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In this research, the comparative performance of permutation and non-permutation 

schedules is investigated in an assembly flow shop (AFS) with shift production, where a 

limited buffer storage is available between two machines. Most of the traditional 

scheduling problems consider continuous production, i.e., production occurs for 24 hours 

(3 * 8-hour shifts) each day, seven days a week. However, some companies operate only 

one or two shifts each day, which creates a limited availability constraint on the machines. 

This causes a discontinuity in production between end and start of two successive 

production days. To mimic real-life industry practice, dynamic job release and dynamic 

machine availability times have been considered. Each job considered in a problem can 

have different weight assigned based on customers’ preferences. The setup times between 

jobs are assumed to be machine- and sequence-dependent. However, at the start of each 

production day, setup times are not sequence-dependent but depend on machine startup 

times such as preheating time, pressure build up, etc.  The objective of the problem is to 

minimize the linear combination of total setup time and weighted tardiness. The 

minimization of total setup time represents producer’s interest whereas the minimization 

of weighted tardiness represents customers’ interest. Since these two objectives are not 

evaluated on a commensurate basis, a normalization factor is used. 

The problem is formulated as a mixed-integer linear programming (MILP) model, 

MILP-1 for permutation schedules and MILP-2 for non-permutation schedules. The MILP 

models for small-size problem instances are solved to optimality using CPLEX. However, 



 

 

the problem is shown to be NP-hard. As a result, it is not possible to find an optimal solution 

within a reasonable time, as the problem size increases. Hence, a meta-heuristic search 

algorithm based on short-term Tabu Search (TS) and Tabu Search/Path-Relinking (TS/PR) 

are developed. TS represents a local search algorithm, whereas TS/PR represents a 

hybridization of local search enhanced with population-based search algorithm. Two 

algorithms each, are developed for both, permutation (PN) and non-permutation (NPN) 

sequences. One of the algorithms is based on short term TS and the other is based on 

TS/PR. The developed heuristics are tested on sixteen small-size problems and their 

solution quality are compared with the optimal solution obtained from CPLEX. The 

evaluations show that the developed heuristics obtain good quality solutions within much 

less computational time. For PN sequence, the best algorithm obtained an average 

deviation of 0.49% compared with the optimal solution and for NPN sequence, the 

deviation is 0.13%. In addition, a slight improvement of 2.68% was obtained by adopting 

an NPN sequence over PN sequence for these problem instances. 

A statistical designed experiment is conducted to evaluate the difference in 

performance of the developed heuristics, and permutation and non-permutation schedules. 

The results show that the TS/PR algorithms outperform short-term TS, in the case of both 

PN and NPN sequences. The comparison between the solutions from the best PN algorithm 

and the best NPN algorithm shows that an average improvement of 1.64% is obtained by 

implementing an NPN sequence over PN sequence. The statistical analysis shows that the 

improvement offered by NPN sequence is statistically significant for problems with large 

number of product types and small number of jobs in each product. In addition, it is also 

shown that the NPN sequence performs better for non-continuous production as compared 

to continuous production. The efficiency of the algorithms was analyzed using the 

computational time required by the algorithms. The results show that PN algorithms require 

a significantly less computational time as compared to NPN algorithms. Hence, it is 

recommended that NPN sequences be considered only for the problems with large number 

of product types and small number of jobs in each product. For other problems, only PN 

sequence should be considered. TS/PR algorithm is recommended for both, PN and NPN 

sequences.    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Copyright by Ayush Raj Aryal 

February 18, 2019 

All Rights Reserved



 

 

Bi-criteria Scheduling in an Assembly Flow Shop with Limited Buffer Storage and Shift 

Production. 

 

 

by 

Ayush Raj Aryal 

 

 

 

 

A THESIS 

 

 

submitted to 

 

 

Oregon State University 

 

 

 

 

 

 

 

 

 

in partial fulfillment of 

the requirements for the 

degree of 

 

 

Master of Science 

 

 

Presented February 18, 2019 

Commencement June 2019 



 

 

Master of Science thesis of Ayush Raj Aryal presented on February 18, 2019 

 

 

 

 

 

APPROVED: 

 

 

 

 

Major Professor, representing Industrial Engineering 

 

 

 

 

 

Head of the School of Mechanical, Industrial, and Manufacturing Engineering 

 

 

 

 

 

Dean of the Graduate School 

 

 

 

 

 

 

 

 

I understand that my thesis will become part of the permanent collection of Oregon State 

University libraries.  My signature below authorizes release of my thesis to any reader upon 

request. 

 

 

 

 

 

Ayush Raj Aryal, Author 



 

 

ACKNOWLEDGEMENTS 

 

It would have been impossible to write my Master’s thesis without my major 

professor, Dr. Rasaratnam Logendran, who has been a tremendous mentor for me over the 

last two years. I would like to thank you for patiently reading, correcting and suggesting 

improvements on various papers and this thesis. Thank you for allowing me to work on an 

industry-funded project. This project not only helped me in the pursuit of my thesis, but 

also prepared me for the challenges that I would face in the future. I will always be grateful 

for the time and effort you put into helping me complete this Master’s degree. Your hard 

work and commitment have always inspired me to strive for excellence. 

I would like to extend my gratitude to my committee members: Dr Sarah Emerson, 

my minor professor, Dr. Hector Vergara, my committee member, and Dr. Brett Tyler, my 

graduate council representative for their guidance and useful feedbacks. Special thanks to 

Dr. Emerson for serving as my minor professor. 

I would like thank ATI, Inc. for partially supporting my studies through a funded 

project. They have been extremely cooperative and supportive throughout the duration of 

the project. I would also like to thank my previous employer at Surya Nepal Pvt. Ltd for 

helping me grow as a professional engineer. I would like to extend my appreciation to 

Omid Shahvari for his everlasting friendship and help on this thesis. I wish to thank IME 

staff members Jean Robinson and Stephanie Grigar for their help. Special thanks to Lori 

Burgeson for installing and maintaining any hardware/software needed for my research.  

My time at Oregon State University has been delightful due to the love and support 

of my friends. I would like to thank Kshitiz Gyawali, Saroj Karki and Nisha Puri for 

entertaining me and making me feel at home. I would also like to thank my dear friend 

Atul Acharya for his everlasting friendship.  

Finally, I would like to thank my family, without whom I would not be here.  



 

 

TABLE OF CONTENTS 

           Page 

1. INTRODUCTION ................................................................................................ 1 

2. LITERATURE REVIEW ..................................................................................... 5 

2.1. Review of Literature on an Assembly Flow Shop ............................................. 6 

2.2. Review of Literature on Bi-criteria Scheduling ................................................. 8 

2.3. Review of Literature on Non-continuous Production ...................................... 10 

3. PROBLEM STATEMENT ................................................................................. 12 

4. MATHEMATICAL MODELS ........................................................................... 14 

4.1. Normalization of the Objective Function ........................................................ 14 

4.2. MILP1 .............................................................................................................. 15 

4.3. MILP2 .............................................................................................................. 20 

4.4. Choice of the Objective Function .................................................................... 22 

4.5. Complexity of the Problem .............................................................................. 24 

5. HEURISTIC ALGORITHM ............................................................................... 26 

5.1. Tabu Search ..................................................................................................... 27 

5.1.1. Initial Solution Finding Mechanism ......................................................... 30 

5.1.2. Neighborhood Function ............................................................................ 33 

5.1.3. Evaluation of the Objective Function ....................................................... 35 

5.1.4. Tabu list .................................................................................................... 39 

5.1.5. Aspiration criterion ................................................................................... 41 

5.1.6. Steps of the Proposed TS Algorithm ........................................................ 42 

5.1.7. Application of the TS Algorithm to an Example Problem ....................... 45 

5.2. Tabu Search/Path Relinking ............................................................................ 57 

5.2.1. Initial Population ....................................................................................... 58 

5.2.2. Path Construction ...................................................................................... 59 

5.2.3. Path Solution Selection ............................................................................. 63 

5.2.4. Reference Solution Determination ............................................................ 64 

5.3. Calibration of the metaheuristic algorithms ..................................................... 65 

6. DATA GENERATION ....................................................................................... 68 



 

 

 

TABLE OF CONTENTS (Continued) 

       Page 

7. THE QUALITY OF SOLUTIONS OBTAINED FROM THE PROPOSED 

HEURISTIC ................................................................................................................ 73 

8. RESULTS ........................................................................................................... 80 

8.1. Experimental Design ........................................................................................ 80 

9. CONCLUSIONS AND FUTURE RESEARCH ................................................ 93 

BIBLIOGRAPHY ....................................................................................................... 97 

APPENDIX ............................................................................................................... 102 

Appendix A. Result of statistical analysis for parameter tuning .......................... 103 

 

 

  



 

 

LIST OF FIGURES 

Figure                                                                                                                              Page 

Figure 1. General layout of an assembly flow shop............................................................ 2 

Figure 2. Layout of an uneven assembly flow shop ......................................................... 12 

Figure 3. Gantt chart for a PN and NPN Schedule in a two-machine flow shop .............. 24 

Figure 4. IS Flowchart ...................................................................................................... 32 

Figure 5. Swap move ........................................................................................................ 33 

Figure 6. Insert move ........................................................................................................ 33 

Figure 7.  Neighborhood structure for permutation .......................................................... 34 

Figure 8. Neighborhood structure for non-permutation .................................................... 34 

Figure 9. TS flowchart ...................................................................................................... 44 

Figure 10. Evaluation of job completion times ................................................................. 51 

Figure 11. LCS construction ............................................................................................. 60 

Figure 12. The LCS between two solutions in non-permutation sequence ...................... 63 

Figure 13. Global and Local Optima in InitialPathSet ..................................................... 64 

Figure 14. Flowchart for TS/PR........................................................................................ 66 

Figure 15. Relationship between δ and CV ...................................................................... 72 

Figure 16. Normality of objective function value ............................................................. 82 

Figure 17. Deviation of ALG1 from ALG3 ...................................................................... 87 

Figure 18. Deviation of ALG2 from ALG4 ...................................................................... 87 

Figure 19. Deviation of ALG3 from ALG4 ...................................................................... 87 

Figure 20. Deviation of ALG3 from ALG4 ...................................................................... 88 

Figure 21. Normal Probability Plot for CT ....................................................................... 89 

Figure 22. Normal Probability Plot for inversed CT ........................................................ 89 
 

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658967
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658968
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658969
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658970
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658971
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658972
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658973
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658974
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658975
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658976
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658977
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658978
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658979
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658980
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658981
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658982
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658983
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658984
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658985
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658986
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658987
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536658988


 

 

LIST OF TABLES 

Table                          Page 

Table 1. Runtimes of the product ...................................................................................... 23 

Table 2. Machine availability times .................................................................................. 23 

Table 3. Setup times .......................................................................................................... 23 

Table 4. Due date and release time of a job ...................................................................... 23 

Table 5. Nomenclature of algorithms used in this research .............................................. 26 

Table 6. Moves for PTB and PTB2 .................................................................................. 35 

Table 7. Extreme values of the criteria ............................................................................. 35 

Table 8. OFV of solutions on the CL for algorithms and without MNSS restriction ....... 41 

Table 9. Example problem ................................................................................................ 45 

Table 10a. Setup time for M1 ............................................................................................ 45 

Table 11. Setup time for sequence generated using SST .................................................. 46 

Table 12. Setup time for sequence generated using LST.................................................. 47 

Table 13. Due date to weight ratio .................................................................................... 47 

Table 14. Rank of jobs in PS and CS ................................................................................ 49 

Table 15. Job scheduled at each iteration of IS generation mechanism on M1 ................ 49 

Table 16. Job completion times on machine ..................................................................... 52 

Table 17. NS generation in the first iteration .................................................................... 54 

Table 18. Entries into the CL ............................................................................................ 56 

Table 19. Pseudocode for IP generation of permutation TS/PR ....................................... 58 

Table 20. Possible candidate moves starting from SI ....................................................... 62 

Table 21. Pseudo-code for TS/PR ..................................................................................... 65 

Table 22. Due date classification ...................................................................................... 71 

 

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659007
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659008
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659009
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659010
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659011
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659012
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659013
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659014
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659015
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659016
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659017
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659018
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659019
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659020
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659021
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659022
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659026
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659028


 

 

LIST OF TABLES (Continued) 

Table                          Page 

Table 23. CPLEX runs of MILP1 and MILP2 .................................................................. 75 

Table 24. Solutions from metaheuristic algorithms .......................................................... 76 

Table 25. Average deviation for PN algorithms from CPLEX optimal solution.............. 77 

Table 26. Average deviation for PN algorithms from CPLEX bounds ............................ 77 

Table 27. Average deviation for NPN algorithms from CPLEX optimal solution ........... 78 

Table 28. Average deviation for NPN algorithms from CPLEX bounds ......................... 79 

Table 29. Factors and their levels in the experiment ........................................................ 81 

Table 30. ANOVA of the objective function value in split-plot design ........................... 82 

Table 31. Result of ANOVA and Tukey test on algorithm’s performance ...................... 86 

Table 32. ANOVA of the computational time in split-plot design ................................... 89 

Table 33. CT of algorithms for different problem structure ............................................. 91 

Table 34. CT of algorithms for continuous and non-continuous production .................... 92 
 

 

 

 

file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659039
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040
file:///C:/Users/ayush/Box%20Sync/Thesis%20Draft/Final%20files/MS%20Thesis.Ayush_01.30.19.clean.LL.docx%23_Toc536659040


1 

 

Bi-criteria Scheduling in an Assembly Flow Shop with Limited Buffer 

Storage and Shift Production 

 

1. INTRODUCTION 

Scheduling problems were first considered in the 1950s with the introduction to 

simple problems such as minimizing sum of flowtimes of jobs on a single machine, or 

minimizing makespan of jobs on two machines. The problem got more complex over time 

as more realistic shop constraints were incorporated into the problem. With increasing 

competition in the market, manufacturing firms often use scheduling techniques to improve 

their operational efficiency. One of the most important characteristics of a scheduling 

problem corresponds to the shop structure or machine configuration in which a job is 

processed. Typically, the machine configuration of the shop can be classified into a flow 

shop or a job shop. In a flow shop setting, jobs are processed on a flow line and have at 

most one operation on each machine, whereas in a job shop, jobs do not have to adhere to 

a flow line and can have multiple operations on the same machine.  

Flow shops can further be classified into a typical flow shop, flexible flow shop and 

assembly flow shop. A typical flow shop has a single machine at each stage. If there is 

more than one machine of the same capability in at least one stage, then it is termed as a 

flexible flow shop. In an assembly flow shop, each job is comprised of multiple 

components, which are processed separately by independent parallel machines with 

different capabilities in the first stage. These components are then assembled in the second 

stage by one assembly machine. A general layout of an assembly flow shop is shown in 

Figure 1.  In a typical assembly flow shop, each component requires only one operation in 

the first stage, i.e., before it is transferred to the assembly stage. However, that might not 

always be the case. Some components might require a higher number of operations before 

it is ready for assembly, i.e., the number of individual operations for each component might 

not be equal. This type of problem represents an uneven assembly flow shop structure. 

Most of the past research on scheduling have considered a continuous 24 hours and 

seven days a week production. However, many companies do not adhere to continuous 

production. In some companies, production does not occur on weekends. Other companies 
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might operate only one or two shifts a day, corresponding to 8 hours and 16 hours of 

production each day, respectively. Similarly, some machines might not be available during 

certain time period due to breakdown or preventive maintenance. This causes a 

discontinuity in production between two successive days and hence adds machine 

availability constraints to the problem, i.e., limited machine availability constraints. In 

some environments, there are limited buffers or no buffers between stages (Hall and 

Sriskandarajah, 1996, Qian et al., 2009, Liu et al., 2008, Maleki-Darounkolaei et al., 2012). 

This introduces blocking constraints on job processing. After a job is processed on a 

machine, it is transferred to the intermediate storage where it waits to be processed by a 

downstream machine. If the downstream machine is busy and all the intermediate storages 

are full, then the processing of jobs is blocked on the upstream machine.  

A setup time is incurred each time a job is changed on a machine. A setup operation 

can include tasks such as preparing the machine, cleaning, inspection, machine setting etc. 

Setup times can be classified into two groups: sequence-independent and sequence-

dependent. If the duration of a setup time is dependent on current and preceding jobs, the 

setup is sequence-dependent; otherwise it is considered sequence-independent. Several 

studies have highlighted the importance of using sequence-dependent setup times 

(Allahverdi et al., 1999, Maleki-Darounkolaei et al., 2012). In a plant, all jobs might not 

be released at the start of the planning horizon, i.e., jobs might have different release times. 

This characteristic is called dynamic job release time. Similarly, machines might also have 

different availability times. This is called dynamic machine availability. 

 
Figure 1. General layout of an assembly flow shop 
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In most of the scheduling problems, the objective is to minimize a time-based 

objective, such as the makespan (the completion time of the last job on the last machine), 

sum of completion times, maximum lateness, total tardiness (positive lateness), and 

number of tardy jobs. While the minimization of tardiness caters to customers’ interests, 

the minimization of makespan and minimization of sum of completion times cater to 

supplier’s interests. These objectives largely focus on minimizing completion times of jobs 

on the last machine, which might not yield the best performance values for preceding 

machines, especially in non-continuous production. From a customers’ point of view, using 

these objectives make sense because customers are only concerned with the due dates and 

whether or not the jobs are tardy. However, for the producer, the performance of all 

machines is of interest. Hence, minimization of total setup time is proposed to be used as 

an objective to accurately represent the producer’s interest in non-continuous shift 

production.    

A flow shop scheduling problem can be solved by considering two types of 

schedules, permutation (PN) and non-permutation (NPN) schedules. In a PN schedule, the 

processing sequence of jobs is the same for all machines whereas in an NPN schedules, 

processing sequence of jobs might be different across different machines. Most of the 

research on flow shop scheduling considers only PN schedules. However, when there is 

buffer storage in between, NPN schedules might outperform PN schedules (Strusevich and 

Zwaneveld, 1994, Liao and Huang, 2010).  

This research is directly motivated by a real problem from a leading manufacturing 

company.    The shop structure considered in this paper is that of an uneven assembly flow 

shop with limited intermediate storage and non-continuous shift production. Non-

permutation schedules are allowed. Setup times are sequence- and machine-dependent. Job 

release times and machine availability times are considered to be dynamic. The main 

purpose of this research is to find an optimal or near optimal schedule that will minimize 

the linear combination of total setup time and weighted tardiness. Such an objective is very 

relevant to current industry practice as there is a need to balance customers’ and producer’s 

objectives. Another purpose of this research is to evaluate the performance of permutation 
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vs. non-permutation schedules in a non-continuous production environment, i.e., limited 

machine availability. Few researchers in the past have considered limited machine 

availability in their study. To the best of our knowledge, a bi-criteria scheduling problem 

in an uneven assembly flow shop with blocking and limited machine availability has not 

been addressed so far.   
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2. LITERATURE REVIEW 

Production scheduling deals with allocating limited number of resources to jobs 

over time. Researchers have taken a keen interest in this field since the 1960s. Johnson 

(1954) was the first to develop a systematic approach to obtain an optimal solution for the 

two-machine makespan minimization problem and also a special case for the three-

machine problem. Johnson’s algorithm was further extended by Campbell, Dudek and 

Smith (CDS) (1970) for the m-machine problem. CDS algorithm transforms m machines 

into (m-1) two-virtual machine problems, for which various schedules are developed and 

the best sequence among them is selected to represent the best sequence for the original m-

machine problem. Nawaz, Enscore and Ham (NEH) (1983) developed a heuristic which 

gives priority to jobs with largest processing time. In contrast to CDS, NEH doesn’t 

transform the original problem into a two-machine problem. Instead, it generates partial 

schedules and adds a job at each iteration, to finally obtain a complete best solution. 

 There have been several developments in the field of scheduling over the last 

couple of decades. Allahverdi et al. (2008) presented a comprehensive review on the 

advancements made in scheduling from mid-1998 to mid-2006. A more recent paper by 

Allahverdi (2015) provides an extensive review of papers published from mid-2006 to the 

end of 2014, including static, dynamic, deterministic, and stochastic environments. It 

includes classification of problems based on shop environments and setup considerations. 

Shop environments can be categorized as a single-machine, parallel machines, flow shop 

(regular flow shop, flow shop with blocking, no-wait flow shop, flexible flow shop, and 

assembly flow shop), job shop, or open shop problem. Setup times can be sequence-

independent or sequence-dependent. The scope of this research is to find an optimal 

schedule for an assembly flow shop with shift production with the objective of 

simultaneously minimizing two objectives. Hence, the literature review focuses on 

scheduling problems in an assembly flow shop with bi-criteria objective function and non-

continuous production due to limited machine availability. 
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2.1. Review of Literature on an Assembly Flow Shop 

In a two-stage assembly flow shop (AFS) problem, there are m parallel machines 

in the first stage while there is only one assembly machine in the second stage. There are 

n jobs to be scheduled and each job is made up of m individual components. Each 

component is processed separately and independently by parallel machines at the first stage 

and the final assembly is performed in the second stage. Thus, each job has a total of m + 

1 operations. This problem has many applications in industry such as fire engine assembly 

plant (Lee et al., 1993), personal computer manufacturing (Potts et al., 1995), distributed 

database systems (Al-Anzi and Allahverdi, 2006), etc. In particular, many real life 

scheduling problems can be modelled as a two-stage assembly flow shop. 

Lee et al. (1993) were the first to introduce a two-stage AFS problem with m = 2 

(two machines in the first stage and one assembly machine in the second stage) for 

makespan minimization. This paper showed that the problem is NP-hard in a strong sense 

with this objective function.  Lee et al. (1993) also discussed a few polynomially solvable 

cases and presented a mathematical model for the problem. Potts et al., (1995) considered 

the problem with an arbitrary m. They showed that the permutation schedules are dominant 

for makespan minimization. Hariri and Potts (1997) addressed the same problem and 

derived a lower bound and established several dominance theorems. They also presented a 

branch and bound algorithm incorporating the lower bound and dominance theorems.  

Koulamas and Kyparisis (2001) generalized the problem into a three-stage AFS problem 

with the objective of minimizing makespan. In this problem, a transfer stage is added in 

between the first stage and the assembly stage. They proposed several heuristics and 

analyzed the worst case bound for those heuristics. 

Tozkapan et al. (2003) investigated a two-stage AFS (m machines in the first stage) 

with the objective of minimizing weighted flow time. They presented a branch and bound 

algorithm utilizing the derived lower bound and dominance relations. This paper showed 

that permutation schedules are dominant for minimizing weighted flowtime. Al-Anzi and 

Allahverdi (2006) considered the same problem and proposed three heuristics based on 

simulated annealing, tabu search and hybrid tabu search. They showed that the hybrid tabu 
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search is efficient as compared to other heuristics. Allahverdi and Al-Anzi (2009) proposed 

three heuristics addressing the same problem but with setup times considered separate from 

the processing times. Framinan and Gonzelez (2017) investigated a two stage assembly 

flow shop with the objective of minimizing total completion time and proposed  a variable 

local search algorithm, which outperforms existing metaheuristics. 

The above-mentioned literatures consider only one machine at the final assembly 

stage. Sung and Kim (2008) considered a two-stage AFS problem with m = 2 machines in 

the first stage and two identical parallel assembly machines in the second stage. Al-Anzi 

and Allahverdi (2012) addressed the generalized version of this problem with m machines 

in the first stage and two assembly machines. They proposed three heuristics which 

outperform the heuristics by Sung and Kim (2008).  

Some research has also considered bi-criteria objective function for the AFS 

problem. Torabzadeh and Zandieh (2010) proposed a cloud-based simulated annealing 

approach for an AFS problem with m machines in the first stage and one machine in the 

assembly stage, with the objective of minimizing a weighted sum of makespan and mean 

completion time. Maleki-Darounkolaei et al. (2012) addressed a three-stage AFS problem 

with blocking and sequence-dependent setup time and proposed a meta-heuristic based on 

simulated annealing to minimize the weighted sum of mean completion time and 

makespan.   

While several researchers have addressed a variety of assembly flow shop 

problems, some gaps can still be identified in the literature. All of the above research 

assumes that each component requires only one operation in the first stage. However, that 

might not be true as some components could require more than one operation before it is 

ready for assembly, i.e. a regular flow shop environment (with two or more machines) in 

the first stage. Furthermore, none of the above research consider non-continuous 

production. To the best of our knowledge, AFS problem has been studied so far considering 

continuous production and with the assumption of single operation for each component in 

the first stage. 
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2.2. Review of Literature on Bi-criteria Scheduling 

Selecting an appropriate objective is a challenge in solving scheduling problems. 

The objective in the optimization function can be classified into two groups: Supplier-

Oriented and Customer-Oriented. Supplier-oriented objectives include functions such as 

minimizing makespan, sum of completion time, idle time, and work-in-progress inventory, 

whereas customer-oriented objectives include minimizing tardiness, minimizing number 

of tardy jobs, maximum lateness, etc. Most of the earlier research focused on only one of 

the groups. However, in today’s environment, most companies try to reduce their cost 

while maintaining customers’ service level, i.e. minimizing tardiness. Thus, a lot of recent 

research has been considering multi-objective scheduling problems. Allahverdi and 

Aldowaisan (2004) addressed the m-machine no-wait flow shop scheduling problem with 

a bi-criteria objective function of minimizing the weighted sum of makespan and maximum 

lateness. Eren and Güner (2006) considered a bi-criteria scheduling problem with 

sequence-dependent setup times on a single machine. An integer programing model is 

presented to minimize the weighted sum of total completion time and tardiness. A heuristic 

algorithm based on tabu search is also presented to solve large-size problems. Mehravaran 

and Logendran (2012) considered an unrelated-parallel machine problem with dual 

resource. The objective function is to minimize a linear combination of weighted flowtime 

and weighted tardiness. The weighted objective function used in this study simultaneously 

minimizes both objectives. In this study, the problem is solved in two parts, the first part 

considering only machine constraint, and the second part considering only labor constraint 

for the schedule developed in the first part. Another approach to tackle a multi-objective 

scheduling problem is to obtain pareto-optimal solutions which helps to obtain many non-

dominated solutions. Moslehi and Mahnam (2011) proposed a pareto-approach to multi-

objective flexible flow shop problem using particle swarm optimization and local search. 

