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Chapter 1: INTRODUCTION

1.1 Background and Motivation

Digital communication can be traced back to 1837. Morse developed electric telegraph

that translated English letters into a sequence of dots and dashes. This was the precur-

sor of the variable-length source coding method [27]. In 1924, Nyquist determined the

the maximum data rate without inter-symbol interference (ISI) that can be transmitted

over a transmission channel. That is now called the Nyquist Criterion (for ISI-free digital

signaling). In 1948, Shannon established the relationship between channel capacity in

Gaussian noise and gave birth to a new field called information theory. Shannon’s re-

sults were precursors to the work of Hamming, who provided the work on error detecting

and error correction theorem to reduce the influence of channel noise. There are more

powerful works in digital communications based on the early works of Nyquist, Shannon

and Hamming, etc [35]. The general digital communication structures are consisted of

these advanced works in Figure 1.1.

The information source will be encoded by source coding in source encoder. Source

Figure 1.1: General Digital Communication Structure.

coding is used to remove redundant information so that bandwidth will be minimized for
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efficient transmission. Famous source coding techniques include Huffman codes, Lemple-

Ziv codes, Fano codes, etc. In the channel encoder, information signal is encoded by

adding some extra bits to protect information from noise and interference. Common

channel codes include block codes, convolutional codes, turbo codes, LDPC codes, etc.

In radio communications, the encoded information is carrier-modulated and then trans-

mitted to the receiver via an antenna(s).

Compared to analog communications, digital communications has many advantages,

such as better privacy and security to protect information by data compression and er-

ror correction coding and high noise tolerance. In analog communications, even a small

noise signal can have a large impact on received signal. Digital communications could

be cheaper than analog communications due to the usage of advanced digital very-large-

scale integration (VLSI) technology.

Spread spectrum, when used for digital communications, uses direct sequence, fre-

quency hopping or a hybrid of both model for multiple access. In such a system, the

information signal is spread with a spreading code, and then modulated onto a carrier.

A noise-like signal is transmitted. The same spreading code is used in the receiver to re-

cover the original information via correlation and integration. Resistance to interference

and security are achieved by exploiting different spreading codes. Interference intro-

duced by other spreading codes is spread over a much wider bandwidth than the original

information bandwidth and in the despreading process the desired signal is effectively

affected by only the interference in its information bandwidth. Since the transmitted

spread information can be detected only by the receiver that has same spreading code,

information is protected from interception.

The motivation of the work in this thesis is shown in Figure 1.2. Walsh codes are

widely used in spread spectrum communications. With Walsh codes, there is no inter-

symbol interference, but the symbol rate is still bounded by the Nyquist transmission

rate. To improve channel use efficiency beyond the Nyquist rate via a scheme that uses

spreading codes, new spreading codes are needed to allow faster-than-Nyquist (FTN)

rate. In this case, there will be mutual interference among the spreading codes. Corre-

lation detection can be used to recover a received signal that is affected by the non-zero

cross-correlation among the spreading codes simultaneously transmitted but is not nec-

essarily the best detection scheme, and depending on the symbol rate of transmission,

the corresponding BER performance may be unacceptable. The goal of this thesis is to
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explore new detection methods that achieve a better performance than the traditional

correlation detector.

Figure 1.2: Motivation.

1.2 Thesis Outline

In this thesis, new spreading codes, called quasi-orthogonal sequences (QOS), that can

provide a large amount of spreading codes of fixed length are proposed. Because the

cross-correlation among the QOS is non-zero, a correlation detection method may not

perform well. New detection methods are then proposed to detect the transmitted signals

that use QOS to transmit at the FTN rate. The first detection scheme is called multi-

layer perceptron (MLP) and the second one is called long-short-term memory (LSTM).

These detection methods are able to detect the desired user’s signal from interference

and noise better than the traditional correlation detector.



4

Chapter 2 gives a review of spread spectrum. The processing gain in spread spectrum

is introduced. Different spread spectrum transmissions such as DSSS, frequency hopping

spread spectrum (FHSS) and Hybrid DS/FH are described. The classical spreading codes

used in spread spectrum, such as Gold codes, small Kasami set, large Kasami set and

Walsh codes are also introduced.

In Chapter 3, DSSS transmitter and receiver structures are described. Based on the

analysis spread spectrum transmission methods and existing spreading codes, this thesis

adopts QOS as the spreading codes to provide a large number of spreading codes. The

definition of BER performance for faster-than-Nyquist signals is presented and compared

with BER performance for signaling at Nyquist. A three-layer MLP scheme and an

LSTM detection method are developed to detect the QOS signals in the presence of

interference and noise.

Chapter 4 presents the simulation results for the three-layer MLP and LSTM detec-

tion schemes. QOS of lengths 16, 32, 64 and 128 are adopted. Theoretical and simulation

results for correlation detection are compared at different signal-to-noise ratio (SNR) val-

ues.

Chapter 5 summarizes the spreading codes used, new detection methods provided

and simulation results from Chapter 3 and 4. Conclusions are made in terms of BER

performance and complexity of the new detection methods.
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Chapter 2: BACKGROUND REVIEW

2.1 Introduction

Spread spectrum was traditionally used in military anti-jamming communications be-

cause this technique affords protection against high interference with limited signal power

[26]. Other applications include satellite-positioning systems (GPS), 3G mobile telecom-

munications, wireless LAN, Bluetooth, ZigBee and Wi-Fi [34][28][9][19]. Spread spec-

trum uses wide-band and noise-like signals to transmit information that only can be

detected by using the spreading codes used in the transmitter. Spread spectrum sig-

nals have a wider frequency band than the information that they are carrying to make

information more noise-like.

The power spectral density of signal and interference in transmission are shown in

Figure 2.1. User information signal is a narrow band signal before spreading. The use

of spreading codes makes user information signals appear wide-band and noise-like. At

a receiver, same spread code is used to recover a desired user’s information signal from

the received signal, while the interference spreads over the whole wideband. In such a

system, the desired user’s information signal could still be recovered from interference

with a high power.

This chapter begins with introduction of spread spectrum. Three commonly used

spread spectrum techniques are described in Section 2.2. In spread spectrum, a set of

unique spreading codes are used to spread users’ signals, which is discussed in Section

2.3. The primary interest of this thesis, new spreading codes and new detection methods

that achieve a better performance, will be introduced in Chapter 3.

2.2 Spread Spectrum

There are several types of spread spectrum techniques. Different spreading codes are

used to transmit different signals in the time domain. Processing gain is to evaluate the

interference-immunity performance. It is defined as the differential between output and
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Figure 2.1: Signal Power Density of Signal and Interference in Transmission.
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input SNRs [7]. It can be also expressed by the length of the spreading code N as [8].

PG = 10 log10
SNRout

SNRin
= 10 log10N. (2.1)

The processing gain is only related to the length of the spreading code, and will not be

affected by the cross-correlation between spreading codes.

In this section, direct sequence spread spectrum, frequency hopping spread spectrum,

and hybrid DS/FH spread spectrum (HSS) are briefly described.

2.2.1 Direct Sequence Spread Spectrum

DSSS is the best known and most widely used spread spectrum technology. It was first

used in military in 1940s, and now are widely used in ZigBee and Wi-Fi systems [18][7].

DSSS does not require a high speed, fast settling frequency synthesizer, which makes it

easier to implement for some cases.

DSSS transmission structure is shown in Figure 2.2. The noise-like signal is generated

from the signal bit and spreading code. The spreading code used in DSSS transmission

carries a higher frequency than the signal bit. This helps increase the signal’s resistance

to interference. If any bits in the spread signal are distorted by noise or interference

from other information signals during transmission, the original signal bit may still be

recovered via the despreading process. The time interval of the spreading code is the bit

duration Tb. Each fragment of the spreading code is called a chip with a duration Tc,

which is typically much shorter than the bit duration. Let the length of spreading code

be N . The relationship among length of the spreading code, code duration and chip

duration is N = Tb/Tc. The base-band spread signal is then modulated onto a carrier

via a chosen modulation scheme such as binary phase-shift keying (BPSK), quadrature

phase-shift keying (QPSK), or quadrature amplitude modulation (QAM), etc. This way,

the bandwidth of the DSSS signal is much wider than the bandwidth if the information

signal is simply modulated onto carrier. To decode and reconstruct the signal bit, the

received signal is carrier-demodulated to reconstitute high speed baseband data stream.

