̃N}
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∫
y∈A

F (p(x|y))µ(y)dy =

∫
y∈A

[D(p(x|y)||c1)−D(p(x|y)||c2)]µ(y)dy

≤
∫
y∈B

[D(p(x|y)||c1)−D(p(x|y)||c2)]µ(y)dy =

∫
y∈B

F (p(x|y)) (4.16)

∫
y∈A

D(p(x|y)||c1)µ(y)dy−
∫
y∈A

D(p(x|y)||c2)µ(y)dy+

∫
y∈{Z1∩Z̃1}

D(p(x|y)||c1)µ(y)dy+

∫
y∈{Z2∩Z̃2}

D(p(x|y)||c2)µ(y)dy

≤
∫
y∈B

D(p(x|y)||c1)µ(y)dy−
∫
y∈B

D(p(x|y)||c2)µ(y)dy+

∫
y∈{Z1∩Z̃1}

D(p(x|y)||c1)µ(y)dy+

∫
y∈{Z2∩Z̃2}

D(p(x|y)||c2)µ(y)dy

(4.17)

(∫
y∈A

D(p(x|y)||c1)µ(y)dy+

∫
y∈{Z1∩Z̃1}

D(p(x|y)||c1)µ(y)dy
)
+
(∫
y∈{Z2∩Z̃2}

D(p(x|y)||c2)µ(y)dy+

∫
y∈B

D(p(x|y)||c2)µ(y)dy
)

≤
(∫
y∈B

D(p(x|y)||c1)µ(y)dy+

∫
y∈{Z1∩Z̃1}

D(p(x|y)||c1)µ(y)dy
)
+
(∫
y∈{Z2∩Z̃2}

D(p(x|y)||c2)µ(y)dy+

∫
y∈A

D(p(x|y)||c2)µ(y)dy
)

(4.18)

∫
y∈Z̃1

D(p(x|y)||c1)µ(y)dy +

∫
y∈Z̃2

D(p(x|y)||c2)µ(y)dy ≤
∫
y∈Z1

D(p(x|y)||c1)µ(y)dy +

∫
y∈Z2

D(p(x|y)||c2)µ(y)dy (4.19)

∫
y∈Z̃1

D(p(x|y)||c̃1)µ(y)dy +

∫
y∈Z̃2

D(p(x|y)||c̃2)µ(y)dy ≤
∫
y∈Z̃1

D(p(x|y)||c1)µ(y)dy +

∫
y∈Z̃2

D(p(x|y)||c2)µ(y)dy (4.20)

∫
y∈Z̃1

D(p(x|y)||c̃1)µ(y)dy +

∫
y∈Z̃2

D(p(x|y)||c̃2)µ(y)dy ≤
∫
y∈Z1

D(p(x|y)||c1)µ(y)dy +

∫
y∈Z2

D(p(x|y)||c2)µ(y)dy (4.21)
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such that Z̃i and Z̃j are separated by a hyper-plane H(hij) in the space of posterior distribution

∀i, j, p(Zi) = p(Z̃i) ∀i, and D(Q̃) ≤ D(Q).

Proof. Let Q be an arbitrary quantizer that produces N output sets {Z1, Z2, . . . , ZN}. Consider

any two output sets Zi and Zj , i 6= j. Now, let Yij = Zi ∪ Zj . Based on Theorem 4.1, there is

a convex quantizer Q̃ corresponding to a hyper-plane H(hij) separates the K-dimensional points

p(x|y),∀y ∈ Yij into two sets Z̃i, and Z̃j with p(Zi) = p(Z̃i), p(Zj) = p(Z̃j) and D(Q̃) ≤ D(Q).

Specifically, we have:

Q̃(y) =


Z̃i if y ∈ Yij and F (p(x|y)) ≤ hij ,

Z̃j if y ∈ Yij and F (p(x|y)) > hij ,

(4.22)

where hij is a real number corresponding to the hyper-plane H(hij).

Since the distortion is additive, and the result holds for arbitrary Zi and Zj , by repeating the

above process for at most
N(N − 1)

2
pairs of Zi and Zj , one can construct a convex quantizer Q̃

which produces {Z̃1, Z̃2, . . . , Z̃N} such that p(Zi) = p(Z̃i) ∀i, and D(Q̃) ≤ D(Q).

Remark 4.1. (Optimality) For a given quantizer Q, there exists a convex quantizer Q̃ having

the same output probability p(z) with a lower distortion. This leads to the same cost function

C(p(z)) for both Q and Q̃. Since the distortion D(Q̃) is smaller or at most equal than that of

D(Q), I(X;Z) induced by Q̃ is at least as large as that produced by Q. Thus, we can conclude

that an optimal quantizer that maximizes the objective function βI(X;Z)− C(p(z)) must belong

to the set of convex quantizers.

Remark 4.2. (Complexity) Since the set of convex quantizers is a subset of all the possible

quantizers, searching over the set of convex quantizers is faster than searching over all the possible

quantizers. Specifically, if the continuous variable y ∈ R is discretized into M discrete data
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points, an exhaustive search over all the possible partitions of M points into N disjoint subsets

will have an exponential time complexity of O(NM ). On the other hand, the time complexity of

an exhaustive search over all the possible hyper-planes (or over all the possible convex quantizers)

is only O(MK−1) [51]. Typically, M >> K, thus searching over the set of convex quantizers is

much faster.

Remark 4.3. (Tractable case: binary inputs) For a special setting of binary input channel K = 2,

a hyper-plane in the space of the posterior distribution is a scalar and the dynamic programming

algorithm is capable to determine an optimal quantizer in O(M3). We refer the reader to the

work in [73] for the details.

Remark 4.4. (Locally optimal solution) While this chapter aims to determine a globally optimal

quantizer for a general scenario, its time complexity is still high O(MK−1). However, it is possible

to derive an optimality condition for a locally optimal quantizer which is similar to the result

in [71], [67]. Indeed, using a similar approach in [71], [67], it is possible to show that a locally

optimal quantizer Q∗ must satisfy:

Q(y)→ Zi ←→ d(y, Zi) ≤ d(y, Zj),∀j 6= i,

where the ”distance” d(y, Zi) from y to Zi is defined by:

d(y, Zi) = βD(p(x|y)||ci) +
dC(p(z))

dp(zi)
.

Based on this optimality condition, an iterative algorithm which is similar to k-means algorithm

can be used to find a locally optimal solution in linear time complexity [71], [67].
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4.6 Bounds on the number of thresholds for an optimal quantizer

We note that a convex quantizer Q quantizes a point y based on which convex regions (separated

by a set of hyper-planes) the corresponding posterior distribution p(x|y) lies in. This requires

mapping a point y to its posterior distribution, then successively narrowing down which regions it

lies in using the hyper-plane equations. Often times, it is desirable to determine a set of thresholds

ti ∈ R, i = 1, 2, . . . , S that separates y into multiple disjoint regions Ri ∈ R directly. That said,

two high-dimensional points p(x|y1) and p(x|y2) that belong to the same convex region in the

posterior distribution space may map to multiple disjoint regions Ri’s. Using ti’s, one is able

to quantize y directly based on its value. In this section, we determine an upper bound on the

number of thresholds ti that separate the regions Ri’s associated with an optimal quantizer.

As an example, if the output is binary, i.e., Z = {z1, z2}, then t1, t2, . . . , tS divide R into

S + 1 contiguous disjoint segments Ri = (ti−1, ti), with t0 = −∞ and tS+1 = ∞. Each y in Ri

is mapped to either z1 or z2 alternatively. For a given number of thresholds and the search step

size (grid resolution), one can exhaustively search over all the possible t1, t2, . . . , tS to determine

an optimal quantizer. In [52], Kurkoski and Yagi gave a condition for which an optimal quantizer

requires only a single threshold to maximize the mutual information between the input and the

output of binary-input binary-output channels. Thus, an exhaustive search is practical. In [73],

the author extended the single threshold condition in [52] for binary channels under the quantized-

output constraint. However, for K-ary input channels, K > 2, finding the minimum number of

thresholds that is possible to achieve the maximum of mutual information between the input and

the output is still an open problem. In this section, we utilize the results in Theorem 4.1 and

Theorem 4.2 to construct an upper bound on the required number of thresholds ti’s for an optimal

quantizer.

Theorem 4.1 and Theorem 4.2 state that the optimal output sets are separated by hyper-
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planes in the posterior distribution space which correspond to a number of thresholds ti’s in

y ∈ R. In particular, if a hyper-plane is specified by an equation, then the corresponding number

of thresholds ti’s associated with the two sets separated by this hyper-plane is at most equal to

the number of distinct real solutions of this equation. Thus, an upper bound on the number of

thresholds can be obtained by determining an upper bound on the number of solutions of the set

of equations specified the hyper-planes of an optimal quantizer. Theorem 4.3 formally states this

result.

Theorem 4.3. Let Rl ∪Rr = R and Rl ∩Rr = ∅. If ∀yl ∈ Rl and ∀yr ∈ Rr,

aTp(x|yr) ≥ h, aTp(x|yl) < h (4.23)

for given h > 0 and a, then Rl and Rr are separated by at most S thresholds t1, t2, . . . , tS ∈ R

where S is the number of real distinct solutions y to the equation:

aTp(x|y) = h. (4.24)

Proof. Since φi(y) is assumed to be continuous, positive and differentiable everywhere and h ∈ R,

s(y) = aTp(x|y)− h is a continuous function. Furthermore, if s(y) has S real distinct solutions,

then we need exactly S thresholds to separate R into S + 1 contiguous disjoint segments, each

alternatively maps to either Rl if aTp(x|y) < h or Rr if aTp(x|y) ≥ h.

Theorem 4.3 provides a concrete approach to determine the number of required thresholds

by finding the number of solutions of a hyper-plane equation. Next, using the result in Theorem

4.3, we construct an upper bound on the number of thresholds for additive white Gaussian noise

(AWGN) channels.
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Theorem 4.4. For an additive white Gaussian noise (AWGN) channel, the input symbols satisfy

xi+1−xi = δ, i = 1, 2, . . . N, where δ is a constant, and K quantization levels, the optimal quantizer

requires no more than
N(N − 1)(K − 1)

2
thresholds.

Proof. Using (4.3), (4.24) can be rewritten by:

a1
p1φ1(y)∑K
i=1 piφi(y)

+ a2
p2φ2(y)∑K
i=1 piφi(y)

+ · · ·+ aK
pKφK(y)∑K
i=1 piφi(y)

= h, (4.25)

or,
K∑
i=1

(ai − h)piφi(y) = 0, (4.26)

where

φi(y) =
1

σ
√

2π
e
−

1

2
(
y − xi
σ

)2

. (4.27)

Since xi+1−xi = δ, xi−x1 = (i−1)δ. Substituting (4.27) into (4.26) and using xi−x1 = (i−1)δ,
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we have:

K∑
i=1

(ai − h)piφi(y) (4.28)

=
K∑
i=1

(ai − h)pi
1

σ
√

2π
e
−

1

2

(y − xi
σ

)2
(4.29)

=

K∑
i=1

(ai − h)pi
1

σ
√

2π
e
−

1

2

(y2 − 2yxi + x2
i − 2yx1 + 2yx1

σ2

)
(4.30)

=
K∑
i=1

(ai − h)pi
1

σ
√

2π
e
−

1

2

(y2 − 2yx1 + x2
i − 2y(xi − x1)

σ2

)
(4.31)

=
1

σ
√

2π
e
−
y2 − 2yx1

2σ2
( K∑
i=1

(ai − h)pie
−
x2
i

2σ2 e

y(xi − x1)

σ2
)

(4.32)

=
1

σ
√

2π
e
−
y2 − 2yx1

2σ2
( K∑
i=1

(ai − h)pie
−
x2
i

2σ2 e

y(i− 1)δ

σ2
)
. (4.33)

Let e

y

σ2 = w,
∑K

i=1(ai − h)pie
−
x2
i

2σ2 = bi, and since
1

σ
√

2π
e
−
y2 − 2yx1

2σ2 6= 0, from (4.26) and

(4.33), we have:
K∑
i=1

bi(w
δ)i−1 = 0. (4.34)

This follows that wδ must be roots of a polynomial function having a degree at most K − 1

which can have at most K − 1 solutions. Since wδ and e

y

σ2 are both monotonic functions, (4.34)

has at most K − 1 solutions in y which results in at most K − 1 thresholds in R.

Next, since N partitioned-outputs require at most
N(N − 1)

2
hyper-plane cuts, a quantizer

with
N(N − 1)(K − 1)

2
thresholds is sufficient to maximize the mutual information.

Remark 4.5. AWGN is one of the most common channels in telecommunication, and the as-
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sumption of xi+1 − xi = δ is not too restricted. Indeed, many amplitude modulation techniques

such as Amplitude Shift Keying (ASK), On-Off Keying (OOK), and Pulse Amplitude Modulation

(PAM) satisfy the condition in Theorem 4.4.

Remark 4.6. As a consequence of Theorem 4.4, if the channel is an AWGN binary-input channel,

i.e. N = 2, then an optimal quantizer requires at most K − 1 thresholds. This agrees with the

results in [44], [73]. Furthermore, if the channel is AWGN binary-input binary-output (N = K =

2), then a single threshold quantizer is optimal.

Remark 4.7. Based on the proposed upper bound on the number of thresholds, a simple exhaus-

tive search algorithm can be used for finding the globally optimal quantizer of AWGN channels for

small K and N . For example, if N = 2, an optimal quantizer requires at most K − 1 thresholds

which divides R into K contiguous disjoint segments, each maps to either z1 or z2 alternatively.

Therefore, a simple exhaustive search algorithm using search resolution ε would have a time com-

plexity of O(MK−1) where M =
1

ε
.

Remark 4.8. Note that our proposed method can be used to determine the number of thresh-

olds for other additive noise channels such as additive exponential distribution, additive uniform

distribution, and additive gamma distribution.

4.7 Numerical results

First, we want to refer the reader to the numerical results in [73] which can be considered as

special cases for illustrating our Theorem 4.1 and Theorem 4.2. In this section, we only focus on

providing some examples to verify the theoretical results in our proposed Theorem 4.4.

