

[flyleaf – a blank page, not numbered]

AN ABSTRACT OF THE THESIS OF

Ayush Raj Aryal for the degree of Master of Science in Industrial Engineering presented

on February 18, 2019.

Title: Bi-criteria Scheduling in an Assembly Flow Shop with Limited Buffer Storage and

Shift Production

Abstract approved: ___

 Rasaratnam Logendran

In this research, the comparative performance of permutation and non-permutation

schedules is investigated in an assembly flow shop (AFS) with shift production, where a

limited buffer storage is available between two machines. Most of the traditional

scheduling problems consider continuous production, i.e., production occurs for 24 hours

(3 * 8-hour shifts) each day, seven days a week. However, some companies operate only

one or two shifts each day, which creates a limited availability constraint on the machines.

This causes a discontinuity in production between end and start of two successive

production days. To mimic real-life industry practice, dynamic job release and dynamic

machine availability times have been considered. Each job considered in a problem can

have different weight assigned based on customers’ preferences. The setup times between

jobs are assumed to be machine- and sequence-dependent. However, at the start of each

production day, setup times are not sequence-dependent but depend on machine startup

times such as preheating time, pressure build up, etc. The objective of the problem is to

minimize the linear combination of total setup time and weighted tardiness. The

minimization of total setup time represents producer’s interest whereas the minimization

of weighted tardiness represents customers’ interest. Since these two objectives are not

evaluated on a commensurate basis, a normalization factor is used.

The problem is formulated as a mixed-integer linear programming (MILP) model,

MILP-1 for permutation schedules and MILP-2 for non-permutation schedules. The MILP

models for small-size problem instances are solved to optimality using CPLEX. However,

the problem is shown to be NP-hard. As a result, it is not possible to find an optimal solution

within a reasonable time, as the problem size increases. Hence, a meta-heuristic search

algorithm based on short-term Tabu Search (TS) and Tabu Search/Path-Relinking (TS/PR)

are developed. TS represents a local search algorithm, whereas TS/PR represents a

hybridization of local search enhanced with population-based search algorithm. Two

algorithms each, are developed for both, permutation (PN) and non-permutation (NPN)

sequences. One of the algorithms is based on short term TS and the other is based on

TS/PR. The developed heuristics are tested on sixteen small-size problems and their

solution quality are compared with the optimal solution obtained from CPLEX. The

evaluations show that the developed heuristics obtain good quality solutions within much

less computational time. For PN sequence, the best algorithm obtained an average

deviation of 0.49% compared with the optimal solution and for NPN sequence, the

deviation is 0.13%. In addition, a slight improvement of 2.68% was obtained by adopting

an NPN sequence over PN sequence for these problem instances.

A statistical designed experiment is conducted to evaluate the difference in

performance of the developed heuristics, and permutation and non-permutation schedules.

The results show that the TS/PR algorithms outperform short-term TS, in the case of both

PN and NPN sequences. The comparison between the solutions from the best PN algorithm

and the best NPN algorithm shows that an average improvement of 1.64% is obtained by

implementing an NPN sequence over PN sequence. The statistical analysis shows that the

improvement offered by NPN sequence is statistically significant for problems with large

number of product types and small number of jobs in each product. In addition, it is also

shown that the NPN sequence performs better for non-continuous production as compared

to continuous production. The efficiency of the algorithms was analyzed using the

computational time required by the algorithms. The results show that PN algorithms require

a significantly less computational time as compared to NPN algorithms. Hence, it is

recommended that NPN sequences be considered only for the problems with large number

of product types and small number of jobs in each product. For other problems, only PN

sequence should be considered. TS/PR algorithm is recommended for both, PN and NPN

sequences.

©Copyright by Ayush Raj Aryal

February 18, 2019

All Rights Reserved

Bi-criteria Scheduling in an Assembly Flow Shop with Limited Buffer Storage and Shift

Production.

by

Ayush Raj Aryal

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented February 18, 2019

Commencement June 2019

Master of Science thesis of Ayush Raj Aryal presented on February 18, 2019

APPROVED:

Major Professor, representing Industrial Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader upon

request.

Ayush Raj Aryal, Author

ACKNOWLEDGEMENTS

It would have been impossible to write my Master’s thesis without my major

professor, Dr. Rasaratnam Logendran, who has been a tremendous mentor for me over the

last two years. I would like to thank you for patiently reading, correcting and suggesting

improvements on various papers and this thesis. Thank you for allowing me to work on an

industry-funded project. This project not only helped me in the pursuit of my thesis, but

also prepared me for the challenges that I would face in the future. I will always be grateful

for the time and effort you put into helping me complete this Master’s degree. Your hard

work and commitment have always inspired me to strive for excellence.

I would like to extend my gratitude to my committee members: Dr Sarah Emerson,

my minor professor, Dr. Hector Vergara, my committee member, and Dr. Brett Tyler, my

graduate council representative for their guidance and useful feedbacks. Special thanks to

Dr. Emerson for serving as my minor professor.

I would like thank ATI, Inc. for partially supporting my studies through a funded

project. They have been extremely cooperative and supportive throughout the duration of

the project. I would also like to thank my previous employer at Surya Nepal Pvt. Ltd for

helping me grow as a professional engineer. I would like to extend my appreciation to

Omid Shahvari for his everlasting friendship and help on this thesis. I wish to thank IME

staff members Jean Robinson and Stephanie Grigar for their help. Special thanks to Lori

Burgeson for installing and maintaining any hardware/software needed for my research.

My time at Oregon State University has been delightful due to the love and support

of my friends. I would like to thank Kshitiz Gyawali, Saroj Karki and Nisha Puri for

entertaining me and making me feel at home. I would also like to thank my dear friend

Atul Acharya for his everlasting friendship.

Finally, I would like to thank my family, without whom I would not be here.

TABLE OF CONTENTS

 Page

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1. Review of Literature on an Assembly Flow Shop ... 6

2.2. Review of Literature on Bi-criteria Scheduling ... 8

2.3. Review of Literature on Non-continuous Production 10

3. PROBLEM STATEMENT ... 12

4. MATHEMATICAL MODELS ... 14

4.1. Normalization of the Objective Function .. 14

4.2. MILP1 .. 15

4.3. MILP2 .. 20

4.4. Choice of the Objective Function .. 22

4.5. Complexity of the Problem .. 24

5. HEURISTIC ALGORITHM ... 26

5.1. Tabu Search ... 27

5.1.1. Initial Solution Finding Mechanism ... 30

5.1.2. Neighborhood Function .. 33

5.1.3. Evaluation of the Objective Function ... 35

5.1.4. Tabu list .. 39

5.1.5. Aspiration criterion ... 41

5.1.6. Steps of the Proposed TS Algorithm .. 42

5.1.7. Application of the TS Algorithm to an Example Problem 45

5.2. Tabu Search/Path Relinking .. 57

5.2.1. Initial Population ... 58

5.2.2. Path Construction .. 59

5.2.3. Path Solution Selection ... 63

5.2.4. Reference Solution Determination .. 64

5.3. Calibration of the metaheuristic algorithms ... 65

6. DATA GENERATION ... 68

TABLE OF CONTENTS (Continued)

 Page

7. THE QUALITY OF SOLUTIONS OBTAINED FROM THE PROPOSED

HEURISTIC .. 73

8. RESULTS ... 80

8.1. Experimental Design .. 80

9. CONCLUSIONS AND FUTURE RESEARCH .. 93

BIBLIOGRAPHY ... 97

APPENDIX ... 102

Appendix A. Result of statistical analysis for parameter tuning 103

LIST OF FIGURES

Figure Page

Figure 1. General layout of an assembly flow shop.. 2

Figure 2. Layout of an uneven assembly flow shop ... 12

Figure 3. Gantt chart for a PN and NPN Schedule in a two-machine flow shop 24

Figure 4. IS Flowchart .. 32

Figure 5. Swap move .. 33

Figure 6. Insert move .. 33

Figure 7. Neighborhood structure for permutation .. 34

Figure 8. Neighborhood structure for non-permutation .. 34

Figure 9. TS flowchart .. 44

Figure 10. Evaluation of job completion times ... 51

Figure 11. LCS construction ... 60

Figure 12. The LCS between two solutions in non-permutation sequence 63

Figure 13. Global and Local Optima in InitialPathSet ... 64

Figure 14. Flowchart for TS/PR.. 66

Figure 15. Relationship between δ and CV .. 72

Figure 16. Normality of objective function value ... 82

Figure 17. Deviation of ALG1 from ALG3 .. 87

Figure 18. Deviation of ALG2 from ALG4 .. 87

Figure 19. Deviation of ALG3 from ALG4 .. 87

Figure 20. Deviation of ALG3 from ALG4 .. 88

Figure 21. Normal Probability Plot for CT ... 89

Figure 22. Normal Probability Plot for inversed CT .. 89

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988

LIST OF TABLES

Table Page

Table 1. Runtimes of the product .. 23

Table 2. Machine availability times .. 23

Table 3. Setup times .. 23

Table 4. Due date and release time of a job .. 23

Table 5. Nomenclature of algorithms used in this research .. 26

Table 6. Moves for PTB and PTB2 .. 35

Table 7. Extreme values of the criteria ... 35

Table 8. OFV of solutions on the CL for algorithms and without MNSS restriction 41

Table 9. Example problem .. 45

Table 10a. Setup time for M1 .. 45

Table 11. Setup time for sequence generated using SST .. 46

Table 12. Setup time for sequence generated using LST.. 47

Table 13. Due date to weight ratio .. 47

Table 14. Rank of jobs in PS and CS .. 49

Table 15. Job scheduled at each iteration of IS generation mechanism on M1 49

Table 16. Job completion times on machine ... 52

Table 17. NS generation in the first iteration .. 54

Table 18. Entries into the CL .. 56

Table 19. Pseudocode for IP generation of permutation TS/PR 58

Table 20. Possible candidate moves starting from SI ... 62

Table 21. Pseudo-code for TS/PR ... 65

Table 22. Due date classification .. 71

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028

LIST OF TABLES (Continued)

Table Page

Table 23. CPLEX runs of MILP1 and MILP2 .. 75

Table 24. Solutions from metaheuristic algorithms .. 76

Table 25. Average deviation for PN algorithms from CPLEX optimal solution.............. 77

Table 26. Average deviation for PN algorithms from CPLEX bounds 77

Table 27. Average deviation for NPN algorithms from CPLEX optimal solution 78

Table 28. Average deviation for NPN algorithms from CPLEX bounds 79

Table 29. Factors and their levels in the experiment .. 81

Table 30. ANOVA of the objective function value in split-plot design 82

Table 31. Result of ANOVA and Tukey test on algorithm’s performance 86

Table 32. ANOVA of the computational time in split-plot design 89

Table 33. CT of algorithms for different problem structure ... 91

Table 34. CT of algorithms for continuous and non-continuous production 92

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040

1

Bi-criteria Scheduling in an Assembly Flow Shop with Limited Buffer

Storage and Shift Production

1. INTRODUCTION

Scheduling problems were first considered in the 1950s with the introduction to

simple problems such as minimizing sum of flowtimes of jobs on a single machine, or

minimizing makespan of jobs on two machines. The problem got more complex over time

as more realistic shop constraints were incorporated into the problem. With increasing

competition in the market, manufacturing firms often use scheduling techniques to improve

their operational efficiency. One of the most important characteristics of a scheduling

problem corresponds to the shop structure or machine configuration in which a job is

processed. Typically, the machine configuration of the shop can be classified into a flow

shop or a job shop. In a flow shop setting, jobs are processed on a flow line and have at

most one operation on each machine, whereas in a job shop, jobs do not have to adhere to

a flow line and can have multiple operations on the same machine.

Flow shops can further be classified into a typical flow shop, flexible flow shop and

assembly flow shop. A typical flow shop has a single machine at each stage. If there is

more than one machine of the same capability in at least one stage, then it is termed as a

flexible flow shop. In an assembly flow shop, each job is comprised of multiple

components, which are processed separately by independent parallel machines with

different capabilities in the first stage. These components are then assembled in the second

stage by one assembly machine. A general layout of an assembly flow shop is shown in

Figure 1. In a typical assembly flow shop, each component requires only one operation in

the first stage, i.e., before it is transferred to the assembly stage. However, that might not

always be the case. Some components might require a higher number of operations before

it is ready for assembly, i.e., the number of individual operations for each component might

not be equal. This type of problem represents an uneven assembly flow shop structure.

Most of the past research on scheduling have considered a continuous 24 hours and

seven days a week production. However, many companies do not adhere to continuous

production. In some companies, production does not occur on weekends. Other companies

2

might operate only one or two shifts a day, corresponding to 8 hours and 16 hours of

production each day, respectively. Similarly, some machines might not be available during

certain time period due to breakdown or preventive maintenance. This causes a

discontinuity in production between two successive days and hence adds machine

availability constraints to the problem, i.e., limited machine availability constraints. In

some environments, there are limited buffers or no buffers between stages (Hall and

Sriskandarajah, 1996, Qian et al., 2009, Liu et al., 2008, Maleki-Darounkolaei et al., 2012).

This introduces blocking constraints on job processing. After a job is processed on a

machine, it is transferred to the intermediate storage where it waits to be processed by a

downstream machine. If the downstream machine is busy and all the intermediate storages

are full, then the processing of jobs is blocked on the upstream machine.

A setup time is incurred each time a job is changed on a machine. A setup operation

can include tasks such as preparing the machine, cleaning, inspection, machine setting etc.

Setup times can be classified into two groups: sequence-independent and sequence-

dependent. If the duration of a setup time is dependent on current and preceding jobs, the

setup is sequence-dependent; otherwise it is considered sequence-independent. Several

studies have highlighted the importance of using sequence-dependent setup times

(Allahverdi et al., 1999, Maleki-Darounkolaei et al., 2012). In a plant, all jobs might not

be released at the start of the planning horizon, i.e., jobs might have different release times.

This characteristic is called dynamic job release time. Similarly, machines might also have

different availability times. This is called dynamic machine availability.

Figure 1. General layout of an assembly flow shop

3

In most of the scheduling problems, the objective is to minimize a time-based

objective, such as the makespan (the completion time of the last job on the last machine),

sum of completion times, maximum lateness, total tardiness (positive lateness), and

number of tardy jobs. While the minimization of tardiness caters to customers’ interests,

the minimization of makespan and minimization of sum of completion times cater to

supplier’s interests. These objectives largely focus on minimizing completion times of jobs

on the last machine, which might not yield the best performance values for preceding

machines, especially in non-continuous production. From a customers’ point of view, using

these objectives make sense because customers are only concerned with the due dates and

whether or not the jobs are tardy. However, for the producer, the performance of all

machines is of interest. Hence, minimization of total setup time is proposed to be used as

an objective to accurately represent the producer’s interest in non-continuous shift

production.

A flow shop scheduling problem can be solved by considering two types of

schedules, permutation (PN) and non-permutation (NPN) schedules. In a PN schedule, the

processing sequence of jobs is the same for all machines whereas in an NPN schedules,

processing sequence of jobs might be different across different machines. Most of the

research on flow shop scheduling considers only PN schedules. However, when there is

buffer storage in between, NPN schedules might outperform PN schedules (Strusevich and

Zwaneveld, 1994, Liao and Huang, 2010).

This research is directly motivated by a real problem from a leading manufacturing

company. The shop structure considered in this paper is that of an uneven assembly flow

shop with limited intermediate storage and non-continuous shift production. Non-

permutation schedules are allowed. Setup times are sequence- and machine-dependent. Job

release times and machine availability times are considered to be dynamic. The main

purpose of this research is to find an optimal or near optimal schedule that will minimize

the linear combination of total setup time and weighted tardiness. Such an objective is very

relevant to current industry practice as there is a need to balance customers’ and producer’s

objectives. Another purpose of this research is to evaluate the performance of permutation

4

vs. non-permutation schedules in a non-continuous production environment, i.e., limited

machine availability. Few researchers in the past have considered limited machine

availability in their study. To the best of our knowledge, a bi-criteria scheduling problem

in an uneven assembly flow shop with blocking and limited machine availability has not

been addressed so far.

5

2. LITERATURE REVIEW

Production scheduling deals with allocating limited number of resources to jobs

over time. Researchers have taken a keen interest in this field since the 1960s. Johnson

(1954) was the first to develop a systematic approach to obtain an optimal solution for the

two-machine makespan minimization problem and also a special case for the three-

machine problem. Johnson’s algorithm was further extended by Campbell, Dudek and

Smith (CDS) (1970) for the m-machine problem. CDS algorithm transforms m machines

into (m-1) two-virtual machine problems, for which various schedules are developed and

the best sequence among them is selected to represent the best sequence for the original m-

machine problem. Nawaz, Enscore and Ham (NEH) (1983) developed a heuristic which

gives priority to jobs with largest processing time. In contrast to CDS, NEH doesn’t

transform the original problem into a two-machine problem. Instead, it generates partial

schedules and adds a job at each iteration, to finally obtain a complete best solution.

 There have been several developments in the field of scheduling over the last

couple of decades. Allahverdi et al. (2008) presented a comprehensive review on the

advancements made in scheduling from mid-1998 to mid-2006. A more recent paper by

Allahverdi (2015) provides an extensive review of papers published from mid-2006 to the

end of 2014, including static, dynamic, deterministic, and stochastic environments. It

includes classification of problems based on shop environments and setup considerations.

Shop environments can be categorized as a single-machine, parallel machines, flow shop

(regular flow shop, flow shop with blocking, no-wait flow shop, flexible flow shop, and

assembly flow shop), job shop, or open shop problem. Setup times can be sequence-

independent or sequence-dependent. The scope of this research is to find an optimal

schedule for an assembly flow shop with shift production with the objective of

simultaneously minimizing two objectives. Hence, the literature review focuses on

scheduling problems in an assembly flow shop with bi-criteria objective function and non-

continuous production due to limited machine availability.

6

2.1. Review of Literature on an Assembly Flow Shop

In a two-stage assembly flow shop (AFS) problem, there are m parallel machines

in the first stage while there is only one assembly machine in the second stage. There are

n jobs to be scheduled and each job is made up of m individual components. Each

component is processed separately and independently by parallel machines at the first stage

and the final assembly is performed in the second stage. Thus, each job has a total of m +

1 operations. This problem has many applications in industry such as fire engine assembly

plant (Lee et al., 1993), personal computer manufacturing (Potts et al., 1995), distributed

database systems (Al-Anzi and Allahverdi, 2006), etc. In particular, many real life

scheduling problems can be modelled as a two-stage assembly flow shop.

Lee et al. (1993) were the first to introduce a two-stage AFS problem with m = 2

(two machines in the first stage and one assembly machine in the second stage) for

makespan minimization. This paper showed that the problem is NP-hard in a strong sense

with this objective function. Lee et al. (1993) also discussed a few polynomially solvable

cases and presented a mathematical model for the problem. Potts et al., (1995) considered

the problem with an arbitrary m. They showed that the permutation schedules are dominant

for makespan minimization. Hariri and Potts (1997) addressed the same problem and

derived a lower bound and established several dominance theorems. They also presented a

branch and bound algorithm incorporating the lower bound and dominance theorems.

Koulamas and Kyparisis (2001) generalized the problem into a three-stage AFS problem

with the objective of minimizing makespan. In this problem, a transfer stage is added in

between the first stage and the assembly stage. They proposed several heuristics and

analyzed the worst case bound for those heuristics.

Tozkapan et al. (2003) investigated a two-stage AFS (m machines in the first stage)

with the objective of minimizing weighted flow time. They presented a branch and bound

algorithm utilizing the derived lower bound and dominance relations. This paper showed

that permutation schedules are dominant for minimizing weighted flowtime. Al-Anzi and

Allahverdi (2006) considered the same problem and proposed three heuristics based on

simulated annealing, tabu search and hybrid tabu search. They showed that the hybrid tabu

7

search is efficient as compared to other heuristics. Allahverdi and Al-Anzi (2009) proposed

three heuristics addressing the same problem but with setup times considered separate from

the processing times. Framinan and Gonzelez (2017) investigated a two stage assembly

flow shop with the objective of minimizing total completion time and proposed a variable

local search algorithm, which outperforms existing metaheuristics.

The above-mentioned literatures consider only one machine at the final assembly

stage. Sung and Kim (2008) considered a two-stage AFS problem with m = 2 machines in

the first stage and two identical parallel assembly machines in the second stage. Al-Anzi

and Allahverdi (2012) addressed the generalized version of this problem with m machines

in the first stage and two assembly machines. They proposed three heuristics which

outperform the heuristics by Sung and Kim (2008).

Some research has also considered bi-criteria objective function for the AFS

problem. Torabzadeh and Zandieh (2010) proposed a cloud-based simulated annealing

approach for an AFS problem with m machines in the first stage and one machine in the

assembly stage, with the objective of minimizing a weighted sum of makespan and mean

completion time. Maleki-Darounkolaei et al. (2012) addressed a three-stage AFS problem

with blocking and sequence-dependent setup time and proposed a meta-heuristic based on

simulated annealing to minimize the weighted sum of mean completion time and

makespan.

While several researchers have addressed a variety of assembly flow shop

problems, some gaps can still be identified in the literature. All of the above research

assumes that each component requires only one operation in the first stage. However, that

might not be true as some components could require more than one operation before it is

ready for assembly, i.e. a regular flow shop environment (with two or more machines) in

the first stage. Furthermore, none of the above research consider non-continuous

production. To the best of our knowledge, AFS problem has been studied so far considering

continuous production and with the assumption of single operation for each component in

the first stage.

8

2.2. Review of Literature on Bi-criteria Scheduling

Selecting an appropriate objective is a challenge in solving scheduling problems.

The objective in the optimization function can be classified into two groups: Supplier-

Oriented and Customer-Oriented. Supplier-oriented objectives include functions such as

minimizing makespan, sum of completion time, idle time, and work-in-progress inventory,

whereas customer-oriented objectives include minimizing tardiness, minimizing number

of tardy jobs, maximum lateness, etc. Most of the earlier research focused on only one of

the groups. However, in today’s environment, most companies try to reduce their cost

while maintaining customers’ service level, i.e. minimizing tardiness. Thus, a lot of recent

research has been considering multi-objective scheduling problems. Allahverdi and

Aldowaisan (2004) addressed the m-machine no-wait flow shop scheduling problem with

a bi-criteria objective function of minimizing the weighted sum of makespan and maximum

lateness. Eren and Güner (2006) considered a bi-criteria scheduling problem with

sequence-dependent setup times on a single machine. An integer programing model is

presented to minimize the weighted sum of total completion time and tardiness. A heuristic

algorithm based on tabu search is also presented to solve large-size problems. Mehravaran

and Logendran (2012) considered an unrelated-parallel machine problem with dual

resource. The objective function is to minimize a linear combination of weighted flowtime

and weighted tardiness. The weighted objective function used in this study simultaneously

minimizes both objectives. In this study, the problem is solved in two parts, the first part

considering only machine constraint, and the second part considering only labor constraint

for the schedule developed in the first part. Another approach to tackle a multi-objective

scheduling problem is to obtain pareto-optimal solutions which helps to obtain many non-

dominated solutions. Moslehi and Mahnam (2011) proposed a pareto-approach to multi-

objective flexible flow shop problem using particle swarm optimization and local search.

Most research in the past have used weighted objective function method because it

provided a flexibility in assigning different weights to each criteria in the objective function

based on producer’s need at the time. Bozorgirad and Logendran (2013) used a weighted

objective function method to address a sequence-dependent hybrid flow shop problem. The

objective was to minimize the linear combination of weighted flowtime and weighted

9

tardiness. Shahvari and Logendran (2016) also used the same objective in a hybrid flow

shop batching and scheduling problem. They proposed heuristics based on tabu search/path

relinking and applied stage-based procedures to obtain better solutions. Their result showed

the benefit of integrating batching decisions into group scheduling approach. Other

research from Maleki-Darounkolaei et al. (2012) and Allahverdi and Aldowaisan (2004),

which were reviewed in the literature on AFS scheduling, also used weighted objective

function method.

The weighted objective method tries to simultaneously minimize the criteria in the

objective function. However, issues might arise due to skewness (when the value of one

criterion is much larger than the other), and dimensional conflict (when the two criteria do

not have the same unit of measurement). When the value of one criterion is much larger

than the other, the objective function favors the criterion with larger value as the larger

criterion will tend to make a higher contribution to the objective function value. In this

case, the objective function might not be meaningful or effective. This problem can be

tackled using a normalization approach where each criterion is normalized into a

dimensionless quantity between 0 and 1. Several research considering weighted multi-

criteria objective function have used normalization to balance the criteria in the objective

function. Gagné et al., (2005) presented a hybrid tabu search/variable neighborhood search

algorithm for the solution of a bi-objective scheduling problem. The two objectives, setup

times and tardiness, are normalized using nadir points (maximum value of the objectives)

and ideal point (minimum value of the objectives). Oyetunji and Oluleye (2009) proposed

a normalization procedure for a bi-criteria objective function of total completion time and

number of tardy jobs. The methodology for determining the nadir and ideal points for these

objectives is also demonstrated. Chyu and Chang (2010) proposed a competitive evolution

strategy memetic algorithm to solve unrelated-parallel machine scheduling problem with

two minimization objectives. These objectives are also normalized using ideal and nadir

points.

10

2.3. Review of Literature on Non-continuous Production

Most of the scheduling problems in the past assumes that all machines are

continuously available for processing throughout the planning horizon. This assumption

might not be justified in all cases because some plants operate only on a single or a double

shift. In addition, a pre-planned maintenance schedule might result in machine

unavailability during certain times. The period of machine unavailability is called holes.

Two cases of limited machine availability are defined by Lee (1997), resumable and non-

resumable. In a resumable case, if an operation cannot be before the unavailability period

of a machine, then it can continue after the machine becomes available without any cost.

