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Chapter 1: Introduction

Dirty data is a persistent problem in data collection processes; as the amount of available

data grows, the likelihood that errors and noises will contaminate the data also increases.

Using degraded data in training machine learning models can result in a considerable

loss in performance [52]. Hence, it is highly advisable to inspect the data and ensure

its quality by removing dirty data, such as null values, bogus tuples, and logical incon-

sistency. However, the manual review and cleaning process can be time-consuming due

to the sheer volume of the data that must be processed for training models. This the-

sis explores currently available data-cleaning methods; suggests a novel approach that

leverages a unique characteristic of data, namely entity matching; and validates the

effectiveness of this approach in data cleaning.

Users often want to learn interesting relationships over relational databases [55]. Con-

sider the IMDb database (imdb.com), which contains information about movies whose

schema fragments are shown in Table 1.1. Given a relational database and training ex-

amples for a new relation, relational machine learning (relational learning) algorithms

learn (approximate) relational models and definitions of the target relation in terms of

existing relations in the database [17, 29, 58, 48, 51, 54]. For instance, the user may pro-

vide a set of high grossing movies as positive examples and a set of low grossing movies

as negative examples to a relational learning algorithm. Given the IMDb database and

these examples, the algorithm may learn:

highGrossing(x)←movies(y, x, z),mov2genres(y, ‘comedy ’),

mov2releasedate(y, ‘May ’, u),

which indicates that high grossing movies are often released in May and fall into the

comedy genre. One may assign weights to these definitions to describe their prevalence

in the data according to their training accuracy [39, 58]. Unlike other machine learning

algorithms, relational learning methods do not require the data points to be statistically

independent and follow the same identical distribution (IID) [19]. Since a relational
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IMDb

movies(id, title, year) mov2countries(id, name)
mov2genres(id, name) mov2releasedate(id, month, year)

BOM

mov2totalGross(title, gross)
highBudgetMovies(title)

Table 1.1: Schema fragments for the IMDb and BOM.

database usually contains information about multiple types of entities, the relationships

between these entities often violate the IID assumption. Moreover, the data about

each type of entity may follow a distinct distribution. This also holds if one wants to

learn over the data gathered from multiple data sources, as each data source may have a

distinct data distribution. Thus, applying other learning methods to these databases can

result in biased and inaccurate models [39, 56, 19]. Since relational learning algorithms

leverage the structure of a database directly to learn new relations, they do not reply

on the tedious process of feature engineering. In fact, they are used to identify features

for the downstream non-relational models [45]. Thus, they have been widely used over

relational data, for example, building usable query interfaces [3, 47, 35], information

extraction [39, 19], and entity resolution [21].

Real-world databases often contain inconsistencies [10, 18, 24, 28, 15, 61, 23], which

may prevent the relational learning algorithms from finding an accurate definition. In

particular, the information in a domain is sometimes spread across several databases.

For example, IMDb does not contain the information about the budgets or total grosses

of movies. This information is available in another database called Box Office Mojo

(BOM) (boxofficemojo.com), schema fragments for which are shown in Table 1.1. To

determine an accurate definition for highGrossing, the user must collect data from the

BOM database. However, the same entity or value may be represented in various forms

in the original databases. For example, the titles of the same movie in IMDb and BOM

have different formats (e.g., the title of the movie Star Wars: Episode IV is represented

in IMDb as Star Wars: Episode IV - 1977 and in BOM as Star Wars - IV).

A single database may also contain these types of heterogeneity, as a relation may

have duplicate tuples for the same entity; for example, there may be duplicate tuples

for the same movie in BOM. A database may have other types of inconsistencies that
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violate the integrity of the data. For example, a movie listed on IMDb may have two

different production years [15, 61, 23].

Users have to resolve inconsistencies and learn over the repaired database, which

is exceedingly difficult and time-consuming when it comes to large databases [18, 28].

First, the user must develop or train a matching function that distinguishes and unifies

different values that refer to the same entity, applies that function to the database, and

materializes the produced instance. Second, a unification may lead to new inconsistencies

and opportunities to do more cleaning. For example, after unifying the titles of movies in

a database, the user may notice that the names of directors of these movies are different

in the database. To keep the database consistent, the user has to unify the names of

the directors whose movies have been unified in the recently produced database. This

process will be repeated for entities related to directors, e.g., production companies with

which a director has worked and other entities related to the movies until there are no

more values to reconcile. Thus, it will take a long time and extensive manual work to

produce and materialize a clean database instance.

Repairing inconsistencies usually leads to numerous clean instances, as information

about the correct fixes is seldom available [10, 13, 24]. An entity may match and be a

potential duplicate of multiple distinct entities in the database. For example, the title

Star Wars may match both the titles Star Wars: Episode IV - 1977 and Star Wars:

Episode III - 2005. Since we know that the Star Wars: Episode IV - 1977 and Star

Wars: Episode III - 2005 refer to two different movies, the title Star Wars must be

linked to only one of them. For each choice, the user ends up with a distinct database

instance. Since a large database may have many potential matches, the number of clean

database instances will extremely high.

Similarly, it is often not clear how data integrity violations should be resolved. For

instance, if a movie has multiple production years, one may not know which year is

correct. Due to the sheer number of volume of data, it is not possible to generate and

materialize all clean instances for a large dirty database [23]. Cleaning systems usually

produce a subset of all clean instances, for example, those that differ minimally from the

original data [23]. This approach still generates many repaired databases [10, 61, 23]. It

has been also shown that these conditions may not produce the correct instances [34].

Thus, the cleaning process may result in many instances where it is not clear which one

should be used for learning. Sine users do not often have the required information to
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find the right fixes, they may not end up with the correct instance and effective model.

As a result, most data scientists spend more than 80% of their time on such cleaning

tasks [43].

Some systems aim to produce a single probabilistic database that contains informa-

tion about a subset of possible clean instances [57]. These systems, however, do not

address the problem of duplicates and value heterogeneities, as they assume that there

always is a reliable table, akin to a dictionary, which provides the unique value that

should replace each potential duplicate in the database. However, given that different

values represent the same entity, it is not clear what should replace the final value in the

clean database (e.g., whether Star War represents Star Wars: Episode IV - 1977 or Star

Wars: Episode III - 2005). Such systems also allow violations of integrity constraints

to generate the final probabilistic database efficiently, which may lead to inconsistent

repairs. Moreover, to restrict the set of clean instances, attributes must have finite

domains, which does not generally hold in practice.

We propose a novel learning method that learns directly over dirty databases without

materializing their clean versions, which substantially reduces the effort needed to learn

over dirty [52]. The properties of clean data are usually expressed using declarative data

constraints, for example, functional dependencies, [2, 1, 14, 22, 24, 7, 23, 13, 57, 26].

Our system uses the declarative constraints during learning. These constraints may be

provided by users or discovered from the data using profiling techniques [1, 41]. Our

contributions are as follows:

• We introduce and formalize the problem of learning over an inconsistent database

(Section 3.4).

• We propose a novel relational learning algorithm called DLearn to learn over in-

consistent data (Section 4.1).

• Every learning algorithm chooses the final result based on its coverage of the train-

ing data.

• We propose an efficient method for computing the coverage of a definition directly

over the heterogeneous database (Section 4.1.2).

• We provide an efficient implementation of DLearn over a relational database system

(Section 4.2).
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• We conduct an extensive empirical study over real-world datasets and show that

DLearn scales to and learns efficiently and effectively over large data.

The proof of our theoretical results is presented in [52].
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Chapter 2: Literature Review

2.1 Related Work

Data cleaning is an important and flourishing area in database research [24, 14, 7, 23, 13].

In the traditional data cleaning, practitioners write regular expressions to eliminate

potentially incorrect or missing values from training data, which can be enhanced by the

human-in-the-loop interface [46]. However, the rule-based approach can be expensive,

time-consuming, and, most importantly, inaccurate. Several data cleaning papers focus

on updating tuples that violate the data integrity constraints by leveraging declarative

constraints to address this problem [14, 24, 7, 23, 13, 57, 43]. On the other hand, others

combine the instances and represent them as a probabilistic database [57]. In this section,

we analyze a body of related research in the field and describe the motivation for our

approach to directly learn over the original data instead of materializing its repairs.

SampleClean: Simulated Clean Data Instances

SampleClean suggests a solution to sample the raw data that can better present clean

data instances. A naive sampling approach can be misleading because the semantics of

dirty data differ from those of clean data, so the researchers used approximate query

processing (AQP) to solve this potential issue [42]. AQP consists of two steps: first,

in the direct estimate (DE) stage, a set of k rows is sampled randomly and cleaned,

and the training result is returned independently of the dirty data. However, DE alone

can lead to incorrect answers when the dirty data is dominant in the sampled subset.

To mitigate this drawback, a correction step is used to reweight the sample based on

the contribution of the cleaned data to the entire dataset when it is used in training.

By adopting this framework, Krishnan et al. were able to reach an equilibrium where

the approximate query result is bounded by the confidence interval that can ensure

the proper amount of clean data is captured in the simulation. To do so, the authors

adopted a probabilistic model to reweight samples based on their contribution to the
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entire dataset. In addition, a soft boundary was imposed to ensure the proper amount

of data was captured in the simulated sample. For example, suppose a user wants to

query data to obtain a certain amount of accurate data. In that case, SampleClean

suggests the sample size recommended to meet the desired level of accuracy, which is

bounded asymptotically by estimators. Moreover, by leveraging the stochastic gradient

descent, the average value of transformed data is calculated and converges at the optimal

value. However, the simulation of cleaned data instances is insufficient for identifying

the correct version of clean data. To address this issue, the same group of researchers

published a follow-up study on the data cleaning method called ActiveClean.

ActiveClean: Incremental Data Cleaning in Convex Models

Unlike SampleClean, which involves constructing a simulated clean data instance, the

researchers suggested iteration while retaining the models based on the optimizer. The

optimizer is a stochastic gradient descent that iteratively samples data, estimates a

gradient, and updates the current best model. By applying this method, practitioners

only need to retrain with a small subset instead of the entire dataset [43]. The objective

of ActiveClean is to learn a model over dirty data without cleaning and transforming

the data. ActiveClean gradually cleans a dirty dataset to learn a convex-loss model,

such as logistic regression and support vector machine (SVM). The key difference is

that ActiveClean aims to clean the underlying dataset incrementally so that the learned

model becomes more effective as it receives more cleaned records. However, this approach

has some drawbacks. For example, the applicability of ActiveClean is limited to convex

models, and it requires user input, such as the specification of the model, gradient, and

stopping criteria.

