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In-hand manipulations consist of dexterous motions that come easy to humans

but still pose a challenge to robotic systems. It is difficult to control finger motions

in long complicated sequences due to high DOFs and intricate contact interactions.

For such complex motions, in-hand manipulations have generally been broken into

a hierarchy of low and high level control. In this case, high level control sequences

low level controllers to perform motion primitives. The low level motion prim-

itives tend to be task dependent and do not always uniformly sample from the

manipulation space. This narrows its scope and makes it difficult to adapt to

other in-hand manipulation tasks. Another technique that has widely proven to

be promising is reinforcement learning (RL) based controllers. These controllers

are able to perform a complex set of motions. However, applying RL directly to

complicated in-hand manipulations limits what can be generalized to other tasks.



This thesis focuses on using a set of motion primitives that are task agnostic,

sampled uniformly and symmetrically from the manipulation space to provide a

structured approach for in-hand manipulation.

Specifically, we design two low level controllers (an inverse kinematics controller

and a reinforcement learning controller) that can perform primitive in-hand manip-

ulations. We further assess the ability of the reinforcement learning controller to

adapt to other, unseen primitive manipulations. Finally, we show that structuring

complex manipulations by staging low level controllers to learn from a uniform,

symmetric, task agnostic set of motion primitives can adapt better to more tasks

as compared to using RL for an end-end manipulation task.
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Chapter 1: Introduction

The ability to manipulate objects within the hand comes easy to humans. But

the dexterity of such tasks still pose a challenge for robotic systems. Controllers

designed for manipulation struggle to perform simple in-hand motions like moving

a pen or rotating a grasped object. As the motions get longer and more complex,

these controllers tend to fail due to the complicated contact interactions and high

DOFs [6], [15].

A typical approach to in-hand manipulation is using reinforcement learning.

This control method has given promising results due to its ability to learn complex,

end-to-end motions. At the same time, since the controller is able to learn a

specific, complicated task, it limits the ability to adapt to other manipulation

tasks [15], [5]. For example, a learning based controller might be able to learn the

complicated task of unlocking a door very well. This task might include grasping

a key, navigating it to the keyhole and manipulating the key around to unlock the

door. But this end-to-end controller would not be able to translate these motions

to twirl a pen.

Another common approach is to divide the tasks into a hierarchy of low level

and high level control. Where, at the lower level, there are a number of primitive

controllers and at the higher level there tends to be a sequencer that selects from

these controllers [8], [4]. For example, for a robot hand to twirl a pen there might
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be certain low level controllers designed to grasp the pen, manoeuvre the fingers in

a certain way, re-grasp the pen and slide the fingers along the surface. At the high

level, a controller would sequence the low level motions to generate the twirling

motion of the pen.

Breaking up a task into levels of control could potentially adapt to more tasks

better, as compared to an end-to-end controller- The low level controllers can be

re-sequenced to perform a similar task. Still, one of the drawbacks of this approach

is that for every new task, different sets of low level controllers are used, making it

task specific. In the example above, the low level breakdown is still too complex

to support transferring the motions to a task such as unlocking a door. The

entire manipulation space is not sampled uniformly. Instead, only the task specific

manipulations form the basis of the low level controllers. This results in a limited

ability to be robust and generalize to motions apart from the task at hand.

We can see how it becomes necessary to have a set of motion primitives that are

not task dependent and uniformly parameterize the manipulation space. More im-

portantly, it is also necessary to deconstruct complex manipulations into extremely

simple motions to support a multitude of tasks. Small tasks such as moving an

object within the hand span, along straight line trajectories or including slight

rotations make up fundamental motions. Such motions can make for an ideal set

of motion primitives as they form a part of most manipulations.

With such primitive motions, the manipulation space is small and contact inter-

actions are less complicated. Thus providing building blocks for complex motions

and making it easier to generalize to other tasks, objects and hand designs. It is
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Figure 1.1: Asterisk Test motion directions

also easier to track where and why manipulations fail, giving us a better under-

standing of an appropriate breakdown of tasks.