Example 4.1. We consider a binary-input channel having X = {x1 = −10, x2 = 10} and

p(x) = [0.6, 0.4]. X is corrupted by an additive white Gaussian noise having probability density
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Figure 4.1: Maximum values of mutual information using single-threshold quantizers vs.
two-threshold quantizers under output constraint H(Z) ≤ γ for various values of γ =
0.1, 0.2, . . . , 0.9, 1.

function N(µ = 0, σ = 2) with φ1(y) = N(−10, 2) and φ2(y) = N(10, 2). Next, we want to design

an optimal quantizer Q that quantizes y ∈ R to a binary output Z = {z1, z2} such that the mutual

information I(X;Z) is maximized while H(Z) ≤ γ for a given γ.

Since N = K = 2, Theorem 4.4 points out that a single-threshold quantizer is optimal. To

confirm this theoretical result, we exhaustively search over all the possible single-threshold and

two-threshold quantizers in the interval [−15, 15] with the resolution ε = 0.1. The maximum

values of I(X;Z) using single-threshold quantizers and two-threshold quantizers are denoted by

the red-dash curve and the black-curve in Fig. 4.1, respectively. As seen, the maximum values of

mutual information using single-threshold quantizers are slightly larger than the optimal values of

mutual information provided by two-threshold quantizers, for γ = 0.1, 0.2, . . . , 0.9, 1.

This numerical result indicates that if the channel is AWGN binary-input binary-output (N =

K = 2), then an optimal quantizer can have a single threshold. Thus, our example confirms the

result in Theorem 4.4.
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Figure 4.2: Maximum values of mutual information using single-threshold quantizers, two-
threshold quantizers and three-threshold quantizers under output constraint H(Z) ≤ γ for various
values of γ = 0.1, 0.2, . . . , 0.9, 1.

Example 4.2. We consider a channel having input X = {x1 = −10, x2 = 0, x3 = 10} and

p(x) = [0.3, 0.4, 0.3]. Similar to Example 4.1, X is corrupted by an additive white Gaussian noise

having probability density function N(µ = 0, σ = 1) with φ1(y) = N(−10, 1), φ2(y) = N(0, 1), and

φ3(y) = N(10, 1). We want to design an optimal quantizer Q that quantizes y ∈ R to a binary

quantized-output Z = {z1, z2} to maximize I(X;Z) while H(Z) ≤ γ, for a given γ.

Based on Theorem 4.4, using K = 3 and N = 2, the optimal quantizer requires at most 2

thresholds. To verify the upper bound on the number of thresholds, we exhaustively search over all

the possible single-threshold, two-threshold and three-threshold quantizers, respectively. Due to a

high time-complexity of performing an exhaustive search algorithm with three thresholds, we limit

the searching range in [−15, 15] with the resolution ε = 0.2. The maximum values of I(X;Z) for

single-threshold quantizers, two-threshold quantizers, and three-threshold quantizers are denoted

by the black curve, the black-dash curve, and the green curve in Fig. 4.2, respectively. As seen,

I(X;Z) provided by two-threshold quantizers are slightly larger than that of three-threshold quan-
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tizers. On the other hand, I(X;Z) provided by single-threshold quantizers are always less than

that produced by both two-threshold and three-threshold quantizers. This numerical result implies

that two-threshold quantizers are optimal in this example which confirms the result in Theorem

4.4.

4.8 Conclusion

In this chapter, we investigate the structure of optimal quantizers that maximize the mutual

information between the input and the output under an arbitrary constraint on the output distri-

bution. Our result shows that the optimal quantizer must belong to a class of convex quantizers.

Furthermore, we describe an upper bound on the number of thresholds for an optimal quantizer.

For small numbers of inputs and outputs, using this upper bound, it is feasible to use an exhaustive

search with polynomial time complexity to find an optimal solution.
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Chapter 5: Capacity Achieving Quantizer Design for Binary Channels

5.1 Introduction

A primary goal of a communication system is to transmit the information reliably and fast over

an error-prone channel. The fastest rate with a vanishing error for a given channel is equal

to the maximum mutual information I(X;Z) between two random variables X and Z used to

model the input and the output of channel. For a given discrete memoryless channel (DMC)

specified by a channel matrix A, it is well-known that the mutual information is a concave

function in the input probability mass function pX [3]. Consequently, determining the capacity

achieving optimal input distribution p∗X that maximizes I(X;Z) for a given A is not difficult using

existing convex optimization algorithms or other iterative algorithms [4]. Furthermore, under

some special conditions on A, it is possible to obtain closed-form expressions for the capacities of

many DMCs [3], [76], [9], [77].

On the other hand, rather than using a given channel matrix A, one assumes a given input

distribution pX . The goal is to design an optimal quantizer Q∗, which is equivalent to selecting an

optimal channel matrix A∗ subject to a certain structure that maximizes the mutual information

between the input X and the quantized output Z [44, 65, 78–80]. We note that this is not the

same as designing a quantizer that achieves the capacity since the input distribution pX is given.

Our goal is to determine the optimal quantizer Q∗ together with the optimal input distribution

p∗X that achieves the channel capacity. To the best of our knowledge, this problem still remains

a hard problem for a general setting [45,57,59,81]. In [59], Singh et al. provided an algorithm for

multilevel quantization, which gave near-optimal results. In [57], the author proposed a heuristic
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near-optimal quantization algorithm which alternatively maximizes the mutual information for a

given quantizer and minimizes the probability of error for a given input distribution. However,

this algorithm only works well when the signal-to-noise ratio of the channel is high. For 2-

level (1-bit) quantization of general additive channels, Mathar and Dorpinghaus proved that the

optimal mutual information could be achieved by using an input distribution between two support

points [45]. However, it is worth noting that the result in [45] is limited for single threshold

quantizers and the truly optimal quantizer may contain more than one threshold [52]. In [81],

the author gave a near-optimal algorithm to find the optimal value of mutual information for

binary input and an arbitrary number of the quantized output, however, this algorithm may

declare a failure outcome. There are also several recent works on finding the channel capacity for

Gaussian channels with quantized output. In [82], Vu et al. investigated the problem of designing

the optimal signaling schemes together with capacity-achieving input distribution for Gaussian

channels under the assumption of a low-resolution output quantization. In [83], Ranjbar et al.

constructed the capacity region and capacity-achieving signaling schemes for 1-bit quantization

with two users communicating in Rayleigh-fading channels. These works focus on finding the

optimal input distribution for a pre-specified channel (Gaussian and Rayleigh) and under a given

quantization scheme. In contrast, the work in this chapter is more general as our focus is on

obtaining both an optimal quantization scheme and optimal input distribution simultaneously.

Furthermore, our results can be applied to any communication channel specified by an arbitrary

conditional density of the received output given the transmitted input.

In this chapter, we consider a special case where the channel matrix A is a 2 × 2 matrix. In

particular, we consider a communication channel with a binary input X being distorted by a given

arbitrary continuous-valued noise which results in a continuous-valued signal Y at the receiver. A

quantizer Q is used to quantize Y back to a binary output Z. Our goal is to determine the optimal

quantizer Q∗, and therefore, an induced optimal A∗ that achieves the capacity. Importantly, we
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do not assume that pX is given. Rather, after the optimal A∗ is determined, the optimal p∗X

then can be obtained using any classic method. The main contributions of this chapter include

the new lower bound and upper bound of the capacity in terms of the quantization parameters,

together with the structure of the associated channel matrix. Based on these, we propose an

efficient algorithm for finding Q∗.

5.2 Problem description

We consider the setting shown in Fig. 5.1. The binary input modeled as a random variable

X ∈ {0, 1}, is transmitted over a channel that distorts X into a continuous valued signal modeled

as a random variable Y at the receiver. The channel distortion is modeled by a conditional density

of Y given X: fY |X(y|x). To recover X, the receiver uses a quantizer Q that quantizes Y to a

binary signal Z ∈ {0, 1}. Formally,

Q(y) =


z = 0 if y ∈ H,

z = 1 if y ∈ H̄,
(5.1)

where H∩ H̄ = ∅ and H∪ H̄ = R. For a given conditional density fY |X(y|x), our goal is to design

an optimal quantizer Q∗ together with an optimal input distribution p∗X such that the mutual

information I(X;Z) between X and Z is maximized:

Q∗,p∗X = arg max
Q,pX

I(X;Z). (5.2)
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Figure 5.1: A binary input X = {0, 1} is transmitted over a noisy channel which results in a
continuous-valued y ∈ Y at the receiver. The receiver attempts to recover X by quantizing Y to
a discrete binary signal Z = {0, 1}.

5.3 Preliminaries

We consider the setting in Fig. 5.1. Let pX = (p0, p1) is the input probability mass distribution

and fY |X(y|x) is the conditional density function of Y given X. For given fY |X(y|x), let φ0(y) =

fY |X(y|x = 0) and φ1(y) = fY |X(y|x = 1) and define:

u(y) =
p1φ1(y)

p0φ0(y) + p1φ1(y)
. (5.3)

Definition 5.1. A binary quantizer Qu is called a convex quantizer if it has the following struc-

ture:

Qu(y) =


z = 0 if u(y) ≤ u,

z = 1 if u(y) > u,

(5.4)

where 0 < u < 1.

Burshtein et al. [51] and Kurkoski and Yagi [52] showed that the optimal binary quantizer is

indeed a convex quantizer as stated in Theorem 5.1 below.

Theorem 5.1. [51], [52] For a given p0 and p1, the optimal binary quantizer that maximizes the

mutual information I(X;Z) is a convex quantizer Qu∗ for some optimal threshold u∗.

We should make an important remark about Theorem 5.1.
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Remark 5.1. Qu∗ is not a capacity achieving quantizer even though it maximizes I(X;Z). This

is because Qu∗ assumes a given input distribution pX . On the other hand, our goal is to find the

capacity achieving quantizer Q∗ which maximizes I(X;Z) over all the possible pX . A straightfor-

ward way of applying Theorem 5.1 to find Q∗ is to search over all possible values of p0, p1, and

u∗ that maximizes I(X;Z). This is however still a 2-dimensional search.

Next, instead of given pX , suppose a quantizer Q is given, we want to determine the capacity

C = maxpX I(X;Z). The given Q induces a channel matrix:

A =

a11 a12

a21 a22

 ,
where a12 = 1− a11 and a21 = 1− a22. We will show how A is related to Q shortly. The capacity

of this binary DMC is given in Theorem 5.2 below [76].

Theorem 5.2. [76] The capacity of a binary DMC for a given channel matrix A is:

C = log2

(
2
−
a22H(a11) + (a11 − 1)H(a22)

a11 + a22 − 1

+ 2
−

(a22 − 1)H(a11) + a11H(a22)

a11 + a22 − 1
)
, (5.5)

where H(w) = −w log2(w)− (1− w) log2(1− w).

We will use Theorems 5.1 and 5.2 to describe a more efficient procedure for finding the capacity

achieving Q∗.
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5.4 Design of Capacity Achieving Quantizer

Theorem 5.3 below is a variant of Theorem 5.1 which will be used to design a capacity achieving

quantizer.

Theorem 5.3. (Structure of optimal quantizer)

For given φ0(y) and φ1(y), define:

r(y) =
φ0(y)

φ1(y)
. (5.6)

Let Qr be a convex quantizer with the following structure:

Qr(y) =


0 if r(y) ≥ r,

1 if r(y) < r,

(5.7)

for some 0 < r <∞, then there exists a capacity achieving convex quantizer Qr∗ for some optimal

threshold r∗.

Proof. For any pX , we have:

u(y)=
p1φ1(y)

p0φ0(y)+p1φ1(y)
=

1

p0

p1

φ0(y)

φ1(y)
+1

=
1

p0

p1
r(y)+1

. (5.8)

Thus,

r(y) =
p1(1− u(y))

p0u(y)
. (5.9)
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Now using Theorem 5.1, and writing u(y) in terms of r(y), we obtain:

r∗ =
p1(1− u∗)
p0u∗

. (5.10)

Furthermore, for any valid p0 > 0, it is straightforward to show that 0 < r∗ < ∞. It is

important to note that p0 and p1 need not to be given, even though they are related to r(y)

through (5.9) for some p0 and p1. Instead, r(y) is defined as r(y) =
φ0(y)

φ1(y)
. If there is a method

to find the optimal r∗ directly, then the corresponding p∗0 and p∗1 can be found based on r∗.

Importantly, since Qr∗ maximizes I(X;Z) (by Theorem 5.1) without given p0 and p1, Qr∗ is a

capacity achieving quantizer.

Remark 5.2. The use of r(y) in Theorem 5.3 rather than u(y) in Theorem 5.1 is an important

step in designing a capacity achieving quantizer. r(y) as defined in (5.6), does not depend on p0

and p1. Therefore, to find a capacity achieving quantizer, one can employ an exhaustive search

to find the optimal threshold r∗. Specifically, for each value of the threshold r, a quantizer Q can

be constructed based on Theorem 5.3 in which one compares r(y) with r. This comparison does

not need p0 and p1. On the other hand, using u(y) and search for the optimal u∗ in Theorem 5.1,

one is required to know p0 and p1 since u(y) is defined in terms of p0 and p1.

We now derive the channel matrix A for a given quantizer Qr in Theorem 5.3. Define:

Hr = {y : r(y) =
φ0(y)

φ1(y)
≥ r}, (5.11)

H̄r = {y : r(y) =
φ0(y)

φ1(y)
< r}. (5.12)
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Thus,

Qr(y) =


z = 0 if y ∈ Hr,

z = 1 if y ∈ H̄r.

(5.13)

The channel matrix A that corresponds to quantizer Qr is:

A =

a11(r) a12(r)

a21(r) a22(r)

 ,
where

a11(r) =

∫
y∈Hr

φ0(y)dy, (5.14)

a22(r) =

∫
y∈H̄r

φ1(y)dy, (5.15)

and a12(r) = 1− a11(r), a21(r) = 1− a22(r).