Most research in the past have used weighted objective function method because it 

provided a flexibility in assigning different weights to each criteria in the objective function 

based on producer’s need at the time. Bozorgirad and Logendran (2013) used a weighted 

objective function method to address a sequence-dependent hybrid flow shop problem. The 

objective was to minimize the linear combination of weighted flowtime and weighted 
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tardiness.  Shahvari and Logendran (2016) also used the same objective in a hybrid flow 

shop batching and scheduling problem. They proposed heuristics based on tabu search/path 

relinking and applied stage-based procedures to obtain better solutions. Their result showed 

the benefit of integrating batching decisions into group scheduling approach. Other 

research from Maleki-Darounkolaei et al. (2012) and Allahverdi and Aldowaisan (2004), 

which were reviewed in the literature on AFS scheduling, also used weighted objective 

function method. 

The weighted objective method tries to simultaneously minimize the criteria in the 

objective function. However, issues might arise due to skewness (when the value of one 

criterion is much larger than the other), and dimensional conflict (when the two criteria do 

not have the same unit of measurement). When the value of one criterion is much larger 

than the other, the objective function favors the criterion with larger value as the larger 

criterion will tend to make a higher contribution to the objective function value. In this 

case, the objective function might not be meaningful or effective. This problem can be 

tackled using a normalization approach where each criterion is normalized into a 

dimensionless quantity between 0 and 1. Several research considering weighted multi-

criteria objective function have used normalization to balance the criteria in the objective 

function. Gagné et al., (2005) presented a hybrid tabu search/variable neighborhood search 

algorithm for the solution of a bi-objective scheduling problem. The two objectives, setup 

times and tardiness, are normalized using nadir points (maximum value of the objectives) 

and ideal point (minimum value of the objectives). Oyetunji and Oluleye (2009) proposed 

a normalization procedure for a bi-criteria objective function of total completion time and 

number of tardy jobs. The methodology for determining the nadir and ideal points for these 

objectives is also demonstrated. Chyu and Chang (2010) proposed a competitive evolution 

strategy memetic algorithm to solve unrelated-parallel machine scheduling problem with 

two minimization objectives. These objectives are also normalized using ideal and nadir 

points. 
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2.3. Review of Literature on Non-continuous Production  

Most of the scheduling problems in the past assumes that all machines are 

continuously available for processing throughout the planning horizon. This assumption 

might not be justified in all cases because some plants operate only on a single or a double 

shift. In addition, a pre-planned maintenance schedule might result in machine 

unavailability during certain times. The period of machine unavailability is called holes. 

Two cases of limited machine availability are defined by Lee (1997), resumable and non-

resumable. In a resumable case, if an operation cannot be before the unavailability period 

of a machine, then it can continue after the machine becomes available without any cost. 

In non-resumable case, the disrupted operation has to be totally restarted. Lee (1997) 

studied a two-machine flow shop problem in which one machine is always available and 

the other machine has one period of unavailability in the planning horizon, i.e., machine is 

unavailable from s to t, where 0 ≤ s ≤ t. The unavailability period is known in advance, i.e., 

deterministic and the operation is resumable. It was shown that this problem is NP-hard 

even for makespan minimization. A pseudo-polynomial dynamic programming algorithm 

is also presented to solve the problem. Błażewicz et al. (2001) proposed a constructive and 

local search heuristic for a two-machine flow shop problem with resumable operations and 

up to ten number of holes on either machine. The objective is to find a feasible schedule 

with minimum makespan. Kubiak et al. (2002) proposed a branch and bound algorithm for 

the same problem addressed by Błażewicz et al. (2001).  

Liao and Chen (2003) studied a single-machine scheduling problem with non-

resumable operations and periodic maintenance, i.e., maintenance is required after fixed 

interval. A branch and bound algorithm is developed to solve the problem to optimality 

and a heuristic is also developed for large problem instances. Aggoune (2004) considers 

an m-machine flow shop problem with non-resumable operations and several unavailability 

periods on each machine. They proposed a heuristic algorithm based on tabu search and 

genetic algorithm to solve the problem. Allaoui et al., (2006) investigated a two-stage 

hybrid flow shop problem with one machine in the first stage and m machine in the second 

stage. Each machine is subject to only one deterministic unavailability period and the 

operations are non-resumable. A branch and bound model is presented for the problem 
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along with three heuristics. Ma et al. (2010) presents a comprehensive review of scheduling 

problems with limited machine availability from 1996 to 2009. Huo and Huang (2016) 

proposed two algorithms based on ant colony to solve an m-machine flow shop scheduling 

problem with limited machine availability. The objective is to minimize total flow time.  

The problem addressed in this paper also includes limited machine availability 

constraint since the production can occur only in a single or double shift, resulting in 

machine unavailability during remaining hours of the day. However, to the best of our 

knowledge, an assembly flow shop problem with limited machine availability and limited 

buffer storage. has not been addressed so far.    
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3. PROBLEM STATEMENT 

The problem consists of scheduling N jobs belonging to p different products, where each 

product contains ni jobs, i.e. ∑ ni = N
p
i=1 . Based on the three field notation α|β|γ developed 

by Graham et al. (1979), the problem addressed in this research can be characterized by 

AFm, hjk|nr-a, STsd, rj, aj, block, |Fl(α ∑ STi , β ∑ wjTj). The first field (α) describes the 

machine setting, the second field (β) describes the job characteristics and process 

constraints and the third field (γ) defines the objective function of the problem. The 

problem includes the following features 

• The machine setting resembles that of an assembly flow shop, where each 

component of a job is first processed independently on different machines and then 

assembled together at the final machine. The number of operations required by 

each component before it is ready for assembly might be different (as shown in 

Figure 2). Two components are required to form a job. Component 1 has two 

operations (Machines M1 and M2) before assembly and component 2 (Machine M3) 

has one operation before assembly (Machine M4). The machines are not available 

continuously throughout the planning horizon. The production occurs in one, two 

or three shifts. In case of one or two shifts (8 and 16 hours each day, respectively), 

the machines are not available for the remaining period of the day. In addition, if 

an operation cannot be completed before the end of production hours, it has to be 

restarted when the production begins the next day, i.e., non-resumable operations. 

• The setup time is sequence- and machine-dependent, i.e., the setup time required 

on a machine depends on the previous job processed on that machine. Setup time 

 
Figure 2. Layout of an uneven assembly flow shop 
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between jobs belonging to the same product is less than the setup time between 

jobs from different products. Since the production is not continuous, all machines 

have to be restarted at the start of each production day. Hence, at the start of each 

production day, the setup time for each machine does not depend on the previous 

job on that machine but is dependent on the machine startup time (pre-heat, 

pressure buildup, etc.). 

• Jobs have dynamic release times. In other words, all jobs may not be available the 

start of the planning horizon. 

• Each machine has dynamic availability time, which means that not all machines 

are available at the start of the planning horizon because they might be processing 

some jobs from the previous planning horizon. 

• A limited buffer storage is available between two machines. As shown in Figure 

2, Si denotes the storage space available after machine Mi. A blocking constraint is 

introduced because of the limited buffer storage, i.e., operation on the upstream 

machine is blocked if there is no storage space available. In addition, there is a 

minimum wait time for each job at certain storage locations. In Figure 2, S1 and S3 

have a minimum storage time of 2 hours.  

• The objective function focuses on minimizing the linear combination of total setup 

time and weighted tardiness. Each job in the problem is assigned a weight, 

representing priority level of the job. The job with higher weight receives greater 

priority. In real industry practice, jobs might have different weights assigned to 

them depending on associated customer’s status, profit margin, etc. Since the two 

criteria in the objective function are not measured on a commensurate basis, these 

criteria are first normalized into a dimensionless quantity in the range of 0 and 1. 

This is done so that the algorithm does not favor one criteria over the other based 

on the values that represent these criteria. This is discussed in detail in Chapter 4. 
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4. MATHEMATICAL MODELS 

A mixed-integer linear programming (MILP) model that represents the constraints 

of the industrial setting is developed to evaluate the performance of proposed algorithm. 

Two MILP models are developed, one considering permutation sequence named MILP1, 

and the other considering non-permutation sequence named MILP2. The two criteria, setup 

time and tardiness, used in the objective function are normalized to avoid skewness that 

may arise due to difference in value of these criteria. 

4.1. Normalization of the Objective Function 

A bicriteria objective function is used for the problem which aims to simultaneously 

minimize the linear combination of total setup time and weighted tardiness. Since, the value 

of these two criteria might not be in the same range, i.e., one criteria might have a much 

higher value than the other, skewness might arise as the objective function would favor the 

criteria with larger value. For example, consider a sequence of a problem with setup time 

(ST) of 200 min. and weighted tardiness (WT) of 2000 mins. Both the producer’s weight 

(α) and the customers’ weight (β) are 0.5. Then the weighted objective function (without 

normalization) is given by: 

𝛼 𝑆𝑇 + 𝛽 𝑊𝑇                                                                                                                   (4.1) 

The value of the weighted objective function from equation 4.1 is 1100, where the 

contribution of weighted tardiness to the objective function is ten times the contribution of 

setup times. Hence, the algorithm using this objective function will favor the minimization 

of weighted tardiness more than the minimization of setup time in spite of the fact that the 

producer’s and customers’ weights are equal. Therefore, in this research, the criteria are 

normalized using equation 4.2. 

𝑋𝑁 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                                                   (4.2) 

where, 

𝑋𝑁 = Normalized value of the criteria 
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𝑋 = Value of the criteria for a given schedule 

𝑋𝑚𝑎𝑥 = Maximum value of the criteria (nadir point) 

𝑋𝑚𝑖𝑛 = Minimum value of the criteria (ideal point) 

The minimum and maximum values of a criterion are called extreme values. The 

method of obtaining these extreme values is explained in section 5. After the two criteria 

in the objective function are normalized, the normalized composite objective function 

(NCOF) is obtained as shown in equation 4.3. 

𝑁𝐶𝑂𝐹 = 𝛼 𝑆𝑇𝑁 + 𝛽 𝑊𝑇𝑁                                                                                                                   (4.3) 

where, 

𝑆𝑇𝑁 = Normalized value of total setup time 

𝑊𝑇𝑁  = Normalized value of weighted tardiness 

4.2. MILP1 

MILP1 is the mathematical model formulated for permutation sequence. The 

indices, sets, parameters, decision variables, and the mathematical model are shown below. 

Indices 

i, i’   machines  

j, j’   products 

k, k’  jobs  

g, g’ components 

l   time slot  

Sets 

𝑀  Set of all machines, M  = 𝐴𝑀 ∪ (𝐶𝑀1 ∪ 𝐶𝑀2 ∪ … .∪ 𝐶𝑀𝑚) 

P  Set of products, 𝑃 = {1,2, …., 𝑝} 
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𝐽𝑗  Set of jobs belonging to product j, 𝐽𝑗 = {1,2, …., 𝑛𝑗} 

Q  Set of time slots for each machine, 𝑄 = {1,2, …., 𝑞} 

Subsets 

𝐶𝑀𝑔 Subset of machines which processes component g individually  

  𝐶𝑀𝑔 ⊂ 𝑀 and 𝐶𝑀𝑔 ∌ 𝐴𝑀 

𝐴𝑀  Assembly machine, 𝐴𝑀 ⊂ 𝑀 

𝐹𝑀𝑖  Machine immediately following machine i, 𝐹𝑀 ⊂ 𝑀 

𝑆𝑀  Subset of machines which are first in line to process each component 

  𝑆𝑀 = {𝐶𝑀1
(1)

, 𝐶𝑀2
(1)

, … . 𝐶𝑀𝑚
(1)

}, 𝑆𝑀 ⊂ 𝑀 and 𝑆𝑀 ∌ 𝐴𝑀. 𝑀𝑚
(1)

refers to 

  the first machine in the set 𝐶𝑀𝑚 

𝐸𝑀  Subset of machines just before assembly machine or subset of machines 

which is last in line to process each component individually  

 𝐸𝑀 = {𝐶𝑀1
(𝑢1)

, 𝐶𝑀2
(𝑢2)

, … . , 𝐶𝑀𝑚
(𝑢𝑚)

} , 𝐸𝑀 ⊂ 𝑀 and 𝐸𝑀 ∌ 𝐴𝑀. 𝑀𝑚
(𝑢𝑚)

 

refers to the last machine in the set 𝐶𝑀𝑚 

Parameters 

𝑚  Number of components     

𝑢𝑔  Number of machines processing individual component g                                   

𝑝  Number of products 

𝑛𝑗   Number of jobs belonging to product j     

𝑞  Number of time slots, 𝑞 =  ∑ 𝑛𝑗
𝑚
𝑖=1     

Sijj’   Setup time while changing from product j to j’ on machine (if j=j’, then 

setup time is for the same product change) 

Rij  Run time of product j on machine i   

djk   Due date of job k of product j 

rjk  Release time of job k of product j 

ai  Machine availability of machine i   

zi  Number of buffer storage after machine i  
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ti  Minimum wait time after being processed on machine i 

𝛼   Producer’s weight 

𝛽  Customers’ weight 

wjk   Weights assigned to job k of product j; 

Ei   Restart time of machine i at the start of each day  

STmax  Maximum value of setup time 

STmin  Minimum value of setup time 

WTmax  Maximum value of weighted tardiness 

WTmin  Minimum value of weighted tardiness 

BM             Big-M, a large number 

Sh  Number of shift each day 

Note: A shop environment with m = 2, u1 = 2 and  u2 = 1 would correspond to the layout 

in Figure 2. 

Decision Variables 

Tsil  Start time of slot l on machine i 

Tfil   Finish time of slot l on machine i  

Tssijk  Start time of batch k of product j on machine i 

Tffijk    Finish time of batch k of product j on machine i  

Wjkl 1, if job k of product j is assigned to slot l; 0 else   

Yjlj’(l+1) 1, if product j is processed in slot l and j’ is processed in slot (l + 1); 0 else 

STil  Setup time at time slot l on machine i  

Hsil  Integer variable representing the starting day of slot l on machine i  

Tjk    Tardiness of a job k of product j 

 

 

Model 

𝑀𝑖𝑛 𝑍 = 𝛼 
(∑ ∑ 𝑆𝑇𝑖𝑙

𝑞
𝑙=1𝑖∈𝑀 − 𝑆𝑇𝑚𝑖𝑛)

(𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛)
− 𝛽 

(∑ ∑ 𝑤𝑗𝑘 ∗ 𝑇𝑗𝑘
𝑛𝑗

𝑘=1
𝑝
𝑗=1 − 𝑊𝑇𝑚𝑖𝑛)

(𝑊𝑇𝑚𝑎𝑥 − 𝑊𝑇𝑚𝑖𝑛)
              (4.4) 
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Subject to: 

∑ 𝑊𝑗𝑘𝑙 = 1                                                        𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗                                                 (4.5)𝑞
𝑙=1      

∑ ∑ 𝑊𝑗𝑘𝑙

𝑛𝑗

𝑘=1

= 1                                                   𝑙 ∈ 𝑄                                                              (4.6)

𝑝

𝑗=1

 

−𝐵𝑀(1 − 𝑊𝑗𝑘𝑙) ≤ 𝑇𝑠𝑠𝑖𝑗𝑘 −  𝑇𝑠𝑖𝑙                   𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                      (4.7)               

𝐵𝑀(1 − 𝑊𝑗𝑘𝑙) ≥ 𝑇𝑠𝑠𝑖𝑗𝑘 − 𝑇𝑠𝑖𝑙                      𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                      (4.8) 

𝑇𝑓𝑖𝑙 =  𝑇𝑠𝑖𝑙 +  ∑ ∑ (𝑊𝑗𝑘𝑙 ∗ 𝑅𝑖𝑗)          𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                                  (4.9)
𝑛𝑗

𝑘=1
𝑝
𝑗=1    

𝑇𝑓𝑓𝑖𝑗𝑘 =  𝑇𝑠𝑠𝑖𝑗𝑘 + 𝑅𝑖𝑗                                        𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                  (4.10)         

𝑇𝑠𝑖(𝑙+1) ≥ 𝑇𝑓𝑖𝑙 + 𝑆𝑇𝑖(𝑙+1)                                  𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                                  (4.11) 

𝑇𝑠𝑖1 ≥  𝑎𝑖  + 𝑆𝑇𝑖1 + 𝐸𝑖                                              𝑖 ∈ 𝑀                                                   (4.12)      

𝑇𝑠𝑠𝑖𝑗𝑘 ≥  𝑟𝑗𝑘                                                        𝑖 ∈ 𝑆𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                (4.13) 

𝑇𝑠𝑠𝑖′𝑗𝑘 ≥   𝑇𝑓𝑓𝑖𝑗𝑘 + 𝑡𝑖                             𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗          (4.14) 

∑ ∑ 𝑌𝑗𝑙𝑗′(𝑙+1) = 1                                         𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                                                (4.15)

𝑝

𝑗′=1

𝑝

𝑗=1

 

 𝑌𝑗𝑙𝑗′(𝑙+1) ≤  ∑ 𝑊𝑗𝑘𝑙

𝑛𝑗

𝑘=1

                                       𝑗, 𝑗′ ∈ 𝑃;  𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                               (4.16) 

𝑌𝑗𝑙𝑗′(𝑙+1) ≤  ∑ 𝑊𝑗𝑘𝑙

𝑛
𝑗′

𝑘=1

                                         𝑗, 𝑗′ ∈ 𝑃;  𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                              (4.17)  

𝑆𝑇𝑖𝑙 = ∑ ∑ (𝑌𝑗𝑙𝑗′(𝑙+1)  ∗ 𝑆𝑖𝑗𝑗′)            𝑝
𝑗′=1

𝑝
𝑗=1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                                    (4.18)  

𝑆𝑇𝑖1 = ∑ ∑(𝑊𝑗𝑘1 ∗  𝑆𝑖0𝑗

𝑛𝑗

𝑘=1

)

𝑝

𝑗=1

                            𝑖 ∈ 𝑀                                                            (4.19) 

𝑇𝑠𝑖𝑙 ≥ 𝑇𝑓
𝑖′(𝑙−𝑧𝑖)                                                𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑙 ∈ 𝑄                 (4.20) 

𝐻𝑠𝑖𝑙 ≥ 𝑇𝑠𝑖𝑙/(24 ∗ 60)                                   𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                                   (4.21) 

𝐻𝑠𝑖𝑙 ≤ 𝑇𝑠𝑖𝑙/(24 ∗ 60) + 1                           𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                                    (4.22) 

𝑇𝑠𝑖𝑙 ≥ (24 ∗ 60) ∗ (𝐻𝑠𝑖𝑙 − 1) +  𝐸𝑖           𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                                    (4.23) 

(24 ∗ 60) ∗ 𝐻𝑠𝑖𝑙 − 𝑇𝑓𝑖𝑙 ≥ (3 − 𝑆ℎ) ∗ 480           𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                        (4.24)  

𝑇𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 −  𝑑𝑗𝑘                                         𝑖 ∈ 𝐴𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                   (4.25) 
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𝑇𝑗𝑘 ≥ 0                                                              𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                                    (4.26) 

𝑊𝑗𝑘𝑙 ∈ {0,1}; 𝑌𝑗𝑙𝑗′(𝑙+1) ∈ {0,1} ; 𝐻𝑠𝑖𝑙 ∈ 𝑖𝑛𝑡              

            𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                          (4.27) 

Model Description 

The proposed mathematical model is a mixed-integer linear programming model with both 

binary and general-integer variables. The objective function of the model is to minimize 

the linear combination of normalized setup time and normalized weighted tardiness as 

presented in (4.4). A slot based mathematical model is formulated. It is assumed that each 

machine consists of a set of slots which get occupied by the jobs being processed on that 

machine. Using these slots, the position of jobs in a given sequence can be identified. In 

this model, the number of slots is equal to the total number of jobs required to be scheduled. 

On every machine, each job can be assigned to only one slot. In addition, each slot on a 

machine should contain only one job. Constraint (4.5) states the requirement that each job 

must be processed only once on each machine, i.e., each job can be assigned to only one 

slot on every machine. Constraint (4.6) states that each machine can only process one job 

at a time, i.e., each slot can contain only one job. Constraint (4.7) and (4.8) are the big-M 

constraints, which state that if a job is assigned to a particular slot of a machine, the start 

time of that slot should be the same as the start time of the job. Constraint (4.9) defines that 

the ending time of a slot must be greater than the starting time of the slot plus the run time 

of the job assigned to that slot. Constraint (4.10) expresses the requirement that the ending 

time of the job must be greater than the starting time of the job plus the run time of the job 

on that machine. Constraint (4.11) states that, for every machine, the starting time of a slot 

must be greater than the ending time of the previous slot plus the setup time required for 

the changeover between jobs assigned to these slots. Constraint (4.12) states that the 

starting time of the first slot of a machine must be greater than the machine availability 

time plus the setup time. Constraint (4.13) states that, for every machine belonging to set 

SM (Set of machines, which first processes each individual components), the start time of 

a job is greater that the release time of the job. Constraint (4.14) states that the start time 

of a job on a machine must be greater than the ending time of that job on predecessor 

machine plus the minimum storage time between these machines. Constraint (4.15), (4.16) 
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and (4.17) work together to quantify a binary variable representing change in batch or 

product between successive slots. Constraints (4.18) and (4.19) obtain the setup time of 

every slot of each machine. Constraint (4.20) states that the number of jobs  stored between 

machines cannot be more than the storage capacity, i.e. if the storage capacity between 

machine 1 and 2 is five, then machine 2 must have completed processing of 3rd  job in its 

sequence (or 3rd slot) if machine 1 needs to start processing 8th batch in its sequence. The 

storage space is emptied only if the job is completed on the downstream machine. If a job 

is in-progress, then the storage space is partially occupied, which prevents the upstream 

machine from using this space for storage. Constraints (4.21), (4.22), (4.23), and (4.24) 

work together to ensure that a job started on a machine gets completed before the machine 

becomes unavailable at the end of the shift. Constraints (4.25) and (4.26) calculate the 

tardiness for the batch. (4.27) defines the variable used. 

 

Note: If the production occurs in three shifts, i.e., continuous machine availability, then 

constraint (4.21) through (4.24) would not be required.   

 

4.3. MILP2 

MILP2 is the mathematical model formulated for non-permutation sequence. The 

indices, sets and parameters are identical to the MILP1 and hence, is not repeated below. 

The number of binary decision variables in this formulation is higher as compared to 

MILP1, to allow for different job sequences on different machines. 