The Asterisk Test [7], originally designed to benchmark manipulations, provides

us with uniformly sampled and symmetric motions that are task independent. The

Asterisk Test measures maneuverability along the central axis of the palm. The

data samples 8 directions [out, out-right, right, in-right, in, in-left, left, out-left]

with 2 twist types, as shown in Figure 1.1.

In this thesis, we use a structured framework consisting of motion primitives

based off of the Asterisk Test, to build a reinforcement learning (RL) based con-

troller. We assess the controllers ability to generalise to arbitrary motions not

part of this dataset. This framework builds up two low-level controllers that can
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perform primitive in-hand manipulations. We first build an inverse kinematics

(IK) controller, which we then use as an expert for imitation learning to build a

reinforcement learning (RL) controller.

In this scope, we refer to in-hand manipulations as pure finger motions (without

allowing arm or palm movements) to reposition an acquired object while explicitly

maintaining contact. For simplicity, we limit motions to a 2D plane. Although our

framework allows for it to be just as easily extended to 3D.

Contribution: A structured learning framework that builds up an RL-based

in-hand manipulation controller that is parameterized by desired motion direc-

tions. This learning framework is largely hand-design and object agnostic and the

controller supports decomposing complex tasks into a set of generalized motion

primitives.
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Chapter 2: Related Works

We cover related works in two common approaches to in-hand manipulation: hi-

erarchical control and reinforcement learning (RL) based control. In section 2.1,

we cover the different ways control composition schemes have been applied, with

focus on low level control. In section 2.2 we cover end-to-end RL based controllers

along with their conjunction with hierarchical control.

2.1 Hierarchical Control

Control composition schemes have been applied in early works of grasping and

manipulation where complex tasks are decomposed into subtasks as reviewed in

[9]. Jefferson Coelho Jr et al. broadly categorized controllers designed based on

composition as procedural control (object/ task-dependent control actions) and

declarative control [1]. Declarative control describes a more abstract, object/ task/

environment independent control specification. In their work they design a grasp

controller based on control decomposition, made up of two individual controllers,

capable of solving a family of control tasks. In the scope of our work, we follow a

declarative design of the controllers.

Decomposition of controllers for manipulation can further be split into a hi-

erarchy of low and high level control. At the higher level we have control for
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task planning and sequencing of manipulation phases. At the lower level, we have

controllers designed for each manipulation phase [8]. Our work focuses on low

level control. Previous works including [4] divide the problem into a hierarchy

of sequencing and low-level primitives for in-hand manipulation. However, the

low-level primitives are hand design specific. The low-level controls used here are

traditional, torque based controllers that are sensitive to calibration and require

hand coding. While this control works for certain manipulation, as the motions

get more complex and the DOFs increase, the number of low-level traditional con-

trollers required will also increase.

2.2 Reinforcement Learning in Manipulation

Over the decade, reinforcement learning (RL) has widely gained the acceptance of

the manipulation community due to its non-reliance on analytic dynamics or kine-

matic models. One of the earliest demonstrations of using reinforcement learning

to learn an in-hand manipulation skill was done in 2015 [12]. Recent work such

as [14] uses a mix of reinforcement learning and hierarchical control (in the form

of multi-step learning) to solve manipulation tasks such as object stacking. Both

these works have proven the capabilities of using RL on end-end tasks. However,

the multi-steps of [14] are task based. Neither of the works are directly able to ex-

tend the decomposed control functionality to other complex manipulations. While

RL has been used at high level control and as a mix of low and high level control

[2], little or no work has been done that applies the generalizability of RL to low-
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level control in order to extend the abilities of a controller to adapt to a variety

of complex tasks. Freek Stulp et al. come close and is most similar to our work

wherein they combine RL with imitation learning and use dynamic motion prim-

itives DMPs [3] to sequence robust manipulations[10]. However, these primitives

are still task based and used with the sequencing, and are designed for end-end

tasks.
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Chapter 3: Methodology

Our goal is to build up a low-level reinforcement learning based controller using a

structured framework and uniformly sampled, task agnostic motion primitives.