Using Theorem 5.2 and Theorem 5.3, the capacity in (5.5) is a function of r:

C(r) = log2

(
2
−
a22(r)H(a11(r)) + (a11(r)− 1)H(a22(r))

a11(r) + a22(r)− 1

+ 2
−

(a22(r)− 1)H(a11(r)) + a11(r)H(a22(r))

a11(r) + a22(r)− 1
)
. (5.16)

We note that each value of r corresponds to a different channel matrix A associated with

a different Qr. Therefore, based on (5.16), an exhaustive search can be used to find r∗ that

maximizes C(r). This is a one-dimensional search on r which is more efficient than searching for

u, p0, and p1 as discussed earlier. Furthermore, we will derive an upper and lower bound on r

to increase the search efficiency. Lemma 5.1 below describes the structure of the channel matrix

that corresponds to a convex quantizer Qr.
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Lemma 5.1. (Structure of the channel matrix induced by Qr)

For ∀ r ∈ (0,+∞),

(1) a11(r) ∈ (0, 1) and is a monotonic decreasing function.

(2) a22(r) ∈ (0, 1) and is a monotonic increasing function.

(3) 1 ¡ a11(r) + a22(r) ≤ a11(1) + a22(1).

Proof. Please see the proof in Appendix 5.7.1.

Theorem 5.4. (Capacity bounds)

Define δ = a11(1)+a22(1), then the maximum capacity C(r∗) over all possible channel matrices

induced by all convex quantizers Qr is bounded by:

1−H(
2− δ

2
) ≤ C(r∗) ≤ log2 δ. (5.17)

Proof. From Lemma 5.1, ∀r, we have:

a11(r) + a22(r) > 1 = a11(r) + a12(r), (5.18)

a11(r) + a22(r) > 1 = a21(r) + a22(r). (5.19)

Thus,

a22(r) > a12(r), (5.20)

a11(r) > a21(r). (5.21)

Upper bound: The Boyd-Chiang’s upper bound [13] of the channel capacity associated with
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a given channel matrix A is:

CA ≤ log2(
∑
j

max
i
aij). (5.22)

For a binary channel associated with a convex quantizer Qr, using (5.22), we have:

C(r) ≤ log2

(∑
j=1

max
i
aij(r)

)
=log2

(
a11(r)+a22(r)

)
(5.23)

≤ log2

(
a11(1) + a22(1)

)
= log2 δ, (5.24)

where (5.23) is due to (5.20) and (5.21), (5.24) is due to (3) in Lemma 5.1. Since the upper bound

in (5.24) holds for every r, it must hold for r∗.

Lower bound: Recall that the Fano’s inequality [3] with alphabet size of |X| = 2 is:

H(X|Z) ≤ H(pe) + pe log(|X| − 1) = H(pe), (5.25)

where pe is the probability of error when transmitting a signal over the channel and using a

quantizer Qr for recovering the signal. Next, using the uniform input distribution pX i.e., p0 =

p1 = 1/2 and the convex quantizer Q1 (r = 1), we have:

pe = p0a12(1) + p1a21(1) =
1

2
(a12(1) + a21(1)) (5.26)

=
1

2
(2− a11(1)− a22(1)) =

2− δ
2

, (5.27)

and H(X) = 1.

Now, since the maximum capacity C(r∗) is at least as large as the mutual information using
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p0 = p1 = 1/2, and r = 1, from (5.25) and (5.27), we have:

C(r∗) ≥ I(X;Z) = H(X)−H(X|Z) (5.28)

≥ H(X)−H(pe) = 1−H(
2− δ

2
). (5.29)

Remark 5.3. We note that the lower bound reaches to the upper bound when δ → 2 or δ → 1 as

illustrated in Fig. 5.2. Moreover, a larger value of δ implies a smaller overlapped area between the

noise density φ0(y) and φ1(y) or a higher probability of correct decoding. In an additive channel

with an identical noise for transmitting symbols 0 and 1, φ0(y) and φ1(y) are shifted versions

of each other. The larger shift results in a larger value of δ and a higher probability of correct

decoding. Thus, our bounds are tighter for low noise regimes. The upper and lower bounds as

functions of δ are visualized in Fig. 5.2.

Also, as an extension, if the input size is more than two, then using the identical proof, the δ

in the upper bound in Theorem 5.4 is:

δ =

∫
y∈Y

max
i
φi(y)dy, (5.30)

where φi(y) = fY |X(y|xi), i = 1, 2, . . . , N with N being the size of the input alphabet.

Remark 5.4. From (5.20) and (5.21), a22(r) > a12(r) and a11(r) > a21(r). Thus, using the

equations (1) and (2) in [84], it is possible to show that the optimal input distribution has to

satisfy: 1/e = 0.3679 ≤ p∗0 ≤
1

2
≤ p∗1 ≤ 1− 1/e = 0.6321. This fact can help to reduce the running

time of a 2-dimensional exhaustive search algorithm over both p0 and u(y) variables in order to

determine the channel capacity. In addition, from Theorem 2 in [84], the mutual information
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Figure 5.2: Upper bound and lower bound of channel capacity as functions of δ.

induced by using a uniform input distribution is at least 94.21% of the channel capacity for any

given channel matrix A. Therefore, by using a uniform input distribution together with performing

a 1-dimensional exhaustive search over u(y), it is possible to achieve at least 94.21% of the truly

channel capacity.

Next, we will use Theorem 5.4 to narrow down the range to search for the optimal r∗. We

have the following theorem.

Theorem 5.5. (Bound on optimal r∗)

Let 0 < v ≤ 1

2
be a positive number such that:

H(v) = H(1− v) = 1−H(
2− δ

2
). (5.31)
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If Qr∗ is optimal, then:

a11(r∗) ≥ v, (5.32)

a22(r∗) ≥ v. (5.33)

Furthermore, r∗ ∈ [r2, r1] where a11(r1) = a22(r2) = v.

Proof. Suppose that a quantizer Qr produces H(Z), and

H(Z) ≤ 1−H(
2− δ

2
) = H(v) = H(1− v) (5.34)

for some v ∈ (0, 0.5]. Since 1 − H(
2− δ

2
) ≥ H(Z) ≥ I(X;Z), based on the lower bound of

Theorem 5.4, Qr cannot be an optimal quantizer.

We will show that if:

a11(r) < v, (5.35)

a22(r) < v, (5.36)

then Qr is suboptimal.

Since the binary entropy is symmetric i.e., H(v) = H(1−v) and v ≤ 1/2, then v ≤ 1/2 ≤ 1−v.

From (5.21),

p(Z=0) = p0a11(r)+p1a21(r) ≥ p0a21(r)+p1a21(r)

= a21(r) = 1− a22(r). (5.37)

Since the binary entropy is monotonically increased over [0, 0.5] and monotonically decreased
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over [0.5, 1], if 1− a22(r) > 1− v or a22(r) < v, then:

H(Z) = H(p(Z = 0)) < H(1− v) = 1−H(
2− δ

2
). (5.38)

From (5.34) and (5.38), a quantizer that produces a22(r) < v is not the optimal one. Therefore,

a22(r∗) ≥ v. A similar proof can be constructed to show that a11(r∗) ≥ v.

Next, due to δ > 1 (Lemma 5.1-(3)), we have 0 < 1 −H(
2− δ

2
) ≤ 1. Therefore, there exists

v ∈ (0, 1/2] that satisfies (5.31). From Lemma 5.1, there exists two positive numbers r1 and r2

such that a11(r1) = v and a22(r2) = v. Moreover, a11(r) and a22(r) are monotonic decreasing and

increasing functions, respectively (Lemma 5.1), thus r∗ ∈ [r2, r1].

Exhaustive search. The proposed algorithm is to search for r in the range of [r2, r1]. Since

a11(r) and a22(r) are monotonic decreasing and increasing functions, finding r1 and r2 such that

a11(r1) = v and a22(r2) = v can be performed efficiently using existing root-finding algorithms,

for example, the bisection method. For each value of r in the range [r2, r1], we determine the

channel matrix A then use (5.16) to compute the corresponding capacity. The algorithm outputs

the largest mutual information in this range together with r∗. From r∗, Qr∗ can be found. Next,

based on [76], p∗0 can be obtained as:

p∗0 = a21(r∗)[a21(r∗)− a11(r∗)]−1

− [a21(r∗)− a11(r∗)]−1
[
1 + 2

H(a21(r∗))−H(a11(r∗))

a21(r∗)− a11(r∗)
]−1

,

where H(x) = −[x log2(x) + (1− x) log2(1− x)] is the binary entropy function.
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5.5 Numerical Results

Consider a channel having φ0(y) = N(µ0 = −1, σ0 = 0.5) and φ1(y) = N(µ1 = 1, σ1 = 0.6). One

wants to find the optimal quantizer together with the input distribution such that the mutual

information is maximized.

Now, for r = 1, δ = 1.9299, v = 0.2316, and r2 = 0.11, r1 = 11.08. By performing an

exhaustive search with the resolution ε = 0.01 over r ∈ [r2, r1], the optimal of mutual information

is I(X;Z)∗ = 0.7847 at r∗ = 0.78. The corresponding channel capacity upper and lower bounds

using Theorem 5.4 are 0.9479 and 0.7787, respectively. Fig. 5.3 illustrates I(X;Z)r as a function

of r.

5.6 Conclusion

We presented both a new lower bound and a new upper bound on the capacity in terms of

quantization parameters and the structure of the associated channel matrix for binary quantization

channel. Based on these theoretical results, we propose an efficient algorithm for finding the

optimal quantizer.
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5.7 Appendix

5.7.1 Proof of Lemma 5.1

Proof for (1) and (2). From the definition in (5.14), a11(r) represents the quantized bit “0”

which is the integral of φ0(y) over the set of y such that r(y) ≥ r. Thus, if r increases, the set of

y reduces. Since φ0(y) ≥ 0 and the set of y reduces, a11(r) must decrease.

Moreover, if r → 0, r(y) ≥ r ∀y then a11(r) → 1. On the other hand, if r → +∞, then

r(y) < r ∀y and a11(r)→ 0. Thus, a11(r) ∈ (0, 1).

A similar proof can be constructed for a22(r).

Proof for (3). From the definition of r(y), Hr and H̄r, we have
φ0(y)

φ1(y)
≥ r, ∀y ∈ Hr and

φ0(y)

φ1(y)
< r, ∀y ∈ H̄r. Next, we consider two possible cases: r > 1 and r ≤ 1. In both cases, we

show that a11(r) + a22(r) > 1.

• If r > 1, φ0(y) > φ1(y) for ∀ y ∈ Hr. Therefore,

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

>

∫
y∈Hr

φ1(y)dy +

∫
y∈H̄r

φ1(y)dy

= 1. (5.39)

• If r ≤ 1, φ1(y) > φ0(y) for ∀ y ∈ H̄r. Therefore,

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

>

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ0(y)dy

= 1. (5.40)
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Combining (5.39) and (5.40), a11(r) + a22(r) > 1, ∀r.

Next, we show that a11(1) + a22(1) ≥ a11(r) + a22(r), ∀r. Indeed, from the definition of H1

and H̄1,
φ0(y)

φ1(y)
≥ 1,∀y ∈ H1 and

φ0(y)

φ1(y)
< 1,∀y ∈ H̄1. Thus,

φ0(y) ≥ φ1(y),∀y ∈ H1, (5.41)

φ0(y) < φ1(y),∀y ∈ H̄1. (5.42)

From the definition of a11(r) and a22(r) in (5.14) and (5.15),

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

≤
∫
y∈Hr

max
(
φ0(y), φ1(y)

)
dy

+

∫
y∈H̄r

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈Hr∪H̄r=R

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈H1

max
(
φ0(y), φ1(y)

)
dy

+

∫
y∈H̄1

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈H1

φ0(y)dy +

∫
y∈H̄1

φ1(y)dy (5.43)

= a11(1) + a22(1) (5.44)

= δ, (5.45)

where (5.43) due to (5.41) and (5.42), (5.44) and (5.45) due to the definitions of a11(r), a22(r)

and δ. The equality happens if r = 1.
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Chapter 6: Bounded Guaranteed Algorithm for Concave Impurity

Minimization Via Maximum Likelihood

6.1 Introduction

Partitioning plays a key role in many scientific and engineering disciplines. It is a key building

block in many popular algorithms such as clustering and classification in machine learning. In

signal processing and communications, partitioning algorithms, which are usually called quanti-

zation, aim to minimize the distortion or maximize the mutual information between the original

signal and the quantized signals. A partitioning algorithm divides a set of M N -dimensional

elements into K disjoint subsets or partitions. Often, the quality of the resulted partitions is

measured by the amount of impurity in each partition, the smaller impurity the higher quality of

the partitions. Typically, the amount of impurity is measured by a real-valued function over the

resulted partitions.

When the elements can be modeled as the outcomes of an underlying probabilistic model,

it makes sense to consider some statistical measures such as the average or the variance of the

impurity. Naturally, a partitioning algorithm in this scenario might classify the elements into

different partitions using probability distributions, rather than the values of the elements. For

example, let us consider a popular impurity function using the Shannon entropy [85], [53], [74].

Consider a set whose elements are outcomes of a random variable W . A large entropy of a

random variable implies that the elements are likely to be different, i.e., the set has a high level

of non-homogeneity or ”impurity”. For a given K, a K-optimal partition algorithm divides the
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original set into K subsets such that the weighted sum of entropies in each subset is minimal.

Since entropy is a concave function of the probability mass vector/function (pmf), not the values

of a random variable, the partition algorithms, in this case, work directly with the N -dimensional

probability mass vector. In contrast, the popular k-means algorithms do not assume an underlying

probabilistic model for how the elements come about. Thus, the elements are clustered using a

distance measure (typically Euclidean) which is a function of the actual values of the elements.

In general, for a given impurity measure specified by a function over the partitions, finding

the minimum impurity partitions is an NP-hard problem. Since the number of possible partitions

is KM , an exhaustive search over all the possible partitions to find a minimum partition has

the complexity of O(KM ) which quickly becomes impractical for many applications with modest

values of K and M . To that end, many approximate algorithms with polynomial time complexity

have been proposed, but few provide bounded guarantee [85], [53], [51], [86]. Many of these

algorithms exploit the concavity of the impurity function to speed up the running time. For

example, in [86], an algorithm is proposed to find the optimal partition using a concave impurity

function with the computational complexity of O(M logM) for binary classification tasks (K = 2).