In non-resumable case, the disrupted operation has to be totally restarted. Lee (1997)

studied a two-machine flow shop problem in which one machine is always available and

the other machine has one period of unavailability in the planning horizon, i.e., machine is

unavailable from s to t, where 0 ≤ s ≤ t. The unavailability period is known in advance, i.e.,

deterministic and the operation is resumable. It was shown that this problem is NP-hard

even for makespan minimization. A pseudo-polynomial dynamic programming algorithm

is also presented to solve the problem. Błażewicz et al. (2001) proposed a constructive and

local search heuristic for a two-machine flow shop problem with resumable operations and

up to ten number of holes on either machine. The objective is to find a feasible schedule

with minimum makespan. Kubiak et al. (2002) proposed a branch and bound algorithm for

the same problem addressed by Błażewicz et al. (2001).

Liao and Chen (2003) studied a single-machine scheduling problem with non-

resumable operations and periodic maintenance, i.e., maintenance is required after fixed

interval. A branch and bound algorithm is developed to solve the problem to optimality

and a heuristic is also developed for large problem instances. Aggoune (2004) considers

an m-machine flow shop problem with non-resumable operations and several unavailability

periods on each machine. They proposed a heuristic algorithm based on tabu search and

genetic algorithm to solve the problem. Allaoui et al., (2006) investigated a two-stage

hybrid flow shop problem with one machine in the first stage and m machine in the second

stage. Each machine is subject to only one deterministic unavailability period and the

operations are non-resumable. A branch and bound model is presented for the problem

11

along with three heuristics. Ma et al. (2010) presents a comprehensive review of scheduling

problems with limited machine availability from 1996 to 2009. Huo and Huang (2016)

proposed two algorithms based on ant colony to solve an m-machine flow shop scheduling

problem with limited machine availability. The objective is to minimize total flow time.

The problem addressed in this paper also includes limited machine availability

constraint since the production can occur only in a single or double shift, resulting in

machine unavailability during remaining hours of the day. However, to the best of our

knowledge, an assembly flow shop problem with limited machine availability and limited

buffer storage. has not been addressed so far.

12

3. PROBLEM STATEMENT

The problem consists of scheduling N jobs belonging to p different products, where each

product contains ni jobs, i.e. ∑ ni = N
p
i=1 . Based on the three field notation α|β|γ developed

by Graham et al. (1979), the problem addressed in this research can be characterized by

AFm, hjk|nr-a, STsd, rj, aj, block, |Fl(α ∑ STi , β ∑ wjTj). The first field (α) describes the

machine setting, the second field (β) describes the job characteristics and process

constraints and the third field (γ) defines the objective function of the problem. The

problem includes the following features

• The machine setting resembles that of an assembly flow shop, where each

component of a job is first processed independently on different machines and then

assembled together at the final machine. The number of operations required by

each component before it is ready for assembly might be different (as shown in

Figure 2). Two components are required to form a job. Component 1 has two

operations (Machines M1 and M2) before assembly and component 2 (Machine M3)

has one operation before assembly (Machine M4). The machines are not available

continuously throughout the planning horizon. The production occurs in one, two

or three shifts. In case of one or two shifts (8 and 16 hours each day, respectively),

the machines are not available for the remaining period of the day. In addition, if

an operation cannot be completed before the end of production hours, it has to be

restarted when the production begins the next day, i.e., non-resumable operations.

• The setup time is sequence- and machine-dependent, i.e., the setup time required

on a machine depends on the previous job processed on that machine. Setup time

Figure 2. Layout of an uneven assembly flow shop

13

between jobs belonging to the same product is less than the setup time between

jobs from different products. Since the production is not continuous, all machines

have to be restarted at the start of each production day. Hence, at the start of each

production day, the setup time for each machine does not depend on the previous

job on that machine but is dependent on the machine startup time (pre-heat,

pressure buildup, etc.).

• Jobs have dynamic release times. In other words, all jobs may not be available the

start of the planning horizon.

• Each machine has dynamic availability time, which means that not all machines

are available at the start of the planning horizon because they might be processing

some jobs from the previous planning horizon.

• A limited buffer storage is available between two machines. As shown in Figure

2, Si denotes the storage space available after machine Mi. A blocking constraint is

introduced because of the limited buffer storage, i.e., operation on the upstream

machine is blocked if there is no storage space available. In addition, there is a

minimum wait time for each job at certain storage locations. In Figure 2, S1 and S3

have a minimum storage time of 2 hours.

• The objective function focuses on minimizing the linear combination of total setup

time and weighted tardiness. Each job in the problem is assigned a weight,

representing priority level of the job. The job with higher weight receives greater

priority. In real industry practice, jobs might have different weights assigned to

them depending on associated customer’s status, profit margin, etc. Since the two

criteria in the objective function are not measured on a commensurate basis, these

criteria are first normalized into a dimensionless quantity in the range of 0 and 1.

This is done so that the algorithm does not favor one criteria over the other based

on the values that represent these criteria. This is discussed in detail in Chapter 4.

14

4. MATHEMATICAL MODELS

A mixed-integer linear programming (MILP) model that represents the constraints

of the industrial setting is developed to evaluate the performance of proposed algorithm.

Two MILP models are developed, one considering permutation sequence named MILP1,

and the other considering non-permutation sequence named MILP2. The two criteria, setup

time and tardiness, used in the objective function are normalized to avoid skewness that

may arise due to difference in value of these criteria.

4.1. Normalization of the Objective Function

A bicriteria objective function is used for the problem which aims to simultaneously

minimize the linear combination of total setup time and weighted tardiness. Since, the value

of these two criteria might not be in the same range, i.e., one criteria might have a much

higher value than the other, skewness might arise as the objective function would favor the

criteria with larger value. For example, consider a sequence of a problem with setup time

(ST) of 200 min. and weighted tardiness (WT) of 2000 mins. Both the producer’s weight

(α) and the customers’ weight (β) are 0.5. Then the weighted objective function (without

normalization) is given by:

𝛼 𝑆𝑇 + 𝛽 𝑊𝑇 (4.1)

The value of the weighted objective function from equation 4.1 is 1100, where the

contribution of weighted tardiness to the objective function is ten times the contribution of

setup times. Hence, the algorithm using this objective function will favor the minimization

of weighted tardiness more than the minimization of setup time in spite of the fact that the

producer’s and customers’ weights are equal. Therefore, in this research, the criteria are

normalized using equation 4.2.

𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (4.2)

where,

𝑋𝑁 = Normalized value of the criteria

15

𝑋 = Value of the criteria for a given schedule

𝑋𝑚𝑎𝑥 = Maximum value of the criteria (nadir point)

𝑋𝑚𝑖𝑛 = Minimum value of the criteria (ideal point)

The minimum and maximum values of a criterion are called extreme values. The

method of obtaining these extreme values is explained in section 5. After the two criteria

in the objective function are normalized, the normalized composite objective function

(NCOF) is obtained as shown in equation 4.3.

𝑁𝐶𝑂𝐹 = 𝛼 𝑆𝑇𝑁 + 𝛽 𝑊𝑇𝑁 (4.3)

where,

𝑆𝑇𝑁 = Normalized value of total setup time

𝑊𝑇𝑁 = Normalized value of weighted tardiness

4.2. MILP1

MILP1 is the mathematical model formulated for permutation sequence. The

indices, sets, parameters, decision variables, and the mathematical model are shown below.

Indices

i, i’ machines

j, j’ products

k, k’ jobs

g, g’ components

l time slot

Sets

𝑀 Set of all machines, M = 𝐴𝑀 ∪ (𝐶𝑀1 ∪ 𝐶𝑀2 ∪ … .∪ 𝐶𝑀𝑚)

P Set of products, 𝑃 = {1,2, …., 𝑝}

16

𝐽𝑗 Set of jobs belonging to product j, 𝐽𝑗 = {1,2, …., 𝑛𝑗}

Q Set of time slots for each machine, 𝑄 = {1,2, …., 𝑞}

Subsets

𝐶𝑀𝑔 Subset of machines which processes component g individually

 𝐶𝑀𝑔 ⊂ 𝑀 and 𝐶𝑀𝑔 ∌ 𝐴𝑀

𝐴𝑀 Assembly machine, 𝐴𝑀 ⊂ 𝑀

𝐹𝑀𝑖 Machine immediately following machine i, 𝐹𝑀 ⊂ 𝑀

𝑆𝑀 Subset of machines which are first in line to process each component

 𝑆𝑀 = {𝐶𝑀1
(1)

, 𝐶𝑀2
(1)

, … . 𝐶𝑀𝑚
(1)

}, 𝑆𝑀 ⊂ 𝑀 and 𝑆𝑀 ∌ 𝐴𝑀. 𝑀𝑚
(1)

refers to

 the first machine in the set 𝐶𝑀𝑚

𝐸𝑀 Subset of machines just before assembly machine or subset of machines

which is last in line to process each component individually

 𝐸𝑀 = {𝐶𝑀1
(𝑢1)

, 𝐶𝑀2
(𝑢2)

, … . , 𝐶𝑀𝑚
(𝑢𝑚)

} , 𝐸𝑀 ⊂ 𝑀 and 𝐸𝑀 ∌ 𝐴𝑀. 𝑀𝑚
(𝑢𝑚)

refers to the last machine in the set 𝐶𝑀𝑚

Parameters

𝑚 Number of components

𝑢𝑔 Number of machines processing individual component g

𝑝 Number of products

𝑛𝑗 Number of jobs belonging to product j

𝑞 Number of time slots, 𝑞 = ∑ 𝑛𝑗
𝑚
𝑖=1

Sijj’ Setup time while changing from product j to j’ on machine (if j=j’, then

setup time is for the same product change)

Rij Run time of product j on machine i

djk Due date of job k of product j

rjk Release time of job k of product j

ai Machine availability of machine i

zi Number of buffer storage after machine i

17

ti Minimum wait time after being processed on machine i

𝛼 Producer’s weight

𝛽 Customers’ weight

wjk Weights assigned to job k of product j;

Ei Restart time of machine i at the start of each day

STmax Maximum value of setup time

STmin Minimum value of setup time

WTmax Maximum value of weighted tardiness

WTmin Minimum value of weighted tardiness

BM Big-M, a large number

Sh Number of shift each day

Note: A shop environment with m = 2, u1 = 2 and u2 = 1 would correspond to the layout

in Figure 2.

Decision Variables

Tsil Start time of slot l on machine i

Tfil Finish time of slot l on machine i

Tssijk Start time of batch k of product j on machine i

Tffijk Finish time of batch k of product j on machine i

Wjkl 1, if job k of product j is assigned to slot l; 0 else

Yjlj’(l+1) 1, if product j is processed in slot l and j’ is processed in slot (l + 1); 0 else

STil Setup time at time slot l on machine i

Hsil Integer variable representing the starting day of slot l on machine i

Tjk Tardiness of a job k of product j

Model

𝑀𝑖𝑛 𝑍 = 𝛼
(∑ ∑ 𝑆𝑇𝑖𝑙

𝑞
𝑙=1𝑖∈𝑀 − 𝑆𝑇𝑚𝑖𝑛)

(𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛)
− 𝛽

(∑ ∑ 𝑤𝑗𝑘 ∗ 𝑇𝑗𝑘
𝑛𝑗

𝑘=1
𝑝
𝑗=1 − 𝑊𝑇𝑚𝑖𝑛)

(𝑊𝑇𝑚𝑎𝑥 − 𝑊𝑇𝑚𝑖𝑛)
 (4.4)

18

Subject to:

∑ 𝑊𝑗𝑘𝑙 = 1 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.5)𝑞
𝑙=1

∑ ∑ 𝑊𝑗𝑘𝑙

𝑛𝑗

𝑘=1

= 1 𝑙 ∈ 𝑄 (4.6)

𝑝

𝑗=1

−𝐵𝑀(1 − 𝑊𝑗𝑘𝑙) ≤ 𝑇𝑠𝑠𝑖𝑗𝑘 − 𝑇𝑠𝑖𝑙 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.7)

𝐵𝑀(1 − 𝑊𝑗𝑘𝑙) ≥ 𝑇𝑠𝑠𝑖𝑗𝑘 − 𝑇𝑠𝑖𝑙 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.8)

𝑇𝑓𝑖𝑙 = 𝑇𝑠𝑖𝑙 + ∑ ∑ (𝑊𝑗𝑘𝑙 ∗ 𝑅𝑖𝑗) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.9)
𝑛𝑗

𝑘=1
𝑝
𝑗=1

𝑇𝑓𝑓𝑖𝑗𝑘 = 𝑇𝑠𝑠𝑖𝑗𝑘 + 𝑅𝑖𝑗 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.10)

𝑇𝑠𝑖(𝑙+1) ≥ 𝑇𝑓𝑖𝑙 + 𝑆𝑇𝑖(𝑙+1) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.11)

𝑇𝑠𝑖1 ≥ 𝑎𝑖 + 𝑆𝑇𝑖1 + 𝐸𝑖 𝑖 ∈ 𝑀 (4.12)

𝑇𝑠𝑠𝑖𝑗𝑘 ≥ 𝑟𝑗𝑘 𝑖 ∈ 𝑆𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.13)

𝑇𝑠𝑠𝑖′𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 + 𝑡𝑖 𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.14)

∑ ∑ 𝑌𝑗𝑙𝑗′(𝑙+1) = 1 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.15)

𝑝

𝑗′=1

𝑝

𝑗=1

 𝑌𝑗𝑙𝑗′(𝑙+1) ≤ ∑ 𝑊𝑗𝑘𝑙

𝑛𝑗

𝑘=1

 𝑗, 𝑗′ ∈ 𝑃; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.16)

𝑌𝑗𝑙𝑗′(𝑙+1) ≤ ∑ 𝑊𝑗𝑘𝑙

𝑛
𝑗′

𝑘=1

 𝑗, 𝑗′ ∈ 𝑃; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.17)

𝑆𝑇𝑖𝑙 = ∑ ∑ (𝑌𝑗𝑙𝑗′(𝑙+1) ∗ 𝑆𝑖𝑗𝑗′) 𝑝
𝑗′=1

𝑝
𝑗=1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.18)

𝑆𝑇𝑖1 = ∑ ∑(𝑊𝑗𝑘1 ∗ 𝑆𝑖0𝑗

𝑛𝑗

𝑘=1

)

𝑝

𝑗=1

 𝑖 ∈ 𝑀 (4.19)

𝑇𝑠𝑖𝑙 ≥ 𝑇𝑓
𝑖′(𝑙−𝑧𝑖) 𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑙 ∈ 𝑄 (4.20)

𝐻𝑠𝑖𝑙 ≥ 𝑇𝑠𝑖𝑙/(24 ∗ 60) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.21)

𝐻𝑠𝑖𝑙 ≤ 𝑇𝑠𝑖𝑙/(24 ∗ 60) + 1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.22)

𝑇𝑠𝑖𝑙 ≥ (24 ∗ 60) ∗ (𝐻𝑠𝑖𝑙 − 1) + 𝐸𝑖 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.23)

(24 ∗ 60) ∗ 𝐻𝑠𝑖𝑙 − 𝑇𝑓𝑖𝑙 ≥ (3 − 𝑆ℎ) ∗ 480 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.24)

𝑇𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 − 𝑑𝑗𝑘 𝑖 ∈ 𝐴𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.25)

19

𝑇𝑗𝑘 ≥ 0 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.26)

𝑊𝑗𝑘𝑙 ∈ {0,1}; 𝑌𝑗𝑙𝑗′(𝑙+1) ∈ {0,1} ; 𝐻𝑠𝑖𝑙 ∈ 𝑖𝑛𝑡

 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.27)

Model Description

The proposed mathematical model is a mixed-integer linear programming model with both

binary and general-integer variables. The objective function of the model is to minimize

the linear combination of normalized setup time and normalized weighted tardiness as

presented in (4.4). A slot based mathematical model is formulated. It is assumed that each

machine consists of a set of slots which get occupied by the jobs being processed on that

machine. Using these slots, the position of jobs in a given sequence can be identified. In

this model, the number of slots is equal to the total number of jobs required to be scheduled.

On every machine, each job can be assigned to only one slot. In addition, each slot on a

machine should contain only one job. Constraint (4.5) states the requirement that each job

must be processed only once on each machine, i.e., each job can be assigned to only one

slot on every machine. Constraint (4.6) states that each machine can only process one job

at a time, i.e., each slot can contain only one job. Constraint (4.7) and (4.8) are the big-M

constraints, which state that if a job is assigned to a particular slot of a machine, the start

time of that slot should be the same as the start time of the job. Constraint (4.9) defines that

the ending time of a slot must be greater than the starting time of the slot plus the run time

of the job assigned to that slot. Constraint (4.10) expresses the requirement that the ending

time of the job must be greater than the starting time of the job plus the run time of the job

on that machine. Constraint (4.11) states that, for every machine, the starting time of a slot

must be greater than the ending time of the previous slot plus the setup time required for

the changeover between jobs assigned to these slots. Constraint (4.12) states that the

starting time of the first slot of a machine must be greater than the machine availability

time plus the setup time. Constraint (4.13) states that, for every machine belonging to set

SM (Set of machines, which first processes each individual components), the start time of

a job is greater that the release time of the job. Constraint (4.14) states that the start time

of a job on a machine must be greater than the ending time of that job on predecessor

machine plus the minimum storage time between these machines. Constraint (4.15), (4.16)

20

and (4.17) work together to quantify a binary variable representing change in batch or

product between successive slots. Constraints (4.18) and (4.19) obtain the setup time of

every slot of each machine. Constraint (4.20) states that the number of jobs stored between

machines cannot be more than the storage capacity, i.e. if the storage capacity between

machine 1 and 2 is five, then machine 2 must have completed processing of 3rd job in its

sequence (or 3rd slot) if machine 1 needs to start processing 8th batch in its sequence. The

storage space is emptied only if the job is completed on the downstream machine. If a job

is in-progress, then the storage space is partially occupied, which prevents the upstream

machine from using this space for storage. Constraints (4.21), (4.22), (4.23), and (4.24)

work together to ensure that a job started on a machine gets completed before the machine

becomes unavailable at the end of the shift. Constraints (4.25) and (4.26) calculate the

tardiness for the batch. (4.27) defines the variable used.

Note: If the production occurs in three shifts, i.e., continuous machine availability, then

constraint (4.21) through (4.24) would not be required.

4.3. MILP2

MILP2 is the mathematical model formulated for non-permutation sequence. The

indices, sets and parameters are identical to the MILP1 and hence, is not repeated below.

The number of binary decision variables in this formulation is higher as compared to

MILP1, to allow for different job sequences on different machines.

Decision Variables

Tsil Start time of slot l on machine i

Tfil Finish time of slot l on machine i

Tssijk Start time of batch k of product j on machine i

Tffijk Finish time of batch k of product j on machine i

Wijkl 1, if job k of product j is assigned to machine i in slot l; 0 else

21

Yijlj’(l+1) 1, if product j is processed in slot l and j’ is processed in slot (l + 1) on

machine i; 0 else

STil Setup time at time slot l on machine i

Hsil Integer variable representing the starting day of slot l on machine i

Tjk Tardiness of job k of product j

Model

𝑀𝑖𝑛 𝑍 = 𝛼
(∑ ∑ 𝑆𝑇𝑖𝑙

𝑞
𝑙=1𝑖∈𝑀 − 𝑆𝑇𝑚𝑖𝑛)

(𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛)
− 𝛽

(∑ ∑ 𝑤𝑗𝑘 ∗ 𝑇𝑗𝑘
𝑛𝑗

𝑘=1
𝑝
𝑗=1 − 𝑊𝑇𝑚𝑖𝑛)

(𝑊𝑇𝑚𝑎𝑥 − 𝑊𝑇𝑚𝑖𝑛)
 (4.28)

Subject to:

∑ 𝑊𝑖𝑗𝑘𝑙 = 1 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.29)𝑞
𝑙=1

∑ ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛𝑗

𝑘=1

= 1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.30)

𝑝

𝑗=1

−𝐵𝑀(1 − 𝑊𝑖𝑗𝑘𝑙) ≤ 𝑇𝑠𝑠𝑖𝑗𝑘 − 𝑇𝑠𝑖𝑙 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.31)

𝐵𝑀(1 − 𝑊𝑖𝑗𝑘𝑙) ≥ 𝑇𝑠𝑠𝑖𝑗𝑘 − 𝑇𝑠𝑖𝑙 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.32)

𝑇𝑓𝑖𝑙 = 𝑇𝑠𝑖𝑙 + ∑ ∑ (𝑊𝑖𝑗𝑘𝑙 ∗ 𝑅𝑖𝑗) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.33)
𝑛𝑗

𝑘=1
𝑝
𝑗=1

𝑇𝑓𝑓𝑖𝑗𝑘 = 𝑇𝑠𝑠𝑖𝑗𝑘 + 𝑅𝑖𝑗 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.34)

𝑇𝑠𝑖(𝑙+1) ≥ 𝑇𝑓𝑖𝑙 + 𝑆𝑇𝑖(𝑙+1) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.35)

𝑇𝑠𝑖1 ≥ 𝑎𝑖 + 𝑆𝑇𝑖1 + 𝐸𝑖 𝑖 ∈ 𝑀 (4.36)

𝑇𝑠𝑠𝑖𝑗𝑘 ≥ 𝑟𝑗𝑘 𝑖 ∈ 𝑆𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.37)

𝑇𝑠𝑠𝑖′𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 + 𝑡𝑖 𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.38)

∑ ∑ 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) = 1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.39)

𝑝

𝑗′=1

𝑝

𝑗=1

 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ≤ ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛𝑗

𝑘=1

 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.40)

𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ≤ ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛
𝑗′

𝑘=1

 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.41)

22

𝑆𝑇𝑖𝑙 = ∑ ∑ (𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ∗ 𝑆𝑖𝑗𝑗′) 𝑝
𝑗′=1

𝑝
𝑗=1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞 (4.42)

𝑆𝑇𝑖1 = ∑ ∑(𝑊𝑖𝑗𝑘1 ∗ 𝑆𝑖0𝑗

𝑛𝑗

𝑘=1

)

𝑝

𝑗=1

 𝑖 ∈ 𝑀 (4.43)

𝑇𝑠𝑖𝑙 ≥ 𝑇𝑓
𝑖′(𝑙−𝑧𝑖) 𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑙 ∈ 𝑄 (4.44)

𝐻𝑠𝑖𝑙 ≥ 𝑇𝑠𝑖𝑙/(24 ∗ 60) 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.45)

𝐻𝑠𝑖𝑙 ≤ 𝑇𝑠𝑖𝑙/(24 ∗ 60) + 1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.46)

𝑇𝑠𝑖𝑙 ≥ (24 ∗ 60) ∗ (𝐻𝑠𝑖𝑙 − 1) + 𝐸𝑖 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.47)

(24 ∗ 60) ∗ 𝐻𝑠𝑖𝑙 − 𝑇𝑓𝑖𝑙 ≥ (3 − 𝑆ℎ) ∗ 480 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄 (4.48)

𝑇𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 − 𝐷𝐷𝑗𝑘 𝑖 ∈ 𝐴𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.49)

𝑇𝑗𝑘 ≥ 0 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗 (4.50)

𝑊𝑖𝑗𝑘𝑙 ∈ {0,1}; 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ∈ {0,1} ; 𝐻𝑠𝑖𝑙 ∈ 𝑖𝑛𝑡

 𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗; 𝑙 ∈ 𝑄 (4.51)

Model Description

The functionality of the model is identical to MILP1. The only difference is the

increase in the number of binary variables denoted by W and Y. In MILP2, there is an

additional index i, representing machines, included in these binary variables. In MILP2,

the sequence of jobs might be different on different machines. Hence, the additional index

is required to be able to identify the position of each job on each machine. The number of

these binary variables in MILP2 is given by the number of binary variables in MILP1 times

the number of machines in the system. This increase in binary variables causes the MILP2

to be much more complex as compared to MILP1.

4.4. Choice of the Objective Function

This research aims to simultaneously minimize two criteria, one representing

producer’s interest and the other representing customers’ interest. In most of the scheduling

problems, producer’s interest is represented by minimizing makespan or minimizing sum

of completion times. These criteria depend on the completion time of jobs on the last

machine in the flow line. Hence, the schedule obtained from these criteria might not yield

23

the best performance values for upstream machines. Consider a two-machine flow shop

with limited buffer storage in between and a minimum wait time of two hours. Production

occurs for a single shift each day, i.e., production time available each day is 480 minutes.

Table 1-4 shows the related data for this problem. Figure 3 shows a Gantt chart of two

sequences: schedule 1 considering permutation sequence and schedule 2 considering non-

permutation sequence.

In these schedules, jobs J11, J32 and J21 are processed in day 1 on M1, stored

overnight and processed the next day on M2. Changing the order of these jobs on M1, does

not affect M2 since these jobs are processed the next day on M2. The order of these jobs on

M1 is different for sequences 1 and 2. In sequence 1, the order for these jobs on M1 is J11-

J32-J21, whereas in sequence 2, the job order on M1 is J32-J11-J21. This change has decreased

the completion time of the last job on M1 of day 1 by 6 minutes in the case of sequence 2

(schedule 1: 479 min., schedule 2:473 min.). However, the timings on M2 is not affected

by this change. Because of this, the values of the criteria, makespan and sum of completion

time, is the same for both sequences. Thus, these criteria won’t be able to differentiate

Table 1. Runtimes of the product

Machine P1 P2 P3

M1 65 95 110

M2 85 120 95

Pi refers to the ith product and Mk refers

to the kth machine

Table 2. Machine availability times

Machine

Availability

Time

Startup

time

M1 65 30

M2 265 20

Table 3. Setup times

Subsequent Jobs

Preceding

Jobs

M1 P1 P2 P3

Ref, 10 15 5

P1 5 9 10

P2 15 4 15

P3 9 10 5

Preceding

Jobs

M2 P1 P2 P3

Ref. 10 15 5

P1 8 12 15

P2 15 5 10

P3 10 14 4

Table 4. Due date and release time of a job

Job J11 J12 J21 J31 J32

Release time 0 35 130 0 200

Due date 1700 1920 1800 480 1790

Jij refers to the jth job belonging to the ith product

24

between sequence 1 and sequence 2. In contrast, minimizing the sum of setup time can

capture this difference. In this case, minimizing setup time is equivalent to minimizing

makespan, contributed by each machine on every production day. Hence, the sum of setup

time is chosen to represent the producer’s interest in this research.