This data stream is then multiplied with the spreading code to recover the signal bit.

Only the signal bit that is modulated with this spreading code will be reconstructed.

Other signal bits and noise that are not modulated with same spreading code will be



8

interference and noise, and are ignored in a correlation type of receiver.

Figure 2.2: DSSS Transmission Dtructure.

2.2.2 Frequency Hopping Spread Spectrum

FHSS is a different approach to DSSS. Rather than modulating the spread signal onto a

fixed carrier, the signal bit is unchanged but directly modulate onto a carrier of varying

frequencies. This is a method of transmitting the signal bit by rapidly switching the

carrier frequency across numerous channels defined by a hopping sequence, which is

already known to the transmitter and receiver. It is used in military and Bluetooth

[19]. The narrow-band interference resistance comparison between DSSS and FHSS can

be found in [23]. There are two types of FHSS according to the hopping rate [21][37].

On the one hand, a system is considered to be fast FHSS (FFHSS) if the hopping rate

is greater than the symbol rate, in which case a symbol can be transmitted by several

frequencies. On the other hand, a system is considered to be slow FHSS (SFHSS), in

which case several symbols may be transmitted at the same frequency. The narrow-

band interference of moderate level can be mitigated by DSSS. DSSS may fail when

interference is strong. FHSS can work in a strong interference environment, even though

the interference is not completely rejected.

The FHSS structure is shown in Figure 2.3. Frequency hopping modulation is similar

to frequency shift keying (FSK) except that the set of frequency choices is greatly ex-

panded. Frequency hopping systems often have a large number of frequencies available

while FSK often use two frequency choices. A frequency hopping system consists of a
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code generator and a frequency synthesizer that can output a frequency responding to

the code from the code generator. The signal bit modulates with a frequency hopping

carrier to form a FHSS signal. The receiver has the same hopping sequence used in

the transmitter, so the frequency synthesizer can generated the same frequency hopping

pattern as applied at the transmitter. The signal bit can also be recovered by correlation.

Figure 2.3: FHSS Transmission Structure.

2.2.3 Hybrid DS/FH Spread Spectrum

A hybrid DS/FH spread spectrum may be classified into hybrid DS/SFH spread spectrum

and hybrid DS/FFH spread spectrum depending on frequency hopping rate [36][25].

Hybrid DS/FH spread spectrum has some desirable characteristics that DSSS or FHSS

does not have. For example, hybrid DS/FH spread spectrum provides a higher level

of security than DSSS and FHSS, because it combines DSSS and FHSS. Although the

complexity of hybrid DS/FH spread spectrum appears to be higher than DSSS or FHSS,

its implementation is not much more complex than DSSS or FHSS, since a shorter

spreading code used in hybrid DS/FH spread spectrum can achieve the same or even

better performance than DSSS or FHSS with a longer spreading code.

Hybrid DS/FH spread spectrum structure is shown in Figure 2.4. In such a system,

a bit is identified not only by DSSS spreading code, but also frequency hopping pat-

tern in FHSS. A bit is first modulated a spreading sequence, and then modulated by a

frequency hopping carrier. At the receiver, the spread sequence that carries a desired
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bit is generated by de-modulating with its frequency hopping carrier. The bit is finally

recovered by de-spreading the received spread sequence.

Figure 2.4: Hybrid DS/FH Transmission Structure.

Four types of hybrid DS/FH spread spectrum are shown in Figure 2.5. Hybrid DS/FH

spread spectrum can be realized with a combination of different frequency hopping and

the number of signal bits per spreading code. Hybrid DS/SFH spread spectrum means

more than one signal bit are transmitted on one frequency hop. One or more spreading

codes can be modulated with one signal bit. Hybrid DS/FFH spread spectrum means

more than one frequency hop are used as carrier for one signal bit. At the same time,

one or more spreading codes can be modulated with one signal bit. If two signal bits use

the same spreading code to transmit simultaneously, they are not interfered with each

other when they use different frequency hops. If two signal bits are transmitted by the

same frequency hop carrier, then they can be recovered without interference when they

use different spreading codes.

2.3 Spreading Codes

There are two types of spreading codes according to the cross-correlation between non-

orthogonal codes and orthogonal codes. Gold codes, small Kasami set and large Kasami

set are non-orthogonal codes. Walsh codes are orthogonal codes.

Before introducing spreading codes used in spread spectrum, we describe the M -

sequence. M -sequence is a type of pseudo-random binary sequence that is generated by

maximal linear feedback shift registers (LFSR). A polynomial function can be associated
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Figure 2.5: Concept of Hybrid DS/SFH and Hybrid DS/FFH Spread Spectrum: (a) User
signal sequence (b) Hybrid DS/SFH spread spectrum with 2 bits/hop and 1 spreading
code/bit (c) Hybrid DS/SFH spread spectrum with 2 bits/hop and 2 spreading codes/bit
(d) Hybrid DS/FFH spread spectrum with 2 hops/bit and 1 spreading code/bit (e)
Hybrid DS/FFH spread spectrum with 2 hops/bit and 2 spreading codes/bit [30].
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with a LFSR. Its degree is the number of shift register used, and has coefficients that

are either 0 or 1. If a coefficient is 0, then there is no feedback; otherwise, there is a

mod 2 operation for all feedback as input. The output of the LFSR is periodic with a

maximum period N = 2m− 1, where m is the degree of the polynomial function. Hence,

the length of an M -sequence is N . The LFSR structure of the polynomial function

1+x+x3 is shown in Figure 2.6. The state of this polynomial function is shown in Table

2.1. From Table 2.1, the state 111, 011, 101, 010, · · · , 111 repeats every 7 cycles. Thus,

the maximum period of the polynomial function 1 + x + x3 is 7 and the M -sequence

generated from 1+x+x3 is 1110100. The M -sequence is critical since Gold codes, small

Kasami set and large Kasami set are all obtained based on M -sequence.

Figure 2.6: Linear Feedback Shift Register Structure for 1 + x+ x3.

Table 2.1: Register state for 1 + x+ x3

Clock Feedback Register 0 Register 1 Register 2

0 0 1 1 1

1 1 0 1 1

2 0 1 0 1

3 0 0 1 0

4 1 0 0 1

5 1 1 0 0

6 1 1 1 0

7 0 1 1 1
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In this section, non-orthogonal codes are introduced. The characteristics and gener-

ation of Gold codes, small Kasami set and large Kasami set are introduced in Sections

2.3.1 and 2.3.2. Binary orthogonal codes, i.e., Walsh codes, are described in Section

3.2.3.

2.3.1 Gold Codes

Gold codes were invented by Robert Gold in 1967 [10]. One M -sequence and another

LFSR M -sequence are combined to generate the set of Gold codes. Gold codes have

uniform and bounded cross-correlation that makes it useful in spread spectrum [24].

The cross-correlation function are three valued: −1, −t(m) or t(m) − 2 for all length

N = 2m − 1, where t(m) = 1 + 2b(m+2)/2c [6], and bc is the floor function.

Gold codes can be constructed from a preferred pair of M -sequences, m1 and m2.

Consider an M -sequence m1. Another M -sequence, m2, can be constructed by sampling

m1 by every q symbols. The definition of preferred pair includes: (a) m is not divisible

by 4; (b) m1 = m2[q], where q is odd and either q = 2k + 1 or q = 22k − 2k + 1; (c)

The greatest common divisor gcd(m, k) is 1 when m is odd and gcd(m, k) equals 2 for

m = 2(mod 4). Finding a preferred pair is a critical step for Gold codes. Table 2.2 shows

some preferred pairs for constructing Gold codes. The set of Gold codes is then defined

as:

Sgold = {m1,m2,m1 ⊕m2,m1 ⊕ Tm2,m1 ⊕ T 2m2, · · · ,m1 ⊕ TN−1m2}, (2.2)

where T represents a left cyclic shift and ⊕ represents mod 2 operation. For length N ,

there are a total of N + 2 Gold codes.

