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Chapter 1: Introduction

1.1 Historical Perspective

An important topic in rocketry is to understand and acknowledge the previous work and
contributions that have led to modern day liquid propellant rockets. Understanding what
decisions were made in designing rockets, and what failures have resulted from those
decisions, is critical to a successful design.

The first major contributor to modern rocket development was Konstantin Tsiolkovsky
around the turn of the 20th century. He developed the famous rocket equation, describing
the idealized change in velocity of a vehicle based on its exhaust velocity and mass ratio
of the vehicle [1]. He calculated velocities required to maintain steady orbit above Earth’s
atmosphere and developed the concept of multi-stage liquid propellant vehicles that could
achieve this [1]. He also developed the theory of escape velocity, determining the minimum
speed required to leave the orbit of Earth [1]. Tisolkovsky’s work was largely theoretical,
and gained little traction or testing to prove his theories at the time he published them.

In the United States, Dr. Robert Goddard began to apply the theory to experimen-
tation. Despite being largely unaware of Tsiolkovsky’s work, the two developed similar
principles. Goddard obtained patents for his invention of the liquid propelled rocket,
and the multi-stage rocket (both previously theorized by Tsiolkovsky, unbeknownst to
Goddard) [1]. While Tsiolkovsky’s work was largely theoretical, Goddard began experi-
menting. A critical breakthrough came when he applied the de Laval nozzle to his rocket
engines, allowing him to increase efficiencies and exhaust velocities to supersonic speeds.
Similar to Tsiolkovsky, Goddard faced push-back and did not see acceptance of his work
immediately. In 1920, The New York Times went as far as to publish a story labeling to
Goddard’s theory on space travel as impossible [2].1 Goddard’s rockets, while critical for
research and development, never reached space.

World War II became the next major driver of research and development into rockets.
Wernher von Brahn, working with the Nazi Socialist Party, led the development of the

1Shortly after the launch of Apollo 11 to the moon, The New York Times issued a correction to their
1920 article.
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V-2 rocket [1]. Immediately after the conclusion of the war, von Brahn was recruited by
the United States government to assist in their development of rockets. Von Brahn led
National Aeronautics & Space Administration (NASA) through the development of the
Apollo program, culminating in what still remains the pinnacle of space flight: sending
humans to the surface of the moon and back [1].

Simultaneously, Sergey Korolev worked with the USSR to develop their space program.
In 1957, he achieved what Tsiolkovsky had theorized over 60 years earlier: placing an
object in orbit around the Earth [1]. During the heat of the Cold War, the Sputnik
satellite sparked the space race [1]. In the next monumental achievement for space travel,
the Soviet space program led by Korolev successfully sent Yuri Gargarin to orbit for the
first time.

Another monumental achievement in space travel was the development of the Interna-
tional Space Station. The International Space Station was an incredible achievement for
space travel, but also signaled the collaboration between the United States and Russia in
space after the fall of the Soviet Union [3]. As of the writing of this work, the International
Space Station has had people living continuously on-board for over 20 years.

The pursuit of rockets has historically been exorbitantly expensive. According to the
Office of Management and Budget, NASA spending during the Apollo program peaked at
4.41% of the federal spending of the United States government—over eight times the share
of federal spending NASA had in 2010 [4]. These unsustainable costs contributed to the
end of the Apollo program. Now that rocket technology has been developed to perform
these achievements, the focus of the industry has shifted. A blossoming commercial
sector of space travel has begun to thrive, with a much larger emphasis placed on the
economics and profitability of space travel.

One notable effort to change the economics of space travel has been Space Explo-
ration Technologies (or SpaceX), led by CEO Elon Musk. The company has pushed the
boundaries on space travel, developing reusable orbital class rockets. Similar to many
of the previous contributors to space exploration, Musk received critiques and was often
told his ideas were impossible—until they weren’t. As of the writing of this work, SpaceX
has landed their first stage boosters 84 times with 66 re-flights, and is now working on
development of an even more cost effective vehicle [5]. SpaceX is joined by United Launch
Alliance, Northrop Grumman, Rocket Lab, Sierra Nevada Corporation, and long list of
startups who are trying to push even further in the work of developing cost effective
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rockets.
It is clear from the trends seen in the aerospace industry, the future development

in rocketry is in cost effective rockets. This thesis aligns well with the aerospace in-
dustry trends. My intent is the design and development of a low-cost vehicle capable
of reaching space that can be manufactured by students at Oregon State University.
This would serve as both a feasibility study and a technology demonstrator, allowing
future researchers to develop more innovative vehicles and payloads while retaining the
cost-effective approaches.

1.2 Flight Simulation

In design of liquid engine rockets, comprehensive simulations and analyses are important
for functionality, mission success, and personnel safety. A few key outputs of the flight
simulation are: engine thrust, propellant tank sizing, expected forces of flight, and
projected recovery locations. Comparison between flight simulation and test data is
critical for verification of the accuracy of the simulation.

Liquid engine rockets have existed for nearly a century, so the science behind these
vehicles is well known. This thesis combines the existing research in liquid engine rockets
with advances in model development for different aspects of flight simulation that improve
upon available flight simulations.

1.3 Liquid Engine Rocket Design

This section is intended to provide a brief introduction to common aspects of design in
liquid engine rockets as many of these components will be referred to throughout this
work.

Typically, liquid engine rockets are long, cylindrical vehicles. When standing vertically,
the top of these vehicles is referred to as the fore end, and the bottom as the aft end. These
vehicles have a payload affixed to the top of the vehicle, followed by a propellant tanks,
and then engines. These can be stacked to create multi-stage vehicles. The propellant
tanks include an oxidizer and a fuel tank. Notable exceptions to this pattern are the
Space Transportation System (commonly referred to as the Shuttle) and the Buran—these
vehicles feature very different shapes based on unique mission requirements.
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1.3.1 Propellants

Choice of propellants places limitations on the missions a vehicle is capable of. An
example is the use of cryogenic propellants eliminates the vehicle from being rapidly used,
such as a defense missile that may need to be stored with propellants for months or years
after it is manufactured. Additionally, the choice of propellants may limit the materials
available for use in the design of the vehicle. A brief summary of propellant choices are
summarized in this section. A common oxidizer for commercial rockets is liquid oxygen
(LOx), which can be paired with several common fuels. Fuels that are commonly used
with LOx include liquid hydrogen, liquid methane, and Rocket Propellant 1 (RP-1) (a
refined kerosene-based fuel) [6].

Many other rocket fuels and oxidizers have been tested. Within the missile in-
dustry, it is highly desirable to have storable propellants for readiness at any time.
Therefore, LOx is not a favorable choice because it would boil off if held at room tem-
perature for long periods of time. A couple of common choices for an oxidizer with
storable propellants are dinitrogen tetroxide (N2O4) and nitric acid (HNO3). A couple
of prominent fuel choices to pair with dinitrogen tetroxide include hydrazine (N2H4),
Monomethylhydrazine (MMH) (CH3 (NH)NH2) and Unsymmetrical Dimethylhydrazine
(UDMH) (H2NN(CH3)2). These propellants are hypergols: fuel and oxidizer combina-
tions that combust on contact, which can be particularly useful for cases such as the
lunar descent engine for its simplicity and reliability.

An additional notable oxidizer and fuel combination is triethylaluminum (Al2(C2H5)6)
and triethylborane ((C2H5)3B), or TEA-TEB. This combination is particularly common
for ignition procedures. The Saturn V F1 engines used TEA-TEB for ignition, as do the
SpaceX Merlin engines [5, 6]. TEA-TEB is hypergolic, which makes it useful for engine
ignition. After combustion with TEA-TEB has begun, both the F1 and Merlin transfer
to a LOx-RP-1 propellant combination for the remainder of the engine burn.

1.3.2 Liquid Engine Components

A liquid engine is composed of several common components across all variants and designs.
Working from upstream to downstream, the primary components are:

• Injector
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• Combustion chamber

• Nozzle

A secondary component of the engine is called the power pack. The power pack is
not required for engine functionality, but commonly used to increase engine performance.

1.3.2.1 Injector

Injectors can vary significantly between designs, but the primary function of an injector
is to mix the fuel and oxidizer as they enter the engine to prepare for combustion. At
the exit of the injector, the oxidizer and fuel can be liquid, gaseous, or a combination of
the two. Sutton and Biblarz [7] provide a more in depth overview.

A common injector type is an impinging injector, where two or more streams of
propellants are directed at each other to meet at a specific point, causing mixing of the
propellants. Many of these impinging streams are typically placed on an injector face.
The concept is simple, but requires many precisely drilled holes in the injector face. If
the holes are not perfect, the streams will not meet at the target impinging point and
propellant mixing will be poor. A notable use of this style of injector is the F-1 engine.

A coaxial swirl injector relies on directing flow around a hollow cylinder such that
it gains an angular velocity. Upon exiting the bottom of the cylinder, the propellant
will be propelled out in a cone. By placing an annulus surrounding the first, the second
propellant is also directed out in a cone. The two cones of a coaxial swirl injector can
be aligned, allowing mixing of propellants to occur on the entire surface of the cone for
combustion. Engines can have many coaxial swirl injector elements on a single injector
plate. The SpaceX Raptor engine uses a coaxial swirl injector.

Another common injector type is a pintle injector. Originally developed by TRW,
this type of injector features a hollow cylinder-like element called a pintle that is closed
at the end. Orifices are placed just before the end, forcing propellant radially outward
when it reaches the pintle tip. On the outside of the pintle is an annulus that forces a
cylinder of propellant along the pintle. When the cylinder of propellant reaches the radial
flow at the pintle tip, the two mix to form a cone. This type of injector was used on
the Lunar descent engine and by the SpaceX Merlin engine. The pintle injector was also
selected for use in the liquid engine of focus in this work. Details of selection are outside
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the scope of this work, but are provided by Burson et al. [8, 9] and Rose et al. [10].

1.3.2.2 Combustion Chamber

The next downstream component of the injector is the combustion chamber. The goal
of this region is for fuel and oxidizer to combust completely. In reality, there will always
be some losses due to incomplete combustion. Higher temperatures and pressures can
increase the maximum thrust potential of the engine. Due to the combustion temperatures
of rocket fuels, higher combustion temperatures can result in cooling challenges to prevent
the walls of the combustion chamber from melting. Two solutions are commonly used to
solve this: regenerative cooling and ablative cooling. In regenerative cooling, propellant
flows through the walls of the combustion chamber before it is directed to the injector.
Ablative cooling uses a material designed to slowly ablate at the combustion temperatures
to protect the combustion chamber walls from the extreme temperatures.

1.3.2.3 Nozzle

Following the combustion chamber is the nozzle. The purpose of the nozzle is to convert
the potential energy of the high pressure and high temperature gas in the combustion
chamber into the maximum achievable exhaust velocity to increase thrust. The basic
nozzle design of all liquid rocket engines is a de Laval nozzle, or a converging-diverging
nozzle. The converging section of the nozzle increases the fluid velocity, up to sonic
velocity at the throat (narrowest point of the nozzle). After the exhaust gasses reach
sonic velocity, further reduction in area will not continue to increase the exhaust velocity.
After reaching sonic velocity, increasing area can continue to accelerate the velocity of
the fluid. Therefore, the diverging section of the nozzle allows for the exhaust velocity
to reach supersonic speeds.

1.3.2.4 Power Pack

An optional component of a liquid rocket engine is the power pack. This component
increases the pressure of the propellants before it is directed to the engine, increasing
performance. The power pack utilizes turbomachinery to increase the pressure. This
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has most commonly been done by burning a small fraction of the propellant to drive the
turbomachinery, though Rocket Lab has successfully used electric motors and batteries
to drive their turbopumps.

Using a power pack can increase performance, but also increases vehicle dry weight
and complexity. For the engine of focus in this work, no power pack is used. Therefore,
a complete explanation of the power packs and variants are considered outside the scope
of this work.

Alternatively, the propellant tanks can be pressurized using a pressurant gas. This
provides more simplicity by eliminating turbomachinery, but requires thicker tank walls
to account for higher tank pressures required to maintain the same engine performance.
Additionally, a pressurant tank is required to store the pressurant gas. This method has
been selected for focus in this work, primarily for simplicity. More details of selection
are provided by Burson et al. [8, 9] and Rose et al. [10].

1.3.3 Stablization

The most simple method for stabilizing a launch vehicle is to maintain the center of
pressure below the center of gravity for the vehicle, referred to as passive stabilization.
The aerodynamic forces on the vehicle will correct the vehicles orientation to align with
the relative wind. This is most commonly done by placing fins at the rear of the vehicle.
A major disadvantage of passive stabilization only is there is no direct control of the
orientation or trajectory of the vehicle, it is dictated by the direction of relative wind.
Variation in wind or wind gusts can cause the same vehicle to fly very different trajectories.
Additionally, placing fins on the vehicle increases vehicle drag.

In commercial launch vehicles, Thrust Vector Control (TVC) is used almost ubiqui-
tously for vehicle stabilization. TVC works by changing the axis of thrust to adjust the
direction of the force vector applied to the vehicle and ensure it maintains the target
heading. This is typically required for commercial launch vehicles, because payloads must
be placed precisely into the correct target orbit. A combination of passive stabilization
and TVC has been used historically such as on the Saturn V, though it is not commonly
seen today. Passive stabilization has been selected for focus in this work, primarily for
simplicity. More details of selection can be found in [8–10].
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1.4 Motivation

Oregon State University is competing in the Base 11 challenge to develop a liquid fueled
launch vehicle capable of crossing the Kármán line (100 km). The goal of this challenge
is to develop cost effective space technology and increase the presence of liquid engine
research at universities around the world. The Oregon State University team is currently
testing and refining the design of our first liquid engine.

While there are many collegiate rocketry teams across the world, few liquid engine
research teams exist at the collegiate level. This is primarily due to two reasons: the
significant increase in complexity of liquid engines and the significant increase in cost.
While work may be limited, some universities have been heavily involved in liquid engine
development since the beginning of liquid engine development. Notably, Goddard per-
formed much of his early research and experimentation at Clark University. A few of the
notable successful liquid engine rocket teams at the collegiate level include: University
of California, Los Angeles (12,500 ft apogee with an ethanol and LOx engine), San Diego
State University (13000 ft apogee with a kerosene and LOx engine - a Rocketdyne LR101
engine was used), and University of Michigan (4000 ft apogee with a nitrous oxide and
ethanol engine) [11, 12].

Accurate simulation of vehicle performance is a safety critical aspect of launching a
liquid engine vehicle. The available simulation software do not accurately predict the
center of gravity of a liquid engine because the mass flow from two propellant tanks and a
pressurant tank differs from the mass flow from a single solid rocket motor. Additionally,
there is no inclusion of propellant slosh models or tank pressurization, because these
phenomena are not relevant to solid motor rockets. The available simulation software
only allow for use of constant wind speeds, which is not applicable across the atmosphere
from ground level to the Kármán line. Each of these limitations are addressed and
improved upon by the flight simulation developed in this work.

At the time of writing this thesis, no commercially available software existed that could
perform the required simulations without notable limitations. Many flight simulations
are proprietary, so the majority of software available has been developed for use in the
high-powered rocketry community. High-powered rocketry vehicles typically use solid
propellant and do not fly as high as the Kármán line. Therefore, the available software
has been tailored towards the majority of use cases for these applications. Because of
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these limitations, I developed a flight simulation software specific to liquid engine vehicles.
After development of a flight simulation that addressed these limitations, two natural

questions arise for how best to use it:

1. How can I use a flight simulation to assist in optimizing the design of a liquid engine
launch vehicle?

2. How can I use a flight simulation to verify the vehicle design will reliably achieve
the target mission despite uncertainties?

This work seeks to address limitations in available software and to answer both
questions by developing a single method for optimizing the high level design parameters
of a liquid engine vehicle design for reliably achieving a specified target mission. The
validity of the method is demonstrated through application to the Oregon State University
launch vehicle designed to reach the Kármán line, though the method could be applied
to any target mission. By adjusting the flight simulation to a new application, the
methods presented in this work could be extended to additional complex systems that
are computationally expensive to model such as satellites or aircraft.



10

Chapter 2: Literature Review

2.1 Flight Modeling

In this section, I introduce relevant works related to development of models for a flight
simulation software. I discuss several available simulation software, numerical methods
commonly used, dynamics of a vehicle in flight, methods for tracking orientation between
reference frames, atmospheric models, and engine performance models.

A major contribution to flight modeling used in this work is the OpenRocket soft-
ware [13] and RASAero II software [14]. OpenRocket and RASAero II were both used
heavily for reference in selection and development of models in the flight simulator for
this work. Both are based around the Barrowman method for calculating aerodynamic
coefficients [15]. In addition to the Barrowman method, Hilton provides more details on
calculating aerodynamic coefficients in supersonic flow [16]. Zucker and Biblarz provide
details on compressible flow, specifically flow through normal and oblique shocks [17].
The nosecone tip of a launch vehicle experiences a conical shock in supersonic flow, the
Taylor—Maccoll solution for conical shocks is described by Zucrow and Hoffman [18]
and Anderson [19]. Syverston and Dennis outline a second-order method for determining
nosecone aerodynamic coefficients using the conical shock and a series of Prandtl—Meyer
expansions for National Advisory Committee For Aeronautics (NACA) [20]. Pitts et al.
outline methods for computing tail-body interference factors for NACA [21].

An important aspect of flight modeling is the numerical method used to solve the
initial value problem. Euler [22] provided initial works in Institutionum Calculi Integralis.
The Euler method works by taking small time steps successively to approximate the
solution to an initial value problem. However, the Euler method only provides first-order
accurate solutions, meaning a halving the step size will only half the error. To greatly
reduce the error in a solution becomes computationally expensive, therefore it is not an
ideal solution.

A summary of the most important works relating to the Runge—Kutta methods
was provided by Butcher [23]. In 1895, Runge [24] developed several methods which
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improved upon the classical Euler method using the midpoint rule and the trapezoidal
rule. Heun improved on Runge’s work, developing methods to allow for fourth-order
accurate integration. Kutta [25] generalized the work and developed the classifications
for all fourth-order Runge—Kutta methods, while also introducing the RK4 method
commonly used today. Nyström extended the work to systems of differential equations,
allowing for higher order differential equations to be solved as a system of first-order
equations. Lastly, Butcher fully classified the Runge—Kutta equations and developed
the Butcher tableau which is now the standard method for displaying any Runge—Kutta
method. The work of these individuals is commonly referred to as the Runge—Kutta
methods today.

Fehlberg developed an approach to adaptively control step size of Runge—Kutta
methods to maintain highly accurate solutions by using two Runge—Kutta methods
with different orders of accuracy [26]. In unpublished internal technical report for NASA,
Sarafyan used a similar approach to Fehlberg obtain both fourth- and fifth-order accurate
solutions for the same time step, allowing the error of the time step to be evaluated [27].
Later, Fehlberg improved on Sarafyan’s work and published the a fourth- and fifth-order
method, now commonly referred to as the Runge—Kutta—Fehlberg fourth- and fifth-
order method or RKF45 [27]. Fehlberg’s work was also for NASA and specifically intended
for algorithms that could limit the maximum error on a time step during integration,
resizing as necessary. This allows for fewer time steps to be used and significantly reduces
computation time. Press et al. provide a summary of the RKF45 method with example
implementation details [28]. The RKF45 method has gained widespread use and is
commonly applied to initial value problems in physics simulations. The RKF45 method
is the primary numerical method used in this work.

Different forces and moments are present at different phases throughout a flight. Peng
et al. summarize the dynamics of a sounding rocket in flight [29]. In a Six Degree of
Freedom (DoF) (6DoF) flight simulation, forces and moments are typically easiest to
calculate in a body reference frame, but results are most useful in a world reference frame.
This makes maintaining accurate orientations between different reference frames critical to
accuracy of the simulation. Quaternions have been successfully implemented as a standard
method for maintaining orientation in aerospace simulations [13]. Quaternions were
originally developed by Hamilton as an extension to complex numbers. Unit quaternions
are useful and follow many similar rules to complex numbers [30–32]. Quaternions have
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shown to be more computationally efficient than using Euler angles [33].
In 1976, NASA developed a standard atmospheric model that is still in use today:

the US Standard Atmospheric Model (1976) [34]. The US Standard Atmospheric Model
(1976) is based on both theoretical models and empirical data and is very useful as a
baseline in flight modeling [35]. However, the US Standard Atmospheric Model (1976)
does not account for temporal or spatial variations. Additionally, the US Standard
Atmosphere (1976) does not make predictions about wind, or about noise and variation
from the mean value.

After release of the US Standard Atmosphere (1976), NASA continued development
of atmospheric models. A software called Earth-Global Reference Atmospheric Model
(GRAM) has been under continual development and refinement since its first release in
1990 until the current version, Earth-GRAM 2016 [36–41]. This version accounts for
spatial and temporal variations, along with noise variation from the mean value on an
hourly or monthly basis. This model is used by NASA for Monte Carlo simulations.

Several models have been studied for analyzing engine performance. NASA developed
the Chemical Equilibrium with Applications (CEA) software for combustion analysis [42,
43]. Additional alternatives include a Two-Dimensional Kinetic (TDK) model developed
by Joint Army Navy NASA Air Force (JANNAF) [44] and Rocket Propulsion Analysis
(RPA) software [45]. The original Fortran code [42, 43] has been accessed via the
RocketCEA Python library by Taylor [46]. Additionally, isentropic flow through nozzles
is used as outlined by Zucker and Biblarz [17] and Suttona and Biblarz [7].