Burshtein et al. [51] and Coppersmith et al. [53] provided algorithms and theoretical analysis

for the partitioning problem for a general concave impurity function called ”frequency-weighted

impurity”. These ”frequency-weighted impurity” are concave functions over its second argument.

Two popular impurity functions the Gini index [86] and Shannon entropy [85] belong to this class

of frequency-weighted impurity. Burshtein et al. and Coppersmith et al. showed that an optimal

frequency-weighted impurity partition is separated by hyperplane cuts in the space of probability

distributions. Based on this insight, they also proposed polynomial time algorithms to determine

the optimal partitions [53], [51], [68]. Based on the work of Burshtein et al., Kurkoski and Yagi

proposed an algorithm to find the globally optimal partition that minimizes entropy impurity in

O(M3) when N = 2 [44].
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Although many heuristic algorithms have been proposed, there are few results in finding

algorithms that provides a bounded guarantee on the performance. To fill this gap, recently

Laber et al. [56] constructed a 2-approximation algorithm with the computational complexity

of O(2NM logM) for binary partition (K = 2). In other words, Laber et al. showed that the

impurity achieved by their algorithm is at most a factor of 2 away from the true optimal impurity.

The complexity can be further reduced to O(MN + M logM) at the expense of increasing the

approximation factor from 2 to 3+
√

3. We also note that the algorithm in [56] is closely related to

the well established Twoing method that was already proposed in [86]. Moreover, the application

of the algorithm in [56] is somewhat limited due to the requirement of K = 2. As the extension

of the work in [56], Cicalese et al. [1] proposed a heuristic algorithm for K > 2. The algorithm

can achieve log2(min{N,K})-approximation for the entropy impurity, 3-approximation for the

Gini index impurity if K < N and 2-approximation for the Gini index impurity if K ≥ N . It is

the first constant factor algorithm for clustering based on minimizing entropy impurity that does

not rely on assumptions about the input data. Our analysis in Appendix 6.8.1 shows that the

complexity of the algorithm in [1] is polynomial due to its most time consuming step is based on

dynamic programming technique in [44] with the time complexity of O(M3). Using the SMAWK

algorithm [87], the dynamic programming step of the algorithm in [1] can be further reduced to

O(M logM). The analysis of the algorithm in [1] together with a suggested method for reducing

the computational complexity is shown in Appendix 6.8.1.

The partitioning algorithm also tightly relates to clustering algorithms which group M prob-

ability distributions into K clusters in such a way to minimize a certain distance. For example,

minimizing entropy impurity partition is equivalent to finding the optimal clusters that mini-

mizes the Kullback-Leibler (KL) distance [54]. Generally, the local optimal solution minimizing

impurity partition can be found based on the famous k-means algorithm with a suitable dis-

tance [53], [68], [54]. The detail of these algorithms finding the local optimal solution for entropy
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and Gini index impurity are discussed at Appendix 6.8.10. Thus, the results about approximation

for clustering with KL-divergence in [88], [89] can be applied to find a good partition that min-

imizes the entropy impurity. For example, in [88], Sra et. al. showed that a k-means algorithm

using the KL-divergence distance metric with an exponential time worst-case complexity (see [90])

can obtain O(logK)-approximation of the optimal clustering. The algorithm of Chaudhuri and

McGregor [89] can provide log(M)-approximation for finding a good clustering in polynomial time

complexity. On the other hand, the quality of the approximation algorithm in [89] is dependent on

the size of the dataset. In many settings where M (number of data points) tends to be large while

N (data dimension) and K (number of clusters) tend to be smaller, thus the algorithm proposed

by Cicalese et al. [1] is useful due to a smaller constant factor approximation of log2(min{N,K})

as compared to log(M) in [89].

The contributions of this chapter are fivefold:

• We describe an approximate algorithm based on the maximum likelihood principle for a

wide class of impurity functions including both Gini index and entropy. The proposed algo-

rithm is called maximum likelihood algorithm (Algorithm 1) which provides a comparable

approximation factor than that of the state-of-art method in [1] for both Gini index impu-

rity and entropy impurity. Particularly, our theoretical bound is 2-approximation for Gini

index and log2N -approximation for entropy impurity. In addition, the running time of the

proposed algorithm is O(NM) and O(2N/2NM) for the case of K ≥ N and K < N , re-

spectively. That said, the proposed maximum likelihood algorithm (Algorithm 1) provide

a better approximation together with a lower running time in comparison to the proposed

algorithm in [1] when K ≥ N .

• Based on the Algorithm 1, we propose a so-called greedy-splitting algorithm (Algorithm

2) to achieve a better splitting quality when K > N . Greedy-splitting algorithm still
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runs in O(KNM) and achieves the bound at least equal or better compared to the bound

of the original maximum likelihood algorithm e.g., 2-approximation for Gini index and

log2N -approximation for entropy impurity. When K < N , the proposed Algorithm 1

runs in O(2N/2NM) which is exponential in term of N . To reduce the running time, we

proposed a so-called greedy-merge algorithm (Algorithm 3) having the time complexity of

O((N −K)N2 +NM) which is linear in the size of the data set M . Although the greedy-

merge algorithm does not provide a guarantee on splitting quality, it shows a comparable

performance to the results provided by the proposed algorithm in [1].

• To keep the generality of the impurity functions, instead of the providing a constant fac-

tor approximation, we provide both the upper bound and the lower bound differently for

different impurity functions.

• We suggest a method that can improve the complexity of the algorithm in [1] from O(NM+

M3) down to O(NM +M logM) based on the matrix searching SMAWK algorithm [87].

• Our technique on bounding the solution confirms and generalizes well-established results in

signal processing and information theory, specifically the Fano’s inequality [3] and Boyd-

Chiang upper bound [13] for channel capacity.

From the signal processing, communication, and information theory’s perspective, our work

is related to the optimal quantization design for constructing polar code [41] and low density

parity code (LDPC) decoder [39]. In these settings, an optimal quantizer maximizes the mutual

information between input and quantized output [44], [54], [45,52,57,91–93]. However, Kurkoski

et al. [44] showed that for a given input distribution, finding an optimal quantizer that maxi-

mizes the mutual information is equivalent to finding an optimal partition that minimizes the

entropy impurity. Thus, our algorithm can be applied to find a good quantizer that maximizes
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mutual information. In addition, the problem of minimizing impurity partitions also relates to

the well-known Information Bottleneck Method (IBM) [94] and Deterministic Information Bot-

tleneck (DIB) [67]. Particularly, both IBM and DIB can be viewed as the problems of minimizing

entropy impurity partition under constraints for a given input distribution. From the relationship

between minimizing impurity partition problem with IBM and DIB, we strongly believe that there

are some advantages to use the technical results in approximation impurity partition to designing

the good approximation algorithms for IBM and DIB.

The outline of this chapter is as follows. In Section 6.2, we describe the problem formulation.

In Section 6.3, an upper bound of impurity partition is constructed together with an algorithm

that provably achieves near-optimal impurity. The proof of near-optimal partition together with

a lower bound of impurity function is characterized in Section 6.4. To reduce the running time of

the proposed algorithm in Section 6.3, we propose two linear time complexity greedy algorithms

in Section 6.5. The numerical results are provided in Section 6.6. Finally, we provide a few

concluding remarks in Section 6.7.

6.2 Problem Formulation

6.2.1 Problem formulation

We assume that the set Y to be partitioned consists of M discrete data points generated from

an underlying probabilistic model. Specifically, let X be a discrete random variable taking on

the values x1, x2, . . . , xN with a given probability mass vector px = (p(x1), p(x2), . . . , p(xN )).

Let Y be another discrete random variable taking on values y1, y2, . . . , yM which follows a given

conditional probability p(yj |xi). The goal is to partition Y into K partitions to minimize a given

impurity function over the resulted partitions. For convenience of analysis and notations, we
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Figure 6.1: Finding an optimal quantizer Q∗(Y )→ Z such that IQ∗ is minimized.

assume xi and yj are scalar values. If xi and yj are discrete multi-dimensional vectors, they can

be mapped to scalar values appropriately. The result is N and M change, but the overall analysis

does not change. For example, if xi is a 2-dimensional vector and yj is a 3-dimensional vector,

then the maximum number of xi is N ′ = N2 and the maximum number of yj is M ′ = M3. Fig.

6.1 shows a generative model for Y . Y is then quantized to Z using a partition scheme/quantizer

Q.

Q(Y )→ Z.

Z is modeled as a discrete random variable Z taking on values z1, z2, . . . , zK . In this setting,

for given p(xi) and p(yj |xi), p(xi, yj) are assumed to be given ∀i, j. Thus, each data point

yj is represented by a joint distribution vector px,yj = (p(x1, yj), p(x2, yj), . . . , p(xN , yj)). Each

quantizer Q induces a joint distribution vector px,zk = (p(x1, zk), p(x2, zk), . . . , p(xN , zk)) between

X and Z = zk. The conditional distribution p(xi|zk) of X given Z and the marginal probability

mass function p(zk) of Z can be determined from p(xi, zk). We want to find an optimal quantizer

Q∗ that minimizes the impurity function IQ that satisfies two following conditions:
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• (Required) IQ has the following form:

IQ =

K∑
k=1

N∑
i=1

p(zk)f(p(xi|zk)), (6.1)

where f(.) : R→ R+ is a non-negative concave function. f(x) is concave over a continuous

interval S if for any a, b ∈ S,

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b),∀λ ∈ (0, 1). (6.2)

We note that
∑N

i=1 f(p(xi|zk)) in (6.1) is the impurity contribution from partition zk. There-

fore, IQ is viewed as the weighted average impurity over all the partitions. Many well-known

impurity functions such as Gini index [85] and entropy [86] have concave f(.).

• (Optional) f(x) = xl(x) where l(x) : R → R is a convex function. l(x) is convex over a

continuous interval S if for any a, b ∈ S,

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b),∀λ ∈ (0, 1). (6.3)

This second condition is optional in the sense that we use it in the analysis of the constant

factor approximation for the proposed algorithm. The algorithm itself does not make use

of this condition. Furthermore, many popular impurity functions indeed satisfy this second

condition.

Examples of popular impurity functions:

• Entropy function: Let f(x) = −x log x which can be shown to be a concave function.
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Replacing f(x) = −x log x with x = p(xi|zk) into (6.1), we have:

IQ =

K∑
k=1

N∑
i=1

p(zk)[−p(xi|zk) log (p(xi|zk))], (6.4)

which is the weighted conditional entropy of X given Z. Also let l(x) = − log x, l(x) is a

convex function. Thus f(x) = −x log x satisfies the second optional condition.

• Gini index function: Given a set A of elements with random N labels according to the

distribution of the labels pA = (p(A1), p(A2), . . . , p(AN )). The Gini impurity is a measure

of how often a randomly chosen element based on the label distribution would be mislabeled.

Specifically, since the probability of picking an element with the label i is p(Ai) then the

probability of mislabeling that element is
∑

l 6=i p(Ai) = 1 − p(Ai). Summing all i, the

probability of mislabeling an element is:

N∑
i=1

p(Ai)(1− p(Ai)).

Let f(x) = x(1−x) which can be shown to be a concave function. Replacing f(x) = x(1−x)

using x = p(xi|zk) into (6.1), the Gini index impurity [53] has the following form:

IQ =

K∑
k=1

N∑
i=1

p(zk)[p(xi|zk)(1− p(xi|zk))]. (6.5)

Additionally, let l(x) = 1− x, l(x) is a linear function, therefore, l(x) is a convex function.

Thus the Gini index impurity satisfies the second optional condition.

We note that in [1] and [56], to guarantee the constant factor approximation, the authors

considered a class of impurity concave functions f(.) with an additional condition on xf ′′(x)

being a non-increasing function.



120

6.3 Impurity Minimization Algorithm

In this section, we first construct both upper and lower bounds for impurity functions of the form

in (6.1). Using these bounds, we show that the proposed maximum likelihood algorithm achieves

a constant factor approximation. In other words, the resulted solution is guaranteed to be away

from the true solution by at most a constant factor that does not depend on the number of data

points M .

We define three important quantities below.

k∗ = arg max
1≤i≤N

p(xi|zk), (6.6)

eQ =
K∑
k=1

p(zk)p(xk∗ |zk), (6.7)

and

emax = max
Q

eQ. (6.8)

For a given k, zk is most likely be produced by xk∗ . Therefore, eQ is the weighted sum of the

maximum likelihood of each xk∗ for each zk. We note that each partition scheme/quantizer Q

induces a p(xi, zk) and thus p(xi|zk). So k∗ and eQ are different for different Q. Our approach

to find the minimum impurity is to find two functions: u(eQ) and l(eQ) such that l(eQ) ≤ IQ ≤

u(eQ). Furthermore, we show that u(eQ) and l(eQ) are decreasing functions for many impurities.

Therefore, by minimizing u(eQ), i.e., maximizing eQ, we can bound the minimum value of IQ

between u(eQ) and l(eQ) for some eQ.
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6.3.1 Upper Bound of The Impurity Function

We have the following theorem for the upper bound of an impurity function IQ.

Theorem 6.1. (Upper bound) For any given quantizer Q that induces the corresponding

p(xi|zk) and

eQ =
K∑
k=1

p(zk)p(xk∗ |zk), (6.9)

let

u(eQ) = f(eQ) + (N − 1)f(
1− eQ
N − 1

), (6.10)

then ∀eQ, we have:

u(eQ) ≥ IQ. (6.11)

Proof. From the definition of the impurity function, we have

IQ =
K∑
k=1

N∑
i=1

p(zk)f(p(xi|zk))

=

K∑
k=1

p(zk)f(p(xk∗ |zk)) +

K∑
k=1

N∑
i 6=k∗,i=1

p(zk)f(p(xi|zk))

≤ f(

K∑
k=1

p(zk)p(xk∗ |zk))+
K∑
k=1

N∑
i 6=k∗,i=1

p(zk)f(p(xi|zk)) (6.12)

≤ f(
K∑
k=1

p(zk)p(xk∗ |zk))+
K∑
k=1

p(zk)[(N−1)f(

∑
i=1,i6=k∗ p(xi|zk)
N − 1

)] (6.13)

= f(eQ) + (N − 1)

K∑
k=1

p(zk)f(
1− p(xk∗ |zk)

N − 1
) (6.14)

≤ f(eQ) + (N − 1)f(

∑K
k=1 p(zk)(1− p(xk∗ |zk))

N − 1
) (6.15)

= f(eQ) + (N − 1)f(
1− eQ
N − 1

), (6.16)
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where (6.12) is due to concavity of f(.) and
∑K

k=1 p(zk) = 1, (6.13) is due to Jensen inequality

for concave function (please see the Appendix 6.8.2), (6.14) is due to the definition of eQ and∑N
i=1,i 6=k∗ p(xi|zk) + p(xk∗ |zk) = 1, (6.15) is due to concavity of f(.) and

∑K
k=1 p(zk) = 1, (6.16)

is due to
∑K

k=1 p(zk) = 1.