Table 2.2: Preferred Pair for Gold Codes for m = 3, 5, 6, 7
m Preferred Polynomial 1 Preferred Polynomial 2

3 1 + x+ x3 1 + x2 + x3

5 1 + x2 + x5 1 + x2 + x3 + x4 + x5

6 1 + x+ x6 1 + x+ x2 + x5 + x6

7 1 + x3 + x7 1 + x+ x2 + x3 + x7

9 1 + x4 + x9 1 + x3 + x4 + x6 + x9

Gold codes can generate N + 2 codes by mod 2 operation from two M -sequences of
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same length.

2.3.2 Small Kasami Set And Large Kasami Set

Kasami set is proposed by Tadao Kasami in 1966 [16]. There are two types of Kasami

set: small Kasami set and large Kasami set. The cross-correlation of the small Kasami

set is same as Gold codes. It is a three-valued function: −1, −t(m) or t(m) − 2, for

all lengths N = 2m − 1, where t(m) = 1 + 2b(m+2)/2c. For the large Kasami set, the

cross-correlations are limited to five values: −1, −1± 2m/2 or ±2m/2 [6].

For the small Kasami set, the generation process is similar to gold codes, but m must

be an even number [3]. First, a decimation sequence m2 is obtained by decimating an

M -sequence m1 by 2m/2 + 1. m2 is also a periodic M -sequence with a period 2m/2 − 1.

Then the small Kasami set can be generated by performing mod 2 operation between

m1 and cyclically left shift sequence on m2 as expressed in Eq. (2.3),

Ssmall = {m1,m1 ⊕m2,m1 ⊕ Tm2,m1 ⊕ T 2m2, ...,m1 ⊕ T 2m/2−2m2} (2.3)

where T represents a left cyclic shift and ⊕ represents mod 2 operation. A small Kasami

code set of length N has 2m/2 codes.

The large Kasami set contains both the small Kasami set and gold codes of length

N = 2m − 1 as its subsets where m is even. M -sequences m2 and m3 are obtained from

decimating M -sequence m1 by 2m/2 + 1 and 2(m+2)/2 + 1. Then the large Kasami set

can be generated by performing mod 2 operation between m1 and the cyclically left-shift

sequence on m2 and m3 as shown in Eq. (2.4),

Slarge = {m1,m1 ⊕m2,m1 ⊕m3,m1 ⊕ Tm2, ...,m1 ⊕ T 2m/2−2m2 ⊕ T 2m/2−2m3} (2.4)

where T represents a left cyclic shift and ⊕ represents mod 2 operation. The number of

large Kasami sequences is N = 23m/2, if m = 0(mod 4); If m = 2(mod 4), the number of

large Kasami sequences is 23m/2 + 2m/2 [6][39].
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2.3.3 Walsh Codes

Walsh codes are the most well-known and widely used spreading codes. It is a set of codes

that perfectly distinguish different signal bits in CDMA [13]. Walsh codes are orthogonal

to each other when they are synchronized in time. The orthogonal characteristics are

expressed below
2m∑

i=1,j=1,j 6=i
wiwj = 0, (2.5)

where wi and wj are two codes from the Walsh matrix and 2m is code length.

Walsh codes come from rows of the Walsh matrix that was proposed in 1923 [15].

For a set of Walsh codes of length 2m, there are 2m Walsh codes. The dimension of this

Walsh matrix is 2m × 2m. The Walsh matrix is defined recursively as

W1 = [1]

W2 =

[
W1 W1

W1 −W1

]
=

[
1 1

1 −1

]
......

Wn =

[
Wn−1 Wn−1

Wn−1 −Wn−1

] (2.6)

However, the number of Walsh codes of length N is N = 2m; thus, only 2m codes

can be used as the spreading codes of length 2m.

2.4 Conclusion

This chapter briefly introduced several spread spectrum transmission methods including

DSSS, FHSS and Hybrid DS/FH. These spread spectrum transmission methods have

advantages and disadvantages, depending on the channel environment and implemen-

tation complexity. Non-orthogonal spreading codes are also introduced, including Gold

codes, small Kasami set and large Kasami set, followed by orthogonal spreading codes,

the Walsh codes. Although these spreading codes have good auto-correlation (except

Walsh codes) and zero or bounded cross-correlations, but the number of spreading codes

is limited. That is impossible to transmit information bits that have symbol rate higher
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than Nyquist rate. New spreading codes need to be provided in this situation. Even we

have large amount of spreading codes, the cross-correlation between spreading codes has

negative influence to detection. Hence, new detection methods also need to be provided.
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Chapter 3: NEW SPREADING CODES AND DETECTION

METHODS

3.1 Introduction

As discussed in the previous chapter, for orthogonal codes, Walsh codes only have 2m

codes of length 2m. For existing non-orthogonal codes (Gold codes, small Kasami set

and large Kasami set), the number of codes is also limited. The limitation of the number

of codes restricts the channel efficiency. Also, traditionally correlation detection is used

to recover signal bit but when non-orthogonal codes are used, this traditional detection

method will be affected by mutual interference among the spreading codes. In order to

improve the channel efficiency, information can be transmitted at a symbol rate that

is faster-than-Nyquist rate by a new set of spreading codes. In such case, the number

spreading codes for a fixed length is larger than the number of Walsh codes. Thus, such

spreading codes are no longer mutually orthogonal. The more non-orthogonal codes

are used to transmit the more severe interference will be. New detection methods are

desirable to achieve an acceptable performance when transmission rate for transmission

at faster-than-Nyquist rates.

A new set of spreading codes named quasi-orthogonal sequences (QOS) will be dis-

cussed in Section 3.2, which provides a large amount of codes of a fixed length with

acceptable cross-correlation. Moreover, the BER upper bound for faster-than-Nyquist

signaling with correlation detection is derived in Section 3.3. Two new detection meth-

ods are also proposed: a three-layer MLP detection and the LSTM detection schemes.

The new spreading codes and detection methods aim to improve the channel efficiency

while keep an acceptable BER performance.

3.2 Quasi-Orthogonal Sequences

A new set of QOS spreading codes must have two properties: low cross-correlation and

large number of codes. Yang et al. provide a new set of codes named quasi-orthogonal
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sequences [38]. QOS sequences do not mean orthogonality, but the cross-correlation

between codes is small compared to its auto-correlation. For length 2m, compared to

Walsh codes which provides 2m codes with zero cross-correlation, QOS provides at least

2× 2m codes with small cross-correlation.

When a single code fi of length N = 2m is added into a set of Walsh codes Wm of

length N , the cross-correlation between fi and Wm is defined as Rmax(fi,Wm). Let fi

go through all Walsh codes of length N , we will get a set of Rmax(fi,Wm), i = 1, · · · , N .

Let θminN be the minimum achievable cross-correlation between fi and Wm, given by

θminN =
N

min
i=1

Rmax(fi,Wm). (3.1)

The cross-correlation introduced by any code fi to Walsh codes Wm is at least θminN .

QOS is defined as as [38]:

Definition : Let Wm = {wj , j = 0, 1, 2, · · · , 2m−1} be the set of Walsh codes of

length N = 2m. A family of F = {fi, i = 1, 2, · · · ,M} of M codes of length N is said to

be quasi-orthogonal if the followings are satisfied:

a) F contains Wm.

b) Rij ≤ θminN for any i and j(i 6= j).

c) For any fi ∈ F , but /∈ Wm, wj ∈ Wm, and any integer L, r, where L = 2l, 2 ≤ l ≤ m

and 0 ≤ r ≤ N/L− 1. ∣∣∣∣∣
rL+L−1∑
t=rL

(−1)fi+wj

∣∣∣∣∣ ≤ θminL. (3.2)

Condition a) means that F should include Wm; Condition b) means the cross-

correlation between any two codes from F will be no greater than to θminN ; Condition

c) is necessary for practical use that some signal bit may employ a window of length

2m−1, instead of 2m. If signal bit employs a shorter length, then the cross-correlation is

the minimum value according to condition c). Every sub-block of length N will have the

minimum value of cross-correlation.
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For positive i ≤ m, we define sequences x1, x2, x3, · · · , xm of length 2m as:

x1 = 010101 · · · 010101

x2 = 001100 · · · 110011

x3 = 000111 · · · 000111

...

xm = 000000 · · · 111111

(3.3)

Then we can construct k special boolean functions f1, f2, f3, · · · , fk of length 2m from

x1, x2, x3, · · · , xm. For example, there are four boolean functions of length 16:

f1 = x1x2 ⊕ x2x3 ⊕ x1x3 ⊕ x3x4
f1 = x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x4
f1 = x1x2 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4
f1 = x1x2 ⊕ x1x4 ⊕ x3x4

(3.4)

where xi and xj are multiplied by the bit (i, l = 1, · · · , 4) and ⊕ is the sign of mod 2.