Decision Variables 

Tsil  Start time of slot l on machine i 

Tfil   Finish time of slot l on machine i  

Tssijk  Start time of batch k of product j on machine i 

Tffijk    Finish time of batch k of product j on machine i  

Wijkl 1, if job k of product j is assigned to machine i in slot l; 0 else   
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Yijlj’(l+1) 1, if product j is processed in slot l and j’ is processed in slot (l + 1) on 

machine i; 0 else 

STil  Setup time at time slot l on machine i  

Hsil  Integer variable representing the starting day of slot l on machine i  

Tjk    Tardiness of job k of product j 

 

Model 

𝑀𝑖𝑛 𝑍 = 𝛼 
(∑ ∑ 𝑆𝑇𝑖𝑙

𝑞
𝑙=1𝑖∈𝑀 − 𝑆𝑇𝑚𝑖𝑛)

(𝑆𝑇𝑚𝑎𝑥 − 𝑆𝑇𝑚𝑖𝑛)
− 𝛽 

(∑ ∑ 𝑤𝑗𝑘 ∗ 𝑇𝑗𝑘
𝑛𝑗

𝑘=1
𝑝
𝑗=1 − 𝑊𝑇𝑚𝑖𝑛)

(𝑊𝑇𝑚𝑎𝑥 − 𝑊𝑇𝑚𝑖𝑛)
           (4.28) 

Subject to: 

∑ 𝑊𝑖𝑗𝑘𝑙 = 1                                                     𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃; 𝑘 ∈ 𝐽𝑗                                   (4.29)𝑞
𝑙=1      

∑ ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛𝑗

𝑘=1

= 1                                                 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                               (4.30)

𝑝

𝑗=1

 

−𝐵𝑀(1 − 𝑊𝑖𝑗𝑘𝑙) ≤ 𝑇𝑠𝑠𝑖𝑗𝑘 −  𝑇𝑠𝑖𝑙                  𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                   (4.31)               

𝐵𝑀(1 − 𝑊𝑖𝑗𝑘𝑙) ≥ 𝑇𝑠𝑠𝑖𝑗𝑘 −  𝑇𝑠𝑖𝑙                     𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                    (4.32) 

𝑇𝑓𝑖𝑙 =  𝑇𝑠𝑖𝑙 +  ∑ ∑ (𝑊𝑖𝑗𝑘𝑙 ∗ 𝑅𝑖𝑗)         𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                               (4.33)
𝑛𝑗

𝑘=1
𝑝
𝑗=1    

𝑇𝑓𝑓𝑖𝑗𝑘 =  𝑇𝑠𝑠𝑖𝑗𝑘 + 𝑅𝑖𝑗                                        𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                  (4.34)         

𝑇𝑠𝑖(𝑙+1) ≥ 𝑇𝑓𝑖𝑙 + 𝑆𝑇𝑖(𝑙+1)                                  𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                                  (4.35) 

𝑇𝑠𝑖1 ≥  𝑎𝑖  + 𝑆𝑇𝑖1 + 𝐸𝑖                                              𝑖 ∈ 𝑀                                                   (4.36)      

𝑇𝑠𝑠𝑖𝑗𝑘 ≥  𝑟𝑗𝑘                                                        𝑖 ∈ 𝑆𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                (4.37) 

𝑇𝑠𝑠𝑖′𝑗𝑘 ≥   𝑇𝑓𝑓𝑖𝑗𝑘 + 𝑡𝑖                             𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗          (4.38) 

∑ ∑ 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) = 1                                         𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                              (4.39)

𝑝

𝑗′=1

𝑝

𝑗=1

 

 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ≤  ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛𝑗

𝑘=1

                                      𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                     (4.40) 

𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ≤  ∑ 𝑊𝑖𝑗𝑘𝑙

𝑛
𝑗′

𝑘=1

                                         𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                   (4.41)  
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𝑆𝑇𝑖𝑙 = ∑ ∑ (𝑌𝑖𝑗𝑙𝑗′(𝑙+1)  ∗ 𝑆𝑖𝑗𝑗′)             𝑝
𝑗′=1

𝑝
𝑗=1 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄| 𝑙 ≠ 𝑞                                 (4.42)  

𝑆𝑇𝑖1 = ∑ ∑(𝑊𝑖𝑗𝑘1 ∗  𝑆𝑖0𝑗

𝑛𝑗

𝑘=1

)

𝑝

𝑗=1

                             𝑖 ∈ 𝑀                                                         (4.43) 

𝑇𝑠𝑖𝑙 ≥ 𝑇𝑓
𝑖′(𝑙−𝑧𝑖)                                                    𝑖 ∈ 𝑀|𝑖 ∉ 𝐴𝑀; 𝑖′ ∈ 𝐹𝑀𝑖; 𝑙 ∈ 𝑄              (4.44) 

𝐻𝑠𝑖𝑙 ≥ 𝑇𝑠𝑖𝑙/(24 ∗ 60)                                        𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                              (4.45) 

𝐻𝑠𝑖𝑙 ≤ 𝑇𝑠𝑖𝑙/(24 ∗ 60) + 1                                 𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                              (4.46) 

𝑇𝑠𝑖𝑙 ≥ (24 ∗ 60) ∗ (𝐻𝑠𝑖𝑙 − 1) +  𝐸𝑖                  𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                             (4.47) 

(24 ∗ 60) ∗ 𝐻𝑠𝑖𝑙 − 𝑇𝑓𝑖𝑙 ≥ (3 − 𝑆ℎ) ∗ 480           𝑖 ∈ 𝑀; 𝑙 ∈ 𝑄                                        (4.48)  

𝑇𝑗𝑘 ≥ 𝑇𝑓𝑓𝑖𝑗𝑘 −  𝐷𝐷𝑗𝑘                                            𝑖 ∈ 𝐴𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                            (4.49) 

𝑇𝑗𝑘 ≥ 0                                                                      𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗                                            (4.50) 

𝑊𝑖𝑗𝑘𝑙 ∈ {0,1}; 𝑌𝑖𝑗𝑙𝑗′(𝑙+1) ∈ {0,1} ; 𝐻𝑠𝑖𝑙 ∈ 𝑖𝑛𝑡              

            𝑖 ∈ 𝑀; 𝑗 ∈ 𝑃;  𝑘 ∈ 𝐽𝑗;  𝑙 ∈ 𝑄                          (4.51) 

Model Description 

The functionality of the model is identical to MILP1. The only difference is the 

increase in the number of binary variables denoted by W and Y. In MILP2, there is an 

additional index i, representing machines, included in these binary variables. In MILP2, 

the sequence of jobs might be different on different machines. Hence, the additional index 

is required to be able to identify the position of each job on each machine. The number of 

these binary variables in MILP2 is given by the number of binary variables in MILP1 times 

the number of machines in the system. This increase in binary variables causes the MILP2 

to be much more complex as compared to MILP1.   

4.4. Choice of the Objective Function 

This research aims to simultaneously minimize two criteria, one representing 

producer’s interest and the other representing customers’ interest. In most of the scheduling 

problems, producer’s interest is represented by minimizing makespan or minimizing sum 

of completion times. These criteria depend on the completion time of jobs on the last 

machine in the flow line. Hence, the schedule obtained from these criteria might not yield 
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the best performance values for upstream machines. Consider a two-machine flow shop 

with limited buffer storage in between and a minimum wait time of two hours. Production 

occurs for a single shift each day, i.e., production time available each day is 480 minutes. 

Table 1-4 shows the related data for this problem. Figure 3 shows a Gantt chart of two 

sequences: schedule 1 considering permutation sequence and schedule 2 considering non-

permutation sequence.  

In these schedules, jobs J11, J32 and J21 are processed in day 1 on M1, stored 

overnight and processed the next day on M2. Changing the order of these jobs on M1, does 

not affect M2 since these jobs are processed the next day on M2. The order of these jobs on 

M1 is different for sequences 1 and 2. In sequence 1, the order for these jobs on M1 is J11-

J32-J21, whereas in sequence 2, the job order on M1 is J32-J11-J21. This change has decreased 

the completion time of the last job on M1 of day 1 by 6 minutes in the case of sequence 2 

(schedule 1: 479 min., schedule 2:473 min.). However, the timings on M2 is not affected 

by this change. Because of this, the values of the criteria, makespan and sum of completion 

time, is the same for both sequences. Thus, these criteria won’t be able to differentiate 

Table 1. Runtimes of the product 

Machine P1  P2 P3 

M1 65 95 110 

M2 85 120 95 

Pi refers to the ith product and Mk refers 

to the kth machine 
       

Table 2. Machine availability times 

Machine 

Availability 

Time 

Startup 

time 

M1 65 30 

M2 265 20 

 

 

 

Table 3. Setup times 

 
Subsequent Jobs 

Preceding 

Jobs 

M1 P1  P2 P3 

Ref, 10 15 5 

P1 5 9 10 

P2 15 4 15 

P3 9 10 5 

Preceding 

Jobs 

M2 P1  P2 P3 

Ref. 10 15 5 

P1 8 12 15 

P2 15 5 10 

P3 10 14 4 

 

Table 4. Due date and release time of a job 

Job J11 J12 J21 J31 J32 

Release time 0 35 130 0 200 

Due date 1700 1920 1800 480 1790 

Jij refers to the jth job belonging to the ith product 
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between sequence 1 and sequence 2. In contrast, minimizing the sum of setup time can 

capture this difference. In this case, minimizing setup time is equivalent to minimizing 

makespan, contributed by each machine on every production day. Hence, the sum of setup 

time is chosen to represent the producer’s interest in this research.  

4.5. Complexity of the Problem 

Scheduling problems can be characterized comprehensively using the mathematical 

model. In this model, if the value of producer’s weight (α) is equal to zero, then the problem 

turns into a single criteria objective function of minimizing weighted tardiness. 

Furthermore, if the number of components (m) is considered to be one and there is only 

one machine in the first stage, then the problem converts to a two-machine regular flow 

shop problem. Thus, the two-machine flow shop problem is a special case of the assembly 

flow shop problem addressed in this research. Koulamas (1994) proved that the two-

 

 

 
Figure 3. Gantt chart for a PN and NPN Schedule in a two-machine flow shop 
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machine flow shop problem with tardiness minimization is NP-hard in a strong sense. Thus, 

the research problem can easily be shown to be NP-hard in a strong sense since the special 

case of the research problem is also NP-hard in a strong sense. 

Despite the recent technological advances on processing speeds, it is unlikely that 

an optimal solution for an NP-hard problem can be obtained within a reasonable time. Only 

small-size problems can be solved to optimality within a reasonable computation time 

using an optimization software. For medium- and large-size problems, the software often 

fails to identify the optimal solution. Therefore, an algorithm needs to be developed to 

obtain optimal or near-optimal solution for medium- and large-size problems.  
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5. HEURISTIC ALGORITHM 

Heuristics and meta-heuristics are the main approaches used to solve medium- and 

large-size problems for an NP-hard scheduling problem. Metaheuristic algorithms usually 

show a better performance as compared to heuristic algorithms due to their ability to avoid 

being trapped in local optima. Metaheuristic algorithms can generally be classified into 

local search-based and population-based algorithm. In this research, a local search-based 

metaheuristic (short-term tabu search) and a hybrid algorithm, combining local search and 

population-based meta-heuristic (tabu search/path relinking), is proposed. A local search-

based algorithm searches for a solution in the local area in the solution space. It starts with 

an initial solution which is used as the initial seed. At each iteration, the algorithm searches 

the neighborhood of the seed solution to find a possible solution for the next seed. The next 

seed is chosen based on its quality as compared to other neighborhood solutions. A 

population-based algorithm starts with a series of solutions called initial population. At 

each iteration, the algorithm replaces the older population with another population with 

superior characteristics.  

Al-Anzi and Allahverdi (2006) showed that tabu search methods are good 

metaheuristics for assembly flow shop problems. They also stated that the hybrid tabu 

search algorithm performs better than the regular tabu search method. Shahvari and 

Logendran (2017) proposed two heuristics, based on tabu search (TS) and hybrid tabu 

search/path relinking (TS/PR), for a hybrid flow shop batching problem. They showed that 

the hybrid TS/PR outperforms the TS algorithm, especially for complex problems. In this 

research, four algorithms are proposed where two algorithms are based on short-term TS 

and the other two algorithms are based on tabu search/path relinking. The nomenclature of 

the algorithms is shown in Table 5.     

Table 5. Nomenclature of algorithms used in this research 

Sequence Short-term tabu search Tabu search/path relinking 

Permutation ALG1 ALG3 

Non-permutation ALG2 ALG4 
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5.1. Tabu Search 

Tabu search was first proposed by Glover (1986) to solve complex optimization 

problems. The concept of TS was finalized later by Glover (1989, 1990) and Laguna et al. 

(1991). Tabu search has been used extensively to solve complex scheduling problems in 

the past and all these studies have shown that this method is capable of producing good 

quality solutions (Nowicki and Smutnicki 1996, Eren and Güner 2006, Mehravaran and 

Logendran 2012, Shahvari et al. 2012). Aggoune (2004) proposed a tabu search-based 

algorithm for a flow shop problem with availability constraint. Liao and Huang (2010) 

developed two heuristics, based on tabu search, to solve a non-permutation flow shop 

problem with the objective of minimizing tardiness. 

Tabu search is a refined form of a popular local search heuristic, namely hill 

climbing heuristic. The hill climbing heuristic starts with an initial solution and moves 

progressively towards a better solution at each iteration. The heuristic terminates when a 

local optimum is found, i.e. if a better solution cannot be found. Tabu search solve this 

issue by settling for a solution that is inferior to the previous solution. Similar to the hill 

climbing heuristic, TS starts with an initial solution, called seed, and employs a set of 

moves to generate the neighborhood solutions from the seed. The neighborhood solutions 

are evaluated based on the objective function value and the best solution found is chosen 

as a seed for the next iteration. If a solution better than the previous iteration is not found, 

the algorithm settles for an inferior solution. TS employs a flexible memory structure to 

store the information during the search process. This enables the algorithm to guide the 

search in a more effective and economical manner. Tabu list is a short-term memory 

structure which stores solutions or configurations which have been explored in the recent 

past. If a solution is marked as tabu, then it is disregarded which prevents the algorithm 

from selecting solutions which have already been explored. However, this restriction can 

be overridden, if the disregarded solution results in a solution quality which is better than 

the aspiration level. The aspiration level is the best quality solution found so far in the 

search algorithm. 

The following are the major components of the tabu search: 
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• Initial Solution: An initial solution (IS) is required to trigger the search 

algorithm. It can be chosen randomly or generated by a systematic IS generating 

mechanism. 

• Neighborhood Functions: A neighborhood function, also called perturbations, 

generates a set of alternate solutions from the seed. It employs a set of moves 

to change the seed solution and thus, generates its neighborhood solutions.  

• Objective function evaluation: The purpose of the algorithm is to identify an 

optimal or near-optimal solution with minimum objective function value. 

Hence, a mechanism is needed to evaluate the objective function value of each 

solution generated during the search procedure. 

• Tabu List:  At each iteration, the move that resulted in the best solution is stored 

in the tabu list (TL). As long as the move is in the TL, the move is considered 

restricted, i.e., the solution obtained using tabu move cannot be selected unless 

the solution satisfies the condition for an override, meaning that the solution 

quality must be better than the aspiration criteria. This tabu restriction prevents 

the search algorithm from revisiting the solution previously explored and thus 

enables it to avoid being trapped in the same search space. The number of 

iterations for which a move remains tabu is determined by the tabu list size 

(TLS). In its simplest form, the TLS is set as 1, which means there is only one 

move stored in the TL and this move corresponds to the move that was used to 

generate the new seed in the previous iteration. The neighborhood of the current 

seed always contains the parent seed. If the current seed is inferior to the parent 

seed, then at current iteration, the parent seed might be selected again. This 

causes the algorithm to cycle back and forth between the same set of solutions. 

However, this issue is prevented due to the tabu status placed on the move. TL 

is updated by removing the earliest entry to the list before adding the new move 

as tabu. TL is a short-term memory structure. 
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• Aspiration Level: The aspiration level (AL) records the objective function 

value of the best solution found so far by the search algorithm. Because the TL 

only stores a part of the information (moves) about the solution, some good 

solutions might be discarded. To prevent this, a tabu restriction override is 

included, which allows a solution with tabu move to be selected if the solution 

is of better quality than the AL. 

• Temporary Candidate List: A temporary candidate list (TCL) contains the 

objective function value of all the neighborhood solutions from the current seed. 

The TCL is updated at each iteration when a new seed is selected. 

• Candidate List: The best solution found at each iteration, including the initial 

solution, is included in the candidate list (CL). Each solution in the CL has a 

number of stars associated with it, which denotes the status of the solution: local 

optimum (2 stars), improving solution or potential local optimum (1 star), non-

improving solution (0 star). The CL is also an explicit memory structure which 

prevents the duplication of the solution into the CL. 

• Index List: If a solution turns out to be a local optimum, which is at least as 

good as both its parent and child, then it is included in the index list (IL). At the 

end of the search, the best solution in the IL is selected as the final solution. 

• Stopping Criteria: The search algorithm terminates if certain stopping criteria 

are met. Several stopping criteria can be used, such as maximum number of 

iterations without improvement (MIWOI), maximum number of local optima 

in the IL (MIL), or maximum computational time (MCT). If a new solution 

added into the CL is not better than the previous entry into the CL, the iteration 

without improvement (IWOI) is increased by one; else, it is reset to zero. If the 

value of IWOI is greater than MIWOI, or the number of entries into the IL is 

greater than the MIL, or the maximum computation time is reached, the search 

algorithm is terminated. 
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 The following subsection describes the details of the components used in the 

proposed algorithm. 

5.1.1. Initial Solution Finding Mechanism 

An initial solution finding mechanism is utilized to generate the IS for the search 

algorithm. A randomly generated IS is usually of poor quality and hence is time consuming 

or impossible to improve the solution to an optima. Logendran and Subur (2004) have 

shown that the final solution obtained from TS is sensitive to the quality of the IS used. 

Therefore, an IS generating mechanism is used to find a good quality IS. Simple 

dispatching rules have been used in the past to generate initial solutions for metaheuristic 

algorithms. For tardiness related problems, dispatching rules such as earliest due date 

(EDD), hybrid critical ratio (HCR), minimum slack (MSLACK) can be used. For 

completion time related problems, shortest processing time (SPT) can be used. For a bi-

criteria problem with weighted objective function, a combination of these rules can be used. 

Bozorgirad and Logendran (2013), and Shahvari and Logendran (2017) proposed an IS 

finding mechanism, inspired from weighted shortest processing time (WSPT) and 

weighted earliest due date (WEDD), for a bi-criteria scheduling problem with the objective 

of minimizing the linear combination of weighted flowtime and weighted tardiness. A 

producer’s sequence (PS) and customers’ sequence (CS) is generated using WSPT and 

WEDD, respectively. Then the PS and CS are combined, considering the normalization of 

their positional values (𝛼. 𝑃𝑆 + 𝛽. 𝐶𝑆). In this research, The PS and CS and generated as 

follows. 

Producer’s Sequence: The goal of the PS is to minimize the total setup time. The 

smallest setup time (SST) rule is used to determine the PS. In this rule, priority is given to 

the job with the least changeover time from the previous job assigned to that machine. To 

assign the first job, reference setup time is used. If two or more jobs have the same setup 

time, tie is broken in favor of the job that has the smallest product identification number. 

If two or more jobs have the same setup time and product ID, ties are broken in favor of 

the job with the smallest job identification number. 
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Customers’ Sequence: The goal of the customer is to minimize the weighted 

tardiness. To determine the CS, WEDD rules is used. This rule assigns priority to jobs with 

the least due date to weight ratio 𝑑𝑗𝑘/𝑤𝑗𝑘. With this rule, the job with the smallest due date 

and largest weight is scheduled first. Ties are broken in the same manner as in PS. 

After finding the order of jobs in both PS and CS, the normalized positional value 

of each job is obtained by the formula α. PS + β. CS), where PS denotes the order of the 

job in producer’s sequence and CS denotes the order of the job in customer’s sequence. 

The job with the least normalized positional value is sequenced first in the final sequence. 

Only permutation sequence is considered during IS generation, i.e., for both 

permutation and non-permutation algorithms, the IS is a permutation sequence. The 

flowchart for IS generating mechanism is shown in Figure 4. The IS generation mechanism 

consists of the following steps: 

1. Initially, set g = 1. 

2. Select the gth machine in the subset SM (i.e., the first machine required by the 

gth component). 

3. Include all jobs into a set NSJ. 

4. Select the jobs from NSJ that are released before the machine becomes 

available. If no such job exists, select the job with the earliest release time. 

5. If more than one job remains from the first two steps, the job with the smallest 

normalized positional value is chosen. Ties are broken in favor of the job with 

the smaller index (product ID used in conjunction with job ID), as explained in 

Producer’s Sequence).  

6. Remove the selected job from NSJ. 

7. Repeat steps 4-6 until NSJ is empty. 

8. Label the sequence obtained as ISg 

9. Set g = g+1; 

10. Repeat steps 1 to 6 until g > m 

11. Evaluate each ISg (g = {1, 2, …., m}) in terms of the objective function value 

and select the best one as the IS. 
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Figure 4. IS Flowchart 
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5.1.2. Neighborhood Function 

After the initial solution is generated, it is set as seed. A set of moves are performed 

on this seed to find neighborhood solutions (NS). These moves cause changes in the 

structure of the seed. There are two types of moves used in this research. 

Swap move: In this move, the position of two jobs in a sequence is exchanged. 

Consider that the sequence of jobs on machine 1 (M1) is J11, J12, J21, J31, then the exchange 

moves between jobs in positions 1 and 3 would result in J21, J12, J11, J31 as a new sequence. 

This move is illustrated in Figure 5.  

Insert move: In this move, a job from a particular position of a sequence is inserted 

into another position. The old position and new position of the job cannot be adjacent, i.e., 

|old position -–new position| ≥ 2. Insert move from a position to an adjacent position would 

result in the same sequence as the exchange move.  Consider that the sequence of jobs on 

machine 1 (M1) is J11, J12, J21, J31, then the insert moves of a job from position 1 into 

position 3 would result in J12, J21, J11, J31 as a new sequence. This move is illustrated in 

Figure 6.  

A combination of swap and insert moves are used to generate NS. There is a 

difference in the neighborhood structure for permutation and non-permutation sequence, 

 
Figure 5. Swap move 

 
Figure 6. Insert move 
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which is shown in Fig. 7 and Fig. 8. The sequence shown in this figure corresponds to a 4-

machine assembly flow shop shown in Figure 2. Consider a job-pair (J11 and J12) which is 

selected for swapping. In the case of permutation, only one neighborhood solution can be 

generated from this job pair. However, in the case of non-permutation, 15 NS (i.e., (2m-1)) 

can be generated with a single job-pair by selecting various combinations of machines in 

which the swap move is applied. These combinations of machines are 1; 2; 3; 4; 1 and 2; 1 

and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; 1,2 and 3; 1,2, and 4; 1,3 and 4; 2,3 and 4; 1,2,3 

and 4. In the first combination, the sequence is swapped only on machine 1; in the fifth 

combination, the sequence is swapped on machines 1 and 2; and so on. Liao and Huang 

(2010) used this structure to generate NS for non-permutation sequence. While the example 

above is shown for swap moves, the same concept applies for insert moves as well. Hence, 

the size of neighborhood solution set is much larger for non-permutation sequence. With 

this increase in the size of neighborhood solution set, the computational time required by 

the algorithm also increases, as each solution in the set must be evaluated.  

 

 
Figure 7.  Neighborhood structure for permutation 

 
Figure 8. Neighborhood structure for non-permutation 

 

 

Job seq. on machines: J11 J12 J13 J21 J22  

 

1st job-pair 

1 Neighborhood 

 

 

Job seq. on machine 1: J11 J12 J13 J21 J22 

Job seq. on machine 2: J11 J12 J13 J21 J22  

Job seq. on machine 3: J11 J12 J13 J21 J22  

Job seq. on machine 4: J11 J12 J13 J21 J22  

 

1st job-pair 

15 Neighborhoods 
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Two types of perturbation mechanisms are used in this research. Perturbation 1 

(PTB1) only considers an adjacent pair for swapping, whereas perturbation 2 (PTB2) 

considers all possible pairs for swap and insert moves. In this research, the TS which uses 

PTB1 is called slight TS and the TS which uses PTB2 is called strong TS. The possible 

moves for PTB1 and PTB2 are shown in Table 6. As mentioned before, each possible move 

shown in Table 6 results in one neighborhood solution for PN sequence and 15 NS for NPN 

sequence. Since PTB1 has a small neighborhood structure as compared to PTB2, the 

computational time of slight TS is lower than that of strong TS. However, the quality of 

the solution is superior in the case of strong TS (Aryal and Logendran, 2018). The short-

term TS, i.e., ALG1 and ALG2, uses PTB2 in this research.  

5.1.3. Evaluation of the Objective Function 

Each neighborhood solution generated during the perturbation, must be evaluated 

in terms of the objective function. A weighted bi-criteria objective function with setup time 

and weighted tardiness is used in this research. As discussed in section 4.1, these two 

criteria are normalized using extreme values, i.e., minimum and maximum, of these criteria 

(refer to equation 4.2). These extreme values are obtained as shown in Table 7.  

Table 6. Moves for PTB and PTB2 

Perturbation Move type Possible moves 

PTB1 Swap 1-2,2-3,3-4,4-5 

PTB2 
Swap 1-2,1-3,1-4,1-5,2-3,2-4,2-5,3-4,3-5,4-5 

Insert 1-3,1-4,1-5,2-4,2-5,3-1,3-5,4-1,4-2,5-1,5-2,5-3 

Swap move (a-b) = jobs in position a and b are swapped 

Insert move (a-b) = job in position a is inserted into position b 

 

Table 7. Extreme values of the criteria 

Criteria Minimum Value Maximum Value 

Total setup 

time 

Value of the criteria from a 

solution obtained using SST 

Value of the criteria from a 

solution obtained using LST 

Total weighted 

tardiness 
0 

Value of the criteria from a 

solution obtained using WLDD  
SST= smallest setup time, LST= largest setup time, WLDD = weighted latest due date  
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The minimum value for the total setup time (STmin) is obtained using smallest setup 

time (SST) rule. In this rule, a sequence is obtained for each machine independently by 

giving priority to the job with the smallest setup time with the previous job scheduled on 

that machine. Similar to initial solution generation, ties are broken in favor of the job with 

smaller index. The sum of the setup time for the sequence obtained on each machine gives 

the minimum total setup time. The maximum value for the total setup time (STmax) is 

obtained using largest setup time rule (LST) rule which gives priority to jobs with largest 

setup time with the previous job scheduled on a machine. The minimum weighted tardiness 

(WTmin) is considered as zero because in an ideal situation, no jobs would be tardy. The 

maximum value of the weighted tardiness (WTmax) is obtained with the methodology 

similar to that of the initial solution generation mechanism. However, instead of 

prioritizing jobs using normalized positional values, priority is given to the job with the 

largest due date to weight ratio. The tardiness value of this sequence is evaluated and set 

as WTmax. The extreme values used to calculate the normalized composite objective 

function (refer to equation 4.3) are considered to be the same for PN and NPN sequence. 

This is done so that the performance of PN vs NPN sequence can be compared over the 

same range of maximum and minimum values. After the extreme values are obtained, the 

NCOF is computed by calculating the completion times and setup times of the sequence. 

 The total setup time of a sequence can be obtained easily from the setup 

information. To calculate the weighted tardiness, the completion time of the jobs at the 

final assembly stage needs to be obtained. In a typical flow shop, this is done by calculating 

the completion time of all jobs sequentially at each stage, i.e. first stage, followed by the 

second stage and so on. However, this approach is not applicable for this research problem 

due to limited storage space constraint. Because of this constraint, the predecessor machine 

must determine whether the successor machine has processed enough jobs for the storage 

space to be available or else, the operation is blocked on the predecessor machine. Hence, 

in order to calculate the completion time, the algorithm goes back and forth between 

different machines to determine whether the storage space is empty (required for 

predecessor machine) and whether the job is ready for processing (required for successor 

machine). A counter ci is used for each machine i, which represents the order of a job in 
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the sequence which is to be processed on a machine, i.e., if c1 = 1, then the first job in the 

sequence needs to be processed. Initially, the counters are set to one. The algorithm then 

moves sequentially between machines starting with machine belonging to SM, followed by 

EM and then AM. At each iteration, the completion time of the job at the counter value 

position of the sequence is calculated. For example, if the counter c1 is equal to 5 at a 

particular iteration, then the completion time of the job occupying the fifth position of the 

M1 sequence is calculated. Completion time is calculated using the formula in 5.1. If the 

calculated completion time of the job falls during non-production hours (when the 

machines are not available), then the processing of the job is postponed to the next available 

day. This is done by increasing the machine availability time to the earliest time it is 

available on the next production day. For example, if the calculated completion time of a 

job equals 500 min., then this completion time is not valid (since a single shift runs only 

480 min. each day). Hence, the machine availability time is increased to the start time of 

next production day plus the equipment restart time, i.e. 1440 (start of next shift) + 25 min. 