4.5. Complexity of the Problem

Scheduling problems can be characterized comprehensively using the mathematical

model. In this model, if the value of producer’s weight (α) is equal to zero, then the problem

turns into a single criteria objective function of minimizing weighted tardiness.

Furthermore, if the number of components (m) is considered to be one and there is only

one machine in the first stage, then the problem converts to a two-machine regular flow

shop problem. Thus, the two-machine flow shop problem is a special case of the assembly

flow shop problem addressed in this research. Koulamas (1994) proved that the two-

Figure 3. Gantt chart for a PN and NPN Schedule in a two-machine flow shop

25

machine flow shop problem with tardiness minimization is NP-hard in a strong sense. Thus,

the research problem can easily be shown to be NP-hard in a strong sense since the special

case of the research problem is also NP-hard in a strong sense.

Despite the recent technological advances on processing speeds, it is unlikely that

an optimal solution for an NP-hard problem can be obtained within a reasonable time. Only

small-size problems can be solved to optimality within a reasonable computation time

using an optimization software. For medium- and large-size problems, the software often

fails to identify the optimal solution. Therefore, an algorithm needs to be developed to

obtain optimal or near-optimal solution for medium- and large-size problems.

26

5. HEURISTIC ALGORITHM

Heuristics and meta-heuristics are the main approaches used to solve medium- and

large-size problems for an NP-hard scheduling problem. Metaheuristic algorithms usually

show a better performance as compared to heuristic algorithms due to their ability to avoid

being trapped in local optima. Metaheuristic algorithms can generally be classified into

local search-based and population-based algorithm. In this research, a local search-based

metaheuristic (short-term tabu search) and a hybrid algorithm, combining local search and

population-based meta-heuristic (tabu search/path relinking), is proposed. A local search-

based algorithm searches for a solution in the local area in the solution space. It starts with

an initial solution which is used as the initial seed. At each iteration, the algorithm searches

the neighborhood of the seed solution to find a possible solution for the next seed. The next

seed is chosen based on its quality as compared to other neighborhood solutions. A

population-based algorithm starts with a series of solutions called initial population. At

each iteration, the algorithm replaces the older population with another population with

superior characteristics.

Al-Anzi and Allahverdi (2006) showed that tabu search methods are good

metaheuristics for assembly flow shop problems. They also stated that the hybrid tabu

search algorithm performs better than the regular tabu search method. Shahvari and

Logendran (2017) proposed two heuristics, based on tabu search (TS) and hybrid tabu

search/path relinking (TS/PR), for a hybrid flow shop batching problem. They showed that

the hybrid TS/PR outperforms the TS algorithm, especially for complex problems. In this

research, four algorithms are proposed where two algorithms are based on short-term TS

and the other two algorithms are based on tabu search/path relinking. The nomenclature of

the algorithms is shown in Table 5.

Table 5. Nomenclature of algorithms used in this research

Sequence Short-term tabu search Tabu search/path relinking

Permutation ALG1 ALG3

Non-permutation ALG2 ALG4

27

5.1. Tabu Search

Tabu search was first proposed by Glover (1986) to solve complex optimization

problems. The concept of TS was finalized later by Glover (1989, 1990) and Laguna et al.

(1991). Tabu search has been used extensively to solve complex scheduling problems in

the past and all these studies have shown that this method is capable of producing good

quality solutions (Nowicki and Smutnicki 1996, Eren and Güner 2006, Mehravaran and

Logendran 2012, Shahvari et al. 2012). Aggoune (2004) proposed a tabu search-based

algorithm for a flow shop problem with availability constraint. Liao and Huang (2010)

developed two heuristics, based on tabu search, to solve a non-permutation flow shop

problem with the objective of minimizing tardiness.

Tabu search is a refined form of a popular local search heuristic, namely hill

climbing heuristic. The hill climbing heuristic starts with an initial solution and moves

progressively towards a better solution at each iteration. The heuristic terminates when a

local optimum is found, i.e. if a better solution cannot be found. Tabu search solve this

issue by settling for a solution that is inferior to the previous solution. Similar to the hill

climbing heuristic, TS starts with an initial solution, called seed, and employs a set of

moves to generate the neighborhood solutions from the seed. The neighborhood solutions

are evaluated based on the objective function value and the best solution found is chosen

as a seed for the next iteration. If a solution better than the previous iteration is not found,

the algorithm settles for an inferior solution. TS employs a flexible memory structure to

store the information during the search process. This enables the algorithm to guide the

search in a more effective and economical manner. Tabu list is a short-term memory

structure which stores solutions or configurations which have been explored in the recent

past. If a solution is marked as tabu, then it is disregarded which prevents the algorithm

from selecting solutions which have already been explored. However, this restriction can

be overridden, if the disregarded solution results in a solution quality which is better than

the aspiration level. The aspiration level is the best quality solution found so far in the

search algorithm.

The following are the major components of the tabu search:

28

• Initial Solution: An initial solution (IS) is required to trigger the search

algorithm. It can be chosen randomly or generated by a systematic IS generating

mechanism.

• Neighborhood Functions: A neighborhood function, also called perturbations,

generates a set of alternate solutions from the seed. It employs a set of moves

to change the seed solution and thus, generates its neighborhood solutions.

• Objective function evaluation: The purpose of the algorithm is to identify an

optimal or near-optimal solution with minimum objective function value.

Hence, a mechanism is needed to evaluate the objective function value of each

solution generated during the search procedure.

• Tabu List: At each iteration, the move that resulted in the best solution is stored

in the tabu list (TL). As long as the move is in the TL, the move is considered

restricted, i.e., the solution obtained using tabu move cannot be selected unless

the solution satisfies the condition for an override, meaning that the solution

quality must be better than the aspiration criteria. This tabu restriction prevents

the search algorithm from revisiting the solution previously explored and thus

enables it to avoid being trapped in the same search space. The number of

iterations for which a move remains tabu is determined by the tabu list size

(TLS). In its simplest form, the TLS is set as 1, which means there is only one

move stored in the TL and this move corresponds to the move that was used to

generate the new seed in the previous iteration. The neighborhood of the current

seed always contains the parent seed. If the current seed is inferior to the parent

seed, then at current iteration, the parent seed might be selected again. This

causes the algorithm to cycle back and forth between the same set of solutions.

However, this issue is prevented due to the tabu status placed on the move. TL

is updated by removing the earliest entry to the list before adding the new move

as tabu. TL is a short-term memory structure.

29

• Aspiration Level: The aspiration level (AL) records the objective function

value of the best solution found so far by the search algorithm. Because the TL

only stores a part of the information (moves) about the solution, some good

solutions might be discarded. To prevent this, a tabu restriction override is

included, which allows a solution with tabu move to be selected if the solution

is of better quality than the AL.

• Temporary Candidate List: A temporary candidate list (TCL) contains the

objective function value of all the neighborhood solutions from the current seed.

The TCL is updated at each iteration when a new seed is selected.

• Candidate List: The best solution found at each iteration, including the initial

solution, is included in the candidate list (CL). Each solution in the CL has a

number of stars associated with it, which denotes the status of the solution: local

optimum (2 stars), improving solution or potential local optimum (1 star), non-

improving solution (0 star). The CL is also an explicit memory structure which

prevents the duplication of the solution into the CL.

• Index List: If a solution turns out to be a local optimum, which is at least as

good as both its parent and child, then it is included in the index list (IL). At the

end of the search, the best solution in the IL is selected as the final solution.

• Stopping Criteria: The search algorithm terminates if certain stopping criteria

are met. Several stopping criteria can be used, such as maximum number of

iterations without improvement (MIWOI), maximum number of local optima

in the IL (MIL), or maximum computational time (MCT). If a new solution

added into the CL is not better than the previous entry into the CL, the iteration

without improvement (IWOI) is increased by one; else, it is reset to zero. If the

value of IWOI is greater than MIWOI, or the number of entries into the IL is

greater than the MIL, or the maximum computation time is reached, the search

algorithm is terminated.

30

 The following subsection describes the details of the components used in the

proposed algorithm.

5.1.1. Initial Solution Finding Mechanism

An initial solution finding mechanism is utilized to generate the IS for the search

algorithm. A randomly generated IS is usually of poor quality and hence is time consuming

or impossible to improve the solution to an optima. Logendran and Subur (2004) have

shown that the final solution obtained from TS is sensitive to the quality of the IS used.

Therefore, an IS generating mechanism is used to find a good quality IS. Simple

dispatching rules have been used in the past to generate initial solutions for metaheuristic

algorithms. For tardiness related problems, dispatching rules such as earliest due date

(EDD), hybrid critical ratio (HCR), minimum slack (MSLACK) can be used. For

completion time related problems, shortest processing time (SPT) can be used. For a bi-

criteria problem with weighted objective function, a combination of these rules can be used.

Bozorgirad and Logendran (2013), and Shahvari and Logendran (2017) proposed an IS

finding mechanism, inspired from weighted shortest processing time (WSPT) and

weighted earliest due date (WEDD), for a bi-criteria scheduling problem with the objective

of minimizing the linear combination of weighted flowtime and weighted tardiness. A

producer’s sequence (PS) and customers’ sequence (CS) is generated using WSPT and

WEDD, respectively. Then the PS and CS are combined, considering the normalization of

their positional values (𝛼. 𝑃𝑆 + 𝛽. 𝐶𝑆). In this research, The PS and CS and generated as

follows.

Producer’s Sequence: The goal of the PS is to minimize the total setup time. The

smallest setup time (SST) rule is used to determine the PS. In this rule, priority is given to

the job with the least changeover time from the previous job assigned to that machine. To

assign the first job, reference setup time is used. If two or more jobs have the same setup

time, tie is broken in favor of the job that has the smallest product identification number.

If two or more jobs have the same setup time and product ID, ties are broken in favor of

the job with the smallest job identification number.

31

Customers’ Sequence: The goal of the customer is to minimize the weighted

tardiness. To determine the CS, WEDD rules is used. This rule assigns priority to jobs with

the least due date to weight ratio 𝑑𝑗𝑘/𝑤𝑗𝑘. With this rule, the job with the smallest due date

and largest weight is scheduled first. Ties are broken in the same manner as in PS.

After finding the order of jobs in both PS and CS, the normalized positional value

of each job is obtained by the formula α. PS + β. CS), where PS denotes the order of the

job in producer’s sequence and CS denotes the order of the job in customer’s sequence.

The job with the least normalized positional value is sequenced first in the final sequence.

Only permutation sequence is considered during IS generation, i.e., for both

permutation and non-permutation algorithms, the IS is a permutation sequence. The

flowchart for IS generating mechanism is shown in Figure 4. The IS generation mechanism

consists of the following steps:

1. Initially, set g = 1.

2. Select the gth machine in the subset SM (i.e., the first machine required by the

gth component).

3. Include all jobs into a set NSJ.

4. Select the jobs from NSJ that are released before the machine becomes

available. If no such job exists, select the job with the earliest release time.

5. If more than one job remains from the first two steps, the job with the smallest

normalized positional value is chosen. Ties are broken in favor of the job with

the smaller index (product ID used in conjunction with job ID), as explained in

Producer’s Sequence).

6. Remove the selected job from NSJ.

7. Repeat steps 4-6 until NSJ is empty.

8. Label the sequence obtained as ISg

9. Set g = g+1;

10. Repeat steps 1 to 6 until g > m

11. Evaluate each ISg (g = {1, 2, …., m}) in terms of the objective function value

and select the best one as the IS.

32

Figure 4. IS Flowchart

33

5.1.2. Neighborhood Function

After the initial solution is generated, it is set as seed. A set of moves are performed

on this seed to find neighborhood solutions (NS). These moves cause changes in the

structure of the seed. There are two types of moves used in this research.

Swap move: In this move, the position of two jobs in a sequence is exchanged.

Consider that the sequence of jobs on machine 1 (M1) is J11, J12, J21, J31, then the exchange

moves between jobs in positions 1 and 3 would result in J21, J12, J11, J31 as a new sequence.

This move is illustrated in Figure 5.

Insert move: In this move, a job from a particular position of a sequence is inserted

into another position. The old position and new position of the job cannot be adjacent, i.e.,

|old position -–new position| ≥ 2. Insert move from a position to an adjacent position would

result in the same sequence as the exchange move. Consider that the sequence of jobs on

machine 1 (M1) is J11, J12, J21, J31, then the insert moves of a job from position 1 into

position 3 would result in J12, J21, J11, J31 as a new sequence. This move is illustrated in

Figure 6.

A combination of swap and insert moves are used to generate NS. There is a

difference in the neighborhood structure for permutation and non-permutation sequence,

Figure 5. Swap move

Figure 6. Insert move

34

which is shown in Fig. 7 and Fig. 8. The sequence shown in this figure corresponds to a 4-

machine assembly flow shop shown in Figure 2. Consider a job-pair (J11 and J12) which is

selected for swapping. In the case of permutation, only one neighborhood solution can be

generated from this job pair. However, in the case of non-permutation, 15 NS (i.e., (2m-1))

can be generated with a single job-pair by selecting various combinations of machines in

which the swap move is applied. These combinations of machines are 1; 2; 3; 4; 1 and 2; 1

and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; 1,2 and 3; 1,2, and 4; 1,3 and 4; 2,3 and 4; 1,2,3

and 4. In the first combination, the sequence is swapped only on machine 1; in the fifth

combination, the sequence is swapped on machines 1 and 2; and so on. Liao and Huang

(2010) used this structure to generate NS for non-permutation sequence. While the example

above is shown for swap moves, the same concept applies for insert moves as well. Hence,

the size of neighborhood solution set is much larger for non-permutation sequence. With

this increase in the size of neighborhood solution set, the computational time required by

the algorithm also increases, as each solution in the set must be evaluated.

Figure 7. Neighborhood structure for permutation

Figure 8. Neighborhood structure for non-permutation

Job seq. on machines: J11 J12 J13 J21 J22

1st job-pair

1 Neighborhood

Job seq. on machine 1: J11 J12 J13 J21 J22

Job seq. on machine 2: J11 J12 J13 J21 J22

Job seq. on machine 3: J11 J12 J13 J21 J22

Job seq. on machine 4: J11 J12 J13 J21 J22

1st job-pair

15 Neighborhoods

35

Two types of perturbation mechanisms are used in this research. Perturbation 1

(PTB1) only considers an adjacent pair for swapping, whereas perturbation 2 (PTB2)

considers all possible pairs for swap and insert moves. In this research, the TS which uses

PTB1 is called slight TS and the TS which uses PTB2 is called strong TS. The possible

moves for PTB1 and PTB2 are shown in Table 6. As mentioned before, each possible move

shown in Table 6 results in one neighborhood solution for PN sequence and 15 NS for NPN

sequence. Since PTB1 has a small neighborhood structure as compared to PTB2, the

computational time of slight TS is lower than that of strong TS. However, the quality of

the solution is superior in the case of strong TS (Aryal and Logendran, 2018). The short-

term TS, i.e., ALG1 and ALG2, uses PTB2 in this research.

5.1.3. Evaluation of the Objective Function

Each neighborhood solution generated during the perturbation, must be evaluated

in terms of the objective function. A weighted bi-criteria objective function with setup time

and weighted tardiness is used in this research. As discussed in section 4.1, these two

criteria are normalized using extreme values, i.e., minimum and maximum, of these criteria

(refer to equation 4.2). These extreme values are obtained as shown in Table 7.

Table 6. Moves for PTB and PTB2

Perturbation Move type Possible moves

PTB1 Swap 1-2,2-3,3-4,4-5

PTB2
Swap 1-2,1-3,1-4,1-5,2-3,2-4,2-5,3-4,3-5,4-5

Insert 1-3,1-4,1-5,2-4,2-5,3-1,3-5,4-1,4-2,5-1,5-2,5-3

Swap move (a-b) = jobs in position a and b are swapped

Insert move (a-b) = job in position a is inserted into position b

Table 7. Extreme values of the criteria

Criteria Minimum Value Maximum Value

Total setup

time

Value of the criteria from a

solution obtained using SST

Value of the criteria from a

solution obtained using LST

Total weighted

tardiness
0

Value of the criteria from a

solution obtained using WLDD
SST= smallest setup time, LST= largest setup time, WLDD = weighted latest due date

36

The minimum value for the total setup time (STmin) is obtained using smallest setup

time (SST) rule. In this rule, a sequence is obtained for each machine independently by

giving priority to the job with the smallest setup time with the previous job scheduled on

that machine. Similar to initial solution generation, ties are broken in favor of the job with

smaller index. The sum of the setup time for the sequence obtained on each machine gives

the minimum total setup time. The maximum value for the total setup time (STmax) is

obtained using largest setup time rule (LST) rule which gives priority to jobs with largest

setup time with the previous job scheduled on a machine. The minimum weighted tardiness

(WTmin) is considered as zero because in an ideal situation, no jobs would be tardy. The

maximum value of the weighted tardiness (WTmax) is obtained with the methodology

similar to that of the initial solution generation mechanism. However, instead of

prioritizing jobs using normalized positional values, priority is given to the job with the

largest due date to weight ratio. The tardiness value of this sequence is evaluated and set

as WTmax. The extreme values used to calculate the normalized composite objective

function (refer to equation 4.3) are considered to be the same for PN and NPN sequence.

This is done so that the performance of PN vs NPN sequence can be compared over the

same range of maximum and minimum values. After the extreme values are obtained, the

NCOF is computed by calculating the completion times and setup times of the sequence.

 The total setup time of a sequence can be obtained easily from the setup

information. To calculate the weighted tardiness, the completion time of the jobs at the

final assembly stage needs to be obtained. In a typical flow shop, this is done by calculating

the completion time of all jobs sequentially at each stage, i.e. first stage, followed by the

second stage and so on. However, this approach is not applicable for this research problem

due to limited storage space constraint. Because of this constraint, the predecessor machine

must determine whether the successor machine has processed enough jobs for the storage

space to be available or else, the operation is blocked on the predecessor machine. Hence,

in order to calculate the completion time, the algorithm goes back and forth between

different machines to determine whether the storage space is empty (required for

predecessor machine) and whether the job is ready for processing (required for successor

machine). A counter ci is used for each machine i, which represents the order of a job in

37

the sequence which is to be processed on a machine, i.e., if c1 = 1, then the first job in the

sequence needs to be processed. Initially, the counters are set to one. The algorithm then

moves sequentially between machines starting with machine belonging to SM, followed by

EM and then AM. At each iteration, the completion time of the job at the counter value

position of the sequence is calculated. For example, if the counter c1 is equal to 5 at a

particular iteration, then the completion time of the job occupying the fifth position of the

M1 sequence is calculated. Completion time is calculated using the formula in 5.1. If the

calculated completion time of the job falls during non-production hours (when the

machines are not available), then the processing of the job is postponed to the next available

day. This is done by increasing the machine availability time to the earliest time it is

available on the next production day. For example, if the calculated completion time of a

job equals 500 min., then this completion time is not valid (since a single shift runs only

480 min. each day). Hence, the machine availability time is increased to the start time of

next production day plus the equipment restart time, i.e. 1440 (start of next shift) + 25 min.

(equipment re-start time).

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑗𝑜𝑏

= 𝑀𝑎𝑥 (𝑗𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑡𝑦 𝑡𝑖𝑚𝑒 + 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒)

+ 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 (5.1)

The job release times for different machines are calculated as follows:

• For machine 𝑖 ∈ 𝑆𝑀

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑟𝑗𝑘 (5.2)

Here, the job release time is equal to the initial release time of the job.

• For machine 𝑖 ∈ 𝑀|𝑖 ∉ 𝑆𝑀, 𝐴𝑀

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑓𝑓𝑖′𝑗𝑘 + 𝑡𝑖′ ∶ 𝑖 ∈ 𝐹𝑀𝑖′ (5.3)

Here, the job release time is equal to the completion time on predecessor

machine plus the minimum storage time.

38

• For machine 𝑖 ∈ 𝐴𝑀

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑀𝑎𝑥 (𝑇𝑓𝑓𝑖′𝑗𝑘 + 𝑡𝑖′): 𝑖′ ∈ 𝐸𝑀 (5.4)

Here, the job release time is equal to the maximum completion time on

predecessor machine plus the minimum storage time.

For the 4-machine assembly flow shop shown in Figure 2, the job release time

would be evaluated as follows:

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = {

𝑟𝑗𝑘, 𝑓𝑜𝑟 𝑖 = 1,3

𝑇𝑓𝑓1𝑗𝑘 + 𝑡1, 𝑓𝑜𝑟 𝑖 = 2

𝑀𝑎𝑥(𝑇𝑓𝑓2𝑗𝑘 + 𝑡2, 𝑇𝑓𝑓3𝑗𝑘 + 𝑡3), 𝑓𝑜𝑟 𝑖 = 4

The iteration continues until all of the counter values are equal to N. If at any

iteration, the machine is blocked due to storage space unavailability or job not completed

on previous machine, then scheduling for that machine is skipped without updating the

counter. Hence, at the next iteration, the counter value for that machine will be the same

and the algorithm will try to schedule the same job again.

Infeasible solutions: In a flow shop, there is interdependency between positions of

a job in different stages/machines. In a permutation sequence, the job sequence across all

machines is the same. Hence, the interdependency is not a concern. In non-permutation

sequence, however, performing a perturbation may result in increase of idle times and even

infeasibility. Consider the job sequence on machines 1 and 2 to be seq-1a (J11, J22, J13, J21,

J12) and seq-2a (J22, J11, J12, J13, J21). If a perturbation is performed on seq-1a by swapping

the positions of J22 and J12, the new sequence would be seq-1b (J11, J12, J13, J21, J22) and

seq-2b (J22, J11, J12, J13, J21) for machines 1 and 2, respectively. Here, Job J22 is in the fifth

position in seq-1b and in the first position in seq-2b. So, machine 2 must wait a long time

before J22 is available for processing. If the number of silos between these machines is 4,

then the solution is infeasible. Jobs J11, J12, J13 and J21 are first processed by machine 1,

which fills up the storage silos. The processing of J22 is then halted because storage space

is not available. Machine 2 also cannot process the first job (J22) in its sequence because it

is not yet processed by machine 1. In order to avoid selection of infeasible solutions, a

39

penalty is imposed on the OFV of the infeasible solutions, so that the algorithm will move

away from infeasible solution space. For each storage constraint violation, a penalty of

0.25PD is imposed. PD refers to the difference between the positions of the same job on

two machines that are connected by a buffer storage. For example, if a job is at the sixth

position on a sequence for machine 1, and the same job is at the first position on sequence

for machine 2, then the PD of that job would be 5. The total penalty is calculated for each

storage violation and this penalty is added to a pre-set value of 1. Since, the NCOF for a

feasible sequence ranges from 0 to 1, the proposed method ensures that the OFV of

infeasible solutions is higher than that of feasible solutions.

5.1.4. Tabu list

TL is a short-term memory structure which prevents the search algorithm from

selecting solutions which have already been explored to avoid being trapped in local

optima. TL stores the most recent moves applied during the search. The entries in the TL

follows first-in-first-out (FIFO) rule. This means that once the TL reaches its maximum

size, the oldest entry is removed, and a new move is inserted into the TL. The number of

iterations for which the move remains in the TL is determined by TLS.

 In this research, two types of moves, swap and insert, are used to generate NS.

Hence, two types of tabu structure are implemented into the algorithm. As discussed in

section 5.2.2, a move can be applied to a partial set of machines in the case of non-

permutation sequence. Hence, the set of machines where the moves are applied also needs

to be included in the structure. If a job Jjk is swapped with another job Jj’k’ on machine i

and i’ (jk ≠ j’k’), the TL stores the index of the two jobs being swapped and the index of

the machines where the move was applied, i.e., 𝑃𝑠(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘: 𝐽𝑗′𝑘′)is stored in the TL.

𝑃𝑠(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘: 𝐽𝑗′𝑘′) indicates that jobs Jjk and Jj’k’ cannot be swapped on machine i and i’

until this move is removed from the TL. The above example shows that the move was

applied to two machines out of the entire machine set. However, this may vary as the move

can be applied to any subset of machines. In the case of permutation sequence, the moves

are always made on the entire set of machines. Hence, the above move would be

represented as 𝑃𝑠(𝑀𝑖(∀𝑖 ∈ 𝑀)|𝐽𝑗𝑘: 𝐽𝑗′𝑘′).

40

If a job Jjk is inserted from its current position p into another position p’ (p ≠ p’) on

machines i and i’, the TL stores the index of the job being inserted along with its position

before the move was applied and the index of the machines where the move was applied,

i.e., move 𝑃𝐼(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘, 𝑝) is stored in the TL. 𝑃𝐼(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘, 𝑝) indicates that the job

Jjk cannot be inserted into position p on machines i and i’ until this move is removed from

the TL. As in the case of swap move, the insert move can also be applied to any subset of

machines.

One of the characteristics of the problem in this research is the possibility of

multiple solutions with the same objective function value. The reasons for this issue are

non-continuous production and multiple jobs (belonging to the same product) having the

same run times and setup times. As shown in section 4.4, due to non-continuous

production, the job sequence on predecessor machines can be changed without affecting

the operation times of the successor machines. This results in multiple sequences having

the same job completion times in the final machines. Thus, the tardiness of these sequences

remains unchanged. In addition, the problem consists of multiple jobs belonging to the

same product. Since, the run time and setup time are associated with the product, these jobs

share the same run times and setup time as their parent product. Changing the position of

these jobs does not result in any change in the total setup time of the sequences. Due to the

combination of these two characteristics of the problem, multiple solutions with the same

objective function value exist. This creates an issue with the application of tabu list in the

algorithm.

TL prevents the algorithm from selecting a solution which was previously explored.