The set of

F =
k⋃
i=0

(fi +Wm) (3.5)

is QOS, where f0 is zero and Wm is Walsh codes. Furthermore, the size of F is (k+1)2m.

There are 80 QOS codes of length 16, of which 16 are Walsh codes. The maximum cross-

correlation for QOS of length 16 is 0.25. Table 3.1 shows the maximum cross-correlations

and the number of codes for QOS of different lengths. As the code length increases, there

are more usable QOS codes and with lower cross-correlation. For Walsh code of length

256, there are only 256 number of codes, but there are 5376 QOSs.

3.3 BER With Correlation Detection

As discussed in Section 2.3, if Walsh codes are used for transmission, there is not inter-

ference the data symbols carried by the codes, but the symbol rate is bounded by the

Nyquist transmission rate. The QOS discussed in Section 3.2 allows us to transmit at

faster-than-Nyquist rates, but interference will no longer be zero. Thus the penalty of
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Table 3.1: Cross-Correlation and the Number of QOS for Different Lengths
Length(2m) Max

Cross-correlation
The Number of

Codes

8 0.5 40

16 0.25 80

32 0.25 352

64 0.125 576

128 0.125 2944

256 0.0625 5376

transmission at such rate on the BER performance is of interest.

In this section, BER will be derived for two cases: BPSK signaling at Nyquist rate

with correlation detection, the BER upper bound for BPSK signaling at faster-than-

Nyquist rate with correlation detection.

3.3.1 BER for Nyquist Signaling

It is well knows that at Nyquist transmission rate, there is no inter-symbol interference

and the maximum rate is 2B, where B is baseband bandwidth. In a BPSK system, the

received baseband signal, a vector of L× 1 with each element representing the signal in

one chip interval, is expressed as

r =

L∑
i=1

bici + n (3.6)

where ci is a sequence of length L, bi ∈ {−1, 1} is a signal bit to be transmitted with

energy Eb, and n is the additive white Gaussian noise.

Without loss of generality, let b1 be the desired bit to detect, which is carried by code

c1. Because of the orthogonality among the set of codes, the cross-correlation between

between the codes is 0. The baseband signal for the desired bit after despreading is

expressed as

r1 = b1 + n (3.7)

where the noise component has a two-sided power spectral density σ2 = N0
2 , i.e., n ∼
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N(0, σ2). This the bit error probability is

Pb = P (n >
√
Eb) =

∫ ∞
√
Eb

1√
2πσ2

e−
x2

2σ2 dx (3.8)

This equation can be simplified using the Q-function as

Pb = Q

(√
Eb
σ

)
= Q

(√
2Eb
N0

)
.

(3.9)

3.3.2 BER Upper Bound for Signaling at Faster-Than-Nyquist Rates

If QOS are used for transmission at faster-than-Nyquist rate, i.e., (> 2B), then interfer-

ence among the data symbols carried by the sequences are no longer zero. In a BPSK

system, the received baseband signal, an L× 1 vector, is expressed as

r =
K∑
i=1

bici + n (3.10)

where ci is a QOS of length L, bi ∈ {−1, 1} the i-th bit with energy Eb, K is the total

number of QOS (K > L) used simultaneously to transmit a set of data bits, and n is

the additive white Gaussian noise vector.

Again, let the desired bit be b1, which is carried by a QOS c1. For the other K − 1

QOS, some may have 0 cross-correlation with c1 and let the cross-correlations of the

remaining QOS with c1 be δ1,i, i = 2, 3, · · · , k, where k < K is the number of QOS that

have non-zero cross-correlation with c1. Let nr =
∑k

i=2 biδ1,i + n. The received signal

for bit b1 after despreading is written as

r1 = b1 + cT1

k∑
i=2

bici + cT1 n

= b1 +

k∑
i=2

biδ1,i + n

= b1 + n1

(3.11)
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where (.)T stands for transpose and for simplicity n1 is simply written as n.

Random variable Y2 = b2, Y3 = b3, · · · , Yk = bk are independent identically dis-

tributed and P (Yi = −1) = P (Yi = 1) = 1
2 , i = 2, 3, · · · , k. Let random variable

X2 = b2δ1,2, X3 = b3δ1,3, · · · , Xk = bkδ1,k. X2, X3, · · · , Xk are also independent identi-

cally distributed nd P (Xi = −δ1,k) = P (Xi = δ1,k) = 1
2 , i = 2, 3, · · · , k.

Suppose Z1, Z2, · · · , Zn are independent and identically distributed random variables,

each with expectation µ and variance σ2. By invoking the central limit theorem, the

mean and variance of Z1 + Z2, · · · ,+Zn are nµ and nσ2, respectively. Hence,

X2 +X3, · · ·+Xk =

k∑
i=2

biδ1,i ∼ N

(
0,

k∑
i=2

δ21,i

)
. (3.12)

Also,
∑k

i=2 biδ1,i and n are independent. Thus, nr =
∑k

i=2 biδ1,i + n can be written as

nr =
k∑
i=2

biδ1,i + n ∼ N

(
0,

k∑
i=2

δ21,i + σ2

)
. (3.13)

However, the central limit theorem is accurate only when the number of random

variables is sufficiently large; otherwise, it can only be regarded as an upper bound. The

upper bound on the bit error probability is

Pb ≤ P (nr >
√
Eb) =

∫ ∞
√
Eb

1√
2π(
∑k

i=2 δ
2
1,i + σ2)

e
− x2

2(
∑k
i=2

δ2
1,i

+σ2)dx. (3.14)

This equation can be simplified by using the Q-function as

Pb ≤ Q

(√
Eb∑k

i=2 δ
2
1,i + σ2

)

≤ Q

(√
Eb∑k

i=2 δ
2
1,i + N0

2

)
.

(3.15)

This equation also shows that interference power for any bit increases as the number

of QOS used increases, as expected. Consequently, BER performance gets worse due to

accumulation of the non-zero cross-correlation
∑k

i=2 δ
2
1,i. As an extreme case, when the
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number of QOS increases to infinity, BER will approach 0.5.

With some careful selection, QOS of lengths 16, 32, 64 and 128 all result in the

same BER for the same transmission rate. The BER upper bounds for for different

transmission rates (note that 2B, where B is the baseband bandwidth, is the Nyquist

transmission rate) versus SNR are shown in Table 3.2.

Table 3.2: BER Upper Bound for Faster-Than-Nyquist Signal

SNR (dB)
Transmission Rate (B)

2.25 2.5 2.75 3

0 0.10295 0.12411 0.14253 0.15866

1 0.08320 0.10692 0.12756 0.14553

2 0.06594 0.09179 0.11440 0.13407

3 0.05137 0.07877 0.10306 0.12420

4 0.03948 0.06781 0.09344 0.11584

5 0.03009 0.05875 0.08541 0.10885

6 0.02288 0.05137 0.07878 0.10306

7 0.01746 0.04542 0.07335 0.09835

8 0.01346 0.04069 0.06894 0.09442

9 0.01053 0.03693 0.06539 0.09130

10 0.00842 0.03393 0.06253 0.08878

Table 3.3: The Number of QOS Required for Different Transmission Rates

Length
Transmission Rate (B)

2.25 2.5 2.75 3

16 18 20 22 24

32 36 40 44 48

64 72 80 88 96

128 144 160 176 192

3.4 Detection Method

The traditional correlation detection scheme includes two steps in the receiver: mul-

tiplication and integration. In multiplication step, the received signal is multipled by

the despreading code. After multiplication, all the chips in the sequence are integrated

to generate the output in the integration step. But the correlation detector might not
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work well when QOS are used to transmit at faster-than-Nyquist rates because of the co-

channel interference to each bit. Zhang et al. propose a detection method that uses the

second order moment of auto-correlation to improve the performance of detection [40].