(equipment re-start time).     

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑗𝑜𝑏

= 𝑀𝑎𝑥 (𝑗𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑡𝑦 𝑡𝑖𝑚𝑒 + 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒)

+ 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒                                                                                                    (5.1) 

The job release times for different machines are calculated as follows: 

• For machine 𝑖 ∈ 𝑆𝑀  

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 =  𝑟𝑗𝑘                                                                               (5.2) 

Here, the job release time is equal to the initial release time of the job. 

• For machine  𝑖 ∈ 𝑀|𝑖 ∉ 𝑆𝑀, 𝐴𝑀  

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑇𝑓𝑓𝑖′𝑗𝑘 + 𝑡𝑖′ ∶  𝑖 ∈ 𝐹𝑀𝑖′                                          (5.3) 

Here, the job release time is equal to the completion time on predecessor 

machine plus the minimum storage time. 
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• For machine 𝑖 ∈ 𝐴𝑀 

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑀𝑎𝑥 (𝑇𝑓𝑓𝑖′𝑗𝑘 + 𝑡𝑖′): 𝑖′ ∈ 𝐸𝑀                                (5.4) 

Here, the job release time is equal to the maximum completion time on 

predecessor machine plus the minimum storage time. 

For the 4-machine assembly flow shop shown in Figure 2, the job release time 

would be evaluated as follows: 

𝐽𝑜𝑏 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 =  {

𝑟𝑗𝑘, 𝑓𝑜𝑟 𝑖 = 1,3

𝑇𝑓𝑓1𝑗𝑘 + 𝑡1, 𝑓𝑜𝑟 𝑖 = 2 

𝑀𝑎𝑥(𝑇𝑓𝑓2𝑗𝑘 + 𝑡2, 𝑇𝑓𝑓3𝑗𝑘 + 𝑡3), 𝑓𝑜𝑟 𝑖 = 4

 

The iteration continues until all of the counter values are equal to N. If at any 

iteration, the machine is blocked due to storage space unavailability or job not completed 

on previous machine, then scheduling for that machine is skipped without updating the 

counter. Hence, at the next iteration, the counter value for that machine will be the same 

and the algorithm will try to schedule the same job again.   

Infeasible solutions: In a flow shop, there is interdependency between positions of 

a job in different stages/machines. In a permutation sequence, the job sequence across all 

machines is the same. Hence, the interdependency is not a concern. In non-permutation 

sequence, however, performing a perturbation may result in increase of idle times and even 

infeasibility. Consider the job sequence on machines 1 and 2 to be seq-1a (J11, J22, J13, J21, 

J12) and seq-2a (J22, J11, J12, J13, J21). If a perturbation is performed on seq-1a by swapping 

the positions of J22 and J12, the new sequence would be seq-1b (J11, J12, J13, J21, J22) and 

seq-2b (J22, J11, J12, J13, J21) for machines 1 and 2, respectively. Here, Job J22 is in the fifth 

position in seq-1b and in the first position in seq-2b. So, machine 2 must wait a long time 

before J22 is available for processing. If the number of silos between these machines is 4, 

then the solution is infeasible. Jobs J11, J12, J13 and J21 are first processed by machine 1, 

which fills up the storage silos. The processing of J22 is then halted because storage space 

is not available. Machine 2 also cannot process the first job (J22) in its sequence because it 

is not yet processed by machine 1. In order to avoid selection of infeasible solutions, a 



39 

 

penalty is imposed on the OFV of the infeasible solutions, so that the algorithm will move 

away from infeasible solution space. For each storage constraint violation, a penalty of 

0.25PD is imposed. PD refers to the difference between the positions of the same job on 

two machines that are connected by a buffer storage. For example, if a job is at the sixth 

position on a sequence for machine 1, and the same job is at the first position on sequence 

for machine 2, then the PD of that job would be 5. The total penalty is calculated for each 

storage violation and this penalty is added to a pre-set value of 1. Since, the NCOF for a 

feasible sequence ranges from 0 to 1, the proposed method ensures that the OFV of 

infeasible solutions is higher than that of feasible solutions. 

5.1.4. Tabu list 

TL is a short-term memory structure which prevents the search algorithm from 

selecting solutions which have already been explored to avoid being trapped in local 

optima. TL stores the most recent moves applied during the search. The entries in the TL 

follows first-in-first-out (FIFO) rule. This means that once the TL reaches its maximum 

size, the oldest entry is removed, and a new move is inserted into the TL. The number of 

iterations for which the move remains in the TL is determined by TLS. 

 In this research, two types of moves, swap and insert, are used to generate NS. 

Hence, two types of tabu structure are implemented into the algorithm. As discussed in 

section 5.2.2, a move can be applied to a partial set of machines in the case of non-

permutation sequence. Hence, the set of machines where the moves are applied also needs 

to be included in the structure. If a job Jjk is swapped with another job Jj’k’ on machine i 

and i’ (jk ≠ j’k’), the TL stores the index of the two jobs being swapped and the index of 

the machines where the move was applied, i.e., 𝑃𝑠(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘: 𝐽𝑗′𝑘′)is stored in the TL. 

𝑃𝑠(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘: 𝐽𝑗′𝑘′) indicates that jobs Jjk and Jj’k’ cannot be swapped on machine i and i’ 

until this move is removed from the TL. The above example shows that the move was 

applied to two machines out of the entire machine set. However, this may vary as the move 

can be applied to any subset of machines. In the case of permutation sequence, the moves 

are always made on the entire set of machines. Hence, the above move would be 

represented as  𝑃𝑠(𝑀𝑖(∀𝑖 ∈ 𝑀)|𝐽𝑗𝑘: 𝐽𝑗′𝑘′).  
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If a job Jjk is inserted from its current position p into another position p’ (p ≠ p’) on 

machines i and i’, the TL stores the index of the job being inserted along with its position 

before the move was applied and the index of the machines where the move was applied, 

i.e., move  𝑃𝐼(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘, 𝑝) is stored in the TL. 𝑃𝐼(𝑀𝑖: 𝑀𝑖′|𝐽𝑗𝑘, 𝑝)  indicates that the job 

Jjk cannot be inserted into position p on machines i and i’ until this move is removed from 

the TL. As in the case of swap move, the insert move can also be applied to any subset of 

machines. 

One of the characteristics of the problem in this research is the possibility of 

multiple solutions with the same objective function value. The reasons for this issue are 

non-continuous production and multiple jobs (belonging to the same product) having the 

same run times and setup times. As shown in section 4.4, due to non-continuous 

production, the job sequence on predecessor machines can be changed without affecting 

the operation times of the successor machines. This results in multiple sequences having 

the same job completion times in the final machines. Thus, the tardiness of these sequences 

remains unchanged. In addition, the problem consists of multiple jobs belonging to the 

same product. Since, the run time and setup time are associated with the product, these jobs 

share the same run times and setup time as their parent product. Changing the position of 

these jobs does not result in any change in the total setup time of the sequences. Due to the 

combination of these two characteristics of the problem, multiple solutions with the same 

objective function value exist. This creates an issue with the application of tabu list in the 

algorithm. 

TL prevents the algorithm from selecting a solution which was previously explored. 

However, it does not prevent the algorithm from selecting a different solution with the 

same objective function value (OFV). Hence, once a local optimum is reached, i.e., a 

superior solution cannot be found in the neighborhood, the algorithm keeps selecting other 

solutions with the same OFV until it finally terminates. Figure 10 shows the OFV of the 

solutions in the CL illustrating this situation. The performance of the algorithm in this 

instance is similar to that of a hill climbing heuristic. Therefore, to improve the 

performance of the algorithm, a restriction is added to limit the number of solutions with 
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the same OFV into the CL. For example, if the maximum number of similar solutions 

(MNSS) is equal to 2, then no more than 2 solutions with the same OFV can be entered 

into the CL. This additional restriction forces the algorithm to settle for an inferior solution, 

thus preventing the search from being trapped in the local optima. Table 4 shows the OFV of 

the solutions in the CL using a TS algorithm incorporating this restriction. The algorithm without 

MNSS restriction finds the best solution at entry #7 and keeps selecting other solutions with the 

same OFV until it is terminated. The algorithm with the MNSS restriction, however, settles for an 

inferior solution at entry #8 and finds a better solution at entry #9. It can be observed that the 

algorithm performance improves with the added restriction.  

5.1.5. Aspiration criterion   

Aspiration level (AL) is the OFV of the best solution found so far by the algorithm. 

Aspiration criterion is a condition that a solution must satisfy in order for it to be released 

from tabu restriction. If the solution has a better OFV than the AL, then this solution can 

be selected for next iteration even if the move is tabu, i.e. tabu restriction can be overridden 

by aspiration criterion. 

Table 8. OFV of solutions on the CL for algorithms and without MNSS restriction 

CL Entry # Algorithm without MNSS restriction Algorithm with MNSS =2 

1 0.39399 0.39399 

2 0.29283 0.29283 

3 0.23627 0.23627 

4 0.22065 0.22065 

5 0.20761 0.20761 

6 0.20727 0.20727 

7 0.20694 0.20694 

8 0.20694 0.20694 

9 0.20694 0.20700 

10 0.20694 0.18455 

11 0.20694 0.18455 

12 0.20694 0.18477 

13 0.20694 0.18477 

14 0.20694 0.18488 

15 0.20694 0.18488 

16 0.20694 0.18509 

17 0.20694 0.18487 

18  0.18487 

19  0.18494 

20  0.18494 

Best  0.20694 0.18455 

 

 



42 

 

5.1.6. Steps of the Proposed TS Algorithm  

The flowchart for the proposed TS algorithm is shown in Figure 9. The pseudo code 

for the proposed TS algorithm developed in this research is as follows: 

Step 1:   Set the value of iteration without improvement (IWOI) to zero  

Step 2:   Identify an IS, and insert it into the candidate list (CL) and index list (IL)  

Step 3:   Set aspiration level (AL) = objective function value (OFV) of the IS 

Step 4:   WHILE (IWOI < Max_IWOI and IL_Size < Max_IL_Size) 

Step 4.1:  Consider the latest entry into the CL as the seed 

Step 4.2:  Reset temporary candidate list (TCL). Generate neighborhood solutions  

(NS) from the seed and find their OFV. For short-term TS, PTB2 is used 

(strong TS) 

Step 4.3:  Record the OFV in the TCL 

Step 4.4:  Select the solution with the best OFV in the TCL 

Step 4.5:  IF (the solution has already been admitted into the CL), THEN disregard  

the solution and find the next best solution from the TCL and repeat step 

4.5 

                 ELSE, go to step 4.8 

Step 4.6:  IF (the number of similar solution (NSS) admitted into the CL has exceeded 

          the maximum number of similar solution (MNSS)), THEN disregard the  

          solution and find the next best solution from the TCL and go to step 4.5 

                 ELSE, go to step 4.7 

Step 4.7:  IF (the current move associated with the selected solution is tabu), THEN 

go to step 4.8,  

                 ELSE update the tabu list (TL) with the current move and go to step 4.9 

Step 4.8:  IF (the OFV of the selected solution is worse than AL), THEN disregard 

this solution and select the next best solution from TCL and go to step 4.5  

                 ELSE, go to step 4.9 

Step 4.9:  Insert the solution into the CL 

Step 4.10:  IF (the OFV of the latest entry into the CL is better than its parent), THEN  

              assign a star to the solution, update the value of AL and reset the value of  
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           IWOI to zero  

                  ELSE, increase the value of IWOI by one 

                       IF (the parent solution already has a star), THEN assign another star 

to the parent solution and insert it into the IL  

Step 4.10:  IF (the number of entries into the TL is more than the tabu list size (TLS)),  

            THEN remove the earliest entry from the TL     

Step 5: Return the best solution in the IL
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Figure 9. TS flowchart 
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5.1.7. Application of the TS Algorithm to an Example Problem 

The application of TS algorithm is illustrated by means of a randomly generated 

example problem, as shown in Tables 9 and 10.  

 

Table 9. Example problem 

Machine availability time (ai)  5 168 6 247 

wjk djk Equipment restart time (Ei)  20 36 46 35 

Product(j) Job (k) rjk 
M1 M2 M3 M4 

Run time (Rij) 

1 

1 0 

32 29 60 84 

1 1649 

2 10 3 255 

3 76 1 1857 

2 

1 1 

40 46 59 82 

1 1456 

2 95 2 1840 

3 5 2 1441 

4 12 2 478 

5 1 2 110 

3 
1 7 

52 55 52 72 
2 1918 

2 8 3 173 
 

Table 10a. Setup time for M1 

    

Subsequent 

product 

  Product P1 P2 P3 

Preceding 

product 

Ref 11 8 13 

P1 5 8 13 

P2 9 5 12 

P3 14 8 4 
 

Table 10b. Setup time for M2 

    

Subsequent 

product 

  Product P1 P2 P3 

Preceding 

product 

Ref 14 9 11 

P1 5 15 11 

P2 12 4 12 

P3 8 12 4 

 

 

Table 10c. Setup time for M3 

    

Subsequent 

product 

  Product P1 P2 P3 

Preceding 

product 

Ref 13 8 9 

P1 4 14 13 

P2 12 3 11 

P3 10 12 3 
 

Table 10d. Setup time for M4 

    

Subsequent 

product 

  Product P1 P2 P3 

Preceding 

product 

Ref 9 9 11 

P1 4 12 10 

P2 13 3 13 

P3 15 12 4 

//// 
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The problem consists of 3 products and the total number of jobs is 10. The problem 

is for a 4-machine assembly flow shop (as shown in Figure 2) which operates on a single 

shift per day, i.e., available production time each day is 480 min. All storages (S1, S2, and 

S3) are capable of storing a maximum of 5 jobs each. A minimum storage time of 120 min. 

is required in both S1 and S3, whereas no storage time restriction is applicable to S2. The 

producer’s and customers’ weights are 0.4 and 0.6, respectively. The first step is to 

calculate the extreme values of each criteria. 

• STmin is obtained by using SST rule. This rule is applied to each machine 

independently and the setup time thus obtained is calculated. For machine 1, P2 

has the smallest setup time of 8 min. Out of all jobs belonging to P2, J21 has the 

lowest index. Hence, it is positioned first. For the next position, the job which 

has the least setup time with J21 (belonging to P2) as the preceding job is 

searched. In this case, the setup time is minimum with the jobs belonging to the 

same product P2 (5 min.).  Hence, J22 is positioned second, followed by J23, J24 

and J25, respectively. Now, all jobs belonging to P2 are sequenced. The next job 

with the least setup time must belong to P1 since the setup time between P2 and 

P1 is 9 min. and the setup time between P2 and P3 is 12 min. This process is 

repeated until all jobs are sequenced on M1. The sequence is obtained similarly 

for M2, M3 and M4. The setup time thus obtained for each machine is added to 

get STmin. Table 11 shows the sequence and setup time for each machine. The 

value of STmin is 233 min. 

• The methodology to obtain STmax
 is similar to STmin. However, in this case, 

priority is given to the job with maximum setup time. Table 12 shows the 

Table 111. Setup time for sequence generated using SST 

Machine Sequence Setup time 

M1 J21-J22-J23-J24-J25-J11-J12-J13-J31-J32 64 

M2 J21-J22-J23-J24-J25-J11-J12-J13-J31-J32 62 

M3 J21-J22-J23-J24-J25-J31-J32-J21-J22-J23 52 

M4 J11-J12-J13-J31-J32-J21-J22-J23-J24-J25 55 

 Total 233 
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sequence and the setup time obtained using LST rule. The value of STmax is 466 

min.  

• The ideal value of weighted tardiness (WTmin) is assumed to be zero. 

• WTmax is obtained by applying WLDD rule. The due date to weight ratio for 

each job is shown in Table 13. Ordering the job in the decreasing order of due 

date to weight ratio gives a sequence of J13- J11- J21- J31- J22- J23- J24- J12- J32- 

J25. The weighted tardiness of this sequence is 27047 min. The method used to 

obtain weighted tardiness of a sequence is similar to the method used to evaluate 

the objective function of a sequence, as explained in section 5.3. 

When generating a sequence to obtain extreme values, constraints such as machine 

availability time, job release time, precedence constraints, and storage constraints are not 

considered. The reason for doing so is to identify a sequence representing the best and 

worst values of the criteria without the limitations placed by these constraints. However, 

Table 12. Setup time for sequence generated using LST 

Machine Sequence Setup time 

M1 J31-J11-J32-J12-J21-J13-J22-J23-J24-J25 94 

M2 J11-J21-J12-J22-J13-J23-J31-J24-J32-J25 131 

M3 J11-J21-J12-J22-J13-J23-J31-J24-J32-J25 125 

M4 J31-J11-J21-J12-J22-J13-J23-J32-J24-J25 116 

 Total 466 

 

Table 133. Due date to weight ratio 

Job 

(Jjk) 
wjk djk djk /wjk 

J11 1 1649 1649.0 

J12 3 255 85.0 

J13 1 1857 1857.0 

J21 1 1456 1456.0 

J22 2 1840 920.0 

J23 2 1441 720.5 

J24 2 478 239.0 

J25 2 110 55.0 

J31 2 1918 959.0 

J32 3 173 57.7 
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during evaluation of the identified sequences, the constraints are considered. For example, 

the sequence for WTmax is obtained by sequencing the jobs in the decreasing order of the 

due date to weight ratio. To generate this sequence, only job weight and due dates are 

considered. However, the above constraints are considered during the evaluation of this 

sequence to obtain the extreme values. 

After the extreme values are identified, the initial solution is generated using the 

normalized positional values (NPV) of PS and CS. Two sequences are generated by 

applying this method to M1 and M3, since these machines are the first machine required by 

components 1 and 2, respectively. First M1 is selected. All jobs are entered into the set of 

non-scheduled jobs (NSJ). The availability time of M1 is 5 min.  and the equipment restart 

time is 20 min. Hence, the actual machine availability time (a1) is 25 min. At t = 25, all 

jobs except J22 and J33 are released. Hence, the set SJ contains eight jobs. Now, the PS and 

CS are generated for the set of jobs in SJ. The method for generating PS is similar to the 

method used to generate the sequence for STmin. CS is obtained by applying WEDD rule, 

i.e., priority is given to jobs with the least due date to weight ratio. The rank of each job (in 

SJ) in PS and CS is shown in Table 14. The NPV of each job is calculated. For J11, it is 

given by 0.4 * 5 + 0.6 * 8 = 6.8. The NPV for other jobs in SJ is also shown in Table 13. 

Since J25 has the smallest NPV, it is scheduled first. The setup time required for J25 is 8 

(reference setup). The completion time of J25 on M1 is given by 25 + 8 + 40 = 73 min. The 

machine availability time a1 is updated to 73 min. and J25 is removed from the set NSJ. 

Now, nine jobs remain in NSJ. At the next iteration, all jobs except J22 and J33 are released 

before t = 73 min. These released jobs are entered into the set SJ. The NPV of each job is 

calculated by the same method as described above and the job with the least NPV (in this 

case, J24) is scheduled after J25. The completion time of J24 is 73 + 5 + 40 = 118 min. Again, 

a1 is set to 118 min. and J24 is removed from the set NSJ. Now all jobs in NSJ are released 

before t = 118 min. Hence, the set SJ includes 8 jobs (10 total jobs – 2 scheduled jobs). 

This process is repeated until all the jobs are scheduled. The sequence thus obtained is J25-

J24-J23-J22-J12-J21-J11-J32-J31-J13. The jobs scheduled at each iteration along with the 

machine availability time and completion time is shown in Table 15. At itrn#9, the 

completion time of the job J31 is 459 min.  Only 21 min. is available for production before 



49 

 

the shift ends at 480 min. Since the last job (J13) cannot be completed within the remaining 

time, its production is shifted for the next day. Thus, the available time for next iteration is 

1460 min., i.e., start of the next shift (1440) + equipment restart time (20). Next, another 

sequence is obtained by applying the IS generation mechanism on M3. The sequence 

obtained is J25-J32-J24-J23-J22-J31-J21-J12-J11-J13.  

The two sequences are now evaluated in terms of their OFV. To obtain the OFV, 

the total setup time and weighted tardiness values of each sequence needs to be calculated. 

The total setup time can be calculated easily from the setup time information in Table 10a, 

10b, 10c and 10d. Consider the sequence obtained above from M1 (IS1): J25-J24-J23-J22-J12-

J21-J11-J32-J31-J13. The setup time for this sequence in M1 is 8 + 5 + 5 + 5 + 9 + 8 + 9 + 13 

Table 14. Rank of jobs in PS and CS 

Job 

(Jjk) 

Rank 
NPV 

PS CS 

J11 5 8 6.8 

J12 6 3 4.2 

J21 1 n 4.6 

J23 2 5 3.8 

J24 3 4 3.6 

J25 4 1 2.2 

J31 7 6 6.4 

J32 8 2 4.4 

 

Table 15. Job scheduled at each iteration of IS generation mechanism on M1 

Itrn# 
Job 

(Jjk) Availabilty 

time 

Completion 

time 

1 J25 5 73 

2 J24 73 118 

3 J23 118 163 

4 J22 163 208 

5 J12 208 249 

6 J21 249 297 

7 J11 297 338 

8 J32 338 403 

9 J31 403 459 

10 J13 1460 1492 
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+ 4 + 14 = 80 min. Similarly, for M2, M3 and M4, the setup times are 83, 81 and 85, 

respectively. The total setup time is equal to 80 + 83 + 81 + 85 = 329. The weighted 

tardiness is obtained by calculating the completion time of the job at the final assembly 

machine. The steps are shown in Figure 10. 

Initially, set counter c1, c2, c3 and c4 equal to 1 for M1, M2, M3 and M4, respectively. 

The first job to be processed is J25, which is released at t = 1. Since, this is the first job, the 

storage space after M1 (S1) is totally empty. The availability time of M1 is 5 min. and the 

equipment restart time is 20 min. Thus, the completion time of J25 is given by 

𝑀𝑎𝑥 (1, 25 + 8) + 40 = 73 min. The new availability time of M1 (a1) = 73 and c1 = c1 + 1. 

Next, M3 is selected. The availability time of M3 is 6 min. and the restart time is 46 min. 

The setup time and run time associated with J25 on M2 is 8 (reference setup) and 59, 

respectively. The completion time of J25 is given by 𝑀𝑎𝑥 (1, (6 + 46) + 8) + 59, which 

equals to 119 min. The counter and availability time of M3 is updated. For M2, J25 is released 

at t = 191, i.e., 73 (completion time on M1) + 120 (minimum storage time at S1). The 

availability time of M2 is 168 min. and the equipment restart time is 36 min. The setup time 

and run time associated with J25 on M2 is 9 (reference setup) and 46, respectively. Thus, the 

completion time is given by 𝑀𝑎𝑥 (191, (168 + 36) + 9) + 46, which is equal to 259 min. 

a2 is updated to 259 and c2 = c2 + 1. The release time of a job (Jjk) on M4 is given by 

𝑀𝑎𝑥 (259 +  0,119 +  120), which is equal to 259. The completion time is equal to 

𝑀𝑎𝑥 (259, (247 + 35) + 9) + 82) = 373 min. The counter and availability time of M4 are 

updated. This process is continued until all of the counter values equal N. If the machine is 

blocked due to storage space unavailability or a job not completed on previous machine, 

then the iteration on that machine is skipped and the next machine is selected. The 

completion time calculated for IS1 is shown in Table 16. 
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Figure 10. Evaluation of job completion times 
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   It can be seen that the job completion times on M1 in Table 15 and Table 16 are 

different (starting at the 6th job position), despite having the same sequence. This is because 

of the storage space limitations considered in the later evaluation. The data in Table 14 

refers to the completion times calculated during initial sequence generation on M1. During 

the application of this method, M1 is evaluated independently and hence, storage space 

limitations are not considered.  Table 15 consists of the completion times calculated during 

the evaluation of objective function. In this method, the storage space limitations must be 

considered as all machines are evaluated. The fifth job on M1 (J12) is completed at 249 min. 

Without the storage space constraint, the next job (J21) can be started at t = 257, i.e., 249 + 

8 (setup time between P1 and P2). However, job (J21) cannot start at t = 257.  J21 is the sixth 

job in the sequence, which means that the previously completed five jobs still occupy the 

storage space, unless some of these jobs are completed on M2. The storage space constraint 

specifies that a job can only be started after the storage space becomes available, i.e. the 

job is completed on successor machine. The first job J25 is completed at t = 259 on M2 

which empties one storage space and thus job (J21) cannot be started before t = 259. 

However, anticipatory setup can be performed during this wait time so that the job can be 

processed as soon as the storage is available. Thus, the completion time of the job (J21) is 

delayed by 2 min. in Table 16. After the completion times are calculated, the weighted 

tardiness of each job is calculated using equation 5.5. The total weighted tardiness for IS1 

is shown in Table 16. 

Table 16. Job completion times on machine 

Job 

(Jjk) 

Completion time on Machine 
wjk djk 

Weighted 

Tardiness M1 M2 M3 M4 

J25 73 259 119 373 2 110 526 

J24 118 309 181 458 2 478 0 

J23 163 359 243 1557 2 1441 232 

J22 208 409 305 1642 2 1840 0 

J12 249 450 377 1739 3 255 4452 

J21 299 1522 450 1833 1 1456 377 

J11 341 1563 1546 2999 1 1649 1350 

J32 411 1629 1611 3081 3 173 8724 

J31 467 1697 1694 3157 2 1918 2478 

J13 1492 1768 1799 3256 1 1857 1399 

      Total 19538 
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𝑇𝑗𝑘 = 𝑀𝑎𝑥 (0, 𝑤𝑗𝑘(𝑇𝑓𝑓4𝑗𝑘 − 𝑑𝑗𝑘))                                                                    (5.5) 

The OFV is then computed using equation 4.3. For IS1, the OFV is 0.59823. The 

OFV for IS3 is also computed similarly, which is given by 0.50769. Since, the OFV for IS3 

is lower, it is selected as the IS to trigger the tabu search algorithm. 