Remark 6.1. (Fano’s inequality.) There is an interesting connection between u(eQ) and the

well-known Fano’s inequality from the information theory. Specifically, if f(x) is the entropy

function, then the upper bound in Theorem 6.1 is identical to the Fano’s inequality. Please see

the details of the derivations in the Appendix 6.8.3.

Remark 6.2. (Maximum likelihood decoding.) Consider a communication setting with X

and Z being the two random variables that represent the transmitted symbols and the received

symbols, a respectively. The goal for a receiver is to recover X based on Z. A maximum like-

lihood decoder maximizes the posterior probability of X given Z. Specifically, if a symbol zk is

received, then the transmitted symbol is xk∗ where k∗ = arg max1≤i≤N p(xi|zk). Consequently,

eQ =
∑K

k=1 p(zk)p(xk∗ |zk) is the probability of decoding a transmitted symbol correctly using the

mapping Q, and Pe = 1− eQ is the probability of decoding a transmitted symbol incorrectly.

Theorem 6.2. u(eQ) is a monotonic decreasing function. Moreover, IQ = u(eQ) when eQ =
1

N

or eQ = 1.

Proof. Please see the Appendix 6.8.5.

Based on Theorem 6.2, let emax be the maximum value over all eQ i.e., emax = maxQ eQ, then

u(emax) has the minimum value. Since u(eQ) is an upper bound of IQ, u(emax) provides a good

upper bound for IQ∗ . We now state an important result for a special case where the sample space

of Z is identical to that of X. In other words, K = N and zk = xi for some k and i.
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Theorem 6.3. (Structure of the emax quantizer) Let Z and X be the sample spaces of Z

and X, respectively. Let j∗ = arg maxi p(xi, yj) and define quantizer Qemax with the following

structure:

Qemax(yj) = zj∗ . (6.17)

(a) If |Z| = |X |, then Qemax produces emax = maxQ eQ. Conversely, for any Q that produces

emax, Q must have the structure of Qemax.

(b) If |Z| > |X |, then Qemax still produces emax = maxQ eQ. However, it is not necessary that

for any Q that produces emax, Q must have the structure of Qemax.

Proof. Please see the Appendix 6.8.6.

We note that j∗ takes on values 1, 2, . . . , N , and zj∗ ’s represent the K = N partitions. In

other words, when K > N then existing an optimal quantizer Qemax that produces exactly N -

partition rather than K-partition. Interestingly, for K > N , the mapping using only N -partition

in Theorem 6.3-(b) is still optimal i.e., it produces the partitions achieving emax. However,

Theorem 6.3-(b) does not guarantee any Q that produces emax must have the structure of Qemax .

Indeed, there might exist other quantizers that achieve emax. On the other hand, Theorem 6.3-(a)

states that if K = N , then any quantizer producing emax must have the structure of Qemax in

(6.17). This necessary condition helps to find Qemax when K < N as to be shown later. The

detail of proof is presented in Appendix 6.8.6.

6.3.2 Algorithm

Based on the upper bound in Theorem 6.1, to minimize the impurity function, one wants to

minimize the impurity’s upper bound u(eQ). Based on Theorem 6.2, to minimize u(eQ), one

wants to maximize eQ. To maximize eQ, we propose the algorithm below which utilizes the result
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of Theorem 6.3.

Let VK be the set of binary N -dimensional vectors v’s, each contains exactly K entries 1

and N − K entries 0. Thus, the size of VK is
(
N
K

)
. For each v = (v1, v2, . . . , vN ), define the

N -dimensional vector:

p′x,yj = (v1p(x1, yj), v2p(x2, yj), . . . , vNp(xN , yj)) = (p′(x1, yj), p
′(x2, yj), . . . , p

′(xN , yj)),

then p′x,yj has exactly K non-zero entries. Next, we consider the following possible cases.

• K = N : When K = N , VK = VN contains exactly one v which is v = (1, 1, . . . , 1). In this

case, p′(xi, yj) = p(xi, yj). Thus, using Theorem 6.3-(a) with p(xi, yj) replaced by p′(xi, yj)

will produce emax.

• K < N : When K < N , there are
(
N
K

)
quantizers Q that partition K-dimension vectors

p′x,yj to K partitions. Moreover, from the necessary condition in Theorem 6.3-(a), at least

one of quantizer in this
(
N
K

)
quantizers must achieve emax.

• K > N : From Theorem 6.3-(b), the partition which achieves emax is exactly the same

with the partition when K = N . In other words, the partition can be achieved using

the maximum likelihood principle using v = (1, 1, . . . , 1), and the optimal partitions which

produces emax has N nonempty partitions together with K −N empty partitions.

Based on three possible cases above, the algorithm follows. The detail of the proof is shown

in Appendix 6.8.6.

Running time of Algorithm 1: To find the partition that generates emax, we need to search

over all the possible mappings v ∈ VK . For each v, Algorithm 1 has complexity of O(NM). Since

there are
(
N
K

)
possible v if K < N , Algorithm 1 has the complexity of O(

(
N
K

)
NM). In the worst

case when K = N/2, we have
(
N
N/2

)
= 2N/2 and the complexity of Algorithm 1 is O(2N/2NM).
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Algorithm 1 Finding emax Algorithm.

1: Input: Dataset Y = {y1, . . . , yM} and p(xi, yj), K and N .
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: If K < N : V = VK
4: If K ≥ N : V = VN
5: For v ∈ V
6: For 1 ≤ j ≤M , 1 ≤ i ≤ N
7: Step 1: Projection.

p′(xi, yj) = vip(xi, yj). (6.18)

8: Step 2: Finding the maximum likelihood.

j∗ = arg max
1≤i≤N

{p′(xi, yj)}. (6.19)

9: Step 3: Partition assignment.

Q(yj)→ zj∗ . (6.20)

10: End For
11: Computing eQ: Using the resulted partitions to compute eQ.
12: End For
13: Return: Returning the partition that produces emax = maxQ eQ.
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However, if K ≥ N , there is only one mapping v and the running time of algorithm is truly in

linear of O(NM).

6.4 Constant Factor Approximation Analysis for Entropy and Gini Index

In this section, we state a few results for establishing the constant approximation property of

Algorithm 1. First, the following theorem establishes a lower bound for IQ. This lower bound

predicates on the second condition f(x) = xl(x) where l(x) is a convex function. It is not used

explicitly in the algorithm but is used in the analysis to establish the constant factor approximation

property of the algorithm.

Theorem 6.4. (Lower bound) For any given quantizer Q that induces the corresponding

p(xi|zk) and

eQ =

K∑
k=1

p(zk)p(xk∗ |zk), (6.21)

then ∀eQ, we have:

IQ ≥ l(eQ). (6.22)

Proof. Using the concavity definition of f(x) in (6.3), and let t and q be the positive scalars such

that 0 ≤ t ≤ q, we have:

f(t) ≥ (1− t

q
)f(0) +

t

q
f(q) =

t

q
f(q). (6.23)
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From the definition of the impurity function, we have

IQ =

K∑
k=1

N∑
i=1

p(zk)f(p(xi|zj))

=
K∑
k=1

p(zk)f(p(xk∗ |zk)) +
K∑
k=1

p(zk)
( N∑
i 6=k∗,i=1

f(p(xk∗ |zk))
)

≥
K∑
k=1

p(zk)f(p(xk∗ |zk)) +
K∑
k=1

p(zk)
( N∑
i 6=j∗,i=1

p(xi|zk)
p(xk∗ |zk)

f(p(xk∗ |zk))
)

(6.24)

=

K∑
k=1

p(zk)f(p(xk∗ |zk)) +

K∑
k=1

p(zk)

∑N
i 6=k∗,i=1 p(xi|zk)
p(xk∗ |zk)

f(p(xk∗ |zk)) (6.25)

=
K∑
k=1

p(zk)f(p(xk∗ |zk)) +
K∑
k=1

p(zk)
(1− p(xk∗ |zk)

p(xk∗ |zk)

)
f(p(xk∗ |zk)) (6.26)

=
K∑
k=1

p(zk)f(p(xk∗ |zk))
(

1 +
1− p(xk∗ |zk)
p(xk∗ |zk)

)
(6.27)

=
K∑
k=1

p(zk)f(p(xk∗ |zk))
1

p(xk∗ |zk)
(6.28)

=
K∑
k=1

p(zk)p(xk∗ |zk)l(p(xk∗ |zk))
1

p(xk∗ |zk)
(6.29)

=

K∑
k=1

p(zk)l(p(xk∗ |zk)) (6.30)

≥ l(
K∑
k=1

p(zk)p(xk∗ |zk)) (6.31)

= l(eQ), (6.32)

with (6.24) is due to (6.23) using t = p(xi|zk) and q = p(xk∗ |zk) and noting that p(xk∗ |zk) ≥

p(xi|zk) ∀i, (6.29) is due to f(x) = xl(x), and (6.31) due to the Jensen inequality for the convex

function l(x). The lower bound is tight i.e., IQ = l(eQ) if eQ =
1

N
or eQ = 1.
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Remark 6.3. There is a connection between the lower bound above and the well-known Boy-

Chiang upper bound of channel capacity. Specifically, for a uniform input distribution, if f(x) is

the entropy function, then the upper bound in Theorem 6.4 implies the Boy-Chiang upper bound

of channel capacity [13]. More details are in the Appendix 6.8.4.

Theorem 6.5. (R(emax)-approximation) Algorithm 1 provides R(emax)-approximation for both

entropy and Gini index impurities where:

R(emax) =
u(emax)

l(emax)
. (6.33)

Proof. Let IQ∗ be the minimum impurity and IQemax be the impurity of the partition produced

by running Algorithm 1. Now, assume that Q∗ produces eQ∗ . From the definition of emax,

eQ∗ ≤ emax. Moreover, it is straightforward to show that l(eQ) for both entropy and Gini index

impurities are decreasing functions. Thus, IQ∗ ≥ l(eQ∗) ≥ l(emax). Therefore,

IQemax

IQ∗
≤ u(emax)

mineQ l(eQ)
=
u(emax)

l(emax)
= R(emax). (6.34)

Thus, the impurity produced by Algorithm 1 is guaranteed to be away from the true solution by at

most a factor of R(emax). Fig. 6.2 shows u(eQ) and l(eQ) vs. eQ ∈ (0.01, 0.99) using N = 100 for

both the entropy impurity and the Gini index impurity. As seen, u(eQ) and l(eQ) are monotonic

decreasing functions for both entropy and Gini index impurities. Moreover, the upper bound and

the lower bound are tight and equal when eQ =
1

N
or eQ = 1.

The result in Theorem 6.5 can be applied for any concave impurity function f(x) = xl(x) with

l(x) being a non-increasing function. Next, we show that R(emax)-approximation is better than
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the approximation in [1] for both the entropy impurity and the Gini index impurity.

Theorem 6.6.

• For Gini index impurity,

R(emax) = 1 + emax. (6.35)

• For Entropy impurity,

R(emax) =
H(emax) + (1− emax) log(N − 1)

− log(emax)
. (6.36)

Proof. The proof follows (6.33) by using the upper bound and the lower bound in Theorem 6.1

and Theorem 6.4, respectively. The detail of proof can be viewed in Appendix 6.8.7 and 6.8.8.

Theorem 6.7. Algorithm 1 provides a 2-approximation for Gini index impurity.

Proof. Please see Appendix 6.8.7.

Remark 6.4. Algorithm 1 always provides a 2-approximation for Gini index impurity while the

algorithm in [1] provides a 3-approximation in the worst case.

Theorem 6.8. The entropy impurity approximation provided by Algorithm 1 is better than the

approximation in [1] in case of K ≥ N , i.e., R(emax) < log2(min{K,N}) = log2N if

N ≥ Nmin = 2S(emax), (6.37)

where

S(emax) =
1− emax

−2 log(emax)
+

√
4H(emax)(− log(emax)) + (1− emax)2

−2 log(emax)
, (6.38)
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Figure 6.2: The monotonic decreasing of u(eQ) and l(eQ) for (a) entropy impurity and (b) Gini
index impurity using eQ ∈ (0.01, 0.99) and N = 100.

and H(x) = −(x log x+ (1− x) log(1− x)) is the binary entropy of x.

Proof. Theorem 6.8 provides a sufficient condition where the approximation produced by Algo-

rithm 1 is better than that produced by the algorithm in [1]. In reality, R(emax) is smaller than

log2N for a wider range of N . Please see the Appendix 6.8.8 for the details of proof.

Fig. 6.3 shows the performance bound of the proposed algorithm vs. the state of the art

in [1]. R(emax) vs. emax ∈ (0.01, 0.99) for N = 10 and N = 20 are plotted in red while the

approximations of [1] (log2N) are plotted in blue. As seen, the red curves are always below the

blue curves. Moreover, the gaps between our approximation and that of [1] are proportional to

the size of N . That said, for large values of N , our approximation is progressively better than

that of [1].