Simulation results indicate BER performance in frequency domain is better than in time

domain by adopting a fourth-moment correlation scheme in [41]. Shen et al. describe a

detection method that is efficient in complex environments; it uses a time-varying signal

processing technique to mitigate interference and uses the minimum mean-square esti-

mation to detect the signal [31]. However, these detection methods are not suitable for

the signals with QOS, since all these detection methods focus on orthogonal codes.

In this section, the traditional correlation detection will be used as a baseline case,

and a three-layer MLP detection scheme and an LSTM detection scheme will be proposed

for QOS detection.

3.4.1 Correlation Detection

In a correlation detector for BPSK signals as shown in Figure 3.1, a bit decision of ‘1’

is made if the received power is higher than the threshold 0; otherwise, a bit decision

of ‘-1’ is made. A question being answered here is: are there detectors that will work

better than the traditional correlation detector for transmission at faster-than-Nyquist

rates with QOS? This is studied in the next sections.

Figure 3.1: Correlation Detection Structure.
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3.4.2 Three-Layer MLP Detection

A critical step in the correlation detector is the multiplier. This detection scheme can

be regarded as a one-layer detection scheme.

Multi-layer perceptron is a feed-forward neural network that generates a set of out-

puts from a set of inputs. An MLP structure includes at least three layers. The first

layer is the input layer; the last layer is the output layer. Intermediate layers are hid-

den layers; there is at least one hidden layer in MLP. MLP uses back-propagation for

training the network. Back-propagation is a commonly used method by the gradient

descent optimization algorithm that calculates the gradients of the loss function. These

gradients are also known as errors. Then the weight matrix is adjusted in MLP by these

gradients.

MLP is a traditional deep learning method, but has been used as signal detection

method in CDMA and channel estimation method in OFDM. Kechriotis et al. use

neural work in synchronous and asynchronous CDMA and get a better performance

than correlation detection [17]. Aazhang et al. adopt MLP for signal detection in CDMA

systems, and the performance is shown to be much better than traditional correlation

detection [1]. Chinthaginjala et al. develop a three-layer MLP detection scheme in

MC-CDMA, which is shown to have a good performance in canceling multiple access

interference compared to maximal ratio combining, equal gain combining, and minimum

mean square error [4]. MLP is proposed as channel estimator in OFDM systems are is

compared with least-squares (LS) algorithm, radial basis function neural network (RBF),

and minimum mean-square error algorithm (MMSE) [32]. It is shown that MLP has a

better BER performance and mean-square error than LS algorithm and RBF algorithm,

but has a similar performance as MMSE. MLP is a lower complexity, faster convergence,

and better performance method than existing schemes to reduce the powder envelope

fluctuations in OFDM [14].

A three-layer MLP detection structure is shown in Figure 3.2. The forward process

will be introduced first. After the de-spreading multiplier module, instead of integrating

all bits in sequence to get a final result, a three-layer MLP structure is applied to separate

desired signal from interference and noise. The outputs of MLP is the probabilities of

bit ‘1’ and bit ‘-1’.

The de-spread signal will be the input layer for MLP detection. The input size is
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Figure 3.2: Three-Layer MLP Detection Structure in DSSS.

equal to sequence length L. Every bit in the de-spread signal is one node in the input

layer. If the de-spread signal length is 16, then there are 16 nodes in the input layer. All

sequence bits feed into MLP as input nodes simultaneously. Suppose the input vector is

x (dimension is L× 1), the hidden layer can be constructed as

h(x) = g(W T
1 x+ b1) (3.16)

where W1 is the weight matrix (L × Nh) in the hidden layer, b1 is a bias vector with

dimension L×1 in the hidden layer, and g(x) is a non-linear active function. Relu function

g(x) = max(0, x) is used as the active function. Each column w1
i in W1 represents the

weight from input nodes to the i-th hidden neuron.

The output is obtained by

f(x) = W T
2 h(x) + b2 (3.17)

where W2 is the weight matrix (Nh × 2) in the output layer and b2 is a bias vector with

dimension 2× 1 in the output layer. Each column w2
j in W2 represents the weight from

the hidden neuron to the j-th output nodes. The output f(x) is the probability for

predicted classes.

The goal of back-propagation is to map actual outputs closer to target outputs by
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updating the weights and biases in the neural network. The output errors are computed

by comparing actual outputs and target outputs in the output layer. Because all the

neurons in the network except input nodes have contributions to the actual outputs,

the output errors are transmitted backwards from the output layer to previous layers

that have influence on output errors. Every neuron in the network will be informed

its contributions to the output layer. By this information, the weight matrix and bias

will be updated in each layer to reduce the output errors. This is the back-propagation

process to reduce output errors.

Cross-entropy loss function is used to measure the performance of a classification

model. The output of the cross-entropy loss function is a probability value. The cross-

entropy loss function in our classification is

E = −y log f(x)− (1− y) log(1− f(x)) (3.18)

where y is the binary indicator (‘0’ or ‘1’) if the output label is the correct classification

for observation and f(x) is the correct prediction probability.

Eq. (3.18) shows that a low prediction probability to the true output class and a

high prediction probability to the wrong output class result in a high cross-entropy loss

value. For example, if a prediction probability is 0.1 for the true output label, then the

loss value will be high. If a loss function value is zero, then it means that the probability

is 1 for the true output class, which means that the prediction perfectly fits the actual

classification result.

Then gradient descent is used to look for the minimum value of the cross-entropy

loss function in back-propagation. In our three-layer MLP, w1, w2, b1 and b2 need to

be optimized to minimize the loss value. The effect of these parameters on the output

errors could be defined by partial derivative as δE
δw1

, δE
δw2

, δE
δb1

and δE
δb2

. By chain rule, we
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get
δE

δw1
=

δE

δf(x)

δf(x)

δh(x)

δh(x)

δg(x)

δg(x)

δw1

δE

δw2
=

δE

δf(x)

δf(x)

δw2

δE

δb1
=

δE

δf(x)

δf(x)

δh(x)

δh(x)

δg(x)

δg(x)

δb1
δE

δb2
=

δE

δf(x)

δf(x)

δb2
.

(3.19)

The weights and biases can be updated by learning rate η. Learning rate is an

important hyper-parameter in deep learning that updates the weights and biases with

corresponding gradients. The updated weights and biases are

w
′
1 = w1 − η

δE

δw1

w
′
2 = w2 − η

δE

δw2

b
′
1 = b1 − η

δE

δb1

b
′
2 = b2 − η

δE

δb2
.

(3.20)

Through an applicable learning rate, the cross-entropy loss could converge to the mini-

mum value quickly.

Learning rate and the number of neurons in the hidden layer are two important

parameters in MLP and must be carefully considered. If the learning rate is too small,

gradient decent may be too slow to converge, known as under-fitting. However, when it

is too large, gradient decent may overshoot the minimum value that may fail to converge,

known as over-fitting. The number of neurons has a tremendous effect on the output

results. If the number of neurons is too small, it causes under-fitting. If there are too

many neurons in the hidden layer, it may result in over-fitting. According to [11], the

number of hidden neurons should be less than twice the size of the input layer. According

to these, the parameters of three-layers MLP detection structure is shown in Table 3.4.

The number of neurons in hidden layer is 3
2 of the size of input layer. Learning rates are

chose from 0.0004, 0.0005, 0.0006.
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Table 3.4: Parameters of Three-Layer MLP Detection for Different Code Lengths
Length(2m) Neurons in Hidden layer Learning Rate

16 24 0.0004, 0.0005, 0.0006

32 48 0.0004, 0.0005, 0.0006

64 96 0.0004, 0.0005, 0.0006

128 192 0.0004, 0.0005, 0.0006

3.4.3 LSTM Detection

Recurrent neural network (RNN) is a neural network designed to predict time series

prediction problems. Since the received signal is a time series signal and the desired

signal is a single bit, RNN is suitable to predict this many-to-one problem.