The IS is entered into the CL and IL. The AL is set to the OFV of the IS, which is 

equal to 0.50769. The latest entry into the CL, which in this case is the initial solution, is 

selected as the seed. A set of perturbations, comprising of swap and insert moves, are 

performed on the seed to generate NS. In this example problem, an NPN sequence is 

considered and PTB2 is used to generate NS, i.e., strong TS. For a problem with 10 jobs, 

a total of 1755 solutions can be generated, 675 from swap moves and 1080 from insert 

moves. Table 17 shows a portion of the perturbations performed on the IS and the 

associated objective function values. Note that the size of the neighborhood solution set, 

for this problem, is fifteen times lower for PN sequence as compared to NPN sequence, 

provided that the same perturbation type is used for both sequences. In the table below, the 

solutions corresponding to perturbations 66-71 are infeasible because the OFV of these 

solutions are greater than one, i.e. a penalty has been incurred due to infeasibility. In this 

case, the solution with the minimum OFV is obtained from perturbation 1246, i.e. insert 

the job J31 into the 3rd position of the sequence for all machines. The configuration of jobs 

for this solution is shown below: 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  {

𝑀1: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13 
𝑀2: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

𝑀3: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

𝑀4: 𝐽25, 𝐽32, 𝐽31, 𝐽24, 𝐽23, 𝐽22, 𝐽21, 𝐽12, 𝐽11, 𝐽13

} 

This solution is selected as the seed for the next iteration and is inserted into the 

CL. Since the OFV of the new seed is lower than the parent (IS), it has the potential of 

being a local optimum. Hence, a star is assigned to this CL entry. The move corresponding 

to this solution is inserted into the tabu list. The tabu list size in this case is five. Therefore, 

this move remains tabu for the next five iterations. In addition, the OFV of the new seed is 

lower than the AL (0.408479 < 0.50769). Thus, the AL is updated to 0.408479.   
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Table 17. NS generation in the first iteration 

Perturbation # Move Type Move OFV 

1 

Swap 

M1, M2, M3, M4: J25 & J32 0.465827 

2 M1, M2, M3: J25 & J32 0.598243 

3 M1, M2, M4: J25 & J32 0.478842 

4 M1, M3, M4: J25 & J32 0.572315 

5 M2, M3, M4: J25 & J32 0.471368 

6 M1, M2: J25 & J32 0.61026 

7 M1, M3: J25 & J32 0.493677 

8 M1, M4: J25 & J32 0.584332 

9 M2, M3: J25 & J32 0.60354 

10 M2, M4: J25 & J32 0.483385 

11 M3, M4: J25 & J32 0.572754 

12 M1: J25 & J32 0.505694 

13 M2: J25 & J32 0.615557 

14 M3: J25 & J32 0.49711 

15 M4: J25 & J32 0.584771 

16 M1, M2, M3, M4: J25 & J24 0.512344 

17 M1, M2, M3: J25 & J24 0.626478 

18 M1, M2, M4: J25 & J24 0.627011 

19 M1, M3, M4: J25 & J24 0.751173 

20 M2, M3, M4: J25 & J24 0.627011 

…
. 

…
. 

…
. 

66 M1, M2: J25 & J31 2.25 

67 M1, M3: J25 & J31 3.5 

68 M1, M4: J25 & J31 4.75 

69 M2, M3: J25 & J31 4.75 

70 M2, M4: J25 & J31 3.5 

71 M3, M4: J25 & J31 2.25 

…
. 

…
. 

…
. 

672 M1: J11 & J13 0.507685 

673 M2: J11 & J13 0.507685 

674 M3: J11 & J13 0.507685 

675 M4: J11 & J13 0.507685 

676 

Insert 

M1, M2, M3, M4: J25 into the 3rd position 0.46667 

677 M1, M2, M3: J25 into the 3rd position 0.600461 

678 M1, M2, M4: J25 into the 3rd position 0.479286 

679 M1, M3, M4: J25 into the 3rd position 0.718062 

680 M2, M3, M4: J25 into the 3rd position 0.471368 

681 M1, M2: J25 into the 3rd position 0.612478 

682 M1, M3: J25 into the 3rd position 0.610229 
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683 M1, M4: J25 into the 3rd position 0.730079 

684 M2, M3: J25 into the 3rd position 0.728855 

685 M2, M4: J25 into the 3rd position 0.483385 

686 M3, M4: J25 into the 3rd position 0.572754 

687 M1: J25 into the 3rd position 0.621492 

688 M2: J25 into the 3rd position 0.740872 

689 M3: J25 into the 3rd position 0.613663 

690 M4: J25 into the 3rd position 0.584771 

…
. 

…
. 

…
. 

1246 M1, M2, M3, M4: J31 into the 3rd position 0.408479 

1247 M1, M2, M3: J31 into the 3rd position 0.432149 

1248 M1, M2, M4: J31 into the 3rd position 0.437664 

1249 M1, M3, M4: J31 into the 3rd position 0.543671 

1250 M2, M3, M4: J31 into the 3rd position 0.468492 

…
. 

…
. 

…
. 

1746 M1, M2: J13 into the 8th position 0.507685 

1747 M1, M3: J13 into the 8th position 0.507685 

1748 M1, M4: J13 into the 8th position 0.51159 

1749 M2, M3: J13 into the 8th position 0.507685 

1750 M2, M4: J13 into the 8th position 0.51159 

1751 M3, M4: J13 into the 8th position 0.51159 

1752 M1: J13 into the 8th position 0.507685 

1753 M2: J13 into the 8th position 0.507685 

1754 M3: J13 into the 8th position 0.507685 

1755 M4: J13 into the 8th position 0.51159 

In the next iteration, another set of NS is generated using the new seed and the best 

solution is selected. If the selected solution violates the tabu restriction, then this solution 

is discarded, and the next best solution is selected. In addition to the tabu restriction, the 

selected solution can also be discarded if the solution is already in the CL or the number of 

similar solutions (solution with the same OFV) exceeds the maximum limit. Table 18 

shows all the entries into the CL with their status and OFV. The solution selected at this 

iteration has an OFV of 0.365964, which is lower than both the parent seed and the AL. 

Hence, a star is assigned to this CL entry and the AL is updated. The solution selected at 

the third iteration is also assigned a star and the AL is updated to 0.340253. At the fourth 

iteration, the selected solution is not better than its parent. Hence, another star is assigned 
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to the parent seed, i.e. this solution is a local optimum and is thus inserted into the IL. The 

IWOI is increased by one at this iteration. The process continues until a stopping criteria 

is met. In this case, the algorithm stops after the IL size reaches 5 (including the IS). It can 

be observed from Table 18 that several solutions have the same OFV (solution 3 and 4, 

solution 5 and 6, solution 7 and 8 and others). The limit set on the maximum number of 

similar solutions (2, in this example) allowed in the CL prevents the algorithm from 

selecting more than two solutions with the same OFV. This prevents the algorithm from 

repeatedly selecting similar solutions at each iteration until the maximum iteration limit is 

met. 

Table 18. Entries into the CL 

Entry # 
OFV Entry # OFV 

0 (IS) 0.507685 15 0.342804 

1 0.408479* 16 0.342937 

2 0.365964* 17 0.342937 

3 0.340253** 18 0.343958 

4 0.340253 19 0.343958 

5 0.341517 20 0.342560* 

6 0.341517 21 0.323676* 

7 0.341651 22 0.321369** 

8 0.341651 23 0.321369 

9 0.341717 24 0.322655 

10 0.341717 25 0.322655 

11 0.343004 26 0.323055 

12 0.341540** 27 0.321768** 

13 0.341540 28 0.321768 

14 0.342804 
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5.2. Tabu Search/Path Relinking 

A hybridization of TS algorithm with another algorithm generally leads to an 

improved performance of the algorithm. Al-Anzi and Allahverdi (2006) proposed three 

heuristics, based on basic TS, simulated annealing and hybrid TS, for a two-stage assembly 

flow shop and showed that the hybrid TS algorithm outperforms the other two algorithms. 

Gagné et al., 2005 presented a hybrid tabu search/variable neighborhood search algorithm 

for a multi-objective scheduling problem and showed that the hybrid metaheuristic is both 

effective and efficient in finding good solution. A short-term TS might not yield good 

quality solutions because of its inability to utilize information on good quality solutions. 

Hence, TS has often been used with long-term memory function to increase the efficacy of 

the algorithm. TS with path relinking (PR) serves the same purpose, but adds a stochastic 

component to the search algorithm, in contrast to the deterministic approach used by long-

term memory function.  

PR was originally proposed by Glover (1986) as an intensification and 

diversification strategy of exploring the path connecting elite solutions obtained from TS. 

PR is intimately related to TS and derives additional advantages by utilizing the memory 

structure that can adapt to various combinatorial optimization problems. PR is generally 

embedded with a local search algorithm (TS, in this case), which is used to explore the 

search space created by generating a path between a given set of elite solutions. Zeng et al. 

(2013) investigated different ways to integrate PR techniques into a hypervolume-based 

multi-objective local search algorithm to solve a bi-criteria flowshop problem. Shahvari 

and Logendran (2016) proposed an algorithm based on tabu search/path relinking (TS/PR) 

to solve a bi-criteria batching and scheduling problem in a hybrid flowshop. Peng et al. 

(2015) demonstrated the efficacy of TS/PR algorithm, both in terms of solution quality and 

computational time, for a job shop scheduling problem. 

In this research, a path relinking heuristic is incorporated into the TS-based 

heuristic to enhance the efficacy of the algorithm. In the algorithm, TS and PR work in 

tandem with each other, where PR generates a trajectory or path between two elite solutions 

and TS explores the search space from the path solutions. PR mainly integrates two key 
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components to ensure search efficiency: 1) the construction approach used to generate path 

between solutions, and 2) the method used to choose the reference solution (SR). TS/PR 

starts with the initial population (IP) which consists of a set of high quality solutions. At 

the start of the algorithm, the IP forms the population set (P). At each iteration, two 

solutions are randomly selected from the set P as initial solution (SI) and guiding solution 

(SG). The solution that begins the path is called SI and the solution that the path leads to is 

called SG. All intermediate solutions generated during path formation is stored in 

InitialPathSet. A set of high quality solutions is selected from the initial path set to form 

PromisingPathSet. The solutions in PromisingPathSet is then evaluated to select SR, which 

is used to update the set P. The iteration continues until some stopping criteria is met.  

5.2.1. Initial Population 

The IP is generated using a method similar to the one proposed by Shahvari and 

Logendran (2017) in which the elite solutions obtained from the TS algorithm are used to 

populate the IP. First, the optimized solution from the TS is added into the IP and the rest 

of the solutions is added from the CL and the IL of the TS. The pseudocode for the IP 

generation of permutation TS/PR (ALG3) used in this research is shown in Table 19. Psize 

indicates the size of the IP. If the size of the IL (ILsize) is less than Psize, then all solutions 

in the IL, except the optimized solution which is already entered, are added to the IP and 

the rest of the solutions (Psize – ILsize) are randomly selected from the CL.  

Table 19. Pseudocode for IP generation of permutation TS/PR 

1. STS ← Permutation strong TS (ALG1) //Section 5.1.6  

2. IP ← STS 

3. if (Psize ) ≤ ILsize 

4.      IP ← Select (Psize – 1) random solutions from IL (except STS) 

5. else 

6.      IP ← Select all solutions from IL (except STS) 

7.     IP ← Select (Psize – ILsize) non-repeated random solutions from CL  

8. endif 
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The IP of non-permutation TS/PR (ALG4) is populated with both PN and NPN 

solutions. The reason for using both PN and NPN solutions is to diversify the path 

generation mechanism. Half of the solutions in the IP come from IL and CL of non-

permutation strong TS (ALG2) and the rest come from the final population set of 

permutation TS/PR (ALG3). For example, if the Psize is 10, then 5 solutions come from 

ALG2 and the rest come from ALG3. The method of adding NPN solutions to the IP from 

ALG2 is similar to the method in Table 18, i.e., first the optimized solution is added, and 

the rest comes from IL and then CL. To add the PN solutions, the output solution from 

ALG3 is added first, and the rest will be added from the final population set of ALG3. 

At each iteration of TS/PR, two solutions are randomly selected from the population 

set, which is called a PairSet. TS/PR is implemented on the selected pair in both directions 

(SI ⇋ SG). Two new solutions are thus obtained, one from each direction, which is used to 

replace the two worst solutions in the set P. Hence, P is updated at each iteration and the 

process continues until a maximum number of consecutive iterations without improvement 

(MIWI) is reached. 

5.2.2. Path Construction 

After a PairSet is randomly selected, it is checked against a TabuSet, which records 

all pairs of solutions previously selected in the search procedure. If the PairSet is in the 

TabuSet, then a new PairSet is selected. One of the solutions from the PairSet is selected 

as SI and the other one as SG. In order to generate a path from SI to SG, the distance between 

these solutions needs to be computed. Sevaux and Sörensen (2005) showed that there are 

several measures that can be used to calculate the distance between two sequences. Swap-

based operator and insertion-based operator appear prominently in neighborhood search of 

flowshop problems (Nowicki and Smutnicki, 1996).Taillard (1990) showed that the 

insertion-based operator is more effective in a neighborhood search. Hence, we propose 

longest common subsequence-based construction (LCS-based construction), in terms of 

insertion operator, because it enables knowing the minimum number of moves to get to the 

guiding solution (Zeng et al., 2013). 
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In the LCS-based construction method, the jobs belonging to LCS are identified. 

The length of the LCS (number of jobs belonging to LCS) gives a measure of similarity 

shared between two sequences and its interval varies between [1, N], where N is the number 

of total jobs. The distance between two sequences (d) indicates the minimum number of 

moves required to move from SI to SG and is given by N minus the length of LCS. The 

interval of d varies between [0, N - 1]. The LCS can be calculated by a dynamic 

programming algorithm in O(N2), which is similar to a well-known Needleman-Wunsch 

algorithm (Schiavinotto and Stützle, 2007). The jobs which do not belong to LCS, are 

called candidate jobs. The LCS is computed using the following iterative procedure: 

• Step 1: Obtain the smallest value of p + q such that 𝐽𝑝
𝑆𝐼

= 𝐽𝑞
𝑆𝐺

. A tie is broken 

in favor of SI. 

• Step 2: Determine the minimum forward distance between  𝐽𝑝
𝑆𝐼

= 𝐽𝑝+1
𝑆𝐼

 in SG 

and 𝐽𝑞
𝑆𝐺

= 𝐽𝑞+1
𝑆𝐺

 in SI.  

• Step 3: Select the jobs corresponding to the initial and final positions on the 

minimum forward distance, in both SI and SG, as jobs belonging to the LCS. 

• Step 4: Update p and q by the last selected positions of LCS in SI and SG. 

• Step 5: Repeat steps 2-4 until p = N or q = N. 

Consider the initial and guiding solution as shown in Figure 11. In this example, 

the minimum value of p + q is 3 (p = 2 and q = 1), since  𝐽2
𝑆𝐼

= 𝐽1
𝑆𝐺

= 13. The forward 

distance between 𝐽2
𝑆𝐼

= 13 and 𝐽3
𝑆𝐼

= 21 in SG is 5 (jobs 32, 11, 12, 31 and 41) and the 

forward distance between 𝐽1
𝑆𝐺

= 13 and 𝐽2
𝑆𝐺

= 32 in SI is 1 (job 21 only). Hence, the 

forward minimum distance is 1 and therefore, jobs 13 and 32 belongs to the LCS, both in 

 
Note: Jobs are represented by index, i.e., 12 indicates the 2nd job belonging to the 1st product. Jobs in 

LCS are highlighted in green 
Figure 11. LCS construction 
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SI and SG. The last job selected as LCS is 32, for both SI and SG. The position of 32 in SI 

and SG is 4 and 2, respectively. Therefore, the value of p and q are updated to 4 and 2, 

respectively. In the next iteration, the forward distance between 𝐽4
𝑆𝐼

= 32 and 𝐽5
𝑆𝐼

= 11 in 

SG is 0 and the forward distance between 𝐽2
𝑆𝐺

= 32 and 𝐽3
𝑆𝐺

= 11 in SI is also 0. Since ties 

are broken in favor of the forward distance in SI, 𝐽3
𝑆𝐺

= 11 is added to the LCS. Note that 

in this instance, breaking the tie in favor of the forward distance in SG would result in the 

same job 𝐽5
𝑆𝐼

= 11 being added to the LCS. However, this might not always be the case. 

The values of p and q are now updated to 5 and 3, respectively. The iteration is repeated 

until either p or q equals N. For this example, the jobs belonging to the LCS are 13, 32, 11, 

41 and 22, as shown in Figure 11. The length of the LCS is 5 and the distance d is equal to 

3 (8 - 5). The rest of the jobs, i.e., 12, 21, and 32, belong to candidate jobs. The candidate 

jobs will be moved from their initial position in SI, one move at a time, in order to reach 

SG. Thus, 3 moves must be applied to move from SI to SG. PR generates a new solution by 

applying one move at each step and thus, decreases the distance between SI and SG by 1. 

Hence, a total of d – 1 intermediate path solutions are generated during path relinking. Path 

solutions from SI to SG can be generated using the following steps: 

• Step 1: Determine the jobs belonging to LCS and the candidate jobs using the 

method described above.  

• Step 2: Determine all possible insertion points of all candidate jobs. In the 

above example, the first candidate job 12 is located between LCS jobs 11 and 

41 in SG. Hence, insertion point of job 12 must be between LCS jobs 11 and 41 

in SI, i.e., job 12 can be removed from its current position in SI and inserted 

between 11 and 41. The new sequence would then be 13-21-32-11-12-41-31-

22. Note that a candidate job might have more than one insertion point. For 

example, the second candidate job 21 is located between LCS jobs 41 and 22 in 

SG. Hence, insertion point of job 21 must also be between LCS jobs 41 and 22 

in SI. Since job 41 and 22 are not adjacent in SI, the candidate job 21 can be 

inserted between job 41 and 31, or job 31 and 22. This is shown in Table 20. 
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• Step 3: From each insertion point identified in step 2, a new solution can be 

generated. Evaluate each solution that is generated, in terms of their OFV, from 

all possible candidate moves. 

• Step 4: Randomly select a solution belonging to the top 20% of the generated 

solutions as the current solution (SC), i.e., if the total number of possible 

candidate moves is 20, then the current solution would be chosen randomly 

from the four best solutions. 

• Step 5: Enter SC into the InitialPathSet, SI ← SC and d ← d – 1. 

• Step 6. Go to step 1 until d = 0. 

 

 

At each step of path generation, there are several possible candidate moves that can 

be selected. However, only one is chosen at each step. Therefore, based on the criteria used 

to select a move, we can generate the path between SI and SG in several ways (Zeng et al., 

2013). Shahvari and Logendran (2017) have proposed to evaluate all possible candidate 

moves, in terms of the objective function value, at each step and then randomly select a 

solution from a set of best solutions (belonging to the global or local optima). In this 

research, we use the same methodology. At each step, various solutions are generated by 

applying all possible candidate moves. Each solution generated is evaluated, in terms of 

their OFV, and 20% of the best solutions are selected. Out of these solutions, a new 

intermediate solution is randomly selected and entered into the InitialPathSet. 

Table 19 shows the possible insertion points of all candidate jobs along with the 

OFV of the solutions resulting from the move (refer to the example shown in Figure 2). 

Starting from SI, there are only four possible moves at the first step of path generation. 

Hence, four possible intermediate solutions can be generated. Since, there are only four 

solutions, there is only one solution belonging to the top 20% (roundup (20% of 4) = 1), 

Table 20. Possible candidate moves starting from SI 

  

Candidate jobs in the initial solution 

12 21 31 

Insertion point (11,41) (41,31) (31,22) (11,41) 

OFV (move) 0.4675 0.4236 0.4528 0.4827 
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i.e., the best solution. Hence, the solution with an OFV of 0.4236 is chosen as SC and 

inserted into the InitialPathSet.  SI is replaced by SC and the distance is decreased by 1. The 

process is repeated until d = 0. 

The example presented above explains the path construction technique for a single 

machine sequence, i.e., a permutation sequence. The method for a non-permutation 

sequence also follows a similar technique. In this case, the LCS of each machine sequence 

is computed separately. For example, LCS between SI and SG of M1 is computed separately 

from SI and SG of M2. Each machine sequence has a separate set of candidate jobs and a 

distance associated with its sequence, as shown in Figure 12. The sum of LCS distance of 

all machines equals the total distance (d). In this example, the total distance is 12, which 

means that a minimum of 12 moves must be applied to SI in order to reach SG. Thus 11 

intermediate solutions would be generated during path construction. Each move 

corresponds to the movement of one candidate job, from its current position (p) to the next 

position (p’) on a single machine sequence. For example, insertion of candidate job 12 

between 11 and 41 in SI of M1 indicates one move. 

5.2.3. Path Solution Selection  

Each of the two consecutive solutions in the InitialPathSet differ only by one insert 

move. Hence, it is not productive to apply improvement procedure to all solutions in the 

InitialPathSet, because many of these solutions would lead to the same local optimum. 

Several methods have been proposed to select solutions from InitialPathSet that are entered 

into PromisingPathSet. Peng et al. (2015) proposed a strategy based on adaptive distance-

 
Figure 12. The LCS between two solutions in non-permutation sequence 
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control mechanism to obtain promising solutions. Zeng et al. (2013) selected a set of non-

dominating solutions from the InitialPathSet, which are entered into PromisingPathSet.  In 

Shahvari and Logendran (2016), a set of global and local optima are selected from the 

InitialPathSet, which is called PromisingPathSet. This research adopts the methodology 

proposed by Shahvari and Logendran (2016). Figure 13 shows the set of global and local 

optima solutions in the InitialPathSet. In this case, solutions A, B, C, D, E, F and G would 

be entered into the PromisingPathSet.  

 

 

 

 

 

 

 

 

 

 

 

 

5.2.4. Reference Solution Determination 

A reference solution (SR) is determined from the solutions in the PromisingPathSet, 

which is used to update the population set P. First, a slight TS is applied to optimize each 

solution in the PromisingPathSet to a local optimum. The solution with the best OFV is 

selected and further optimized using a strong TS. This optimized solution is selected as SR
. 

The reason that a slight TS is used initially is that it is not too time consuming but can 

optimize a solution to some extent that a solution more promising than others can be 

selected. The reference solution needs to be optimized as much as possible. Hence, a strong 

TS is used to optimize the selected solution.  

 
Figure 13. Global and Local Optima in InitialPathSet 
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At each iteration of the algorithm, two reference solutions are obtained from the 

PairSet by applying TS/PR in both directions (SI ⇋ SG). These two reference solutions 

replace the two worst solutions in the population set P. Hence, at each iteration, the set P 

gets updated. The iteration continues until the MIWI is reached. The pseudo-code for the 

TS/PR procedure is shown in Table 21 and the flowchart is shown in Figure 14. 

Table 21. Pseudo-code for TS/PR 

1:  Input: Problem Data //Section 7  

2:  Output: The best schedule Sbest found so far  

3:  STS ← Short-Term Tabu Search //Section 5.1  

4:  P = {SI, …, Sp - 1, STS} ← Population_Initialization (STS) //Section 5.2.1  

5:  Sbest = arg min {f (Si) | i = 1, …, p}  

6:  repeat  

7:      Randomly select one solution pair {𝑆𝑖, 𝑆𝑗} from P,  

    where 𝑆𝑖 ∈ P, 𝑆𝑗 ∈ P, 𝑆𝑖 ≠ 𝑆𝑗 and {𝑆𝑖, 𝑆𝑗} ∉ TabuSet  

8:      𝑆𝑝+1←Path_Relinking(𝑆𝑖, 𝑆𝑗),  

    𝑆𝑝+2←Path Relinking(𝑆𝑗, 𝑆𝑖) //Section 5.2.2 

9:      if 𝑆𝑝+1 (or 𝑆𝑝+2) is better than Sbest then  

10:            𝑆𝑏𝑒𝑠𝑡←𝑆𝑝+1 (or 𝑆𝑝+2)   

11:      end if  

12:      Add 𝑆𝑝+1 and 𝑆𝑝+2 to population set P  

13:      Identify the two worst solutions, 𝑆k and 𝑆l in P 

14:     Remove 𝑆k and 𝑆l from P 

15:      TabuSet ← (𝑆𝑖, 𝑆𝑗)  

16:  until a stopping criterion is satisfied  

17:  return 𝑆𝑏𝑒𝑠𝑡  

5.3. Calibration of the metaheuristic algorithms 

Several parameters affect the performance of the algorithms. These parameters 

were tuned separately by performing an experimental analysis for each problem structure 

(small-small, small-large, large-small and large-large). TS algorithm has four parameters 

that need to be tuned, i.e., TLS, MNSS, MIWOI and MIL. TS/PR algorithm has two 

parameters that need tuning. i.e., P_size and MIWI. Different levels of these parameters 

were used to perform the experimental design. The levels are as follows: 

TS algorithm 

TLS – {5, 10, 15, 20, 25, 30}  MIWOI – {5, 10, 15, 20, 25, 30} 

MNSS – {2, 4, 6, 8, 10}  MIL = {5, 10, 15, 20, 25, 30} 
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TS/PR algorithms 

P_size – {5, 10, 15, 20}  MIWI – {3, 5, 8, 10} 

These levels were determined based on preliminary runs made by varying each 

parameter separately while keeping others fixed at a high value. Performing a full factorial 

experiment on all four parameters of the TS algorithm would require a lot of experimental 

runs and thus, would be time consuming. Hence, the analysis was performed in a two 2-

 
Figure 14. Flowchart for TS/PR 
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factor ANOVA instead of one 4-factor ANOVA. Since, TLS and MNSS are type of 

memory structures that affect the direction of the search procedure significantly, these are 

the most important parameters. Therefore, the first 2-factor ANOVA include TLS and 

MNSS as the factors of interest while the other two are kept at a high value of 30. The best 

factor levels are chosen from this analysis and then the second 2-factor ANOVA is 

performed, which includes MIWOI and MIL as the factors of interest. In the case of TS/PR, 

a 2-factor ANOVA is performed with P_size and MIWI as the factors of interest. The 

parameter values of TS to be used in TS/PR is determined from the previous ANOVA 

analysis. It is worth noting that the smaller level of a factor is preferred if no significant 

difference is observed between two factor levels. For example, if there is no significant 

difference between the levels of MIWOI set at 15 and 20, then 15 is chosen as the best 

level because it requires less computational time. The factor levels chosen for different 

algorithms are shown in Table A.1 of Appendix A. The result of ANOVA is shown in 

Table A.2 – A. 41 in Appendix A. 