2.2 Design

In this section, I discuss works related to the design of a liquid engine vehicle. I cover
existing work that has been done at Oregon State University, which my work directly
builds off of. Additionally, I introduce classical optimization techniques and several
optimization algorithms which I used to perform design optimization.

Many of the initial design decisions were made as a part of the Oregon State University
liquid engine rocket team and were not exclusive to this work. Three major design reports
completed by the team, including the author, were submitted to a panel of aerospace
experts for critical review [8–10]. Harms et al. performed design work on a thrust vector
control system [47]. The most important topics from these as related to this work are
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summarized, though many additional details and considerations regarding design decisions
that do not effect the methods presented have not been included for conciseness.

Optimization is an active field of research. One early work in optimization was done
by William Karush in his masters thesis, where conditions for establishing optimality
of a point with constraints were derived [48]. Upon finishing his thesis, Karush quickly
changed focus to his doctoral dissertation and his work went largely unnoticed. Years
later, the work was independently derived and further generalized by Kuhn and Tucker [49,
50]. This became widely known as the Karush—Kuhn—Tucker (KKT) Theorem.

The design problem of interest can be modeled as a tree with different layers for
each discrete design decision to be made. Design bias can be eliminated by searching
the tree to find the best design. Short et al. [51] explored tree search methods which
could be implemented for this problem. A couple options include algorithms such as
Dijkstra’s method and A* as presented by Dijkstra [52] and Hart et al. [53] respectively.
Implementing a tree search algorithm was not fully implemented in this work due to
increased model complexity and computation time required. Instead, two design decision
methods that have been implemented are Pugh charts and trade off studies as outlined
by Otto and Wood [54], see [8–10] for implementation details.

A useful and simple search algorithm for optimization is Random Hill Climb (RHC).
The RHC algorithm does not require gradient information, which makes it a good choice
for black-box optimization problems [55].

Kirkpatrick et al. developed an algorithm that was analogous to annealing process
in statistical mechanics to grow crystals [56]. Arora also summarizes the method and
provides examples of implementation [57]. The method builds on a method developed
for statistical mechanics to determine the probability of a particle to be in a higher
energy state based on the temperature, called the Metropolis criteria. Kirkpatrick et al.
related this concept to design optimization by implementing an effective temperature and
a artificial cooling schedules to function as a stochastic global optimization procedure.
Kirkpatrick et al. showed this algorithm to work well in the design of computer chips,
but also showed the algorithm could be extended to more broad problems if transitions
within the design space can be constructed. An implementation of simulated annealing
is available via the SciPy Python library [58].

Kennedy and Eberhart developed a particle swarm optimization algorithm [59]. Arora
also summarizes the method and provides examples of implementation [57]. The algorithm
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is intended to mimic nature, similar to how a flock of birds can quickly find a food
source based on the benefit of the collective group searching a large area at once. An
implementation of particle swarm is available via the pyswarms Python library [60].

The Bayesian optimization algorithm was explored by Mockus as a global optimization
method [61]. Mockus et al. further explore the method and outline the branch and bound
method for problems where design variables are discrete [62]. This method fits a stochastic
process on a set of observations, which can be used to determine the ideal sampling point
by optimizing an acquisition function. Common acquisition functions include expected
improvement, upper confidence bound, and probability of improvement [63]. Specifically,
Gaussian process regression is commonly used to develop a surrogate model, though
other surrogate models are possible. The optimization of the acquisition function and
building a surrogate model makes the method ideal for optimizing expensive black-box
objective functions. An implementation of Bayesian optimization is available as the
bayesian-optimization Python library [64].

2.3 Design Qualification

Hanson and Beard outlined a method for performing Monte Carlo simulations that is
used as the NASA standard [65]. The Monte Carlo method in this application relies
on randomly sampling parameters with uncertainty and evaluating mission performance
repeatedly. After many simulations, the vehicle performance subject to uncertainty
can be estimated. The methods outlined by Hanson and Beard are directly applicable
and followed closely in this work to match accepted industry standards. This method
uses consumer risk to evaluate the confidence in results produced from a set of Monte
Carlo simulations, which is commonly used for designing sampling plans for reliability
engineering in mass production. Birolini outlines a standard method for computing
consumer risk to evaluate a sampling plan [66].

A method that can be used for classification of similar points was introduced by Fix
and Hodges [67] called the k-Nearest Neighbor (k-NN) method. This method assumes
the design space is smooth and nearby neighboring points can be used to reasonably
approximate the point of interest [68].
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Chapter 3: Methods

3.1 Flight Modeling

The first step to development of a simulation of the vehicle flight is to establish a rep-
resentative model of the vehicle and all forces that will act on it. The primary forces
that act on the vehicle are: gravity, thrust, drag, and a normal force. Thrust comes from
combustion of the liquid propellants and results in a force vector along the axis of thrust.
The axis of thrust is typically aligned with the axis of the vehicle, except when active
stabilization is used. Drag is aligned with the axis of the vehicle and depends on the
velocity of the vehicle and the density of the atmosphere. The direction of relative wind
is the velocity of the fluid in the reference frame of the vehicle, which represents the sum
of wind vector and the negative of the vehicles velocity vector. If the relative wind vector
is not aligned with the axis of the vehicle, the vehicle will have an angle of attack. When
flying at a non-zero angle of attack, the nosecone and fins produce lift that results in a
net normal force on the vehicle. The drag and normal force act at the center of pressure
of the vehicle, while gravity acts at the center of gravity. Shown in Figure 3.1 is a basic
free body diagram to represent these forces.

The sum of the forces and sum of the moments equations can be performed in each
coordinate directions, for a total of six equations. Using Newton’s law and Euler’s
equations, each of these can be written as the second-order differential equations:

ΣFx = mẍ (3.1)

ΣFy = mÿ (3.2)

ΣFz = mz̈ (3.3)
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Figure 3.1: Free body diagram of a rocket.
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ΣMx = IxΩ̈x + (Iz − Iy)ΩyΩz (3.4)

ΣMy = IyΩ̈y + (Ix − Iz)ΩxΩz (3.5)

ΣMz = IzΩ̈z + (Iy − Ix)ΩxΩy (3.6)

The starting point of the vehicle is at zero altitude and zero velocity on the launch rail,
so I can solve Equations (3.1)-(3.6) for the trajectory throughout flight by integrating as
an initial value problem.

3.1.1 Simulation Structure

Each of the elements described within Section 3.1 were coded in Python using an object
oriented approach. The overall structure of the code is shown in Figure 3.2, where each
block represents an object within the code. A simulation can be called by running the
Flight_MASTER script and passing in two JSON files which contain relevant engine
and rocket properties. The JSON files are populated with properties such as component
weights, lengths within the airframe, engine burn time, vehicle outer diameter, propellant
mass fraction, rail properties, design chamber pressures, nozzle throat and exit diameters,
nozzle diverging half angle, and more. The intent of using these JSON files is to develop
vehicle files that correspond to a specific vehicle configuration that are easy to modify.
This means the simulation could quickly and easily be run for entirely different vehicles.
While the JSON method is flexible and easy to integrate with Python, it is less user
friendly than alternatives such as OpenRocket [13] and RASAero II [14] which feature a
very intuitive user interfaces. Future work could take inspiration from OpenRocket and
RASAero II to improve the user interface.

The Flight_MASTER script initializes a Simulation object, which contains both a
Rocket object and a Physics object. The Rocket object contains all relevant methods
and properties specific to the rocket, while the Physics object contains all of the relevant
methods and properties to calculate the vehicle’s state at a future time step. Additional
objects, such a LiquidEngine object, were created to encapsulate all relevant properties
and methods specific to a liquid engine within the Rocket object. Not all levels of objects
within the code are represented in Figure 3.2 for simplicity.

Additionally, the code interfaces with external code for calculations such as the NASA
CEA Fortran code through the RocketCEA package. The NASA Earth-GRAM code is
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another external code to interface with, due to current implementation issues this is simply
done by running the Earth-GRAM code and logging data separately for a maximum
number of simulations to be conducted, then passing a database into the flight simulation.
Future work will include calling the Earth-GRAM code directly from the simulation.

Flight_MASTER

Simulation

Rocket

Components Tanks

Rocket.json

RocketState

Engine.json

Physics

Data Logging AerodynamicsLiquidEngine

Rocket PropertiesUpdated State

Atmosphere / 

Wind

Print/Plots

NASA CEA

Propellant Type Combustion Properties

US Standard / 

Earth-GRAM

Figure 3.2: Structure of simulation code to combine simulation elements.

Additionally, a state machine is used to allow simple transitions between different
phases of flight. In each state, the vehicle may have different characteristics. The possible
states in the state machine are described in Section 3.1.2. This is important, because
the physics in each of these phases may be unique. Use of a state machine makes the
distinct differences between the different phases of flight simple. Due to this setup, adding
additional launch phases, such as a second stage engine is simple by adding a transition
for the change.

To call a simulation, the user simply provides JSON files with the properties of
interest and executes the Flight_MASTER script.

In Section 3.2, the Simulation initialization was modified slightly to allow optimiza-
tion methods to adjust high level vehicle parameters. Additionally, in Section 3.3, the
Simulation initialization is again modified to allow properties with uncertainty to be
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modified based on sampling a distribution. With the existing simulation, modifying this
simulation initialization for both of these use cases is straightforward, though care must
be taken that all of the Rocket object properties are properly initialized. To do this,
getter and setter methods are used frequently in the code to modify applicable parameters
safely. For example, it is useful to vary the outer diameter of the vehicle during design
optimization, however simply adjusting the OD value would have no effect if only the
Aref value is used in drag calculations. A diameter setter method would simply update
both the diameter and area values at the same time.

This object oriented approach allows great flexibility to be able to run standard flight
simulations, implement optimization algorithms, or estimate design reliability by simply
modifying how the Simulation object is initialized.

3.1.2 Launch Phases

The vehicle passes through several distinct phases throughout the flight which dictate
specific parameters and place constraints on the launch vehicle. Figure 3.3 shows a visual
representation of each of the distinct phases and milestones in a standard mission for
a single stage launch vehicle with a parachute recovery. For more than one stage or
different recovery methods, there are variations on the standard mission profile. Each
of these phases are easily represented in a flight simulation through the use of a state
machine. For this work, I broke the state machine into the following phases:

1. Launch Rail: The vehicle is restricted to a launch rail, allowing only linear motion
in the direction of the launch rail in One DoF (1DoF). There is a non-zero propellant
mass flow rate during this phase, because the engine is firing. All moments are
set to zero and the equations of motion follow Equations (3.1)-(3.3), including a
frictional force between the vehicle and rail. Peng et al. [29] proposed a model also
that also includes a planar motion phase of flight after the fore rail attachment
point has exited the rail, but the aft is still on the rail. Due to the very short span
of the planar motion phase, I considered it to be part of the powered ascent phase.

2. Powered Ascent: After exiting the launch rail, the engine is producing thrust
and the vehicle is capable of moving in 6DoF. There also is a non-zero propel-
lant mass flow rate during this phase. The equations of motion are described by
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Figure 3.3: Representation of a standard mission profile.
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Equations (3.1)-(3.6). This phase ends when the a propellant mass reaches zero.

3. Unpowered Ascent: After main engine cutoff, the vehicle is no longer producing
thrust but is still subject to motion in 6DoF. For part of this phase, pressurant gas
will continue to flow as the tanks depressurize. The vehicle will continue in this
phase until it reaches a peak at apogee and begins descending. The equations of
motion are described by Equations (3.1)-(3.6).

4. Drogue Parachute Descent: Immediately following apogee, the drogue parachute
is deployed. The vehicle begins descending in multiple tethered sections. For sim-
plicity, I modeled this phase of flight as a Three DoF (3DoF) system, only accounting
for translation. This eliminates the need to model the complex multi-body dynam-
ics, but should still provide reasonable estimations of recovery performance. The
coefficient of drag and reference area are modified based on the drogue parachute
parameters. The equations of motion follow Equations (3.1)-(3.3). More advanced
models including multi-body dynamics and parachute inflation models are available,
such as those proposed by Peng et al. [29]. My primary focus in this work was on
the ascent phase, so I assumed a simple 3DoF translational model to be sufficient.

5. Main Parachute Descent: Upon descending to a set altitude, a main parachute
is deployed to slow the vehicle to a safe landing velocity. Again, the vehicle is
falling in multiple tethered sections during this phase and I chose to modeled it
as a 3DoF system to avoid unnecessary complexities. The coefficient of drag and
reference area are modified based on the main parachute parameters. The equations
of motion follow Equations (3.1)-(3.3).

3.1.3 Numerical Integration Techniques

I used Runge—Kutta numerical methods in this work because they offer high orders of
accuracy which allow a coarser grid of time steps to be used. A first-order differential
equation,

dx

dt
= f(t, x), (3.7)

is what Runge—Kutta methods are intended to solve. Specifically, Runge—Kutta meth-
ods are used for initial value problems, where f(t0, x0) is known. The Runge—Kutta
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fourth-order method to find a solution at a point n+1 is shown in Equations (3.8)- (3.13).

k1 = f(tn, xn) (3.8)

k2 = f(tn + 1
2∆t, xn + 1

2∆tk1) (3.9)

k3 = f(tn + 1
2∆t, xn + 1

2∆tk2) (3.10)

k4 = f(tn + ∆t, xn + ∆tk3) (3.11)

xn+1 = xn + 1
6∆t (k1 + 2k2 + 2k3 + k4) +O(∆t5) (3.12)

tn+1 = tn + ∆t (3.13)

The Runge—Kutta fourth-order method could be expressed in a Butcher tableau as
shown in Table 3.1.

Table 3.1: Runge—Kutta fourth-order Butcher tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

The general form of a Butcher tableau is shown in Table 3.2 for m stages.

Table 3.2: General Butcher tableau

b1
b2 a21
b3 a31 a32
...

...
... . . .

bm am1 am2 · · · amm
c1 c2 · · · cm

Using the variable definitions presented in Table 3.2, general forms of the Runge—
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Kutta method of order P are expressed as

ki =f(tn + bi∆t, xn + ∆t
i−1∑
j=1

aijkj) (3.14)

xn+1 =xn + ∆t
m∑
j=1

cjkj +OP+1. (3.15)

While Runge—Kutta schemes can provide high orders of accuracy, they lack any infor-
mation regarding the optimal step size for any given iteration. A method for evaluating
the accuracy of each step size would be to solve the same initial value problem twice,
once with a coarse grid and once with a grid spacing of half the size. For a fourth-order
Runge—Kutta method, the finer grid size should have error reduced by 16 times the
coarse grid size. When comparing the two grids, if the solutions are nearly the same then
the solution can be said to be grid independent. Because this method requires solving
the same problem twice with two different grid sizes, it is computationally inefficient and
not desirable.

Fehlberg was able to obtain both a fourth- and fifth-order accurate solution requiring
only one additional function evaluation between the two [27]. Table 3.3 is a Butcher table
for the methods, where the bottom two rows correspond to the fourth- and fifth-order
accurate methods respectively.

Table 3.3: Runge—Kutta—Fehlberg 4th- and 5th-order Butcher tableau

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 -8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
25/216 0 1408/2565 2197/4104 −1/5 0
16/135 0 6656/12825 28561/56430 −9/50 2/55

When applied to a initial value problem, Fehlberg’s technique allows for each successive
step to be evaluated for its error. The error between the two evaluations can be expressed
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as
ε = xn+1 − x∗n+1 =

m∑
i=1

(ci − c∗i )ki, (3.16)

where xn+1 is obtained from the higher order computation and x∗n+1 from the lower order.
By assuming the error in the higher order approximation is small compared to the lower
order approximation, ε is approximately the error in the time step. Because the order
of accuracy of the method is known, an expression can be used to obtain error of an
arbitrary size by adjusting the size of the step. I used the relation

∆tP
(∆t+)P = ε

ε+
(3.17)

to find a target step size ∆t+ for a specified desired accuracy ε+ [28]. For a system of
first-order differential equations, Equation (3.16) will return a vector ε. In this case,
Equation (3.17) uses the element of the largest magnitude in the ε vector [28].

To use the relation in Equation (3.17) efficiently, simple logic can be used. If the error
of the current step is larger than the desired accuracy, then reduce ∆t and repeat the
step. If the error of the current step is smaller than the desired accuracy, then accept the
step and adjust ∆t for the next step. The value obtained from higher order of accuracy
calculation is always the one retained for future steps. Shown in Algorithm 3.1 is sample
psuedo-code for RKF45. Press et al. proposes that when reducing step size using RFK45,
the exponent 1/P = 1/5 should be replaced with 1/4 to prevent the cases where the
reduced step size is still not below the desired accuracy ε+ [28].

This method allows a coarser grid spacing to be used in regions where the solution
is not changing rapidly. However, when the solution is changing rapidly, a smaller grid
spacing can be used. As applied to the vehicle simulation, this is particularly useful
in scenarios where the vehicle is not experiencing many changing forces. In the upper
atmosphere after engine cutoff, drag forces are near zero. This means the only force acting
on the vehicle is gravity, which is constant and does not produce a moment. Coarse grid
spacing in this region is expected and allows for quicker computation.

Most equations being numerically solved in this simulation are second-order differen-
tial equations. Second-order differential equations are decomposed to a pair of first-order
differential equations. For example, Equation (3.1) is decomposed as
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Algorithm 3.1: Runge—Kutta—Fehlberg fourth- & fifth-order method
1 Input: t0,x0, f(t,x),∆t0, ε+
2 Result: x(t), t
3 n = 0
4 t = {t0}
5 x = {x0}
6 ∆t = ∆t0
7 while tn < tf do
8 k1 = f(tn,xn)
9 k2 = f

(
tn + 1

4∆t,xn + 1
4k1∆t

)
10 k3 = f

(
tn + 3

8∆t,xn +
(

3
32k1 + 9

32k2
)

∆t
)

11 k4 = f
(
tn + 12

13∆t,xn +
(

1932
2197k1 − 7200

2197k2 + 7296
2197k3

)
∆t
)

12 k5 = f
(
tn + ∆t,xn +

(
439
216k1 − 8k2 + 3680

513 k3 − 845
4104k4

)
∆t
)

13 k6 = f
(
tn + 1

2∆t,xn +
(
−8
27 k1 + 2k2 − 3544

2565k3 + 1859
4104k4 − 11

40k5
)

∆t
)

14 x∗new = xn + ∆t
(

25
216k1 + 1408

2565k3 + 2197
4104k4 − 1

5k5
)

15 xnew = xn + ∆t
(

16
135k1 + 6656

12825k3 + 28561
56430k4 − 9

50k5 + 2
55k6

)
16 ε = xnew − x∗new
17 if ε < ε+ then
18 xn+1 = xnew
19 tn+1 = tn + ∆t

20 ∆t = ∆t
(
ε
ε+

)1/P

21 n = n+ 1
22 else
23 ∆t = ∆t

(
ε
ε+

)1/P

24 t = t
25 x(t) = x
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dx

dt
= ẋ(t) (3.18)

dẋ

dt
= ΣFx/m (3.19)

and solved explicitly using Runge—Kutta—Fehlberg techniques. This can be done for
each coordinate direction and similarly for angular position and velocity. An equation for
change of mass of the overall vehicle can be related to the mass flow rate of propellant.
The mass flow rate

dm

dt
= −ṁpropellant(t) (3.20)

is a function of time, after engine cutoff propellant mass flow rate goes to zero.

3.1.4 Orientation & Reference Frames

In flight modeling, a simple method of tracking the orientation of the vehicle is to use
Euler angles. Three Euler angles can be used to specify the desired rotation. A common
choice for tracking orientation is to use a fixed reference frame with respect to Earth
(North, East, Down is a common in aerospace). However, an inertial reference frame
aligned with the body of the vehicle is easiest for calculating forces and moments on the
vehicle. Euler angles provide a method of rotating between reference frames. This allows
the vehicle to be tracked in a fixed Earth frame, but physics calculations to be performed
in the inertial frame aligned with the body of the vehicle.

Euler angles specify the angle between each axis of the two reference frames, resulting
in three angles. Rotation matrices can be used to convert between reference frames.
Rotation matrices are shown in Equations (3.21)-(3.23):
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Rx(φ) =


1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (3.21)

Ry(θ) =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (3.22)

Rz(ψ) =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (3.23)

To convert a vector from world frame to inertial frame, the matrices are multiplied.
The order of rotation matrix multiplication matters, so a common standard is to define
R = R(φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ).

R =


1 0 0
0 cosφ − sinφ
0 sinφ cosφ




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




cosψ sinψ 0
− sinψ cosψ 0

0 0 1



=


cos θ cosψ cos θ sinψ − sin θ

cosψ sin θ sinφ− cosφ sinψ cosφ cosψ + sin θ sinφ sinψ cos θ sinφ
cosφ cosψ sin θ + sinφ sinψ − cosψ sinφ+ cosφ sin θ sinψ cos θ cosφ


(3.24)

Using the matrix in Equation (3.24), a general rotation can be performed. Equation (3.25)
shows an example of how to use rotation matrices to change a position vector, p, from a
fixed frame to an inertial frame:

p′ = Rp . (3.25)

While Euler angles are a simple and useful method for converting between reference
frames, they are subject to singularities. Two Euler angles can become aligned when a
vehicle passes through an angle of π/2 radians. This reduces the degrees of freedom of
the system to two. This loss in degrees of freedom is not represented by physical forces
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and moments on the vehicle, instead it is a failure in the Euler angles to provide the
required orientation and position tracking throughout flight.