HoloClean: Data Repair with Probabilistic Inference

Improvements in probabilistic inference enabled the creation of another framework for

data cleaning [57]. The main difference compared to other approaches in the field is

that this framework considers marginal probability when given the candidate sample to

clean. The statistics and the dataset provided by users help the model to reason about

the nature of dirty data. As an initial approach, the authors developed a model that
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learns on both clean and corrupted data to infer where potential errors are highly likely

to occur. The authors propose training a model on a relatively small portion of real data

and checking whether the model can infer the nature of the mistakes made by humans

when filling out the data. When the authors evaluated the model on a whole dataset, the

accuracy of the test results was over 90%, which indicated that the proposed inference

model is promising. HoloClean needs both clean and dirty samples to train an optimal

model, requiring cleaning and verifying the training set. However, it is difficult to obtain

sufficient clean and dirty data samples to learn from.

AlphaClean: Generate-Then-Search Parallel Data Cleaning

The authors of AlphaClean propose a system that would automate the process of finding

an effective pipeline of cleaning tools [44]. The process of building a candidate pipeline

includes parameter selection of the specific pipeline to be generated. The AlphaClean

solution works with any given number of cleaning tools, which users work with to clean

the data. However, the number of given tools should be reasonably limited because of

the way in which the algorithm generates the cleaning pipeline. It builds a combination

of pipelines in a tree-shaped manner. As the algorithm progresses, the solution becomes

available progressively, and the output is revised in further iterations, which aims to

improve the quality of the proposed pipeline. The pipelines can be accessed and evaluated

by the user at any given time while the algorithm is running. This framework offers the

flexibility to assess the outcome from each step, allowing users to check whether the

proposed branch of data cleaning pipelines is promising and should be considered as a

candidate solution.

CPClean: Reusable Computation in Data Cleaning

In a paper titled “Nearest Neighbor Classifiers over Incomplete Information” [36], the

authors propose several solutions for the inconsistencies that are assumed to impact ma-

chine learning. The solutions include using checking and counting as means by which

to study the impact of incomplete data on training machine learning applications. The

paper also suggests an extensive data collection for the CPClean approach, which was

developed based on certain predictions (CP) primitives, the performance of which has
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shown promise on datasets with missing values. When applied on five datasets with miss-

ing values, CPClean closes a 100% gap on average by cleaning up to 36% of dirty data.

In contrast, other data collecting approaches, such as BoostClean, the best automatic

cleaning approach, can only clean a 14% gap on average. CPClean has an advantage

over other cleaning approaches as it closes 100% of all cases, whereas other techniques,

such as BoostClean, fail to achieve satisfactory performance [36]. However, the avail-

able classifier in this method is limited to the nearest-neighbor classifier. Therefore, the

CPClean has a critical limitation as it lacks extensibility.

2.2 Open Problem

2.2.1 Lack of Optimizer

Current data cleaning solutions lack a clear interface that suggests the optimal stop-

ping point for the amount of data to be cleaned. As a result, practitioners rarely reach

the equilibrium required to ensure a desirable level of clean data in a training set. Ac-

tiveClean aims to address this problem by allowing users to set the parameters, such

as models, gradient, and stopping criteria [43]. However, these manual manipulations

require domain expertise and a deep understanding of the parameter tuning technique.

Therefore, the applicability of ActiveClean’s optimizer is limited to a small subset of

users who can benefit from data cleaning. In other words, a limitation of the ActiveClean

model is that the user must have a certain level of technical knowledge to manipulate

the model and troubleshoot by opening the diagnostic panel when it is making poor

predictions. Furthermore, the model does not show where the cleaned data is stored or

whether it will ever be recovered. To overcome this challenge, data-checking models can

be designed based on the data problems to be addressed and user preferences. Therefore,

it is suggested that a future data cleaning solution should consider the user needs and

problems to be solved and communicate its progress throughout the process.

2.2.2 Tradeoff Between Efficiency and Coverage

Earlier data cleaning techniques, such as SampleClean and HoloClean, focus on the

extensive data cleaning that covers the entire data instances, which can guarantee a
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high level of coverage at the price of significant processing time [42, 57]. In contrast,

the more recent approaches based on inference and logic are promising in using little

data to generate clean instances. However, due to the sparsity observed in raw data,

this approach of using inference and learning does not ensure optimal coverage of the

data. This tradeoff between efficiency and coverage remains a perennial problem in data

cleaning that must be addressed by designing an efficient algorithm or using caches to

store the preprocessed subset of raw data. The research suggests that data cleaning

is becoming less costly and capable of covering more data with the advent of widely

available high-performing computing resources [52]. Despite the progress, generating

cleaning language for various systems is still challenging due to the different modes and

procedures of data productions. Specifically, while the repair functions are complex,

they sometimes do not function as intended. Even though parallelism is a beneficial tool

for enhancing performance, the data cleaning system is prone to repair each instance,

resulting in redundancy. On the other hand, the sequential data cleaning process cannot

perform complex tasks in different databases. Therefore, these systems are not effective

for a large-scale database solution. In the case of AlphaClean [44], the authors suggest

modifications to increase the flexibility of the data cleaning solution and extend it to be

integrated with visualization tools, which would enhance the usability of the system and

allow it to adapt to a broader range of needs.

2.2.3 Limited Generalizability

The empirical results concerning the data cleaning methods indicate that some methods

are hyper-specific to certain data types. To expand the generalizablity of a system,

it is crucial to design and test a data cleaning method that can learn from a given

dataset. This problem is most notable for CPClean. Specifically, the limitation of the

“Nearest Neighbor Classifiers over Incomplete Information” paper is that the authors

performed their experiments on only five datasets [36]; this number is arbitrary and

difficult to justify for other applications. There is a high likelihood that the method

may not work well with different experiment settings. Another limitation is that it is

unclear whether their approach will work with other classifiers or just the K-nearest

neighbor (KNN) classifier. While their approach using KNN offered linear complexity,

they did not explain the reasoning behind the choice of KNN beyond the simplicity of
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the algorithm. The future work for this paper would be to explore the effectiveness of

other classifiers and determine if it would be possible to reach similar time complexity

as that achieved using KNN.
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Chapter 3: Preliminary

3.1 Relational Learning

This section reviews the basic concepts of relational learning over databases without

any heterogeneity [17, 29]. We fix two mutually exclusive sets of relation and attribute

symbols. A database schema S is a finite set of relation symbols Ri, 1 ≤ i ≤ n. Each

relation Ri is associated with a set of attribute symbols denoted as Ri(A1, . . . , Am). We

denote the domain of values for attribute A as dom(A). Each database instance I of

schema S maps a finite set of tuples to every relation Ri in S. Each tuple t is a function

that maps each attribute symbol in Ri to a value from its domain. We denote the value

of the set of attributes X of tuple t in the database I by tI [X] or t[X] if I is clear from

the context. Moreover, when it is clear from the context, we refer to an instance of

a relation R simply as R. An atom is a formula in the form of R(u1, . . . , un), where

R is a relation symbol and u1, . . . , un are terms. Each term is either a variable or a

constant, i.e., value. A ground atom is an atom that only contains constants. A literal is

an atom, or the negation of an atom. A Horn clause (clause for short) is a finite set of

literals that contains exactly one positive literal. A ground clause is a clause that only

contains ground atoms. Horn clauses are also called Datalog rules (without negation) or

conjunctive queries. A Horn definition is a set of Horn clauses with the same positive

literal, i.e., non-recursive Datalog program or union of conjunctive queries. Each literal

in the body is head-connected if it has a variable shared with the head literal or another

head-connected literal.

Relational learning algorithms learn first-order logic definitions from an input rela-

tional database and training examples. Training examples E are usually tuples of a

single target relation, and express positive (E+) or negative (E−) examples. The input

relational database is also called background knowledge. The hypothesis space is the set

of all possible first-order logic definitions that the algorithm can explore. It is usually

restricted to Horn definitions to keep learning efficient. Each member of the hypothesis

space is a hypothesis. Clause C covers an example e if I ∧C |= e, where |= is the entail-
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ment operator: in other words, if I and C are true, then e is true. Definition H covers

an example e if at least one of its clauses covers e. The goal of a learning algorithm

is to find the definition in the hypothesis space that covers all positive and the fewest

negative examples as possible.

Example 3.1.1. IMDb contains the tuples movie (10, ‘Star Wars: Episode IV - 1977’,

1977), mov2genres(10, ‘comedy’), and mov2releasedate(10, ‘May’, 1977). Therefore, the

definition that indicates that high grossing movies are often released in May and fall in

the comedy genre is shown in Section 1 covers the positive example highGrossing(‘Star

Wars: Episode IV - 1977’).

Most relational learning algorithms follow a covering approach, as illustrated in Al-

gorithm 1 [48, 51, 53, 54, 62]. The algorithm constructs one clause at a time using the

LearnClause function. If the clause satisfies a criterion, (e.g., it covers at least a certain

fraction of the positive examples and does not cover more than a certain fraction of

negative ones), the algorithm adds the clause to the learned definition and discards the

positive examples covered by the clause. It stops when all positive examples are covered

by the learned definition. For example, the LearnClause function in Algorithm 1 usually

computes the difference of the number of positive and negative examples as the score

and picks the clause(s) with the highest score.

Algorithm 1: Covering approach algorithm.

Input : Database instance I, examples E
Output: Horn definition H

1 H = {}
2 U = E+

3 while U is not empty do
4 C = LearnClause(I, U,E−)
5 if C satisfies minimum criterion then
6 H = H ∪ C
7 U = U − {e ∈ U |H ∧ I |= e}
8 return H



14

3.2 Matching Dependencies

Learning over databases with heterogeneity in representing values may deliver inaccurate

answers as the same entities and values may be represented under different names. Thus,

one must resolve these representational differences to produce a high-quality database

to learn an effective definition.

Suppose one wants to match and resolve values in a couple of attributes. In that

case, one may use a supervised or unsupervised matching function to identify and unify

their potential matches according to the domain of those attributes. Users may apply

string similarity functions, such as edit distance, to find potential matches if the domain

of attributes is a set of strings. Also, matching and resolution rules can be used to find a

match based on domain knowledge. For example, consider relation Employee(id, name,

home-phone, address). It can be inferred that if the phone numbers of two tuples are

sufficiently similar, e.g., 001-333-1020 and 333-1020, then their addresses must be equal.

Knowing this rule, the user may manipulate the database to ensure that all tuples with

a similar phone number have equal addresses.

There may be a multiple matching rules in a large relational database and they may

interact with each other [5, 7, 9, 13, 24, 26, 33, 32, 59]. For example, given the relation

Employee(id, name, home-phone, address), it is known that if two tuples have sufficiently

similar addresses, e.g., 1 Main St., NY and 1 Main Street, New York, and names, they

must have the same values for attribute id. Now, consider two tuples whose names and

home phone numbers are sufficiently similar, but their addresses are not. According to

this rule, one cannot unify the ids of these tuples. But, after applying the rule mentioned

in the preceding paragraph on the phone number and address, their addresses become

sufficiently similar. Then, one can use the second rule to unify the values of id in these

tuples.