The idea behind RNN is to make use of the information among the bits in sequence.

In a traditional neural network, like MLP, we assume that all input nodes are independent

of one another. That is, previous nodes will not affect the current node. But in detecting

the desired signal, this is not a good idea. Every bit in sequence is dependent upon other

bits. Since the bits in a sequence should be all negative value or all positive value after

de-spreading in a noiseless channel, in a noisy channel, the current bit should have a high

probability to be a negative value if most of previous bits are negative and vice verse.

The output of each node depends on the previous computations in RNN.

RNN has been a popular detection method used in signal detection. For example,

it is used to detect different signal bits in DSSS [33]. The performance matches the

maximum likelihood detection. Chuah et al. provide a three-layer RNN to implement

linear de-correlation detection in DSSS and get a robust performance [5]. CNN and

RNN are combined for channel equalization for non-linear distortion and other signal in

[20], where it is found that the performance in QPSK outperforms other equalizers by

average 2 to 5 dB at low SNR. Luo et al. develop a neural network that combines CNN

and RNN to predict channel state information [22]. Experimental results show that it

achieves a highly accurate prediction and it converges quickly.

A traditional RNN structure for many-to-one model is shown in Figure 3.3. It in-

cludes an input layer with nodes x1, x2, ..., xn, one hidden layer with cells h1, h2, ..., hn

and an output layer y. In this model, x0, x1, ..., xn are inputs, h0, h1, ..., hn are hidden

states in time series, Whh is hidden cell to hidden cell weight, Wxh is the input layer to
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hidden layer weight, Whh and Wxh are re-used at every time step, fw is the tanh function

with parameter Whh, and b1 is the bias vector in the hidden layer.

Figure 3.3: RNN Structure for Many Input and One Output.

We can process a sequence with bit x0 to xn by applying a recurrence formula at

every time step as

ht = fw(ht−1, xt) + b1

= tanh(Whhht−1 +Wxhxt) + b1, t = 1, · · · , n.
(3.21)

In order to simplify Eq. (3.21), W = [Whh Wxh]. Then we get

ht = tanh(W

[
ht−1

xt

]
) + b1. (3.22)

In the output layer, Why is the weight matrix of the hidden layer to the output layer

and b2 is the bias vector. The output y is

y = Whyhn + b2. (3.23)
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The performance of RNN is measured by a loss function E. Weights and biases need

to be optimized for best loss value. The back-propagation δE
δW is defined as

δE

δW
=
δE

δy

δy

δhn

δhn
δW

+
δE

δy

δy

δhn

δhn
δhn−1

δhn−1
δW

+ · · ·+ δE

δy

δy

δhn

δhn
δhn−1

· · · δh1
δW

. (3.24)

In order to simplify this equation, we focus on descent item δht
δht−1

. From Eq. (3.22), we

get
δht
δht−1

=
δht
δfw

δfw
δht−1

=
δht
δfw

W

= tanh
′
W

(3.25)

The back-propagation δE
δW can be simplified as

δE

δW
=
δE

δy

δy

δhn

δhn
δW

+
δE

δy

δy

δhn

δhn−1
δW

tanh
′
W + · · ·+ δE

δy

δy

δhn

δh1
δW

(tanh
′
W )n−1 (3.26)

For simplicity, assume W is diagonalizable. Then W can be expressed as

W = E−1


λ1

λ2
. . .

λk

E (3.27)

where λ1, λ2, · · · , λk are the singular values of W and k depends on the size of W .

Hence, Wn−1 can be expressed as

Wn−1 = E−1


λn−11

λn−12
. . .

λn−1k

E. (3.28)

There are two situations that have negative influence on the optimization of W . Suppose

the largest singular value is λmax. If λmax > 1, then during the back-propagation path,

the gradient δE
δW becomes very large and is multiplied by the weight matrix W over
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and over again. That is called exploding gradient. Exploding gradient can result in an

unstable network that is unable to learn new information from training data. Another

situation is when λmax < 1, the gradient δE
δW becomes very small after back-propagation.

That is vanishing gradient. Vanishing gradient leads to long time training process and

the prediction accuracy will decrease [2][12]. If all singular values are 1, then the training

process becomes strange because the gradient does not change in back-propagation.

An efficient method to figure out exploding gradient and vanishing gradient is long

short term memory (LSTM) shown in Figure 3.4. A LSTM cell is composed of a forget

gate f that makes a decision on what information we are going to erase in the cell state,

an input gate i that makes a decision on whether new information to put into the cell

state, an update gate g that createa new information, and an output gate o that decides

what part of cell state that output to next LSTM cell.

Figure 3.4: LSTM Cell Structure.

Since some bits in the sequence may be affected by interference and noise, which

makes it unreliable to support the final prediction, we want to filter them out to maintain

the accuracy of prediction. A forget gate f is used to make the selection from previous
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cell state as

f = σ

(
Wf

[
ht−1

xt

]
+ bf

)
. (3.29)

In Eq. (3.29), Wf and bf are the weight matrix and bias vector in the forget gate,

respectively. The next step is to decide what new information from the input and

previous cell state to store in the current cell state. An input gate i decides whether to

update new information and an update gate g creates new information to be updated.

In Eq. (3.30), Wi and bi are the weight matrix and bias in the input gate. In Eq. (3.31),

Wg and bg are the weight matrix and bias vector in the update gate.

i = σ

(
Wi

[
ht−1

xt

]
+ bi

)
(3.30)

g = tanh

(
Wg

[
ht−1

xt

]
+ bg

)
. (3.31)

A result from Hadamard product between i and g is used to update the current cell

state Ct from Ct−1

Ct = f � Ct−1 + i� g. (3.32)

Finally the output ht depends on output gate and current cell. The output gate

decides what part of the current cell to output. In Eq. (3.33), Wo and bo are the weight

matrix and bias vector in output gate, respectively.

o = σ

(
Wo

[
ht−1

xt

]
+ bo

)
ht = o� tanh(Ct).

(3.33)

A back-propagation to the weight of LSTM is

δE

δW
=

δE

δhn

δhn
δCn

δCn
δW

+
δE

δhn

δhn
δCn

δCn
δCn−1

δCn−1
δW

+ · · ·+ δE

δhn

δhn
δCn

δCn
δCn−1

· · · δC1

δW
(3.34)
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The gradient δCt
δCt−1

= f ; hence, Eq. (3.34) can be written as

δE

δW
=

δE

δhn

δhn
δCn

δCn
δW

+
δE

δhn

δhn
δCn

δCn−1
δW

fn + · · ·+ δE

δhn

δhn
δCn

δC1

δW
fnfn−1 · · · f1. (3.35)

Instead of multiplying a weight matrix at every time step in RNN, a forget gate is

multiplied in LSTM. Avoid multiplying with a weight matrix in the gradient has two

advantages. First, multiplying with a sigmoid element f is better than a matrix in term

of computation; Second, since the forget gate value is different at different time step,

the gradient avoids multiplying the same value over and over again. Hence, exploding

gradient and vanishing gradient are well controlled by LSTM.

The LSTM detection structure is shown in Figure 3.5. After the de-spreading mul-

tiplier module, instead of integrating all bits in sequence to get a final result, every bit

in de-spread signal puts into LSTM detection as the input layer. The predicted output

y is fed into the decision module to decide the signal bit.

Figure 3.5: LSTM Detection Structure.

The learning rate and the number of neurons in the hidden layer are two important

parameters in LSTM and must be carefully considered. Same as MLP detection, a

small learning rate and a small hidden layer size will result in under-fitting. A large

learning rate and a large hidden layer size will result in over-fitting. Based on these, the
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parameters of LSTM detection structure are shown in Table 3.5. The hidden layer size

is 3
4 of the size of the input layer. Learning rates are chosen from 0.0003, 0.0004, 0.0005.