However, it does not prevent the algorithm from selecting a different solution with the

same objective function value (OFV). Hence, once a local optimum is reached, i.e., a

superior solution cannot be found in the neighborhood, the algorithm keeps selecting other

solutions with the same OFV until it finally terminates. Figure 10 shows the OFV of the

solutions in the CL illustrating this situation. The performance of the algorithm in this

instance is similar to that of a hill climbing heuristic. Therefore, to improve the

performance of the algorithm, a restriction is added to limit the number of solutions with

41

the same OFV into the CL. For example, if the maximum number of similar solutions

(MNSS) is equal to 2, then no more than 2 solutions with the same OFV can be entered

into the CL. This additional restriction forces the algorithm to settle for an inferior solution,

thus preventing the search from being trapped in the local optima. Table 4 shows the OFV of

the solutions in the CL using a TS algorithm incorporating this restriction. The algorithm without

MNSS restriction finds the best solution at entry #7 and keeps selecting other solutions with the

same OFV until it is terminated. The algorithm with the MNSS restriction, however, settles for an

inferior solution at entry #8 and finds a better solution at entry #9. It can be observed that the

algorithm performance improves with the added restriction.

5.1.5. Aspiration criterion

Aspiration level (AL) is the OFV of the best solution found so far by the algorithm.

Aspiration criterion is a condition that a solution must satisfy in order for it to be released

from tabu restriction. If the solution has a better OFV than the AL, then this solution can

be selected for next iteration even if the move is tabu, i.e. tabu restriction can be overridden

by aspiration criterion.

Table 8. OFV of solutions on the CL for algorithms and without MNSS restriction

CL Entry # Algorithm without MNSS restriction Algorithm with MNSS =2

1 0.39399 0.39399

2 0.29283 0.29283

3 0.23627 0.23627

4 0.22065 0.22065

5 0.20761 0.20761

6 0.20727 0.20727

7 0.20694 0.20694

8 0.20694 0.20694

9 0.20694 0.20700

10 0.20694 0.18455

11 0.20694 0.18455

12 0.20694 0.18477

13 0.20694 0.18477

14 0.20694 0.18488

15 0.20694 0.18488

16 0.20694 0.18509

17 0.20694 0.18487

18 0.18487

19 0.18494

20 0.18494

Best 0.20694 0.18455

42

5.1.6. Steps of the Proposed TS Algorithm

The flowchart for the proposed TS algorithm is shown in Figure 9. The pseudo code

for the proposed TS algorithm developed in this research is as follows:

Step 1: Set the value of iteration without improvement (IWOI) to zero

Step 2: Identify an IS, and insert it into the candidate list (CL) and index list (IL)

Step 3: Set aspiration level (AL) = objective function value (OFV) of the IS

Step 4: WHILE (IWOI < Max_IWOI and IL_Size < Max_IL_Size)

Step 4.1: Consider the latest entry into the CL as the seed

Step 4.2: Reset temporary candidate list (TCL). Generate neighborhood solutions

(NS) from the seed and find their OFV. For short-term TS, PTB2 is used

(strong TS)

Step 4.3: Record the OFV in the TCL

Step 4.4: Select the solution with the best OFV in the TCL

Step 4.5: IF (the solution has already been admitted into the CL), THEN disregard

the solution and find the next best solution from the TCL and repeat step

4.5

 ELSE, go to step 4.8

Step 4.6: IF (the number of similar solution (NSS) admitted into the CL has exceeded

 the maximum number of similar solution (MNSS)), THEN disregard the

 solution and find the next best solution from the TCL and go to step 4.5

 ELSE, go to step 4.7

Step 4.7: IF (the current move associated with the selected solution is tabu), THEN

go to step 4.8,

 ELSE update the tabu list (TL) with the current move and go to step 4.9

Step 4.8: IF (the OFV of the selected solution is worse than AL), THEN disregard

this solution and select the next best solution from TCL and go to step 4.5

 ELSE, go to step 4.9

Step 4.9: Insert the solution into the CL

Step 4.10: IF (the OFV of the latest entry into the CL is better than its parent), THEN

 assign a star to the solution, update the value of AL and reset the value of

43

 IWOI to zero

 ELSE, increase the value of IWOI by one

 IF (the parent solution already has a star), THEN assign another star

to the parent solution and insert it into the IL

Step 4.10: IF (the number of entries into the TL is more than the tabu list size (TLS)),

 THEN remove the earliest entry from the TL

Step 5: Return the best solution in the IL

44

Figure 9. TS flowchart

45

5.1.7. Application of the TS Algorithm to an Example Problem

The application of TS algorithm is illustrated by means of a randomly generated

example problem, as shown in Tables 9 and 10.

Table 9. Example problem

Machine availability time (ai) 5 168 6 247

wjk djk Equipment restart time (Ei) 20 36 46 35

Product(j) Job (k) rjk
M1 M2 M3 M4

Run time (Rij)

1

1 0

32 29 60 84

1 1649

2 10 3 255

3 76 1 1857

2

1 1

40 46 59 82

1 1456

2 95 2 1840

3 5 2 1441

4 12 2 478

5 1 2 110

3
1 7

52 55 52 72
2 1918

2 8 3 173

Table 10a. Setup time for M1

Subsequent

product

 Product P1 P2 P3

Preceding

product

Ref 11 8 13

P1 5 8 13

P2 9 5 12

P3 14 8 4

Table 10b. Setup time for M2

Subsequent

product

 Product P1 P2 P3

Preceding

product

Ref 14 9 11

P1 5 15 11

P2 12 4 12

P3 8 12 4

Table 10c. Setup time for M3

Subsequent

product

 Product P1 P2 P3

Preceding

product

Ref 13 8 9

P1 4 14 13

P2 12 3 11

P3 10 12 3

Table 10d. Setup time for M4

Subsequent

product

 Product P1 P2 P3

Preceding

product

Ref 9 9 11

P1 4 12 10

P2 13 3 13

P3 15 12 4

////

46

The problem consists of 3 products and the total number of jobs is 10. The problem

is for a 4-machine assembly flow shop (as shown in Figure 2) which operates on a single

shift per day, i.e., available production time each day is 480 min. All storages (S1, S2, and

S3) are capable of storing a maximum of 5 jobs each. A minimum storage time of 120 min.

is required in both S1 and S3, whereas no storage time restriction is applicable to S2. The

producer’s and customers’ weights are 0.4 and 0.6, respectively. The first step is to

calculate the extreme values of each criteria.

• STmin is obtained by using SST rule. This rule is applied to each machine

independently and the setup time thus obtained is calculated. For machine 1, P2

has the smallest setup time of 8 min. Out of all jobs belonging to P2, J21 has the

lowest index. Hence, it is positioned first. For the next position, the job which

has the least setup time with J21 (belonging to P2) as the preceding job is

searched. In this case, the setup time is minimum with the jobs belonging to the

same product P2 (5 min.). Hence, J22 is positioned second, followed by J23, J24

and J25, respectively. Now, all jobs belonging to P2 are sequenced. The next job

with the least setup time must belong to P1 since the setup time between P2 and

P1 is 9 min. and the setup time between P2 and P3 is 12 min. This process is

repeated until all jobs are sequenced on M1. The sequence is obtained similarly

for M2, M3 and M4. The setup time thus obtained for each machine is added to

get STmin. Table 11 shows the sequence and setup time for each machine. The

value of STmin is 233 min.

• The methodology to obtain STmax
 is similar to STmin. However, in this case,

priority is given to the job with maximum setup time. Table 12 shows the

Table 111. Setup time for sequence generated using SST

Machine Sequence Setup time

M1 J21-J22-J23-J24-J25-J11-J12-J13-J31-J32 64

M2 J21-J22-J23-J24-J25-J11-J12-J13-J31-J32 62

M3 J21-J22-J23-J24-J25-J31-J32-J21-J22-J23 52

M4 J11-J12-J13-J31-J32-J21-J22-J23-J24-J25 55

 Total 233

47

sequence and the setup time obtained using LST rule. The value of STmax is 466

min.

• The ideal value of weighted tardiness (WTmin) is assumed to be zero.

• WTmax is obtained by applying WLDD rule. The due date to weight ratio for

each job is shown in Table 13. Ordering the job in the decreasing order of due

date to weight ratio gives a sequence of J13- J11- J21- J31- J22- J23- J24- J12- J32-

J25. The weighted tardiness of this sequence is 27047 min. The method used to

obtain weighted tardiness of a sequence is similar to the method used to evaluate

the objective function of a sequence, as explained in section 5.3.

When generating a sequence to obtain extreme values, constraints such as machine

availability time, job release time, precedence constraints, and storage constraints are not

considered. The reason for doing so is to identify a sequence representing the best and

worst values of the criteria without the limitations placed by these constraints. However,

Table 12. Setup time for sequence generated using LST

Machine Sequence Setup time

M1 J31-J11-J32-J12-J21-J13-J22-J23-J24-J25 94

M2 J11-J21-J12-J22-J13-J23-J31-J24-J32-J25 131

M3 J11-J21-J12-J22-J13-J23-J31-J24-J32-J25 125

M4 J31-J11-J21-J12-J22-J13-J23-J32-J24-J25 116

 Total 466

Table 133. Due date to weight ratio

Job

(Jjk)
wjk djk djk /wjk

J11 1 1649 1649.0

J12 3 255 85.0

J13 1 1857 1857.0

J21 1 1456 1456.0

J22 2 1840 920.0

J23 2 1441 720.5

J24 2 478 239.0

J25 2 110 55.0

J31 2 1918 959.0

J32 3 173 57.7

48

during evaluation of the identified sequences, the constraints are considered. For example,

the sequence for WTmax is obtained by sequencing the jobs in the decreasing order of the

due date to weight ratio. To generate this sequence, only job weight and due dates are

considered. However, the above constraints are considered during the evaluation of this

sequence to obtain the extreme values.

After the extreme values are identified, the initial solution is generated using the

normalized positional values (NPV) of PS and CS. Two sequences are generated by

applying this method to M1 and M3, since these machines are the first machine required by

components 1 and 2, respectively. First M1 is selected. All jobs are entered into the set of

non-scheduled jobs (NSJ). The availability time of M1 is 5 min. and the equipment restart

time is 20 min. Hence, the actual machine availability time (a1) is 25 min. At t = 25, all

jobs except J22 and J33 are released. Hence, the set SJ contains eight jobs. Now, the PS and

CS are generated for the set of jobs in SJ. The method for generating PS is similar to the

method used to generate the sequence for STmin. CS is obtained by applying WEDD rule,

i.e., priority is given to jobs with the least due date to weight ratio. The rank of each job (in

SJ) in PS and CS is shown in Table 14. The NPV of each job is calculated. For J11, it is

given by 0.4 * 5 + 0.6 * 8 = 6.8. The NPV for other jobs in SJ is also shown in Table 13.

Since J25 has the smallest NPV, it is scheduled first. The setup time required for J25 is 8

(reference setup). The completion time of J25 on M1 is given by 25 + 8 + 40 = 73 min. The

machine availability time a1 is updated to 73 min. and J25 is removed from the set NSJ.

Now, nine jobs remain in NSJ. At the next iteration, all jobs except J22 and J33 are released

before t = 73 min. These released jobs are entered into the set SJ. The NPV of each job is

calculated by the same method as described above and the job with the least NPV (in this

case, J24) is scheduled after J25. The completion time of J24 is 73 + 5 + 40 = 118 min. Again,

a1 is set to 118 min. and J24 is removed from the set NSJ. Now all jobs in NSJ are released

before t = 118 min. Hence, the set SJ includes 8 jobs (10 total jobs – 2 scheduled jobs).

This process is repeated until all the jobs are scheduled. The sequence thus obtained is J25-

J24-J23-J22-J12-J21-J11-J32-J31-J13. The jobs scheduled at each iteration along with the

machine availability time and completion time is shown in Table 15. At itrn#9, the

completion time of the job J31 is 459 min. Only 21 min. is available for production before

49

the shift ends at 480 min. Since the last job (J13) cannot be completed within the remaining

time, its production is shifted for the next day. Thus, the available time for next iteration is

1460 min., i.e., start of the next shift (1440) + equipment restart time (20). Next, another

sequence is obtained by applying the IS generation mechanism on M3. The sequence

obtained is J25-J32-J24-J23-J22-J31-J21-J12-J11-J13.

The two sequences are now evaluated in terms of their OFV. To obtain the OFV,

the total setup time and weighted tardiness values of each sequence needs to be calculated.

The total setup time can be calculated easily from the setup time information in Table 10a,

10b, 10c and 10d. Consider the sequence obtained above from M1 (IS1): J25-J24-J23-J22-J12-

J21-J11-J32-J31-J13. The setup time for this sequence in M1 is 8 + 5 + 5 + 5 + 9 + 8 + 9 + 13

Table 14. Rank of jobs in PS and CS

Job

(Jjk)

Rank
NPV

PS CS

J11 5 8 6.8

J12 6 3 4.2

J21 1 n 4.6

J23 2 5 3.8

J24 3 4 3.6

J25 4 1 2.2

J31 7 6 6.4

J32 8 2 4.4

Table 15. Job scheduled at each iteration of IS generation mechanism on M1

Itrn#
Job

(Jjk) Availabilty

time

Completion

time

1 J25 5 73

2 J24 73 118

3 J23 118 163

4 J22 163 208

5 J12 208 249

6 J21 249 297

7 J11 297 338

8 J32 338 403

9 J31 403 459

10 J13 1460 1492

50

+ 4 + 14 = 80 min. Similarly, for M2, M3 and M4, the setup times are 83, 81 and 85,

respectively. The total setup time is equal to 80 + 83 + 81 + 85 = 329. The weighted

tardiness is obtained by calculating the completion time of the job at the final assembly

machine. The steps are shown in Figure 10.

Initially, set counter c1, c2, c3 and c4 equal to 1 for M1, M2, M3 and M4, respectively.

The first job to be processed is J25, which is released at t = 1. Since, this is the first job, the

storage space after M1 (S1) is totally empty. The availability time of M1 is 5 min. and the

equipment restart time is 20 min. Thus, the completion time of J25 is given by

𝑀𝑎𝑥 (1, 25 + 8) + 40 = 73 min. The new availability time of M1 (a1) = 73 and c1 = c1 + 1.

Next, M3 is selected. The availability time of M3 is 6 min. and the restart time is 46 min.

The setup time and run time associated with J25 on M2 is 8 (reference setup) and 59,

respectively. The completion time of J25 is given by 𝑀𝑎𝑥 (1, (6 + 46) + 8) + 59, which

equals to 119 min. The counter and availability time of M3 is updated. For M2, J25 is released

at t = 191, i.e., 73 (completion time on M1) + 120 (minimum storage time at S1). The

availability time of M2 is 168 min. and the equipment restart time is 36 min. The setup time

and run time associated with J25 on M2 is 9 (reference setup) and 46, respectively. Thus, the

completion time is given by 𝑀𝑎𝑥 (191, (168 + 36) + 9) + 46, which is equal to 259 min.

a2 is updated to 259 and c2 = c2 + 1. The release time of a job (Jjk) on M4 is given by

𝑀𝑎𝑥 (259 + 0,119 + 120), which is equal to 259. The completion time is equal to

𝑀𝑎𝑥 (259, (247 + 35) + 9) + 82) = 373 min. The counter and availability time of M4 are

updated. This process is continued until all of the counter values equal N. If the machine is

blocked due to storage space unavailability or a job not completed on previous machine,

then the iteration on that machine is skipped and the next machine is selected. The

completion time calculated for IS1 is shown in Table 16.

51

Figure 10. Evaluation of job completion times

52

 It can be seen that the job completion times on M1 in Table 15 and Table 16 are

different (starting at the 6th job position), despite having the same sequence. This is because

of the storage space limitations considered in the later evaluation. The data in Table 14

refers to the completion times calculated during initial sequence generation on M1. During

the application of this method, M1 is evaluated independently and hence, storage space

limitations are not considered. Table 15 consists of the completion times calculated during

the evaluation of objective function. In this method, the storage space limitations must be

considered as all machines are evaluated. The fifth job on M1 (J12) is completed at 249 min.

Without the storage space constraint, the next job (J21) can be started at t = 257, i.e., 249 +

8 (setup time between P1 and P2). However, job (J21) cannot start at t = 257. J21 is the sixth

job in the sequence, which means that the previously completed five jobs still occupy the

storage space, unless some of these jobs are completed on M2. The storage space constraint

specifies that a job can only be started after the storage space becomes available, i.e. the

job is completed on successor machine. The first job J25 is completed at t = 259 on M2

which empties one storage space and thus job (J21) cannot be started before t = 259.

However, anticipatory setup can be performed during this wait time so that the job can be

processed as soon as the storage is available. Thus, the completion time of the job (J21) is

delayed by 2 min. in Table 16. After the completion times are calculated, the weighted

tardiness of each job is calculated using equation 5.5. The total weighted tardiness for IS1

is shown in Table 16.

Table 16. Job completion times on machine

Job

(Jjk)

Completion time on Machine
wjk djk

Weighted

Tardiness M1 M2 M3 M4

J25 73 259 119 373 2 110 526

J24 118 309 181 458 2 478 0

J23 163 359 243 1557 2 1441 232

J22 208 409 305 1642 2 1840 0

J12 249 450 377 1739 3 255 4452

J21 299 1522 450 1833 1 1456 377

J11 341 1563 1546 2999 1 1649 1350

J32 411 1629 1611 3081 3 173 8724

J31 467 1697 1694 3157 2 1918 2478

J13 1492 1768 1799 3256 1 1857 1399

 Total 19538

53

𝑇𝑗𝑘 = 𝑀𝑎𝑥 (0, 𝑤𝑗𝑘(𝑇𝑓𝑓4𝑗𝑘 − 𝑑𝑗𝑘)) (5.5)

The OFV is then computed using equation 4.3. For IS1, the OFV is 0.59823. The

OFV for IS3 is also computed similarly, which is given by 0.50769. Since, the OFV for IS3

is lower, it is selected as the IS to trigger the tabu search algorithm.

The IS is entered into the CL and IL. The AL is set to the OFV of the IS, which is

equal to 0.50769. The latest entry into the CL, which in this case is the initial solution, is

selected as the seed. A set of perturbations, comprising of swap and insert moves, are

performed on the seed to generate NS. In this example problem, an NPN sequence is

considered and PTB2 is used to generate NS, i.e., strong TS. For a problem with 10 jobs,

a total of 1755 solutions can be generated, 675 from swap moves and 1080 from insert

moves. Table 17 shows a portion of the perturbations performed on the IS and the

associated objective function values. Note that the size of the neighborhood solution set,

for this problem, is fifteen times lower for PN sequence as compared to NPN sequence,

provided that the same perturbation type is used for both sequences. In the table below, the

solutions corresponding to perturbations 66-71 are infeasible because the OFV of these

solutions are greater than one, i.e. a penalty has been incurred due to infeasibility. In this

case, the solution with the minimum OFV is obtained from perturbation 1246, i.e. insert

the job J31 into the 3rd position of the sequence for all machines. The configuration of jobs

for this solution is shown below:

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = {

𝑀1: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13
𝑀2: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

𝑀3: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

𝑀4: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

}

This solution is selected as the seed for the next iteration and is inserted into the

CL. Since the OFV of the new seed is lower than the parent (IS), it has the potential of

being a local optimum. Hence, a star is assigned to this CL entry. The move corresponding

to this solution is inserted into the tabu list. The tabu list size in this case is five. Therefore,

this move remains tabu for the next five iterations. In addition, the OFV of the new seed is

lower than the AL (0.408479 < 0.50769). Thus, the AL is updated to 0.408479.

54

Table 17. NS generation in the first iteration

Perturbation # Move Type Move OFV

1

Swap

M1, M2, M3, M4: J25 & J32 0.465827

2 M1, M2, M3: J25 & J32 0.598243

3 M1, M2, M4: J25 & J32 0.478842

4 M1, M3, M4: J25 & J32 0.572315

5 M2, M3, M4: J25 & J32 0.471368

6 M1, M2: J25 & J32 0.61026

7 M1, M3: J25 & J32 0.493677

8 M1, M4: J25 & J32 0.584332

9 M2, M3: J25 & J32 0.60354

10 M2, M4: J25 & J32 0.483385

11 M3, M4: J25 & J32 0.572754

12 M1: J25 & J32 0.505694

13 M2: J25 & J32 0.615557

14 M3: J25 & J32 0.49711

15 M4: J25 & J32 0.584771

16 M1, M2, M3, M4: J25 & J24 0.512344

17 M1, M2, M3: J25 & J24 0.626478

18 M1, M2, M4: J25 & J24 0.627011

19 M1, M3, M4: J25 & J24 0.751173

20 M2, M3, M4: J25 & J24 0.627011

…
.

…
.

…
.

66 M1, M2: J25 & J31 2.25

67 M1, M3: J25 & J31 3.5

68 M1, M4: J25 & J31 4.75

69 M2, M3: J25 & J31 4.75

70 M2, M4: J25 & J31 3.5

71 M3, M4: J25 & J31 2.25

…
.

…
.

…
.

672 M1: J11 & J13 0.507685

673 M2: J11 & J13 0.507685

674 M3: J11 & J13 0.507685

675 M4: J11 & J13 0.507685

676

Insert

M1, M2, M3, M4: J25 into the 3rd position 0.46667

677 M1, M2, M3: J25 into the 3rd position 0.600461

678 M1, M2, M4: J25 into the 3rd position 0.479286

679 M1, M3, M4: J25 into the 3rd position 0.718062

680 M2, M3, M4: J25 into the 3rd position 0.471368

681 M1, M2: J25 into the 3rd position 0.612478

682 M1, M3: J25 into the 3rd position 0.610229

55

683 M1, M4: J25 into the 3rd position 0.730079

684 M2, M3: J25 into the 3rd position 0.728855

685 M2, M4: J25 into the 3rd position 0.483385

686 M3, M4: J25 into the 3rd position 0.572754

687 M1: J25 into the 3rd position 0.621492

688 M2: J25 into the 3rd position 0.740872

689 M3: J25 into the 3rd position 0.613663

690 M4: J25 into the 3rd position 0.584771

…
.

…
.

…
.

1246 M1, M2, M3, M4: J31 into the 3rd position 0.408479

1247 M1, M2, M3: J31 into the 3rd position 0.432149

1248 M1, M2, M4: J31 into the 3rd position 0.437664

1249 M1, M3, M4: J31 into the 3rd position 0.543671

1250 M2, M3, M4: J31 into the 3rd position 0.468492

…
.

…
.

…
.

1746 M1, M2: J13 into the 8th position 0.507685

1747 M1, M3: J13 into the 8th position 0.507685

1748 M1, M4: J13 into the 8th position 0.51159

1749 M2, M3: J13 into the 8th position 0.507685

1750 M2, M4: J13 into the 8th position 0.51159

1751 M3, M4: J13 into the 8th position 0.51159

1752 M1: J13 into the 8th position 0.507685

1753 M2: J13 into the 8th position 0.507685

1754 M3: J13 into the 8th position 0.507685

1755 M4: J13 into the 8th position 0.51159

In the next iteration, another set of NS is generated using the new seed and the best

solution is selected. If the selected solution violates the tabu restriction, then this solution

is discarded, and the next best solution is selected. In addition to the tabu restriction, the

selected solution can also be discarded if the solution is already in the CL or the number of

similar solutions (solution with the same OFV) exceeds the maximum limit. Table 18

shows all the entries into the CL with their status and OFV. The solution selected at this

iteration has an OFV of 0.365964, which is lower than both the parent seed and the AL.

Hence, a star is assigned to this CL entry and the AL is updated. The solution selected at

the third iteration is also assigned a star and the AL is updated to 0.340253. At the fourth

iteration, the selected solution is not better than its parent. Hence, another star is assigned

56

to the parent seed, i.e. this solution is a local optimum and is thus inserted into the IL. The

IWOI is increased by one at this iteration. The process continues until a stopping criteria

is met. In this case, the algorithm stops after the IL size reaches 5 (including the IS). It can

be observed from Table 18 that several solutions have the same OFV (solution 3 and 4,

solution 5 and 6, solution 7 and 8 and others). The limit set on the maximum number of

similar solutions (2, in this example) allowed in the CL prevents the algorithm from

selecting more than two solutions with the same OFV. This prevents the algorithm from

repeatedly selecting similar solutions at each iteration until the maximum iteration limit is

met.

Table 18. Entries into the CL

Entry #
OFV Entry # OFV

0 (IS) 0.507685 15 0.342804

1 0.408479* 16 0.342937

2 0.365964* 17 0.342937

3 0.340253** 18 0.343958

4 0.340253 19 0.343958

5 0.341517 20 0.342560*

6 0.341517 21 0.323676*

7 0.341651 22 0.321369**

8 0.341651 23 0.321369

9 0.341717 24 0.322655

10 0.341717 25 0.322655

11 0.343004 26 0.323055

12 0.341540** 27 0.321768**

13 0.341540 28 0.321768

14 0.342804

57

5.2. Tabu Search/Path Relinking

A hybridization of TS algorithm with another algorithm generally leads to an

improved performance of the algorithm. Al-Anzi and Allahverdi (2006) proposed three

heuristics, based on basic TS, simulated annealing and hybrid TS, for a two-stage assembly

flow shop and showed that the hybrid TS algorithm outperforms the other two algorithms.

Gagné et al., 2005 presented a hybrid tabu search/variable neighborhood search algorithm

for a multi-objective scheduling problem and showed that the hybrid metaheuristic is both

effective and efficient in finding good solution. A short-term TS might not yield good

quality solutions because of its inability to utilize information on good quality solutions.

Hence, TS has often been used with long-term memory function to increase the efficacy of

the algorithm. TS with path relinking (PR) serves the same purpose, but adds a stochastic

component to the search algorithm, in contrast to the deterministic approach used by long-

term memory function.

PR was originally proposed by Glover (1986) as an intensification and

diversification strategy of exploring the path connecting elite solutions obtained from TS.

PR is intimately related to TS and derives additional advantages by utilizing the memory

structure that can adapt to various combinatorial optimization problems. PR is generally

embedded with a local search algorithm (TS, in this case), which is used to explore the

search space created by generating a path between a given set of elite solutions. Zeng et al.