The motion primitives we chose are derived from the asterisk test as they are

simple in-hand motions that most complex manipulations can be broken down to.

In this thesis, we focus on only the 8 translations (no rotations) as our motion

primitives. These motions are parameterized by the palm- In, Out, Left, Right.

This is shown in Figure 3.1. However, our structured framework can be extended

to include more primitive motions as well.

A single manipulation path is defined from the point when initial contact is

established with the object until it has been moved as far and as straight as possible

along the given direction. Releasing contact with the object during manipulation

is not allowed. However, sliding contact along the object’s edge is permitted.

The capability of a robot hand to manipulate an object can be limited by

it kinematic ability and mechanical design. Even if the manipulation are simple

straight line paths that are generally applicable to most in-hand motions. Trying

to predict these limitations for a general purpose controller can be challenging.

In this work, we are able to recognize these limitations with a dataset of baseline

manipulations that are a part of the asterisk test. The asterisk test comes with

a dataset of various robot hands manipulating an object along these primitives.
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Figure 3.1: Motion directions from Asterisk Test used as motion primitives

These motions are human puppeteered and the dataset consists of the object poses

along each manipulation direction. Figure 3.2 shows an example of a human pup-

peteering an object along a trajectory using a 2-link 2-fingered hand. We use

this dataset to give desired poses to the IK solver to emulate the human trials in

simulation.

The structured framework could be used along with the IK controller to build

up motion sequences. Given our goal to build a general purpose controller, such a

traditional controller is limited in its ability to expand to new motion primitives,

new objects and new hand designs. It would require hand tuning of multiple low

level controller at every stage which defeats the goal. Hence we only use the IK
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Figure 3.2: Human puppeteering the object along the ‘Right’ direction with 2 link
2 fingered hand

controller to bootstrap the learning of the RL controller. Being a learning based

method, the RL controller is better suited to be a general purpose controller.

The RL controller is trained with the help of expert demonstrations from the

IK controller to perform manipulations along the standard motion primitives de-

scribed above (training dataset). To train the RL controller, the state space and

rewards were carefully selected to best represent the agnostic nature of our frame-

work.

To assess the ability of the RL controller to generalize, we test how well the

controller performs along primitive directions that it has not trained on.

The breakup of the following sections is as given: Section 3.1 provides more

insight on how we define our motion primitives and manipulation constraints.

Section 3.2 and Section 3.3 give details on the construction of the IK controller

and RL controller respectively. Section 3.4 outlines the experimental setup.
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3.1 Parameterized Motion Primitives

The motion primitives are defined by a palm-centric coordinate system. The origin

is centred at the palm in the X-axis and 0.65 times the total finger length (from

the palm) in the Y-axis. The object is placed at the origin at the start of every

manipulation, as shown in Figure 3.3. Each motion primitive is described by the

angle it makes with the X-axis. The object pose is represented as (x, y, θ). This

allows us to sample from a large space of the hand span. Given this manipulation

space, the asterisk test motions and the dataset it provides are an ideal fit for our

primitives.

The object pose dataset of the asterisk test is derived from 5 trials each of 3

human subjects puppeteering the manipulations along the 8 trajectories i.e 5*3*8

trials. The human puppeteered dataset consists of object pose information along

every trajectory.

Equation 3.1 describes how information is extracted from the object pose
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Figure 3.4: Physical set up and Simulation set up

dataset for a single manipulation episode. An episode starts once the object is

placed at the origin and contact is established with all fingers of the hand. The

number of object poses in a single episode may vary depending on the human trial

and when contact was terminated.

(x, y, θ)n: for n in [0, N ] (3.1)

where,

N is the total number of object poses along a manipulation direction and

n is the index of the current object pose.

The physical set up and the simulation hand and object are shown in Figure

3.4.
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3.2 Inverse Kinematics (IK) Controller

The aim of the IK controller is to replicate the object pose data of the asterisk

test in simulation, so as to bootstrap the learning of the RL controller.