 

 

 

 

 

 

 

  



68 

 

6. DATA GENERATION 

The data generation method used in this research is based on the previous study by 

Logendran and Subur (2004) and Shahvari and Logendran (2017). The problem instances 

are classified into four structures, (small, small), (small, large), (large, small) and (large, 

large). The first term in the parenthesis denotes the number of products and the second 

term denotes the number of jobs belonging to each product. The “small” and “large” refer 

to a number generated from a uniform distribution unif [2,5] and unif [6,10], respectively. 

These ranges are determined by reviewing the previous literature by Schaller et al. (2000), 

Lu and Logendran (2011), and Shahvari and Logendran (2017), and considering the 

computational time. In these problem structures, (small, small) and (large, large) are small- 

and large-size problems, respectively, whereas the other two are medium-size problems. 

The problem has two components, with the first component requiring two machines before 

assembly and the second component requiring only one machine before it is ready for 

assembly. In addition, storages 1 and 2 have a minimum storage time of 120 min. in each, 

whereas storage 3 does not have any storage time restrictions. The shop layout is shown in 

Figure 3.  

The run time of a component on any machine is given by the size of the component 

divided by the machine’s throughput. Usually, in a plant with higher throughput, the 

throughput of the associated machines would also be higher, i.e., the run times would be 

lower. Hence, in this research, the individual machine throughput is first generated based 

on the plant’s throughput. Then, the run times are determined by dividing the size of the 

component by the machine’s capacity. Consider a product with a batch size of 100 kg that 

requires 20 kg of component 1 and 80 kg of component 2. The machine throughput of 

machines 1 (processes component 1) and 3 (processes component 2) are 40 kg/hr and 80 

kg/hr, respectively. The run time of this product on machine 1 and machine 3 is thus 30 

min. and 60 min., respectively. The capacity of a plant is classified into three levels, low, 

medium and high. The plant capacity at each level is determined as follows: 

• Low plant throughput – Unif [3,5] kg/hr 

• Medium plant throughput – Unif (5,8] kg/hr 
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• High plant throughput – Unif [8,10] kg/hr 

After the plant capacity is known, the machine capacity is generated as follows: 

• Machine 1 throughput – Unif [24,44] % × plant capacity 

• Machine 2 throughput – Unif [18,38] % × plant capacity 

• Machine 3 throughput – Unif [87,107] % × plant capacity 

• Machine 3 throughput – Unif [71,91] % × plant capacity 

These ranges are determined based on the data of five different plants. The average 

throughput of each machine with respect to the plant throughput was calculated. This 

average was varied by 10 percentage points on either side to obtain the range for the 

uniform distribution. The batch size of each product is obtained from a uniform distribution 

unif [400, 600] × 10 kg. Similarly, percentage size of component 1 in each product is 

obtained from a uniform distribution unif [10,30] % × product size. For example, if the  

batch size of a product is 5100 kg and the percentage size of component 1 is 20 %, then 

component 1 contains 1020 kg and component 2 contains the rest, i.e., 4080 kg. With the 

machine capacity and the component size known, the run times can be calculated easily as 

discussed above. These run times are rounded to the nearest integer in minutes. 

In the problem considered in this research, there is some setup time incurred even 

when changing between jobs belonging to the same product. This setup time is typically 

lower than the setup time between jobs belong to different products. Thus, the setup times 

between jobs belonging to same and different products are generated from a uniform 

distribution unif [3,5] min. and unif [5,8] min., respectively. The equipment startup time is 

generated from a uniform distribution unif [10,60] min. As noted before, there is a weight 

assigned to each job, and it is generated from a uniform distribution unif [1,3], where 1 

indicates the least important job. Three combinations of producer’s and customers’ weights 

are used to represent different scenarios. The value of α = 0.6 and β = 0.4 indicates that the 

producer’s objective should be prioritized. Similarly, the value of α = 0.4 and β = 0.6 

indicates that the customers’ objective should be prioritized. An equal weights of 0.5 for α 

and β indicate equal importance to both objectives.  
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The release time of a job and the availability time of a machine is generated from a 

Poisson distribution with a mean arrival rate of 3 per hour. The random number must take 

integer values. Shahvari and Logendran (2017) have used Poisson distribution to simulate 

the model for job arrival and machine availability. In a flow shop problem, the availability 

time of machines belonging to second or later stages must be delayed considering the 

machine availability time of earlier stages. For example, a machine availability time of 20 

min. for machine 1 indicates that this machine is still processing a job from previous 

planning horizon. In a flow shop, this job must also be processed by machine 2 and other 

successor machines. In this problem, machines 1 and 3 are the first machines to process 

components 1 and 2, respectively. The availability time of these machine can be generated 

from an exponential distribution with λ = 1/20. For machines 2 and 4, the availability time 

is calculated as follows: 

𝑎2 = 𝑀𝑎𝑥(𝑎1 + 𝑡1, 𝐸𝑥𝑝[20] + 𝑆2̅) + 𝑅2
̅̅ ̅                                                                             (7.1)             

𝑎4 = 𝑀𝑎𝑥(𝑎3 + 𝑡3, 𝐸𝑥𝑝[20] + 𝑆4̅, 𝑎2) + 𝑅4
̅̅ ̅                                                                       (7.2) 

𝑆�̅� indicates the average setup time on machine i and 𝑅�̅� indicates the average run 

time on machine i. These are calculated as follows: 

𝑆�̅� = (∑ ∑ 𝑆𝑖𝑗𝑗′
𝑝
𝑗′=1 )𝑝

𝑗=1 /𝑝2                                                                                                      (7.3)  

𝑅�̅� = ∑ 𝑅𝑖𝑗/𝑝𝑝
𝑗=1                                                                                                                          (7.4) 

Previous works by Kim et al. (2002) and Pandya and Logendran (2011) have shown 

that the generation of meaningful due dates play a vital role in evaluating the effectiveness 

of the proposed heuristic algorithm. Two factors, namely the tardiness factor (τ) and the 

range factor (R) are used to generate different due dates. The tardiness factor τ is defined 

as τ = 1 −  �̅�/𝐶𝑚𝑎𝑥 where �̅� is the average due date and 𝐶𝑚𝑎𝑥 is the estimated maximum 

completion time of all jobs. The due date range factor R indicates the due date variability 

and is defined as 𝑅 =  (𝑑𝑚𝑎𝑥 −  𝑑𝑚𝑖𝑛)/𝐶𝑚𝑎𝑥, where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 indicate the maximum 

and minimum due date, respectively. Different combinations of τ and R can be used to 

generate due dates representing different characteristics as shown in Table 22.  
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In this research, the range factor is set at 0.5, which provides a medium range of 

due dates. The due date is generated from a composite uniform distribution. With a 

probability τ, the due date is from a distribution unif [�̅� − 𝑅�̅�, �̅�] and with a probability (1 

- τ), it is from a distribution unif [𝑑,̅ �̅� + (𝐶𝑚𝑎𝑥 − �̅�)𝑅]. The estimated maximum 

completion time can be obtained by a similar iterative procedure shown before to calculate 

the completion time of a job (Section 5.1.3 and Section 5.1.7). However, in this case, an 

adjusted average setup time is used instead of using actual setup time. The adjusted average 

setup time is given by 𝛿 × 𝑆�̅�, where 𝛿 is the average setup time adjuster. In reality, the best 

schedules tend to use smaller setup time. Hence, using just the average setup time (𝑆�̅�) 

would provide an inaccurate representation of the makespan. Thus, 𝛿 is introduced to 

represent makespan for the best schedules. To obtain a value of 𝛿, the coefficient of 

variation (CV) is calculated for the setup times on a machine, CV = 𝑠/�̅�, where s is the 

sample standard deviation and �̅� is the mean. A linear relationship between 𝛿 and CV is 

assumed, as shown in Figure 15: 𝛿 = 0.9 when CV = 0.01 and 𝛿 = 0.1 when CV = 1. 

Table 22. Due date classification 

Τ R Degree of Tightness Width of Range 

0.2 0.2 Loose Narrow 

0.2 0.5 Loose Medium 

0.2 0.8 Loose Wide 

0.5 0.2 0.5 Narrow 

0.5 0.5 0.5 Medium 

0.5 0.8 0.5 Wide 

0.8 0.2 0.8 Narrow 

0.8 0.5 0.8 Medium 

0.8 0.8 0.8 Wide 
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Figure 15. Relationship between δ and CV 
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7. THE QUALITY OF SOLUTIONS OBTAINED FROM THE 

PROPOSED HEURISTIC 
 

The major advantage of a heuristic algorithm is its ability to find optimal or near 

optimal solution in a very short time as compared to using exact methods to find an optimal 

solution. However, the efficacy of the proposed algorithm must be tested before it is 

applied to solve real problems. This is done by evaluating the quality of the solution 

obtained by the algorithm and the computational time it takes.  Typically, an optimal 

solution obtained using an exact method is compared with the solution obtained from the 

algorithm. However, for NP-hard problems, an exact method such as brand-and-bound 

might not identify an optimal solution in a reasonable time. If an optimal solution is 

unknown, then the solution obtained from the algorithm can be compared with a suitable 

lower bound for the problem. The mathematical model discussed in Chapter 4 is used to 

obtain an optimal solution or lower bound for small-size problems. 

Two mathematical models are used, MILP1 for PN sequence and MILP2 for non-

NPN sequence. There are two sets of binary variables and one set of integer variables used 

in the models. For MILP1, the binary variables are Wjkl and Yjlj’(l+1), and the integer variable 

is Hsil. The total number of Wjkl, Yjlj’(l+1) and Hsil are N2, m2 (N - 1) and (∑ 𝑢𝑔
𝑚
𝑔=1 + 1) × N. 

Therefore, for the example problem discussed in Chapter 5, i.e., a 4-machine problem with 

10 jobs belonging to 3 groups, will have 102 Wjkl, 3
2 × (10 - 1) Yjlj’(l+1) and 4 × 10 Hsil. The 

total number of binary and integer variables are 127 and 40, respectively. As discussed in 

Chapter 4, the number of binary variables for the same problem considering NPN sequence 

(i.e., MILP2) increases by (∑ 𝑢𝑔
𝑚
𝑔=1 + 1) times, i.e. times the total number of machines. 

Thus, the number of binary and integer variables for MILP2 are 508 and 40, respectively.  

An optimal solution for a problem was identified by solving the corresponding 

mathematical model using branch-and-bound technique incorporated in the IBM CPLEX 

12.7 software. The software was installed and run on an Intel Core i7-2600, 3.4GHz 

processor with 8 GB RAM. The amount of time required by CPLEX to identify an optimal 

solution is large, partly due to large number of binary variables in the model. The presence 
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of big-M constraints in the model results in weak LP relaxation, further increasing 

complexity of the model. In addition, the problems have multiple solutions with the same 

OFV, which results in model symmetry. The combination of these factors presents a major 

obstacle in solving the MILP model to optimality using CPLEX.  Based on the test, CPLEX 

is not able to identify an optimal solution even for small-size problems within an allotted 

time of 8 hours (28800 seconds). CPLEX offers a lower bound (LB) in case it doesn’t 

identify an optimal solution. However, the lower bounds offered is trivial because of weak 

LP relaxation and model symmetry.     

Sixteen small-size problem instances were generated and solved using CPLEX for 

both permutation and non-permutation sequences. The data generated for these problem 

instances used the same procedure as described in Chapter 6. Table 22 shows the results of 

CPLEX runs. From the table, it can clearly be seen that the model for NPN sequence is 

more complex than the model for PN sequence. The CPLEX computation time (CT) for 

MILP2 is significantly higher than MILP1 for each problem instance. In addition, CPLEX 

was able to solve MILP2 to optimality in only 9 instances out of 16 problem instances, 

within an allocated time of 28800 seconds. However, in the case of MILP1, optimal 

solution was obtained for 13 problems.  For problems 1-9 (where optimal solution was 

found for both PN and NPN sequences), an average improvement of 2.68% was obtained 

by adopting the NPN sequence. The percentage improvement is calculated using the 

formula, ((UBPN – UBNPN)/ UBPN) * 100, where UB stands for upper bound. This seems to 

suggest that it might be beneficial to drop the PN sequence restriction. However, in the 

case of 4 problems, no improvement was observed by adopting the NPN sequence in spite 

of the longer computational time required by CPLEX to obtain the optimal solution. 

Consider problem 5 as an example. The computation time taken to find an optimal solution 

for MILP1 is 1.538 seconds, whereas it took 899.99 seconds to arrive at the same solution 

for MILP2.  The result obtained from a paired t-test (significance level of 0.05) on the OFV 

of both sequences showed that the improvement observed on the OFV by allowing for NPN 

sequence is not statistically significant (p value: 0.12). This result pertains to only small 

problems (total jobs < 12) and cannot be extended to larger problems. For larger problems, 

statistical analysis is performed in Chapter 8 using the solution obtained from using the 
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meta-heuristics. From Table 23, it can be seen that the gap between the upper bound and 

the lower bound is very large, i.e. the lower bound is not meaningful. CPLEX includes a 

symmetry detection parameter to automatically detect certain type of symmetry in the 

model and allows the user to choose the degree of symmetry breaking reduction to be 

executed during the preprocessing phase. The default setting allows CPLEX to choose the 

degree of symmetry breaking to apply. A trial run of the problem was performed with the 

default value as well as the most aggressive setting for the symmetry breaking. Since the 

most aggressive setting did not yield the desired performance improvements, default 

setting was used and reported in the table below. The percentage gap is calculated using 

the formula, ((UB – LB) / UB) * 100.   

Table 23. CPLEX runs of MILP1 and MILP2 
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1 2 7 0.407042 0.292 0.407042 0.407042 8.15 0.407042 0.00% 0.0%  

2 2 8 0.434941 1.47 0.434941 0.434941 8.60 0.434941 0.00% 0.0%  

3 2 8 0.315878 2.401 0.315878 0.294545 32.02 0.294545 6.75% 0.0%  

4 3 9 0.235904 1.329 0.235904 0.202296 101.41 0.202296 14.25% 0.0%  

5 3 9 0.517717 1.538 0.517717 0.517717 899.99 0.517717 0.00% 0.0%  

6 4 10 0.199779 3.786 0.199779 0.199779 422.23 0.199779 0.00% 0.0%  

7 2 10 0.235967 4.87 0.235967 0.231198 69.27 0.231198 2.02% 0.0%  

8 3 11 0.265741 10.69 0.265741 0.262808 11111.63 0.262808 1.10% 0.0%  

9 3 11 0.206612 18.7 0.206612 0.206597 668.91 0.206597 0.01% 0.0%  

10 5 12 0.139089 51.54 0.139089 0.129819 28800 0.06204 - 0.0% 52.2% 

11 4 12 0.369047 55.81 0.369047 0.367567 28800 0.221364 - 0.0% 39.8% 

12 3 12 0.212582 44.8 0.212582 0.212582 28800 0.145533 - 0.0% 31.5% 

13 4 15 0.215353 3158.21 0.215353 0.215353 28800 0.057301 - 0.0% 73.4% 

14 4 16 0.287526 28800 0.231569 0.398584 28800 0.047468 - 19.5% 88.1% 

15 5 18 0.214537 28800 0.050518 0.252673 28800 -0.01374 - 76.5% 105.4% 

16 5 20 0.244529 28800 0.040691 0.331723 28800 -0.01486 - 83.4% 104.5% 

   Average 4063.70   12408.15  2.68%   

Note: Computation time (CT) is measured in seconds. 



76 

 

The solution obtained using meta-heuristic algorithms for the same problem is 

shown in Table 24. The computational time of these algorithms is very short as compared 

to CPLEX, which shows the time-wise advantage of using meta-heuristic algorithms. The 

description of the algorithms used is as follows: 

• ALG1: Short-term TS using PTB2 for PN sequence 

• ALG2: Short-term TS using PTB2 for NPN sequence 

• ALG3: TS/PR for PN sequence 

• ALG4: TS/PR for NPN sequence 

Table 24. Solutions from metaheuristic algorithms 

Problem 

#  

ALG1 ALG2 ALG3 ALG4 

UBALG1 CTALG1 UBALG2 CTALG2 UBALG3 CTALG3 UBALG4 CTALG4 

1 0.407042 0.037 0.407042 0.203 0.407042 0.736 0.407042 8.379 

2 0.434941 0.028 0.434941 0.384 0.434941 1.219 0.434941 15.715 

3 0.315878 0.027 0.294545 0.319 0.315878 1.211 0.294545 13.028 

4 0.235904 0.057 0.241453 0.387 0.235904 1.257 0.202296 20.948 

5 0.517717 0.04 0.517717 0.472 0.517717 1.685 0.517717 19.063 

6 0.199779 0.078 0.242513 0.617 0.199779 2.056 0.199779 24.531 

7 0.235967 0.061 0.231198 0.596 0.235967 2.158 0.231198 25.016 

8 0.320777 0.108 0.337624 0.724 0.265741 3.369 0.262808 39.123 

9 0.209133 0.081 0.209133 0.963 0.209133 2.869 0.209133 35.201 

10 0.141958 0.217 0.164762 2.081 0.139089 4.674 0.116362 55.509 

11 0.38593 0.083 0.38593 0.911 0.38593 3.138 0.38593 34.586 

12 0.212582 0.091 0.212582 1.016 0.212582 3.258 0.212582 35.999 

13 0.273962 0.216 0.288937 4.554 0.217137 8.991 0.215353 151.27 

14 0.307629 0.254 0.307629 3.115 0.287526 8.164 0.287526 90.58 

15 0.251587 0.426 0.244759 4.392 0.211265 35.121 0.194653 332.458 

16 0.236762 0.654 0.268932 6.615 0.220767 24.03 0.216128 328.309 

 Average 0.12  1.38  5.33  60.09 

The output from each algorithm is compared to the upper and lower bounds 

obtained from CPLEX. The PN algorithms (ALG1 and ALG3) are compared to the MILP1 

bounds and the NPN algorithms (ALG2 and ALG4) are compared to the MILP2 bounds. 

For MILP1, an optimal solution was obtained from CPLEX for 13 problems and the 

percentage deviation of the algorithms from the optimal solution is shown in Table 25. The 

percentage deviation is calculated using the formula, ((UBALG – UBPN)/ UBPN) * 100. The 
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heuristics show a good overall performance with an average percentage deviation of 3.55 

% and 0.49% for ALG1 and ALG3, respectively. However, for some problems (problems 

1, 8 and 13), the solution obtained from ALG1 has a large deviation from the optimal 

solution. In contrast, ALG3 performs better for all problem instances with the maximum 

deviation of 4.37% for problem 11. Hence, TS/PR algorithm shows superior performance 

even for small problem instances. Note that this result is based on few small problems, 

which cannot be relied upon to make an objective conclusion. A detailed statistical analysis 

is performed in Chapter 8 to uncover the statistical significance of the algorithms.  

Table 25. Average deviation for PN algorithms from CPLEX optimal solution 

Problem 

#  

Average Deviation % 

UBALG1 vs UBPN UBALG3 vs UBPN 

1 0.00% 0.00% 

2 0.00% 0.00% 

3 0.00% 0.00% 

4 0.00% 0.00% 

5 0.00% 0.00% 

6 0.00% 0.00% 

7 0.00% 0.00% 

8 17.16% 0.00% 

9 1.21% 1.21% 

10 2.02% 0.00% 

11 4.37% 4.37% 

12 0.00% 0.00% 

13 21.39% 0.82% 

Average 3.55% 0.49% 

Table 26. Average deviation for PN algorithms from CPLEX bounds 

Problem #  

Average Deviation % 

UBALG1 vs UBPN UBALG1 vs LBPN UBALG3 vs UBPN UBALG3 vs LBPN 

14 6.53% 24.72% 0.00% 19.46% 

15 14.73% 79.92% -1.55% 76.09% 

16 -3.28% 82.81% -10.76% 81.57% 

Average 5.99% 62.49% -4.10% 59.04% 

For the remaining three problems (problem 14, 15 and 16), where an optimal 

solution was not identified, the percentage deviations are measured with both upper and 

lower bounds of CPLEX as shown in Table 26. The percentage deviation from upper and 
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lower bounds are obtained from the formula, ((UBALG – UBPN)/ UBPN) * 100 and ((UBALG 

– LBPN)/ UBPN) * 100, respectively. It should be noted that the lower bounds are infeasible 

solutions, which might not be close to the true optimal solution. Since, the lower bounds 

obtained from CPLEX are weak, large percentage deviations are observed when comparing 

the lower bounds to the solutions obtained from the algorithms. For problems 14-16, the 

average deviations of ALG1 and ALG3 with CPLEX upper bounds are 5.99% and - 4.10%, 

respectively. The negative sign indicates that the solution from the algorithm is better that 

the best feasible solution obtained by CPLEX within the allotted time, i.e., ALG3 was able 

to obtain a better quality solution in less computational time as compared to CPLEX. This 

highlights the advantages of using meta-heuristic algorithms as the problem complexity 

increases.  

Table 27. Average deviation for NPN algorithms from CPLEX optimal solution 

Problem #  

Average Deviation % 

UBALG2 vs UBNPN UBALG4 vs UBNPN 

1 0.00% 0.00% 

2 0.00% 0.00% 

3 0.00% 0.00% 

4 16.22% 0.00% 

5 0.00% 0.00% 

6 17.62% 0.00% 

7 0.00% 0.00% 

8 22.16% 0.00% 

9 1.21% 1.21% 

Average 6.36% 0.13% 

In the case of NPN model (MILP2), an optimal solution was obtained by CPLEX 

for 9 problems (problems 1-9). The average deviation of NPN algorithms, ALG2 and 

ALG4, from the optimal solution is shown in Table 27. ALG4 seems to perform far better 

with an average deviation of 0.13% as compared to that of ALG2 (6.36%).  For problems 

10-16, the deviation of the algorithms from CPLEX bounds is shown in Table 28. Similar 

to the PN algorithms, the deviation of the algorithm with the lower bound is high. The 

deviation of both the algorithms, ALG2 and ALG3, from CPLEX upper bound is negative 

(-0.67 for ALG2 and -18.39% for ALG4). This indicates that, overall, the algorithms 

obtained better quality solution than CPLEX in less computational time. It can be observed 
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from Table 28 that, as the problem size increases (# of jobs ≥ 15), the algorithms begin to 

outperform the branch-and-bound technique utilized by CPLEX.  

Table 28. Average deviation for NPN algorithms from CPLEX bounds 

Problem #  

Average Deviation % 

UBALG2 vs UBNPN UBALG2 vs LBNPN UBALG4 vs UBNPN UBALG4 vs LBNPN 

10 21.21% 62.35% -11.56% 46.68% 

11 4.76% 42.64% 4.76% 42.64% 

12 0.00% 31.54% 0.00% 31.54% 

13 25.47% 80.17% 0.00% 73.39% 

14 -29.57% 84.57% -38.63% 83.49% 

15 -3.23% 105.61% -29.81% 107.06% 

16 -23.35% 105.53% -53.48% 106.88% 

Average -0.67% 73.20% -18.39% 70.24% 
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8. RESULTS 

Chapter 7 showed that the proposed search algorithms are efficient in solving small 

problem instances as compared to a branch-and-bound technique. While the branch-and-

bound technique takes hours to solve a small problem instance, the heuristic algorithm can 

do so in a matter of minutes or even seconds. The main purpose of this research is to 

develop efficient algorithms to solve an assembly flow shop problem in an industrial setting 

and evaluate the performance of these algorithms under different constraints and 

complexity, i.e., PN vs NPN sequence, continuous vs non-continuous production and small 

to large problem instances. Thus, an experimental setup is designed to address the 

following issues: 

1. To determine if the solutions from the proposed algorithms are statistically 

different in terms of solution quality and computational time for a given test 

problem. 

2. To evaluate the performance of a PN vs NPN sequence and determine if the 

NPN sequence offers a significant advantage over PN sequence. 

3. To evaluate if the performance of the PN vs NPN sequence differs in non-

continuous production as compared to continuous production. 

8.1. Experimental Design 

 

A multi-factor split-plot experimental design is used to address the research 

questions above. The solution quality, measured in terms of its objective function value 

and the computation time, are used as the response variables to analyze the algorithms’ 

performance. The factors that are used to generate a particular problem such as problem 

structure (Str), plant capacity (PC), due date tightness (DDT), number of shifts (NoS) and 

scenario (Sc) are placed in the main-plot. The four algorithms used in this research belong 

to the sub-plot factor, as it is a factor of primary importance. The split-plot design with six 

factors is shown in Table 29. All the problems are randomly generated using the method 

described in Chapter 6. Hence, no two problems are exactly the same, which causes large 
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variability in the response variables. This variation can be reduced by treating each problem 

instance as a block. Blocking is necessary to eliminate the impact caused by the different 

problem instances. Hence, if a difference in algorithm’s performance is identified, it can 

be wholly attributed to the effect of the algorithm.    