Quaternions can be used instead of Euler angles for rotations and tracking the ve-
hicle throughout flight. Particularly, unit quaternions are useful for rotations. A unit
quaternion is a four dimensional hypersphere with a radius of unity. Because they have
four dimensions, additional information about the desired rotation can be stored in a
quaternion. An example of a quaternion is shown in Equation (3.26).

q =


q0

q1

q2

q3

 (3.26)

A quaternion has one real part and three orthonormal imaginary parts. The quater-
nion in Equation (3.26) can be rewritten as:

q = q0 + q1î+ q2ĵ + q3k̂ (3.27)

Where î, ĵ, k̂ are principal coordinate axes for imaginary numbers. Similar rules to
complex numbers apply when multiplying complex parts of quaternions, i2 = j2 = k2 =
ijk = −1. Additionally, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j [30, 31]. From
these rules, quaternion multiplication is defined as shown in Equation (3.28). The ⊗
symbol is used to indicate quaternion multiplication.

qA ⊗ qB =


a

b

c

d

⊗

e

f

g

h

 ≡

ae− bf − cg − dh
af + be+ ch− dg
ag − bh+ ce+ df

ah+ bg − cf + de

 (3.28)

Other important properties of quaternions are their norm, conjugate, and inverse.
These are defined according to Equations (3.29)-(3.31) [30] as:

|q| =
√
q2

0 + q2
1 + q2

2 + q2
3 (3.29)
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q∗ =


q0

−q1

−q2

−q3

 (3.30)

q−1 = q∗

|q|
(3.31)

A unit quaternion is expressed by specifying a rotation angle, θ, and an axis of
rotation as a unit vector, β. This information would be stored in a unit quaternion,

q =


cos θ2

sin θ
2βx

sin θ
2βy

sin θ
2βz

 . (3.32)

A rotation is performed using quaternions as

p′ = q ⊗ p⊗ q−1 (3.33)

where p represents a quaternion that is rotated to a new coordinate system by the
quaternion q.

As applied to the vehicle simulation, quaternions are useful in preventing singularities
during the simulation. It is difficult to visualize how a four dimensional quaternion relates
to changes in the real world. Euler angles are extracted from quaternions using


φ

θ

ψ

 =


tan−1

(
2(q0q1+q2q3)
1−2(q2

1+q2
2)

)
sin−1 (2 (q0q2 − q3q1))

tan−1
(

2(q0q3+q1q2)
1−2(q2

2+q2
3)

)
 , (3.34)

where tan−1 should be evaluated using a four-quadrant inverse tangent [32].
It is also convenient and useful to store position and velocity as quaternions for easy

rotation. In this case, position and velocity are not stored as unit quaternions. They
instead can be stored as quaternions with a zero real component and the vector component
as the imaginary components of the quaternion. For example, the position vector in world
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frame, p, can be stored as a quaternion as

qp =


0
px

py

pz

 . (3.35)

The position vector can then easily be rotated to inertial frame by

q′p = Φ⊗ qp ⊗ Φ−1 =


0
p′x

p′y

p′z

 (3.36)

where p′ represents the position vector in the inertial frame and Φ represents the orien-
tation quaternion of the vehicle.

The orientation quaternion is updated based on the angular velocity vector. The
direction of the angular velocity vector represents the axis of rotation, and the magnitude
of the rotation is the the norm of the angular velocity vector multiplied by the size of
the time step. The angular velocity vector is updated based on the moments calculated
in the inertial frame.

An additional benefit of quaternions is that computing orientation with quaternions
requires only 42 operations, while computing orientation with Euler angles requires 116
computations [33].

3.1.5 Atmospheric Modeling

Due to the significant change in conditions of the atmosphere between ground level and
apogee, I needed a model of the atmosphere to accurately simulate a rocket flight. Two
atmospheric models are used for separate purposes in this work. The first is a baseline
standard atmosphere used primarily for optimization techniques, while the second is a
model developed for more refined simulation and flight predictions that is used in Monte
Carlo simulations.
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3.1.5.1 US Standard Atmosphere (1976)

The US Standard Atmosphere (1976) model was developed by NASA, National Oceanic
& Atmospheric Administration (NOAA), and the United States Air Force (USAF) to
define the standard atmosphere as a function of altitude [34].

Drag is a function of air density, thrust of a rocket engine is a function of ambient
pressure, and coefficient of drag is a function of the speed of sound. These properties can
all be calculated using the US Standard Atmosphere (1976) model. NASA defined the
US Standard Atmosphere (1976) based on a lapse rate of temperature. The lapse rate of
temperature is different for different layers of atmosphere. Shown in Table 3.4 are the
lapse rates used.

Table 3.4: Lapse rates in US Standard Atmosphere.

Altitude Range, Z (km) Lapse Rate, L (K/m)
0-11,000 -0.0065

11,000-20,000 0.0
20,000-32,000 0.028
32,000-47,000 0.0
51,000-71,000 -0.0028
71,000-86,000 -0.002
86,000-91,000 0.0

The gravity at sea level, go, is defined as 9.807m/s2. Gravity is a function of the
radius of the Earth and the altitude of the vehicle,

g = go

(
Rearth

Rearth + z

)2
. (3.37)

Based on the lapse rate and gravity as a function of altitude, the pressure of the
atmosphere is calculated as

P = Po

(
To

To + Lo(Z − Zo)

)( goMo
RLo

)
(3.38)

where M is the molecular weight of to avoid confusion with M for Mach number. Addi-
tionally, R is used to differentiate universal gas constant from specific gas constant, R.
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The notation io is used to indicate that the variable i should be evaluated at the base of
the layer of atmosphere, as specified by the altitude range in Table 3.4.

With both temperature and pressure known, an equation of state can be used to solve
for the air density as a function of altitude,

ρ = PM

RT
. (3.39)

Lastly, the speed of sound can be calculated as

c =
√
γRT/M , (3.40)

where γ indicates the ratio of specific heats.
Evaluation of the atmosphere from a range of 0-100 km is shown in Figure 3.4. I

differed from the US Standard Atmospheric model in the region above 91 km. In this
region, the US Standard Atmosphere proposes a temperature model based on a segment
of an ellipse instead of a constant lapse rate. Additionally, the atmospheric model at
these altitudes is dependent on solar activity and the current state in the solar cycle [34].
For simplicity, I used a constant lapse rate of 0.0K/m for the region above 91 km. The
drag forces on the vehicle are less than 1.0N at this altitude due to the near zero density
of the atmosphere (air density at 91 km is 0.0002% of sea level air density). The drag
force is insignificant in comparison the the force due to gravity (on the order of 1000N).
This assumption would not be applicable to orbiting satellites where velocity is high
and the atmospheric drag force is applied for a long duration, but is appropriate for a
suborbital vehicle near the Kármán line.

3.1.5.2 Earth-GRAM 2016

While the US Standard Atmosphere (1976) provides a complete model of the atmosphere
for determining baseline performance of a design, it notably lacks wind and gust models
and does not incorporate uncertainty well. When performing Monte Carlo simulations,
it is important to have an accurate representation of conditions the vehicle could actu-
ally experience during flight. I achieved this by using the NASAs Earth-GRAM 2016
software [36].

Earth-GRAM began development shortly after the release of the US Standard At-
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Figure 3.4: US Standard Atmosphere

mosphere (1976) as a Fortran program and has undergone numerous re-releases as at-
mospheric models are improved and refined [36–41]. The version used in this work was
obtained from NASA as C++ version of the original Fortran code that is capable of
conducting Monte Carlo simulations and reproducing close approximations of actual
atmospheric environment conditions that a vehicle may experience. This model is a
reputable standard which makes it a good choice for use in Monte Carlo simulations over
implementation of alternative models. Similar models also exist for other planets in the
solar system such as Mars and Venus that could be integrated for simulating flights on
these planets if desired.

Another important note in the development and selection of wind modeling is limita-
tions of the measurement devices used. For most typical wind measurement applications,
an anemometer is used. Standard anemometers utilize propellers or cups that move as a
function of wind speed. The propeller and cup style anemometers are subject to limita-
tions in gust measurements, because the entire apparatus must be accelerated, slowing
the response time. Higher temporal resolution wind measurement can be performed with
techniques such as hot wire anemometery, though the availability of this data is not
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as common. Therefore, the wind speeds measured have a loss of fidelity in temporal
resolution. It is assumed that changes in wind speed occurring more rapidly than can be
captured through a standard anemometer will not significantly effect the launch vehicle.
This assumption has been successfully used previously in the design and development of
launch vehicles [35]. Therefore, I assumed it is also appropriate for this work.

Figure 3.5 shows a sample of 100 random wind profiles produced by the Earth-
GRAM software. The lines are plotted with some transparency, so darker regions are
more common results. These are plotted for constant latitude and longitude of (32.21°,
−106.38°) with an eight hour launch window starting at 8:00 AM local time (UTC-6) on
December 1st, 2021.1 Other parameters were left as defaults specified according to Leslie
and Justus [41].

3.1.6 Engine Modeling

The NASA CEA software [42, 43] can be used for combustion modeling. This software
is particularly useful for determining combustion properties of the engine. High-level
parameters of engine performance, such as the chamber pressure, P0; the mixture ratio,
MR; and the expansion ratio, Aratio are passed to the CEA software which calculates
important engine parameters. For this work, I used a Python-wrapped version of the
original CEA software written in Fortran [46].

Alternative software such as TDK produced by Sierra Engineering & Software or
RPA produced by Rocket Propulsion Software+Engineering UG [44, 45] could have been
used. Particularly, the TDK software accounts for kinetic losses in the nozzle according
to the JANNAF standard. While the results from these software may have provided an
improved theoretical engine model, the CEA software was chosen because it has already
been adapted for use in Python and is readily available. Future work could include a
more detailed comparison of the advantages of each of these software and integration
with the current work.

Based on the output from the CEA software, I calculated the performance by assuming
isentropic flow through the nozzle [7, 17]. Given a known nozzle area ratio Aratio, the

1This corresponds to coordinates of a potential launch site at Spaceport America, NM and possible
launch window of interest. These choices are arbitrary and should be specific to an actual launch.
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Figure 3.5: Monte Carlo results for 100 random wind profiles in North-South and East-
West directions produced by Earth-GRAM.
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exit Mach number is solved with

Aratio = 1
M

(
1 +M2(γ − 1)/2

(γ + 1)/2

) γ+1
2(γ−1)

, (3.41)

where M is the exit Mach number and γ is the ratio of specific heats from CEA. The
exit temperature can be solved for as

Texit = Tt
1 +M2(γ − 1)/2 (3.42)

and exit velocity can be found with

vexit = M
√
γRTexit (3.43)

where R is the specific gas constant from CEA. The exit pressure is solved as

Pexit = Pt

( 1
1 +M2(γ − 1)/2

) γ
γ−1

(3.44)

and the propellant mass flow rate as

ṁpropellant = AexitPtM

(
1 + M2(γ − 1)

2

)−(γ+1)
2(γ−1) √ γ

RTt
. (3.45)

A momentum efficiency is associated with non-axial motion of the exhaust gasses due to
nozzle geometry. For a conical nozzle, Sutton and Biblarz [7] express this momentum
efficiency as

ηm = 1
2 (1 + cosα) , (3.46)

where α is the diverging half angle of the nozzle. Finally, I solved for the thrust with

Fthrust = ηk (ηmṁpropellantvexit + (Pexit − P∞)Aexit) , (3.47)

where ηk is the efficiency of the nozzle in converting to kinetic energy and P∞ is the
external atmospheric pressure.

The engine performance is not always constant. During engine startup and shutdown
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it goes through transient phases as the combustion chamber is pressurized. For the scope
of this work, the transient phases are modeled only based on the tank pressures, assuming
instantaneous pressurization of the combustion chamber. The duration of the startup
and shutdown phases are very brief, so I assumed them to be negligible.

3.1.7 Tank Pressure Modeling

In a pressure-fed system, a high-pressure gas drives propellant into the combustion
chamber. To do this in a controlled manner, the design uses a separate pressurant tank
which has a pressure regulator between the pressurant and propellant tank, maintaining a
nearly constant pressure throughout the engine burn. However, each of the tanks operate
at different target pressures. To individually control the pressure in each tank, I used
sonic venturis for mass flow regulation of the pressurant gas.

Operating Pressure: The target tank pressures are determined based on achieving the
target Oxidizer : Fuel (O/F) ratio, propellant mass flow rate, and chamber pressure in the
engine. The pressure losses through each component between the tanks and combustion
chamber are summed to determine the required tank pressure. Equations (3.48)-(3.54)
show all relevant calculations, where there are n bends in the pipe. The relation for
Darcy friction factor in Equation (3.54) is only valid for Re > 4000, which is true for
both fuel and oxidizer lines in this work.
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Ptank = Pchamber + Plosses (3.48)

Plosses = ∆Pinjector + ∆Ppipes + ∆Pvalves (3.49)

∆Pvalves = V̇

Cf
SGpropellant (3.50)

∆Ppipes = ∆Pminor + ∆Pmajor (3.51)

∆Pminor =
n∑
i=1

ki

(1
2ρv

2
)

(3.52)

∆Pmajor = fLρv2

2D (3.53)
1√
f

= −2 log
(

ε

3.7D + 2.51
Re
√
f

)
(3.54)

Pressurant Flow Modeling: To model the pressurant, I tracked three distinct gasses
over time: gas within the pressurant tank, and gas within each propellant tank. In
Equations (3.55)-(3.58), variables with the subscript ullage are within a propellant tank
while variables with the subscript pressurant are within the pressurant tank. The ullage
volume within the tank increases as propellant is expelled according to

dVullage
dt

= ṁpropellant
ρpropellant

. (3.55)

I assumed the gas within both the propellant and the pressurant tanks is ideal and follows
the ideal gas law,

PV = mRT . (3.56)

Assuming reversible adiabatic expansion is applicable within the pressurant tank [7], the
relation

P 1−γ
pressurantT

γ
pressurant = constant (3.57)

can be used to find temperature of the gas within the pressurant tank as the pressure
decreases. I solved for the temperature within the propellant tanks by assuming a quasi-
equilibrium of the gas as it flows into the propellant tank from the pressurant tank. For a
small time step, a small mass of pressurant ∆m enters the propellant tank at temperature
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Tpressurant. This comes to an equilibrium temperature Teq with the mass of gas within
the propellant tank, mullage, at an initial temperature Tullage. For an adiabatic process,
the equation

mullagecV (Teq − Tullage) + ∆mcV (Teq − Tpressurant) = 0 (3.58)

can be used to solve for the average temperature within the propellant tank. This is used
with Equation (3.56) to solve for the current propellant tank pressure. In reality during
engine burn, the system is constantly changing and never comes fully into equilibrium.
However, the average temperature found using Equation (3.58) is a better approximation
than assuming the ullage temperature is constant or assuming it is equal to the pressurant
tank temperature.

The design includes a pressure regulator, a pressurant valve, and two sonic venturis
(one for each tank) to control the mass flow rate of pressurant gas to the propellant tanks.
Although two independent pressure regulators and two independent valves could be used,
sonic venturis are small and lightweight and can provide mass savings while allowing
different mass flow rates of gas to each tank. I specified the operating pressure of the
regulator at a fixed pressure that will cause flow through the venturis to the tanks to
remain choked. As shown by Zucker and Biblarz [17], the mass flow rate of the pressurant
gas through a choked sonic venturi is determined by

ṁpressurant = AthroatPt

(
1 + γ − 1

2

)−(γ+1)
2(γ−1)

√
γ

RTt
. (3.59)

Combustion Chamber Pressure Modeling: As described in Section 3.1.6, I use
the CEA software to calculate combustion properties based on chamber pressure, mixture
ratio, and the expansion ratio of the engine. In Section 3.1.6, I assume the combustion
chamber pressure is known; this is not generally true. However, I can solve for the
combustion chamber pressure if the propellant tank pressures based on the ullage pres-
surant mass, temperature, and ullage volume are known at a given time using Equations
(3.55)-(3.59).

Given two arbitrary propellant tank pressures, I applied the conservation of mass
to the system to solve for combustion chamber pressure. I guess an initial combustion
chamber pressure, then apply the following procedure:
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1. Given propellant tank pressures and combustion chamber pressure, calculate mass
flow rate through each propellant line.

2. Use propellant mass flow rates to determine updated mixture ratio, MR. Use CEA
and equations (3.41)-(3.45) to calculate updated mass flow rate through the engine.

3. If the sum of the mass flow rate through the propellant lines is not equal to the
mass flow rate through the engine, adjust combustion chamber pressure and repeat
from Step 1. I used a root-finding algorithm with a small allowable numerical error
to perform the combustion chamber pressure adjustments efficiently.

3.1.8 Vehicle Aerodynamics Modeling

The Rogers modified Barrowman method [14] is primarily used in this work for calculating
aerodynamic forces on the vehicle. Based on the Barrowman method [15], this analysis is
performed by dividing the vehicle into a body and tail for separate analyses, followed by
analysis of tail and body interference, and recombination for summary of aerodynamic
performance. Rogers added onto this work by improving the normal force slope calculation
and center of pressure calculation. These calculations are available as an output of the
RASAero II software.

The Barrowman method provides calculation of: drag coefficient, CD; center of
pressure location, X̄CP ; normal force coefficient derivative, CNα ; roll forcing moment
coefficient derivative, Clδ ; roll damping moment coefficient derivative, Clp ; pitch moment
coefficient, Cm; and pitch damping moment coefficient derivative, Cmq . Each of these have
different relations depending on if the vehicle is in the subsonic, transonic, or supersonic
regime. In this section, I will present the major equations and processes to calculate each
of these. The full derivation of each of the coefficients is extensive, so only the reader
is referred to Barrowman [15] for more details. I attempt to use the same notation as
Barrowman to wherever possible for easy reference.

The Barrowman method has several major assumptions that apply to all calculations:
a near zero angle of attack, steady irrotational flow, the vehicle is a rigid body, and the
nose tip is a sharp point [15].

In this section, the subscript 1 will indicate a value only applicable to a single fin,
the subscript T will only apply to the tail section, the subscript B will only apply to the



41

body section, and no subscript will apply to the entire vehicle.

3.1.8.1 Tail Section

The vehicle is divided into a tail consisting only of the fin assembly with no airframe
considered. I assume that the tail section consists of three (3) or four (4) trapezoidal fins,
which represent the vast majority of slender finned vehicles. Not all relations presented
in this section are applicable for tail sections with different numbers or shapes of fins.

A standard trapezoidal fin geometry is presented in Figure 3.6. The trapezoidal fin
geometry can be fully defined with: root chord, cr; tip chord, ct; span S, sweep distance
Xsweep. A few important parameters of the fin are the fin area

Afin = ct + cr
2 S , (3.60)

the aspect ratio

AR = S2

Afin
, (3.61)

and the fin taper ratio
λ = ct

cr
. (3.62)

The leading edge sweep angle, ΓL, the mid chord sweep angle, Γc, and the quarter chord
sweep angle, Γ1/4, are also useful quantities that can be easily derived from the geometry
of the fin.

Subsonic Flow: A single fin is analyzed using thin airfoil theory. For a single fin, the
normal force coefficient derivative can be expressed as

(CNα)1 = 2πAR (Afin/Aref)

2 +
√

4 +
(
βAR
cos Γc

)2
(3.63)

where α is the angle of attack and β is the Prandtl—Glauert correction
√
|M2 − 1|.

The tail section consists of several fins placed at different dihedral angles. A relation
based on the dihedral angle of the fin can be used to determine the normal force coefficient
for the total number of fins. For three and four fin configurations, this simplifies based
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Figure 3.6: Notation for a standard trapezoidal fin geometry [15].

on the dihedral angles of the N fins as

(CNα)T = NπAR (Afin/Aref)

2 +
√

4 +
(
βAR
cos Γc

)2
. (3.64)

For other fin configurations, Equation (3.64) does not apply and must be corrected based
on the dihedral angle of each of the fins.

For a single fin, the center of pressure location has two components: longitudinally
along the axis of the vehicle

(
X̄CP

)
1
, and in the spanwise direction

(
ȲCP

)
1
. In the

spanwise direction, this is determined as

YMA = S

3

(
cr + 2ct
cr + ct

)
(3.65)(

ȲCP

)
1

= rt + YMA (3.66)

where rt is the radius of the tail section to the base of the fin. For axisymmetric fins, the
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spanwise center of pressure location sums to zero. The mean aerodynamic chord can be
expressed as

cMA = 2
3

(
cr + ct −

crct
cr + ct

)
. (3.67)

The center of pressure in the longitudinal direction can be expressed as(
X̄CP

)
1

= lT + YMA tan ΓL + 1
4cMA . (3.68)

The location of the longitudinal center of pressure is the same for each fin, therefore(
X̄CP

)
T

=
(
X̄CP

)
1
.