Table 3.5: Parameters of LSTM Detection for Different Code Lengths.
Length(2m) Neurons in Hidden layer Learning Rate

16 12 0.0003, 0.0004, 0.0005

32 24 0.0003, 0.0004, 0.0005

64 48 0.0003, 0.0004, 0.0005

128 96 0.0003, 0.0004, 0.0005

3.5 Summary

The use of QOS for transmission at faster-than-Nyquist rates is discussed, followed by

the derivation of the BER upper bound with correlation detection. Through carefully

selection of QOS, a relatively low BER can be achieved. After brief introduction of cor-

relation detection, a three-layer MLP detection scheme and an LSTM detection scheme,

two deep-learning methods that are traditionally used in classification prediction, are

developed for detecting the transmitted information when QOS are used for transmis-

sion at faster-than-Nyquist rates. The two proposed prediction methods could extract

useful information out of strong interference and noise, making them suitable detection

methods for the proposed signaling scheme.



36

Chapter 4: RESULTS

4.1 Introduction

To verify the BER performance of the proposed three-layer MLP and LSTM detection

schemes, results for different numbers of spreading codes are obtained in this chapter.

There are 60000 pieces of data to evaluate the performance of correlation detection as

a reference, while the two new detection methods adopt 60000 pieces of training data

to build the model and 6000 pieces of test data to evaluate the performance with cross-

entropy loss function and SGD optimizer. Since the number of QOS used to transmit

information bits is inversely proportional to the BER performance, the maximum number

of spreading codes should be no more than 1.5 times the number of Walsh codes. For

length 16, the number of codes chosen are 18, 20, 22 and 24. For length 32, the number

of codes chosen are 36, 40, 44 and 48. For length 64, the number of codes chosen are 72,

80, 88 and 96. For length 128, the number of codes chosen are 144, 160. 176 and 192.

SNR ranges from 0 to 10 dB with a step size of 1 dB.

BER performance comparison between theoretical and simulation result of correlation

detection using QOS are discussed Section 4.2. Three-layer MLP detection and LSTM

detection results are discussed at Section 4.3 and Section 4.4, respectively.

4.2 Theoretical and Simulation Result of Correlation Detection

QOS of lengths 16, 32, 64 and 128 will have the same theoretical BER by code selection

that is shown in Table 3.2. For correlation detection, each simulation result is the

averaged BER among all spreading codes.

Theoretical and simulation results for QOS of lengths 16, 32, 64 and 128 are shown

in Figure 4.1, 4.2, 4.3, 4.4, respectively. The maximum cross-correlation values for

these QOS lengths are 0.25, 0.25, 0.125 and 0.125, respectively. For different number of

spreading codes when SNR ranges from 0 dB to 10 dB, the simulation and theoretical

results match well, validating the theoretical BER upper bound for faster-than-Nyquist
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signaling with BPSK.

Figure 4.1: Theoretical and Simulation Results of Length 16.

4.3 Three-Layer MLP Detection Results

Three-layer MLP detection is more complex than correlation detection due to interme-

diate layers and back-propagation. Instead of making decision by comparing integration

result with a threshold, the three-layer MLP detection scheme builds a model with 60000

pieces of training data going through 50 epoches, and then the prediction is made by

the trained model for 6000 pieces of test data to generate the predicted signal bits. It

turns out that three-layer MLP detection has a better BER performance than correlation

detection.

For correlation detection and three-layer MLP detection of length 16, each simulation

result is the averaged BER among the spreading codes shown in Figure 4.5. The BER

improvement by three-layer MLP detection of code length 16 is shown in Table 4.1.

For the number of codes 18, 20, 22 and 24, BER improvements increase from 7.792% to

85.772%, 11.559% to 69.285%, 13.420% to 54.307% and 9.075% to 39.397%, respectively,
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Figure 4.2: Theoretical and Simulation Results of Length 32.

Figure 4.3: Theoretical and Simulation Results of Length 64.
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Figure 4.4: Theoretical and Simulation Results of Length 128.

when SNR ranges from 0 dB to 10 dB. The minimum BER improvement is 7.792%,

achieved at the number of codes 18 and SNR 0 dB. The maximum BER improvement

is 85.772%, achieved at the number of codes 18 and SNR 10 dB. In three-layer MLP

detection of length 16, improvement decreases as SNR decreases and as the number of

codes used increases.

Table 4.1: Improvement of Three-Layer MLP Detection for Length 16

Improvement
The number of codes

18 20 22 24

Minimum(%) 7.792 11.559 13.420 9.075

Maximum(%) 85.772 69.285 53.307 39.397

Because simulation for three-layer MLP is time-consuming, the BER performance for

length 32, 64 and 128 represents the BER with one particular code, instead of average

BER over all codes. The comparison between correlation detection and three-layer MLP

detection of length 32 is shown in Figure 4.6. The BER improvement by one spreading

code of code length 32 is shown in Table 4.2. For the number of codes 36, 40, 44 and
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Figure 4.5: BER Performance between Correlation and MLP Results of Length 16.

48, BER improvements increase from 8.826% to 51.624%, 10.756% to 61.337%, 12.242%

to 50.795% and 9.176% to 40.235%, respectively, when SNR ranges from 0 dB to 10 dB.

The minimum BER improvement is 8.826%, achieved at the number of codes 36 and

SNR 1 dB. The maximum BER improvement is 61.337%, achieved at the number of

codes 40 and SNR 10 dB.

Table 4.2: Improvement of Three-Layer MLP Detection for Length 32 (One code)

Improvement
The number of codes

36 40 44 48

Minimum(%) 8.826 10.756 12.242 9.176

Maximum(%) 51.624 61.337 50.795 40.235

The comparison between correlation detection and three-layer MLP detection of

length 64 is shown in Figure 4.7. The BER improvement of code length 64 is shown in

Table 4.3. For the number of codes 72, 80, 88 and 96, BER improvements increase from

2.827% to 66.800%, 7.206% to 65.422%, 11.425% to 49.780% and 3.504% to 31.635%,

respectively, when SNR ranges from 0 dB to 10 dB. The minimum BER improvement
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Figure 4.6: BER Performance between Correlation and MLP Results of Length 32.

is 2.827%, achieved at the number of codes 72 and SNR 0 dB. The maximum BER

improvement is 66.800%, achieved at the number of codes 72 and SNR 9 dB

Table 4.3: Improvement of Three-Layer MLP Detection for Length 64 (One code)

Improvement
The number of codes

72 80 88 96

Minimum(%) 2.827 7.206 11.425 3.504

Maximum(%) 66.800 65.422 49.780 31.635

Correlation detection and three-layer MLP detection of length 128 are shown in

Figure 4.8. The BER improvement of code length 128 is shown in Table 4.4. For the

number of codes 144, 160, 176 and 192, BER improvements increase from 1.236% to

65.189%, 13.601% to 60.741%, 7.714% to 47.742% and 7.440% to 32.252%, respectively,

when SNR ranges from 0 dB to 10 dB. The minimum BER improvement is 1.236%,

achieved at the number of codes 144 and SNR 0 dB. The maximum BER improvement

is 65.189%, achieved at the number of codes 144 and SNR 10 dB.

From these figures, the three-layer MLP detection has better performance than cor-
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Figure 4.7: BER Performance between Correlation and MLP Results of Length 64.

Figure 4.8: BER Performance between Correlation and MLP Results of Length 128.
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Table 4.4: Improvement of Three-Layer MLP Detection for Length 128 (One code)

Improvement
The number of codes

144 160 176 192

Minimum(%) 1.236 13.601 7.714 7.440

Maximum(%) 65.189 60.741 47.742 32.252

relation detection in noisy environments. With the same number of codes used, BER

performance improves as SNR increases. At the same SNR level, BER performance

improves when fewer QOS are used, which is expected since fewer QOS means less in-

terference. A higher SNR and lower interference would contribute to a better BER

performance.

4.4 LSTM Detection Results

LSTM detection builds the model with 60000 pieces of training data. The trained model

outputs the predicted signal bits after going through 6000 pieces of testing data. Finally,

the BER can be calculated with the predicted and actual transmitted information bits.

The averaged BER performance from all QOS for correlation and LSTM detection

of length 16 is shown in Figure 4.9. The BER improvement by LSTM detection of

code length 16 is shown in Table 4.5. For the number of codes 18, 20, 22 and 24,

BER improvements increase from 7.709% to 87.846%, 12.390% to 70.255%, 13.420% to

54.307% and 9.513% to 38.650%, respectively, when SNR ranges from 0 dB to 10 dB.