The database community has proposed declarative matching and resolution rules

to express the domain knowledge about matching and resolution [5, 7, 9, 13, 24, 26,

33, 32, 59]. Matching dependencies (MD) are a popular type of such declarative rules,

which provide a powerful method of expressing domain knowledge on matching values

[24, 10, 8, 23, 41].

Let S be the schema of the original database and R1 and R2 two distinct relations in

S. Attributes A1 and A2 from relations R1 and R2, respectively, are comparable if they
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share the same domain. MD σ is a sentence of the form R1[A1] ≈dom(A1) R2[B1], . . . ,

R1[An] ≈dom(An) R2[Bn] → R1[C1]⇀↽ R2[D1], . . . , R1[Cm]⇀↽ R2[Dm], where Ai and Cj

are comparable to Bi and Dj , respectively, 1 ≤ i ≤ n, and 1 ≤ j ≤ m. Operation ≈d is a

similarity operator defined over domain d andR1[Cj ]⇀↽ R2[Dj ],1 ≤ j ≤ m, indicates that

the values of R1[Cj ] and R2[Dj ] refer to the same value (i.e., they are interchangeable).

Intuitively, the aforementioned MD says that if the values of R1[Ai] and R2[Bi] are

sufficiently similar, the values of R1[Cj ] and R2[Dj ] are different representations of the

same value.

For example, consider again the database that contains relations from IMDb and

BOM the schema fragments of which are shown in Table 1.1. According to the discussion

in Section 1, one can define the following MD σ1 : movies[title] ≈ highBudgetMovies[title]

→ movies[title] ⇀↽ highBudgetMovies[title]. The exact implementation of the similarity

operator depends on the underlying domains of attributes. Our results are orthogonal

to the implementation details of the similarity operator.

In the remainder of this thesis, we use ≈d operation only between comparable at-

tributes. For brevity, we eliminate the domain d from ≈d when it is clear from the

context or the results hold for any domain d. We also denote R1[A1] ≈ R2[B1], . . . ,

R1[An] ≈ R2[Bn] in an MD as R1[A1...n] ≈ R2[B1...n]. An MD R1[A1...n] ≈ R2[B1...n]

→ R1[C1] ⇀↽ R2[D1], . . . , R1[Cm] ⇀↽ R2[Dm] is equivalent to a set of MDs R1[A1...n] ≈
R2[B1...n] → R1[C1] ⇀↽ R2[D1], R1[A1...n] ≈ R2[B1...n] → R1[C2] ⇀↽ R2[D2], . . . , →
R1[C1]⇀↽ R2[D1] → . . . , R1[Cm]⇀↽ R2[Dm]. Thus, for the rest of the thesis, we assume

that each MD is in the form of R1[A1...n] ≈ R2[B1...n] → R1[C] ⇀↽ R2[D], where C and

D are comparable attributes of R1 and R2, respectively.

Given a database with MDs, one must enforce the MDs to generate a high-quality

database. Let tuples t1 and t2 belong to R1 and R2 in database I of schema S, respec-
tively, such that tI1[Ai] ≈ tI2[Bi], 1 ≤ i ≤ n, denoted as tI1[A1...n] ≈ tI2[B1...n] for brevity.

To enforce the MD σ : R1[A1...n] ≈ R2[B1...n] → R1[C] ⇀↽ R2[D] on I, one must make

the values of tI1[C] and t
I
2[D] identical as they actually refer to the same value [24, 10].

For example, if attributes C and D contain titles of movies, one unifies both values Star

Wars - 1977 and Star Wars - IV to Star Wars Episode IV - 1977 as it deems this value

as the one to which tI1[C] and t
I
2[D] refer. The following definition formalizes the concept

of applying an MD to the tuples t1 and t2 on I.
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Definition 3.2.1. Database I ′ is the immediate result of enforcing MD σ on t1 and t2

in I, denoted by (I, I ′)[t1,t2] |= σ if

1. tI1[A1...n] ≈ tI2[B1...n], but t
I
1[C] ̸= tI2[D];

2. tI
′

1 [C] = tI
′

2 [D] ; and

3. I and I ′ agree on every other tuple and attribute value.

One may define a unification function over some domains to map the values that refer

to the same value to the correct value in the cleaned instance. It is, however, usually

difficult to define such a function due to the lack of knowledge about the correct value.

For example, let C and D in Definition 3.2.1 contain information about names of people

and tI1[C] and t
I
2[D] have the values J. Smth and Jn Sm, respectively, which, according

to an MD, refer to the same actual name, which is Jon Smith. It is not clear how to

compute Jon Smith using the values of tI1[C] and t
I
2[D]. We know that the values of tI

′
1 [C]

and tI
′

2 [D] will be identical after enforcing σ, but we usually do not know their exact

values. Because we aim to develop learning algorithms that are efficient and effective

over databases from various domains, we do not fix any matching method in this thesis.

We assume that matching every pair of values a and b in the database creates a fresh

value denoted as va,b.

Given the database I with the set of MDs Σ, I ′ is stable if (I, I ′)[t1,t2] |= σ for all

σ ∈ Σ and all tuples t1, t2 ∈ I ′. In a stable database instance, all values that represent the

same data item according to the database MDs are assigned equal values. Thus, it does

not have any heterogeneities. Given a database I with set of MDs Σ, one can produce a

stable instance for I by starting from I and iteratively applying each MD in Σ according

to Definition 3.2.1 finitely many times [24, 10]. Let I, I1, . . . , Ik denote the sequence of

databases produced by applying MDs according to Definition 3.2.1 starting from I such

that Ik is stable. We say that (I, Ik) satisfy Σ and denote it as (I, Ik) |= Σ. A database

may have many stable instances depending on the order of MD applications [10, 24].

Example 3.2.2. Let (10,‘Star Wars: Episode IV - 1977’, 1977) and (40,‘Star Wars:

Episode III - 2005’, 2005) be tuples in relation movies and (‘Star Wars’) be a tuple in

relation highBudgetMovies whose schemas are shown in Table 1.1. Consider MD σ1 :

movies[title] ≈ highBudgetMovies[title] → movies[title] ⇀↽ highBudgetMovies[title]. Let
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‘Star Wars: Episode IV - 1977’ ≈ ‘Star Wars’ and ‘Star Wars: Episode III - 2005’ ≈
‘Star Wars’ be true. Since the movies with titles ‘Star Wars: Episode IV - 1977’ and

‘Star Wars: Episode III - 2005’ are different movies with distinct titles, one can unify

the title in the tuple (‘Star Wars’) in highBudgetMovies with only one of them in each

stable instance. Each alternative leads to a distinct instance.

MDs may not be precise. If two values are declared similar according to an MD,

it does not mean that they represent the same real-world entities. However, it is more

likely for them to represent the same value than those that do not match an MD. Since it

may be cumbersome to develop complex MDs that are sufficiently accurate, researchers

have proposed systems that automatically identify MDs from the database content [41].

3.3 Conditional Functional Dependencies

Users usually define integrity constraints (ICs) to ensure the quality of the data. Con-

ditional functional dependencies (CDFs) have been useful in defining quality rules for

cleaning data [22, 61, 30, 15, 61, 23]. They extend functional dependencies, which are

arguably the most widely used ICs [27]. Relation R with sets of attributes X and Y

satisfies FD X → Y if every pair of tuples in R that agree on the values of X will also

agree on the values of Y . A CFD ϕ over R is a form (X → Y, tp) where X → Y is an

FD over R and tp is a tuple pattern over X ∪ Y . For each attribute A ∈ X ∪ Y , tp[A] is

either a constant in the domain of A or an unnamed variable denoted as ‘-’ that takes

values from the domain of A. The attributes in X and Y are separated by || in tp.
For example, consider relationmov2locale(title, language, country) in BOM. The CFD

ϕ1: (title, language → country, (-, English || -) ) indicates that title uniquely identifies

country for tuples whose language is English. Let ≍ be a predicate over data values and

unnamed variable ‘-’, where a ≍ b if either a = b or a is a value and b is ‘-’. The predicate

≍ naturally extends to tuples, for example, (‘Bait’, English, USA) ≍ (‘Bait’, -, USA).

Tuple t1 matches t2 if t1 ≍ t2. Relation R satisfies the CFD (X → Y, tp) iff for each pair

of tuples t1, t2 in the instance if t1[X] = t2[X] ≍ tp[X], then t1[Y ] = t2[Y ] ≍ tp[Y ]. In

other words, if t1[X] and t2[X] are equal and match pattern tp[X], t1[Y ] and t2[Y ] are

equal and match tp[Y ].

A relation satisfies a set of CFDs Φ, if it satisfies every CFD in Φ. For each set of

CFDs Φ, we can find an equivalent set of CFDs whose members have a single attribute
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on their right-hand side [15, 61, 23]. For the remainder of this thesis, we assume that

each CFD has a single attribute on its right-hand side.

CFDs may be violated in real-world and heterogeneous datasets [61, 30]. For ex-

ample, the pair of tuples r1 :(‘Bait’, English, USA) and r2 :(‘Bait’, English, Ireland)

in movie2locale violate ϕ1. One can use attribute value modifications to repair viola-

tions of a CFD in a relation and generate a repaired relation that satisfies the CFD

[12, 25, 60, 15, 61, 40, 23]. For instance, one may repair the violation of ϕ1 in r1 and r2

by updating the value of title or language in one of the tuples to a value other than Bait

or English, respectively.

One may also repair this violation by replacing the countries in these tuples with the

same value. Inserting new tuples does not repair CFD violations and one may simulate

tuple deletion using value modifications. Moreover, removing tuples leads to unnecessary

loss of information for attributes that do not participate in the CFD. Modifying attribute

values is sufficient to resolve CFD violations [15, 61]. Thus, given a pair of tuples t1 and

t2 in R that violate CFD (X → A, tp), to resolve the violation, one must either modify

t1[A] (resp. t2[A]) such that t1[A] = t2[A] and t1[A] ≍ tp[A], update t1[X] (resp. t2[X])

such that t1[X]tp[X] (resp. t2[X]tp[X]) or t1[X] ̸= t2[X]. Let R be a relation that violates

CFD ϕ. Each updated instance of R that is generated by applying the aforementioned

repair operations and does not contain any violation of ϕ is a repair of R. As there are

multiple fixes for each violation, there may be many repairs for each relation.