The roll coefficient derivative is

Clδ = N (CNα)1
ȲT
Lref

. (3.69)

The roll damping moment coefficient derivative is

Clp = −NcrS6L2
ref

(
(1 + 3λ)S2 + 4(1 + 2λ)Srt + 6(1 + λ)r2

t

)
(CNα)1 . (3.70)

The drag force coefficient relations are from both empirical correlations and from
theoretical predictions. In laminar flow over a flat plate the theoretical skin friction
coefficient is

Cf = 1.328√
Re

(3.71)

where Re is the Reynolds number [15]. In turbulent flow with Re > 5× 105, the relation

Cf = 1
(3.46 logRe− 5.6)2 −

1700
Re (3.72)

is used. For rough surfaces, a critical Reynolds number is

Recr = 51
(
Rs
Lr

)−1.039
. (3.73)

For Reynolds numbers above Recr, I use the relation

Cf = 0.032
(
Rs
Lr

)0.2
. (3.74)
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The skin friction coefficient is corrected for compressibility effects in laminar flow with

Cfc = Cf (1− 0.09M2) , (3.75)

and in turbulent flow with
Cfc = Cf (1− 0.12M2) . (3.76)

The skin friction coefficient is converted to a friction drag coefficient with

(CDf )T = 2NCfc
Afin
Aref

. (3.77)

The pressure drag is calculated by assuming the fin has a leading edge with a radius
rL that can be approximated as a cylinder in crossflow with no base drag. Barrowman
computes this based on the difference between total drag and base drag of a cylinder in
different regimes of flight, the drag from a cylinder with no base drag is computed as

∆CD =


(1−M2)−.417 − 1 (M < 0.9)

1− 1.5(M − 0.9) (0.9 ≤M ≤ 1.0)

1.214− 0.502
M2 + 0.1095

M4 + 0.0231
M6 (M > 1.0)

(3.78)

which are applied in the equation

(CDL)T = 2N
(
SrL
Aref

)
cos2 ΓL∆CD . (3.79)

Barrowman expresses the subsonic base drag of the fins as

(CDB )T =
0.135N

(
ABf
Aref

)
C

1/3
fB

(K −M2 cos2 Γc)1/2
(3.80)

where ABf is the base area of a fin with thickness t, K is a constant to prevent the
denominator from becoming undefined, and CfB in compressible flow is

CfB = 2Cfc
(
cr
t

)
. (3.81)
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Figure 3.7: Notation for a standard double wedge fin [15].

Lastly, I found the drag due to the thickness of the fin as

(CDT )T = 4NCfc
(
tr
cr

)
cos Γc +

30
(
tr
cr

)4
cos2 Γc

(K −M2 cos2 Γc)3/2 , (3.82)

withK again a correction factor to prevent the denominator from being undefined, though
it is different from the value of K used in Equation (3.80). See Barrowman [15] for the
computation of the Prandtl factors K.

The drag from the entire section is computed by summing each of the components,

(CD)T = (CDf )T + (CDL)T + (CDB )T + (CDT )T (3.83)

Supersonic Flow: Busemann’s second-order expansion is applied to solve for the
aerodynamic coefficients [15, 16]. This theory analyzes a single fin in supersonic flow
by dividing it into spanwise strips and analyzing each as a two dimensional supersonic
airfoil. This section focus only Busemann’s second-order expansion for a double wedge
airfoil shape, as shown in Figure 3.7, though other shapes can be analyzed similarly.

The double wedge shape in supersonic speeds has a weak oblique shock wave extending
from the tip, followed by Prandtl—Meyer expansions around the corners. Busemann’s
theory is only applicable for an attached shock at the leading edge. With the leading
edge of the double wedge at an angle from the velocity vector δ = ζL ± α, the equation



46

tan θ
tan(θ − δ) = (γ + 1)M2

1 sin2 θ

(γ − 1)M2
1 sin2 θ + 2 (3.84)

is solved for the angle of the oblique shock θ [17, 18]. For non-zero angles of attack, δ is
different on the top and bottom panels. Equation (3.84) has two solutions, corresponding
to a weak and a strong shock. For external flows, I am only interested in the weak shock
solution [18]. The Mach number downstream of the shock can be calculated with the
component of Mach number normal to the shock wave, M1N , as

M1N = M1 sin θ (3.85)

M2
2N =

M2
1N + 2/(γ + 1)

2γ/(γ − 1)M2
1N − 1 , (3.86)

M2 = M2N
sin(θ − δ) . (3.87)

Prandtl—Meyer expansion is based around the Prandtl—Meyer function

ν =
(
γ + 1
γ − 1

)1/2
tan−1

(
γ − 1
γ + 1(M2 − 1)

)1/2
− tan−1(M2 − 1)1/2 (3.88)

for a given flow [17]. For a flow to turn a small angle ∆ν, I use the relation

ν2 = ν1 + ∆ν (3.89)

where a positive turning angle is a Prandtl—Meyer expansion and negative for compres-
sion.

A single strip of the double wedge fin has six panels, as shown by Figure 3.7. The
Busemann second-order expanded shock theory is applied to find the coefficient of pressure
for a single panel,

CPi = Pi − P∞
1/2ρv2

∞
= K1η +K2η

2 +K3η
3 +B3η

3 , (3.90)

where η is the angle of incidence with respect to the free stream flow and Ki, Bi are
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constants defined by

K1 = 2
β

(3.91)

K2 = (γ + 1)M4 − 4β2

4β4 (3.92)

K3 = (γ + 1)M8 −
(
2γ2 − 7γ − 5

)
M6 + 10 (γ + 1)M4 − 12M2 + 8β2

6β7 (3.93)

B3 = (γ + 1)M4 ((5− 3γ) + 4 (γ − 3)M2 + 8
)

48 (3.94)

At supersonic speeds, the fin tip will have a Mach cone extending from it with an
angle

µ = tan−1
( 1
β

)
. (3.95)

Barrowman assumes that the effects of the Mach cone extending from the fin tip
half the value of the coefficient of pressure found in Equation (3.90). Ratios are set up
based on the location the Mach cone intersects a strip to account for this effect, termed
ri. When no Mach cone effects are present, ri is equal to zero. When the Mach cone
completely envelopes a panel, ri is one. See Barrowman [15] for a full description of all
conditions of ri when the Mach cone partially covers a panel.

The normal force of a panel can be expressed as

F ′Ni = CPidi

(
1− ri

2

)
(3.96)

and the wave drag force as

F ′DWi
= CPini

(
1− ri

2

)
, (3.97)

where the prime is used to indicate that the force values are normalized by dynamic
pressure and strip width ∆y. The pitching and roll moments are

M ′pi = F ′NiX̄i , (3.98)

M ′ri = yF ′Ni (3.99)
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with the location of the center of pressure of a single strip equal to

X̄i =
1
2

(
1− ri + ri

2 + XP
li

(2− ri)
)

1− ri
2

. (3.100)

These are summed for each strip to determine the normal force, wave drag, pitching
moment, and roll coefficients of a single fin as

(CN )1 =
ΣF ′Ni∆y
Aref

, (3.101)

(CDW )1 =
ΣF ′DWi

∆y
Aref

, (3.102)

(Cm)1 =
ΣM ′pi∆y
ArefLref

, (3.103)

(Cl)1 =
ΣM ′ri∆y
ArefLref

. (3.104)

The center of pressure location of a single fin is calculated as

(
X̄CP

)
1

=
ΣM ′pi

ΣF ′Ni cosα (3.105)

(
ȲCP

)
1

=
ΣM ′ri
ΣF ′Ni

. (3.106)

The roll damping moment coefficient derivative in supersonic flow is found by

Clp = 1000N(Cl)1 (3.107)

The skin friction coefficient of the laminar region in supersonic flow is

Cfc = Cf
(1 + 0.045M2)1/4 (3.108)

and in turbulence is estimated by

Cfc = Cf
(1 + kM2)0.58 (3.109)
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where k depends on the wall temperature of the fin. I assumed no fin cooling. When
there is no fin cooling, a value of k = 0.15 is used. For rough surfaces, the correction

Cfc = Cf
1 + 0.18M2 (3.110)

is used. The supersonic skin friction coefficient is used in Equation (3.77) to calculate
(CDf )T . The value of (CDL)T is computed using Equations (3.78) and (3.79). The base
drag is computed as

(CDB )T =
0.135N

(
ABf
Aref

)
C

1/3
fB

(K −M2 cos2 Γc)1/2
. (3.111)

Each of the drag components are summed to calculate drag from the tail

(CD)T = (CDf )T + (CDL)T + (CDB )T + (CDW )T . (3.112)

3.1.8.2 Body Section

The body of the vehicle is analyzed for three types of components: a nosecone, a cylindrical
airframe, and a set of conical frustums that can be used to transition between airframe
diameters.

Subsonic Flow: In subsonic flow for low angles of attack, Barrowman derives the
equation

(CNα)i = 2
Aref

(Aaft −Afor) , (3.113)

for the ith body section, where Afore and Aaft represent cross sectional areas of the fore-
most and aft-most ends of a component [15]. The cross sectional area does not change
for a cylindrical component, therefore the normal force of these components are zero for
small angles of attack. For a nosecone, the cross sectional area at the tip is zero and the
resulting derivative of the normal force coefficient is

(CNα)i = 2ABN
Aref

(3.114)
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where ABN is the area of the base of the nosecone. By convention, this area is typically
selected as the reference area, though not required. The resulting normal force coefficient
of conical frustums with a smaller diameter at the aft end will be negative.

Barrowman also shows that the center of pressure location of a component is

X̄i = li −
Vi
Ai

(3.115)

where li is the distance of the leading edge of the ith component from the nosecone tip.
The pitch moment coefficient in subsonic flow for a body component is derived by

Barrowman as
(Cm)i = 2α

ArefLref
(liAaft − Vi) . (3.116)

Subsonic skin friction for the body is found the same as for the tail using Equa-
tions (3.71)-(3.76), except a correction must be applied because the body is not a flat
plate. The relation

(CDf )B =
(

1 + 0.5
fB

)
Cfc

AWB

Aref
(3.117)

is used to correct for the body not being flat, where fB is the fineness ratio [15].
The body pressure drag is expressed as

(CDP )B = 6AWB
Cfc

f3
BAr(K −m2).6 , (3.118)

where K is again a constant Prandtl factor, the calculation of K is provided by Barrow-
man [15]. The subsonic base drag is given by

(CDB )B =
0.29

(
AB
Aref

)
√
Cfc

(
AW
AB

)
(K −M2)

. (3.119)

Finally the total drag from the body section in subsonic flow is the sum of the
components,

(CD)B = (CDf )B + (CDP )B + (CDB )B . (3.120)

Supersonic Flow: Similar to the analysis of the fins, determining the aerodynamic
coefficients of the body in supersonic flow requires use of the panel method. A few



51

Figure 3.8: Fitting tangent panels to an arbitrary nosecone curve.

common nosecone shapes are: parabolic, conical, ogive, power series, and Haack series.
The method for analysis of the nosecone is independent of the shape chosen, but an
equation for the profile must be known. In this work, I analyzed a Von Kármán style
nosecone, which is a specific type of Haack series nosecones.

To perform the analysis, the nosecone is represented by conical tip followed by a series
of conical frustums. Each of the panels are drawn tangent to the nosecone. It is important
that the panels be tangent to the nosecone because the angle of the conical shock attacked
to the tip is a function of the angle of the nosecone vertex. Simply selecting points along
the nosecone profile as the ends of each panel will cause the accuracy to be dependent on
the size of the panel chosen [20]. An example of fitting the tangent panels to a nosecone
profile is shown in Figure 3.8. Figure 3.8 is for visual purposes, many more panels are
used in the actual analysis.

The conical nosecone tip is analyzed as a Taylor—Maccoll flow assuming a steady,
irrotational flow. In spherical coordinates with θ as the angle from the body axis, the
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Taylor—Maccoll equation is defined as

0 =γ − 1
2

(
1− V 2

r −
(
dVr
dθ

)2)(
2Vr + dVr

dθ
cot θ + d2Vr

dθ2

)
−

− dVr
dθ

(
Vr
dVr
dθ

+ dVr
dθ

d2Vr
dθ2

) (3.121)

with velocities non-dimensionalized by the free stream Mach numbers. This is a second-
order ordinary differential equation [18, 19]. After some algebra, the Taylor—Maccoll
equation can be expressed as

d2Vr
dθ2 = −Vr +

(a/a+)2(Vr + dVr
dθ cot θ)(

dVr
dθ

)2
− (a/a∗)2

(3.122)

with the quantity

(a/a+)2 = γ + 1
2 − γ − 1

2

√
V 2
r +

(
dVr
dθ

)2
. (3.123)

Presented in the form of Equation (3.122), the Taylor—Maccoll equation can be
solved numerically as a set of first-order differential equations using a Runge—Kutta
fourth-order method. The quantity dVr

dθ is equivalent to velocity normal to a ray extending
from the nosecone vertex. At the surface of the nosecone, I know that the only velocity
component can be in along the surface, therefore dVr

dθ must be zero at the surface [18, 19].
To solve the Taylor—Maccoll equation, I followed the procedure outlined by Ander-

son [19]:

1. Guess an initial angle of the conical shock extending from the nosecone tip. Ander-
son suggests to use the angle

δ(1)
s = δc + µ

2 , (3.124)

where µ is the free stream Mach angle given by µ = sin−1
(

1
M1

)
and δc is the half

angle of the nosecone tip.

2. Calculate the parameters immediately downstream of an oblique shock wave at the
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angle δs. To do this, I used the relations:

p2
p1

= 2
γ + 1

(
M2

1 sin2 δs −
γ − 1

2γ

)
(3.125)

ρ1
ρ2

= tanψ
tan δs

= 2
γ + 1

( 1
M2

1 sin2 δs
+ γ − 1

2

)
(3.126)

M+
2

M+
1

= sin δs
sinψ

( 2
(γ + 1)M2

1 sin2 δs
+ γ − 1
γ + 1

)
(3.127)

M+
1 =

√
(γ + 1)M2

1
2 + (γ − 1)M2

1
(3.128)

Vr = M+
2 cosψ (3.129)

dVr
dθ

= −M+
2 sinψ (3.130)

where the subscript 1 indicates a point just prior the oblique shock wave and 2 is
just after the shock wave.

3. Starting with the initial conditions at the oblique shock, integrate by taking small
steps ∆θ until the value of dVr

dθ equals zero. The angle where this occurs, δ(1)
c ,

represents the angle of cone that would cause the shock angle δ(1)
s .

4. It is likely that the angle δ(1)
c is not equal to the actual cone angle δc. The shock

angle should be updated according to

δ(i)
s = δ(i−1)

s +
(
δc − δ(i−1)

c

)
(3.131)

and the process repeated from step 2 until the value
(
δc − δ(i−1)

c

)
is within a

sufficiently small tolerance.

In a supersonic conical flow, the properties along a ray line extending from the vertex of
the cone are assumed to be constant [18, 19], therefore I can determine the flow properties
just prior to the first corner on the nosecone approximated by tangent panels.

After analysis of the nosecone tip, each subsequent conical frustum is analyzed with
a Prandtl—Meyer expansion fan at the corner. Here, I evaluate three critical points on
each conical frustum: just upstream of the corner of the previous frustum, immediately
downstream of the corner, and at the very end of the frustum. These points are denoted
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in subscripts as 1-3 respectively.
With the ability to solve for this flow information at any point using Taylor—Maccoll

for the tip and Prandtl—Meyer expansions for subsequent sections, Syvertson and Den-
nis [20] established a method for NACA to calculate the normal force coefficient. This
method is followed by Barrowman [15]. To do this, the pressure gradient along the surface
just after the corner is evaluated as(

∂p

∂s

)
2

= B2
r

(Ω1
Ω2

sin δ2 − sin δ2

)
+ B2
B1

Ω1
Ω2

(
∂p

∂s

)
1

(3.132)

with the quantities

B = γpM2

2(M2 − 1) , (3.133)

Ω = 1
M

1 +
(
γ−1

2 )
)
M2

γ+1
2


γ+1

2(γ−1)

. (3.134)

The pressure at any point along the frustum is determined by

p = pc − (pc − p2)e−η , (3.135)

η =
(
∂p

∂s

)
2

x− x2
(pc − p2) cos δ2

. (3.136)

where pc is the pressure on an equivalent cone tangent to the frustum at the same local
radius. This relation is used to find the pressure gradient along the surface at point 3
with (

∂p

∂s

)
3

= pc − p3
pc − p2

(
∂p

∂s

)
2
. (3.137)

For subsequent frustums, Equation (3.137) will be equivalent to
(
∂p
∂s

)
1
.

Finally, the nondimensional loading on the frustum is evaluated as

Λ = (1− e−η) tan δ dCN
dα

∣∣∣∣
tcx

+ λ2
λ1
e−ηΛ1 (3.138)

where Λ1 is the nondimensional loading of the nosecone tip,

Λ1 = tan δv
dCN
dα

∣∣∣∣
tcv

. (3.139)
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Using the same notation as Sylverston and Dennis [20], the subscript tcx indicates the
derivative is evaluated for the tangent cone and tcv is the value at the tangent cone
vertex.

The nondimensional loading is used to find the normal force coefficient derivative of
the body

(CNα)B = 2π
AB

∫ l

0
Λrdx (3.140)

and the pitching moment coefficient

(Cm)B = −2π
(
Aref
Lref

)−1 ∫ l

0
Λrxdx . (3.141)

The pressure drag caused by the body is calculated as

(CDP )B = 4
γM2

∫ L

0

∫ π

0
P sin δdφdx . (3.142)

The supersonic friction drag, (CDf )B can be found using the supersonic skin friction
coefficient from Equations (3.108)-(3.108) with the body friction drag in Equation (3.117).

The supersonic base drag is a piecewise function with two components. Below a
critical Mach number, Mcr, the base drag follows an exponential form. Above the critical
Mach number, the base drag follows an inverse square form,

(CDB )B =

C
∗
DB

(0.88 + 0.12e−3.58(M−1)) (1.0 ≤M ≤Mcr)

0.7 AB
Aref

/M2 (M > Mcr)
(3.143)

where C∗DB is a constant defined by Barrowman [15]. The critical Mach number is

Mcr = 0.892√
C∗DB

. (3.144)

Finally, the total drag from the body section in supersonic flow is expressed as the
sum of the components,

(CD)B = (CDf )B + (CDP )B + (CDB )B . (3.145)
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3.1.8.3 Tail-Body Interference

The tail in the presence of the body has a correction coefficient defined given by

KT (B) = 2
π (1− 1/τ)2

[(
1 + 1

τ4

)(1
2 tan−1 1

2

(
τ − 1

τ

))
−

− 1
τ2

((
τ − 1

τ

)
+ 2 tan−1

(1
τ

))] (3.146)

with the center of pressure located at X̄T (B) = X̄T . This is used to compute the normal
force coefficient (CNα)T (B) = (CNα)T KT (B).

The body in the presence of the tail has the correction coefficient

KB(T ) =
(
1− 1/τ2)2
(1− 1/τ)2 −KT (B) . (3.147)

This is used to compute the normal force coefficient (CNα)B(T ) = (CNα)T KB(T ). If the
condition

βAR(1 + λ)
( 1
βm

+ 1
)
> 4 (3.148)

where m = cot ΓL is true, then a correction for the Mach cone extending from the fin
tips is required. In this case, I used

(CNα)B(T ) = K ′B(T )β(1 + λ)(τ − 1) , (3.149)

where K ′B(T ) is defined by Pitts et al. in a NACA report [21].
To find the center of pressure location, I use the definition

X̄B(T ) =
(

(Cmα)B(T )
(CNα)B(T )

)
d (3.150)

and calculate the pitching moment coefficient as

(Cmα)B(T ) =


−8(mβ)3/2

Arefπβ(βm+1)
∫ d
0 dy

∫ cr
βy
x cos−1

(
x/β−βmy
mx−y

)
dx mβ < 1

−4mβ
Arefπβ

√
β2m2−1

∫ d
0 dy

∫ cr
βy

(
x
√
x/β+y√
mx−y

)
dx mβ > 1

. (3.151)
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Pitts et al. [21] compute the integrals in Equation (3.151) for several common fin shapes.
The interference factor caused by fin cant can be computed as

kT (B) = 1
π2

[
π2(τ + 1)2

4τ2 + π(τ2 + 1)2

τ2(τ − 1)2 sin−1
(
τ2 − 1
τ2 + 1

)
− 2π(τ + 1)

τ(τ − 1) +

+ (τ2 + 1)2

τ2(τ − 1)2

(
sin−1 τ

2 − 1
τ2 + 1

)2

− 4(τ + 1)
τ(τ − 1) sin−1 τ

2 − 1
τ2 + 1+

+ 8
(τ − 1)2 ln

(
τ2 + 1

2τ

)]
.

(3.152)

This is used to compute the roll moment coefficient as (Clδ)T (B) = (Clδ)T kT (B).
The interference factor for roll damping in the presence of the body is

kR(B) = 1 +
τ−λ
τ −

1−λ
τ−1 ln τ

(τ+1)(τ−1)
2 − (1−λ)(τ3−1)

3(τ−1)

. (3.153)

This is used to compute the roll damping moment coefficient Clp =
(
Clp

)
T
kR(B).