(2013) investigated different ways to integrate PR techniques into a hypervolume-based

multi-objective local search algorithm to solve a bi-criteria flowshop problem. Shahvari

and Logendran (2016) proposed an algorithm based on tabu search/path relinking (TS/PR)

to solve a bi-criteria batching and scheduling problem in a hybrid flowshop. Peng et al.

(2015) demonstrated the efficacy of TS/PR algorithm, both in terms of solution quality and

computational time, for a job shop scheduling problem.

In this research, a path relinking heuristic is incorporated into the TS-based

heuristic to enhance the efficacy of the algorithm. In the algorithm, TS and PR work in

tandem with each other, where PR generates a trajectory or path between two elite solutions

and TS explores the search space from the path solutions. PR mainly integrates two key

58

components to ensure search efficiency: 1) the construction approach used to generate path

between solutions, and 2) the method used to choose the reference solution (SR). TS/PR

starts with the initial population (IP) which consists of a set of high quality solutions. At

the start of the algorithm, the IP forms the population set (P). At each iteration, two

solutions are randomly selected from the set P as initial solution (SI) and guiding solution

(SG). The solution that begins the path is called SI and the solution that the path leads to is

called SG. All intermediate solutions generated during path formation is stored in

InitialPathSet. A set of high quality solutions is selected from the initial path set to form

PromisingPathSet. The solutions in PromisingPathSet is then evaluated to select SR, which

is used to update the set P. The iteration continues until some stopping criteria is met.

5.2.1. Initial Population

The IP is generated using a method similar to the one proposed by Shahvari and

Logendran (2017) in which the elite solutions obtained from the TS algorithm are used to

populate the IP. First, the optimized solution from the TS is added into the IP and the rest

of the solutions is added from the CL and the IL of the TS. The pseudocode for the IP

generation of permutation TS/PR (ALG3) used in this research is shown in Table 19. Psize

indicates the size of the IP. If the size of the IL (ILsize) is less than Psize, then all solutions

in the IL, except the optimized solution which is already entered, are added to the IP and

the rest of the solutions (Psize – ILsize) are randomly selected from the CL.

Table 19. Pseudocode for IP generation of permutation TS/PR

1. STS ← Permutation strong TS (ALG1) //Section 5.1.6

2. IP ← STS

3. if (Psize) ≤ ILsize

4. IP ← Select (Psize – 1) random solutions from IL (except STS)

5. else

6. IP ← Select all solutions from IL (except STS)

7. IP ← Select (Psize – ILsize) non-repeated random solutions from CL

8. endif

59

The IP of non-permutation TS/PR (ALG4) is populated with both PN and NPN

solutions. The reason for using both PN and NPN solutions is to diversify the path

generation mechanism. Half of the solutions in the IP come from IL and CL of non-

permutation strong TS (ALG2) and the rest come from the final population set of

permutation TS/PR (ALG3). For example, if the Psize is 10, then 5 solutions come from

ALG2 and the rest come from ALG3. The method of adding NPN solutions to the IP from

ALG2 is similar to the method in Table 18, i.e., first the optimized solution is added, and

the rest comes from IL and then CL. To add the PN solutions, the output solution from

ALG3 is added first, and the rest will be added from the final population set of ALG3.

At each iteration of TS/PR, two solutions are randomly selected from the population

set, which is called a PairSet. TS/PR is implemented on the selected pair in both directions

(SI ⇋ SG). Two new solutions are thus obtained, one from each direction, which is used to

replace the two worst solutions in the set P. Hence, P is updated at each iteration and the

process continues until a maximum number of consecutive iterations without improvement

(MIWI) is reached.

5.2.2. Path Construction

After a PairSet is randomly selected, it is checked against a TabuSet, which records

all pairs of solutions previously selected in the search procedure. If the PairSet is in the

TabuSet, then a new PairSet is selected. One of the solutions from the PairSet is selected

as SI and the other one as SG. In order to generate a path from SI to SG, the distance between

these solutions needs to be computed. Sevaux and Sörensen (2005) showed that there are

several measures that can be used to calculate the distance between two sequences. Swap-

based operator and insertion-based operator appear prominently in neighborhood search of

flowshop problems (Nowicki and Smutnicki, 1996).Taillard (1990) showed that the

insertion-based operator is more effective in a neighborhood search. Hence, we propose

longest common subsequence-based construction (LCS-based construction), in terms of

insertion operator, because it enables knowing the minimum number of moves to get to the

guiding solution (Zeng et al., 2013).

60

In the LCS-based construction method, the jobs belonging to LCS are identified.

The length of the LCS (number of jobs belonging to LCS) gives a measure of similarity

shared between two sequences and its interval varies between [1, N], where N is the number

of total jobs. The distance between two sequences (d) indicates the minimum number of

moves required to move from SI to SG and is given by N minus the length of LCS. The

interval of d varies between [0, N - 1]. The LCS can be calculated by a dynamic

programming algorithm in O(N2), which is similar to a well-known Needleman-Wunsch

algorithm (Schiavinotto and Stützle, 2007). The jobs which do not belong to LCS, are

called candidate jobs. The LCS is computed using the following iterative procedure:

• Step 1: Obtain the smallest value of p + q such that 𝐽𝑝
𝑆𝐼

= 𝐽𝑞
𝑆𝐺

. A tie is broken

in favor of SI.

• Step 2: Determine the minimum forward distance between 𝐽𝑝
𝑆𝐼

= 𝐽𝑝+1
𝑆𝐼

 in SG

and 𝐽𝑞
𝑆𝐺

= 𝐽𝑞+1
𝑆𝐺

 in SI.

• Step 3: Select the jobs corresponding to the initial and final positions on the

minimum forward distance, in both SI and SG, as jobs belonging to the LCS.

• Step 4: Update p and q by the last selected positions of LCS in SI and SG.

• Step 5: Repeat steps 2-4 until p = N or q = N.

Consider the initial and guiding solution as shown in Figure 11. In this example,

the minimum value of p + q is 3 (p = 2 and q = 1), since 𝐽2
𝑆𝐼

= 𝐽1
𝑆𝐺

= 13. The forward

distance between 𝐽2
𝑆𝐼

= 13 and 𝐽3
𝑆𝐼

= 21 in SG is 5 (jobs 32, 11, 12, 31 and 41) and the

forward distance between 𝐽1
𝑆𝐺

= 13 and 𝐽2
𝑆𝐺

= 32 in SI is 1 (job 21 only). Hence, the

forward minimum distance is 1 and therefore, jobs 13 and 32 belongs to the LCS, both in

Note: Jobs are represented by index, i.e., 12 indicates the 2nd job belonging to the 1st product. Jobs in

LCS are highlighted in green
Figure 11. LCS construction

61

SI and SG. The last job selected as LCS is 32, for both SI and SG. The position of 32 in SI

and SG is 4 and 2, respectively. Therefore, the value of p and q are updated to 4 and 2,

respectively. In the next iteration, the forward distance between 𝐽4
𝑆𝐼

= 32 and 𝐽5
𝑆𝐼

= 11 in

SG is 0 and the forward distance between 𝐽2
𝑆𝐺

= 32 and 𝐽3
𝑆𝐺

= 11 in SI is also 0. Since ties

are broken in favor of the forward distance in SI, 𝐽3
𝑆𝐺

= 11 is added to the LCS. Note that

in this instance, breaking the tie in favor of the forward distance in SG would result in the

same job 𝐽5
𝑆𝐼

= 11 being added to the LCS. However, this might not always be the case.

The values of p and q are now updated to 5 and 3, respectively. The iteration is repeated

until either p or q equals N. For this example, the jobs belonging to the LCS are 13, 32, 11,

41 and 22, as shown in Figure 11. The length of the LCS is 5 and the distance d is equal to

3 (8 - 5). The rest of the jobs, i.e., 12, 21, and 32, belong to candidate jobs. The candidate

jobs will be moved from their initial position in SI, one move at a time, in order to reach

SG. Thus, 3 moves must be applied to move from SI to SG. PR generates a new solution by

applying one move at each step and thus, decreases the distance between SI and SG by 1.

Hence, a total of d – 1 intermediate path solutions are generated during path relinking. Path

solutions from SI to SG can be generated using the following steps:

• Step 1: Determine the jobs belonging to LCS and the candidate jobs using the

method described above.

• Step 2: Determine all possible insertion points of all candidate jobs. In the

above example, the first candidate job 12 is located between LCS jobs 11 and

41 in SG. Hence, insertion point of job 12 must be between LCS jobs 11 and 41

in SI, i.e., job 12 can be removed from its current position in SI and inserted

between 11 and 41. The new sequence would then be 13-21-32-11-12-41-31-

22. Note that a candidate job might have more than one insertion point. For

example, the second candidate job 21 is located between LCS jobs 41 and 22 in

SG. Hence, insertion point of job 21 must also be between LCS jobs 41 and 22

in SI. Since job 41 and 22 are not adjacent in SI, the candidate job 21 can be

inserted between job 41 and 31, or job 31 and 22. This is shown in Table 20.

62

• Step 3: From each insertion point identified in step 2, a new solution can be

generated. Evaluate each solution that is generated, in terms of their OFV, from

all possible candidate moves.

• Step 4: Randomly select a solution belonging to the top 20% of the generated

solutions as the current solution (SC), i.e., if the total number of possible

candidate moves is 20, then the current solution would be chosen randomly

from the four best solutions.

• Step 5: Enter SC into the InitialPathSet, SI ← SC and d ← d – 1.

• Step 6. Go to step 1 until d = 0.

At each step of path generation, there are several possible candidate moves that can

be selected. However, only one is chosen at each step. Therefore, based on the criteria used

to select a move, we can generate the path between SI and SG in several ways (Zeng et al.,

2013). Shahvari and Logendran (2017) have proposed to evaluate all possible candidate

moves, in terms of the objective function value, at each step and then randomly select a

solution from a set of best solutions (belonging to the global or local optima). In this

research, we use the same methodology. At each step, various solutions are generated by

applying all possible candidate moves. Each solution generated is evaluated, in terms of

their OFV, and 20% of the best solutions are selected. Out of these solutions, a new

intermediate solution is randomly selected and entered into the InitialPathSet.

Table 19 shows the possible insertion points of all candidate jobs along with the

OFV of the solutions resulting from the move (refer to the example shown in Figure 2).

Starting from SI, there are only four possible moves at the first step of path generation.

Hence, four possible intermediate solutions can be generated. Since, there are only four

solutions, there is only one solution belonging to the top 20% (roundup (20% of 4) = 1),

Table 20. Possible candidate moves starting from SI

Candidate jobs in the initial solution

12 21 31

Insertion point (11,41) (41,31) (31,22) (11,41)

OFV (move) 0.4675 0.4236 0.4528 0.4827

63

i.e., the best solution. Hence, the solution with an OFV of 0.4236 is chosen as SC and

inserted into the InitialPathSet. SI is replaced by SC and the distance is decreased by 1. The

process is repeated until d = 0.

The example presented above explains the path construction technique for a single

machine sequence, i.e., a permutation sequence. The method for a non-permutation

sequence also follows a similar technique. In this case, the LCS of each machine sequence

is computed separately. For example, LCS between SI and SG of M1 is computed separately

from SI and SG of M2. Each machine sequence has a separate set of candidate jobs and a

distance associated with its sequence, as shown in Figure 12. The sum of LCS distance of

all machines equals the total distance (d). In this example, the total distance is 12, which

means that a minimum of 12 moves must be applied to SI in order to reach SG. Thus 11

intermediate solutions would be generated during path construction. Each move

corresponds to the movement of one candidate job, from its current position (p) to the next

position (p’) on a single machine sequence. For example, insertion of candidate job 12

between 11 and 41 in SI of M1 indicates one move.

5.2.3. Path Solution Selection

Each of the two consecutive solutions in the InitialPathSet differ only by one insert

move. Hence, it is not productive to apply improvement procedure to all solutions in the

InitialPathSet, because many of these solutions would lead to the same local optimum.

Several methods have been proposed to select solutions from InitialPathSet that are entered

into PromisingPathSet. Peng et al. (2015) proposed a strategy based on adaptive distance-

Figure 12. The LCS between two solutions in non-permutation sequence

64

control mechanism to obtain promising solutions. Zeng et al. (2013) selected a set of non-

dominating solutions from the InitialPathSet, which are entered into PromisingPathSet. In

Shahvari and Logendran (2016), a set of global and local optima are selected from the

InitialPathSet, which is called PromisingPathSet. This research adopts the methodology

proposed by Shahvari and Logendran (2016). Figure 13 shows the set of global and local

optima solutions in the InitialPathSet. In this case, solutions A, B, C, D, E, F and G would

be entered into the PromisingPathSet.

5.2.4. Reference Solution Determination

A reference solution (SR) is determined from the solutions in the PromisingPathSet,

which is used to update the population set P. First, a slight TS is applied to optimize each

solution in the PromisingPathSet to a local optimum. The solution with the best OFV is

selected and further optimized using a strong TS. This optimized solution is selected as SR
.

The reason that a slight TS is used initially is that it is not too time consuming but can

optimize a solution to some extent that a solution more promising than others can be

selected. The reference solution needs to be optimized as much as possible. Hence, a strong

TS is used to optimize the selected solution.

Figure 13. Global and Local Optima in InitialPathSet

65

At each iteration of the algorithm, two reference solutions are obtained from the

PairSet by applying TS/PR in both directions (SI ⇋ SG). These two reference solutions

replace the two worst solutions in the population set P. Hence, at each iteration, the set P

gets updated. The iteration continues until the MIWI is reached. The pseudo-code for the

TS/PR procedure is shown in Table 21 and the flowchart is shown in Figure 14.

Table 21. Pseudo-code for TS/PR

1: Input: Problem Data //Section 7

2: Output: The best schedule Sbest found so far

3: STS ← Short-Term Tabu Search //Section 5.1

4: P = {SI, …, Sp - 1, STS} ← Population_Initialization (STS) //Section 5.2.1

5: Sbest = arg min {f (Si) | i = 1, …, p}

6: repeat

7: Randomly select one solution pair {𝑆𝑖, 𝑆𝑗} from P,

 where 𝑆𝑖 ∈ P, 𝑆𝑗 ∈ P, 𝑆𝑖 ≠ 𝑆𝑗 and {𝑆𝑖, 𝑆𝑗} ∉ TabuSet

8: 𝑆𝑝+1←Path_Relinking(𝑆𝑖, 𝑆𝑗),

 𝑆𝑝+2←Path Relinking(𝑆𝑗, 𝑆𝑖) //Section 5.2.2

9: if 𝑆𝑝+1 (or 𝑆𝑝+2) is better than Sbest then

10: 𝑆𝑏𝑒𝑠𝑡←𝑆𝑝+1 (or 𝑆𝑝+2)

11: end if

12: Add 𝑆𝑝+1 and 𝑆𝑝+2 to population set P

13: Identify the two worst solutions, 𝑆k and 𝑆l in P

14: Remove 𝑆k and 𝑆l from P

15: TabuSet ← (𝑆𝑖, 𝑆𝑗)

16: until a stopping criterion is satisfied

17: return 𝑆𝑏𝑒𝑠𝑡

5.3. Calibration of the metaheuristic algorithms

Several parameters affect the performance of the algorithms. These parameters

were tuned separately by performing an experimental analysis for each problem structure

(small-small, small-large, large-small and large-large). TS algorithm has four parameters

that need to be tuned, i.e., TLS, MNSS, MIWOI and MIL. TS/PR algorithm has two

parameters that need tuning. i.e., P_size and MIWI. Different levels of these parameters

were used to perform the experimental design. The levels are as follows:

TS algorithm

TLS – {5, 10, 15, 20, 25, 30} MIWOI – {5, 10, 15, 20, 25, 30}

MNSS – {2, 4, 6, 8, 10} MIL = {5, 10, 15, 20, 25, 30}

66

TS/PR algorithms

P_size – {5, 10, 15, 20} MIWI – {3, 5, 8, 10}

These levels were determined based on preliminary runs made by varying each

parameter separately while keeping others fixed at a high value. Performing a full factorial

experiment on all four parameters of the TS algorithm would require a lot of experimental

runs and thus, would be time consuming. Hence, the analysis was performed in a two 2-

Figure 14. Flowchart for TS/PR

67

factor ANOVA instead of one 4-factor ANOVA. Since, TLS and MNSS are type of

memory structures that affect the direction of the search procedure significantly, these are

the most important parameters. Therefore, the first 2-factor ANOVA include TLS and

MNSS as the factors of interest while the other two are kept at a high value of 30. The best

factor levels are chosen from this analysis and then the second 2-factor ANOVA is

performed, which includes MIWOI and MIL as the factors of interest. In the case of TS/PR,

a 2-factor ANOVA is performed with P_size and MIWI as the factors of interest. The

parameter values of TS to be used in TS/PR is determined from the previous ANOVA

analysis. It is worth noting that the smaller level of a factor is preferred if no significant

difference is observed between two factor levels. For example, if there is no significant

difference between the levels of MIWOI set at 15 and 20, then 15 is chosen as the best

level because it requires less computational time. The factor levels chosen for different

algorithms are shown in Table A.1 of Appendix A. The result of ANOVA is shown in

Table A.2 – A. 41 in Appendix A.

68

6. DATA GENERATION

The data generation method used in this research is based on the previous study by

Logendran and Subur (2004) and Shahvari and Logendran (2017). The problem instances

are classified into four structures, (small, small), (small, large), (large, small) and (large,

large). The first term in the parenthesis denotes the number of products and the second

term denotes the number of jobs belonging to each product. The “small” and “large” refer

to a number generated from a uniform distribution unif [2,5] and unif [6,10], respectively.

These ranges are determined by reviewing the previous literature by Schaller et al. (2000),

Lu and Logendran (2011), and Shahvari and Logendran (2017), and considering the

computational time. In these problem structures, (small, small) and (large, large) are small-

and large-size problems, respectively, whereas the other two are medium-size problems.

The problem has two components, with the first component requiring two machines before

assembly and the second component requiring only one machine before it is ready for

assembly. In addition, storages 1 and 2 have a minimum storage time of 120 min. in each,

whereas storage 3 does not have any storage time restrictions. The shop layout is shown in

Figure 3.

The run time of a component on any machine is given by the size of the component

divided by the machine’s throughput. Usually, in a plant with higher throughput, the

throughput of the associated machines would also be higher, i.e., the run times would be

lower. Hence, in this research, the individual machine throughput is first generated based

on the plant’s throughput. Then, the run times are determined by dividing the size of the

component by the machine’s capacity. Consider a product with a batch size of 100 kg that

requires 20 kg of component 1 and 80 kg of component 2. The machine throughput of

machines 1 (processes component 1) and 3 (processes component 2) are 40 kg/hr and 80

kg/hr, respectively. The run time of this product on machine 1 and machine 3 is thus 30

min. and 60 min., respectively. The capacity of a plant is classified into three levels, low,

medium and high. The plant capacity at each level is determined as follows:

• Low plant throughput – Unif [3,5] kg/hr

• Medium plant throughput – Unif (5,8] kg/hr

69

• High plant throughput – Unif [8,10] kg/hr

After the plant capacity is known, the machine capacity is generated as follows:

• Machine 1 throughput – Unif [24,44] % × plant capacity

• Machine 2 throughput – Unif [18,38] % × plant capacity

• Machine 3 throughput – Unif [87,107] % × plant capacity

• Machine 3 throughput – Unif [71,91] % × plant capacity

These ranges are determined based on the data of five different plants. The average

throughput of each machine with respect to the plant throughput was calculated. This

average was varied by 10 percentage points on either side to obtain the range for the

uniform distribution. The batch size of each product is obtained from a uniform distribution

unif [400, 600] × 10 kg. Similarly, percentage size of component 1 in each product is

obtained from a uniform distribution unif [10,30] % × product size. For example, if the

batch size of a product is 5100 kg and the percentage size of component 1 is 20 %, then

component 1 contains 1020 kg and component 2 contains the rest, i.e., 4080 kg. With the

machine capacity and the component size known, the run times can be calculated easily as

discussed above. These run times are rounded to the nearest integer in minutes.

In the problem considered in this research, there is some setup time incurred even

when changing between jobs belonging to the same product. This setup time is typically

lower than the setup time between jobs belong to different products. Thus, the setup times

between jobs belonging to same and different products are generated from a uniform

distribution unif [3,5] min. and unif [5,8] min., respectively. The equipment startup time is

generated from a uniform distribution unif [10,60] min. As noted before, there is a weight

assigned to each job, and it is generated from a uniform distribution unif [1,3], where 1

indicates the least important job. Three combinations of producer’s and customers’ weights

are used to represent different scenarios. The value of α = 0.6 and β = 0.4 indicates that the

producer’s objective should be prioritized. Similarly, the value of α = 0.4 and β = 0.6

indicates that the customers’ objective should be prioritized. An equal weights of 0.5 for α

and β indicate equal importance to both objectives.

70

The release time of a job and the availability time of a machine is generated from a

Poisson distribution with a mean arrival rate of 3 per hour. The random number must take

integer values. Shahvari and Logendran (2017) have used Poisson distribution to simulate

the model for job arrival and machine availability. In a flow shop problem, the availability

time of machines belonging to second or later stages must be delayed considering the

machine availability time of earlier stages. For example, a machine availability time of 20

min. for machine 1 indicates that this machine is still processing a job from previous

planning horizon. In a flow shop, this job must also be processed by machine 2 and other

successor machines. In this problem, machines 1 and 3 are the first machines to process

components 1 and 2, respectively. The availability time of these machine can be generated

from an exponential distribution with λ = 1/20. For machines 2 and 4, the availability time

is calculated as follows:

𝑎2 = 𝑀𝑎𝑥(𝑎1 + 𝑡1, 𝐸𝑥𝑝[20] + 𝑆2̅) + 𝑅2
̅̅ ̅ (7.1)

𝑎4 = 𝑀𝑎𝑥(𝑎3 + 𝑡3, 𝐸𝑥𝑝[20] + 𝑆4̅, 𝑎2) + 𝑅4
̅̅ ̅ (7.2)

𝑆�̅� indicates the average setup time on machine i and 𝑅�̅� indicates the average run

time on machine i. These are calculated as follows:

𝑆�̅� = (∑ ∑ 𝑆𝑖𝑗𝑗′
𝑝
𝑗′=1)𝑝

𝑗=1 /𝑝2 (7.3)

𝑅�̅� = ∑ 𝑅𝑖𝑗/𝑝𝑝
𝑗=1 (7.4)

Previous works by Kim et al. (2002) and Pandya and Logendran (2011) have shown

that the generation of meaningful due dates play a vital role in evaluating the effectiveness

of the proposed heuristic algorithm. Two factors, namely the tardiness factor (τ) and the

range factor (R) are used to generate different due dates. The tardiness factor τ is defined

as τ = 1 − �̅�/𝐶𝑚𝑎𝑥 where �̅� is the average due date and 𝐶𝑚𝑎𝑥 is the estimated maximum

completion time of all jobs. The due date range factor R indicates the due date variability

and is defined as 𝑅 = (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)/𝐶𝑚𝑎𝑥, where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 indicate the maximum

and minimum due date, respectively. Different combinations of τ and R can be used to

generate due dates representing different characteristics as shown in Table 22.

71

In this research, the range factor is set at 0.5, which provides a medium range of

due dates. The due date is generated from a composite uniform distribution. With a

probability τ, the due date is from a distribution unif [�̅� − 𝑅�̅�, �̅�] and with a probability (1

- τ), it is from a distribution unif [𝑑,̅ �̅� + (𝐶𝑚𝑎𝑥 − �̅�)𝑅]. The estimated maximum

completion time can be obtained by a similar iterative procedure shown before to calculate

the completion time of a job (Section 5.1.3 and Section 5.1.7). However, in this case, an

adjusted average setup time is used instead of using actual setup time. The adjusted average

setup time is given by 𝛿 × 𝑆�̅�, where 𝛿 is the average setup time adjuster. In reality, the best

schedules tend to use smaller setup time. Hence, using just the average setup time (𝑆�̅�)

would provide an inaccurate representation of the makespan. Thus, 𝛿 is introduced to

represent makespan for the best schedules. To obtain a value of 𝛿, the coefficient of

variation (CV) is calculated for the setup times on a machine, CV = 𝑠/�̅�, where s is the

sample standard deviation and �̅� is the mean. A linear relationship between 𝛿 and CV is

assumed, as shown in Figure 15: 𝛿 = 0.9 when CV = 0.01 and 𝛿 = 0.1 when CV = 1.

Table 22. Due date classification

Τ R Degree of Tightness Width of Range

0.2 0.2 Loose Narrow

0.2 0.5 Loose Medium

0.2 0.8 Loose Wide

0.5 0.2 0.5 Narrow

0.5 0.5 0.5 Medium

0.5 0.8 0.5 Wide

0.8 0.2 0.8 Narrow

0.8 0.5 0.8 Medium

0.8 0.8 0.8 Wide

72

Figure 15. Relationship between δ and CV

73

7. THE QUALITY OF SOLUTIONS OBTAINED FROM THE

PROPOSED HEURISTIC

The major advantage of a heuristic algorithm is its ability to find optimal or near

optimal solution in a very short time as compared to using exact methods to find an optimal

solution. However, the efficacy of the proposed algorithm must be tested before it is

applied to solve real problems. This is done by evaluating the quality of the solution

obtained by the algorithm and the computational time it takes. Typically, an optimal

solution obtained using an exact method is compared with the solution obtained from the

algorithm. However, for NP-hard problems, an exact method such as brand-and-bound

might not identify an optimal solution in a reasonable time. If an optimal solution is

unknown, then the solution obtained from the algorithm can be compared with a suitable

lower bound for the problem. The mathematical model discussed in Chapter 4 is used to

obtain an optimal solution or lower bound for small-size problems.

Two mathematical models are used, MILP1 for PN sequence and MILP2 for non-

NPN sequence. There are two sets of binary variables and one set of integer variables used

in the models. For MILP1, the binary variables are Wjkl and Yjlj’(l+1), and the integer variable

is Hsil. The total number of Wjkl, Yjlj’(l+1) and Hsil are N2, m2 (N - 1) and (∑ 𝑢𝑔
𝑚
𝑔=1 + 1) × N.