To solve the inverse kinematic equations to derive the joint angle solutions, we

require contact information between the two fingers and the object. One of the

key challenges of building this controller was the lack of contact information. As

the dataset only provides object pose data and no contact data, it was not straight

forward the estimate the contact points at each simulation step for the inverse

kinematic calculations.

Joint angles at initial contact was extracted by rough estimation from the

human puppeteering images as shown in Figure 3.5. Accounting for the differences

in the simulated and physical hand, the joint angles were further adjusted to
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establish the initial contact. We then attempt to maintain the initial contact

points, while allowing for sliding.

In a simulation step n of an episode, (x, y, θ)n are extracted from the object

pose data. Using the frame of reference of the object, we calculate the expected

contact points for the left and right fingers (i.e. initial contact points in object

reference frame). The transformation matrix for the expected contact point is

calculated as show in Equation 3.2

Tcpexp l = Tobjn ∗ Tcpcurr l

Tcpexpr = Tobjn ∗ Tcpcurr r
(3.2)

where,

Tcpexp l is the transformation matrix of the expected contact between the object and

left finger,

Tcpexpr is the transformation matrix of the expected contact between the object and

right finger,

Tobjn is the transformation matrix of the object pose extracted at simulation step n,

Tcpcurr l is the transformation matrix of the current contact between the object and

left finger and

Tcpcurr r is the transformation matrix of the current contact between the object and

right finger

Note: All values in this equation are in the object reference frame

The IK controller then finds suitable joint angles solution from its current
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Figure 3.6: A visualization of expected contacts and actual contacts

contact points to the expected contact points. It is important to note that the the

initial contact points are not assumed to always be maintained. The assumption is

to attempt to maintain them. A descriptive visualization of this is shown in Figure

3.6. For the IK solve, we use the damped least squares method.

Along the way, if contact is lost we allow 20 simulation steps to try and re-

establish the contact. We do this by moving the fingers towards the centre of the

object. If contact is not established at this time, the manipulation is terminated.
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3.3 Reinforcement Learning (RL) Controller

The RL controller is built with the aim of an agnostic and generalizable controller

in mind. Thus, for our state space, we went with an object-centric state space

representation, inspired by [11] to assist with the generalization capabilities of the

controller. While shaping our rewards, we kept in mind two primary objectives:

1. Manipulate an object as far and as straight as possible in a given direction.
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2. Always maintain contact while allowing for sliding along the object’s edges.

Keeping in sync with the IK controller, joint angles were chosen as the action

space.

To assess the generalizability of the RL controller, we test its performance

on new motion primitives as its test data. The test motion primitives are path

interpolations between the directions of the training data and are identified as

[Out’, Out’-Right’, Right’, In’-Right’, In’, In’-Left’, Left’, Out’-Left’]. The test

motion primitives are shown in Figure 3.7.

The following subsections give us more specifics on the state space metrics,

action space, rewards and RL policy used.

3.3.1 State Space

We choose a dense state space comprising of 6 different metric groups-

• Motion primitive direction representation

• Object pose

• Object size

• Joint-Object distance

• Joint position

• Joint angle
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Metric Group Metric Type Dimension
Target Manipulation Direction [θ in radians]
Object Object Pose [[x, y], [θ]]

Object Size [l, b, h]
Joint-Object Distance Obj-Left Proximal Distance [x]obj prox l

Obj-Right Proximal Distance [x]obj prox r

Obj-Left Distal Distance [x]obj dist l

Obj-Right Distal Distance [x]obj dist r

Joint Position Left Proximal position [x, y]l prox
Right Proximal Joint position [x, y]r prox

Left Distal Joint position [x, y]l dist
Right Distal Joint position [x, y]r dist

Joint Angle Left Proximal Angle [θ]l prox
Right Proximal Joint Angle [θ]r prox

Left Distal Joint Angle [θ]l dist
Right Distal Joint Angle [θ]r dist

Table 3.1: State Space Metrics

Each individual metric falls under one of the metric groups. The state space

consists of a total of 23 dimensions comprised of the following metrics:

Each metric of the state space is normalized over its minimum and maximum

values.