As opposed to FDs, a set of CFDs may be inconsistent; in other words, there is not

any non-empty database that satisfies them [11, 15, 61, 23]. For example, the CFDs (A→
B, a1||b1) and (B → A, b1||a2) over relation R(A,B) cannot be both satisfied by any non-

empty instance of R. The set of CFDs used in cleaning is consistent [11, 15, 61, 23]. We

refer the reader to [11] for algorithms to detect inconsistent CFDs.

3.4 Semantic of Learning

3.4.1 Different Approaches

Let I be an instance of schema S with MDs Σ that violate some CFDs Φ. A repair of I

is a stable instance of I that satisfies Φ. The values in I are repaired to satisfy Φ using

the method explained in Section 3.3. Given I and a set of training examples E, we wish
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to learn a definition for a target relation T in terms of the relations in S. One may

not learn an accurate definition by applying current learning algorithms over I as the

algorithm may consider different occurrences of the same value to be distinct or learn

patterns that are induced based on tuples that violate CFDs.

Let StableInstances(I,Σ) be the set of stable instances of I. One can learn defini-

tions by generating all possible repairs of I, i.e., J = StableInstances(I,Σ), learning a

definition over each repair separately, and computing a union (disjunction) of all learned

definitions. Since the discrepancies are resolved in repaired instances, this approach may

learn accurate definitions.

However, this method is neither desirable nor feasible for large databases. As a large

database may have numerous repairs, it takes a great deal of time and storage to compute

and materialize all of them. Moreover, we have to run the learning algorithm once for

each repair, which may take an extremely long time. Most importantly, as the learning

has been done separately over each repair, it is not clear whether the final definition is

sufficiently effective considering the information of all stable instances.

For example, let database I have two repairs Is1 and Is2 over which the aforementioned

approach learns definitions H1 and H2, respectively. H1 and H2 must cover a relatively

small number of negative examples over Is1 and Is2 , respectively. However, H1 and H2

may cover many negative examples over Is2 and Is1 , respectively. Thus, the disjunction of

H1 and H2 will not be effective considering the information in both Is1 and Is2 . Hence, it

is not clear whether the disjunction of H1 and H2 is the definition that covers all positive

and the fewest negative examples over Is2 and Is1 . Moreover, it is not clear how to encode

the final result as we may end up with numerous definitions, each of which is accurate

over one stable instance.

Another approach is to consider only the information shared among all repairs for

learning. The resulting definition will cover all positive and the fewest negative examples

considering the information common among all repaired instances. This approach has

been used in the context of query answering over inconsistent data (i.e., consistent query

answering [6, 10]). However, this approach may lead to many positive and negative

examples being ignored, as their connections to other relations in the database may not

be present in all stable instances.

For example, consider the tuples in relations movies and highBudgetMovies in Ex-

ample 3.2.2. The training example (‘Star Wars’) has different values in different stable
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instances of the database; therefore, it will be ignored. It will also be connected to two

distinct movies with vastly different properties in each instance. Similarly, repairing

the instance to satisfy the violated CFDs may further reduce the amount of training

examples shared among all repairs. The training examples are usually costly to obtain,

and the lack of sufficient training examples may result in inaccurate learned definitions.

In a sufficiently heterogeneous database, most positive and negative examples may not

be common among all repairs; thus, the learning algorithm may learn an inaccurate or

simply an empty definition.

Therefore, we opt for a middle-ground. We follow the approach of learning directly

over the original database. However, we also give the language of definitions and semantic

of learning enough flexibility to take advantage of as much (training) information as

possible. Each definition will be a compact representation of a set of definitions, each

of which is sufficiently accurate over some repairs. If one increases the expressivity of

the language, learning and checking coverage for each clause may become inefficient

[20]. We ensure that the added capability to the language of definitions is minimal, so

learning remains efficient. Next, we present our modifications to the hypothesis space

and semantic of learning.

3.4.2 Heterogeneity in Definitions

We represent the heterogeneity of the underlying data in the language of the learned

definitions. Each new definition encapsulates the definitions learned over the repairs of

the underlying database. Thus, we add the similarity operation, x ≈ y, to the language

of Horn definitions. We also add a set of new (built-in) relation symbols Vc with arity

two called repair relations to the set of relation symbols used by the Datalog defini-

tions over schema S. A literal with a repair relation symbol is a repair literal. Each

repair literal Vc(x, vx) in a definition H represents replacing the variable (or constant)

x in (other) existing literals in H with variable vx if condition c holds. Condition c is

a conjunction of =, ̸=, and ≈ relations over the variables and constants in the clause.

Each repair literal reflects a repair operation explained in Sections 3.2 and 3.3 for an

MD or violated CFD over the underlying database. The condition c is computed ac-

cording to the corresponding MD or CFD. Finally, we add a set of literals with =, ̸=,

and ≈ relations called restriction literals to establish the relationship between the re-
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placement variables, e.g, vx, according to the corresponding MDs and CFDs. Consider

again the database created by integrating IMDb and BOM datasets, schema fragments

which are represented in Table 1.1, with MD σ1 : movies[title] ≈ highBudgetMovies[title] →
movies[title]⇀↽ highBudgetMovies[title]. We may learn the following definition for the target

relation highGrossing.

highGrossing(x)←movies(y, t, z),mov2genres(y, ‘comedy ’),

highBudgetMovies(x), x ≈ t,Vx≈t(x, vx),

Vx≈t(t, vt), vx = vt.

The repair literals Vx≈t(x, vx) and Vx≈t(t, vt) represent the repairs applied to x and t to

produce a unified value according to σ1. We add equality literal vx = vt to restrict the

replacements according to the corresponding MD.

We also use repair literals to fix a violation of a CFD in a clause. These repair

literals reflect the operations explained in Section 3.3 to fix the violation of a CFD in

a relation. The resulting clause represents possible repairs for a violation of a CFD

in the clause. A variable may appear in multiple literals in the body of a clause and

some repairs may modify only some of the occurrences of the variable (e.g., the example

on the BOM database in Section 3.3). Thus, before adding repair literals for both

MDs and CFDs, we replace each occurrence of a variable with a fresh one and add

equality literals (i.e., induced equality literals), to maintain the connection between their

replacements. Similarly, we replace each occurrence of the constant with a fresh variable

and use equality literals to set the value of the variable equal to the constant in the

clause.

Example 3.4.1. Consider the following clause, which may be a part of a learned clause

over the integrated IMDb and BOM database for highGrossing.

highGrossing(x)←mov2locale(x,English, z),

mov2locale(x,English, t).

This clause reflects a violation of CFD ϕ1 from Section 3.3 in the underlying database as

it indicates that English movies with the same title are produced in different countries.

We first replace each occurrence of repeated variable x with a new variable and then add
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the repair literals. Due to the limited space available, we do not show the repair literals

and their conditions for modifying the values of constant ’English’. Let condition c be

x1 = x2 ∧ z ̸= t.

highGrossing(x1)← mov2locale(x1, English, z),

mov2locale(x2, English, t), x1 = x2,Vc(x1, vx1),

Vc(x2, vx2), vx1 ̸= x2, vx2 ̸= x1,Vc(z, t),

Vc(t, z),Vc(z, vz),Vc(t, vt), vz = vt.

We call a clause (definition) repaired if it does not have any repair literal. Each

clause with repair literals represents a set of repaired clauses. We convert a clause with

repair literals into a set of repaired clauses by iteratively applying repair literals to and

eliminating them from the clause. To apply a repair literal Vc(x, vx) to a clause, we first

evaluate c considering the (restriction) literals in the clause. If c holds, we replace all

occurrences of x with vx in all literals and the conditions of the other repair literals in

the clause and remove Vc(x, vx); otherwise, we only eliminate Vc(x, vx) from the clause.

We progressively apply all repair literals until no repair literal is left. Finally, we remove

all restriction and induced equality literals that contain at least one variable that does

not appear in any literal with a schema relation symbol. The resulting set is called the

repaired clauses of the input clause.

Example 3.4.2. Consider the following clause over the movie database of IMDb and

BOM.

highGrossing(x)←movies(y, t, z),mov2genres(y, ‘comedy’),

highBudgetMovies(x), x ≈ t,Vx≈t(x, vx),

Vx≈t(t, vt), vx = vt.

The application of repair literals Vx≈t(x, vx) and Vx≈t(t, vt) results in the following

clause:

highGrossing(vx)←movies(y, vt, z),mov2genres(y, ‘comedy’),

highBudgetMovies(vx), vx = vt.
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Similarly to the repair of a database based on MDs and CFDs, the application of a

set of repair literals to a clause may create multiple repaired clauses depending on the

order in which the repair literals are applied.

Example 3.4.3. Consider a target relation T (A), an input database with schema {R(B),

S(C)}, and MDs ϕ1 : T [A] ≈ R[B] → T [A] ⇀↽ R[B] and ϕ2 : T [A] ≈ S[C] → T [A] ⇀↽

S[C]. The definition H : T (x)← R(y), x ≈ y, Vx≈y(x, vx), Vx≈y(y, vy), vx = vy, S(z), x ≈
z, Vx≈z(x, ux), Vx≈z(z, vz), ux = vz. over this schema has two repaired definitions: H ′

1 :

T (vx) ← R(vy), vx = vy, S(z). and H ′
2 : T (ux) ← R(y), S(vz), ux = vz. As another

example, the application of each repair literal in the clause of Example 3.4.1 results in

a distinct repaired clause. For instance, applying Vc(x1, vx1) replaces x1 with vx1 in all

literals and conditions of the repair literals and results in the following.

highGrossing(vx1)← mov2locale(vx1 , English, z),

mov2locale(x2, English, t),Vc(x2, vx2), vx1 ̸= x2.

As Example 3.4.3 illustrates, repair literals provide a compact representation of multiple

learned clauses where each may explain the patterns in the training data in some repair

of the input database. Given an input definition H, the repaired definitions of H are

a set of definitions where each definition contains exactly one repaired clause per each

clause in H.

In this process, we have to keep both the similarity condition in generalization, so

we retain the information about the underlying constants and their relationships and

consequently the correct repairs. We also need to keep track of the substituting variables

and their restrictions because we need to keep all possible repairs of the remaining literals

after dropping other literals that have some repairs in common with the remaining ones

during generalization.

3.4.3 Coverage over Heterogeneous Data

A learning algorithm evaluates the score of a definition according to the number of the

positive and negative examples it covers. One way to measure the score of a definition is

to compute the difference between the number of positive and negative examples covered

by that definition [17, 54, 62]. Each definition may have multiple repaired definitions,
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each of which may cover a different number of positive and negative examples of the

repairs of the underlying database. Thus, it is not clear how the score of a definition

should be computed.

One approach is to consider that a definition covers a positive example if at least

one of its repaired definitions covers it in some repaired instances. Given that all other

conditions are the same, this approach may lead to learning a definition with numer-

ous repaired definitions where each may not sufficiently cover many positive examples.