Therefore, for the example problem discussed in Chapter 5, i.e., a 4-machine problem with

10 jobs belonging to 3 groups, will have 102 Wjkl, 3
2 × (10 - 1) Yjlj’(l+1) and 4 × 10 Hsil. The

total number of binary and integer variables are 127 and 40, respectively. As discussed in

Chapter 4, the number of binary variables for the same problem considering NPN sequence

(i.e., MILP2) increases by (∑ 𝑢𝑔
𝑚
𝑔=1 + 1) times, i.e. times the total number of machines.

Thus, the number of binary and integer variables for MILP2 are 508 and 40, respectively.

An optimal solution for a problem was identified by solving the corresponding

mathematical model using branch-and-bound technique incorporated in the IBM CPLEX

12.7 software. The software was installed and run on an Intel Core i7-2600, 3.4GHz

processor with 8 GB RAM. The amount of time required by CPLEX to identify an optimal

solution is large, partly due to large number of binary variables in the model. The presence

74

of big-M constraints in the model results in weak LP relaxation, further increasing

complexity of the model. In addition, the problems have multiple solutions with the same

OFV, which results in model symmetry. The combination of these factors presents a major

obstacle in solving the MILP model to optimality using CPLEX. Based on the test, CPLEX

is not able to identify an optimal solution even for small-size problems within an allotted

time of 8 hours (28800 seconds). CPLEX offers a lower bound (LB) in case it doesn’t

identify an optimal solution. However, the lower bounds offered is trivial because of weak

LP relaxation and model symmetry.

Sixteen small-size problem instances were generated and solved using CPLEX for

both permutation and non-permutation sequences. The data generated for these problem

instances used the same procedure as described in Chapter 6. Table 22 shows the results of

CPLEX runs. From the table, it can clearly be seen that the model for NPN sequence is

more complex than the model for PN sequence. The CPLEX computation time (CT) for

MILP2 is significantly higher than MILP1 for each problem instance. In addition, CPLEX

was able to solve MILP2 to optimality in only 9 instances out of 16 problem instances,

within an allocated time of 28800 seconds. However, in the case of MILP1, optimal

solution was obtained for 13 problems. For problems 1-9 (where optimal solution was

found for both PN and NPN sequences), an average improvement of 2.68% was obtained

by adopting the NPN sequence. The percentage improvement is calculated using the

formula, ((UBPN – UBNPN)/ UBPN) * 100, where UB stands for upper bound. This seems to

suggest that it might be beneficial to drop the PN sequence restriction. However, in the

case of 4 problems, no improvement was observed by adopting the NPN sequence in spite

of the longer computational time required by CPLEX to obtain the optimal solution.

Consider problem 5 as an example. The computation time taken to find an optimal solution

for MILP1 is 1.538 seconds, whereas it took 899.99 seconds to arrive at the same solution

for MILP2. The result obtained from a paired t-test (significance level of 0.05) on the OFV

of both sequences showed that the improvement observed on the OFV by allowing for NPN

sequence is not statistically significant (p value: 0.12). This result pertains to only small

problems (total jobs < 12) and cannot be extended to larger problems. For larger problems,

statistical analysis is performed in Chapter 8 using the solution obtained from using the

75

meta-heuristics. From Table 23, it can be seen that the gap between the upper bound and

the lower bound is very large, i.e. the lower bound is not meaningful. CPLEX includes a

symmetry detection parameter to automatically detect certain type of symmetry in the

model and allows the user to choose the degree of symmetry breaking reduction to be

executed during the preprocessing phase. The default setting allows CPLEX to choose the

degree of symmetry breaking to apply. A trial run of the problem was performed with the

default value as well as the most aggressive setting for the symmetry breaking. Since the

most aggressive setting did not yield the desired performance improvements, default

setting was used and reported in the table below. The percentage gap is calculated using

the formula, ((UB – LB) / UB) * 100.

Table 23. CPLEX runs of MILP1 and MILP2

P
ro

b
le

m
 #

#
 o

f
p

ro
d

u
ct

s

#
 o

f
jo

b
s

PN CPLEX (MILP1) NPN CPLEX (MILP2) %Imp %Gap

UBPN CTPN LBPN UBNPN CTNPN LBNPN P
N

 v
s

N
P

N

U
B

N
N

 v
s

L
B

N
N

U
B

N
P

N
 v

s
L

B
N

P
N

1 2 7 0.407042 0.292 0.407042 0.407042 8.15 0.407042 0.00% 0.0%

2 2 8 0.434941 1.47 0.434941 0.434941 8.60 0.434941 0.00% 0.0%

3 2 8 0.315878 2.401 0.315878 0.294545 32.02 0.294545 6.75% 0.0%

4 3 9 0.235904 1.329 0.235904 0.202296 101.41 0.202296 14.25% 0.0%

5 3 9 0.517717 1.538 0.517717 0.517717 899.99 0.517717 0.00% 0.0%

6 4 10 0.199779 3.786 0.199779 0.199779 422.23 0.199779 0.00% 0.0%

7 2 10 0.235967 4.87 0.235967 0.231198 69.27 0.231198 2.02% 0.0%

8 3 11 0.265741 10.69 0.265741 0.262808 11111.63 0.262808 1.10% 0.0%

9 3 11 0.206612 18.7 0.206612 0.206597 668.91 0.206597 0.01% 0.0%

10 5 12 0.139089 51.54 0.139089 0.129819 28800 0.06204 - 0.0% 52.2%

11 4 12 0.369047 55.81 0.369047 0.367567 28800 0.221364 - 0.0% 39.8%

12 3 12 0.212582 44.8 0.212582 0.212582 28800 0.145533 - 0.0% 31.5%

13 4 15 0.215353 3158.21 0.215353 0.215353 28800 0.057301 - 0.0% 73.4%

14 4 16 0.287526 28800 0.231569 0.398584 28800 0.047468 - 19.5% 88.1%

15 5 18 0.214537 28800 0.050518 0.252673 28800 -0.01374 - 76.5% 105.4%

16 5 20 0.244529 28800 0.040691 0.331723 28800 -0.01486 - 83.4% 104.5%

 Average 4063.70 12408.15 2.68%

Note: Computation time (CT) is measured in seconds.

76

The solution obtained using meta-heuristic algorithms for the same problem is

shown in Table 24. The computational time of these algorithms is very short as compared

to CPLEX, which shows the time-wise advantage of using meta-heuristic algorithms. The

description of the algorithms used is as follows:

• ALG1: Short-term TS using PTB2 for PN sequence

• ALG2: Short-term TS using PTB2 for NPN sequence

• ALG3: TS/PR for PN sequence

• ALG4: TS/PR for NPN sequence

Table 24. Solutions from metaheuristic algorithms

Problem

ALG1 ALG2 ALG3 ALG4

UBALG1 CTALG1 UBALG2 CTALG2 UBALG3 CTALG3 UBALG4 CTALG4

1 0.407042 0.037 0.407042 0.203 0.407042 0.736 0.407042 8.379

2 0.434941 0.028 0.434941 0.384 0.434941 1.219 0.434941 15.715

3 0.315878 0.027 0.294545 0.319 0.315878 1.211 0.294545 13.028

4 0.235904 0.057 0.241453 0.387 0.235904 1.257 0.202296 20.948

5 0.517717 0.04 0.517717 0.472 0.517717 1.685 0.517717 19.063

6 0.199779 0.078 0.242513 0.617 0.199779 2.056 0.199779 24.531

7 0.235967 0.061 0.231198 0.596 0.235967 2.158 0.231198 25.016

8 0.320777 0.108 0.337624 0.724 0.265741 3.369 0.262808 39.123

9 0.209133 0.081 0.209133 0.963 0.209133 2.869 0.209133 35.201

10 0.141958 0.217 0.164762 2.081 0.139089 4.674 0.116362 55.509

11 0.38593 0.083 0.38593 0.911 0.38593 3.138 0.38593 34.586

12 0.212582 0.091 0.212582 1.016 0.212582 3.258 0.212582 35.999

13 0.273962 0.216 0.288937 4.554 0.217137 8.991 0.215353 151.27

14 0.307629 0.254 0.307629 3.115 0.287526 8.164 0.287526 90.58

15 0.251587 0.426 0.244759 4.392 0.211265 35.121 0.194653 332.458

16 0.236762 0.654 0.268932 6.615 0.220767 24.03 0.216128 328.309

 Average 0.12 1.38 5.33 60.09

The output from each algorithm is compared to the upper and lower bounds

obtained from CPLEX. The PN algorithms (ALG1 and ALG3) are compared to the MILP1

bounds and the NPN algorithms (ALG2 and ALG4) are compared to the MILP2 bounds.

For MILP1, an optimal solution was obtained from CPLEX for 13 problems and the

percentage deviation of the algorithms from the optimal solution is shown in Table 25. The

percentage deviation is calculated using the formula, ((UBALG – UBPN)/ UBPN) * 100. The

77

heuristics show a good overall performance with an average percentage deviation of 3.55

% and 0.49% for ALG1 and ALG3, respectively. However, for some problems (problems

1, 8 and 13), the solution obtained from ALG1 has a large deviation from the optimal

solution. In contrast, ALG3 performs better for all problem instances with the maximum

deviation of 4.37% for problem 11. Hence, TS/PR algorithm shows superior performance

even for small problem instances. Note that this result is based on few small problems,

which cannot be relied upon to make an objective conclusion. A detailed statistical analysis

is performed in Chapter 8 to uncover the statistical significance of the algorithms.

Table 25. Average deviation for PN algorithms from CPLEX optimal solution

Problem

Average Deviation %

UBALG1 vs UBPN UBALG3 vs UBPN

1 0.00% 0.00%

2 0.00% 0.00%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

6 0.00% 0.00%

7 0.00% 0.00%

8 17.16% 0.00%

9 1.21% 1.21%

10 2.02% 0.00%

11 4.37% 4.37%

12 0.00% 0.00%

13 21.39% 0.82%

Average 3.55% 0.49%

Table 26. Average deviation for PN algorithms from CPLEX bounds

Problem #

Average Deviation %

UBALG1 vs UBPN UBALG1 vs LBPN UBALG3 vs UBPN UBALG3 vs LBPN

14 6.53% 24.72% 0.00% 19.46%

15 14.73% 79.92% -1.55% 76.09%

16 -3.28% 82.81% -10.76% 81.57%

Average 5.99% 62.49% -4.10% 59.04%

For the remaining three problems (problem 14, 15 and 16), where an optimal

solution was not identified, the percentage deviations are measured with both upper and

lower bounds of CPLEX as shown in Table 26. The percentage deviation from upper and

78

lower bounds are obtained from the formula, ((UBALG – UBPN)/ UBPN) * 100 and ((UBALG

– LBPN)/ UBPN) * 100, respectively. It should be noted that the lower bounds are infeasible

solutions, which might not be close to the true optimal solution. Since, the lower bounds

obtained from CPLEX are weak, large percentage deviations are observed when comparing

the lower bounds to the solutions obtained from the algorithms. For problems 14-16, the

average deviations of ALG1 and ALG3 with CPLEX upper bounds are 5.99% and - 4.10%,

respectively. The negative sign indicates that the solution from the algorithm is better that

the best feasible solution obtained by CPLEX within the allotted time, i.e., ALG3 was able

to obtain a better quality solution in less computational time as compared to CPLEX. This

highlights the advantages of using meta-heuristic algorithms as the problem complexity

increases.

Table 27. Average deviation for NPN algorithms from CPLEX optimal solution

Problem #

Average Deviation %

UBALG2 vs UBNPN UBALG4 vs UBNPN

1 0.00% 0.00%

2 0.00% 0.00%

3 0.00% 0.00%

4 16.22% 0.00%

5 0.00% 0.00%

6 17.62% 0.00%

7 0.00% 0.00%

8 22.16% 0.00%

9 1.21% 1.21%

Average 6.36% 0.13%

In the case of NPN model (MILP2), an optimal solution was obtained by CPLEX

for 9 problems (problems 1-9). The average deviation of NPN algorithms, ALG2 and

ALG4, from the optimal solution is shown in Table 27. ALG4 seems to perform far better

with an average deviation of 0.13% as compared to that of ALG2 (6.36%). For problems

10-16, the deviation of the algorithms from CPLEX bounds is shown in Table 28. Similar

to the PN algorithms, the deviation of the algorithm with the lower bound is high. The

deviation of both the algorithms, ALG2 and ALG3, from CPLEX upper bound is negative

(-0.67 for ALG2 and -18.39% for ALG4). This indicates that, overall, the algorithms

obtained better quality solution than CPLEX in less computational time. It can be observed

79

from Table 28 that, as the problem size increases (# of jobs ≥ 15), the algorithms begin to

outperform the branch-and-bound technique utilized by CPLEX.

Table 28. Average deviation for NPN algorithms from CPLEX bounds

Problem #

Average Deviation %

UBALG2 vs UBNPN UBALG2 vs LBNPN UBALG4 vs UBNPN UBALG4 vs LBNPN

10 21.21% 62.35% -11.56% 46.68%

11 4.76% 42.64% 4.76% 42.64%

12 0.00% 31.54% 0.00% 31.54%

13 25.47% 80.17% 0.00% 73.39%

14 -29.57% 84.57% -38.63% 83.49%

15 -3.23% 105.61% -29.81% 107.06%

16 -23.35% 105.53% -53.48% 106.88%

Average -0.67% 73.20% -18.39% 70.24%

80

8. RESULTS

Chapter 7 showed that the proposed search algorithms are efficient in solving small

problem instances as compared to a branch-and-bound technique. While the branch-and-

bound technique takes hours to solve a small problem instance, the heuristic algorithm can

do so in a matter of minutes or even seconds. The main purpose of this research is to

develop efficient algorithms to solve an assembly flow shop problem in an industrial setting

and evaluate the performance of these algorithms under different constraints and

complexity, i.e., PN vs NPN sequence, continuous vs non-continuous production and small

to large problem instances. Thus, an experimental setup is designed to address the

following issues:

1. To determine if the solutions from the proposed algorithms are statistically

different in terms of solution quality and computational time for a given test

problem.

2. To evaluate the performance of a PN vs NPN sequence and determine if the

NPN sequence offers a significant advantage over PN sequence.

3. To evaluate if the performance of the PN vs NPN sequence differs in non-

continuous production as compared to continuous production.

8.1. Experimental Design

A multi-factor split-plot experimental design is used to address the research

questions above. The solution quality, measured in terms of its objective function value

and the computation time, are used as the response variables to analyze the algorithms’

performance. The factors that are used to generate a particular problem such as problem

structure (Str), plant capacity (PC), due date tightness (DDT), number of shifts (NoS) and

scenario (Sc) are placed in the main-plot. The four algorithms used in this research belong

to the sub-plot factor, as it is a factor of primary importance. The split-plot design with six

factors is shown in Table 29. All the problems are randomly generated using the method

described in Chapter 6. Hence, no two problems are exactly the same, which causes large

81

variability in the response variables. This variation can be reduced by treating each problem

instance as a block. Blocking is necessary to eliminate the impact caused by the different

problem instances. Hence, if a difference in algorithm’s performance is identified, it can

be wholly attributed to the effect of the algorithm.

Table 29. Factors and their levels in the experiment

Factor Name Levels

Whole Plot
Structure (Str) (Small, Small), (Small, Large), (Large, Small), (Large, Large)

Plant capacity (PC) Low, Medium, High

Due date tightness (DDT) Tight (0.2), Medium (0.5), Loose (0.8)

Number of shift (NoS) 1, 2, 3

Scenario (Sc) (α = 0.4, β = 0.6), (α = 0.5, β = 0.5), (α = 0.6, β = 0.4)

Sub-Plot

Algorithm (Alg) ALG1, ALG2, ALG3, ALG4

Ten replications have been randomly generated for every combination of Str, PC,

DDT, NoS and Sc factors. Each of these replications have been solved by all four

algorithms, which resulted in a total number of 12960 runs (324 combinations of Str, PC,

DDT, NoS and Sc × 10 replications × 4 algorithms = 12960). The statistical model for this

design is:

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 = 𝜇 + 𝛾𝑖 + 𝜌𝑗 + 𝜏𝑘 + 𝜑𝑙 + 𝜔𝑚 + 𝛿𝑛 + (𝜌𝜏)𝑗𝑘 + (𝜌𝜑)𝑗𝑙 + (𝜌𝜔)𝑗𝑚 +

(𝜌𝛿)𝑗𝑛 + (𝜏𝜑)𝑘𝑙 + (𝜏𝜔)𝑘𝑚 + (𝜏𝛿)𝑘𝑛 + (𝜑𝜔)𝑙𝑚 + (𝜑𝛿)𝑙𝑛 + (𝜔𝛿)𝑚𝑛 + (𝜌𝜏𝜑)𝑗𝑘𝑙 +

(𝜌𝜏𝜔)𝑗𝑘𝑚 + (𝜌𝜏𝛿)𝑗𝑘𝑛 + (𝜏𝜑𝜔)𝑘𝑙𝑚 + (𝜏𝜑𝛿)𝑘𝑙𝑛 + (𝜑𝜔𝛿)𝑙𝑚𝑛 + (𝜌𝜏𝜑𝜔)𝑗𝑘𝑙𝑚 +

(𝜌𝜏𝜑𝛿)𝑗𝑘𝑙𝑛 + (𝜏𝜑𝜔𝛿)𝑘𝑙𝑚𝑛 + (𝜌𝜏𝜑𝜔𝛿)𝑗𝑘𝑙𝑚𝑛 + 𝜃𝑗𝑘𝑙𝑚𝑛 + 𝜗𝑜 + (𝛾𝜗)𝑖𝑜 + (𝜌𝜗)𝑗𝑜 +

(𝜏𝜗)𝑘𝑜 + (𝜑𝜗)𝑙𝑜 + (𝜔𝜗)𝑚𝑜 + (𝛿𝜗)𝑛𝑜 + (𝜌𝜏𝜗)𝑗𝑘𝑜 + (𝜌𝜑𝜗)𝑗𝑙𝑜 + (𝜌𝜔𝜗)𝑗𝑚𝑜 +

(𝜌𝛿𝜗)𝑗𝑛𝑜 + (𝜏𝜑𝜗)𝑘𝑙𝑜 + (𝜏𝜔𝜗)𝑘𝑚𝑜 + (𝜏𝛿𝜗)𝑘𝑛𝑜 + (𝜑𝜔𝜗)𝑙𝑚𝑜 + (𝜑𝛿𝜗)𝑙𝑛𝑜 +

(𝜔𝛿𝜗)𝑚𝑛𝑜 + (𝜌𝜏𝜑𝜗)𝑗𝑘𝑙𝑜 + (𝜌𝜏𝜔𝜗)𝑗𝑘𝑚𝑜 + (𝜌𝜏𝛿𝜗)𝑗𝑘𝑛𝑜 + (𝜏𝜑𝜔𝜗)𝑘𝑙𝑚𝑜 + (𝜏𝜑𝛿𝜗)𝑘𝑙𝑛𝑜 +

(𝜑𝜔𝛿𝜗)𝑙𝑚𝑛𝑜 + (𝜌𝜏𝜑𝜔𝜗)𝑗𝑘𝑙𝑚𝑜 + (𝜌𝜏𝜑𝛿𝜗)𝑗𝑘𝑙𝑛𝑜 + (𝜏𝜑𝜔𝛿𝜗)𝑘𝑙𝑚𝑛𝑜 + (𝜌𝜏𝜑𝜔𝛿𝜗)𝑗𝑘𝑙𝑚𝑛𝑜 +

𝜖𝑖𝑗𝑘𝑙𝑚𝑛𝑜

i = 1, 2, …, 10; j = 1, 2, 3, 4; k, l, m, n = 1, 2, 3; and o = 1, 2, 3, 4 where 𝜇 is the

overall mean effect, 𝛾𝑖 is the replicate (Rep) effect, 𝜌𝑗 is the Str effect, 𝜏𝑘 is the PC effect,

82

𝜑𝑙 is the DDT effect, 𝜔𝑚 is the NoS effect, 𝛿𝑛 is the Sc effect, 𝜃𝑗𝑘𝑙𝑚𝑛is the main-plot error

, 𝜗𝑜 is the Alg effect, and 𝜖𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the sub-plot error.

The normal probability plot of the objective function value is shown in Figure 16,

which shows that the distribution of the objective function value is not exactly normal.

However, in this research, this distribution is considered normal for the purpose of

statistical analysis because 1) ANOVA is robust to normality assumption for large sample

sizes, 2) data transformation does not convert the distribution into normal, and 3) lack of

widely accepted non-parametric test for multi-factor analysis. The resulting ANOVA table

is shown in Table 30.

Table 30. ANOVA of the objective function value in split-plot design

Source SS MS Num DF Num F Ratio Prob > F

Main-plot

Rep 0.07031 0.00781222 9 1.10939143 0.3522

Str 12.6486 4.2162 3 598.730553 0.0000

PC 0.60542 0.30271 2 42.9869849 0.0000

DDT 114.59 57.295 2 8136.29975 0.0000

Nos 0.34202 0.17101 2 24.284643 0.0000

Sc 5.06754 2.53377 2 359.813461 0.0000

Str*PC 0.16757 0.02792833 6 3.96602307 0.0006

Str*DDT 0.52939 0.08823167 6 12.5295277 0.0000

Figure 16. Normality of objective function value

Normal Probability Plot

0 0.2 0.4 0.6 0.8

OFV

0.1

1

5

20

50

80

95

99

99.9

p
e

rc
e

n
ta

g
e

83

PC*DDT 0.06355 0.0158875 4 2.25613862 0.0608

Str*Nos 0.40416 0.06736 6 9.56560174 0.0000

PC*Nos 0.07395 0.0184875 4 2.62535722 0.0330

DDT*Nos 1.39915 0.3497875 4 49.6723266 0.0000

DDT*Sc 2.50366 0.625915 4 88.8844063 0.0000

Str*Sc 0.80194 0.13365667 6 18.9802025 0.0000

PC*Sc 0.01825 0.0045625 4 0.64790763 0.6284

Nos*Sc 0.03198 0.007995 4 1.13534718 0.3379

Str*PC*DDT 0.0625 0.00520833 12 0.73962058 0.7134

Str*PC*Nos 0.20637 0.0171975 12 2.44216799 0.0037

Str*DDT*Nos 0.42612 0.03551 12 5.04267396 0.0000

PC*DDT*Nos 0.10991 0.01373875 8 1.95100075 0.0488

Str*PC*Sc 0.0656 0.00546667 12 0.77630576 0.6757

Str*DDT*Sc 0.05113 0.00426083 12 0.60506881 0.8397

PC*DDT*Sc 0.1019 0.0127375 8 1.80881609 0.0708

Str*Nos*Sc 0.10327 0.00860583 12 1.22208988 0.2609

PC*Nos*Sc 0.03277 0.00409625 8 0.58169679 0.7938

Str*PC*Nos*Sc 0.16976 0.00707333 24 1.00446392 0.4560

DDT*Nos*Sc 0.23276 0.029095 8 4.13169808 0.0001

Str*PC*DDT*Sc 0.18888 0.00787 24 1.11759628 0.3139

Str*PC*DDT*Nos 0.23608 0.00983667 24 1.39687702 0.0948

Str*DDT*Nos*Sc 0.28669 0.01194542 24 1.6963346 0.0185

PC*DDT*Nos*Sc 0.15161 0.00947563 16 1.34560652 0.1600

Str*PC*DDT*Nos*Sc 0.43482 0.00905875 48 1.28640729 0.0901

Whole Plot Error 20.4708 0.0070419 2907

Sub-plot

Alg 1.6693 0.55643333 3 2918.37764 0.0000

Str*Alg 0.06052 0.00672444 9 35.268319 0.0000

PC*Alg 0.0019 0.00031667 6 1.66085111 0.1263

DDT*Alg 0.01371 0.002285 6 11.984352 0.0000

Nos*Alg 0.02531 0.00421833 6 22.124285 0.0000

Sc*Alg 0.01447 0.00241167 6 12.6486924 0.0000

Str*PC*Alg 0.00544 0.00030222 18 1.58509299 0.0547

Str*DDT*Alg 0.0082 0.00045556 18 2.38929458 0.0008

PC*DDT*Alg 0.00122 0.00010167 12 0.53322062 0.8946

Str*Nos*Alg 0.00644 0.00035778 18 1.87647038 0.0136

PC*Nos*Alg 0.00176 0.00014667 12 0.7692363 0.6831

Str*PC*Nos*Alg 0.00349 9.6944E-05 36 0.50845354 0.9937

DDT*Nos*Alg 0.00676 0.00056333 12 2.95456671 0.0004

Str*Sc*Alg 0.00563 0.00031278 18 1.64045469 0.0425

PC*Sc*Alg 0.00341 0.00028417 12 1.49039534 0.1195

DDT*Sc*Alg 0.00671 0.00055917 12 2.93271341 0.0004

Nos*Sc*Alg 0.00142 0.00011833 12 0.62063384 0.8266

Str*PC*DDT*Alg 0.00802 0.00022278 36 1.16842332 0.2256

Str*DDT*Nos*Alg 0.01394 0.00038722 36 2.03090039 0.0003

PC*DDT*Nos*Alg 0.00482 0.00020083 24 1.05332926 0.3909

Str*PC*Sc*Alg 0.00905 0.00025139 36 1.31848268 0.0963

Str*DDT*Sc*Alg 0.01244 0.00034556 36 1.81236735 0.0021

84

PC*DDT*Sc*Alg 0.00654 0.0002725 24 1.42920609 0.0799

Str*Nos*Sc*Alg 0.00596 0.00016556 36 0.86830462 0.6933

PC*Nos*Sc*Alg 0.00498 0.0002075 24 1.08829454 0.3475

DDT*Nos*Sc*Alg 0.0069 0.0002875 24 1.50787798 0.0530

Str*PC*DDT*Nos*Alg 0.01511 0.00020986 72 1.10067808 0.2621

Str*PC*DDT*Sc*Alg 0.01626 0.00022583 72 1.18444908 0.1369

Str*PC*Nos*Sc*Alg 0.01273 0.00017681 72 0.92730854 0.6518

Str*DDT*Nos*Sc*Alg 0.01228 0.00017056 72 0.89452858 0.7253

PC*DDT*Nos*Sc*Alg 0.01131 0.00023563 48 1.23580435 0.1276

Str*PC*DDT*Nos*Sc*Alg 0.02522 0.00017514 144 0.91856721 0.7475

Subplot error 1.66794 0.00019067 8748

Total 166.3177 12959

Based on the ANOVA table, all factors in the main-plot (Str, PC, DDT, NoS and

Sc) have statistically significant effect on the objective function value of the tested

problems (p-value < 0.05). After accounting for the effect of these factors, the ANOVA

table in the sub-plot shows statistically significant difference in the performance of the

algorithms. Hence, further analysis is warranted to evaluate the difference in the

algorithm’s performance. Tukey test is a single step multiple pair-wise comparison

procedure used to determine which means are significantly different from one another,

which is used in this research to detect which pair of algorithms have significant difference

in performance. The pairwise comparison as described in the hypotheses below is of

particular interest.