3.3.2 Action Space

We use joint angles as our action space. Since it is a 2 link 2 fingered hand, the

action space is four dimensional consisting of joint angle values for the left proximal

joint, left distal joint, right proximal joint and right distal joint.
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3.3.3 Rewards

The Reward is a weighted sum of a contact reward and a distance reward, shaped

by our two main objectives.

1. Contact Reward: We wanted the controller to be extremely sensitive to this

reward. A slight change in contact distance should indicate a strong conse-

quence to ensure that the contact constraint is enforced. We chose a contin-

uous reward function instead of a discrete on/off reward to encourage sliding

along the object surface. For this, we choose an exponential reward.

Contrew = −exp(Contdist) where,

Contrew is the contact reward and Contdist is the contact distance in metres.

Contrew =


−100, if Contrew <= −1000

Contrew
100

, otherwise

If the reward is less than -1000, it is capped at - 100 to avoid overflow. Else,

it is divided by 100.

2. Direction Reward: This reward is measured by considering the axis of the

particular direction as X-axis and it’s perpendicular as Y-axis. A negative

penalty is given to the ’y’ direction to ensure straightness of the trajectory.
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This reward is then calculated as:

Distrew = Xrew − 0.5 ∗ |Yrew| where,

Distrew is the distance reward,

Xrew is the distance in x (from the palm centre) and

Yrewis the distance in y (from the palm centre).

Finally, the total reward is calculated as:

Totrew = Contrew + 100 ∗Distrew

3.3.4 Policy

For our controller, the policy we implement is the deep deterministic policy gradient

from demonstrations (DDPGfD) as defined in [13].

We train our network for 20,000 episodes with a learning rate of 10−4 and

weight decay of 10−4. We use a discount factor of 0.995 along with an n-step look

ahead of 5.

For the replay buffer, each timestep of an episode is stored as a single sample.

It includes the current state, action, next state and reward.

The expert replay buffer consist of the samples of the IK controller. We store

5000 randomly selected episodes of the expert. We do this to ensure that sufficient

samples of each motion primitive are present. The agent replay buffer has a size
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Phase 1: Placing the object at the  
starting pose

Phase 2: Establishing initial 
contacts with the object

Phase 3: Manipulating the object 
along a certain direction

Figure 3.8: Phases in an episode: Phase 1 places the object. Phase 2 Grasps the
object. Phase 3 Manipulates the object.

of 10000 episodes and stores the RL controller’s trajectories. We sample from the

replay buffers with a batch size of 10. We decay the sampling from the expert

buffer by a factor of 0.2.

For stability, we use L2 regularization on the parameters of the actor and the

critic networks.

3.4 Experimental Setup

This work was performed in simulation using PyBullet as the simulation engine.

Simulations were run at 0.004 seconds per simulation step. The simulated hand

and object have been modeled after the 2 fingered 2 linked hand and cube shaped

object from the Asterisk Test respectively.

In order to ease the implementation, we divide an episode into phases. We
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create a simulator framework that takes care of iterating through these phases,

stepping the simulator and extracting relevant data at every simulation step. Thus,

freeing up the user to focus purely on building phases. A phase is recognized as

a slice of an episode which requires similar actions that can be grouped under

a single controller. Each phases is driven by a single control mechanism. Thus,

making it easy to switch out, for example, an IK control for an RL control.

For this work, we break down an episode into 3 phases as shown in Figure

3.8. In Phase 1, the fingers are extended and the object is placed at the start

position. The controller used in this phase a simple PID controller that moves to a

pre-defined set of joint poses. In Phase 2, we move the fingers towards the object

to establish contact. Because we estimate these joint angles, this phase also uses a

PID controller with pre-defined joint poses. Finally, in Phase 3, the hand attempts

to manipulate the object. In this phase, either the IK or the RL controller is used

depending on the type of experiment being performed.