With the vehicle traveling at a velocity V and a pitch rate q, a local velocity is
produced across the tail from the rotation. This produces a damping moment,

Cmq = (CNα)T (B)
q(∆x)2

V Lref
(3.154)

where ∆x is the distance from X̄T (B) to XCG .

3.1.8.4 Implementation

The normal force coefficient derivatives are combined to find the vehicle normal force
coefficient,

CNα = (CNα)B + (CNα)T (B) + (CNα)B(T ) . (3.155)

The vehicle coefficient of drag is the sum of the components,

CD = (CD)B + (CD)T . (3.156)
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Similarly, the pitch moment coefficients is

Cm = (Cm)T + (Cm)B . (3.157)

The pitch damping moment coefficient, roll moment coefficient, and roll damping moment
coefficient have only a single component and are the overall vehicle coefficients.

By applying a sum of the moments produced by each normal force component, the
location of the vehicle center of pressure can be solved by

X̄CP =

(
X̄CP

)
B

(CNα)B +
(
X̄CP

)
T (B)

(CNα)T (B) +
(
X̄CP

)
B(T )

(CNα)B(T )

CNα
. (3.158)

The standard Barrowman method for subsonic and supersonic flow was implemented
for aerodynamic coefficients. Barrowman makes no attempt to model the transonic
region, where many of the coefficients become undefined as β goes to zero. Niskanen
does not state the method used to correct for the transonic regime in OpenRocket [13].
By viewing the OpenRocket source code, it appears that a fifth-order polynomial is fit
in the transonic regime; however, it is unclear where the coefficients in this polynomial
come from. OpenRocket provides warnings in the transonic and supersonic regimes that
the software may not be perfectly accurate, so I did not adopt this method for modeling
the transonic regime. Rogers and Cooper [14] do not state the model used in RASAero
II for the transonic regime, and the source code for RASAero II is proprietary. However,
I analyzed the aerodynamic coefficients output from RASAero II and it appears to be
a linear model through the transonic region for normal force coefficient derivative and
coefficient of drag. Because the vehicle spends very little time in the transonic regime, I
assumed this linear fit to be reasonably accurate in my implementation. I compared my
implementation to the Rogers Modified Barrowman method [14] for reliability.

3.1.9 Center of Gravity Modeling

The unloaded, or dry center of gravity can easily be calculated given locations and masses
of the vehicle using

X̄CG = ΣmiXi

Σmi
. (3.159)
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Shown in Equation (3.159) is how the center of gravity location can be computed for i
components where the component masses are mi and the component center of gravity is
located a distance Xi from the base of the vehicle.

During the engine burn, the center of gravity will change based on the volume of fuel,
oxidizer, and pressurant gas present in the tanks. This is clearly shown in Figure 3.9.
With the amount of oxidizer, fuel, and pressurant gas in the tanks known at any given
point, the overall vehicle center of gravity can be solved for at all points during flight using
Equation (3.159) with the structures center of gravity and the center of gravity of both
volumes of fluid. Note that while Figure 3.9 displays the center of gravity consistently
moving up, there is a period of time at the start of flight where the center of gravity will
move down. This is caused by a larger volume of oxidizer being displaced from the top
of the oxidizer tank (due to O/F ratio).

This method of calculating center of gravity does not account for changes in center
of gravity due to propellant slosh or vortices in the tank. I assumed the effects to be
relatively small because they only affect the surface of the fluid.

3.1.10 Recovery Modeling

I implemented a simplistic recovery model in this work. The design uses a dual-deploy
parachute system for recovery. A small drogue parachute is deployed at apogee via a
carbon dioxide (CO2) ejection system. The CO2 ejection system uses a small canister
of compressed CO2 that is released into the parachute bay, increasing the pressure until
several shear pins have been sheared and the two sections of the vehicle are separated.
This ejection is considered to be instantaneous, as is inflation of the parachute.

The vehicle descends from apogee under drogue parachute at a safe and controlled
descent speed until it reaches a lower altitude for deployment of the main parachute. The
main parachute is similarly ejected using CO2 and assumed to inflate instantaneously.

Each of the parachutes selected are sized to achieve a desired terminal velocity, where
the force of gravity pulling the vehicle down is balanced by the force of drag pulling the
vehicle up. Rewriting these forces to solve for terminal velocity provides

vterminal =
√

2mg
CDAparachuteρ

. (3.160)
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CG, oxidzer
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CG, pressurant CG, pressurant

Figure 3.9: Changing center of gravity during engine burn.
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The sizes of the parachutes is directly correlated to the mass of the parachute, the
parachute bay size, and therefore the CO2 ejection charge size. Therefore, proper sizing
of the parachutes has a directly impacts the performance of the vehicle during ascent.
Specifics of parachute sizing is outlined in [8, 10].

For a vehicle that leaves the atmosphere, a drogue parachute deployed at apogee will
not begin to slow the descent of the vehicle until it reaches a denser atmosphere. At
this point, the vehicle could be traveling at supersonic speeds. This will significantly
change the drag coefficient of the parachute. However, parachute drag coefficients were
considered constants across all Mach numbers within the scope of this work. This adds
error in descent times and drift radii, however these are not primary objectives of the
flight simulations performed and therefore I considered this acceptable. Additionally,
the tethered sections of the vehicle are a multi-body dynamics problem [29]. Again,
precise recovery modeling is not a primary objective. Therefore, multi-body dynamics
were neglected in favor of a simple 3DoF model of the entire tethered system using only
gravity and wind forces during recovery.

3.2 Vehicle Design

This section will discuss the design of a launch vehicle. Specifically, I focus on developing
methods for designing the optimal vehicle to reliably complete a mission. Section 3.2.1
focuses on methods developed to optimize several high level vehicle parameters. However,
the optimization performed requires numerous high level vehicle decisions to be made
that are not considered in the optimization. These early design decisions mean that even
if the parameters are able to be perfectly optimized, the resulting vehicle design is not
necessarily the optimal design.

A complex system design, like a launch vehicle, can be modeled as a tree. Each layer
of the tree represents a specific high level design decision to be made. These choices
may have cascading effects on the resultant design. To complete a high level design, a
selection must be made at each level of the tree until there are no deeper levels. Shown
in Figure 3.10 is an example of how a designer might layout a tree for a launch vehicle
design.
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Figure 3.10: An example design tree for a launch vehicle with many distinct choices that
could be made at each level. The tree is not fully expanded at any level.

The size of the tree shown in Figure 3.10 is for a discrete number of high level design
decisions and the number of alternatives associated with each design. However, a designer
could feasibly continue to add many additional layers of detail on each design decision.
The number of states in the tree follows the relationship

states = bNeff (3.161)

for an effective branching factor beff and number of layers in the tree N . This quickly
becomes too large to feasibly explore the entire tree to find the best design. Often in
the case of complex system design, component selection trees are indefinite and search
methods must be used to explore them [51].

Even a finite tree can quickly become large enough that an exhaustive search of all
possible combinations within the tree can become intractably large. Methods such as
Dijkstra’s algorithm [52] and A∗ [53] can search a finite tree and guarantee an optimal



63

result without requiring a full search of the tree. However, both Dijkstra’s algorithm and
A∗ require establishing a transition cost to go between each node in the graph. Addi-
tionally, A∗ can reduce computation time further but requires establishing an admissible
heuristic. If transition costs and admissible heuristics are established, the A∗ method is
guaranteed to find the most optimal solution within the tree.

Simple transition costs such as expected financial cost or weight added to the vehicle
are possible for developing heuristic and transition costs. However, there are many trade-
offs which are difficult to quantify by these simple metrics in complex system design.
When deciding a propellant type for example, N2O4 and MMH may be less desirable
due to the safety concerns associated with hypergolic propellant despite any performance
benefits it may have over alternatives. A safety concern would not easily translate to a
transition cost. Short et al. refers to this concept as opaqueness in the tree [51]. They
demonstrated that genetic algorithms can be useful in searching opaque design decision
trees.

Another method to compare alternatives where multiple characteristics may influence
the decision is weighted Pugh charts [54]. Weighted Pugh charts were used in the context
of this work for their simplicity and ease of implementation, though implementation of a
tree search method could improve the overall design.

Lastly, some design decisions are not subject to further evaluation due to sunk cost.
This is a poor choice for finding an optimal design. However, there is a time in the
design process where the design is too mature and costly to change the design, despite
possible benefits. In this case, settling for a sub-optimal solution may result in a more
successful final product. An example of this could be propellant choice in the Oregon
State liquid engine development program, where significant time and resources have
gone into developing engine test infrastructure specific to a kerosene and LOx propellant
combination. Switching propellants may feasibly provide benefit on paper, but would
result in significant rework of the test infrastructure, loss of useful test data, and become
a major schedule risk that could ultimately jeopardize the success of the project.

I considered implementing tree search optimization for high level vehicle decisions, but
ultimately decided that it is outside of the scope of this work because of the complexities
associated with developing clear transition and heuristic costs for the tree, accompanied
with the sunk cost challenges for a program that is already underway. Instead of con-
ducting tree search optimization, we used Pugh charts to compare trade-offs between
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alternatives and detailed analyses were conducted where appropriate in [8–10]. Despite
not implementing it in this work, I felt tree search warranted brief discussion for possible
future work on search algorithms within the design tree. A few design choices are briefly
described, though these choices are far from exhaustive and not covered in significant
detail within the scope of this work.

Thrust Vector Control System: A thrust vector control system uses a pair of linear
actuators to gimbal the engine and change the direction of thrust. This can be used to
actively steer the vehicle during flight. Thrust vector control systems are applied to all
commercial launch vehicle designs to actively guide the vehicle and ensure the payload is
placed in the proper orbit. An additional benefit of thrust vector control systems is active
stability control. Instead of relying on fins to lower the center of pressure and maintain
stability, the thrust vector control system can actively maintain the orientation of the
vehicle and eliminate the need for fins, which reduces drag and provides mass savings for
the vehicle.

For the mission of focus in this work, thrust vector control is not needed because the
vehicle does not have to fly on a specific trajectory to reach an orbit—it merely needs to
reach a target apogee altitude. However, if thrust vector control is not used, the passively
stable vehicle will rotate into the direction of relative wind. As the flight path angle
deviates from vertical, apogee altitude is significantly reduced.

At the time of this writing, work on a thrust vector control system for the vehicle
of focus in this report has begun at Oregon State University [47]. However, the thrust
vector control system will require significant development testing, which could lag behind
the rest of the development of the vehicle. Therefore, it is beneficial to develop a design
which is functional without reliance on a thrust vector control system. If the thrust vector
control system testing is completed in time, it can be integrated into both the vehicle
design and the simulations presented in this work. I do not present details within this
work, simply noting it presents an interesting branch in the design tree of Figure 3.10
that could warrant future study.

Reaction Control System: A reaction control system is used to react to system
changes as they deviate from nominal trajectory. Reaction control systems as applied
to the design of focus in this work is useful for controlling vehicle roll. Vehicle roll is
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particularly important with liquid propellants, because liquid motion caused by tank
rotation can allow gas bubbles to enter propellant lines and reach the engine during
combustion. This can cause combustion instability with the possibility of damaging the
engine, therefore it may need to be mitigated.

Two common forms of reaction control systems are reaction wheels and gas thruster
systems (cold and hot). Reaction wheels operate by have a set of three wheels with
discrete mass that are spun to a high speed prior to launch. If roll is experienced during
flight, the reaction wheels can speed up or slow down which will change the roll rate
of the vehicle due to conservation of angular momentum in the entire system (reaction
wheels and overall vehicle). Alternatively, gas thruster systems work by storing some
form of propellant which is directed out of a nozzle in the direction to be controlled. Cold
gas thruster systems can be very simple, consisting only of compressed gas, a valve, an
actuator, and a nozzle. Meanwhile, hot gas thruster systems can be more complicated as
they rely on combustion of a fuel and oxidizer propellant to accelerate the fluid further,
getting more roll control capability for the same mass of propellant than the cold gas
thruster variant. Both cold and hot gas thrusters must be used in pairs on opposite sides
of the vehicle to apply a moment.

At the time of writing this thesis, minimal work has been conducted by Oregon State
University to design a reaction control system, but it is not required for mission success.
Again, I do not present details of roll control within this work besides noting the branches
in Figure 3.10 present significant opportunity for further study.

3.2.1 Design Optimization

Typically in a design process, the designer would always prefer to find the optimum design.
In many cases, the optimum is related to the cost which will directly impact the profit
of producing the design. There are often cases where finding the perfect optimum is not
desired, because cost of analysis will begin to exceed the opportunity of cost reduction.
Though many optimization algorithms have been developed, real world design problems
are rarely well suited to apply these algorithms simply. According to Arora, up to 50%
of time spent optimizing a design may be in properly establishing the exact specifics of
the design problem [57]. However, there are cases where determining the optimum design
will provide significant improvement in the design that justifies performing the analysis.
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Optimization of a launch vehicle is one such case; the opportunity for improvement can
simplify designs, reduce probability of failure, and reduce costs.

A standard formulation of optimization problems is to identify the best set of design
variables x to minimize an objective function f(x) [57]. Maximization problems can
easily be re-written as minimization problems, therefore I focus primarily on minimization.
The objective function may additionally be subject to a set of constraints that impose
restrictions on the feasible design space. Constraints are typically formulated in negative-
null form. For the nth constraint imposed on the design problem, this is typically written
as gn(x) ≤ 0. In some cases, equality constraints may be expressed as hn(x) = 0.
Equality constraints were unnecessary in the context of this work, so I do no treat them
in significant detail.

For the design space, x, each design variable xi has a feasible set that may be evaluated.
For many engineering problems, the feasible set of a design variable is 0 ≤ xi ≤ ∞ as
negative values for length, time, mass, etc. do not make physical sense. However, this is
not a strict requirement imposed on most optimization techniques. Additionally, some
design variables may be discrete. Examples of discrete values in engineering design are
material properties, which are fixed for a specific material but many options may be
available.

The result of optimization methods are the optimizer of a set of design variables, x∗,
which results in the optima of the objective function such that f(x∗) ≤ f(x) for all values
of x in the feasible design space [48, 49, 57]. In practice, optimization methods typically
fall into two categories: local and global optimization methods. In a convex problem, a
local optima is guaranteed to be the global optima. For certain problems, convexity can
be analytically determined. However, it is often difficult or impossible to determine the
convexity of a problem [57].

In certain problems, a local optima may be satisfactory. An example of a problem
where local optima may be satisfactory could be packing numerous odd shaped objects
into the smallest area or volume, which can have many near-optimal solutions based on
the large number of combinations of rotations and placements of each object. Sometimes,
the difference between many of the local optima and the global optima may be only a few
percent, therefore the additional complexity of implementation of global optimization
methods may be determined to be unnecessary by the designer. Local minimization has
a significant benefit that if an arbitrary point x does not meet the KKT conditions, it is



67

guaranteed to not be a local minima [48, 49].
Though local optima may be satisfactory in some cases, designers typically prefer

to find the global optima. However, if the problem cannot be shown to be convex, it is
difficult to guarantee a global optima. Unlike the KKT conditions for local optima, there
is no general expression that can be written to guarantee an optimization method has
found a global optima [57]. This makes determining convergence of global optimization
methods difficult. The added complexities of global optimization methods may make
the designer favor local optimization methods where global optimization methods are
unnecessary. If the problem cannot be shown to be convex and the designer attempts to
find the global optima, it would be good practice for a designer to compare the solution of
a fully converged local optimization technique to the final result of the global optimization
methods used.

An additional optimization challenge arises in trying to verify KKT conditions even
for a local minima. The KKT conditions depend on gradient information of the objective
function. In this case, the objective function is considered a black-box and I cannot
express gradient information analytically. The gradient of the objective functions could
be computed using finite differences, but I did not implement this in the current work.

One of the few approaches to guarantee a global optima is to conduct an exhaustive
search on the entirety of the feasible design space. If the entire design space is searched,
then the best result is guaranteed to be the global optima. For continuous design variables,
there are infinite values that each design variable may theoretically have which makes
an exhaustive search impossible. In engineering contexts, discretization of the design
variables may still make sense. However, exhaustive methods quickly become intractably
large based on the number of the design variables and the size of each set.

This section is intended to detail methods which can be used to search for a globally
optimal high level design for a launch vehicle, subject to several important constraints.
Determining the optimal high level vehicle design parameters is important because these
will have cascading effects on all lower level designs as they continue to be refined and
improved. This optimization assumes design performance can be approximated using the
methods developed in Section 3.1. Note that the vehicle optimization is for performance
subject to the models I previously selected, therefore my optimization results are critically
dependent on the accuracy of previous model selection.
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3.2.1.1 Objective Function

Before beginning an optimization, it is important to establish a clear objective. There are
many potential objectives that could provide results of interest, such as minimizing cost
of the vehicle or minimizing the dynamic pressure to reduces stresses within the vehicle.
One objective is particularly interesting is minimization of propellant mass. By reducing
the propellant mass, the tank sizes can be reduced, which lowers the overall mass of the
vehicle, therefore requiring even less propellant. This phenomenon is sometimes referred
to as the tyranny of the rocket equation. Minimizing propellant was selected as the
optimization problem of interest, however the same methods could be applied to differing
objective functions if desired. The unconstrained objective function can be expressed as

min f(x) = mpropellant . (3.162)

3.2.1.2 Design Variables

Three high level design variables are selected as the focus of the optimization problem.
These variables represent key parameters to the vehicle that have cascading effects on
all subsystems within the vehicle, some of which could become their own optimization
problems. Three design variables have been selected: engine burn time, propellant mass
fraction, and vehicle outer diameter. The engine burn time is the time before a propellant
is fully expended. For an engine with constant propellant mass flow rate, engine burn
time can be expressed as

tburn = mpropellant
ṁpropellant

. (3.163)

The propellant mass fraction is the ratio of the mass of propellant to the mass of the
entire vehicle,

ζ = mpropellant
mtotal

= mpropellant
mstructures +mpropellant

= mpropellant
mfixed +mscaling +mpropellant

. (3.164)

And lastly the outer diameter, OD, is simply the outer diameter of the airframe. I
assumed the outer diameter of the propellant tanks is equal to the outer diameter of the
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vehicle, where the tanks serve as a critical structural component in the airframe. Changes
to this assumption would result in changes to the OD variable.

In accordance with common notation for optimization, the design variables are ex-
pressed as a vector,

x =


x1

x2

x3

 =


tburn

ζ

OD

 . (3.165)

3.2.1.3 Design Constraints

After establishing an objective, I established constraints for the vehicle. These constraints
relate to requiring the mission objective to be met as well as performance parameters
of the vehicle. I evaluated each of the constraints using a penalty method applied to
the objective function. I used a square penalty method, where constraint violation is
squared and added to the objective function. Alternatives such as infinite barrier penalty
method are not ideal, due to limitations on optimization methods which rely on the design
space being smooth and differentiable. Throughout this section, the target subscript is
placing an upper or lower limit on constraint value, it does not correspond to a value
that candidate designs are trying to meet.

One constraint imposed on the vehicle is related to engine performance. This opti-
mization was completed assuming it is for an engine of known performance. There are
strict limitations placed on engine development at Oregon State University that limit
maximum thrust of the engines tested, therefore it is unnecessary and not useful to design
a vehicle for an engine that cannot be developed and tested. To enforce this constraint,
it is simply imposed through simulation parameters relating to the engine performance
that are unchanging. In design studies where engine performance is unknown, engine
parameters could be added as design variables with the same process repeated.

An important constraint is that the apogee altitude must meet or exceed the Kármán
line (100 km). Due to the computational expense of evaluating mission reliability under
varying wind with methods such as Monte Carlo simulations, I decided to adjust the
apogee altitude constraint to allow margin for wind losses. The constraint target altitude
was adjusted to be htarget = 120 km. For consistency between samples, I used the US
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Standard Atmosphere (1976). The value of htarget was made somewhat arbitrarily and
could be adjusted based on design reliability results if necessary.

Additionally, the mass margin is the allowable mass the vehicle can increase by and
still achieve the mission goals. From Equations (3.163) and (3.164), a maximum allowable
structures mass (where structures mass is the mass of everything that is not propellant)
can be defined as

mstructures,max = (ζ − 1)mpropellant . (3.166)

The mass margin is defined by

mmargin = mstructures,max −mfixed −mscaling (3.167)

where mfixed represents masses that do not change based on the design parameters, such
as avionics or parachutes, and mscaling represents masses that change based on the design
parameters, such as the size of propellant tanks. The primary mass considered as a
scaling mass are fuel and oxidizer tanks, though the airframe and nosecone do change
in mass as well. Any design with a negative mass margin is infeasible, so the target
mass margin is selected as mmargin,target = 1 kg which allows for slight violation of the
constraints to still result in a feasible design. This value could be adjusted for preliminary
analyses and assessed as a much larger target margin when other subsystem masses are
only rough estimates.

Lastly, the aspect ratio (used interchangeably with fineness ratio in the context of
this work) of the vehicle is

AR = L

OD
. (3.168)

For high values of aspect ratio, structural issues become highly relevant and can introduce
failure modes. Particularly, the first mode of the natural frequency of the vehicle tends to
lower as the aspect ratio is increased. To eliminate analysis and constraints on the natural
frequency, an aspect ratio constraint is simply placed as a maximum of ARtarget = 20.