Hypothesis 1: This hypothesis is to evaluate the performance of TS algorithm vs

TS/PR algorithm in a PN sequence. The null hypothesis states that performance of the TS

algorithm does not have any significant difference with that of TS/PR algorithm, in a PN

sequence.

𝐻0 ∶ 𝜇𝐴𝐿𝐺1 − 𝜇𝐴𝐿𝐺3 = 0

𝐻1 ∶ 𝜇𝐴𝐿𝐺1 − 𝜇𝐴𝐿𝐺3 ≠ 0

Hypothesis 2: This hypothesis is to evaluate the performance of TS algorithm vs

TS/PR algorithm in an NPN sequence. The null hypothesis states that performance of the

TS algorithm does not have any significant difference with that of TS/PR algorithm, in an

NPN sequence.

85

𝐻0 ∶ 𝜇𝐴𝐿𝐺2 − 𝜇𝐴𝐿𝐺4 = 0

𝐻1 ∶ 𝜇𝐴𝐿𝐺2 − 𝜇𝐴𝐿𝐺4 ≠ 0

Hypothesis 3: This hypothesis is to determine if the NPN sequence offers a

significant advantage, in terms of solution quality, over that of the PN sequence. The null

hypothesis states that NPN sequence does not offer any significant advantage over PN

sequence.

𝐻0 ∶ 𝜇𝐴𝐿𝐺3 − 𝜇𝐴𝐿𝐺4 = 0

𝐻1 ∶ 𝜇𝐴𝐿𝐺3 − 𝜇𝐴𝐿𝐺4 ≠ 0

Based on the size of the problem, i.e. problem structure (small-small, small-large,

large-small, large-large), the performance of the algorithms might vary. Hence the pair-

wise comparison of means is done is performed separately at each level of problem

structure. The results of the analysis are summarized in Table 31 below. For every level of

problem structure, a significant difference in the algorithm’s performance was detected

using ANOVA. From the table, it can be seen that H0 is rejected in favor of H1 in both,

Hypothesis 1 and Hypothesis 2, for all problem structures. Hence, it can be concluded that

TS/PR algorithm yields significantly better solutions as compared to TS algorithm in the

case of both PN and NPN sequences for all problem structures. A pair-wise comparison

between ALG3 and ALG4, i.e., Hypothesis 3 shows that there is no significant difference

between these two algorithms for small-small, small-large and large-large problems. This

means that, for these problem structures, the NPN sequence does not offer significant

advantage over the PN sequence. However, for large-small problems, the null hypothesis

(H0) is rejected in favor of H1, which means that the NPN sequence yields significantly

better solutions than the PN sequence for this problem structure. The large-small problems

have large number of product types and small number of jobs in each product. In this

scenario, the number of similar solutions (solutions having the same OFV) is less as

compared to other problem structures. The NPN sequence is advantageous in these

instances as it can improve the solution’s OFV by performing NPN perturbations. A box-

86

plot is also presented to further highlight the performance of NPN sequence for different

problem structures.

Table 31. Result of ANOVA and Tukey test on algorithm’s performance

Figures 17-19 shows the box-plot of the comparison between algorithms for

different problem structures. The deviation, in terms of solution quality, of ALG1 from

ALG3 is calculated as 𝑑𝑒𝑣1 = ((𝑂𝐹𝑉𝐴𝐿𝐺1 − 𝑂𝐹𝑉𝐴𝐿𝐺3)/𝑂𝐹𝑉𝐴𝐿𝐺3) × 100 and presented in

Figure 17. It can be seen from the figure that, for a PN sequence, the average deviation

increases as the problem complexity increases, i.e., ALG3 is more advantageous for larger

problems. Moreover, the length of the box also increases with the problem complexity

which means that ALG3 was able to identify a better solution than ALG1 in more instances

for larger problems. The deviation of ALG2 from ALG4 is calculated as 𝑑𝑒𝑣2 =

((𝑂𝐹𝑉𝐴𝐿𝐺2 − 𝑂𝐹𝑉𝐴𝐿𝐺4)/𝑂𝐹𝑉𝐴𝐿𝐺4) × 100 and presented in Figure 18. This figure shows

that, for an NPN sequence, ALG4 yields a better solution in more instances than ALG2, as

the problem size increases. Figure 19 shows the average deviation of ALG3 from ALG4,

which is calculated as 𝑑𝑒𝑣2 = ((𝑂𝐹𝑉𝐴𝐿𝐺3 − 𝑂𝐹𝑉𝐴𝐿𝐺4)/𝑂𝐹𝑉𝐴𝐿𝐺4) × 100. The statistical

analysis shows that there is no significant difference between PN sequence (ALG3) and

NPN sequence (ALG4) in three out of four problem structures. Figure 19 illustrates that

the deviation is not uniform across problem structures, i.e., deviation is higher for large-

small problems as compared to other problem structures. The problems belonging to small-

large and large-large have large number of jobs belonging to the same product. As

previously discussed in Section 5.1.4, this results in multiple solutions having the same

objective function value. In this scenario, it is likely that a PN sequence has the same

objective function value as an NPN sequence. Hence, the advantage offered by NPN

sequence is not significant in these problem structures. However, NPN sequences are

Test Small-small Small-large Large-small Large-large

ANOVA (Alg) Significant (p-

value: 0.000)

Significant

(p-value: 0.000)

Significant

(p-value: 0.000)

Significant

(p-value: 0.000)

Hypothesis 1 Reject null Reject null Reject null Reject null

Hypothesis 2 Reject null Reject null Reject null Reject null

Hypothesis 3 Fail to reject null Fail to reject null Reject null Fail to reject null

87

advantageous in instances where there is large number of product types and small number

of jobs in each product.

Figure 18. Deviation of ALG2 from ALG4

Figure 19. Deviation of ALG3 from ALG4

Figure 17. Deviation of ALG1 from ALG3

88

To answer the research question 3, solution quality of PN sequence (ALG3) and

NPN sequence (ALG4) is compared separately for continuous and non-continuous

production instances. The Tukey’s test shows that there is no significant difference between

PN and NPN sequences for continuous production. However, in the case of non-continuous

production, the improvement offered by NPN sequence is significant. Figure 20 also shows

that the percentage improvement is higher in the case of non-continuous production as

compared to continuous production. As discussed in Section 3, the discontinuity in

production allows NPN perturbations in predecessor machines without affecting the final

completion times of jobs, which contributes to the evaluation of weighted tardiness, i.e.,

the second part of the objective function. This provides an advantage to the NPN sequence

as it can improve setup times (the first part of the objective function) in predecessor

machines without affecting the tardiness. Because of this, the advantage of NPN sequence

over PN sequence is less pronounced in continuous production as compared to non-

continuous production.

Although the computational time (CT) taken by the meta-heuristic algorithm is

short as compared to the branch-and-bound technique implemented in CPLEX, a split-plot

ANOVA is performed using CT as the response variable to analyze the difference in the

algorithm’s efficiency, i.e., time taken to find the best solution. The result is shown in Table

32. In this case, the response variable has a huge deviation from a normal distribution, as

seen from Figure 21. Hence, data transformation is performed using a log function to make

Figure 20. Deviation of ALG3 from ALG4

89

its distribution close to normal. The normal probability plot of the transformed data is

shown in Figure 22.

Table 32. ANOVA of the computational time in split-plot design

Source SS MS Num DF Num F Ratio Prob > F

Whole Plot
Rep 2.08E+01 2.31E+00 9 0.587863 0.8081

Str 6.55E+04 2.18E+04 3 5547.782 0.0000

PC 1.22E+01 6.12E+00 2 1.554388 0.2115

DDT 1.22E+01 6.11E+00 2 1.551605 0.2121

NoS 5.29E+01 2.64E+01 2 6.719426 0.0012

Sc 2.00E+01 1.00E+01 2 2.546222 0.0786

Figure 21. Normal Probability Plot for CT

Normal Probability Plot

0 2 4 6 8
(X 1.E6)

CT

0.1

1

5

20

50

80

95

99

99.9

p
e

rc
e

n
ta

g
e

Figure 22. Normal Probability Plot for inversed CT

Normal Probability Plot

-5 -4 -3 -2 -1 0

ln_CT_

0.1

1

5

20

50

80

95

99

99.9

p
e

rc
e

n
ta

g
e

90

Str*PC 4.68E+01 7.81E+00 6 1.983812 0.0645

Str*DDT 8.05E+01 1.34E+01 6 3.408395 0.0024

PC*DDT 9.73E+00 2.43E+00 4 0.617959 0.6497

Str*NoS 1.07E+01 1.78E+00 6 0.451751 0.8441

PC*NoS 2.43E+00 6.09E-01 4 0.154664 0.9610

DDT*NoS 4.25E+01 1.06E+01 4 2.699479 0.0291

DDT*Sc 2.89E+01 7.23E+00 4 1.836592 0.1190

Str*Sc 2.50E+01 4.17E+00 6 1.059123 0.3849

PC*Sc 4.31E+00 1.08E+00 4 0.273604 0.8951

NoS*Sc 1.11E+01 2.77E+00 4 0.702642 0.5901

Str*PC*DDT 5.30E+01 4.42E+00 12 1.122867 0.3361

Str*PC*NoS 3.45E+01 2.88E+00 12 0.731351 0.7218

Str*DDT*NoS 1.91E+01 1.59E+00 12 0.405123 0.9623

PC*DDT*NoS 2.24E+01 2.81E+00 8 0.712746 0.6805

Str*PC*Sc 1.62E+01 1.35E+00 12 0.34407 0.9809

Str*DDT*Sc 2.91E+01 2.43E+00 12 0.616691 0.8298

PC*DDT*Sc 3.30E+01 4.12E+00 8 1.04737 0.3977

Str*NoS*Sc 3.22E+01 2.69E+00 12 0.682736 0.7697

PC*NoS*Sc 2.40E+01 3.00E+00 8 0.762415 0.6361

Str*PC*NoS*Sc 1.00E+02 4.18E+00 24 1.061863 0.3806

DDT*NoS*Sc 1.86E+01 2.33E+00 8 0.591365 0.7858

Str*PC*DDT*Sc 1.42E+02 5.93E+00 24 1.507291 0.0538

Str*PC*DDT*NoS 8.74E+01 3.64E+00 24 0.925241 0.5670

Str*DDT*NoS*Sc 1.76E+02 7.33E+00 24 1.861552 0.0067

PC*DDT*NoS*Sc 5.19E+01 3.24E+00 16 0.823725 0.6594

Str*PC*DDT*NoS*Sc 1.87E+02 3.90E+00 48 0.99015 0.4926

Whole Plot Error 1.14E+04 3.94E+00 2907
Split Plot

Alg 22026.4 7342.133333 3 168941.4 0.0000

Str*Alg 471.561 52.39566667 9 1205.616 0.0000

PC*Alg 0.24603 0.041005 6 0.943519 0.4623

DDT*Alg 7.61792 1.269653333 6 29.21453 0.0000

NoS*Alg 3.56657 0.594428333 6 13.67771 0.0000

Sc*Alg 0.6153 0.10255 6 2.35966 0.0280

Str*PC*Alg 0.81011 0.045006111 18 1.035584 0.4144

Str*DDT*Alg 7.04103 0.391168333 18 9.000724 0.0000

PC*DDT*Alg 0.72622 0.060518333 12 1.392518 0.1611

Str*NoS*Alg 0.73787 0.040992778 18 0.943238 0.5247

PC*NoS*Alg 0.37224 0.03102 12 0.713766 0.7395

Str*PC*NoS*Alg 0.91845 0.0255125 36 0.587039 0.9768

DDT*NoS*Alg 0.45662 0.038051667 12 0.875563 0.5716

Str*Sc*Alg 1.27934 0.071074444 18 1.635412 0.0435

PC*Sc*Alg 0.37588 0.031323333 12 0.720745 0.7325

DDT*Sc*Alg 1.0391 0.086591667 12 1.992461 0.0210

NoS*Sc*Alg 0.53613 0.0446775 12 1.028023 0.4192

Str*PC*DDT*Alg 2.09574 0.058215 36 1.339518 0.0843

Str*DDT*NoS*Alg 1.72085 0.047801389 36 1.099903 0.3131

PC*DDT*NoS*Alg 1.41611 0.059004583 24 1.357687 0.1136

91

Str*PC*Sc*Alg 1.48039 0.041121944 36 0.94621 0.5610

Str*DDT*Sc*Alg 1.89588 0.052663333 36 1.211775 0.1796

PC*DDT*Sc*Alg 1.31673 0.05486375 24 1.262407 0.1755

Str*NoS*Sc*Alg 1.8329 0.050913889 36 1.171521 0.2220

PC*NoS*Sc*Alg 1.16302 0.048459167 24 1.115038 0.3161

DDT*NoS*Sc*Alg 0.69388 0.028911667 24 0.665253 0.8891

Str*PC*DDT*NoS*Alg 3.31827 0.046087083 72 1.060457 0.3413

Str*PC*DDT*Sc*Alg 4.08111 0.056682083 72 1.304246 0.0434

Str*PC*NoS*Sc*Alg 3.15964 0.043883889 72 1.009762 0.4550

Str*DDT*NoS*Sc*Alg 3.90257 0.054202361 72 1.247188 0.0773

PC*DDT*NoS*Sc*Alg 1.98233 0.041298542 48 0.950273 0.5711

Str*PC*DDT*NoS*Sc*Alg 7.02248 0.048767222 144 1.122126 0.1524

Subplot error 380.18502 0.04345965 8748
Total 101289.9699 12959

 The main plot in the above table shows that only the problem structure and number

of shifts have significant effect on the computational time of the algorithm. The sub-plot

shows that there is significant difference in the CT of the algorithms. The average time

taken by the algorithm for different problem structures is shown in Table 33. The table

shows that the time taken by NPN algorithms, ALG2 and ALG4, is significantly greater

than the PN algorithms, ALG1 and ALG3, respectively. Since, the NPN sequence does not

significantly improve the solution quality as compared to the PN sequence, it is

advantageous to consider only PN sequence, given the increased CT required by NPN

algorithms. Table 34 shows the average CT of algorithms for continuous and non-

continuous production. The result shows that the time taken by all algorithms is higher in

the case of non-continuous production. This suggests that the limited machine availability

constraint, i.e., non-continuous production, increases the complexity of the problem.

Table 33. CT of algorithms for different problem structure

Problem

Structure

Computational time (sec)

ALG1 ALG2 ALG3 ALG4

LL 57.29 173.68 810.27 2027.86

LS 1.94 11.50 19.68 87.58

SL 3.00 13.33 31.07 92.60

SS 0.13 0.78 1.11 4.43

Overall 15.59 49.82 215.53 553.12

92

Table 34. CT of algorithms for continuous and non-continuous production

Type

Computational time (sec)

ALG1 ALG2 ALG3 ALG4

Non-continuous 16.04 50.05 223.28 574.79

Continuous 14.69 49.37 200.05 509.77

Overall 15.59 49.82 215.53 553.12

93

9. CONCLUSIONS AND FUTURE RESEARCH

An uneven assembly flow shop scheduling problem with limited machine

availability has been addressed in this research. Both permutation and non-permutation

sequence has been considered to solve this problem. The setup time is considered to be

machine and sequence-dependent, which implies that the setup time required for a job

depends on the machine on which it is scheduled, and the previous job scheduled on that

machine. The setup time between jobs belonging to the same product is less than the setup

time between jobs belonging to different products. The machines have a dynamic

availability time, which means that each machine may become available at a different time

than the start of the planning horizon. Each job has a release time, due date and weight

associated with it. The job release time is considered to be dynamic, i.e., jobs can be

released at any time during the planning horizon. The due date of the job can be viewed as

the shipment date and the weight of the job indicates the priority assigned to the job. Jobs

with higher weights are prioritized over the lesser weighted jobs. The machines also have

limited machine availability, i.e., the machines are not available continuously for the entire

planning horizon. The production occurs in 8-hour shifts and the number of shifts can be

one, two or three. In the case of one and two shifts, the production occurs for 8 and 16

hours each day, respectively. This means that the machines are not available for production

for the rest of the day. Furthermore, there is limited storage space between two machines.

Thus, a blocking constraint is introduced, which means that a job is blocked on a

predecessor machine if the storage space following that machine is not empty.

The goal is to simultaneously minimize two objectives, total setup time

(representing producer’s interest) and total weighted tardiness (representing customers’

interest). Since the values of these two criteria might not be in the same range, a

normalization technique is implemented so that the value of each criteria falls between 0

and 1. The normalized criteria are then combined into a single objective function using the

weights assigned to each criterion.

The problem is formulated as a mixed-integer linear programming model with the

objective function focused on minimizing the linear combination of two normalized

94

objectives, setup time and weighted tardiness. Two models are developed, MILP1 for PN

sequence and MILP2 for NPN sequence. Since the reduced version of the research problem

is shown to be strongly NP-hard by previous works, the computational complexity of this

problem is also strongly NP-hard. Thus, an exact method such as branch-and-bound

technique can only be used to solve small problem instances. For medium and large

problems, the branch-and-bound technique may never find an optimal solution even after

spending an extremely large computational time.

Knowing the inefficiency of the branch-and-bound technique, a meta-heuristic

algorithm is developed and applied to solve the problems. Two algorithms each, were

developed for PN and NPN sequences, where one of the algorithms was based on short-

term tabu search and the other was based on tabu search/path-relinking. An important part

of this research is to compare the ability of TS and TS/PR algorithms to find the best

solution for different problems. The initial solution is generated by combining two

sequences, each focusing on minimizing a single objective. The first sequence PS is

focused on minimizing the setup time and is obtained using SST rule whereas the second

sequence CS is focused on minimizing weighted tardiness and is obtained using WEDD

rule. Normalized weights are used to combine both sequences together.

In order to assess the effectiveness of the developed algorithms, sixteen small-size

problems were generated and solved using CPLEX for both, PN and NPN sequences. These

problems were also solved using the meta-heuristic algorithms. For the 16 problems solved,

it was observed that CPLEX could find an optimal solution for only 13 problems in the

case of PN sequence and 9 problems in the case of NPN sequence. CPLEX was having

difficulty in solving some of these problems to optimality, more so for NPN sequence. This

was due to weak LP relaxation of the model and the existence of symmetry in the model.

For the problems where an optimal solution was found by CPLEX, an average

improvement of 2.68% was observed by adopting the NPN sequence over PN sequence.

The optimal solutions were also compared with the solutions obtained from metaheuristic

algorithms. The best solutions were obtained from TS/PR algorithms, ALG3 (for PN

sequence) and ALG4 (for NPN sequence), which had an average deviation of 0.49% and

95

0.13%, respectively, from the optimal solution. This demonstrates the capability of the

developed algorithms to identify high quality solutions. Moreover, the average CT of

TS/PR algorithm ALG3 was 5.33 second, which is significantly lower than 4063.7 second,

as required by CPLEX to solve for PN sequence. For NPN sequences, the CT of ALG4

was 60.09 seconds, as compared to 12408.35 seconds required by CPLEX. This supports

the fact that the implementation of meta-heuristic algorithms is very time-efficient.

A multi-factor split-plot design is developed to analyze the significance in the

algorithm’s performance, both in terms of solution quality and computational time. Factors

that define a problem, such as problem structure, plant capacity, due date tightness, number

of shifts, scenario and replicates are placed in the main plot. The algorithm, which is the

primary factor of interest, is placed in the sub-plot. The reason for this design is to analyze

the effect of algorithms’ performance without the influence of problem parameters. The

result shows that, TS/PR outperforms short term TS for all problem structures, in the case

of both, PN and NPN sequences. The best PN algorithm, i.e., ALG3, was compared with

the best NPN algorithm, i.e. ALG4, to determine if the NPN sequence offers a significant

advantage over PN sequence. An average improvement of 1.68% was observed by

adopting the NPN sequence. The statistical analysis showed that the improvement offered

by NPN sequence is not statistically significant for small-small, small-large and large-large

problems. However, the improvement seemed to be significant in problems with high

product variety, i.e., large-small problems. In addition, it was also observed that the

performance of NPN sequence is better in the case of non-continuous production. For

continuous production, NPN sequence did not yield any significant advantage. The results

also show that the CT for PN algorithms is significantly lower for PN algorithms. Hence,

it would be advantageous to consider only PN sequence for problems with small number

of product types or with large number of jobs belonging to same products, given the higher

efficiency and equivalent effectiveness of PN algorithms as compared to NPN algorithms.

For large-small problems, NPN sequence is recommended. TS/PR algorithms (ALG3 and

ALG4) are recommended for PN and NPN sequences, respectively, because of their ability

to obtain superior solutions.

96

Future research could focus on adding complexity to the flow shop. The problem

addressed in this research can be generalized into m-component assembly flowshop with

each component requiring one or more operations before assembly stage. Assembly flow

shops with m components have been studied in the past by different researchers (Sung and

Kim 2008, Torabzadeh and Zandieh, 2010, Al-Anzi and Allahverdi, 2012). However, the

condition of multiple operations required by a component before assembly has not been

studied so far. Machine skipping is a characteristic that is implemented in numerous

manufacturing plants. Shahvari and Logendran (2017) have addressed a hybrid flow shop

batch scheduling problem considering machine skipping. Thus, future research may

consider generalizing the research problem into an m-machine flow shop and introducing

machine skipping to the problem.

Further research could also focus on comparing the performance of the tabu search-

based algorithms with other heuristics such as genetic algorithm (GA) and particle swarm

optimization (PSO) in solving the problem addressed in this research. Various researchers

have compared the performance of TS-based heuristics with other heuristics in solving

different types of scheduling problems (Al-Anzi and Allahverdi, 2012, Bozorgirad 2013,

Shahvari 2016). The performance of these heuristics is shown to be different for different

type of problems. Hence, more research insights can be obtained by implementing GA and

PSO to solve the research problem and comparing their performance to the TS algorithms.

97

BIBLIOGRAPHY

Aggoune, R., 2004. Minimizing the makespan for the flow shop scheduling problem with

availability constraints. Eur. J. Oper. Res., EURO Young Scientists 153, 534–543.

Al-Anzi, F.S., Allahverdi, A., 2012. Better heuristics for a two-stage multi-machine

assembly scheduling problem to minimize total completion time. Int. J. Oper. Res.

9, 66–75.

Al-Anzi, F.S., Allahverdi, A., 2006. A hybrid tabu search heuristic for the two-stage

assembly scheduling problem. Int. J. Oper. Res. 3, 109–119.

Allahverdi, A., 2015. The third comprehensive survey on scheduling problems with setup

times/costs. Eur. J. Oper. Res. 246, 345–378.

Allahverdi, A., Al-Anzi, F.S., 2009. The two-stage assembly scheduling problem to

minimize total completion time with setup times. Comput. Oper. Res. 36, 2740–

2747.

Allahverdi, A., Aldowaisan, T., 2004. No-wait flowshops with bicriteria of makespan and

maximum lateness. Eur. J. Oper. Res. 152, 132–147.

Allahverdi, A., Gupta, J.N.D., Aldowaisan, T., 1999. A review of scheduling research

involving setup considerations. Omega 27, 219–239.

Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y., 2008. A survey of scheduling

problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032.

Allaoui, H., Artiba, A., Elmaghraby, S.E., Riane, F., 2006. Scheduling of a two-machine

flowshop with availability constraints on the first machine. Int. J. Prod. Econ.,

Control and Management of Productive Systems 99, 16–27.

Aryal, A. and Logendran, R., 2017. Assembly Flowshop Scheduling with Shift

Production. IIE Annual Conference Proceedings, Institute of Industrial and

Systems Engineers (IISE).

Błażewicz, J., Breit, J., Formanowicz, P., Kubiak, W., Schmidt, G., 2001. Heuristic

algorithms for the two-machine flowshop with limited machine availability. Omega

29, 599–608.

Bozorgirad, M.A., Logendran, R., 2013. Bi-criteria group scheduling in hybrid flowshops.

Int. J. Prod. Econ. 145, 599–612.

Bozorgirad, M.A., 2013. Bi-criteria group scheduling with learning in hybrid flow shops

(Unpublished doctoral dissertation). Oregon State University, Corvallis, Oregon.

98

Campbell, H.G., Dudek, R.A., Smith, M.L., 1970. A Heuristic Algorithm for the n Job, m

Machine Sequencing Problem. Manag. Sci. 16, B630–B637.

Chyu, C.C., Chang, W.S., 2010. A competitive evolution strategy memetic algorithm for

unrelated parallel machine scheduling to minimize total weighted tardiness and

flow time, in: The 40th International Conference on Computers Indutrial

Engineering. Presented at the The 40th International Conference on Computers

Indutrial Engineering, pp. 1–6.

Eren, T., Güner, E., 2006. A bicriteria scheduling with sequence-dependent setup times.

Appl. Math. Comput. 179, 378–385.