This simulation framework deconstructs the episode so as to create a framework

that is able to smoothly shift between these phases and apply the state, action and

rewards suitable for a particular phase.

In the next chapter, we present results comparing the object poses along the ma-

nipulation paths between the human puppeteered data, the IK controller and the

RL controller. We evaluate the performance of the RL controller by providing

learning curves and plots along the test data. We also illustrate the regions of the

failures of the two controllers.
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Chapter 4: Results

We present results for the following: In Section 4.1 we analyze the resulting object

paths for the IK and RL controller vs the human data. Section 4.2 presents the

learning curves of the RL controller.

4.1 Manipulation Paths

In this section we present the results of the object paths along the manipulation

directions of the two controllers.

4.1.1 IK Controller

We first present the performance of the IK controller along all motion directions.

We also evaluated how the controller performs if provided with straight line tra-

jectories along every direction instead of human puppeteering. In Figure 4.1, we

compare the IK controller to the human puppeted data and also the performance

over the straight line paths. Plots a, b are averaged as each motion primitive has

15 trials. Plot c has only single trials in every direction.

We find that the performance of the controller is much better in the upper hori-

zon of the asterisk as compared to the lower horizon. The controller has significant

deviation in the lower quadrant in directions In-Right, In-Left. In has not been
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Figure 4.1: Object pose paths of the IK controller. a) Averaged human data mo-
tions, b) Averaged IK controller motions, c) IK controller straight paths. directions

plotted as the controller was unable to perform any movement in this direction.

While the straight line paths performed better in directions Left and Right,

they offered no other significant improvement. It can be observed that the IK

motions from the human study data travel further along in most directions as

compared to the straight line motions.

Figure 4.2 shows example manipulations of direction In where the IK Controller

fails. The controller is not able to move the object in this direction at all. We

consider directions In-Right, In-Left as partially successful as it is able to move in

the general direction even though it does a poor job of maintaining the path.
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Movement of cube in “In” direction Movement of cube in “In” direction

Figure 4.2: Failures of the IK Controller. (left) Failure of the controller with
straight line paths, (right) Failure of the controller with human study data
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Figure 4.3: Object pose paths of the RL controller: a) Averaged human data
motions, b) Averaged IK controller motions, c) RL controller motions direction.
Each direction has a single RL trial path
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Figure 4.4: Single trials of motion direction of RL Controller along each test di-
rection

4.1.2 RL Controller

Figure 4.3 (c) shows the object paths for the RL controller in each of the training

directions. This is presented alongside the Averaged human data (a) and Averaged

IK controller (b) paths for easy comparison. From all the motions that it was able

to attempt, the RL controller performs well in all of the directions except the

out-right one. It was not able to perform in directions In and In-Left.

We show the trajectories object pose along each of the test direction in Figure

4.4. While the test directions do not exactly follow the test paths, we can see

that Out’, Out’-Right’, Right’, In’-Left’, Left’, Out’-Left’ roughly lie in the middle

of their corresponding paths of interpolation from the motions of the train set.
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Movement of cube in “In” direction Movement of cube in “In’-Left’ “direction

Figure 4.5: Failures of the RL Controller along training motion primitive

For example, path Out’, differs heavily from the Out’ direction. But this path

lies in between the manipulation paths the controller performed in directions Out,

Out-Right separately.

Figures 4.5 and 4.6 illustrate the failures of the RL Controller along train and

test motions respectively. It is not surprising that as the IK controller (which is

used for imitation learning for the RL controller) was not able to perform in di-

rection In, neither was the RL controller. Similarly, since In’-Right’, In’ directions

lie close to In they too fail to manipulate the object along these primitives. It was

anomalous to find the controller failing in direction In-Left as well. We shed more

light on what we believe to be the reasons behind the failures in the discussions

chapter.
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Movement of cube in “In’-Right’ “ direction Movement of cube in “In’-Left’ “ direction

Figure 4.6: Failures of the RL Controller along testing motion primitives

4.2 RL Controller Performance

In this section we present the learning curves of the RL controller. The network

was evaluated every 200 episodes. All curves are smoothened by a factor of 0.7.