Hence, it is not clear whether each repaired definition is accurate. A more restrictive

approach is to consider that a definition covers a positive example if all its repaired

definitions cover it. This method will deliver a definition whose repaired definitions have

high positive coverage over repaired instances. There are similar alternatives for defin-

ing coverage of negative examples. One may consider that a definition covers a negative

example if all of its repaired definitions cover it. Thus, if at least one repaired definition

does not cover the negative example, the definition will not cover it. This approach may

lead to learning numerous repaired definitions that cover many negative examples. In

contrast, a restrictive approach may define a negative example covered by a definition

if at least one of its repaired definitions covers it. In this case, each learned repaired

definition will generally not cover an excessive number of negative examples. We adopt

a more restrictive approach.

Definition 3.4.4. A definition H covers a positive example e with regard to database I

iff every repaired definition of H covers e in some repairs of I.

Definition 3.4.5. A definition H covers a negative example e with regard to database I

if at least one of the repaired definitions of H covers e in some repairs of I.

Example 3.4.6. Consider again the schema, MDs, and definition H in Examples 3.4.3

and the database of this schema with training example T (a) and tuples {R(b), S(c)}.
Assume that a ≈ b and a ≈ c are true. The database has two stable instances I ′1 :

{T (va,b), R(va,b), S(c)} and I ′2 : {T (va,c), R(b), S(va,c)}. Definition H covers the single

training example in the original database according to Definition 3.4.4 as its repaired

definitions H ′
1 and H ′

2 cover the training example in repaired instances I ′1 and I ′2, respec-

tively.
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Definition 3.4.4 provides a more flexible semantic than considering only the common

information between all repaired instances, as described in Section 3.4.1. The latter

semantic considers that the definition H covers a positive example if it covers that

example in all repaired instances of a database.

As explained in Section 3.4.1, our semantic of coverage hits a middle-ground between

the approaches of using only the information common between all repaired instances and

learning over each repaired instance separately and returning the union of the results. It

avoids ignoring too many positive examples and ensures that the learned definition does

not cover too many negative examples overall.
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Chapter 4: Methods

4.1 DLearn

This section proposes a learning algorithm called DLearn for efficiently learning over het-

erogeneous data. DLearn follows the approach used in the bottom-up relational learning

algorithms [50, 51, 48, 53]. In this approach, the LearnClause function in Algorithm 1

has two steps: It first builds the most specific clause in the hypothesis space that covers

a given positive example, called a bottom-clause. Then, it generalizes the bottom-clause

to cover as many positive and as fewest negative examples as possible. DLearn extends

these algorithms by integrating the input MDs and CFDs into the learning process to

learn over heterogeneous data.

4.1.1 Bottom-Clause Construction

A bottom-clause Ce associated with an example e is the most specific clause in the

hypothesis space that covers e relative to the underlying database I. Let I be the

input database of schema S and the set of MDs Σ and CFDs Φ. The bottom-clause

construction algorithm consists of two phases. First, it finds all the information in I

relevant to e. The information relevant to example e is the set of tuples Ie ⊆ I that are

connected to e. A tuple t is connected to e if we can reach t using a sequence of exact or

approximate (similarity) matching operations, starting from e. Given the information

relevant to e, DLearn creates the bottom-clause Ce.

Example 4.1.1. Given example highGrossing(Superbad), database in Table 4.1, and MD

σ2 : highGrossing [title] ≈ movies[title] → highGrossing [title] ⇀↽ movies[title], DLearn

finds the relevant tuples movies(m1, Superbad (2007), 2007), mov2genres(m1, comedy),

mov2countries(m1, c1), englishMovies(m1),

mov2releasedate(m1, August, 2007), and countries(c1, USA). As the movie title in the

training example, for example, Superbad, does not exactly match with the movie title

in the movie’s relation, for example, Superbad (2007), the tuple movies(m1, Superbad
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movies(m1,Superbad (2007),2007) mov2genres(m1,comedy)

movies(m2,Zoolander (2001),2001) mov2genres(m2,comedy)

movies(m3,Orphanage (2007),2007) mov2genres(m3,drama)

mov2countries(m1,c1) countries(c1,USA)

mov2countries(m2,c1) countries(c2,Spain)

mov2countries(m3,c2) englishMovies(m1)

mov2releasedate(m1,August,2007) englishMovies(m2)

mov2releasedate(m2,September,2001) senglishMovies(m3)

Table 4.1: Example movie database

(2007), 2007) is obtained through an approximate match and similarity search according

to σ2. We obtain others via exact matches.

To find the information relevant to e, DLearn uses Algorithm 2. It maintains a

set M that contains all seen constants. Let e = T (a1, . . . , an) be a training example.

First, DLearn adds a1, . . . , an to M . These constants are values that appear in tuples

in I. Then, DLearn searches all tuples in I that contain at least one constant in M

and adds them to Ie. For an exact search, DLearn uses simple SQL selection queries

over the underlying relational database. For similarity search, DLearn uses MDs in Σ.

If M contains constants in some relation Ri and given an MD σ′ ∈ Σ, σ′ : R1[A1...n] ≈
R2[B1...n]→ R1[C]⇀↽ R2[D] DLearn performs a similarity search over R2[Bj ], 1 ≤ j ≤ n
to find relevant tuples in R2, denoted by ψBi≈M (R2). We store the pairs of tuples that

satisfy the similarity match in Ie in a table in main memory. We discuss the details of

the implementation of DLearn over relational database systems in Section 4.2. For each

new tuple in Ie, the algorithm extracts new constants and adds them to M . It repeats

this process for a fixed number of iterations d.

To create the bottom-clause Ce from Ie, DLearn first maps each constant in M to a

new variable. It creates the head of the clause by creating a literal for e and replacing

the constants in e with their assigned variables. Then, for each tuple t ∈ Ie, DLearn

creates a literal and adds it to the body of the clause, replacing each constant in t with

its assigned variable. If there is a variable that appears in more than a single literal, we

add the equality literals according to the method explained in Section 3.4.2. If t satisfies

a similarity match according to the table of similarity matches with tuple t′, we add a

similarity literal s per each value match in t and t′ to the clause.

Let σ be the corresponding MD of this similarity match. We will also add repair
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Algorithm 2: DLearn bottom-clause construction algorithm.

Input : example e, # of iterations d
Output: bottom-clause Ce

1 Ie = {}
2 M = {} // M stores known constants
3 add constants in e to M
4 for i = 1 to d do
5 foreach relation R ∈ I do
6 foreach attribute A in R do
7 // select tuples with constants in M
8 IR = σA∈M (R)
9 if ∃ MD σ′ ∈ Σ, σ′ : R1[A1...n] ≈ R2[B1...n] → R1[C]⇀↽ R2[D] then

10 IR = IR ∪ ψBj≈M (R), 1 ≤ j ≤ n
11 foreach tuple t ∈ IR do
12 add t to Ie and constants in t to M

13 Ce = create clause from e and Ie
14 return Ce

literals Vs(x, vx) and Vs(y, vy) and restriction equality literal vx = vy to the clause

according to sigma.

Example 4.1.2. Given the relevant tuples found in Example 4.1.1, DLearn creates the

following bottom-clause:

highGrossing(x)← movies(y, t, z), x ≈ t,Vx≈t(x, vx),

Vx≈t(t, vt), vx = vt,mov2genres(y, ‘comedy’),

mov2countries(y, u), countries(u, ‘USA’),

englishMovies(y),mov2releasedate(y, ‘August’, w).

Then, we scan Ce to find violations of each CFD in Φ and add their corresponding

repair literals. Since each CFD is defined over a single table, we first group literals in Ce

based on their relation symbols. For each group with the relation symbol R and CFD

ϕ on R, our algorithm scans the literals in the group, finds every pair of literals that

violate ϕ, and adds the repair and restriction literals to the group.

We add the repair and restriction literals corresponding to the repair operations
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explained in Section 3.3 to the group and consequently Ce, as illustrated in Example 3.4.1.

The added repair literals will not induce any new violation of ϕ in the clause [15, 61,

23]. However, repairing a violation of ϕ may induce violations for anther CFD ϕ′ over

R [23]. For example, consider CFD ϕ3 : (A → B,− || −) and ϕ4 : (B → C,− || −) on

relation R(A,B,C). Given literals l1 : R(x1, y1, z1) and l2 : R(x1, y1, z2) that violate ϕ4,

our method adds repair literals that replaces y1 in l1 with a fresh variable. This repair

literal produces a repaired clause that violates ϕ3. Thus, the algorithm repeatedly scans

the clause and adds repair and restriction literals to it for all CFDs until there is a repair

for every violation of CFDs, both those in the original clause and those induced by the

repair literals added in the preceding iterations. The repaired literals for the violations

induced by other repair literals will use the replacement variables from the violating

repair literals as their arguments and conditions.

It may take a long time to generate the clause that contains all repair literals for all

original and induced violations of every CFD in a large input bottom-clause. Hence, we

reduce the number of repair literals per CFD violation by adding only the repair literals

for the variables of the right-hand side attribute of the CFD that use current variables in

the violation. For instance, in Example 3.4.1, the algorithm does not introduce literals

Vc(z, vz), Vc(t, vt), and vz = vt and only uses literals Vc(z, t) and Vc(t, z) to repair

the clause in Example 3.4.1. The repair literals for the variables corresponding to the

left-hand side of the CFD will be used as explained previously. This approach follows

the popular minimal repair semantic for repairing CFDs [12, 25, 60, 15, 61, 40, 23], as it

repairs the violation by modifying fewer variables than the repair literals that introduce

fresh variables to the both literals of the violation (e.g., the one versus two modifications

induced by Vc(z, vz), Vc(t, vt) in the repair of the clause in Example 3.4.1). Since each

CFD is defined over a single relation, the aforementioned steps are applied separately to

literals of each relation, which are usually a considerably smaller set than the set of all

literals in the bottom-clause. Moreover, the bottom-clause is significantly smaller than

the size of the entire database. Thus, the bottom-clause construction algorithm takes

significantly less time than producing the repairs of the underlying database.

Current bottom-clause constructions methods do not induce inequality neq literal

between distinct constants in the database and their corresponding variables and repre-

sent their relationship by replacing them with distinct variables. If the inequality literal

is used, the eventual generalization of the bottom-clause may be too strict and lead to a
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learned clause that does not cover a sufficient number of positive examples [51, 49, 17, 53].

For example, let T (x) : − R(x, y), S(x, z), y ̸= z. be a bottom-clause. This clause will not

cover positive examples such as T (a) for which we have T (a) : − R(a, b), S(a, b). How-

ever, the bottom-clause T (x) : − R(x, y), S(x, z) has more generalization power and may

cover both positive examples such as T (a) and T (c) such that T (c) : − R(c, b), S(c, d).