We also note that S(emax) is a monotonic increasing function as shown in Fig. 6.4-(a). Thus, if

emax increases, then Nmin increases. For example, if emax = 0.5 then (6.37) holds for Nmin = 2.42,

if emax = 0.8, (6.37) holds for Nmin = 3.58, if emax = 0.9, (6.37) holds for Nmin = 4.34, if

emax = 0.999, (6.37) holds for Nmin = 9.06. As seen, when Nmin increases to infinity, emax

increases to 1. Fig. 6.4-(b) illustrates the relationship between emax and Nmin.
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Figure 6.3: R(emax)-approximation for entropy impurity using (a) N = 10; (b) N = 20; (c)
N = 30; (d) N = 40. Our approximation (R(emax)) are the red curves while the approximations
of the algorithm in [1] are the blue curves.
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Figure 6.4: (a) S(emax) as a function of emax; (b) Nmin = 2S(emax) as a function of emax.
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Remark 6.5. For K ≥ N , it is obviously that the approximation guaranteed by Algorithm 1

for entropy impurity is better than that of the state-of-art approximation in [1]. On the other

hand, when K < N , it is possible that the approximation in [1] provides a better bound than our

approximation i.e., log2(min{K,N}) < R(emax) due to min{K,N} = K completely depends on

K while R(emax) in (6.36) depends on both emax and N . Therefore, a smaller value of K, a

higher chance that the algorithm in [1] provides a better approximation. For example, consider

the 20NEWS dataset having emax = 0.2420, using N = 20, the approximation in [1] is better than

our approximation if K ≤ 2.64. Similarly, consider the RCV1 dataset having emax = 0.2185,

using N = 103, the approximation in [1] is better than our approximation if K ≤ 5.97. To that

end, our algorithm still provides a better approximation for a wide range of K even if K < N .

For example, our bound is better ∀K ≥ 2.64 using 20NEWS dataset, and ∀K ≥ 5.97 using RCV1

dataset regardless of N . Please see detail of these datasets in Sec. 6.6.

6.5 Practical algorithms

In the previous section, we show that the proposed Algorithm 1 is near-optimal and achieves

2-approximation for Gini index impurity and log2N -approximation for entropy impurity with

arbitrary values of K and N . However, there are some main drawbacks that limit the applications

of Algorithm 1. Particularly,

• When K > N , Algorithm 1 produces the optimal partitions containing exactly N partitions

due to V = VN . Therefore, even though that Algorithm 1 still achieves the theoretical

bounds, it produces (K −N) empty partitions.

• When K < N , the running time of Algorithm 1 in the worst case is exponential in N .

• The partitions produced by Algorithm 1 might not be local optimal partitions. For the
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convenience of the reader, the necessary condition for optimal partitions can be viewed in

Theorem 6.10, Appendix 6.8.9.

To resolve these problems, we propose several modifications of Algorithm 1 which results in

two linear-time complexity algorithms. These algorithms are build up based on greedy-splitting

(Algorithm 2) or greedy-merge (Algorithm 3) the partitions produced by Algorithm 1.

6.5.1 Handling the case K > N : greedy-splitting algorithm

To resolving the problem of (K−N) empty partitions when K > N , we propose a so-called greedy-

splitting algorithm (Algorithm 2). The first step of greedy-splitting algorithm is using Algorithm

1 to generate N non-empty partitions. Next, by greedy splitting, one can generate more (K−N)

no-nempty partitions to achieve total K partitions. As will be shown later, Algorithm 2 runs in

O(KNM) and achieves all the theoretical bounds of Algorithm 1.

Algorithm: The first step of greedy-splitting algorithm is finding the partition that has the

largest impurity (line 7, Algorithm 2). Next, this partition is separated based on the largest

attribution. For example, if the largest impurity partition is zi∗ , and recall that:

j∗ = max
1≤j≤N

p(xj |zi∗).

Then ∀yq ∈ zi∗ , p(xj∗ |yq) is the largest attribution of yq. Using p(xj∗ |zi∗) as a threshold, by

comparing p(xj∗ |yq) to p(xj∗ |zi∗), ∀yq ∈ zi∗ , yq is assigned into two new partitions (line 10 and

11, Algorithm 2). The process repeats until K partitions are generated. Although the splitting

based on p(xj∗ |zi∗) as a threshold is a heuristic method, it guarantees a better impurity than that

provided by the original Algorithm 1 as will be shown later. The pseudo-code of our splitting

procedure is presented in Algorithm 2.
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Algorithm 2 Greedy-splitting algorithm for K > N .

1: Input: Dataset Y = {y1, . . . , yM} and p(xi, yj).
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: Step 1: Running Algorithm 1 to achieve N -partition z1, z2, . . . , zN .
4: Step 2: Greedy splitting.
5: t = 1
6: While: t ≤ K −N
7: Finding the largest impurity.

i∗ = max
i
F (px,zi). (6.39)

8: Splitting based on the largest attribution.

j∗ = max
j
p(xj |zi∗). (6.40)

9: For yq ∈ zi∗ .
10: If p(xj∗ |yq) ≤ p(xj∗ |zi∗).

Q(yq)→ zi∗ .

11: Else p(xj∗ |yq) > p(xj∗ |zi∗).

Q(yq)→ zN+t.

12: t = t+ 1.
13: End While.
14: Step 3: Return K partitions.
15: Return: Return K partitions.
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Proof of a better approximation: From Theorem 6.9 in Appendix 6.8.9, if zk = z1
k∪z2

k and

z1
k ∩ z2

k = ∅, then the impurity in zk is at least large as the total impurity in z1
k and z2

k. Therefore,

by greedy splitting, the greedy-splitting algorithm produces a new partition having the impurity

is monotonic decreasing over each splitting step. Finally, the impurity of K partitions produced

by greedy-splitting algorithm is less than or at least equal the impurity provided by Algorithm 1.

Thus, the partitions induced by greedy-splitting algorithm must satisfy our theoretical bounds in

Sec. 6.4.

Running time of Algorithm 2: The time complexity of Step 1 and Step 2 of Algorithm 2

are NM and (K−N)NM , respectively. Therefore, the running time of Algorithm 2 is O(KNM).

6.5.2 Handing the case K < N : greedy-merge algorithm

To resolving the high time complexity of Algorithm 1 when K < N , we propose a so-called

greedy-merge algorithm (Algorithm 3) to reduce the time complexity. Particularly, we first use

the Algorithm 1 for K = N to achieve N -partition. Next, we perform N −K times of the greedy-

merge, each time the algorithm merges two partitions into one single partition that minimizes the

impurity loss until achieving exactly K-partition (K < N). As will be shown later, the running

time of this greedy-merge algorithm is O((N−K)N2+NM) that is linear in M and polynomial in

N . Although the greedy-merge algorithm does not satisfy the theoretical bounds, it performance

is comparable to the results provided by the proposed algorithm in [1] (please see the numerical

results in Sec. 6.6).

Algorithm: As discussion earlier, greedy-merge algorithm first use Algorithm 1 to generate

N -partition (line 3, Algorithm 3). Next, greedy-merge algorithm performs (N−K) times of greedy

merge, each time the algorithm merges two partitions into one single partition that minimizes

the impurity loss ∆ (line 10 and 13, Algorithm 3) until achieving exactly K-partition. The
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Algorithm 3 Greedy-merge algorithm for K < N .

1: Input: Dataset Y = {y1, . . . , yM} and p(xi, yj).
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: Step 1: Running Algorithm 1 to achieve N -partition z1, z2, . . . , zN .
4: Step 2: Greedy merge.
5: t = 0
6: While: t ≤ N −K
7: For: i = 1, 2, . . . ,K − t− 1
8: For: j = i+ 1, i+ 2, . . . ,K − t
9: Merge zi, zj to zij and compute:

px,zij = px,zi + px,zj , (6.41)

F (px,zij ) =

N∑
k=1

p(xk, zij)

N∑
k=1

f
( p(xk, zij)∑N

i=1 p(xk, zij)

)
, (6.42)

10:

∆ij = F (px,zij )− F (px,zi)− F (px,zj ). (6.43)

11: End For
12: End For
13: Return the best merge that minimizes the impurity loss ∆ij :

i∗, j∗ = min
i,j

∆ij . (6.44)

14: End While
15: Step 3: Return K partitions.
16: Return: Return K partitions.
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pseudo-code of our greedy-merge algorithm is provided in Algorithm 3.

Running time of Algorithm 3: The running time of Step 1 and 2 in Algorithm 3 are NM

and (N −K)N2, respectively. Thus, the running time of Algorithm 3 is O(NM + (N −K)N2).

6.5.3 Reaching to the local optimal solutions

In [53], the authors proposed a necessary condition for which the partition is optimal (local or

global). As the result, an iterative based k-means algorithm with a suitable distance can be

used to find the local optimal partitions (please see Appendix 6.8.9 for the optimality conditions

and Appendix 6.8.10 for the iterative algorithms). On the other hand, although our proposed

algorithms can achieve a near-global optimal solution, there is no guarantee that the produced

partitions are optimal i.e., the produced partitions might not satisfy the optimality condition

in Theorem 6.10, Appendix 6.8.9 (Theorem 1 in [53]). Therefore, one can always perform the

iterative algorithms in Appendix 6.8.10 over the partitions produced by Algorithm 1, Algorithm

2 and Algorithm 3 to achieve a local optimal solution. This optional step will improve the quality

of our proposed algorithms at the expense of an additional time complexity O(TKNM) where T

is the number of iterations.

6.6 Numerical results

To evaluate the performance of the proposed algorithm, we used two datasets: 20NEWS and

RCV1. These are widely used for evaluating text classification methods [1]. Existing algorithms

[1], [53], [54] can only find locally optimal solutions. To approximate a globally optimal solution,

many iterative algorithms use multiple random starting points and select the best solution. To

that end, we compare the impurity provided by Algorithm 3 and Algorithm 2 when K < N
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Figure 6.5: Simulation results using 20NEWS dataset: (a) Algorithm 3 vs. the proposed algorithm
in [1] when K < N ; (b) Algorithm 2 vs. the proposed algorithm in [1] when K ≥ N .

and K ≥ N , respectively, with the impurity produced by running the iterative algorithms 100

times from 100 randomly starting points. The details of these iterative algorithms can be viewed

in the Appendix 6.8.10 (Algorithm 4 for finding the optimal entropy impurity and Algorithm 5

for finding the optimal Gini index impurity, respectively). It is worth noting that Algorithm 4 is

identical to the Divisible Clustering algorithm of Dhillon et al. [75] for finding the optimal entropy

impurity. Although these iterative algorithms do not guarantee to find a globally optimal solution,

their performances were shown in [75] to outperform the famous Agglomerative Clustering method

in [95], [96].

20NEWS and RCV1 datasets are available online in https://scikit-learn.org/stable/

datasets/index.html#newsgroups-dataset, and in http://www.ai.mit.edu/projects/jmlr/

papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm, respectively. In detail, 20NEWS in-

cludes 18.846 documents evenly divided into 20 disjoint classes and RCV1 includes 804,414 doc-

uments assigned to 103 different classes. Since both our algorithms and iterative algorithms use

the joint distribution dataset, one wants to normalize the raw data in 20NEWS and RCV1 to a

joint distribution p(xi, yj), for example, by counting the number of times that a word yj appears
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Figure 6.6: Simulation results using RCV1 dataset: (a) Algorithm 3 vs. the proposed algorithm
in [1] when K < N ; (b) Algorithm 2 vs. the proposed algorithm in [1] when K ≥ N .

in document xi. For convenience, we utilize the normalized datasets in [1]. After normalized,

the dataset 20NEWS contains M = 51840 vectors of dimension N = 20 while the dataset RCV1

has M = 170946 vectors of dimension N = 103. The code as well as the datasets for testing are

available in https://github.com/hoangle96/linear_clustering.

Next, we run the proposed algorithms (Algorithm 2 and 3 corresponding to the case of

K ≥ N and K < N , respectively), the iterative algorithm, and the ratio-greedy in [1] for

K = 2, 3, 4, 5, . . . , 2000 using both 20NEWS dataset and RCV1 dataset. The entropy impu-

rity of these algorithms are provided in Table 6.1 and Table 6.2 for 20NEWS and RCV1 datasets,

respectively. Fig. 6.5 and Fig. 6.6 illustrate the impurity provided by our proposed Algorithm

2 and 3, the iterative algorithms, and the algorithm in [1] for 20NEWS and RCV1 datasets. As

seen, the impurities provided by our proposed algorithms are very close to the impurity obtained

from the iterative algorithms (see Alg. 2,3/Iter-Alg. columns in Table 6.1 and Table 6.2 and

assuming that the iterative algorithm obtains a globally optimal solution). Particularly, the im-

purities provided by our proposed algorithms are at most 1.0181 time larger than the impurity

provided by running the iterative algorithms 100 times using 20NEWS dataset and at most 1.0459
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time larger for RCV1 dataset. In addition, the impurities provided by our algorithms (the red

curves) are comparable to the impurities obtained by the proposed algorithm in [1] (the blue

curves) as illustrated in Fig. 6.5 and Fig. 6.6. Particularly, Fig. 6.5 and Fig. 6.6 point out that

our proposed algorithms outperforming the proposed algorithm in [1] if the number of partitions

K is small, however, when K is large (for example K ≥ 19 for 20NEWS and K ≥ 24 for RCV1),

the algorithm in [1] provides lower impurities. Finally, it is worth noting that our Algorithm 2

and 3 are linear in M while the proposed algorithm in [1] has a polynomial time complexity.

6.7 Conclusion

In this chapter, we proposed a guaranteed bounded linear time algorithm for minimizing a wide

class of impurity function including entropy and Gini index. In some cases, we showed that the

proposed algorithm is better than the state-of-art algorithms in both terms of computational

complexity and the quality of partitioned outputs. Our upper bound and lower bound generalize

two well-known results in information theory and signal processing, specially the Fano’s inequal-

ity and the Boyd-Chiang upper bound of channel capacity. Both the theoretical and numerical

results are provided to illustrate the advantages of our algorithm.
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20NEWS dataset

K emax R(emax) Alg. 2,3 Alg. in [1] Iter-Alg. Alg. 2,3/Iter-

Alg.