Framinan, J.M., Perez-Gonzalez, P., 2017. The 2-stage assembly flowshop scheduling

problem with total completion time: Efficient constructive heuristic and

metaheuristic. Comput. Oper. Res. 88, 237–246.

Gagné, C., Gravel, M., Price, W.L., 2005. Using metaheuristic compromise programming

for the solution of multiple-objective scheduling problems. J. Oper. Res. Soc. 56,

687–698.

Glover, F., 1990. Tabu search—part II. ORSA J. Comput. 2, 4–32.

Glover, F., 1989. Tabu search—part I. ORSA J. Comput. 1, 190–206.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence.

Comput. Oper. Res. 13, 533–549.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., 1979. Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey. Ann.

Discrete Math., Discrete Optimization II 5, 287–326.

Hall, N.G., Sriskandarajah, C., 1996. A Survey of Machine Scheduling Problems with

Blocking and No-Wait in Process. Oper. Res. 44, 510–525.

Hariri, A.M.A., Potts, C.N., 1997. A branch and bound algorithm for the two-stage

assembly scheduling problem. Eur. J. Oper. Res. 103, 547–556.

Huo, Y., Huang, J.X., 2016. Parallel Ant Colony Optimization for Flow Shop Scheduling

Subject to Limited Machine Availability, in: Parallel and Distributed Processing

Symposium Workshops, 2016 IEEE International. IEEE, pp. 756–765.

Johnson, S.M., 1954. Optimal two‐ and three‐stage production schedules with setup times

included. Nav. Res. Logist. Q. 1, 61–68.

Kim, D.-W., Kim, K.-H., Jang, W., Chen, F.F., 2002. Unrelated parallel machine

scheduling with setup times using simulated annealing. Robot. Comput.-Integr.

Manuf. 18, 223–231.

99

Koulamas, C., 1994. The total tardiness problem: review and extensions. Oper. Res. 42,

1025–1041.

Koulamas, C., J. Kyparisis, G., 2001. The three-stage assembly flowshop scheduling

problem. Comput. Oper. Res. 28, 689–704.

Kubiak, W., Błażewicz, J., Formanowicz, P., Breit, J., Schmidt, G., 2002. Two-machine

flow shops with limited machine availability. Eur. J. Oper. Res. 136, 528–540.

Laguna, M., Barnes, J.W., Glover, F.W., 1991. Tabu search methods for a single machine

scheduling problem. J. Intell. Manuf. 2, 63–73.

Lee, C.-Y., 1997. Minimizing the makespan in the two-machine flowshop scheduling

problem with an availability constraint. Oper. Res. Lett. 20, 129–139.

Lee, C.-Y., Cheng, T.C.E., Lin, B.M.T., 1993. Minimizing the Makespan in the 3-Machine

Assembly-Type Flowshop Scheduling Problem. Manag. Sci. 39, 616–625.

Liao, C.J., Chen, W.J., 2003. Single-machine scheduling with periodic maintenance and

nonresumable jobs. Comput. Oper. Res. 30, 1335–1347.

Liao, L.-M., Huang, C.-J., 2010. Tabu search for non-permutation flowshop scheduling

problem with minimizing total tardiness. Appl. Math. Comput. 217, 557–567.

Liu, B., Wang, L., Jin, Y.-H., 2008. An effective hybrid PSO-based algorithm for flow

shop scheduling with limited buffers. Comput. Oper. Res., Part Special Issue: Bio-

inspired Methods in Combinatorial Optimization 35, 2791–2806.

Logendran, R., Subur, F., 2004. Unrelated parallel machine scheduling with job splitting.

IIE Trans. 36, 359–372.

Lu, D., 2011. Bi-criteria group scheduling with sequence-dependent setup time in a flow

shop (Unpublished master's thesis). Oregon State University, Corvallis, Oregon.

Ma, Y., Chu, C., Zuo, C., 2010. A survey of scheduling with deterministic machine

availability constraints. Comput. Ind. Eng., Scheduling in Healthcare and Industrial

Systems 58, 199–211.

Maleki-Darounkolaei, A., Modiri, M., Tavakkoli-Moghaddam, R., Seyyedi, I., 2012. A

three-stage assembly flow shop scheduling problem with blocking and sequence-

dependent set up times. J. Ind. Eng. Int. 8, 26.

Mehravaran, Y., Logendran, R., 2012. Non-permutation flowshop scheduling in a supply

chain with sequence-dependent setup times. Int. J. Prod. Econ., Green

Manufacturing and Distribution in the Fashion and Apparel Industries 135, 953–

963.

100

Moslehi, G., Mahnam, M., 2011. A Pareto approach to multi-objective flexible job-shop

scheduling problem using particle swarm optimization and local search. Int. J. Prod.

Econ. 129, 14–22.

Nawaz, M., Enscore Jr, E.E., Ham, I., 1983. A heuristic algorithm for the m-machine, n-

job flow-shop sequencing problem. Omega 11, 91–95.

Nowicki, E., Smutnicki, C., 1996. A fast tabu search algorithm for the permutation flow-

shop problem. Eur. J. Oper. Res. 91, 160–175.

Pandya, V. and R. Logendran (2010). Weighted tardiness minimization in flexible

flowshops. IIE Annual Conference Proceedings, Institute of Industrial and Systems

Engineers (IISE).

Panwalkar, S.S., Dudek, R.A., Smith, M.L., 1973. Sequencing Research and the Industrial

Scheduling Problem, in: Symposium on the Theory of Scheduling and Its

Applications. Springer, Berlin, Heidelberg, pp. 29–38.

Peng, B., Lü, Z., Cheng, T.C.E., 2015. A tabu search/path relinking algorithm to solve the

job shop scheduling problem. Comput. Oper. Res. 53, 154–164.

Potts, C.N., Sevast’janov, S.V., Strusevich, V.A., Van Wassenhove, L.N., Zwaneveld,

C.M., 1995. The Two-Stage Assembly Scheduling Problem: Complexity and

Approximation. Oper. Res. 43, 346–355.

Qian, B., Wang, L., Huang, D., Wang, W., Wang, X., 2009. An effective hybrid DE-based

algorithm for multi-objective flow shop scheduling with limited buffers. Comput.

Oper. Res., Part Special Issue: Operations Research Approaches for Disaster

Recovery Planning 36, 209–233.

Schaller, J.E., Gupta, J.N., Vakharia, A.J., 2000. Scheduling a flowline manufacturing cell

with sequence dependent family setup times. Eur. J. Oper. Res. 125, 324–339.

Schiavinotto, T., Stützle, T., 2007. A review of metrics on permutations for search

landscape analysis. Comput. Oper. Res. 34, 3143–3153.

Sevaux, M., Sörensen, K., 2005. Permutation distance measures for memetic algorithms

with population management, in: Proceedings of 6th Metaheuristics International

Conference (MIC’05). Citeseer.

Shahvari, O., Logendran, R., 2017. An enhanced tabu search algorithm to minimize a bi-

criteria objective in batching and scheduling problems on unrelated-parallel

machines with desired lower bounds on batch sizes. Comput. Oper. Res. 77, 154–

176.

Shahvari, O., 2016. Bi-criteria batching and scheduling in hybrid flow shops (Unpublished

doctoral dissertation). Oregon State University, Corvallis, Oregon.

101

Shahvari, O., Logendran, R., 2016. Hybrid flow shop batching and scheduling with a bi-

criteria objective. Int. J. Prod. Econ. 179, 239–258.

Shahvari, O., Salmasi, N., Logendran, R., Abbasi, B., 2012. An efficient tabu search

algorithm for flexible flow shop sequence-dependent group scheduling problems.

Int. J. Prod. Res. 50, 4237–4254.

Strusevich, V.A., Zwaneveld, C.M., 1994. On non-permutation solutions to some two

machine flow shop scheduling problems. Math. Methods Oper. Res. 39, 305–319.

Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequencing problem.

Eur. J. Oper. Res. 47, 65–74.

Torabzadeh, E., Zandieh, M., 2010. Cloud theory-based simulated annealing approach for

scheduling in the two-stage assembly flowshop. Adv. Eng. Softw. 41, 1238–1243.

Tozkapan, A., Kırca, Ö., Chung, C.-S., 2003. A branch and bound algorithm to minimize

the total weighted flowtime for the two-stage assembly scheduling problem.

Comput. Oper. Res. 30, 309–320.

Zeng, R.-Q., Basseur, M., Hao, J.-K., 2013. Solving bi-objective flow shop problem with

hybrid path relinking algorithm. Appl. Soft Comput. 13, 4118–4132.

102

APPENDIX

103

Appendix A. Result of statistical analysis for parameter tuning

Table A.1. Parameter value for algorithms

Algorithm
Perturbation

Type
Parameter

Small,

Small

Small,

Large

Large,

Small

Large,

Large

ALG1 P1 (Slight TS)

TLS 10 20 25 5

MNSS 2 2 2 2

MIWOI 15 20 25 15

MIL 15 5 10 5

ALG1
P2 (Strong

TS)

TLS 20 5 20 5

MNSS 2 2 2 2

MIWOI 15 25 15 30

MIL 15 5 5 5

ALG2 P1 (Slight TS)

TLS 20 20 25 5

MNSS 2 2 2 2

MIWOI 25 20 25 25

MIL 15 5 10 5

ALG2
P2 (Strong

TS)

TLS 5 5 5 5

MNSS 2 2 2 2

MIWOI 10 20 25 25

MIL 15 5 5 5

ALG3 -
P_size 5 5 5 10

MIWI 3 3 3 8

ALG4 -
P_size 5 5 10 10

MIWI 3 5 5 5

104

Table A.2. ANOVA for TLS, MNSS for ALG1 with P1 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.0312939 5 0.0063 10.18 0

 B:MNSS 0.000347446 4 9E-05 0.14 0.9668

 C:Block 8.27463 24 0.3448 560.75 0

RESIDUAL 0.440231 716 0.0006
TOTAL (CORRECTED) 8.7465 749
All F-ratios are based on the residual mean square error.

 Table A.3. ANOVA for TLS, MNSS for ALG1 with P2 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.00980421 4 0.00245105 10.71 0

 B:MNSS 0.00275777 5 0.000551554 2.41 0.0352

 C:Block 10.5788 24 0.440785 1925.32 0

RESIDUAL 0.163922 716 0.000228942
TOTAL (CORRECTED) 10.7553 749
All F-ratios are based on the residual mean square error.

 Table A.4. ANOVA for TLS, MNSS for ALG2 with P1 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 2.74708E-05 4 6.86771E-06 0.04 0.9965

 B:MNSS 0.014874 5 0.0029748 18.63 0

 C:Block 9.18453 24 0.382689 2397.26 0

RESIDUAL 0.114299 716 0.000159636
TOTAL (CORRECTED) 9.31373 749
All F-ratios are based on the residual mean square error.

 Table A.5. ANOVA for TLS, MNSS for ALG2 with P2 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 9.28307E-05 5 1.85661E-05 0.17 0.9741

 B:MNSS 0.00126913 4 0.000317282 2.88 0.0219

 C:Block 9.41044 24 0.392102 3562.39 0

RESIDUAL 0.078808 716 0.000110067
TOTAL (CORRECTED) 9.49061 749
All F-ratios are based on the residual mean square error.

105

Table A.6. ANOVA for TLS, MNSS for ALG1 with P1 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.01467 5 0.0029 16.7 0

 B:MNSS 3.09542E-05 4 8E-06 0.04 0.9963

 C:Block 6.43633 24 0.2682 1526.9 0

RESIDUAL 0.125755 716 0.0002
TOTAL (CORRECTED) 6.57678 749
All F-ratios are based on the residual mean square error.

 Table A.7. ANOVA for TLS, MNSS for ALG1 with P2 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 4.43507E-05 5 8.87014E-06 0.29 0.9187

 B:MNSS 0.00290975 4 0.000727438 23.77 0

 C:Block 5.71451 24 0.238105 7779.61 0

RESIDUAL 0.0219141 716 3.06062E-05
TOTAL (CORRECTED) 5.73938 749
All F-ratios are based on the residual mean square error.

 Table A.8. ANOVA for TLS, MNSS for ALG2 with P1 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.00194202 5 0.000388404 6.77 0

 B:MNSS 0.00148445 4 0.000371113 6.47 0

 C:Block 6.33012 24 0.263755 4595.13 0

RESIDUAL 0.0410975 716 5.73988E-05
TOTAL (CORRECTED) 6.37464 749
All F-ratios are based on the residual mean square error.

Table A.9. ANOVA for TLS, MNSS for ALG2 with P2 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 6.22361E-05 5 1.24472E-05 0.59 0.7062

 B:MNSS 0.000895289 4 0.000223822 10.64 0

 C:Block 5.5465 24 0.231104 10989.26 0

RESIDUAL 0.0150575 716 0.00002103
TOTAL (CORRECTED) 5.56252 749
All F-ratios are based on the residual mean square error.

106

Table A.10. ANOVA for TLS, MNSS for ALG1 with P1 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.0847708 5 0.017 65.95 0

 B:MNSS 0.000109797 4 3E-05 0.11 0.9802

 C:Block 7.80212 24 0.3251 1264.6 0

RESIDUAL 0.184062 716 0.0003
TOTAL (CORRECTED) 8.07106 749
All F-ratios are based on the residual mean square error.

 Table A.11. ANOVA for TLS, MNSS for ALG1 with P2 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.000310561 5 6.21122E-05 9 0

 B:MNSS 0.00014966 4 0.000037415 5.42 0.0003

 C:Block 9.17015 24 0.382089 55393.92 0

RESIDUAL 0.00493874 716 6.89768E-06
TOTAL (CORRECTED) 9.17555 749
All F-ratios are based on the residual mean square error.

 Table A.12. ANOVA for TLS, MNSS for ALG2 with P1 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 0.00484786 5 0.000969572 54.74 0

 B:MNSS 0.000659532 4 0.000164883 9.31 0

 C:Block 7.56644 24 0.315268 17798.91 0

RESIDUAL 0.0126824 716 1.77128E-05
TOTAL (CORRECTED) 7.58463 749
All F-ratios are based on the residual mean square error.

Table A.13. ANOVA for TLS, MNSS for ALG2 with P2 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 3.97248E-06 5 7.94E-07 0.25 0.941

 B:MNSS 0.000324945 4 8.12363E-05 25.33 0

 C:Block 9.20308 24 0.383462 119544.4 0

RESIDUAL 0.00229671 716 3.20769E-06
TOTAL (CORRECTED) 9.2057 749
All F-ratios are based on the residual mean square error.

107

Table A.14. ANOVA for TLS, MNSS for ALG1 with P1 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 4.47414E-05 5 8.94828E-06 1.49 0.1901

 B:MNSS 0.000206549 4 5.16372E-05 8.61 0

 C:Block 4.14482 24 0.172701 28799 0

RESIDUAL 0.00429374 716 5.99685E-06
TOTAL (CORRECTED) 4.14936 749
All F-ratios are based on the residual mean square error.

 Table A.15. ANOVA for TLS, MNSS for ALG1 with P2 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 7.62277E-05 5 1.52455E-05 1.07 0.3772

 B:MNSS 0.00160272 4 0.000400679 28.05 0

 C:Block 5.33893 24 0.222455 15574.24 0

RESIDUAL 0.010227 716 1.42835E-05
TOTAL (CORRECTED) 5.35083 749
All F-ratios are based on the residual mean square error.

 Table A.16. ANOVA for TLS, MNSS for ALG2 with P1 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 1.94033E-05 5 3.88065E-06 1.17 0.321

 B:MNSS 0.000182414 4 4.56035E-05 13.78 0

 C:Block 8.73951 24 0.364146 110016 0

RESIDUAL 0.00236992 716 3.30994E-06
TOTAL (CORRECTED) 8.74208 749
All F-ratios are based on the residual mean square error.

Table A.17. ANOVA for TLS, MNSS for ALG2 with P2 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:TLS 6.43E-08 5 1.29E-08 0.03 0.9996

 B:MNSS 3.70061E-05 4 9.25152E-06 20.72 0

 C:Block 11.5258 24 0.480241 1075505 0

RESIDUAL 0.000319712 716 4.47E-07
TOTAL (CORRECTED) 11.5261 749
All F-ratios are based on the residual mean square error.

108

Table A.18. ANOVA for MIWOI, ILS for ALG1 with P1 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.20179 5 0.0404 60.29 0

 B:ILS 0.0313526 5 0.0063 9.37 0

 C:Block 11.6003 24 0.4833 722.05 0

RESIDUAL 0.579038 865 0.0007
TOTAL (CORRECTED) 12.4125 899
All F-ratios are based on the residual mean square error.

 Table A.19. ANOVA for MIWOI, ILS for ALG1 with P2 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.0949282 5 0.0189856 56.2 0

 B:ILS 4.97E-03 5 9.95E-04 2.94 0.0121

 C:Block 12.7962 24 0.533177 1578.17 0

RESIDUAL 0.292235 865 0.000337844
TOTAL (CORRECTED) 13.1884 899
All F-ratios are based on the residual mean square error.

 Table A.20. ANOVA for MIWOI, ILS for ALG2 with P1 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.0439826 5 0.00879652 34.08 0

 B:ILS 0.0103749 5 0.00207498 8.04 0

 C:Block 10.3522 24 0.431343 1670.97 0

RESIDUAL 0.22329 865 0.000258139
TOTAL (CORRECTED) 10.6299 899
All F-ratios are based on the residual mean square error.

 Table A.21. ANOVA for MIWOI, ILS for ALG2 with P2 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.0144544 5 0.00289088 22.86 0

 B:ILS 0.00362204 5 0.000724409 5.73 0

 C:Block 10.7734 24 0.44889 3550.2 0

RESIDUAL 0.109371 865 0.000126441
TOTAL (CORRECTED) 10.9008 899
All F-ratios are based on the residual mean square error.

109

Table A.22. ANOVA for MIWOI, ILS for ALG1 with P1 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.0164934 5 0.00329868 27.44 0

 B:ILS 4.26501E-05 5 8.53002E-06 0.07 0.9965

 C:Block 7.68708 24 0.320295 2664.3 0

RESIDUAL 0.103987 865 0.000120216
TOTAL (CORRECTED) 7.8076 899
All F-ratios are based on the residual mean square error.

 Table A.23. ANOVA for MIWOI, ILS for ALG1 with P2 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.00233216 5 0.000466432 15.51 0

 B:ILS 4.37E-05 5 8.74E-06 0.29 0.9182

 C:Block 6.63228 24 0.276345 9190.33 0

RESIDUAL 0.0260098 865 3.00691E-05
TOTAL (CORRECTED) 6.66067 899
All F-ratios are based on the residual mean square error.

 Table A.24. ANOVA for MIWOI, ILS for ALG2 with P1 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.00914565 5 0.00182913 32.02 0

 B:ILS 0.000053013 5 1.06026E-05 0.19 0.9681

 C:Block 7.54207 24 0.314253 5500.76 0

RESIDUAL 0.0494166 865 0.000057129
TOTAL (CORRECTED) 7.60069 899
All F-ratios are based on the residual mean square error.

Table A.25. ANOVA for MIWOI, ILS for ALG2 with P2 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.000570462 5 0.000114092 10.82 0

 B:ILS 9.68275E-05 5 1.93655E-05 1.84 0.1032

 C:Block 6.76487 24 0.28187 26734.61 0

RESIDUAL 0.00911991 865 1.05433E-05
TOTAL (CORRECTED) 6.77466 899
All F-ratios are based on the residual mean square error.

110

Table A.26. ANOVA for MIWOI, ILS for ALG1 with P1 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.0957728 5 0.0192 95.57 0

 B:ILS 0.00452182 5 0.0009 4.51 0.0005

 C:Block 9.01436 24 0.3756 1873.9 0

RESIDUAL 0.173374 865 0.0002
TOTAL (CORRECTED) 9.28803 899
All F-ratios are based on the residual mean square error.

 Table A.27. ANOVA for MIWOI, ILS for ALG1 with P2 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.00110015 5 0.000220031 37.42 0

 B:ILS 5.56E-06 5 1.11E-06 0.19 0.9667

 C:Block 10.6846 24 0.445193 75704.18 0

RESIDUAL 0.0050868 865 5.88069E-06
TOTAL (CORRECTED) 10.6908 899
All F-ratios are based on the residual mean square error.

 Table A.28. ANOVA for MIWOI, ILS for ALG2 with P1 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.00581828 5 0.00116366 76.6 0

 B:ILS 0.00075769 5 0.000151538 9.98 0

 C:Block 9.17734 24 0.382389 25171.97 0

RESIDUAL 0.0131403 865 1.51911E-05
TOTAL (CORRECTED) 9.19706 899
All F-ratios are based on the residual mean square error.

Table A.29. ANOVA for MIWOI, ILS for ALG2 with P2 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.000142175 5 2.84351E-05 13.87 0

 B:ILS 3.27669E-06 5 6.55E-07 0.32 0.9013

 C:Block 10.3146 24 0.429776 209593 0

RESIDUAL 0.0017737 865 2.05052E-06
TOTAL (CORRECTED) 10.3165 899
All F-ratios are based on the residual mean square error.

111

Table A.30. ANOVA for MIWOI, ILS for ALG1 with P1 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.000243106 5 5E-05 12.45 0

 B:ILS 1.24541E-05 5 2E-06 0.64 0.6708

 C:Block 4.93013 24 0.2054 52613 0

RESIDUAL 0.00337729 865 4E-06
TOTAL (CORRECTED) 4.93377 899
All F-ratios are based on the residual mean square error.

 Table A.31. ANOVA for MIWOI, ILS for ALG1 with P2 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.000769404 5 0.000153881 14.11 0

 B:ILS 7.61E-06 5 1.52E-06 0.14 0.9831

 C:Block 6.43306 24 0.268044 24574.81 0

RESIDUAL 0.00943479 865 1.09073E-05
TOTAL (CORRECTED) 6.44327 899
All F-ratios are based on the residual mean square error.

 Table A.32. ANOVA for MIWOI, ILS for ALG2 with P1 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 6.65098E-05 5 0.000013302 14.07 0

 B:ILS 1.89989E-06 5 3.80E-07 0.4 0.8476

 C:Block 4.95762 24 0.206568 218534.3 0

RESIDUAL 0.000817634 865 9.45E-07
TOTAL (CORRECTED) 4.95851 899
All F-ratios are based on the residual mean square error.

Table A.33. ANOVA for MIWOI, ILS for ALG2 with P2 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWOI 0.000084788 5 1.69576E-05 25.65 0

 B:ILS 8.68E-07 5 1.74E-07 0.26 0.9334

 C:Block 8.32251 24 0.346771 524562.6 0

RESIDUAL 0.000571824 865 6.61E-07
TOTAL (CORRECTED) 8.32317 899
All F-ratios are based on the residual mean square error.

112

Table A.34. ANOVA for MIWI, P_size for ALG3 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.000363968 3 0.000121323 1.39 0.2461

 B:P_size 8.67222E-05 3 2.89074E-05 0.33 0.8031

 C:Block 6.27495 24 0.261456 2991.27 0

RESIDUAL 0.0322529 369 8.74063E-05
TOTAL (CORRECTED) 6.30766 399
All F-ratios are based on the residual mean square error.

 Table A.35. ANOVA for MIWI, P_size for ALG4 (Small-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.000251505 3 8.38349E-05 1.4 0.2429

 B:P_size 0.000328296 3 0.000109432 1.83 0.142

 C:Block 6.21947 24 0.259145 4323.56 0

RESIDUAL 0.022117 369 5.99377E-05
TOTAL (CORRECTED) 6.24217 399
All F-ratios are based on the residual mean square error.

 Table A.36. ANOVA for MIWI, P_size for ALG3 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.00018301 3 6.10032E-05 1.38 0.2475

 B:P_size 0.000066382 3 2.21273E-05 0.5 0.6812

 C:Block 2.76549 24 0.115229 2613.29 0

RESIDUAL 0.0162704 369 4.40933E-05
TOTAL (CORRECTED) 2.78201 399
All F-ratios are based on the residual mean square error.

Table A.37. ANOVA for MIWI, P_size for ALG4 (Small-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.000155231 3 5.17438E-05 3.05 0.0287

 B:P_size 6.42444E-05 3 2.14148E-05 1.26 0.2872

 C:Block 2.64952 24 0.110396 6505.61 0

RESIDUAL 0.00626172 369 1.69694E-05
TOTAL (CORRECTED) 2.656 399
All F-ratios are based on the residual mean square error.

113

Table A.38. ANOVA MIWI, P_size for ALG3 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.000155534 3 5.18447E-05 0.69 0.5601

 B:P_size 4.29849E-05 3 1.43283E-05 0.19 0.9032

 C:Block 4.64208 24 0.19342 2564.99 0

RESIDUAL 0.0278254 369 7.54076E-05
TOTAL (CORRECTED) 4.6701 399
All F-ratios are based on the residual mean square error.

 Table A.39. ANOVA for MIWI, P_size for ALG4 (Large-Small)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.000329974 3 0.000109991 4.53 0.0039

 B:P_size 0.000284724 3 9.49079E-05 3.91 0.009

 C:Block 4.62333 24 0.192639 7938.48 0

RESIDUAL 0.00895432 369 2.42665E-05
TOTAL (CORRECTED) 4.6329 399
All F-ratios are based on the residual mean square error.

 Table A.40. ANOVA for MIWI, P_size for ALG3 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.00225633 3 0.000752109 4.55 0.0038

 B:P_size 0.00471393 3 0.00157131 9.51 0

 C:Block 3.1204 24 0.130017 787.14 0

RESIDUAL 0.0609498 369 0.000165176
TOTAL (CORRECTED) 3.18832 399
All F-ratios are based on the residual mean square error.

Table A.41. ANOVA for MIWI, P_size for ALG4 (Large-Large)

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS
 A:MIWI 0.00038224 3 0.000127413 7.245106 0

 B:P_size 0.00032894 3 0.000109647 6.23484 0.000386812

 C:Block 4.15967 24 0.173319583 9855.473 0

RESIDUAL 0.00648928 369 1.75861E-05

TOTAL (CORRECTED) 4.16687046 399

All F-ratios are based on the residual mean square error.