As the goal of our algorithm aims to simulate relational learning over repaired instances

of the original database, we follow the same approach and remove the inequality literals

between variables. As our repair operations ensure that the arguments of inequality

literals are distinct variables, our method exactly emulates bottom-clause construction

in relational learning. The inequalities remain in the condition c of each repair literal Vc

and will return true if the variables are distinct and there is no equality literal between

them in the body of the clause and false otherwise. They are not used in learning and

are used to apply repair literals on the final clause.

Proposition 4.1.3. The bottom-clause construction algorithm for positive example e

and database I with MDs Σ and CFD Φ terminates. Moreover, the bottom-clause Ce

created from Ie using the algorithm covers e.

4.1.2 Generalization

After creating the bottom-clause Ce for example e, DLearn generalizes Ce to produce

a clause that is more general than Ce. Clause C is more general than clause D if and

only if C covers at least all positive examples covered by D. A more general clause

than Ce may cover more positive examples than Ce. DLearn iteratively applies the

generalization to find a clause that covers the most positive and fewest negative examples

as possible. It extends the algorithm in ProGolem [51] to produce generalizations of Ce

in each step efficiently. This algorithm is based on the concept of θ-subsumption, which

is widely used in relational learning [17, 49, 51]. We first review the concept of θ-

subsumption for repaired clauses [17, 51], then, we explain how to extend this concept

and its generalization methods for non-stable clauses.

Repaired clause C θ-subsumes repaired clause D, denoted by C ⊆θ D, iff there is

some substitution θ such that Cθ ⊆ D [17, 2]; in other words, the result of applying

substitution θ to literals in C creates a set of literals that is a subset of or equal to

the set of literals in D. For example, clause C1 : highGrossing(x) ← movies(x, y, z) θ-
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subsumes C2 : highGrossing(a)← movies(a, b, c), mov2genres(b, ‘comedy ’) as for substitution

θ = {x/a, y/b, z/c}, we have C1θ ⊆ C2. We call each literal LD in D where there is a

literal LC in C such that LCθ = LD a mapped literal under θ. For Horn definitions, we

have C θ-subsumes D iff C |= G; in other words, C logically entails D [2, 17]. Thus,

θ-subsumption is sound for generalization. If clauses C and D contain equality and

similarity literals, the subsumption checking requires additional testing, which can be

done efficiently [2, 17, 4]. Roughly speaking, current learning algorithms generalize a

clause D efficiently by eliminating some of its literals which produces a clause that θ-

subsumes D. We define θ-subsumption for clauses with repair literals using its definition

for the repaired ones. Given a clause D, a repair literal Vc(x, vx) in D is connected to a

non-repair literal L in D iff x or vx appear in L or in the arguments of a repair literal

connected to L.

Definition 4.1.4. Let V (C) denote the set of all repair literals in C θ-subsumes D,

denoted by C ⊆θ D, iff

• there is some substitution θ such that Cθ ⊆ D where repair literals are treated as

normal ones and

• every repair literal connected to a mapped literal in D is also a mapped literal under

θ.

Definition 4.1.4 ensures that each repair literal that modifies a mapped one in D has a

corresponding repair literal in C. Intuitively, this ensures that there is subsumption map-

ping between corresponding repaired versions of C and D. The next step is to examine

whether θ-subsumption provides a sound bases for generalization of clauses with repair

literals. We first define logical entailment following the semantics of Definition 3.4.4.

Definition 4.1.5. We have C |= D if and only if there is an onto relation f from the

set of repairs of C to the one of D such that for each repaired clause of C, Cr, and each

Dr ∈ f(Cr), we have Cr |= Dr.

According to Definition 4.1.5, if one wants to follow the generalization method used

in the current learning algorithm to check whether C generalizes D, one must enumerate

and check the θ-subsumption of almost every pair of repaired clauses of C and D in

the worst case. Since both clauses normally contain many literals and θ-subsumption
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is NP-hard [2], this method is not efficient. The problem is more complex if one wants

to generalize a given clause D. It may have to generate all repaired clauses of D and

generalize each of them separately. It is not clear how all produced repaired clauses can

be unified and represented in a single non-repaired one. The hypothesis space quickly

explodes if we cannot represent them in a single clause, as the algorithm may have

to keep track of and generalize almost as many clauses as repairs of the underlying

database. Moreover, because the learning algorithm performs numerous generalizations

and coverage tests, learning a definition may take a long time. The following theorem

establishes that θ-subsumption is sound for generalization of clauses with repair literals.

Theorem 4.1.6. Given clauses C and D, if C θ-subsumes D, we have C |= D.

To generalize Ce, DLearn randomly selects a subset E+s ⊆ E+ of positive examples.

For each example e′ in E+s, DLearn generalizes Ce to produce a candidate clause C ′,

which is more general than Ce and covers e′. Given clause Ce and positive example

e′ ∈ E+s, DLearn produces a clause that θ-subsumes Ce and covers e′ by removing

the blocking literals. It first creates a total order between the relation symbols and the

symbols of repair literals in the schema of the underlying database, for example, by using

a lexicographical order and adding the condition and argument variables to the symbol

of the repair literals. Thus, it establishes an order in each clause in the hypothesis space.

Let Ce = T ← L1, · · · , Ln be the bottom-clause. The literal with relation symbol Li is

a blocking literal if and only if i is the least value such that for all substitutions θ where

e′ = Tθ, (T ← L1, · · · , Li)θ does not cover e′ [51].

Example 4.1.7. Consider the bottom-clause Ce in Example 4.1.2 and positive example

e′ = highGrossing(‘Zoolander’). To generalize Ce to cover e′, DLearn drops the literal

mov2releasedates(y, ‘August’, u) because the movie Zoolander was not released in August.

DLearn removes all blocking literals in Ce to produce the generalized clause C ′. DLearn

also ensures that all literals in the resulting clause are head-connected. For example,

if a non-repair literal L is dropped, so are the repair literals whose only connection to

the head literal is through L. Since C ′ is generated by dropping literals, it θ-subsumes

Ce. It also covers e′ by construction. DLearn generates one clause per example in E+s.

From the set of generalized clauses, DLearn selects the highest scoring candidate clause.

The score of a clause is the number of positive minus the number of negative examples
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covered by the clause. DLearn then repeats this with the selected clause until its score

is not improved.

During each generalization step, the algorithm should ensure that the generalization

is minimal with respect to θ-subsumption; in other words, there is not any other clause

G such that G θ-subsumes Ce and C ′ θ-subsumes G [51]. Otherwise, the algorithm may

miss some effective clauses and produce a clause that is overly general and may cover

too many negative examples. The following proposition states that DLearn produces a

minimal generalization in each step:

Proposition 4.1.8. Let C be a head-connected and ordered clause generated from a

bottom-clause using DLearn generalization algorithm. Let clause D be the generalization

of C produced in a single generalization step by the algorithm. Given the clause F that

θ-subsumes C, if D θ-subsumes F , then D and F are equivalent.

4.1.3 Efficient Coverage Testing

DLearn checks whether a candidate clause covers training examples to determine block-

ing literals in a clause. It also computes the score of a clause by computing the number

of training examples covered by the clause. Coverage tests dominate the time for learn-

ing [17]. One approach to performing a coverage test is to transform the clause into

an SQL query and evaluate it over the input database to determine the training exam-

ples covered by the clause. However, since bottom-clauses over large databases normally

have many literals (e.g., some may have hundreds), the SQL query will involve long joins,

making the evaluation extremely slow. Furthermore, it is challenging to evaluate clauses

using this approach over heterogeneous data [10]. It is also not clear how to evaluate

clauses with repair literals.

We use the concept of θ-subsumption for clauses with repair literals and the result of

Theorem 4.1.6 to compute coverage efficiently. To evaluate whether C covers a positive

example e over database I, we first build a bottom-clause Ge for e in I called a ground

bottom-clause. Then, we check whether C ∧ I |= e using θ-subsumption. We first check

whether C ⊆θ Ge. Based on Theorem 4.1.6, if we find a substitution θ for C such that

Cθ ⊆ Ge, and C logically entails Ge, C thus covers e. However, if we cannot find such

a substitution, it is not clear whether C logically entails Ge as Theorem 4.1.6 does not

provide the necessity of θ-subsumption for logical entailment. Fortunately, this is true if
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we have only repair literals for MDs in C and Ge.

Theorem 4.1.9. Given clauses C and D such that every repair literal in C and D

corresponds to an MD, if C |= D, C θ-subsumes D.

We leverage Theorem 4.1.9 to check whether C covers e efficiently as follows: Let Cmd

and Gmd
e be the clauses that have the same head literal as C and Ge and contain all

body literals in C and Ge without any connected repair literal and those where all their

connected repair literals correspond to some MDs, respectively. Thus, if there is no

subsumption between C and Ge, our algorithm attempts to find a subsumption between

Cm and Gm
e . If there is no subsumption mapping between Cm and Gm

e , C does not cover

e. Otherwise, let Ccfd and Gcfd
e be the set of body literals of C and Ge that do not

appear in the body of Cmd and Gmd
e , respectively. We apply the repair literals in Ccfd

and Gcfd
e in C and D and perform subsumption checking for pairs of resulting clauses.

If every obtained clause of C θ-subsumes at least one resulting clause of Ge, C covers e;

otherwise, C does not cover e. We note than the resulting clauses are not repairs of C

and Ge, as they still have the repair literals that correspond to some MD.

We follow a similar method to the one explained in the preceding paragraph to check

whether clause C covers a negative example, except we use the semantic introduced in

Definition 3.4.5 to determine the coverage of negative examples. Let Ge− be the ground

bottom-clause for the negative example e−. We generate all repaired clauses of the

clause C as described in Section 3.4. Then, we check whether each repaired clause of C

θ-subsumes Ge− the same way as checking θ-subsumption for C and a ground bottom-

clause for a positive example. C θ-subsumes Ge− as soon as one repaired clause of C

θ-subsumes Ge− .

Proposition 4.1.10. Given the clause C and ground bottom-clause Ge− for negative

example e− relative to database I, clause C covers e− iff a repair of C θ-subsumes G−
e .

4.1.4 Commutativity of Cleaning and Learning

An interesting question is whether our algorithm produces the same answer as the one

that learns a repaired definition over each repair of I separately. We show that, our

algorithm delivers similar information as the one that separately learns over each repaired

instance. Thus, our algorithm learns using the compact representation without any loss
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of information. Let RepairedCls(C) denote the set of all repaired clauses of clause C.