Figure 4.7 represents the final reward received per episode. Although we see

fluctuations in the graph, there is a general increase in the reward. The high

negative values can be attributed to the design of the reward function where loss

of contact and deviation in ‘y’ direction (with respect to the direction of motion)

are heavily penalized. As the controller learns to keep contact established and

deviate less in ‘y’ the negative value decreases.

Figure 4.8 and Figure 4.9 show the Critic and Actor losses respectively. The

Critic loss is for the most part stable and doesn’t explode. We observe that the

actor loss reduces steadily over the last 5000 episodes.

Possible improvements to the learning performance are considered in the dis-

cussions chapter.
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Episodes

Figure 4.7: Reinforcement learning reward over episodes. All motion primitives
are trained simultaneously.

Episodes

Figure 4.8: Critic Loss over 20k episodes.
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Episodes

Figure 4.9: Actor Loss over 20k episodes
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Chapter 5: Discussion

5.1 Failures of the RL controller

From the motions in the training data, the RL controller was able to perform

well in Out, Out-Right, Right, In-Right, Left and Out-Left but not in In, In-

Left. Similarly from the test data, the RL controller was not able to perform in

In’-Right’, In’, In’-Left’. As these motions are more or less interpolated between

motions in the asterisk test, it might be caused by the inability of the controllers

performance in direction In.

We believe that the inability of the controller to manipulate the object along

these directions could be caused by the IK controller not being able to perfectly

emulate the human puppeteering in these directions due to incorrect initial contact

positions. In our work, these points were rough estimates. A better representation

of these contacts or a simple optimization search could result in more accurate

motions as starting contact points play an important role in determining valid

manipulations.

Another reason for this could also be due to the contact dynamics being dif-

ferent in simulation as compared to the physical hand used in the human studies.

From the simulation videos, it was observed that the controller tries to move the

fingers towards direction ’In’ but loses contact with the object while doing so. We
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believe with better suited initial contact points, the controller might be able to

perform better in these directions.

For certain anomalous results such as the non-performance of the controller in

In-Left, it could also be beneficial to increase the number of training episodes. It is

possible that with sufficient training, the controller might be able to pick up some

of the failed motions. It is possible that for some of these directions, significant

variation in the y-axis is necessary to move the object. The negative penalization

of the distance reward in y direction might not allow for this. With some reward

shaping, this could be addressed.

5.2 Reward function fluctuations

The fluctuations observed in the reward function (Figure 4.7) might be attributed

to the non-uniform nature of the reward. If the object is not manipulated far

enough in a direction, it does not receive as much of a positive reward due to

heavy negative penalization by the reward function. Also, this limitation can vary

by hand design. A possible solution to this can be to use a different learning

algorithm that takes into account “goal states”, such as Hindsight Experience

Replay (HER). In doing so, it would make it easier to calculate a reward by a

simple measure of distance to the goal state. It is possible that longer training

and some tuning of the reward functions might be beneficial in countering the

fluctuations as well.
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5.3 Future Work

As part of the future work, we would like to better replicate the hand in simulation

and have more accurate initial contact data. We would also like to test a different

learning algorithm (HER) in order to introduce goal states and stabilize our reward

function. Another significant addition would be to add more directions and motions

in the primitives that include rotations and also motions in 3D.



34

Chapter 6: Conclusion

With a structured framework that uses imitation learning and task agnostic prim-

itive motions, we have built a learning based controller that supports decomposing

complex tasks into a set of generalized motion primitives. We demonstrated the

controllers ability to perform motions not part of its dataset. Due to the agnostic

structure of the learning framework, it can be bootstrapped to apply to a richer

set of parameterized motions. Finally, this structured approach can be applied to

low level control in accordance with a high-level controller to sequence a set of

motions to perform complex tasks.
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