2 0.0815 1.1915 4.2382 4.2934 4.1630 1.0181

3 0.1002 1.2933 4.2006 4.2818 4.1607 1.0096

4 0.1179 1.3844 4.1595 4.2741 4.1127 1.0114

5 0.1313 1.4512 4.1214 4.2576 4.1020 1.0047

6 0.1425 1.5062 4.0936 4.2447 4.0845 1.0022

7 0.1558 1.5698 4.0787 4.2337 4.0379 1.0101

8 0.1659 1.6174 4.0618 4.2196 4.0198 1.0105

9 0.1760 1.6642 4.0474 4.2006 4.0074 1.0100

10 0.1856 1.7087 4.0339 4.1824 3.9980 1.0090

11 0.1950 1.7517 4.0253 4.0941 3.9792 1.0116

12 0.2031 1.7885 4.0128 4.0822 3.9755 1.0094

13 0.2108 1.8234 4.0030 4.0643 3.9654 1.0095

14 0.2175 1.8535 3.9900 4.0386 3.9590 1.0078

15 0.2239 1.8824 3.9826 4.0047 3.9490 1.0085

16 0.2294 1.9070 3.9783 3.9845 3.9459 1.0082

17 0.2338 1.9264 3.9747 3.9635 3.9253 1.0126

18 0.2377 1.9437 3.9708 3.9585 3.9211 1.0127

19 0.2408 1.9578 3.9673 3.9658 3.9093 1.0148

20 0.2420 1.9630 3.9658 3.9658 3.9043 1.0158

30 0.2420 1.9630 3.9077 3.9081 3.8709 1.0095

40 0.2420 1.9630 3.8891 3.8798 3.8526 1.0095

50 0.2420 1.9630 3.8774 3.8726 3.8404 1.0096

100 0.2420 1.9630 3.8584 3.8443 3.8076 1.0134

200 0.2420 1.9630 3.8369 3.8281 3.7852 1.0137

300 0.2420 1.9630 3.8320 3.8172 3.7730 1.0156

400 0.2420 1.9630 3.8271 3.8088 3.7656 1.0163

500 0.2420 1.9630 3.8219 3.8035 3.7592 1.0167

1000 0.2420 1.9630 3.8090 3.7829 3.7427 1.0177

2000 0.2420 1.9630 3.7873 3.7581 3.7264 1.0163

Table 6.1: Simulation results using 20NEWS dataset for K = 2, 3, 4, 5, . . . , 2000.
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RCV1 dataset

K emax R(emax) Alg. 2,3 Alg. in [1] Iter-Alg. Alg. 2,3/Iter-

Alg.

2 0.1882 2.5376 4.9438 5.0571 4.9249 1.0038

3 0.2096 2.6681 4.8806 5.0525 4.8637 1.0035

4 0.2135 2.6915 4.8510 5.0520 4.7950 1.0117

5 0.2149 2.6999 4.8337 5.0512 4.7689 1.0136

6 0.2153 2.7024 4.8216 5.0429 4.7448 1.0162

7 0.2160 2.7068 4.8121 5.0367 4.7237 1.0187

8 0.2163 2.7081 4.8034 5.0089 4.7072 1.0204

9 0.2170 2.7124 4.7985 4.9976 4.6951 1.0220

10 0.2171 2.7131 4.7980 4.9810 4.6897 1.0231

11 0.2173 2.7142 4.7969 4.9551 4.6756 1.0260

12 0.2174 2.7148 4.7965 4.9373 4.6710 1.0269

13 0.2174 2.7152 4.7961 4.9245 4.6619 1.0288

14 0.2176 2.7161 4.7957 4.9107 4.6551 1.0302

15 0.2176 2.7164 4.7953 4.8811 4.6526 1.0307

16 0.2178 2.7173 4.7951 4.8607 4.6483 1.0316

17 0.2179 2.7178 4.7949 4.8497 4.6432 1.0327

18 0.2179 2.7180 4.7948 4.8403 4.6364 1.0342

19 0.2180 2.7183 4.7946 4.8277 4.6344 1.0346

20 0.2180 2.7187 4.7944 4.8215 4.6308 1.0353

30 0.2184 2.7207 4.7938 4.7229 4.6074 1.0405

40 0.2184 2.7212 4.7936 4.7097 4.5903 1.0443

50 0.2185 2.7214 4.7935 4.6992 4.5833 1.0459

100 0.2185 2.7215 4.7082 4.6918 4.5542 1.0338

200 0.2185 2.7215 4.6629 4.6359 4.5339 1.0285

300 0.2185 2.7215 4.6417 4.6113 4.5214 1.0266

400 0.2185 2.7215 4.6251 4.5943 4.5158 1.0242

500 0.2185 2.7215 4.6125 4.5811 4.5076 1.0233

1,000 0.2185 2.7215 4.5733 4.5393 4.4945 1.0175

2,000 0.2185 2.7215 4.5339 4.5011 4.4829 1.0114

Table 6.2: Simulation results using RCV1 dataset for K = 2, 3, 4, 5, . . . , 2000.
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6.8 Appendix

6.8.1 Improvement of Algorithm in [1]

In Section V [1], Cicalese et al. proposed an algorithm that provably achieves near-optimal par-

tition for entropy impurity. This algorithm has two steps: (1) performing a projection to transfer

the multidimensional data back to a 2-dimensional data, and (2) using dynamic programming to

find the optimal partition in 2-dimensional data based on the idea in [44].

Cicalese et al. proved that the running time of the algorithm in [1] is polynomial, however,

no precise complexity is constructed. Since the running time of projection the original data to a

2-dimension data is NM and the running time of finding the optimal partition in 2-dimensional

space using the method in [44] is O(M3), the time complexity of the algorithm in [1] should be

at least O(NM +M3).

Based on the well-known SMAWK algorithm [87], we show that the running time of the algo-

rithm in [1] can be further reduced from O(M3) to O(M logM). Indeed, the SMAWK algorithm

can be applied to reduce the running time of algorithm in [44] to O(KM) if the binary data is or-

dered (see [47] and [50] for detail). However, to order a data of size M , the fastest sorting technique

requires the running time of O(M logM). Thus, the problem in [44] can be solved in O(M logM)

that reduces the polynomial time complexity in step (2) of algorithm in [1] to O(M logM). The

total time complexity of the proposed algorithm in [1], therefore, is O(NM +M3).

6.8.2 Jensen’s Inequality

Jensen inequality states that for a random variable T , then E[f(T )] ≥ f(E[T ]) if f(x) is convex,

and E[f(T )] ≤ f(E[T ]) if f(x) is concave.
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Now, let T ∈ {t1, t2, . . . , tK} be a random variable with the uniform distribution
1

K
. If f(x)

is concave, using Jensen’s inequality:

f(

∑K
i=1 ti
K

) ≥
K∑
i=1

1

K
f(ti),

which is equivalent to

Kf(

∑K
i=1 ti
K

) ≥
K∑
i=1

f(ti). (6.45)

Thus, (6.13) is a direct result of (6.45) using ti = p(xi|zj) and K = N − 1.

6.8.3 Fano’s Inequality

If the impurity function is entropy i.e., f(x) = −x log x, then

IQ =
K∑
k=1

N∑
i=1

p(zk)
(
− p(xi|zk) log(p(xi|zk))

)
=

K∑
k=1

p(zk)H(X|zk) = H(X|Z).

By plugging f(x) = −x log x into (6.16)

H(X|Z) ≤ −eQ log eQ − (N − 1)
1− eQ
N − 1

log
1− eQ
N − 1

= −[eQ log eQ + (1− eQ) log(1− eQ)] + (1− eQ) log(N − 1) (6.46)

= H(1− eQ) + (1− eQ) log(N − 1), (6.47)

with (6.46) is due to a bit of algebra, (6.47) is due to the binary entropy function is symmetric,

i.e., H(eQ) = H(1− eQ) = −[eQ log eQ + (1− eQ) log(1− eQ)].

Let us now consider X and Z as two random variables that represent the input and the

output symbols of a communication channel. Errors might occur during transmissions. Suppose
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that the receiver estimates the transmitted symbol based on the received zk as xk∗ where k∗ =

arg maxi p(xi|zk) (maximum likelihood decoding). Thus, the error probability of this decoding

scheme is Pe = 1−
∑K

k=1 p(zk)p(xk∗ |zk) = 1− eQ. Then,

H(X|Z) ≤ H(1− eQ) + (1− eQ) log(N − 1)

= H(Pe) + Pe log(|X| − 1),

which is identical to the well-known Fano’s inequality [3].

6.8.4 Boyd-Chiang Upper Bound of Channel Capacity

The mutual information I(X;Z) between channel input and channel output is defined by I(X;Z) =

H(X) − H(X|Z). However, from Theorem 6.4, if the impurity function is entropy i.e., f(x) =

−x log(x) and l(x) = − log(x) then H(X|Z) = IQ ≥ l(eQ) = − log(eQ). Now, by using the

uniform input distribution,

I(X;Z) = H(X)−H(X|Z)

≤ H(
1

N
,

1

N
, . . . ,

1

N
)− l(

K∑
k=1

p(zk)p(xk∗ |zk)) (6.48)

= logN − l(
K∑
k=1

p(xk∗)p(zk|xk∗)) (6.49)

= logN − l( 1

N

K∑
k=1

p(zk|xk∗)) (6.50)

= logN + log(

∑K
k=1 p(zk|xk∗)

N
) (6.51)

= log(

K∑
k=1

p(zk|xk∗)), (6.52)
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with (6.48) is due to H(X|Z) ≥ l(eQ) and eQ =
∑K

k=1 p(zk)p(xk∗ |zk), (6.49) is due to Bayes’s

theorem, (6.50) is due to the input distribution is uniform, (6.51) is due to l(x) = − log(x), (6.52)

is due to a bit of algebra.

Let us now consider X = and Z as two random variables that represent the input and the

output symbols of a communication channel. Due to the errors during transmissions, a channel

matrix A whose entry Aij = p(zj |xi) denotes the probability of the transmitter transmitted

symbol xi but the receiver decoded to symbol zj . Now, since the input distribution is uniform,

from p(zk)p(xk∗ |zk) = p(xk∗)p(zk|xk∗), then p(zk|xk∗) is the largest entry in k∗th column of channel

matrix. Thus, the upper bound of channel capacity is log(
∑K

k=1 p(zk|xk∗)) that is identical to the

bound constructed by Boyd and Chiang [13].

6.8.5 Proof of Theorem 6.2

Proof. We show that u(eQ) = f(eQ) + (N − 1)f(
1− eQ
N − 1

) is a non-increasing function.

u′(eQ) = f ′(eQ)− (N − 1)
1

N − 1
f ′(

1− eQ
N − 1

) (6.53)

= f ′(eQ)− f ′(
1− eQ
N − 1

). (6.54)

Since k∗ = arg maxi p(xi|zk) and
∑N

i=1 p(xi|zk) = 1, p(xk∗ |zk) ≥
1

N
. Thus,

eQ =

K∑
k=1

p(zk)p(xk∗ |zk) ≥
K∑
k=1

p(zk)
1

N
=

1

N
.
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Therefore, 1− eQ ≤
N − 1

N
. Thus,

eQ ≥
1

N
≥

1− eQ
N − 1

. (6.55)

Now since f ′(eQ) is a non-increasing function due to f(eQ) is concave. Therefore,

u′(eQ) = f ′(eQ)− f ′(
1− eQ
N − 1

) ≤ 0. (6.56)

Or, u(eQ) is a non-increasing function.

Finally, it is possible to verify that if eQ =
1

N
or eQ = 1, then the upper bound is tight i.e.,

u(eQ) = IQ for both the entropy impurity and the Gini index impurity. Indeed, if eQ =
1

N
,

p(xi|zk) =
1

N
∀i, k and then u(eQ) = IQ = Nf(

1

N
). If eQ = 1, p(xk∗ |zk) = 1 and p(xi|zk) = 0 ∀

i 6= k∗ and then u(eQ) = IQ = 0.
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6.8.6 Proof of Theorem 6.3

6.8.6.1 Proof of Theorem 6.3-(a)

Proof. We first consider the case when K = N , we show that eQemax ≥ eQ,∀Q. We have:

eQemax =
K∑

j∗=1

p(zj∗) max
i
p(xi|zj∗)

=
K∑

j∗=1

max
i
p(xi, zj∗)

=

K∑
j∗=1

∑
j:Q(yj)=zj∗

max
i
p(xi, yj)

≥
K∑
j=1

∑
j:Q(yj)=zj

p(xi, yj)

= eQ.

Note that Q(yj) = zj in the index of the sum in the last equation represents any arbitrary partition

scheme.

We now show that if a quantizer Q produces emax = maxQ eQ then it must has the struc-

ture of Qemax . We will prove this by contradiction. Suppose that a quantizer Q produces the

partitions z1, z2, . . . , zK that has emax, but there exists a yn that is partitioned to zl, such that

l 6= arg max1≤i≤N p(xi, yn). Let m = arg max1≤i≤N p(xi, yn). Now, let consider a quantizer Q′

which is constructed from quantizer Q by moving yn from zl to zm. This new quantizer Q′ pro-

duces a new partition {z′1, . . . , z′l, . . . , z′m, . . . , z′K} with z′k = zk, ∀ k 6= l,m, with corresponding

p′(xi, zk) and p′(xi|zk).
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From the definition of eQ, we have:

eQ − e′Q = p(zl)p(xl∗|zl) + p(zm)p(xm∗ |zm)− p′(zl)p′(xl∗|zl)− p′(zm)p′(xm∗ |zm)

= p(xl∗, zl) + p(xm∗ , zm)− p′(xl∗, zl)− p′(xm∗ , zm)

=
∑

j:Q(yj)=zl

p(xl∗, yj) +
∑

j:Q(yj)=zm

p(xm∗, yj)

−
∑

j:Q(yj)=zl

p′(xl∗, yj)−
∑

j:Q(yj)=zm

p′(xm∗, yj)

= p(xl∗, yn)− p(xm∗, yn).

Since by assumption that p(xm, yn) > p(xl, yn), we have eQ′ < eQ which is a contradiction.

Thus, any partition scheme that achieves emax must have the structure of maximum likelihood of

Qemax .