Each of these can be re-written as a constraint in negative-null form. Though the
design variables x do not directly appear in any constraints, each of these constraints are
explicitly evaluated as a function of the design variables and become an output to the



71

flight simulation. The apogee altitude reached must be greater than the target apogee,
the mass margin must be positive, and the aspect ratio must not be too large. In negative
null form, these constraints are summarized as

g1(x) : htarget − hapogee ≤ 0 (3.169)

g2(x) : mmargin,target −mmargin ≤ 0 (3.170)

g3(x) : AR−ARtarget ≤ 0 (3.171)

To enforce these constraints, the simple objective function described in Equation (3.162)
is adjusted as a square penalty method. Therefore, Equation (3.162) is re-written as

minf(x) =mpropellant + max(0, htarget − hapogee)2+

+ max(0,mmargin −mmargin,target)2 + max(0, AR−ARtarget)2 .
(3.172)

When no constraints are violated, all values of the constraint values are negative and
Equation (3.172) simplifies to Equation (3.162).

3.2.1.4 Problem Bounds

Before testing any optimization algorithms, I checked to see that the problem is well
bounded. If the problem is not bounded, the design variables will go to zero or infinity,
neither is physically meaningful in this case. To do this, I must be able to show that each
design variable must have some minimum non-zero value or some maximum non-infinity
value.

The apogee altitude is enforced as a constraint which represents a change in potential
energy from launch to the apogee altitude based on the mass of the vehicle. This change
in energy must come from the stored chemical potential energy in the propellant,

∆Echemical = ∆Epotential + Elosses (3.173)

where Elosses is the energy loss due to phenomena such as friction, non-vertical flight,
angular momentum, and combustion efficiency. The stored chemical potential energy
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monotonically increases as the propellant mass increases. Therefore, the stored chemical
potential energy must be minimized to minimize the propellant mass, but the required
change in potential energy to reach the target altitude imposes a strict minimum on the
stored chemical potential energy. Therefore, I have imposed a strict minimum on burn
time for a constant mass flow rate based on Equation (3.163).

The propellant mass fraction shown in Equation (3.164) varies between zero and
one. There is some non-zero minimum propellant mass to achieve the mission based on
change in chemical potential energy. Additionally, there are structures masses from the
weight of both scaling and fixed components. Therefore, the propellant mass fraction
is bounded between zero and one, but can never reach either zero or one. Referencing
Equation (3.164), it is apparent that the propellant mass fraction monotonically decreases
as the objective function decreases. Therefore, the global optima will minimize mass
fraction.

The last design variable to consider is outer diameter of the vehicle. This is less
straightforward to determine if it is bounded. By considering the mass of a thin-wall
cylindrical tank2 increases proportional to the diameter of the tank,

mcylinder = πDLtwallρmaterial. (3.174)

However, the internal volume of a cylinder increases with the square of the diameter of
the tank,

Vcylinder = π

(
D

2

)2
L. (3.175)

Therefore, increasing tank diameter will reduce the tank mass for the same volume of
propellant because the tank length is able to be reduced. Figure 3.11 is the result of
varying tank diameter for 112 kg of propellant mass with 0.19 in. thick tank walls
(arbitrary choices). In Figure 3.11, end cap masses are included that are not represented
in Equations (3.174) and (3.175). By increasing the diameter of the tanks, ∆Epotential

in Equation (3.173) is able to be reduced which means less propellant required for the
2Equations are presented for a cylindrical tank with no end caps for simplicity in presenting problem

bounds. The actual optimization was performed assuming hemispherical end caps on each tank with the
same thickness as the tank wall. Hemispherical end caps are a reasonable approximation of the flight
vehicle tank design.
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Figure 3.11: Tank masses with varying diameter.

same losses.
Vehicle drag also increases with the square of diameter, therefore reducing tank

diameter will minimize drag losses. Vehicle drag increases energy losses and is described
by

FD = 1
2CDπ

(
D

2

)2
ρv2. (3.176)

Therefore, reducing tank diameter will minimize the Elosses in Equation (3.173) which
would reduce the propellant required for the same change in potential energy. These two
competing effects from varying outer diameter bound the variable and prevent it from
ever going to zero or infinity.

Each of the design variables have shown to be bounded either through monotonicity
or through competing effects on the objective function. Therefore, I can conclude before
proceeding into the optimization that the problem is well bounded.
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3.2.1.5 Optimization Method Selection

Each optimization problem can have a method that is most appropriate for the problem.
Selection of the most appropriate optimization method could result not only in significant
reduction in computational expense, but also improved optima. My first optimization
method selection criteria is to only use methods which do not rely on gradient infor-
mation. The objective function is treated as a black-box and no gradient information
is known. The gradient could be approximated using finite differences, however this
becomes computationally expensive by requiring many neighboring objective function
evaluations. Instead, optimization methods such as direct search methods are favorable.

As with most optimization problems, I am interested in finding the global optima.
However, because performance of each design is tested through running an entire flight
simulation, it is computationally expensive to get a single function evaluation and gra-
dient information about the objective function is unknown. I also do not know if the
objective function is multi-modal or convex, a convex problem would greatly simplify
the optimization and narrow the optimization method selection. These characteristics
limit the scope of applicable optimization methods primarily to stochastic optimization
methods and methods which optimize surrogate models.

I selected four optimization methods that met these criteria for comparison: Random
Hill Climb (RHC), simulated annealing, particle swarm optimization, and Bayesian
optimization.

Simplifications & Assumptions: To identify the best optimization method for the
problem, I used a simplified version of the flight simulation that reduced computation time
of a single function evaluation from approximately 30-40 seconds down to approximately 1-
2 seconds. These simplifications only apply to the method selection of this work. Because
of these simplifications, the optimization method selection is only useful in identifying
the optimization method for the context of this problem. Some of the most notable
simplifications included:

• Vertical flight only

• Constant thrust

• Constant drag coefficient
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Table 3.5: Initial vehicle design parameters.

Parameter Symbol Value
Propellant Mass Fraction ζ 63%
Outer Diameter OD 12 in.
Burn Time tburn 35 s
Propellant mass mpropellant 112 kg
Apogee Altitude hapogee 136.2 km
Aspect Ratio AR 18.9
Mass Margin mmargin 3.3 kg

Another assumption applicable to both the optimization method selection and the
optimization results is that each of the models selected closely match the actual perfor-
mance and environment conditions the vehicle will undergo during flight. Therefore it
is important to compare models to test data whenever possible to verify they accurately
reflect reality. Each of the models described in Section 3.1 are subject to assumptions of
their own, which cascade to the optimization performed.

Initial Design: During development and testing of the flight simulation, an initial
design was found which had good performance and did not violate any constraints. I
found this design through trial and error, so it is likely there are designs with lower
objective functions. It is useful to have an initial feasible design for some optimization
methods tested, this design is used as the starting point for all optimization techniques
which require an initial starting point. The initial design parameters and performance
are summarized in Table 3.5.

Random Hill Climb: The RHC method starts at a specific point and attempts to
transition to a random neighbor to find an improved point in the design space [55]. If
the neighbor point is an improvement on the original point, the algorithm accepts the
transition. If the neighbor point is worse, the algorithm rejects the transition and stays
in the same space. This method is subject to finding only local optima and to getting
stuck in flat regions of the design space.

This method involves establishing discrete transition sizes which can be considered.
In testing RHC, I used a total of four transition sizes and applied to each design variable.
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An initial starting point is given, then a random number is generated, which corresponds
to a specific transition that represents the new search direction, d. The objective function
of this new point is evaluated, if it is improved from the current point then the algorithm
moves to this point. This process is repeated many times, which results in movement
towards a local optima.

Because transition sizes are independent of the design variable, it is important to
have design variables that are approximately on the same order of magnitude. The
design variables are normalized by converting engine burn time to minutes and vehicle
outer diameter to meters, which places all design variables in the range of zero to one
for any reasonable design alternative. The transition sizes were then established as:
[0.05, 0.01, 0.001, 0.0001] with search directions of positive or negative in each design
variable. This totals 24 possible transitions that RHC could evaluate from any specific
point, stored in a vector τ . If RHC fails to find an improved neighbor after 24 failed
evaluations, I exhaustively search each of the neighboring points and a transition is made
if any improved neighbors are found. Otherwise, I assume it has reached the optima and
returns the design variables and the objective function.

A convergence criteria for RHC is the maximum number of function evaluations.
Another criteria is to perform an exhaustive search of all neighbors after a set number of
successive failed evaluation in a row. If the exhaustive search finds an improved neighbor,
the transition is performed and the algorithm continues. Shown in Algorithm 3.2 is
sample pseudo-code for RHC.

I first tested RHC from the initial design point in Table 3.5 and found an improved
optima with relatively few function evaluations and short computation time. Several
more random start points were generated and tested which found different solutions, this
demonstrated that the design space was not convex. Table 3.6 displays the optima found
by each RHC test.

The benefits of RHC are that it is a very simple algorithm which is capable of quickly
finding a local optima. However, RHC has no ability to find a global optima unless
it is able to start nearby. Testing several points demonstrated that the design space is
multi-modal when they converged to different solutions. A significant weakness of RHC is
that I do not know how many random points should be tested to thoroughly explore the
space, and each additional point increases computation time and function evaluations.
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Algorithm 3.2: Random Hill Climb
1 Input: x0
2 Result: x∗, f(x)∗ k = 0
3 x = x0
4 f = f(x)
5 τ = {τ0, τ1, ..., τn}
6 while not converged do
7 d = rand(τ )
8 xnew = x+ d
9 fnew = f(xnew)

10 k = k + 1
11 if fnew < f then
12 x = xnew
13 f = fnew

14 check for convergence
15 x∗ = x
16 f(x)∗ = f

Table 3.6: Random hill climb performance with different starting points.

Optimization
f(x) mpropellant ζ

tburn OD Function Time
Starting Point (kg) (s) (in.) Evaluations (min)

Initial Design 106.0 106.0 0.630 33.13 11.61 122 2.52

Random
Start Point 1 103.3 103.3 0.610 32.28 10.68 164 2.96

Random Start
Point 2 129.1 128.6 0.674 40.20 15.25 162 3.30

Random Start
Point 3 118.6 118.6 0.653 37.06 13.55 177 2.86
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Simulated Annealing: The simulated annealing algorithm is analogous to annealing
and crystal formation in macroscopic materials [56, 57]. At temperatures far above the
freezing point, the materials are typically in a high energy state such as austenite. In
this state, the atoms are more readily able to move about the material. The materials
are then cooled according to a precise cooling schedule. As the materials are slowly
cooled, the probability of each atom to remain in a high energy state begins to decrease
and crystals are formed. If the materials are cooled slowly enough, the atoms are more
readily able to move throughout the material to form large crystals while they are still
at a higher energy state. This lowers the final energy state after the material has cooled.
Rapid cooling of the material prevents this movement and creates many smaller crystals
with a higher final energy state of the cooled material.

For large numbers of atoms, the probability of a transition to a different energy state
in the material can be approximated according to the Metropolis criteria,

Pr = e
−∆E
kBT , (3.177)

where ∆E is the increased energy above the lowest energy state, kB is Boltzmann’s
constant, and T is the temperature of the material [56]. As the temperature decreases,
the probability of all of the atoms remaining at a high energy state decreases.

Kirkpatrick et al. [56] developed a method to apply the Metropolis criteria in a
stochastic optimization algorithm. The algorithm has an effective temperature Teff. A
random transition within the design space is generated and the objective function is
evaluated. If the objective function at the new point is less than the previous point, the
transition is accepted. If the objective function is higher than the current evaluation
(correlates to a higher energy state), the probability of accepting the point is computed
as

Pr = e
−∆f(x)
Teff , (3.178)

where ∆f(x) is the difference in function evaluations, fk+1(x)−fk(x). A random number
between 0 and 1 is generated, if this number is less than Pr then the transition is accepted.
Otherwise, the transition is rejected and the algorithm remains at the previous point.

For high temperatures, the probability of accepting a transition to a higher objective
function is nearly 100%. This allows the algorithm to explore the design space. A cooling
schedule is applied, slowly reducing the effective temperature [55]. As Teff tends towards
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zero, the probability of accepting a higher objective function becomes nearly 0% and the
algorithm exploits the best region it has previously found. In the limit where Teff goes to
0, simulated annealing simplifies to RHC where only improved transitions are accepted.

The cooling schedule implemented will have significant effects on the performance of
the algorithm. Kirkpatrick et al. used a simple cooling schedule, Tk+1 = Tkµ where µ
is a constant slightly below unity to provide slow cooling with each iteration [56]. Many
alternative cooling schedules have been explored with varying success, but are outside
the scope of this work. The cooling schedule is left as a function Tk+1 = cooling(Tk) for
generality.

Several convergence criteria are possible for simulated annealing. These include
maximum iterations, number of iterations without successful transition [57]. Shown in
Algorithm 3.3 is pseudo-code for the simulated annealing algorithm.

While simulated annealing has beneficial aspects, it is highly dependent on both the
starting temperature and the cooling schedule selected. It is very possible to cool too
quickly and be stuck in a local optima or to cool too slowly and waste many function
evaluations after the global optima has been found. These parameters are problem
dependent and difficult to estimate beforehand.

The implementation of simulated annealing I used for this problem was from the
scipy.optimize library [58]. I tested initially with the default parameters, though I stopped
early because the algorithm spent significant time evaluating infeasible regions of the
design space (ζ < 0, ζ > 1, tburn < 0, or OD < 0). A maximum step size was added an re-
run. Even with a maximum step size, the algorithm spent significant function evaluations
in the infeasible region and there was no implemented method of establishing bounds on
the design space. Despite some infeasible function evaluations, simulated annealing found
a very good optima, but took over 2.8 × 104 function evaluations. Further work could
have been done on implementing bounds, adjusting initial temperature, and alternative
cooling schedules to improve the method for this problem. I choose not to pursue this
because of the wasted function evaluations in the infeasible region.

Particle Swarm Optimization: Kennedy and Eberhart [59] developed particle swarm
optimization as a method that is analogous to real life phenomena: the movement
characteristics of many animals that travel in swarms, such as flocks of birds or schools
of fish [57]. Flocks of birds can rapidly find food sources at random locations, despite
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Algorithm 3.3: Simulated Annealing
1 Input: x0, T0
2 Result: x∗, f(x)∗ k = 0
3 x = x0
4 f = f(x)
5 T = T0
6 τ = {τ0, τ1, ..., τn}
7 while not converged do
8 d = rand(τ )
9 xnew = x+ d

10 fnew = f(xnew)
11 if fnew < f then
12 x = xnew
13 f = fnew
14 else
15 Pr = e(−∆f/T )

16 r = rand(0, 1)
17 if r < Pr then
18 x = xnew
19 f = fnew

20 T = cooling(T )
21 k = k + 1
22 check for convergence
23 x∗ = x
24 f(x)∗ = f



81

each bird only knowing about what it has seen recently. This is because the birds follow
a simple set of general rules that dictate their movement that allow the flock to search
large areas in a short amount of time to find the best sources of food. The rules that
the flock follows have been optimized over eons through evolution, which limits the rules
they follow to those that have been demonstrated to be beneficial.

To define the motion within the population, {x0, ...,xn}, Kennedy and Eberhart
established several rules [59]. Each particle has some existing momentum, and cannot
instantly change directions. Additionally, each particle has knowledge of the best position
it has previously found, xnbest. Lastly, each particle has knowledge of the global best
position any agent in the population has found, xG.

Each of the particles in the population has a velocity defined by a simple rule for the
ith particle,

vik+1 = vik + c1rand(0, 1)
(
xibest − xik

)
+ c2rand(0, 1)

(
xG − xik

)
. (3.179)

The vik term gives the particle momentum based on its previous direction of travel. The
other terms causes the particle to tend to exploit local optima and explore global optima.
Kennedy and Eberhart originally used c1 = c2 = 2 in [59], however other values for these
have been empirically shown to be useful as long as they sum to four [57].

In this method, each of the n particles are initially seeded randomly throughout the
design space. Seeding can be user specified, random, or through methods such as Latin
hypercube sampling. I used random sampling, but for generality I express seeding as the
function sample(). Function evaluations are performed, then each of the particles tend
towards the particle with the best function evaluation with some inherent randomness.
As the particles move closer, they may find improved optima and shift the direction of
the rest of the swarm. This allows for many regions of the design space to be explored
which increases the likelihood of finding the global optima.

Two primary convergence criteria exist for the particle swarm algorithm: maximum
iterations and all particles converging to the same point. If too low of a value is set
for c2, particles will favor local optima and the swarm will never converge to the same
point. However, if too high of a value is set for c2, particles will converge to a single local
optima before exploring the design space enough to find the true global optima. Shown
in Algorithm 3.4 is pseudo-code for the particle swarm optimization algorithm.
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Algorithm 3.4: Particle Swarm Optimization
1 Input: n, vmax, c1, c2
2 Result: x∗, f(x)∗
3 k = 0
4 x = {}
5 v = {}
6 f = {}
7 for i = 0 to n do
8 xik = sample()
9 vik = 0

10 f ik = f(xik)
11 f ibest = f ik
12 k = k + 1
13 fG,xG = min(fbest)
14 while not converged do
15 for i = 0 to n do
16 vik = vik−1 + c1rand(0, 1)

(
xibest − xik−1

)
+ c2rand(0, 1)

(
xG − xik−1

)
17 if |vik| > vmax then
18 vik = vik(vmax/|vik|)
19 xik = xik−1 + vik
20 f ik = f(xik)
21 if f ik < f ibest then
22 xibest = xik
23 f ibest = f ik

24 if min(fk) < fG then
25 fG,xG = min(fk)
26 k = k + 1
27 check for convergence
28 x∗ = xG
29 f(x)∗ = fG
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Similar to the initial temperature and cooling schedule in simulated annealing, particle
swarm optimization performance is very subject to the swarm size, swarm velocities, and
other parameters such as c1 and c2. It is difficult to know what each of these parameters
should be before starting an optimization problem.

The benefits of particle swarm are its ability to find global optima and search large
portions of the design space. Additionally, function evaluations for each particle can
be run in parallel to decrease computation time. Particle swarm was tested using the
pyswarms library [60]. However, similar to simulated annealing, parameters such as
swarm size and particle velocity are difficult to know at the start of a problem. This
problem was tested with the default parameters for particle swarm and was able to find a
very good optima, equivalent to simulated annealing, in less than 90 minutes and 4.6×103

function evaluations. Further work could be done to improve this through adjusting the
parameters such as swarm size, maximum velocity, c1, and c2.

Bayesian Optimization: In this method, each function evaluation is used to build a
surrogate model [61–63]. Prior to an evaluation, an estimate of the objective function
is known as the a priori. Each function evaluation, the objective function is evaluated
and the surrogate model updated with the new information to become the a posteriori.
Using Gaussian process regression, error on the surrogate model can be calculated at
any point. An acquisition function can be used to explore points that either have high
uncertainty or a high probability of finding an improved point. Bayesian optimization is
typically formulated to maximize an objective function, while the other methods explored
are formulated to minimize a function. I accounted for this simply by maximizing the
negative of the objective function expressed in Equation (3.172).

Three common acquisition functions are used in Bayesian optimization: Probability
of Improvement (PI), Upper Confidence Bound (UCB), and Expected Improvement (EI).
I used the expected improvement acquisition function provided by Hoffman et al. [63],
which is defined by

EI(x) =

(µ(x)− f(x+)− ζ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
. (3.180)

In Equation (3.180), x+ is the current best point with an objective function evaluation
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f(x+), ζ is a small constant value, Φ is the normalized cumulative distribution function,
φ is the normalized probability distribution function, and Z is

Z =


µ(x)−f(x+)−ζ

σ(x) if σ(x) > 0

0 if σ(x) = 0
. (3.181)

Within each iteration of Bayesian optimization, the acquisition function must be
maximized to find the next point to sample. Many optimization techniques could be
implemented to do this, including some of the other techniques explored in this work such
as random hill climb, simulated annealing, or particle swarm. However, the optimization
of the acquisition function I used is to randomly sample the acquisition function 10,000
times and use L-BFGS-B3 with a multi-start method with 10 seeds. After finding the
10 local optima with L-BFGS-B, the maximum of the random samples and L-BFGS-B
seeds is considered to be the global optima of the acquisition function which determines
the next objective function evaluation explored. These parameters are the default of
bayesian-optimization library [64] and could be modified as necessary. For the scope of this
work, I considered the defaults to be appropriate, however it is important to understand
exactly how the acquisition function is maximized to get an understanding of the com-
putational expense of Bayesian optimization. If evaluating the objective function is not
far more computationally expensive than evaluating the acquisition function, Bayesian
optimization will be a poor choice due to the computational expense of maximizing the
acquisition function in every iteration of Bayesian optimization.

Bayesian optimization starts by sampling n points and evaluating the objective func-
tion at each one. The initial sampling could be random, latin hypercube sampling, or user
specified. I used random sampling, but for generality I write the sampling as a function
sample(). After n samples, a surrogate model is fit to the observations with a mean and
standard deviation at each point. Often a Gaussian process regression is used, but for
generality I just refer to fitting the surrogate model as fit(). An acquisition function of
the surrogate model can be evaluated at any point, for generality I refer to the acqui-
sition function used as acquisition(). An optimization is performed on the acquisition

3L-BFGS-B is an additional optimization algorithm that is not covered within the scope of this
work. It requires evaluation of gradients of the objective function and is therefore not applicable to a
general expensive black-box function. For the surrogate model built using Gaussian process regression,
computation of the gradient of the is far less expensive and allows L-BFGS-B to be used.
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function of the surrogate model that returns the best point for the next sample, which I
again leave general as the function optimization(). This is summarized by pseudo-code
in Algorithm 3.5.