Table 29. Factors and their levels in the experiment 

Factor Name Levels 

Whole Plot  
Structure (Str) (Small, Small), (Small, Large), (Large, Small), (Large, Large) 

Plant capacity (PC) Low, Medium, High 

Due date tightness (DDT) Tight (0.2), Medium (0.5), Loose (0.8) 

Number of shift (NoS) 1, 2, 3 

Scenario (Sc) (α = 0.4, β = 0.6), (α = 0.5, β = 0.5), (α = 0.6, β = 0.4) 

Sub-Plot  

Algorithm (Alg) ALG1, ALG2, ALG3, ALG4 

Ten replications have been randomly generated for every combination of Str, PC, 

DDT, NoS and Sc factors. Each of these replications have been solved by all four 

algorithms, which resulted in a total number of 12960 runs (324 combinations of Str, PC, 

DDT, NoS and Sc × 10 replications × 4 algorithms = 12960). The statistical model for this 

design is: 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 = 𝜇 + 𝛾𝑖 + 𝜌𝑗 + 𝜏𝑘 + 𝜑𝑙 + 𝜔𝑚 + 𝛿𝑛 + (𝜌𝜏)𝑗𝑘 +  (𝜌𝜑)𝑗𝑙 +  (𝜌𝜔)𝑗𝑚 +

(𝜌𝛿)𝑗𝑛 + (𝜏𝜑)𝑘𝑙 +  (𝜏𝜔)𝑘𝑚 + (𝜏𝛿)𝑘𝑛 + (𝜑𝜔)𝑙𝑚 + (𝜑𝛿)𝑙𝑛 + (𝜔𝛿)𝑚𝑛 + (𝜌𝜏𝜑)𝑗𝑘𝑙 +

(𝜌𝜏𝜔)𝑗𝑘𝑚 + (𝜌𝜏𝛿)𝑗𝑘𝑛 + (𝜏𝜑𝜔)𝑘𝑙𝑚 + (𝜏𝜑𝛿)𝑘𝑙𝑛 + (𝜑𝜔𝛿)𝑙𝑚𝑛 +  (𝜌𝜏𝜑𝜔)𝑗𝑘𝑙𝑚 +

(𝜌𝜏𝜑𝛿)𝑗𝑘𝑙𝑛 + (𝜏𝜑𝜔𝛿)𝑘𝑙𝑚𝑛 + (𝜌𝜏𝜑𝜔𝛿)𝑗𝑘𝑙𝑚𝑛 + 𝜃𝑗𝑘𝑙𝑚𝑛 + 𝜗𝑜 + (𝛾𝜗)𝑖𝑜 + (𝜌𝜗)𝑗𝑜 +

(𝜏𝜗)𝑘𝑜 + (𝜑𝜗)𝑙𝑜 + (𝜔𝜗)𝑚𝑜 + (𝛿𝜗)𝑛𝑜 + (𝜌𝜏𝜗)𝑗𝑘𝑜 +  (𝜌𝜑𝜗)𝑗𝑙𝑜 +  (𝜌𝜔𝜗)𝑗𝑚𝑜 +

(𝜌𝛿𝜗)𝑗𝑛𝑜 + (𝜏𝜑𝜗)𝑘𝑙𝑜 +  (𝜏𝜔𝜗)𝑘𝑚𝑜 + (𝜏𝛿𝜗)𝑘𝑛𝑜 + (𝜑𝜔𝜗)𝑙𝑚𝑜 + (𝜑𝛿𝜗)𝑙𝑛𝑜 +

(𝜔𝛿𝜗)𝑚𝑛𝑜 + (𝜌𝜏𝜑𝜗)𝑗𝑘𝑙𝑜 + (𝜌𝜏𝜔𝜗)𝑗𝑘𝑚𝑜 + (𝜌𝜏𝛿𝜗)𝑗𝑘𝑛𝑜 + (𝜏𝜑𝜔𝜗)𝑘𝑙𝑚𝑜 + (𝜏𝜑𝛿𝜗)𝑘𝑙𝑛𝑜 +

(𝜑𝜔𝛿𝜗)𝑙𝑚𝑛𝑜 +  (𝜌𝜏𝜑𝜔𝜗)𝑗𝑘𝑙𝑚𝑜 + (𝜌𝜏𝜑𝛿𝜗)𝑗𝑘𝑙𝑛𝑜 + (𝜏𝜑𝜔𝛿𝜗)𝑘𝑙𝑚𝑛𝑜 + (𝜌𝜏𝜑𝜔𝛿𝜗)𝑗𝑘𝑙𝑚𝑛𝑜 +

𝜖𝑖𝑗𝑘𝑙𝑚𝑛𝑜  

i = 1, 2, …, 10; j = 1, 2, 3, 4; k, l, m, n = 1, 2, 3; and o = 1, 2, 3, 4 where 𝜇 is the 

overall mean effect, 𝛾𝑖 is the replicate (Rep) effect, 𝜌𝑗 is the Str effect, 𝜏𝑘 is the PC effect, 
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𝜑𝑙 is the DDT effect, 𝜔𝑚 is the NoS effect, 𝛿𝑛 is the Sc effect, 𝜃𝑗𝑘𝑙𝑚𝑛is the main-plot error 

, 𝜗𝑜 is the Alg effect, and  𝜖𝑖𝑗𝑘𝑙𝑚𝑛𝑜 is the sub-plot error.  

The normal probability plot of the objective function value is shown in Figure 16, 

which shows that the distribution of the objective function value is not exactly normal. 

However, in this research, this distribution is considered normal for the purpose of 

statistical analysis because 1) ANOVA is robust to normality assumption for large sample 

sizes, 2) data transformation does not convert the distribution into normal, and 3) lack of 

widely accepted non-parametric test for multi-factor analysis. The resulting ANOVA table 

is shown in Table 30. 

  

 

 

 

 

 

 

 

Table 30. ANOVA of the objective function value in split-plot design 

Source SS MS Num DF Num F Ratio Prob > F 

Main-plot           

Rep 0.07031 0.00781222 9 1.10939143 0.3522 

Str 12.6486 4.2162 3 598.730553 0.0000 

PC 0.60542 0.30271 2 42.9869849 0.0000 

DDT 114.59 57.295 2 8136.29975 0.0000 

Nos 0.34202 0.17101 2 24.284643 0.0000 

Sc 5.06754 2.53377 2 359.813461 0.0000 

Str*PC 0.16757 0.02792833 6 3.96602307 0.0006 

Str*DDT 0.52939 0.08823167 6 12.5295277 0.0000 

 
Figure 16. Normality of objective function value 
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PC*DDT 0.06355 0.0158875 4 2.25613862 0.0608 

Str*Nos 0.40416 0.06736 6 9.56560174 0.0000 

PC*Nos 0.07395 0.0184875 4 2.62535722 0.0330 

DDT*Nos 1.39915 0.3497875 4 49.6723266 0.0000 

DDT*Sc 2.50366 0.625915 4 88.8844063 0.0000 

Str*Sc 0.80194 0.13365667 6 18.9802025 0.0000 

PC*Sc 0.01825 0.0045625 4 0.64790763 0.6284 

Nos*Sc 0.03198 0.007995 4 1.13534718 0.3379 

Str*PC*DDT 0.0625 0.00520833 12 0.73962058 0.7134 

Str*PC*Nos 0.20637 0.0171975 12 2.44216799 0.0037 

Str*DDT*Nos 0.42612 0.03551 12 5.04267396 0.0000 

PC*DDT*Nos 0.10991 0.01373875 8 1.95100075 0.0488 

Str*PC*Sc 0.0656 0.00546667 12 0.77630576 0.6757 

Str*DDT*Sc 0.05113 0.00426083 12 0.60506881 0.8397 

PC*DDT*Sc 0.1019 0.0127375 8 1.80881609 0.0708 

Str*Nos*Sc 0.10327 0.00860583 12 1.22208988 0.2609 

PC*Nos*Sc 0.03277 0.00409625 8 0.58169679 0.7938 

Str*PC*Nos*Sc 0.16976 0.00707333 24 1.00446392 0.4560 

DDT*Nos*Sc 0.23276 0.029095 8 4.13169808 0.0001 

Str*PC*DDT*Sc 0.18888 0.00787 24 1.11759628 0.3139 

Str*PC*DDT*Nos 0.23608 0.00983667 24 1.39687702 0.0948 

Str*DDT*Nos*Sc 0.28669 0.01194542 24 1.6963346 0.0185 

PC*DDT*Nos*Sc 0.15161 0.00947563 16 1.34560652 0.1600 

Str*PC*DDT*Nos*Sc 0.43482 0.00905875 48 1.28640729 0.0901 

Whole Plot Error 20.4708 0.0070419 2907   

Sub-plot           

Alg 1.6693 0.55643333 3 2918.37764 0.0000 

Str*Alg 0.06052 0.00672444 9 35.268319 0.0000 

PC*Alg 0.0019 0.00031667 6 1.66085111 0.1263 

DDT*Alg 0.01371 0.002285 6 11.984352 0.0000 

Nos*Alg 0.02531 0.00421833 6 22.124285 0.0000 

Sc*Alg 0.01447 0.00241167 6 12.6486924 0.0000 

Str*PC*Alg 0.00544 0.00030222 18 1.58509299 0.0547 

Str*DDT*Alg 0.0082 0.00045556 18 2.38929458 0.0008 

PC*DDT*Alg 0.00122 0.00010167 12 0.53322062 0.8946 

Str*Nos*Alg 0.00644 0.00035778 18 1.87647038 0.0136 

PC*Nos*Alg 0.00176 0.00014667 12 0.7692363 0.6831 

Str*PC*Nos*Alg 0.00349 9.6944E-05 36 0.50845354 0.9937 

DDT*Nos*Alg 0.00676 0.00056333 12 2.95456671 0.0004 

Str*Sc*Alg 0.00563 0.00031278 18 1.64045469 0.0425 

PC*Sc*Alg 0.00341 0.00028417 12 1.49039534 0.1195 

DDT*Sc*Alg 0.00671 0.00055917 12 2.93271341 0.0004 

Nos*Sc*Alg 0.00142 0.00011833 12 0.62063384 0.8266 

Str*PC*DDT*Alg 0.00802 0.00022278 36 1.16842332 0.2256 

Str*DDT*Nos*Alg 0.01394 0.00038722 36 2.03090039 0.0003 

PC*DDT*Nos*Alg 0.00482 0.00020083 24 1.05332926 0.3909 

Str*PC*Sc*Alg 0.00905 0.00025139 36 1.31848268 0.0963 

Str*DDT*Sc*Alg 0.01244 0.00034556 36 1.81236735 0.0021 
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PC*DDT*Sc*Alg 0.00654 0.0002725 24 1.42920609 0.0799 

Str*Nos*Sc*Alg 0.00596 0.00016556 36 0.86830462 0.6933 

PC*Nos*Sc*Alg 0.00498 0.0002075 24 1.08829454 0.3475 

DDT*Nos*Sc*Alg 0.0069 0.0002875 24 1.50787798 0.0530 

Str*PC*DDT*Nos*Alg 0.01511 0.00020986 72 1.10067808 0.2621 

Str*PC*DDT*Sc*Alg 0.01626 0.00022583 72 1.18444908 0.1369 

Str*PC*Nos*Sc*Alg 0.01273 0.00017681 72 0.92730854 0.6518 

Str*DDT*Nos*Sc*Alg 0.01228 0.00017056 72 0.89452858 0.7253 

PC*DDT*Nos*Sc*Alg 0.01131 0.00023563 48 1.23580435 0.1276 

Str*PC*DDT*Nos*Sc*Alg 0.02522 0.00017514 144 0.91856721 0.7475 

Subplot error 1.66794 0.00019067 8748   

Total 166.3177   12959     

Based on the ANOVA table, all factors in the main-plot (Str, PC, DDT, NoS and 

Sc) have statistically significant effect on the objective function value of the tested 

problems (p-value < 0.05). After accounting for the effect of these factors, the ANOVA 

table in the sub-plot shows statistically significant difference in the performance of the 

algorithms. Hence, further analysis is warranted to evaluate the difference in the 

algorithm’s performance. Tukey test is a single step multiple pair-wise comparison 

procedure used to determine which means are significantly different from one another, 

which is used in this research to detect which pair of algorithms have significant difference 

in performance. The pairwise comparison as described in the hypotheses below is of 

particular interest.   

Hypothesis 1: This hypothesis is to evaluate the performance of TS algorithm vs 

TS/PR algorithm in a PN sequence. The null hypothesis states that performance of the TS 

algorithm does not have any significant difference with that of TS/PR algorithm, in a PN 

sequence. 

𝐻0 ∶  𝜇𝐴𝐿𝐺1 − 𝜇𝐴𝐿𝐺3 = 0  

𝐻1 ∶  𝜇𝐴𝐿𝐺1 − 𝜇𝐴𝐿𝐺3 ≠ 0 

Hypothesis 2: This hypothesis is to evaluate the performance of TS algorithm vs 

TS/PR algorithm in an NPN sequence. The null hypothesis states that performance of the 

TS algorithm does not have any significant difference with that of TS/PR algorithm, in an 

NPN sequence. 
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𝐻0 ∶  𝜇𝐴𝐿𝐺2 − 𝜇𝐴𝐿𝐺4 = 0  

𝐻1 ∶  𝜇𝐴𝐿𝐺2 − 𝜇𝐴𝐿𝐺4 ≠ 0 

Hypothesis 3: This hypothesis is to determine if the NPN sequence offers a 

significant advantage, in terms of solution quality, over that of the PN sequence. The null 

hypothesis states that NPN sequence does not offer any significant advantage over PN 

sequence. 

𝐻0 ∶  𝜇𝐴𝐿𝐺3 − 𝜇𝐴𝐿𝐺4 = 0  

𝐻1 ∶  𝜇𝐴𝐿𝐺3 − 𝜇𝐴𝐿𝐺4 ≠ 0 

Based on the size of the problem, i.e. problem structure (small-small, small-large, 

large-small, large-large), the performance of the algorithms might vary. Hence the pair-

wise comparison of means is done is performed separately at each level of problem 

structure. The results of the analysis are summarized in Table 31 below. For every level of 

problem structure, a significant difference in the algorithm’s performance was detected 

using ANOVA. From the table, it can be seen that H0 is rejected in favor of H1 in both, 

Hypothesis 1 and Hypothesis 2, for all problem structures. Hence, it can be concluded that 

TS/PR algorithm yields significantly better solutions as compared to TS algorithm in the 

case of both PN and NPN sequences for all problem structures. A pair-wise comparison 

between ALG3 and ALG4, i.e., Hypothesis 3 shows that there is no significant difference 

between these two algorithms for small-small, small-large and large-large problems. This 

means that, for these problem structures, the NPN sequence does not offer significant 

advantage over the PN sequence. However, for large-small problems, the null hypothesis 

(H0) is rejected in favor of H1, which means that the NPN sequence yields significantly 

better solutions than the PN sequence for this problem structure. The large-small problems 

have large number of product types and small number of jobs in each product. In this 

scenario, the number of similar solutions (solutions having the same OFV) is less as 

compared to other problem structures. The NPN sequence is advantageous in these 

instances as it can improve the solution’s OFV by performing NPN perturbations. A box-
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plot is also presented to further highlight the performance of NPN sequence for different 

problem structures. 

Table 31. Result of ANOVA and Tukey test on algorithm’s performance 

Figures 17-19 shows the box-plot of the comparison between algorithms for 

different problem structures. The deviation, in terms of solution quality, of ALG1 from 

ALG3 is calculated as 𝑑𝑒𝑣1 = ((𝑂𝐹𝑉𝐴𝐿𝐺1 − 𝑂𝐹𝑉𝐴𝐿𝐺3)/𝑂𝐹𝑉𝐴𝐿𝐺3)  × 100 and presented in 

Figure 17. It can be seen from the figure that, for a PN sequence, the average deviation 

increases as the problem complexity increases, i.e., ALG3 is more advantageous for larger 

problems. Moreover, the length of the box also increases with the problem complexity 

which means that ALG3 was able to identify a better solution than ALG1 in more instances 

for larger problems. The deviation of ALG2 from ALG4 is calculated as 𝑑𝑒𝑣2 =

((𝑂𝐹𝑉𝐴𝐿𝐺2 − 𝑂𝐹𝑉𝐴𝐿𝐺4)/𝑂𝐹𝑉𝐴𝐿𝐺4)  × 100 and presented in Figure 18. This figure shows 

that, for an NPN sequence, ALG4 yields a better solution in more instances than ALG2, as 

the problem size increases. Figure 19 shows the average deviation of ALG3 from ALG4, 

which is calculated as 𝑑𝑒𝑣2 = ((𝑂𝐹𝑉𝐴𝐿𝐺3 − 𝑂𝐹𝑉𝐴𝐿𝐺4)/𝑂𝐹𝑉𝐴𝐿𝐺4)  × 100. The statistical 

analysis shows that there is no significant difference between PN sequence (ALG3) and 

NPN sequence (ALG4) in three out of four problem structures. Figure 19 illustrates that 

the deviation is not uniform across problem structures, i.e., deviation is higher for large-

small problems as compared to other problem structures. The problems belonging to small-

large and large-large have large number of jobs belonging to the same product. As 

previously discussed in Section 5.1.4, this results in multiple solutions having the same 

objective function value. In this scenario, it is likely that a PN sequence has the same 

objective function value as an NPN sequence. Hence, the advantage offered by NPN 

sequence is not significant in these problem structures. However, NPN sequences are 

Test Small-small Small-large Large-small Large-large 

ANOVA (Alg) Significant   (p-

value: 0.000) 

Significant            

(p-value: 0.000) 

Significant            

(p-value: 0.000) 

Significant             

(p-value: 0.000) 

Hypothesis 1 Reject null Reject null Reject null Reject null 

Hypothesis 2 Reject null Reject null Reject null Reject null 

Hypothesis 3 Fail to reject null Fail to reject null Reject null Fail to reject null 
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advantageous in instances where there is large number of product types and small number 

of jobs in each product. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Deviation of ALG2 from ALG4 

 

 

 

 
Figure 19. Deviation of ALG3 from ALG4 

 

 

 

 
Figure 17. Deviation of ALG1 from ALG3 
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To answer the research question 3, solution quality of PN sequence (ALG3) and 

NPN sequence (ALG4) is compared separately for continuous and non-continuous 

production instances. The Tukey’s test shows that there is no significant difference between 

PN and NPN sequences for continuous production. However, in the case of non-continuous 

production, the improvement offered by NPN sequence is significant. Figure 20 also shows 

that the percentage improvement is higher in the case of non-continuous production as 

compared to continuous production. As discussed in Section 3, the discontinuity in 

production allows NPN perturbations in predecessor machines without affecting the final 

completion times of jobs, which contributes to the evaluation of weighted tardiness, i.e., 

the second part of the objective function. This provides an advantage to the NPN sequence 

as it can improve setup times (the first part of the objective function) in predecessor 

machines without affecting the tardiness. Because of this, the advantage of NPN sequence 

over PN sequence is less pronounced in continuous production as compared to non-

continuous production.   

 

 

 

 

 

 

 

Although the computational time (CT) taken by the meta-heuristic algorithm is 

short as compared to the branch-and-bound technique implemented in CPLEX, a split-plot 

ANOVA is performed using CT as the response variable to analyze the difference in the 

algorithm’s efficiency, i.e., time taken to find the best solution. The result is shown in Table 

32. In this case, the response variable has a huge deviation from a normal distribution, as 

seen from Figure 21. Hence, data transformation is performed using a log function to make 

 
Figure 20. Deviation of ALG3 from ALG4 
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its distribution close to normal. The normal probability plot of the transformed data is 

shown in Figure 22.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 32. ANOVA of the computational time in split-plot design 

Source SS MS Num DF Num F Ratio Prob > F 

Whole Plot      
Rep 2.08E+01 2.31E+00 9 0.587863 0.8081 

Str 6.55E+04 2.18E+04 3 5547.782 0.0000 

PC 1.22E+01 6.12E+00 2 1.554388 0.2115 

DDT 1.22E+01 6.11E+00 2 1.551605 0.2121 

NoS 5.29E+01 2.64E+01 2 6.719426 0.0012 

Sc 2.00E+01 1.00E+01 2 2.546222 0.0786 

 
Figure 21. Normal Probability Plot for CT 
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Figure 22. Normal Probability Plot for inversed CT 
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Str*PC 4.68E+01 7.81E+00 6 1.983812 0.0645 

Str*DDT 8.05E+01 1.34E+01 6 3.408395 0.0024 

PC*DDT 9.73E+00 2.43E+00 4 0.617959 0.6497 

Str*NoS 1.07E+01 1.78E+00 6 0.451751 0.8441 

PC*NoS 2.43E+00 6.09E-01 4 0.154664 0.9610 

DDT*NoS 4.25E+01 1.06E+01 4 2.699479 0.0291 

DDT*Sc 2.89E+01 7.23E+00 4 1.836592 0.1190 

Str*Sc 2.50E+01 4.17E+00 6 1.059123 0.3849 

PC*Sc 4.31E+00 1.08E+00 4 0.273604 0.8951 

NoS*Sc 1.11E+01 2.77E+00 4 0.702642 0.5901 

Str*PC*DDT 5.30E+01 4.42E+00 12 1.122867 0.3361 

Str*PC*NoS 3.45E+01 2.88E+00 12 0.731351 0.7218 

Str*DDT*NoS 1.91E+01 1.59E+00 12 0.405123 0.9623 

PC*DDT*NoS 2.24E+01 2.81E+00 8 0.712746 0.6805 

Str*PC*Sc 1.62E+01 1.35E+00 12 0.34407 0.9809 

Str*DDT*Sc 2.91E+01 2.43E+00 12 0.616691 0.8298 

PC*DDT*Sc 3.30E+01 4.12E+00 8 1.04737 0.3977 

Str*NoS*Sc 3.22E+01 2.69E+00 12 0.682736 0.7697 

PC*NoS*Sc 2.40E+01 3.00E+00 8 0.762415 0.6361 

Str*PC*NoS*Sc 1.00E+02 4.18E+00 24 1.061863 0.3806 

DDT*NoS*Sc 1.86E+01 2.33E+00 8 0.591365 0.7858 

Str*PC*DDT*Sc 1.42E+02 5.93E+00 24 1.507291 0.0538 

Str*PC*DDT*NoS 8.74E+01 3.64E+00 24 0.925241 0.5670 

Str*DDT*NoS*Sc 1.76E+02 7.33E+00 24 1.861552 0.0067 

PC*DDT*NoS*Sc 5.19E+01 3.24E+00 16 0.823725 0.6594 

Str*PC*DDT*NoS*Sc 1.87E+02 3.90E+00 48 0.99015 0.4926 

Whole Plot Error 1.14E+04 3.94E+00 2907   
Split Plot      

Alg 22026.4 7342.133333 3 168941.4 0.0000 

Str*Alg 471.561 52.39566667 9 1205.616 0.0000 

PC*Alg 0.24603 0.041005 6 0.943519 0.4623 

DDT*Alg 7.61792 1.269653333 6 29.21453 0.0000 

NoS*Alg 3.56657 0.594428333 6 13.67771 0.0000 

Sc*Alg 0.6153 0.10255 6 2.35966 0.0280 

Str*PC*Alg 0.81011 0.045006111 18 1.035584 0.4144 

Str*DDT*Alg 7.04103 0.391168333 18 9.000724 0.0000 

PC*DDT*Alg 0.72622 0.060518333 12 1.392518 0.1611 

Str*NoS*Alg 0.73787 0.040992778 18 0.943238 0.5247 

PC*NoS*Alg 0.37224 0.03102 12 0.713766 0.7395 

Str*PC*NoS*Alg 0.91845 0.0255125 36 0.587039 0.9768 

DDT*NoS*Alg 0.45662 0.038051667 12 0.875563 0.5716 

Str*Sc*Alg 1.27934 0.071074444 18 1.635412 0.0435 

PC*Sc*Alg 0.37588 0.031323333 12 0.720745 0.7325 

DDT*Sc*Alg 1.0391 0.086591667 12 1.992461 0.0210 

NoS*Sc*Alg 0.53613 0.0446775 12 1.028023 0.4192 

Str*PC*DDT*Alg 2.09574 0.058215 36 1.339518 0.0843 

Str*DDT*NoS*Alg 1.72085 0.047801389 36 1.099903 0.3131 

PC*DDT*NoS*Alg 1.41611 0.059004583 24 1.357687 0.1136 
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Str*PC*Sc*Alg 1.48039 0.041121944 36 0.94621 0.5610 

Str*DDT*Sc*Alg 1.89588 0.052663333 36 1.211775 0.1796 

PC*DDT*Sc*Alg 1.31673 0.05486375 24 1.262407 0.1755 

Str*NoS*Sc*Alg 1.8329 0.050913889 36 1.171521 0.2220 

PC*NoS*Sc*Alg 1.16302 0.048459167 24 1.115038 0.3161 

DDT*NoS*Sc*Alg 0.69388 0.028911667 24 0.665253 0.8891 

Str*PC*DDT*NoS*Alg 3.31827 0.046087083 72 1.060457 0.3413 

Str*PC*DDT*Sc*Alg 4.08111 0.056682083 72 1.304246 0.0434 

Str*PC*NoS*Sc*Alg 3.15964 0.043883889 72 1.009762 0.4550 

Str*DDT*NoS*Sc*Alg 3.90257 0.054202361 72 1.247188 0.0773 

PC*DDT*NoS*Sc*Alg 1.98233 0.041298542 48 0.950273 0.5711 

Str*PC*DDT*NoS*Sc*Alg 7.02248 0.048767222 144 1.122126 0.1524 

Subplot error 380.18502 0.04345965 8748   
Total 101289.9699  12959   

 The main plot in the above table shows that only the problem structure and number 

of shifts have significant effect on the computational time of the algorithm. The sub-plot 

shows that there is significant difference in the CT of the algorithms. The average time 

taken by the algorithm for different problem structures is shown in Table 33. The table 

shows that the time taken by NPN algorithms, ALG2 and ALG4, is significantly greater 

than the PN algorithms, ALG1 and ALG3, respectively. Since, the NPN sequence does not 

significantly improve the solution quality as compared to the PN sequence, it is 

advantageous to consider only PN sequence, given the increased CT required by NPN 

algorithms. Table 34 shows the average CT of algorithms for continuous and non-

continuous production. The result shows that the time taken by all algorithms is higher in 

the case of non-continuous production. This suggests that the limited machine availability 

constraint, i.e., non-continuous production, increases the complexity of the problem.  