The minimum BER improvement is 7.709%, achieved at the number of codes 18 and

SNR 0 dB. The maximum BER improvement is 87.846%, achieved at the number of

codes 18 and SNR 10 dB.

Table 4.5: Improvement of LSTM Detection for Length 16

Improvement
The number of codes

18 20 22 24

Minimum(%) 7.709 12.390 13.420 9.513

Maximum(%) 87.846 70.255 54.307 38.650

Because the simulation for LSTM detection is time-consuming, the BER perfor-

mances for lengths 32, 64 and 128 is obtained on one code, instead of the average over
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Figure 4.9: BER Performance between Correlation and LSTM Results of Length 16.

all codes. The comparison between correlation and LSTM detections of length 32 is

shown in Figure 4.10. The BER improvement by LSTM detection of code length 32

is shown in Table 4.6. For the number of codes 36, 40, 44 and 48, BER improvements

increase from 9.426% to 68.718%, 13.565% to 64.388%, 14.574% to 51.315% and 11.111%

to 40.783%, respectively, when SNR ranges from 0 dB to 10 dB. The minimum BER im-

provement is 9.426%, achieved at the number of codes 36 and SNR 1 dB. The maximum

BER improvement is 68.718%, achieved at the number of codes 36 and SNR 9 dB.

Table 4.6: Improvement of LSTM Detection for Length 32 (One code)

Improvement
The number of codes

36 40 44 48

Minimum(%) 9.426 13.565 14.574 11.111

Maximum(%) 68.718 64.388 51.315 40.783

The comparison between correlation and LSTM detection of length 64 is shown in

Figure 4.11. The BER improvement by LSTM detection of code length 64 is shown in

Table 4.7. For the number of codes 72, 80, 88 and 96, BER improvements increase from
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Figure 4.10: BER Performance between Correlation and LSTM Results of Length 32.

4.790% to 81.399%, 9.194% to 74.815%, 12.353% to 52.180% and 6.030% to 35.639%

respectively when SNR ranges from 0 dB to 10 dB. The minimum BER improvement

is 4.790%, achieved at the number of codes 72 and SNR 0 dB. The maximum BER

improvement is 81.399%, achieved at the number of codes 72 and SNR 10 dB.

Table 4.7: Improvement of LSTM Detection for Length 64 (One code)

Improvement
The number of codes

72 80 88 96

Minimum(%) 4.790 9.194 12.353 6.030

Maximum(%) 81.399 74.815 52.180 35.639

The comparison between correlation and LSTM detection of length 128 is shown in

Figure 4.12. The BER improvement by LSTM detection of code length 128 is shown

in Table 4.8. For the number of codes 144, 160, 176 and 192, BER improvements in-

crease from 7.882% to 86.962%, 16.651% to 68.409%, 9.552% to 49.117% and 8.805%

to 34.677%, respectively, when SNR ranges from 0 dB to 10 dB. The minimum BER

improvement is 7.882%, achieved at the number of codes 144 and SNR 0 dB. The max-
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Figure 4.11: BER Performance between Correlation and LSTM Results of Length 64.

imum BER improvement is 86.962%, achieved at the number of codes 144 and SNR 10

dB.

Table 4.8: Improvement of LSTM Detection for Length 128 (One code)

Improvement
The number of codes

144 160 176 192

Minimum(%) 7.882 16.651 9.552 8.805

Maximum(%) 86.962 68.409 49.117 34.677

From these figures, LSTM detection has better performance than correlation de-

tection. At the same transmission rate, BER performance improves as SNR increases.

At the same SNR level, BER performance improves when fewer QOS are used for si-

multaneous transmission. In most case, LSTM detection has better improvement than

three-layer MLP detection.
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Figure 4.12: BER Performance between Correlation and LSTM Results of Length 128.

4.5 Conclusion

Simulated BER performances and the theoretical BER upper bounds of transmission

using QOS with BPSK modulation at faster-than-Nyquist rates are presented in this

chapter. Compared with the traditional correlation detection scheme, the three-layer

MLP boosts up the performance from 1.236% to 85.772% for QOS lengths of 16, 32, 64

and 128 when SNR ranges from 0 dB to 10 dB. The LSTM detection schemes increases

the traditional correlation detection scheme from 4.790% to 87.846% for QOS lengths of

16, 32, 64 and 128 when SNR ranges from 0 dB to 10 dB. It is also observed that LSTM

detection has a better performance than three-layer MLP detection in some cases with

fewer hidden layer neurons.
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Chapter 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

A new set of quasi-orthogonal sequences that provide a large amount of codes has been

presented in this thesis. For length 2m, compared to Walsh codes which provide 2m

sequences with zero cross-correlation, QOS provides at least 2 × 2m codes with small

cross-correlation. The non-zero cross-correlation with QOS negatively affects the BER

performance of correlation detection.

In order to improve the BER performance, two new detection methods, a three-layer

MLP scheme and an LSTM scheme are proposed. These schemes exploit more useful in-

formation existed in interference among the simultaneously transmitted sequences which

make them less affected by the mutual interference among the codes.

The three-layer MLP detection is a feed-forward artificial neural network that takes

a sequential signal bits as its input, and outputs the predicted bits. It implements back-

propagation to train the model during which the weights and biases are updated accord-

ing to the calculated gradients from a loss function. Throughout the training process,

the predicted result gets closer to the desired value as weights and biases update. After

the despreading multiplier module, the correlation detection generates the final results

via accumulation over all chips, whereas the three-layer MLP detection method analyzes

further the impact of interference or noise on the desired signals before outputting the

final result.

LSTM detection, one type of RNN, faces exploding gradient and vanishing gradient

problems. The gradient problem is solved by utilizing input gate, update gate, forget

gate and output gate, which stabilizes the whole system. The correlation detection fails

to recover the signals mingled with some erroneous bits resulting from interference and

noise. After despreading the received signal, the correlation detection generates the final

result via accumulation, whereas the LSTM scheme extracts the information between

adjacent bits since the model takes every bit as its input in series.

By utilizing the new quasi-orthogonal sequences and the new detection methods
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proposed, more more information bits can be transmitted over the same channel with

tolerable interference. The two new detection methods have much better performance

than correlation detection. With the three-layer MLP detection scheme, the BER perfor-

mance improves up to 85.772% compared with correlation detection for QOS lengths 16,

32, 64 and 128 when SNR ranges from 0 dB to 10 dB. With the LSTM detection scheme,

the BER performance improves up to 87.846% compared with correlation detection for

QOS lengths 16, 32, 64 and 128 when SNR ranges from 0 dB to 10 dB.

5.2 Future Work

This thesis expands the study of improving the transmission rate over the Nyquist trans-

mission rate with QOS.

Follow-up work could collect signals from the real world at the receiver, and then

test new detection models. In practice the received signal might be affected by mul-

tipath fading. A more sophisticated transmission structure is needed to evaluate the

performance and compensate for multipath fading. There are several possible changes

including enabling transmitters to send signals with different power levels to alleviate

multipath fading effects, adopting a compensation module in the receiver to help miti-

gate fading effects, and adding more layers in the detection model to make it more robust

to multipath fading.

Although the three-layer MLP and LSTM detection schemes perform better than

correlation detection, they can be further improved. One such improvement is to increase

the hidden size or to add the number of hidden layers, to allow it to better exploit

the information in interference and noise. The weight and bias updates can also be

optimized, such as Adagrad, Adam, RMSprop, Adamax, etc. Other machine learning or

deep learning methods can also be applied for such signal detection, such as K-nearest

neighbors(KNN), random forest, support vector machine (SVM), etc.

Conventionally, binary sequences are widely used. Walsh codes, Gold codes, small

Kasami set, large Kasami set and QOS are all binary codes. Binary codes are easy to

implement and to detect because there are only two power levels. M -ary codes, which

have shorten lengths compared with binary sequences for the sate transmission rate,

could be applied. Nonetheless, it would be more complex to implement the transmitter

and receiver structure if M -ary codes are adopted.
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