Algorithm 3.5: Bayesian Optimization
1 Input: n, kmax
2 Result: x∗, f(x)∗ k = 0
3 x = {}
4 f = {}
5 for i = 0 to n do
6 xk = sample()
7 fk = f(xk)
8 k = k + 1
9 GP = fit(x, f)

10 xG, fG = min(f)
11 while not converged do
12 xk = optimize(acquisition(GP))
13 fk = f(xk) GP = fit(x, f)
14 k = k + 1
15 if fk < fG then
16 xG = xk
17 fG = fk

18 check for convergence
19 x∗ = xG
20 f(x)∗ = fG

I initially tried Bayesian optimization with the bayesian-optimization package by
randomly sampling the design space 50 times, then proceeding with 500 iterations based
on the maximum of the acquisition function for a total of 550 iterations. The initial test
found all samples in constraint violation regions and did not find any improved optima
over the baseline. Next, I probed the first point as the baseline presented in Table 3.5
followed by 49 random samples. Most of the sampling was far from the baseline and the
result was a best optima of the initial point sampled. I restricted the design space more
and tried again, this time Bayesian optimization found a very good optima in only 550
function evaluations and less than 20 minutes of computation time. This was repeated
two more times, each with similar results and the same optima.
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Method Selection: Each of the four methods tested did find improved designs from
the initial design point. Therefore, they are all feasible paths forward for optimizing
the non-simplified problem. Table 3.7 is a summary of the performance of each of the
methods. I show RHC for its effectiveness as multi-start method in a multi-modal space,
with the combined computation time and function evaluations from all points tested.

Table 3.7: Comparison of optimization methods.

Optimization
f(x) mpropellant ζ

tburn OD Function Time
Algorithm (kg) (s) (in.) Evaluations (min)
RHC
(multi-start) 103.3 103.3 0.610 32.28 10.68 625 11.64

Simulated
Annealing 99.2 97.6 0.616 30.49 10.33 28,409 364.1

Particle
Swarm 99.1 97.5 0.608 30.46 10.14 4,600 85.1

Bayesian
Optimization 99.2 97.5 0.616 30.46 10.42 550 18.54

Table 3.7 shows that particle swarm and simulated annealing both perform worse than
Bayesian optimization to find the same optima, both take significantly more computation
time and function evaluations. RHC finds an optima that is nearly as good as the other
three methods in just over half the time of Bayesian optimization, so it is possible that
it could be improved over Bayesian optimization with addition of a few more random
starting points. However, even with only four starting points, RHC surpassed the number
of function evaluations of Bayesian optimization and found a worse global optima. In
application to the non-simplified optimization, each function evaluation increases in
computation time from approximately 1-2 seconds to 30-40 seconds. Therefore, the
additional time Bayesian optimization spent optimizing the acquisition function will
be far less than the additional computation time of nearly a hundred extra function
evaluations. Based on the results in Table 3.7, I selected Bayesian optimization as the
best suited method of the four methods explored.
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3.3 Design Qualification

In nearly all designs, there is at least one failure mode that has a non-zero probability.
Failures should always be avoided, but in different contexts failures can have drastically
different effects. In mass production, the primary effect of a failure may be the cost of
labor and materials that impacts the overall profit of a company. To reduce the failure
rate may increase the manufacturing costs, therefore there is typically some acceptable
non-zero failure rate from balancing the increased costs of manufacturing and the losses
due to failure. In the case of human rated spaceflight, failure could directly result in loss
of life. In human rated spaceflight, failure must be minimized regardless of cost due to
the effects of failure.

It may be possible to directly compute the probability of failure occurring for simple
designs. An example could be an assembly of parts fitting together, where the failure
mode is they do not fit. Given knowledge on the manufacturing tolerances, the probability
of parts not fitting together could be calculated without too much difficulty. As system
complexity increases, both the number of contributing factors to a failure occurring and
the number of possible failures can greatly increase. In the case of complex systems, it
may be difficult to directly compute the probability of failures occurring. The case of
a launch vehicle design is an example of a complex system that is difficult to directly
compute failure probabilities. To account for failure probability in launch vehicle design,
a robust method for design qualification must be employed.

To qualify a vehicle design, the performance effects of uncertainties in the design
and environment must be considered. A standard method of determining the effects
is through the use of Monte Carlo simulations. In Monte Carlo simulations, a set of
known uncertainties and associated distributions are defined. Each of these distributions
are randomly sampled, and performance is simulated for the set of parameters. After
performing many samples, statistical analysis can be done on the results to determine
sensitivity to each of the uncertainties. This method can be used to quantify the confidence
that a vehicle will meet the mission objective despite many uncertainties in the design.
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3.3.1 Uncertainty

There are numerous aspects of vehicle design subject to uncertainty. I grouped uncertainty
into two categories: epistemic and aleatoric uncertainty [65, 66].

Epistemic Uncertainty: Epistemic uncertainty is typically described as imprecise
knowledge of a parameter with a fixed value. Epistemic uncertainty could be caused
from issues such as manufacturing capabilities, a common epistemic uncertainty are
dimensional uncertainties. A fixed tolerance range can be assigned to a part, which can
be manufactured within the specification, however the value of the dimension cannot be
known precisely prior to manufacturing. Additionally, epistemic uncertainty can be a
result of measurement error. For the same example, the uncertainty on a dimension of a
part which has been manufactured could be reduced by measuring it, but is still limited
based on the accuracy of the instrument used.

Aleatoric Uncertainty: Aleatoric uncertainty is caused by inherent randomness in
the system that prevents prior knowledge of the exact conditions. An example of aleatoric
uncertainty that is particularly relevant to this work is weather. Measurements can be
used to develop forecasts based on previous weather trends, however weather conditions
at any future time cannot be known with perfect certainty. The most relevant weather
phenomena in this context are wind and gust modeling, which cannot precisely be known
prior to the flight of a rocket. Based on historical data, weather modeling can be developed
and applied to simulations to determine expected results in varying wind conditions.

Distributions: There are numerous distributions that could be used to model a param-
eter of interest. Particularly for uncertainties which have not previously been measured
repeatedly, selection of a distribution can often be difficult. Within the scope of this
work, I only used normal distributions. In a normal, or Gaussian, distribution values
have a certain probability of being a distance from the population mean. For a normal
distribution with a standard deviation σ, there is approximately a 68% probability of a
random sample being within 1σ, approximately a 95% probability of a random sample
being within 2σ, and approximately 99.7% probability of being within 3σ.
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3.3.1.1 Design Uncertainty:

Important parameters and their associated distributions have been established. In the
scope of this work, I focused on the development and testing of the tools used to qualify
a design, therefore the ranges and distribution types warrant further refinement and
exploration for complete qualification of the design. Shown in Table 3.8 is a list of each
parameter with uncertainty and the standard deviation of the distribution.

Table 3.8: Summary of epistemic uncertainties.

Design Parameter Standard Deviation
Pressurant regulator pressure 50 psi
Fuel sonic venturi throat diameter 0.0005 in.
Oxidizer sonic venturi throat diameter 0.0005 in.
Initial fuel tank pressure 10 psi
Initial oxidizer tank pressure 10 psi
Nozzle efficiency 1.0%
Nozzle throat diameter 0.001 in.
Nozzle exit diameter 0.001 in.
Coefficient of drag1 5.1%
Derivative of normal force coefficient1 5.1%
Center of pressure location 0.5 calibers
Center of gravity location 0.5 in.
Launch rail angle from vertical2 1.5°
1 - Uncertainty is enforced as a scalar multiplier
2 - Launch rail angle from vertical is in random direction

The only aleatoric uncertainty I considered is associated with weather. Both the
atmospheric conditions and the wind conditions are unknown and cannot be precisely
predicted prior to a launch. The NASA Earth-GRAM software is capable of modeling
this and accounts for spatial and temporal variation in weather [41]. Section 3.1.5.2
provides more detail on the Earth-GRAM model used in this work.
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3.3.2 Statistical Analysis

I conducted Monte Carlo simulations using the uncertainties described in Section 3.3.1
by randomly sampling each distribution and using the NASA Earth-GRAM software to
generate a random atmosphere and wind condition. There are two possible outcomes
of each sample in a Monte Carlo simulation: success or failure. I defined success as
achieving the mission objective by having an apogee altitude equal to or greater than
the Kármán line. For this work, I defined a failure simply as a sample that did not meet
the mission objective. Future work could also classify failures caused from parameters
exceeding bounds such as structural stresses above the yield strength of the material or
engine thermal failure.

For any vehicle design, there is a non-zero failure rate that is unknown. A limit
should be placed on acceptable failure rates to qualify the design based on maximum
allowable failure rate. NASA standards use a 99.865% success rate [65]. The impacts
of mission failure for the vehicle of focus in this work are far less significant than for a
standard NASA mission. Therefore, I considered a 95% success rate to be acceptable.
Determination of a minimum allowable success rate should be performed carefully with
knowledge of the resulting impacts of mission failure.

A simple approach to determining failure rate would be to divide the number of
recorded failures by the total number of samples observed. As the number of samples
observed approaches infinity, the observed failure rate will tend towards the actual failure
rate. However, taking very large samples is undesirable due to computational expense of
each sample. A confidence interval can be placed on failure rate with a finite number of
samples using binomial statistics. The probability of the actual success rate being lower
than the acceptable success rate is called consumer risk. The NASA standards are to use
a maximum of 10% consumer risk, which I adopted for this work. Stated in its entirety,
the standard for a reliable design in this work is to have a 95% success rate with less
than 10% consumer risk.

At any given point during Monte Carlo simulations, both the number of samples, N ,
and the of failures, k, observed are known. For a given failure rate, p, there is a known
probability of observing exactly k failures. This probability can be calculated by
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P (k|N, p) =
(
N

k

)
pk (1− p)N−k . (3.182)

Additionally, the maximum likelihood estimation of the failure rate is the same as the
current sample failure rate and can be calculated as

p̂ = k

N
. (3.183)

There is a probability density function associated with the failure rate. The probability of
observing k or fewer failures given a maximum allowable failure rate pdesign is calculated
with

β =
k∑
j=0

(
N

j

)
pjdesign (1− pdesign)N−j . (3.184)

where β is the consumer risk [65, 66]. With established values for consumer risk and
maximum acceptable failure rates of β = 10 % and pdesign = 5 %, Equation (3.184) can
be solved for a given number of failures and number of samples observed.

An important note on design qualification through Monte Carlo simulations: it can
only be as accurate as the models and distributions used. If the flight simulation models or
the uncertainty distributions are inaccurate or incomplete, the results will be inaccurate.
Therefore it is critically important to ensure both the flight simulation used and the
uncertainty models are as accurate as possible for the results of Monte Carlo simulations
to be meaningful. Relevant test data should be compared to models used in Monte Carlo
simulations as components are manufactured wherever possible, and in some cases may
be able to be directly substituted in place of a theoretical model.

3.3.3 Failure Classification

After performing a Monte Carlo simulation, the design was assessed for meeting an
acceptable failure rate with a predefined consumer risk. However, analysis of the failures
to try to gain more information is possible by attempting to classify similar failures. This
can be useful for both improvement in design and prediction of failures. Sensitivity to
certain parameters can be determined by grouping similar failures.
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When a parameter is identified that the system is sensitive to, there are three possible
decisions to improve the design: moving the mean value, reducing the uncertainty, or
accepting the system sensitivity to the parameter. I identified sensitive parameters by
finding a limit state which represents a threshold for success and failure. For the scope of
this work, all mission failures are classified the same regardless of cause, therefore each
simulation is able to be classified by two states,

s =
{

1 if mission success
0 if not mission success

, (3.185)

where the designations 1 and 0 are arbitrary integers. Further classifications are possible
and in some cases may be useful for design decisions. For example, classification of a
structural failure versus a failure to reach the target apogee altitude may have two very
different design changes to reduce the likelihood of the failure occurring. This could make
it useful to expand the number of failure states to determine how best to improve the
design.

3.3.3.1 k-Nearest Neighbor Method

One method to classify failures in the design space4 is the k-NN method. The k-NN
method works by evaluating a point of interest based on the nearest surrounding points [67,
68]. For a specific failure mode, it is logical to assume that sampling points nearby points
were observed to fail would also fail. The k-NN method for classification works by
computing the distance from a point of interest to all neighboring points. Then, the
points are sorted based on distance. The mode of the state (failed or successful) of
the nearest k points is assumed to be the state of the point of interest. This allows
failure regions to be distinctly observed and the factors that cause them can be further
investigated. The value of k must not be a multiple of the number of possible states to
prevent the mode of the neighbors from being a tie. I used a value of three for k. The
observations from the Monte Carlo method provide many existing data points that the
k-NN method can use to make predictions about the failure classification.

4The design space for failure classification is slightly different from the design space in optimization
contexts as used in Section 3.2.1 In this case, the design space consists of all variables with associated
uncertainty.
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A further improvement on the k-NN method is to place a fixed maximum radius of
neighboring points. This is important, because the further away the point of interest
is from any neighbors, the less accurate the classification will be. Unexplored regions
of the design space that are of interest should be explored via further sampling of the
design space and simulating these areas. For a maximum radius to be effective, all design
variables must be normalized. The choice of maximum radius is best found through
empirical testing on the data set of interest, and is dependent on the value of k chosen.
For high values of k, the maximum radius must be larger to classify the same amount
of the design space. Increasing the value of k and the maximum radius will have a
smoothing effect on the data set [68].

For two parameters, it is easy to look at the nearest points surrounding a point of
interest and count the number of nearby failures and successes to determine which is
most likely. As the number of variables with associated uncertainty increases, it becomes
impossible to visualize the entire space at once. Therefore, the k-NN method has been
developed to quantify the number of nearby failures.

I tested the method on two sample 2D problems with a theoretical boundary. The
design space is randomly sampled, and failures and successes are recorded. The first
problem classifies successes as sample points within a circle. The second problem classifies
success as values of f(x) less than an arbitrary boundary curve,

g(x) = x+ sin(4πx)
π

. (3.186)

For both problems, sampling distributions were normal distributions with mean values
at the center of the plot. I classified 300 random points, then generated 100 random
points and used the k-NN method was used to predict their classification. The results of
the sampling problems, along with the theoretical boundary are shown in Figure 3.12.
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Figure 3.12: k-NN example

Figure 3.12 shows that the k-NN method is clearly capable of classifying failures
with reasonable accuracy, however it is also worth illustration of areas where k-NN is
weak. The circle problem correctly classifies all except two sample points that are just
across the boundary, an error rate of 2%. This could be used to develop a reasonably
accurate boundary curve to denote failure regions. The second problem misidentifies ten
points, an error rate of 10%. Each of the misidentified points fall in regions where the
boundary curve was not initially sampled many times (near the corners (x, y) = (0, 0) and
(x, y) = (1, 1)). The k-NN method could only provide a reasonably accurate boundary
curve prediction near the center of the plot, towards the corners it is prone to significant
error. This illustrates a weakness of classification, it is only reliable when the surrounding
region has been reasonably well sampled.

To account for this weakness, I imposed a maximum distance for nearby neighbors. If
there are not k neighbors less than the maximum distance from the point of interest, it is
left unclassified. The same problems were re-tested with a maximum radius, rmax = 0.1.
This time, k-NN only misidentified one point for the circle problem and two for the second
problem, as shown in Figure 3.13.
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Figure 3.13: k-NN example with maximum radius

The maximum radius is helpful to reduces issues with inaccurate classifications, but
introduces the problem of unclassified regions. To account for unclassified regions in
areas of interest, directed sampling can be performed in the regions of interest prior to
using the k-NN method in these areas. An example of when this could be important is
if test data is far off from the predicted mean value, the nearby region may have been
minimally sampled by the Monte Carlo method. Directed sampling could be implemented
to determine if the results of the test data demonstrate the vehicle is in or nearby a
failure region.

To implement a k-NN algorithm, a the parameter for k must be selected along with
a maximum radius, rmax. The inputs to the algorithm is a point of interest, x0, and a
set of previously observed points p with their observed states s. The algorithm returns
an estimated state for the point, ŝ. The distance between the point of interest and a
previously observed point, xi is computed based on the Euclidian distance in the design
space, di. The calculation of the Euclidian distance is represented by the norm() function.
The states of the nearest neighbors, snn, are stored and the mode computed. Sample
pseudocode is shown in Algorithm 3.6.

Other classification methods exist, but are not thoroughly explored or covered in this
work. Many classification methods have been developed for machine learning including
Support Vector Machine (SVM) and naive Bayes classification. The k-NN method was
chosen over these for its relative simplicity in implementation while providing results with
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Algorithm 3.6: k-NN Method
1 Input: x0,p, s, rmax
Result: ŝ

2 d = {}
3 for xi in p do
4 di = norm(xi − x0)
5 dsorted, ssorted =sort(d, s)
6 snn = ssorted[0 : k − 1] // Choose states of first k neighbors
7 if snn[−1] ≤ rmax then
8 ŝ = mode(snn)
9 else

10 ŝ = None // Unclassified if a neighbor is outside max radius

reasonable accuracy. Future work could include comparison of each of these methods to
determine the most suitable method for this application.

3.3.3.2 Variable Normalization

The examples shown in Section 3.3.3.1 worked well for establishing a maximum radius.
This works well for problems where the variables of interest are the same scale, however
the distance between points is based on the Euclidian distance. In the case of a real
problem, the variables can have vastly different scales and a maximum radius becomes
useless. Therefore, I normalized each of the variables of interest.

A simple method of normalizing variables is to subtract the sample mean, µ, and
divide by the sample standard deviation, σ for each of the i sample points of a variable
φ,

φi,normalized = φi − µ
σ

. (3.187)

This method is best for distributions which are normal or not highly skewed.
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Chapter 4: Results & Discussion

4.1 Flight Modeling

All of the models discussed in Section 3.1 were implemented in Python. A sample of
the outputs generated by this implementation of a flight simulation are shown within
this section for an arbitrary design. Figure 4.1 shows a standard profile for the mission
of focus in this work. The phases of flight are generally notable on this diagram. The
powered ascent phase is identifiable by the rapidly increasing velocity at the start of
flight, until engine cutoff when the velocity begins to lower. During the unpowered ascent
phase of flight, velocity continues to lower as it exits the atmosphere, until reaching its
peak altitude at apogee where vertical velocity is zero. At apogee, the vehicle enters the
drogue descent phase. However, the vehicle continues to rapidly accelerate downward
under drogue until it re-enters the dense atmosphere where drag force is comparable
to force from gravity. After re-entering the dense atmosphere, the vehicle slows to a
terminal velocity and descends at a stable speed. Near the very end of flight, at 1000 ft,
the main parachute is deployed for landing. The entire flight takes around 17 minutes
from takeoff to landing.

Figure 4.2 shows the Mach number throughout the ascent of the vehicle, peaking at a
maximum of Mach 4.92. This gives us a range of Mach numbers to evaluate aerodynamic
coefficients from 0 to 5.

The Barrowman method for calculating the drag coefficient at varying Mach numbers
is shown in Figure 4.3. Both the RASAero II output and Barrowman method implemented
in Python agree well in this work, with differences less than 10% for the majority of
the profile. There is a spike in difference in the transonic region, which analysis of the
RASAero II data appears to only be consider from Mach 0.9 to Mach 1.05. I considered
the transonic region from Mach 0.8 to Mach 1.2, critically the Busemann second-order
expanded shock theory is only applicable for attached oblique shock waves to the nosecone
and fins. By assuming thin fins and a sharp nosecone, Hilton [16] considers the range
of applicability of the Busemann second-order expanded shock theory to be applicable
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Figure 4.1: Flight profile for the duration of a mission to the Kármán line with design
parameters of ζ = 61.25 % and mpropellant = 112 kg.



99

0 25 50 75 100 125 150 175
Time (s)

0

1

2

3

4

5

M
ac

h 
N

um
be

r

Figure 4.2: Mach number throughout ascent.
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Figure 4.3: Vehicle drag coefficient for varying mach number on ascent.

at a minimum supersonic value of Mach 1.2. The Barrowman method does not address
the transonic region, so I have followed the RASAero II implementation and fit a line
between the last point where the flow is subsonic until the first point where flow is fully
supersonic. There is some disagreement between the shape of the curves in the supersonic
region, it’s unclear what the source of this is. However, based on empirical data collected
by Barrowman, he concludes that the method is accurate to within 10% for calculating
aerodynamic coefficients. This fits the uncertainty used in Monte Carlo simulations,
therefore both implementations are within the accepted accuracy for almost the entire
duration of flight.