Let BC(e, I,Σ, Φ) denote the bottom-clause generated by applying the bottom-clause

construction algorithm in Section 4.1.1 using example e over database I with the set

of MDs Σ and CFDs Φ. Also, let BCr(e, RepairedInst(I,Σ,Φ)) be the set of repaired

clauses generated by applying the bottom-clause construction to each repair of I for e.

Theorem 4.1.11. Given database I with MDs Σ, CFDs Φ and set of positive examples

E+, ∀e ∈ E+ BCr (e,RepairedInst(I,Σ,Φ)) = RepairedCls(BC (e, I,Σ)).

Thus, our algorithm considers exactly the same set of bottom-clauses as the one that

learns over each repaired instance. We further prove that this set remains intact during

generalization. Now, assume that Generalize(C, e′, I,Σ, Φ) denotes the clause produced

by generalizing C to cover example e′ over database I with the set of MDs Σ and CFDs Φ

in a single step of applying the algorithm in Section 4.1.2. Give a set of repaired clauses

C, let Generalizer (C, e′,RepairedInst (I,Σ,Φ)) be the set of repaired clauses produced

by generalizing every repaired clause in C to cover example e′ in some repair of I using

the algorithm in Section 4.1.2.

Theorem 4.1.12. Given database I with MDs Σ and set of positive examples E+

Generalizer (StableCls(C), e
′,RepairedInst(I, Σ,Φ)) = RepairedCls(Generalize(C, I, e′,Σ,Φ)).

4.2 Implementation

DLearn is implemented on top of VoltDB, voltdb.com, a main-memory relational database

management system. We use the indexing and query processing mechanisms of the

database system to create the (ground) bottom-clauses efficiently. The set of tuples

Ie that DLearn gathers to build a bottom-clause may be large if many tuples in I

are relevant to e, particularly when learning over a large database. To overcome this

problem, DLearn randomly samples from the tuples in Ie to obtain a smaller tuple

set Ise ⊆ Ie and creates the bottom-clause based on the sampled data [51, 53].. To

do so, DLearn restricts the number of literals added to the bottom-clause per relation

through a parameter called sample size. To implement similarity over strings, DLearn

uses the operator defined as the average of the Smith-Waterman-Gotoh and the Length

similarity functions. The Smith-Waterman-Gotoh function [31] measures the similarity
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of two strings based on their local sequence alignments. The Length function computes

the similarity of the length of two strings by dividing the length of the smaller string by

the length of the larger string. To improve efficiency, we precompute the pairs of similar

values.
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Chapter 5: Experiments

We empirically investigate the following questions:

• Can DLearn learn over heterogeneous databases effectively and efficiently? (Sec-

tion 5.1.3)

• What is the benefit of using MDs and CFDs during learning? (Section 5.1.3)

• How does the number of training examples affect DLearn’s effectiveness and effi-

ciency? (Section 5.2.4)

• How does sampling affect DLearn’s effectiveness and efficiency? (Section 5.2.5)

5.1 Experimental Settings

5.1.1 Datasets

Datasets: We use the databases shown in Table 5.1.

IMDb + OMDb: The Internet Movie Database (IMDb) and Open Movie Database

(OMDb) contain information about movies, such as their titles, year and country of pro-

duction, genre, directors, and actors [16]. We learn the target relation dramaRestricted-

Movies(imdbId), which contains the imdbId of movies that are of the drama genre and

Name #R #T #P #N

IMDb 9 3.3M
100 200

OMDb 15 4.8M

Walmart 8 19K
77 154

Amazon 13 216K

DBLP 4 15K
500 1000

Google Scholar 4 328K

Table 5.1: Numbers of relations (#R), tuples (#T), positive examples (#P), and negative

examples (#N) for each dataset.
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are rated R. The imdbId is only contained in the IMDb database, the genre informa-

tion is contained in both databases, and the rating information is only contained in the

OMDb database. Moreover, we can specify an MD that matches movie titles on IMDb

with movie titles in OMDb as follows:

IMDb.movies[title] ≈ OMDb.movies[title]→

IMDb.movies[title]⇀↽ OMDb.movies[title].

We refer to this dataset with one MD as IMDb + OMDb (one MD). We also

create MDs that match cast members and writer names between the two databases. We

refer to the dataset that contains the three MDs as IMDb + OMDb (three MDs).

Walmart + Amazon: The Walmart and Amazon databases contain information about

products, such as their brand, price, categories, dimensions, and weight [16]. We learn

the target relation upcOfComputersAccessories(upc), which contains the upc of products

that fall into the Computers Accessories category. The upc is contained in the Walmart

database and the information about categories of products is contained in the Amazon

database. Therefore, in order to learn a definition for this relation, one needs informa-

tion from both databases. We use an MD that connects the product names across the

datasets.

DBLP + Google Scholar: The DBLP and Google Scholar databases contain infor-

mation about academic papers, such as their titles, authors, and venue and year of

publication [16]. The information in the Google Scholar database is not clean, complete,

or consistent; for example, many tuples are missing the year of publication. Therefore,

we aim to augment the information in the Google Scholar database with information

from the DBLP database. We learn the target relation gsPaperYear(gsId, year), which

contains the Google Scholar id gsId and the year of publication of the paper as indicated

in the DBLP database. We use two MDs that match titles and venues in datasets.

5.1.2 CFDs

We find four, six, and two CFDs for IMDb+OMDb, Amazon+Walmart, and DBLP+Google

Scholar, respectively; for example, id determines title in Google Scholar. To evaluate the

performance of DLearn on data that contains CFD violations, we randomly inject each
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aforementioned dataset with varying proportions of CFD violations, p. For example, p

of 5% means that 5% of the tuples in each relation violate at least one CFD.

5.1.3 Systems, Metrics, and Environment

We compare DLearn against three baseline methods to evaluate the handling of MDs

over datasets with only MDs. These methods use Castor, a state-of-the-art relational

learning system [53]. Castor is shown to scale to large databases and be generally more

effective and robust than other relational learning systems over the relational data model.

However, Castor does not learn over databases with MDs.

Castor-NoMD: We use Castor to learn over the original databases. It does not use

any information from MDs.

Castor-Exact: We use Castor but allow the attributes that appear in an MD to be

joined by exact joins. Therefore, this system uses information from MDs but only con-

siders exact matches between values.

Castor-Clean: We resolve the heterogeneities between entity names in attributes that

appear in an MD by matching each entity in one database with the most similar entity

in the other database. We use the same similarity function used by DLearn. Once the

entities are resolved, we use Castor to learn over the unified and clean database.

To evaluate the effectiveness and efficiency of the version of DLearn that supports

both MDs and CFDs, DLearn-CFD, we compare it with a version of DLearn that

supports only MDs and is run over a version of the database whose CFD violations are

repaired, DLearn-Repaired. We obtain this repair using the minimal repair method,

which is a popular approach for repairing CFDs [23]. This enables us to evaluate our

method for each type of inconsistency separately.

We use F1 score to measure effectiveness of definitions, which is the harmonic average

of the precision and recall. We perform 5-fold cross validation over all datasets and report

the average F1 score and time over the cross validation. DLearn uses the parameter

sample size to restrict the size of (ground) bottom-clauses. We fix sample size to 10. In

Section 5.2.5, we evaluate the impact of this parameter on DLearn’s effectiveness and

efficiency. All systems use 16 threads to parallelize coverage testing. We use a server

with 30 2.3GHz Intel Xeon E5-2670 processors, running CentOS Linux with 500GB of

main memory.
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Dataset Metric
Castor- Castor- Castor- DLearn
NoMD Exact Clean km = 2 km = 5 km = 10

IMDb + OMDb F1 score 0.47 0.59 0.86 0.90 0.92 0.92
(one MD) Time (m) 0.12 0.13 0.18 0.26 0.42 0.87

IMDb + OMDb F1 score 0.47 0.82 0.86 0.90 0.93 0.89
(three MDs) Time (m) 0.12 0.48 0.21 0.30 25.87 285.39

Walmart + F1 score 0.39 0.39 0.61 0.61 0.63 0.71
Amazon Time (m) 0.09 0.13 0.13 0.13 0.13 0.17

DBLP + F1 score 0 0.54 0.61 0.67 0.71 0.82
Google Scholar Time (m) 2.5 2.5 3.1 2.7 2.7 2.7

Table 5.2: Results of learning over all datasets with MDs. Number of top similar matches

denoted by km.

5.2 Empirical Results

5.2.1 Handling MDs

Table 5.2 presents the results over all datasets using DLearn and the baseline systems.

DLearn obtains a better F1 score than the baselines for all datasets. DLearn uses infor-

mation in the input MDs to find relevant information from all databases. Castor-NoMD

does not learn any definition in the DBLP + Google Scholar dataset. Over this dataset,

Castor cannot access information from the DBLP database. As a result, it is not able to

find a reasonable definition. Castor-Exact is able to learn a definition over all datasets.

However, as it relies only on exact matches, the learned definitions are not as effective as

the ones of DLearn. Castor-Clean outperforms the other baselines as integrating the in-

put databases by using a simple entity resolution technique provides benefits for learning

effective definitions. DLearn outperforms Castor-Clean in all datasets.

DLearn also learns effective definitions over heterogeneous databases efficiently. Us-

ing MDs enables DLearn to consider more patterns and to thus learn a more effective

definition. For example, Castor-Clean learns the following definition regarding Walmart

+ Amazon:
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upcComputersAccessories(v0)← walmart ids(v1, v2, v0),

walmart title(v1, v9), v9 = v10,

walmart groupname(v1, “Electronics −General”),

amazon title(v11, v10), amazon listprice(v11, v16).

(positove covered=29, negative covered=11)

upcComputersAccessories(v0)← walmart ids(v1, v2, v0),

walmart title(v1, v6), v6 = v7, amazon title(v8, v7),

amazon category(v8, “ComputersAccessories”).

(positove covered=38, negative covered=4)

The definitions learned by DLearn with the same data are as follows:

upcComputersAccessories(v0)← walmart ids(v1, v2, v0),

walmart title(v1, v9), v9 ≈ v10,

amazon title(v11, v10), amazon itemweight(v11, v16),

amazon category(v11, “ComputersAccessories”).

(positove covered=35, negative covered=5)

upcComputersAccessories(v0)← walmart ids(v1, v2, v0),

walmart brand(v1, “Tribeca”).

(positove covered=8, negative covered=0)

The definition learned by DLearn has higher precision; they have a similar recall.

Castor-Clean first learns a clause that covers many positive examples but is not the

desired clause. This affects its precision. DLearn first learns the desired clause and then

learns a clause that has high precision.