 

 

 

 

  

Table 33. CT of algorithms for different problem structure 

Problem 

Structure 

Computational time (sec) 

ALG1 ALG2 ALG3 ALG4 

LL 57.29 173.68 810.27 2027.86 

LS 1.94 11.50 19.68 87.58 

SL 3.00 13.33 31.07 92.60 

SS 0.13 0.78 1.11 4.43 

Overall 15.59 49.82 215.53 553.12 
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Table 34. CT of algorithms for continuous and non-continuous production 

Type 

Computational time (sec) 

ALG1 ALG2 ALG3 ALG4 

Non-continuous 16.04 50.05 223.28 574.79 

Continuous 14.69 49.37 200.05 509.77 

Overall 15.59 49.82 215.53 553.12 

 

 



93 

 

9. CONCLUSIONS AND FUTURE RESEARCH 

An uneven assembly flow shop scheduling problem with limited machine 

availability has been addressed in this research. Both permutation and non-permutation 

sequence has been considered to solve this problem. The setup time is considered to be 

machine and sequence-dependent, which implies that the setup time required for a job 

depends on the machine on which it is scheduled, and the previous job scheduled on that 

machine. The setup time between jobs belonging to the same product is less than the setup 

time between jobs belonging to different products. The machines have a dynamic 

availability time, which means that each machine may become available at a different time 

than the start of the planning horizon. Each job has a release time, due date and weight 

associated with it. The job release time is considered to be dynamic, i.e., jobs can be 

released at any time during the planning horizon. The due date of the job can be viewed as 

the shipment date and the weight of the job indicates the priority assigned to the job. Jobs 

with higher weights are prioritized over the lesser weighted jobs. The machines also have 

limited machine availability, i.e., the machines are not available continuously for the entire 

planning horizon. The production occurs in 8-hour shifts and the number of shifts can be 

one, two or three. In the case of one and two shifts, the production occurs for 8 and 16 

hours each day, respectively. This means that the machines are not available for production 

for the rest of the day. Furthermore, there is limited storage space between two machines. 

Thus, a blocking constraint is introduced, which means that a job is blocked on a 

predecessor machine if the storage space following that machine is not empty.  

The goal is to simultaneously minimize two objectives, total setup time 

(representing producer’s interest) and total weighted tardiness (representing customers’ 

interest). Since the values of these two criteria might not be in the same range, a 

normalization technique is implemented so that the value of each criteria falls between 0 

and 1. The normalized criteria are then combined into a single objective function using the 

weights assigned to each criterion. 

The problem is formulated as a mixed-integer linear programming model with the 

objective function focused on minimizing the linear combination of two normalized 
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objectives, setup time and weighted tardiness.  Two models are developed, MILP1 for PN 

sequence and MILP2 for NPN sequence. Since the reduced version of the research problem 

is shown to be strongly NP-hard by previous works, the computational complexity of this 

problem is also strongly NP-hard. Thus, an exact method such as branch-and-bound 

technique can only be used to solve small problem instances. For medium and large 

problems, the branch-and-bound technique may never find an optimal solution even after 

spending an extremely large computational time.  

Knowing the inefficiency of the branch-and-bound technique, a meta-heuristic 

algorithm is developed and applied to solve the problems. Two algorithms each, were 

developed for PN and NPN sequences, where one of the algorithms was based on short-

term tabu search and the other was based on tabu search/path-relinking. An important part 

of this research is to compare the ability of TS and TS/PR algorithms to find the best 

solution for different problems. The initial solution is generated by combining two 

sequences, each focusing on minimizing a single objective. The first sequence PS is 

focused on minimizing the setup time and is obtained using SST rule whereas the second 

sequence CS is focused on minimizing weighted tardiness and is obtained using WEDD 

rule. Normalized weights are used to combine both sequences together. 

In order to assess the effectiveness of the developed algorithms, sixteen small-size 

problems were generated and solved using CPLEX for both, PN and NPN sequences. These 

problems were also solved using the meta-heuristic algorithms. For the 16 problems solved, 

it was observed that CPLEX could find an optimal solution for only 13 problems in the 

case of PN sequence and 9 problems in the case of NPN sequence. CPLEX was having 

difficulty in solving some of these problems to optimality, more so for NPN sequence. This 

was due to weak LP relaxation of the model and the existence of symmetry in the model. 

For the problems where an optimal solution was found by CPLEX, an average 

improvement of 2.68% was observed by adopting the NPN sequence over PN sequence. 

The optimal solutions were also compared with the solutions obtained from metaheuristic 

algorithms. The best solutions were obtained from TS/PR algorithms, ALG3 (for PN 

sequence) and ALG4 (for NPN sequence), which had an average deviation of 0.49% and 
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0.13%, respectively, from the optimal solution. This demonstrates the capability of the 

developed algorithms to identify high quality solutions. Moreover, the average CT of 

TS/PR algorithm ALG3 was 5.33 second, which is significantly lower than 4063.7 second, 

as required by CPLEX to solve for PN sequence. For NPN sequences, the CT of ALG4 

was 60.09 seconds, as compared to 12408.35 seconds required by CPLEX. This supports 

the fact that the implementation of meta-heuristic algorithms is very time-efficient. 

A multi-factor split-plot design is developed to analyze the significance in the 

algorithm’s performance, both in terms of solution quality and computational time. Factors 

that define a problem, such as problem structure, plant capacity, due date tightness, number 

of shifts, scenario and replicates are placed in the main plot. The algorithm, which is the 

primary factor of interest, is placed in the sub-plot. The reason for this design is to analyze 

the effect of algorithms’ performance without the influence of problem parameters. The 

result shows that, TS/PR outperforms short term TS for all problem structures, in the case 

of both, PN and NPN sequences. The best PN algorithm, i.e., ALG3, was compared with 

the best NPN algorithm, i.e. ALG4, to determine if the NPN sequence offers a significant 

advantage over PN sequence. An average improvement of 1.68% was observed by 

adopting the NPN sequence. The statistical analysis showed that the improvement offered 

by NPN sequence is not statistically significant for small-small, small-large and large-large 

problems. However, the improvement seemed to be significant in problems with high 

product variety, i.e., large-small problems. In addition, it was also observed that the 

performance of NPN sequence is better in the case of non-continuous production. For 

continuous production, NPN sequence did not yield any significant advantage. The results 

also show that the CT for PN algorithms is significantly lower for PN algorithms. Hence, 

it would be advantageous to consider only PN sequence for problems with small number 

of product types or with large number of jobs belonging to same products, given the higher 

efficiency and equivalent effectiveness of PN algorithms as compared to NPN algorithms. 

For large-small problems, NPN sequence is recommended. TS/PR algorithms (ALG3 and 

ALG4) are recommended for PN and NPN sequences, respectively, because of their ability 

to obtain superior solutions. 
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Future research could focus on adding complexity to the flow shop. The problem 

addressed in this research can be generalized into m-component assembly flowshop with 

each component requiring one or more operations before assembly stage. Assembly flow 

shops with m components have been studied in the past by different researchers (Sung and 

Kim 2008, Torabzadeh and Zandieh, 2010, Al-Anzi and Allahverdi, 2012). However, the 

condition of multiple operations required by a component before assembly has not been 

studied so far. Machine skipping is a characteristic that is implemented in numerous 

manufacturing plants. Shahvari and Logendran (2017) have addressed a hybrid flow shop 

batch scheduling problem considering machine skipping. Thus, future research may 

consider generalizing the research problem into an m-machine flow shop and introducing 

machine skipping to the problem.  

Further research could also focus on comparing the performance of the tabu search-

based algorithms with other heuristics such as genetic algorithm (GA) and particle swarm 

optimization (PSO) in solving the problem addressed in this research. Various researchers 

have compared the performance of TS-based heuristics with other heuristics in solving 

different types of scheduling problems (Al-Anzi and Allahverdi, 2012, Bozorgirad 2013, 

Shahvari 2016). The performance of these heuristics is shown to be different for different 

type of problems. Hence, more research insights can be obtained by implementing GA and 

PSO to solve the research problem and comparing their performance to the TS algorithms. 
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Appendix A. Result of statistical analysis for parameter tuning 
 

 

 

 

 

 

 

 

 

 

Table A.1. Parameter value for algorithms 

Algorithm 
Perturbation 

Type 
Parameter 

Small, 

Small 

Small, 

Large 

Large, 

Small 

Large, 

Large 

ALG1 P1 (Slight TS) 

TLS 10 20 25 5 

MNSS 2 2 2 2 

MIWOI 15 20 25 15 

MIL 15 5 10 5 

ALG1 
P2 (Strong 

TS) 

TLS 20 5 20 5 

MNSS 2 2 2 2 

MIWOI 15 25 15 30 

MIL 15 5 5 5 

ALG2 P1 (Slight TS) 

TLS 20 20 25 5 

MNSS 2 2 2 2 

MIWOI 25 20 25 25 

MIL 15 5 10 5 

ALG2 
P2 (Strong 

TS) 

TLS 5 5 5 5 

MNSS 2 2 2 2 

MIWOI 10 20 25 25 

MIL 15 5 5 5 

ALG3 -   
P_size 5 5 5 10 

MIWI 3 3 3 8 

ALG4 -   
P_size 5 5 10 10 

MIWI 3 5 5 5 
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Table A.2. ANOVA for TLS, MNSS for ALG1 with P1 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.0312939 5 0.0063 10.18 0 

 B:MNSS 0.000347446 4 9E-05 0.14 0.9668 

 C:Block 8.27463 24 0.3448 560.75 0 

RESIDUAL 0.440231 716 0.0006   
TOTAL (CORRECTED) 8.7465 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.3. ANOVA for TLS, MNSS for ALG1 with P2 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.00980421 4 0.00245105 10.71 0 

 B:MNSS 0.00275777 5 0.000551554 2.41 0.0352 

 C:Block 10.5788 24 0.440785 1925.32 0 

RESIDUAL 0.163922 716 0.000228942   
TOTAL (CORRECTED) 10.7553 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.4. ANOVA for TLS, MNSS for ALG2 with P1 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 2.74708E-05 4 6.86771E-06 0.04 0.9965 

 B:MNSS 0.014874 5 0.0029748 18.63 0 

 C:Block 9.18453 24 0.382689 2397.26 0 

RESIDUAL 0.114299 716 0.000159636   
TOTAL (CORRECTED) 9.31373 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.5. ANOVA for TLS, MNSS for ALG2 with P2 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 9.28307E-05 5 1.85661E-05 0.17 0.9741 

 B:MNSS 0.00126913 4 0.000317282 2.88 0.0219 

 C:Block 9.41044 24 0.392102 3562.39 0 

RESIDUAL 0.078808 716 0.000110067   
TOTAL (CORRECTED) 9.49061 749    
All F-ratios are based on the residual mean square error.   
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Table A.6. ANOVA for TLS, MNSS for ALG1 with P1 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.01467 5 0.0029 16.7 0 

 B:MNSS 3.09542E-05 4 8E-06 0.04 0.9963 

 C:Block 6.43633 24 0.2682 1526.9 0 

RESIDUAL 0.125755 716 0.0002   
TOTAL (CORRECTED) 6.57678 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.7. ANOVA for TLS, MNSS for ALG1 with P2 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 4.43507E-05 5 8.87014E-06 0.29 0.9187 

 B:MNSS 0.00290975 4 0.000727438 23.77 0 

 C:Block 5.71451 24 0.238105 7779.61 0 

RESIDUAL 0.0219141 716 3.06062E-05   
TOTAL (CORRECTED) 5.73938 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.8. ANOVA for TLS, MNSS for ALG2 with P1 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.00194202 5 0.000388404 6.77 0 

 B:MNSS 0.00148445 4 0.000371113 6.47 0 

 C:Block 6.33012 24 0.263755 4595.13 0 

RESIDUAL 0.0410975 716 5.73988E-05   
TOTAL (CORRECTED) 6.37464 749    
All F-ratios are based on the residual mean square error.   

 

 
Table A.9. ANOVA for TLS, MNSS for ALG2 with P2 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 6.22361E-05 5 1.24472E-05 0.59 0.7062 

 B:MNSS 0.000895289 4 0.000223822 10.64 0 

 C:Block 5.5465 24 0.231104 10989.26 0 

RESIDUAL 0.0150575 716 0.00002103   
TOTAL (CORRECTED) 5.56252 749    
All F-ratios are based on the residual mean square error.   
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Table A.10. ANOVA for TLS, MNSS for ALG1 with P1 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.0847708 5 0.017 65.95 0 

 B:MNSS 0.000109797 4 3E-05 0.11 0.9802 

 C:Block 7.80212 24 0.3251 1264.6 0 

RESIDUAL 0.184062 716 0.0003   
TOTAL (CORRECTED) 8.07106 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.11. ANOVA for TLS, MNSS for ALG1 with P2 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.000310561 5 6.21122E-05 9 0 

 B:MNSS 0.00014966 4 0.000037415 5.42 0.0003 

 C:Block 9.17015 24 0.382089 55393.92 0 

RESIDUAL 0.00493874 716 6.89768E-06   
TOTAL (CORRECTED) 9.17555 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.12. ANOVA for TLS, MNSS for ALG2 with P1 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 0.00484786 5 0.000969572 54.74 0 

 B:MNSS 0.000659532 4 0.000164883 9.31 0 

 C:Block 7.56644 24 0.315268 17798.91 0 

RESIDUAL 0.0126824 716 1.77128E-05   
TOTAL (CORRECTED) 7.58463 749    
All F-ratios are based on the residual mean square error.   

 

 
Table A.13. ANOVA for TLS, MNSS for ALG2 with P2 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 3.97248E-06 5 7.94E-07 0.25 0.941 

 B:MNSS 0.000324945 4 8.12363E-05 25.33 0 

 C:Block 9.20308 24 0.383462 119544.4 0 

RESIDUAL 0.00229671 716 3.20769E-06   
TOTAL (CORRECTED) 9.2057 749    
All F-ratios are based on the residual mean square error.   
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Table A.14. ANOVA for TLS, MNSS for ALG1 with P1 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 4.47414E-05 5 8.94828E-06 1.49 0.1901 

 B:MNSS 0.000206549 4 5.16372E-05 8.61 0 

 C:Block 4.14482 24 0.172701 28799 0 

RESIDUAL 0.00429374 716 5.99685E-06   
TOTAL (CORRECTED) 4.14936 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.15. ANOVA for TLS, MNSS for ALG1 with P2 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 7.62277E-05 5 1.52455E-05 1.07 0.3772 

 B:MNSS 0.00160272 4 0.000400679 28.05 0 

 C:Block 5.33893 24 0.222455 15574.24 0 

RESIDUAL 0.010227 716 1.42835E-05   
TOTAL (CORRECTED) 5.35083 749    
All F-ratios are based on the residual mean square error.   

 

 Table A.16. ANOVA for TLS, MNSS for ALG2 with P1 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 1.94033E-05 5 3.88065E-06 1.17 0.321 

 B:MNSS 0.000182414 4 4.56035E-05 13.78 0 

 C:Block 8.73951 24 0.364146 110016 0 

RESIDUAL 0.00236992 716 3.30994E-06   
TOTAL (CORRECTED) 8.74208 749    
All F-ratios are based on the residual mean square error.   

 

 
Table A.17. ANOVA for TLS, MNSS for ALG2 with P2 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:TLS 6.43E-08 5 1.29E-08 0.03 0.9996 

 B:MNSS 3.70061E-05 4 9.25152E-06 20.72 0 

 C:Block 11.5258 24 0.480241 1075505 0 

RESIDUAL 0.000319712 716 4.47E-07   
TOTAL (CORRECTED) 11.5261 749    
All F-ratios are based on the residual mean square error.   
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Table A.18. ANOVA for MIWOI, ILS for ALG1 with P1 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.20179 5 0.0404 60.29 0 

 B:ILS 0.0313526 5 0.0063 9.37 0 

 C:Block 11.6003 24 0.4833 722.05 0 

RESIDUAL 0.579038 865 0.0007   
TOTAL (CORRECTED) 12.4125 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.19. ANOVA for MIWOI, ILS for ALG1 with P2 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.0949282 5 0.0189856 56.2 0 

 B:ILS 4.97E-03 5 9.95E-04 2.94 0.0121 

 C:Block 12.7962 24 0.533177 1578.17 0 

RESIDUAL 0.292235 865 0.000337844   
TOTAL (CORRECTED) 13.1884 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.20. ANOVA for MIWOI, ILS for ALG2 with P1 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.0439826 5 0.00879652 34.08 0 

 B:ILS 0.0103749 5 0.00207498 8.04 0 

 C:Block 10.3522 24 0.431343 1670.97 0 

RESIDUAL 0.22329 865 0.000258139   
TOTAL (CORRECTED) 10.6299 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.21. ANOVA for MIWOI, ILS for ALG2 with P2 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.0144544 5 0.00289088 22.86 0 

 B:ILS 0.00362204 5 0.000724409 5.73 0 

 C:Block 10.7734 24 0.44889 3550.2 0 

RESIDUAL 0.109371 865 0.000126441   
TOTAL (CORRECTED) 10.9008 899    
All F-ratios are based on the residual mean square error.   
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Table A.22. ANOVA for MIWOI, ILS for ALG1 with P1 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.0164934 5 0.00329868 27.44 0 

 B:ILS 4.26501E-05 5 8.53002E-06 0.07 0.9965 

 C:Block 7.68708 24 0.320295 2664.3 0 

RESIDUAL 0.103987 865 0.000120216   
TOTAL (CORRECTED) 7.8076 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.23. ANOVA for MIWOI, ILS for ALG1 with P2 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.00233216 5 0.000466432 15.51 0 

 B:ILS 4.37E-05 5 8.74E-06 0.29 0.9182 

 C:Block 6.63228 24 0.276345 9190.33 0 

RESIDUAL 0.0260098 865 3.00691E-05   
TOTAL (CORRECTED) 6.66067 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.24. ANOVA for MIWOI, ILS for ALG2 with P1 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.00914565 5 0.00182913 32.02 0 

 B:ILS 0.000053013 5 1.06026E-05 0.19 0.9681 

 C:Block 7.54207 24 0.314253 5500.76 0 

RESIDUAL 0.0494166 865 0.000057129   
TOTAL (CORRECTED) 7.60069 899    
All F-ratios are based on the residual mean square error.   

 

 
Table A.25. ANOVA for MIWOI, ILS for ALG2 with P2 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.000570462 5 0.000114092 10.82 0 

 B:ILS 9.68275E-05 5 1.93655E-05 1.84 0.1032 

 C:Block 6.76487 24 0.28187 26734.61 0 

RESIDUAL 0.00911991 865 1.05433E-05   
TOTAL (CORRECTED) 6.77466 899    
All F-ratios are based on the residual mean square error.   
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Table A.26. ANOVA for MIWOI, ILS for ALG1 with P1 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.0957728 5 0.0192 95.57 0 

 B:ILS 0.00452182 5 0.0009 4.51 0.0005 

 C:Block 9.01436 24 0.3756 1873.9 0 

RESIDUAL 0.173374 865 0.0002   
TOTAL (CORRECTED) 9.28803 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.27. ANOVA for MIWOI, ILS for ALG1 with P2 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.00110015 5 0.000220031 37.42 0 

 B:ILS 5.56E-06 5 1.11E-06 0.19 0.9667 

 C:Block 10.6846 24 0.445193 75704.18 0 

RESIDUAL 0.0050868 865 5.88069E-06   
TOTAL (CORRECTED) 10.6908 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.28. ANOVA for MIWOI, ILS for ALG2 with P1 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.00581828 5 0.00116366 76.6 0 

 B:ILS 0.00075769 5 0.000151538 9.98 0 

 C:Block 9.17734 24 0.382389 25171.97 0 

RESIDUAL 0.0131403 865 1.51911E-05   
TOTAL (CORRECTED) 9.19706 899    
All F-ratios are based on the residual mean square error.   

 

 
Table A.29. ANOVA for MIWOI, ILS for ALG2 with P2 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.000142175 5 2.84351E-05 13.87 0 

 B:ILS 3.27669E-06 5 6.55E-07 0.32 0.9013 

 C:Block 10.3146 24 0.429776 209593 0 

RESIDUAL 0.0017737 865 2.05052E-06   
TOTAL (CORRECTED) 10.3165 899    
All F-ratios are based on the residual mean square error.   
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Table A.30. ANOVA for MIWOI, ILS for ALG1 with P1 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.000243106 5 5E-05 12.45 0 

 B:ILS 1.24541E-05 5 2E-06 0.64 0.6708 

 C:Block 4.93013 24 0.2054 52613 0 

RESIDUAL 0.00337729 865 4E-06   
TOTAL (CORRECTED) 4.93377 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.31. ANOVA for MIWOI, ILS for ALG1 with P2 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.000769404 5 0.000153881 14.11 0 

 B:ILS 7.61E-06 5 1.52E-06 0.14 0.9831 

 C:Block 6.43306 24 0.268044 24574.81 0 

RESIDUAL 0.00943479 865 1.09073E-05   
TOTAL (CORRECTED) 6.44327 899    
All F-ratios are based on the residual mean square error.   

 

 Table A.32. ANOVA for MIWOI, ILS for ALG2 with P1 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 6.65098E-05 5 0.000013302 14.07 0 

 B:ILS 1.89989E-06 5 3.80E-07 0.4 0.8476 

 C:Block 4.95762 24 0.206568 218534.3 0 

RESIDUAL 0.000817634 865 9.45E-07   
TOTAL (CORRECTED) 4.95851 899    
All F-ratios are based on the residual mean square error.   

 

 
Table A.33. ANOVA for MIWOI, ILS for ALG2 with P2 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWOI 0.000084788 5 1.69576E-05 25.65 0 

 B:ILS 8.68E-07 5 1.74E-07 0.26 0.9334 

 C:Block 8.32251 24 0.346771 524562.6 0 

RESIDUAL 0.000571824 865 6.61E-07   
TOTAL (CORRECTED) 8.32317 899    
All F-ratios are based on the residual mean square error.   
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Table A.34. ANOVA for MIWI, P_size for ALG3 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.000363968 3 0.000121323 1.39 0.2461 

 B:P_size 8.67222E-05 3 2.89074E-05 0.33 0.8031 

 C:Block 6.27495 24 0.261456 2991.27 0 

RESIDUAL 0.0322529 369 8.74063E-05   
TOTAL (CORRECTED) 6.30766 399    
All F-ratios are based on the residual mean square error.   

 

 Table A.35. ANOVA for MIWI, P_size for ALG4 (Small-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.000251505 3 8.38349E-05 1.4 0.2429 

 B:P_size 0.000328296 3 0.000109432 1.83 0.142 

 C:Block 6.21947 24 0.259145 4323.56 0 

RESIDUAL 0.022117 369 5.99377E-05   
TOTAL (CORRECTED) 6.24217 399    
All F-ratios are based on the residual mean square error.   

 

 Table A.36. ANOVA for MIWI, P_size for ALG3 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.00018301 3 6.10032E-05 1.38 0.2475 

 B:P_size 0.000066382 3 2.21273E-05 0.5 0.6812 

 C:Block 2.76549 24 0.115229 2613.29 0 

RESIDUAL 0.0162704 369 4.40933E-05   
TOTAL (CORRECTED) 2.78201 399    
All F-ratios are based on the residual mean square error.   

 

 
Table A.37. ANOVA for MIWI, P_size for ALG4 (Small-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.000155231 3 5.17438E-05 3.05 0.0287 

 B:P_size 6.42444E-05 3 2.14148E-05 1.26 0.2872 

 C:Block 2.64952 24 0.110396 6505.61 0 

RESIDUAL 0.00626172 369 1.69694E-05   
TOTAL (CORRECTED) 2.656 399    
All F-ratios are based on the residual mean square error.   
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Table A.38. ANOVA MIWI, P_size for ALG3 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.000155534 3 5.18447E-05 0.69 0.5601 

 B:P_size 4.29849E-05 3 1.43283E-05 0.19 0.9032 

 C:Block 4.64208 24 0.19342 2564.99 0 

RESIDUAL 0.0278254 369 7.54076E-05   
TOTAL (CORRECTED) 4.6701 399    
All F-ratios are based on the residual mean square error.   

 

 Table A.39. ANOVA for MIWI, P_size for ALG4 (Large-Small) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.000329974 3 0.000109991 4.53 0.0039 

 B:P_size 0.000284724 3 9.49079E-05 3.91 0.009 

 C:Block 4.62333 24 0.192639 7938.48 0 

RESIDUAL 0.00895432 369 2.42665E-05   
TOTAL (CORRECTED) 4.6329 399    
All F-ratios are based on the residual mean square error.   

 

 Table A.40. ANOVA for MIWI, P_size for ALG3 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.00225633 3 0.000752109 4.55 0.0038 

 B:P_size 0.00471393 3 0.00157131 9.51 0 

 C:Block 3.1204 24 0.130017 787.14 0 

RESIDUAL 0.0609498 369 0.000165176   
TOTAL (CORRECTED) 3.18832 399    
All F-ratios are based on the residual mean square error.   

 

 
Table A.41. ANOVA for MIWI, P_size for ALG4 (Large-Large) 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

MAIN EFFECTS      
 A:MIWI 0.00038224 3 0.000127413 7.245106 0 

 B:P_size 0.00032894 3 0.000109647 6.23484 0.000386812 

 C:Block 4.15967 24 0.173319583 9855.473 0 

RESIDUAL 0.00648928 369 1.75861E-05   

TOTAL (CORRECTED) 4.16687046 399    

All F-ratios are based on the residual mean square error.   
 

 