6.8.6.2 Proof of Theorem 6.3-(b)

Proof. Theorem 6.3-(a) handled the case when K = N and showed that any partition scheme

that achieves emax must have the structure of maximum likelihood of Qemax . On the other hand,

Theorem 6.3-(b) finds the partition that achieves emax when K > N . Interestingly, we show that

the mapping of Qemax in Theorem 6.3-(a) that partitions the data to N -nonempty partitions and

K − N empty partitions still produces emax. For detail. let j∗ = arg maxi p(xi, yj) and define

quantizer Qemax with the following structure:

Qemax(yj) = zj∗ , (6.57)
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then Qemax produces emax = maxQ eQ even if K > N . Moreover, due to the mapping in (6.57),

Qemax produces N nonempty partitions and K −N empty partitions.

Indeed, suppose the quantizer Qemax produces K ′ nonempty partitions and K ≥ K ′ > N . We

show that existing another quantizer Q having exactly N nonempty partitions which still can

produces the same emax as Qemax . Now, since K ′ > N , existing two partition zi, zj such that:

i∗ = j∗ = arg max
1≤t≤N

p(xt|zi) = arg max
1≤t≤N

p(xt|zj).

Next, consider a new quantizer Q that maps two partitions zi and zj into a single partition

zk, we show that Q still provide the same emax as Qemax . Indeed, since i∗ = j∗ and zi ∪ zj = zk,

zi ∩ zj = ∅, we have:

i∗ = j∗ = k∗ = arg max
1≤t≤N

p(xt|zk),

and

p(xk∗ , zk) = p(xi∗ , zi) + p(xj∗ , zj).

Thus,

p(zk)p(xk∗ |zk) = p(xk∗ , zk) = p(xi∗ , zi) + p(xj∗ , zj) (6.58)

= p(zi)p(xi∗ |zi) + p(zj)p(xj∗ |zj). (6.59)

By definition of eQ in (6.6) and noting that Q is identical to Qemax except that two partitions

zi and zj are grouped into a single partition zk, eQ = emax. By induction method, after at most

K ′ − N times grouping, existing a quantizer Q having exactly N nonempty partitions which

still can produce emax. Moreover, this quantizer satisfies the mapping in (6.57). The proof is

complete.
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6.8.7 Proof of Theorem 6.7

Proof. For the Gini index impurity function, f(x) = x(1− x) and l(x) = 1− x. Thus,

R(emax) =
f(emax) + (N − 1)f(

1− emax

N − 1
)

l(emax)

=
emax(1− emax) + (N − 1)

1− emax

N − 1
(1− 1− emax

N − 1
)

1− emax
(6.60)

= emax + 1− 1− emax

N − 1
(6.61)

≤ emax + 1 (6.62)

≤ 2, (6.63)

with (6.60) due to f(x) = x(1 − x) and l(x) = 1 − x, (6.61) and (6.62) due to a bit of algebra,

(6.63) due to emax ≤ 1. Noting that one can use emax +1 as another approximation for Gini index

impurity.

6.8.8 Proof of Theorem 6.8

Proof. For entropy impurity, f(x) = −x log(x) and l(x) = − log(x), plugin the upper bound and

the lower bound in Theorem 6.1 and Theorem 6.4, we have

R(emax) =
H(emax) + (1− emax) log(N − 1)

− log(emax)
. (6.64)

Since log(N − 1) < logN , we have

R(emax) =
H(emax) + (1− emax) log(N − 1)

− log(emax)
<
H(emax) + (1− emax) logN

− log(emax)
. (6.65)
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To prove Theorem 6.8, we want to show that the inequality below holds

H(emax) + (1− emax) logN

− log(emax)
≤ log2N, ∀N ≥ Nmin. (6.66)

This is equivalent to show that

log2N(− log(emax))− (1− emax) logN −H(emax) ≥ 0,∀N ≥ Nmin.

Indeed, using a bit of algebra,

log2N(− log(emax))− (1− emax) logN −H(emax)

= −log(emax)[log2N−2 logN
1− emax

2(−log(emax))
+(

1− emax

2(−log(emax))
)2− H(emax)

−log(emax)
−(

1− emax

2(−log(emax))
)2]

= − log(emax)[(logN − 1− emax

2(− log(emax))
)2 − 4H(emax)(− log(emax)) + (1− emax)2

(−2 log(emax))2
]

= − log(emax)[(logN− 1− emax

2(− log(emax))
)2−(

√
4H(emax)(− log(emax)) + (1− emax)2

−2 log(emax)
)2].

Now, if

logN ≥ 1− emax

−2 log(emax)
+

√
4H(emax)(− log(emax)) + (1− emax)2

−2 log(emax)
= S(emax), (6.67)

then (6.66) holds. Thus, R(emax) < log2N holds if N ≥ 2S(emax) = Nmin.

6.8.9 Well-known results on minimizing impurity partitions

This section summarizes two important results that were stated in [53], [51]. To summarize these

well-known results, we first need to rewrite the original impurity function which is defined in (6.1).

Reformulation of the impurity function:
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For ease of analysis, in this chapter, we rewrite the impurity function IQ in term of the joint pmf

px,zk = [p(x1, zk), p(x2, zk), . . . , p(xN , zk)] of X and Z = zk, for k = 1, 2, . . . ,K. Specifically,

IQ =
K∑
k=1

N∑
i=1

p(zk)f(p(xi|zk)) =
K∑
k=1

p(zk)
N∑
i=1

f(p(xi|zk)) (6.68)

=

K∑
k=1

N∑
i=1

p(xi, zk)

N∑
i=1

f
( p(xi, zk)∑N

i=1 p(xi, zk)

)
(6.69)

=
K∑
i=1

F (px,zk), (6.70)

where

F (px,zk) =
N∑
i=1

p(xi, zk)
N∑
i=1

f
( p(xi, zk)∑N

i=1 p(xi, zk)

)
(6.71)

is a function of the joint distribution vector px,zk = [p(x1, zk), p(x2, zk), . . . , p(xN , zk)] which

specifies the impurity measured in the cluster that represents Z = zk. Clearly that the total

impurity IQ produced by quantizer Q, is the summation overall the impurity in each cluster.

Thus, IQ also can be viewed as a function of the joint distribution vector px,zk for k = 1, 2, . . . ,K.

Theorem 6.9. (Impurity gain after partition is always non-negative)

If px,zi = px,zj + px,zk , then

F (px,zi) ≥ F (px,zj ) + F (px,zk). (6.72)

In other words, for an arbitrary set A, if A = B ∪ C and B ∩ C = ∅, then the impurity in A

is larger or at least equal the total impurity in B and C.

The proof can be viewed in [53], Proposition 1. Since the impurity gain after partitioning is

always non-negative, the optimal impurity in K ′-partition is always less than or at least equal the
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optimal impurity in K-partition if K ′ ≥ K. We use this property to prove that the theoretical

bound for K-partition is always better or at least equal the theoretical bound for N -partition if

K > N .

Theorem 6.10. (Necessary optimality condition)

Let Q be a quantizer with an induced K-partition corresponding to K joint pmf vectors px,zi,

i = 1, 2, . . . ,K. For each partition zk, k = 1, 2, . . . ,K, define:

ck =
dF (px,zk)

dpx,zk

, (6.73)

Define the ”distance” from a data point yj to the cluster zk as:

d(yj , zk) = cTk px,yj , (6.74)

then an optimal quantizer Q∗ that quantizes yj to zk must have d(yj , zk) ≤ d(yj , zl), l 6= k.

The proof can be viewed in [53], Theorem 1. Based on the necessary optimality condition, a

locally optimal solution can be found using an iterative algorithm that begins from a randomly

assigned partition and alternatively updates the cluster members based on their distances. This

algorithm is very similar to a k-means algorithm using a ”distance” d(yj , zk) which is defined

in (6.74). The running time of this iterative algorithm, therefore, is O(TKMN) where T is

the number of iterations. The detail of the iterative algorithms for entropy impurity and Gini

index impurity can be found in Appendix 6.8.10. Since the condition in (6.74) is necessary but

not sufficient, the iterative algorithm ensures a locally optimal solution rather than a globally

optimal solution. On the other hand, the proposed algorithm in this chapter guarantees a near-

global optimal solution while it does not guarantee a locally optimal solution. To improve the

splitting quality a bit, the iterative algorithm can be applied over the partitions produced by
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our approximation algorithms to achieve the local optimal solution at the cost of an additional

time complexity O(TKNM). Similar to the approach in [1], to evaluate the performance of the

proposed algorithms, one can approximate the global optimal partition by running the iterative

algorithms from many randomly starting points and select the best solution. The detail of this

approach can be viewed in Section 6.6.

6.8.10 Finding the optimal partition via iterative algorithms

It is well-known that the problem of finding the optimal impurity partition can be solved using

iterative algorithms [53], [68]. For example, finding an optimal quantizer that minimizes the

entropy impurity is equivalent to finding the optimal partition that minimizes the KL-divergence

distance [1], [54]. Thus, existing iterative algorithms [54], [75] can be applied to find a locally

optimal partition that minimizes entropy impurity. These algorithms are based on the famous

k-means algorithms which use the KL-divergence as the distance metric. For convenience, we refer

the reader to [54], [75] for more details of the iterative algorithms that find the optimal entropy

impurity partitions. The pseudo code is shown in Algorithm 4. Similarly, a locally optimal

quantizer that minimizes the Gini index impurity can be determined by an iterative algorithm

using a suitable distance metric. Based on the general iterative algorithms in [53], [68], Algorithm

5 is constructed to find the locally optimal solution for Gini index impurity.

We recall that

px,zk = (p(x1, zk), p(x2, zk), . . . , p(xN , zk)),

px|zk = (p(x1|zk), p(x2|zk), . . . , p(xN |zk)),
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px,yj = (p(x1, yj), p(x2, yj), . . . , p(xN , yj)),

and

px|yj = (p(x1|yj), p(x2|yj), . . . , p(xN |yj)).

Algorithm 4 and Algorithm 5 work as follows. In the initial step, these algorithms randomly

assign yj to zk using a random quantizer Q. In step 1, based on the initial random clustering,

the joint pmf of X and Z px,zk and the conditional pmf of X and Z px|zk are computed ∀k. In

step 2, from px,zk , px|zk , px,yj and px|yj , the distance d(yj , zk) between yj and zk is computed.

Noting that the distance d(yj , zk) in (6.79) and (6.83) are constructed separately from the same

general form in [91]. Based on d(yj , zk), the membership of yj to each zk is updated such that

Q(yj) = zk if d(yj , zk) is the smallest over all zk. Algorithm 4 and Algorithm 5 are similar to

the famous k-means algorithm with the computational complexity of O(TNKM) where T is the

number of iterations.
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Algorithm 4 Iterative algorithm finding optimal partitions for entropy impurity.

1: Input: Dataset Y = {y1, . . . , yM} and p(xi, yj).
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: Initialization: Randomly cluster yj into K clusters z1, z2, . . . , zK , i.e., choose a random

quantizer Q.
4: Step 1: Compute px,zk , px|zk and px|yj .

px,zk =
∑

j:Q(yj)=zk

px,yj . (6.75)

px|zk =
px,zk

pTx,zk1
. (6.76)

px|yj =
px,yj

pTx,yj1
. (6.77)

5: Step 2: For each yj , compare the distance d(yj , zk) from yj to each partition zk. yj belongs
to the partition with the smallest distance.

Q(yj) = arg min
zk

d(yj , zk), (6.78)

where

d(yj , zk) = DKL(px|yj ||px|zk) (6.79)

=

N∑
i=1

p(xi|yj) log(
p(xi|yj)
p(xi|zk)

). (6.80)

6: Step 3: Go to Step 1 until the partitions z1, z2, . . . , zK stop changing (membership of all yj
does not change), or the maximum number of iterations has been reached.
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Algorithm 5 Iterative algorithm finding optimal partitions for Gini index impurity.

1: Input: Dataset Y = {y1, . . . , yM} and p(xi, yj).
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: Initialization: Randomly cluster yj into K clusters z1, z2, . . . , zK , i.e., choose a random

quantizer Q.
4: Step 1: Compute the joint distribution px,zk in each cluster zk.

px,zk =
∑

j:Q(yj)=zk

px,yj . (6.81)

5: Step 2: For each yj , compare the distance d(yj , zk) from yj to each partition zk. yj belongs
to the partition with the smallest distance.

Q(yj) = arg min
zk

d(yj , zk), (6.82)

where

d(yj , zk) =

N∑
i=1

p(xi, yj)
(

1− 2
p(xi, zk)∑N
n=1 p(xn, zk)

+

∑N
n=1 p

2(xn, zk)

(
∑N

n=1 p(xn, zk))
2

)
. (6.83)

6: Step 3: Go to Step 1 until the partitions z1, z2, . . . , zK stop changing (membership of all yj
does not change), or the maximum number of iterations has been reached.
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Chapter 7: Conclusion

The works in this dissertation aim to (1) finding the closed-form expression for a good upper bound

on capacities of discrete memoryless channels together with optimality conditions for which the

upper bound is precisely the channel capacity, (2) designing the optimal quantizer that maximizes

mutual information between the input and the quantized-output of a communication channel, (3)

finding the optimal quantizer structure maximizing mutual information under the quantized-

output constraints, (4) finding the maximum value of mutual information (channel capacity) over

both the input distribution and the quantization parameters, and (5) designing efficient algorithms

for finding the optimal impurity partition. Particularly, the closed-form expression for capacities

and upper bounds of discrete memoryless channels are investigated in Chapter 2. Chapter 3 is

dedicated to finding the optimal structure of quantizers that maximizing the mutual information

between the input and the quantized-output. Chapter 4 extends the results in Chapter 3 to design

the optimal quantizers that maximize mutual information between the input and the quantized-

output under quantized-output constraints. Chapter 5 establishes the fundamental results for

finding the channel capacity over both the input distribution and the quantization parameter

variables. Finally, a guaranteed approximation algorithm for minimizing a wide class of impurity

function is proposed in Chapter 6. In the future, based on the results of this dissertation, I

would like to investigate a few problems related to what I am pursuing. These problems will

focus on both communication theory and information theory together with its applications in

machine learning and signal processing, including but not limited to develop error-correcting code

for 5G and 6G telecommunication networks, efficient learning algorithms over noisy channels, and

low-complexity approximation algorithms for information-theoretic learning frameworks.
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