The effectiveness of the definitions learned by DLearn depends on the number of

matches considered in MDs, denoted by km. In the Walmart + Amazon, IMDb + BOM

(one MD), and DBLP + Google Scholar datasets, using a higher km value results in

learning a definition with higher F1 score. Even though the number of incorrect matches

by the similarity function may increase, DLearn is able to ignore these false matches

during learning. When using multiple MDs or when learning a difficult concept, a high

km value affects DLearn’s effectiveness. In these cases, incorrect matches represent noise

that affects DLearn’s ability to learn an effective definition. DLearn’s effectiveness is
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slightly lower with higher values of km in the IMDb + OMDb (three MDs) dataset.

Nevertheless, it still delivers a more effective definition that other methods. As the value

of km increases so does the learning time. This is because DLearn must process more

information.

One should find the right trade-off between the improvement in the quality of the

learned definition and the learning time, for instance, by experimenting with different

values. Our empirical study indicates that DLearn delivers effective definitions quickly

with a sufficiently small km. Thus, one may start with relatively small values of km and

increase its value if ones has enough time to learn a relatively more accurate definition.

Next, we evaluate the effect of sampling on DLearn’s effectiveness and efficiency. We

use the IMDb + OMDb (three MDs) dataset and fix km = 2 and km = 5. We use 800

positive and 1,600 negative examples for training, and 200 positive and 400 negative

examples for testing. Figure 5.1 (middle and right) shows the F1 score and learning

time of DLearn with km = 2 and km = 5, respectively, when varying the sample size.

For both values of km, the F1 score does not change significantly with different sampling

sizes. With km = 2, the learning time remains almost the same with different sampling

sizes. However, with km = 5, the learning time increases significantly. Therefore, using

a small sample size is sufficient to efficiently learn an effective definition.

5.2.2 Handling MDs and CFDs

Table 5.3 compares DLearn-Repaired and DLearn-CFD. Over all three datasets DLearn-

CFD performs (almost) equal to or substantially better than the baseline at all levels

of violation injection. Since DLearn-CFD learns over all possible repairs of violating

tuples, it has more available information, and, consequently, its hypothesis space is a

super-set of the one used by DLearn-Repaired. In most datasets, the difference is more

significant as the proportion of violations increase. Both methods deliver less effective

results when there are more CFD violations in the data. However, DLearn-CFD is still

able to deliver reasonably effective definitions. We use km = 10 for DBLP+Google

Scholar and Amazon+Walmart and km = 5 for IMDb+OMDb as it takes a long time to

use km = 5 for the latter.
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Dataset Metric
DLearn-CFD DLearn-Repaired

p = 0.05 p = 0.10 p = 0.20 p = 0.05 p = 0.10 p = 0.20

IMDb + OMDb
(three MDs)

F1 score 0.79 0.78 0.73 0.76 0.73 0.50
Time (m) 11.15 16.26 26.95 5.70 12.54 22.28

Walmart +
Amazon

F1 score 0.64 0.61 0.54 0.49 0.52 0.56
Time (m) 0.17 0.2 0.23 0.18 0.18 0.19

DBLP +
Google Scholar

F1 score 0.79 0.68 0.47 0.73 0.55 0.23
Time (m) 5.92 7.04 8.57 2.51 2.6 6.51

Table 5.3: Results of learning over all datasets with MDs and CFD violations. p is the percentage

of CFD violation.

5.2.3 Impact of Number of Iterations

We have used the values 3, 4, and 5 for the number of iterations, d, for DBLP+Google

Scholar, IMDb+OMDb, and Walmart+Amazon datasets, respectively. Table 5.4 shows

data regarding the scalability of DLearn-CFD over IMDb+OMDb (3 MD + 4 CFD).

The largest contributor to runtime for the DLearn system is the number of iterations

(d) that the system is configured to run during the bottom clause generating phase. A

higher d-value increases both the effectiveness as well as the runtime. A d-value higher

than 4 generates a very modest increase in effectiveness with a substantial increase in

runtime. This result indicates that for a given dataset, the learning algorithm can access

most relevant tuples for a reasonable value of d. Increasing the d-value beyond that

point will not significantly increase the effectiveness.

Metric
km = 5

d=2 d=3 d=4 d=5

F-1 Score 0.52 0.52 0.78 0.80
Time (m) 1.35 4.35 16.26 37.56

Table 5.4: Results of changing the number of iterations.

5.2.4 Scalability of DLearn

We evaluate the effect of the number of training examples on both DLearn’s effectiveness

and efficiency. We use the IMDb + OMDb (three MDs) dataset and fix km = 2. We

generate 2,100 positive and 4,200 negative examples. From these sets, we use 100 posi-

tive and 200 negative examples for testing. From the remaining examples, we generate
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training sets containing 100, 500, 1,000, and 2,000 positive examples, and we double the

number of negative examples. For each training set, we use DLearn with MD support

to learn a definition. Figure 5.1 (left) shows the F1 scores and learning times for each

training set. With 100 positive and 200 negative examples, DLearn obtains an F1 score

of 0.80. With 500 positive and 1000 negative examples, the F1 score increases to 0.91.

More training examples do not affect the F1 score significantly. On the other hand, the

learning time consistently increases with the number of training examples. Nevertheless,

DLearn can learn efficiently even with the largest training set. We also evaluate DLearn

with support for both MDs and CFDs’ violations and report the results in Table 5.5. It

indicates that DLearn with CFD and MD support can deliver effective results efficiently

over many examples with km = 2.

Figure 5.1: Learning over the IMDb+OMDb (3 MDs) dataset while increasing the number of

positive and negative (#P, #N) examples (left) and while increasing sample size for km = 2

(middle) and km = 5 (right).

#P/#N
km = 5 km = 2

100/200 500/1k 1k/2k 2k/4k 100/200 500/1k 1k/2k 2k/4k

F1 score 0.78 0.82 0.81 0.82 0.78 0.79 0.81 0.81
Time (m) 16.26 72.16 121.04 317.5 0.34 2.01 2.76 5.19

Table 5.5: Learning over the IMDb+OMDb (3 MDs) with CFD violations by increasing positive

(#P) and negative (#N) examples.

5.2.5 Effect of Sampling

Next, we evaluate the effect of sampling on DLearn’s effectiveness and efficiency. We

use the IMDb + OMDb (three MDs) dataset and fix km = 2 and km = 5. We use 800

positive and 1,600 negative examples for training, and 200 positive and 400 negative
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examples for testing. Figure 5.1 (middle and right) shows the F1 score and learning

time of DLearn with km = 2 and km = 5, respectively, when varying the sample size.

For both values of km, the F1 score does not change significantly with different sampling

sizes. With km = 2, the learning time remains almost the same with different sampling

sizes. However, with km = 5, the learning time increases significantly. Therefore, using

a small sample size is enough for learning an effective definition efficiently.
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Chapter 6: Conclusion and Discussion

6.1 Summary

Dirty data can negatively impact the performance of machine learning applications.

Therefore, it is crucial to remove any erroneous or missing values in a dataset to en-

sure the accuracy of the result by leveraging unique attributes in the dataset, such as

functional dependency. This thesis explores a general trend in data cleaning research,

identifies a gap, and aims to provide solutions to address the unresolved challenges in

data cleaning. Specifically, the research provides a foundation for preprocessing data be-

fore applying machine learning algorithms, removing the expensive and inaccurate data

cleaning stage.

6.2 Limitations

The main shortcoming of this method is that relational learning requires declarative

relationships between attributes, referred to as functional dependency. Unfortunately,

real-life data sets are less likely to have unique declarative constraints. Even with such

data constraints, domain experts with a deep understanding of the data attributes need

to identify and define a datalog relation for the target, which might pose a challenge

to general practitioners. In addition, the type of data that works best with relational

learning is categorical, not numerical. Therefore, the range of applications might be

limited to specific relational databases.

6.3 Future Research Directions

To address the limitation, we propose a probabilistic approach to infer a value based

on the data distribution by replacing dirty data with a statistically representative value

derived from the data set. One of the most common approaches is to use the mean

[38, 37]. By integrating the statistical approach and relational learning, data cleaning

can be completed efficiently and effectively with minimum effort.
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Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[38] Pasha Khosravi, Yitao Liang, YooJung Choi, and Guy Van den Broeck. What to
expect of classifiers? reasoning about logistic regression with missing features. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI-19, pages 2716–2724. International Joint Conferences on Artificial
Intelligence Organization, 7 2019.

[39] Angelika Kimmig, David Poole, and Jay Pujara. Statistical relational ai (starai)
workshop. In AAAI, 2020.

[40] Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum repairs for
functional dependency violations. In Proceedings of the 12th International Confer-
ence on Database Theory, page 53?62, New York, NY, USA, 2009. Association for
Computing Machinery.

[41] Ioannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. Mdedup: Dupli-
cate detection with matching dependencies. Proceedings of the VLDB Endowment,
13(5):712–725, 2020.

[42] S. Krishnan, Jiannan Wang, M. Franklin, Ken Goldberg, Tim Kraska, T. Milo, and
Eugene Wu. Sampleclean: Fast and reliable analytics on dirty data. IEEE Data
Eng. Bull., 38:59–75, 2015.

[43] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Kenneth Y.
Goldberg. ActiveClean: Interactive data cleaning for statistical modeling. PVLDB,
9:948–959, 2016.

[44] Sanjay Krishnan and Eugene Wu. Alphaclean: Automatic generation of data clean-
ing pipelines. 2019.

[45] Ni Lao, Einat Minkov, and William Cohen. Learning relational features with back-
ward random walks. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pages 666–675, Beijing, China,
July 2015. Association for Computational Linguistics.



51

[46] Ga Young Lee, Lubna Alzamil, Bakhtiyar Doskenov, and Arash Termehchy. A
survey on data cleaning methods for improved machine learning model performance.
CoRR, abs/2109.07127, 2021.

[47] Hao Li, Chee Yong Chan, and David Maier. Query from examples: An iterative,
data-driven approach to query construction. PVLDB, 8:2158–2169, 2015.

[48] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of Markov logic
network structure. In ICML, 2007.

[49] Stephen Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245–286, 1995.

[50] Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In ALT,
1990.

[51] Stephen Muggleton, Jose Santos, and Alireza Tamaddoni-Nezhad. ProGolem: A
system based on relative minimal generalisation. In ILP, 2009.

[52] Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. Learning Over Dirty
Data Without Cleaning, page 1301–1316. Association for Computing Machinery,
New York, NY, USA, 2020.

[53] Jose Picado, Arash Termehchy, and Alan Fern. Schema independent relational
learning. In SIGMOD Conference, 2017.

[54] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

[55] De Raedt. Logical and Relational Learning. Springer Publishing Company, Incor-
porated, 2010.

[56] Luc De Raedt, David Poole, Kristian Kersting, and Sriraam Natarajan. Statistical
relational artificial intelligence: Logic, probability and computation. In NeurIPS,
2017.

[57] Theodoros I. Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. HoloClean:
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