My implementation of the Barrowman method is compared RASAero II for the center
of pressure and derivative of the normal force coefficient in Figures 4.4 and 4.5. In the
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subsonic region, RASAero II appears to use a constant derivative of the normal force
coefficient, despite the Barrowman method being a function of the Prandtl—Glauert
number, β =

√
1−M2, as shown in Equation (3.64). The constant value used in

RASAero II agrees with my calculation at approximately Mach 0.8. During the transonic
region, I followed the method of RASAero II to use a constant negative slope of the
normal force coefficient, so both implementations agree very well. The high supersonic
regions above Mach 3.0 appear to have both methods converging to nearly the same
values. However, between the region Mach 1.2 and Mach 3.0, my implementation differs
from RASAero II significantly. The center of pressure location has a significant spike
in the low supersonic region around Mach 1.2 which would suggest the vehicle would
become unstable. The Rogers Modified Barrowman implementation in RASAero II is
known to give good results in this regime, therefore I believe this spike to be artificial.
I do not currently know if the additional modifications made by Rogers in the Rogers
Modified Barrowman method [14] are the source of these differences seen in Figures 4.4
and 4.5. I have verified the Busemann coefficients with those tabulated by Hilton [16].
Figure 4.6 shows the Busemann coefficients, which match Hilton’s tabulated values
and charts exactly. Additionally I compared my implementation with the source code
in OpenRocket created by Niskanen [13], but the full supersonic Barrowman method
appeared to be incomplete. Niskanen does provide warnings in the OpenRocket software
for accuracy of the normal force coefficient in the supersonic regime. Without being able to
reconcile the differences, I choose to use the Rogers Modified Barrowman method output
from RASAero II for the aerodynamic coefficients used in the remaining simulations
presented in this work. This ensures accurate aerodynamic coefficients which allows us
to conduct accurate simulations. An area of future work is to resolve the differences
between RASAero II and my implementation.

The stability margin is measured in calibers and is maintained above 1.5 calibers
for the duration of flight. A caliber is defined as the distance between the center of
gravity and center of pressure divided by the vehicle diameter at the base of the nosecone.
A vehicle with stability of over 1.0 calibers is considered passively stable, though it is
common practice to design for a minimum stability above 1.5 caliber to prevent instability
due to inaccuracy in center of pressure or center of gravity calculations. Figure 4.7 shows
the stability throughout flight.

The dynamic pressure during flight places constraints on the loads the vehicle must
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Figure 4.4: Derivative of the normal force coefficient for varying mach number on ascent.
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Figure 4.5: Center of pressure location for varying mach number on ascent.
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Figure 4.8: Dynamic pressure on the vehicle throughout ascent.

be able to withstand. Dynamic pressure is a function of both velocity and air density, as
velocity increases air density decreases. Figure 4.8 shows the dynamic pressure throughout
the ascent of the vehicle.

For recovery modeling it is important to verify some assumptions used during com-
ponent selection. Recovery components were sized to withstand 500m/s2 of acceleration
in an off-nominal recovery event, but should only be expected to see around 100m/s2

in nominal recoveries. This work assumes instantaneous parachute inflation, this is a
conservative assumption that will produce slightly higher accelerations than experienced
by the vehicle. Both the drogue and main parachute inflation events (the two peaks
after engine burnout) show accelerations below this threshold. This verifies component
weights assumed for recovery are reasonable.
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Figure 4.9: Magnitude of acceleration throughout the duration of flight.

As described in Section 3.1.7, sonic venturis are used to choke the mass flow of
pressurant so a single pressure regulator can be used to independently control O/F ratio
within the engine. Figure 4.10 shows sonic venturis maintaining constant O/F ratio by
choking the mass flow rates of pressurant gas. I plotted tank pressures and O/F ratio
for a single Monte Carlo sample in Figure 4.10. The design oxidizer-to-fuel ratio is 2.30,
and the results in Figure 4.10 show that it rapidly steadies to a value of 2.294 for this
Monte Carlo sample. This analysis assumed tanks are filled to 95% full and start with
5% ullage volume.

The thrust produced by the engine is dependent on the chamber pressure and the
atmospheric pressure throughout flight. As shown in Figure 4.10, the chamber pressure
decreases throughout most of the engine burn, which would cause the thrust to decrease.
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Figure 4.11: Thrust curve throughout engine burn

However, the atmospheric pressure also decreases throughout flight, which causes the
thrust to increase. Shown in Figure 4.11 is the resulting thrust curve from the two of
these effects.

I compared the flight simulation developed in this work against a RASAero II sim-
ulation for the same vehicle design. The results are summarized in Table 4.1. Both
agree within 7.4% for several constant wind conditions. Three notable differences in the
simulations were identified that represent the most likely cause of differences. RASAero II
uses standard motor files, which provide time varying information about the mass and
thrust of a solid rocket motor that are available for many types of solid rocket motors. For
the liquid engine performance modeled in this work, there is no such motor file, so a file
was written for a thrust versus time curve that must then be interpolated by RASAero II.
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Though the method is not stated by Rogers and Cooper [14], RASAero II likely performs
linear interpolation that results in small differences between the thrust curves used in
the two simulations. Additionally, RASAero II assumes a constant center of gravity for
the motor about its center, resulting in a linear movement of the center of gravity of the
vehicle during the engine burn for constant mass flow rate. This assumption is invalid for
a liquid engine. This assumption in RASAero II overestimates the stability throughout
flight, and results in an artificially large moment arm for aerodynamic forces to act. The
artificially large moment arm would make the RASAero II simulations more susceptible
to wind losses, which agrees with the results in Table 4.1. Lastly, RASAero II does not
allow for moments of inertia to be specified or allow for component locations and masses
to be implemented. Rogers and Cooper [14] do not state how RASAero II computes the
moments of inertia, and differences here would also change simulation susceptibility to
wind.

Table 4.1: A comparison of apogee altitudes for the custom flight simulation written in
Python used for this work with RASAero II.

Wind Speed 0.0 mph 5.0 mph 10.0 mph 15.0 mph 20.0 mph

Python Apogee (m) 130,634 130,555 129,745 125,088 119,071
RASAero II Apogee (m) 127,681 123,931 120,852 116,669 111,978
Percent Difference 2.3% 5.3% 7.4% 7.2% 6.3%

The reasonably small difference between the two simulations shown in Table 4.1
demonstrates the simulation results shown here compare well to those found using other
flight simulation software that are widely used in the high-power rocketry community.

4.2 Vehicle Design

The Bayesian optimization algorithm was run on the vehicle design starting from an
initial known design. Three constraints were enforced using a square penalty method:
an aspect ratio less than 20, a mass margin greater than 1 kg, and an apogee altitude
of greater than 120 km. The apogee altitude constraint was placed on the design to
allow margin for wind losses. The optimization identified a design requiring 102.05 kg
of propellant, but slightly violates the aspect ratio, mass margin, and apogee altitude



111

Table 4.2: Bayesian optimization results summary.

Parameter Initial Optimized OD ≤ 9.625 in. OD ≥ 10.75 in.
Propellant Mass Fraction 61.13% 60.0% 59.3% 60.4%
Outer Diameter (in.) 12.00 10.40 9.62 10.78
Burn Time (s) 35.00 31.89 30.64 32.55
Propellant mass (kg) 112.00 102.05 98.05 104.17
Apogee Altitude (km) 119.20 118.76 114.27 120.05
Aspect Ratio 18.96 23.18 26.01 21.96
Mass Margin (kg) 3.58 0.36 -0.70 0.61
Objective Function 113.51 103.89 106.50 104.56

constraints. This shows that all constraints are active for the optimization problem. The
optimized design had a 10.40 in. outer diameter. This is an issue, because there is no
standard raw materials found at this size.

To discretize the outer diameter, I used the branch and bound method. The near-
est standard outer diameter of nominal pipe sizes are 10.75 in. and 9.625 in. I ran the
optimization algorithm once with a high-bound set at OD ≤ 9.625 in. and once with a
low-bound set at OD ≥ 10.75 in. If both of these optimizations converge at the bounds,
the discretized optima is the best achievable discretized design. However, if the opti-
mizations converge away from the bounds, I must discretize again by repeating a branch
and bound step. The branch and bound method converged very near to both bound-
aries, with the outer diameters being 9.62 in. and 10.78 in. The 10.78 in. diameter result
required a propellant mass of 104.17 kg and had less violation of the constraints than the
9.62 in. diameter result. I considered this close enough to be discretized as a nominal
10.75 in. diameter. Table 4.2 shows the results of each optimization. Figure 4.12 shows
the algorithm closing on the optima for each trial, where every point shown is a new
best.

Using Bayesian optimization, I was able to optimize the high level design parameters
to reduce propellant mass by 7.0% with a discretized outer diameter of 10.75 in. Because
each of the constraints are active and enforced with a penalty method, the optimal design
slightly violates the constraints. However, the constraint limits were specifically chosen
to keep small violation allowable without resulting in an infeasible design.
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Figure 4.12: Bayesian optimization algorithm finding improved points.
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4.3 Design Qualification

To qualify a design, I used Monte Carlo simulations for design uncertainties and then
performed failure classification. The distributions for epistemic uncertainties used are
shown in Table 3.8. Aleatoric uncertainties for atmosphere and weather conditions were
performed using the Earth-GRAM software for coordinates of (32.21◦,−106.38◦) with
an eight hour launch window starting at 8:00 AM local time on December 1st, 2021 as
described in Section 3.1.5.2.

4.3.1 Monte Carlo Simulation Results

I tested numerous different propellant mass and propellant mass fraction combinations
to identify a feasible design that would meet my mission reliability target. The best
combination tested was for a propellant mass of mpropellant = 112 kg and a propellant
mass fraction of ζ = 61.25 %. For this combination, I ran a set of 4000 Monte Carlo
simulations which had 157 failures for a sample failure rate of p̂ = 3.93 %. For a 95%
reliability, this evaluates to a consumer risk of β = 0.072 %, well below the target of
95% reliability with less than 10% consumer risk. The average apogee altitude was
113,771m with a standard deviation of 5156m. Figure 4.13 shows a histogram of the
apogee altitudes, where the vertical line represents the minimum apogee altitude that
must be achieved for mission success.

Figure 4.14 shows a histogram of steady-state O/F ratios. The distribution of steady-
state O/F ratios from all Monte Carlo samples is tightly grouped near the design point
of 2.30, verifying that using sonic venturis to regulate pressurant mass flow rate will
provide good combustion performance despite variation in initial tank pressures, sonic
venturi throat diameters, and regulator pressure. It’s useful to quantify the range of
O/F ratios a future sample would fall in, so I fit a 95% prediction interval to the O/F
ratio samples assuming a normal distribution. I calculated a prediction interval of 2.248
to 2.349, with 95% confidence. The upper end of this prediction interval could be
used for finding maximum combustion temperatures, useful for sizing ablative liners or
regenerative cooling channels.

Figure 4.15 is a histogram of the maximum dynamic pressures experienced by the
vehicle in each simulation. A 95% prediction interval on the maximum dynamic pressure
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Figure 4.13: Distribution of apogee altitudes from Monte Carlo simulations. Vertical line
represents minimum apogee altitude for mission success.
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Figure 4.15: Distribution of maximum dynamic pressures

is from 139.5 kPa to 153.0 kPa. The upper end of this prediction interval could be used
as a constraint for structural design.

I used the results of the Monte Carlo simulations to predict landing the recovery zone
of the vehicle through dispersion analyses. I calculated the eigenvalues and eigenvectors
of the covariance matrix. The direction of the eigenvector corresponding to the largest
eigenvalue is corresponds to the direction of major axis of the ellipse. The critical values of
a chi squared distribution for 1, 2, and 3 standard deviations are used with the eigenvalues
to determine the major and minor axis lengths. Figure 4.16 is the landing locations of
each Monte Carlo simulation with 1, 2, and 3 standard deviation elliptical confidence
regions fit to the data. The landing locations shown in Figure 4.16 assume a nominal
engine burn and recovery performance for the flight. I could use this method to generate
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Figure 4.16: Dispersion analysis of the landing locations of the vehicle for nominal
trajectory.

additional plots for failed recovery or drogue parachute deployment only if desired by
slightly modifying the state machine discussed in Section 3.1.2.

I tested the optimized vehicle design with a 10.75 in. outer diameter summarized in
Section 4.2 and found the vehicle to have an even lower failure rate of 1.82% with 73
failures occurring in 4000 observations. For 95% reliability, this evaluates to a consumer
risk level of 5.6× 10−26, well below the maximum acceptance criteria of 10% consumer
risk. This indicates that the value I chose for the altitude constraint on the apogee
altitude was chosen as a conservative value.
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4.3.2 Classification Results

I applied a k-NN algorithm to the data from Monte Carlo simulations, as described
in Section 3.3.3.1. My intent was to use data already collected to identify areas of
improvement in the design that could increase reliability. I tested the k-NN algorithm
on the first Monte Carlo data set collected, which had 4000 observations and a sample
failure of 3.93%.

Applying the k-NN algorithm to the normalized data set obtained from the Monte
Carlo simulations had limited success. I attempted to classify 5000 randomly sampled
points in the design space, the k-NN algorithm identified 4512 as success, 30 as failures,
and left 458 points unclassified. Only 30 failures identified would suggest a failure rate of
0.6%. This failure rate is not reflective of the data collected through Monte Carlo samples
and suggests many of the unclassified points should have been classified as failures. In
general, the k-NN algorithm was only able to classify points as successes, or leave them
unclassified. I expect this is because over 95% of the samples taken were successful, so
the failure region was not nearly as heavily sampled as the success region.

Though I did not test any other algorithms, I expect that applying other classification
algorithms to the same data set would suffer similar issues as the k-NN algorithm. The
algorithm worked as intended, but it showed the data set from Monte Carlo simulations
is not well suited for a classification algorithm to identify a limit state boundary. Because
of this issue, I was unable to use the k-NN algorithm to identify areas of improvement
in the design. Despite this, the designs still met my reliability criteria.

I was able to identify three promising paths for future work on failure classification.
However, each method has challenges. The first is to greatly increase the number of
samples taken during Monte Carlo simulations. This method is computationally expensive
and requires more time for simulations to run than was available for this work. The
second is to use a directed sampling routine nearby the limit state boundary. This method
requires developing a directed sampling routine. Lastly, I could use the k-NN algorithm in
its current state, but call the flight simulation each time a point is left unclassified. This
is perhaps the most promising and easiest to implement method, but does not meet my
original intent of this analysis to use the data set generated by Monte Carlo simulations.
Future work could expand on the paths outlined here.
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4.4 Limitations & Future Work

This section provides a summary of limitations for the current flight simulator I developed
in Python and opportunities for future work. This is intended to be a reference for future
development and refinement of the tool. Here I summarize the most notable assumptions
that warrant further investigation and results which have demonstrated limitations of the
flight simulator. More detailed explanations of these limitations are provided throughout
this work.

I assumed the transient phases for engine startup and engine shutdown to be negligible
and made no attempt to model these. For short duration engine burns, this assumption
would be more significant. I used the NASA CEA software for combustion modeling based
on availability, however the TDK model is an alternative that should be investigated to
provide better modeling of the two dimensional flow through the engine to the JANNAF
standard.

My current model for propellant tanks assumes propellant slosh within the propellant
tanks to be negligible, I did an analysis in [10] that confirmed the vehicle will remain
stable despite propellant slosh. Additionally, I assume ullage collapse of the pressurant
gas within the cryogenic liquid oxygen tank to be negligible. Vortices produced by roll
of the vehicle are not modeled, these could allow for gas bubbles to enter the propellant
lines and potentially cause engine failure. Surface effects from vortices and propellant
slosh would slightly effect the center of gravity location of the liquid propellant, I assumed
this effect to be negligible. My propulsion model is specific to a pressure-fed engine with
sonic venturis to regulate mass flow of pressurant gas to the propellant tanks, additional
models would be required to simulate other engine cycles.

My implementation of the Barrowman method is inaccurate in the supersonic region.
I have not been able to identify the source of this inaccuracy to date, it is the largest
known limitation of the current software. To retain accuracy in my simulations, I used
RASAero II to calculate aerodynamic coefficients and import them to my software.

The recovery modeling in this work assumed constant coefficient of drag for each
parachute. This assumption is reasonable for flights within the dense portion of the
atmosphere. However for the mission of focus in this work, the vehicle exits the atmo-
sphere and re-enters at supersonic speeds. The drogue parachute drag coefficient would
vary significantly in this region. Additionally, I assumed the body drag produced by the
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airframe to be negligible. For more accurate dispersion analyses, I would correct these
assumptions. The multi-body dynamics of recovery could also be modeled for improved
accuracy, though I expect this would significantly increase computation time for only
modest improvement in accuracy.

My optimization method assumes the aerodynamic coefficients are relatively constant
as the vehicle design is scaled. After correcting the Barrowman method in the supersonic
region, this assumption is no longer necessary. Additionally this would also allow for
aerodynamic optimization of the vehicle fins for the mission profile. My optimization is
also limited by the estimations used for component masses, which will be further refined
as the component level design of the vehicle is completed. I did not consider engine
optimization for the mission in this work because we have previously tested the engine
of focus in this work and were interested in a vehicle design that could use this engine
to complete the target mission. Future work could perform engine optimization for a
mission. Lastly, I was unable to implement a tree search algorithm within this work
because of the increased model complexity.

In this work, I was able to validate design reliability, but I unsuccessfully implemented
a k-NN algorithm for identifying ways to improve the design. The k-NN algorithm was
used on the data set produced by Monte Carlo sampling, which proved to not be a good
data set for training a machine learning algorithm on failures because of the scarcity of
these within the data set for a reliable design. I would need to implement a method for
importance sampling to complete this.

Though not a limitation, an opportunity for future development of the tool would
be to include the option to model vehicles flying with solid or hybrid rocket motors.
This would be useful for the high-powered rocketry community which most commonly
uses solid rocket motors, but currently has no access to tools for reliability analyses and
limited tools for optimization.

Lastly, the simulator is currently limited to suborbital flights. Modeling orbital flights
would require control of a vehicles trajectory and implementing orbital mechanics models.
Additionally, I have not investigated atmospheric models for on-orbit atmospheric drag.
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Chapter 5: Conclusions

This work identified limitations in available simulation software for liquid engine launch
vehicles. I addressed these limitations through model selection specific to a liquid engine
launch vehicle that targets the Kármán line (100 km), though the models could more
generally be applied to an arbitrary suborbital mission. I developed a 6DoF simulation
in Python that implemented these models to evaluate the performance of a liquid engine
launch vehicle design.

I used optimization algorithms to improve vehicle designs by reducing propellant mass.
The random hill climb, simulated annealing, particle swarm, and Bayesian optimization
algorithms were compared for a simplified version of the problem and lead to the selection
of Bayesian optimization. I used Bayesian optimization to find a set of high level design
variables which minimize the required propellant mass, providing a propellant mass
reduction of 7.0% over the baseline design.

I did not know how parameters which have associated uncertainty would effect vehicle
performance. I identified a set of uncertainties and conducted Monte Carlo simulations
to determine the reliability of a vehicle design. Designs were qualified to meet a standard
of 95% reliability with less than 10% consumer risk. I conducted 4000 Monte Carlo
samples for an initial design and saw 157 failures for a sample failure rate of 3.93%.
The consumer risk of this design for 95% reliability evaluates to 0.072%. I additionally
tested the result of my optimized design with 4000 Monte Carlo samples and observed
73 failures for a sample failure rate of 1.82%, a consumer risk of 5.26× 10−26 for 95%
reliability. Both designs well exceeded my established reliability criteria for qualifying a
design is robust to uncertainties.

Both the results of the optimization and of Monte Carlo simulations are subject to the
accuracy of the models used in my flight simulation. Inaccuracies or incomplete models
of all relevant phenomena to vehicle performance would cause inaccuracy in both the
optimization and design qualification results. The best way to verify the models used are
applicable to the designs considered in this work is to compare to empirical test data for
validation wherever applicable.
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The primary contributions of this work are to: address limitations in accurately
simulating liquid engine launch vehicles in available software by selecting applicable
models and developing a new flight simulation, to apply optimization algorithms to
high level vehicle parameters, and to implement methods to qualify design reliability in
achieving a mission through Monte Carlo simulations. Available software prior to this
work were unable to perform the same optimizations or assess design reliability. The
methods for optimization and design qualification could be extended to any moderately
computationally expensive black-box model, such as high fidelity simulations of aircraft,
satellites, or automobiles by changing the simulation to incorporate applicable models.

Future work would include further verification and validation of the simulation and
models used within this work through empirical test data wherever possible. Additionally,
future work is needed to validate the distributions used in Monte Carlo simulations to
insure they reflect actual uncertainties the vehicle could experience. Future optimization
work could be applied through exploration of the design tree to determine an optimal
component configuration. I had limited success with classification through application of
a k-NN algorithm in this work, but this is an opportunity for future work to develop an
automated process to improve reliability of a vehicle design. Future work could be done on
each of the limitations explained in Section 4.4, most notably on addressing the limitations
for calculating aerodynamic coefficients in the supersonic regime. Implementing models
for solid and hybrid rocket motors could allow the high-powered rocketry community
access to a flight simulator capable of performing reliability analyses and optimization
of high level vehicle design parameters. Lastly, future work could be done to improve
the usability of the flight simulation software for a broader community to be able to use
these tools, such as development of a graphical user interface.

Two versions of the tools developed in this work are available: the version I used for
the results contained within this work [69], and a open source version available online
at github.com/rosetrevor-osu/Liquid-Engine-Rocket-Simulations/. Short term
planned updates to the open source version include improvements the user interface,
while longer term updates will seek to address the limitations discussed in this work.

github.com/rosetrevor-osu/Liquid-Engine-Rocket-Simulations/
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