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Urban agriculture (UA), or growing and producing food within urban areas, is 

rising in popularity across the United States. There are social and environmental 

benefits from growing food within urban neighborhoods. UA presents the opportunity 

for food security in neighborhoods that do not have access to safe and healthy foods, 

which is disproportionately present in low-income communities. Growing food 

together also creates food literacy, community cohesion, and shared focus on 

achieving food security. Unfortunately, the benefits of UA are not accessible to 

everyone. The prices of food from UA at markets is often not affordable to low-

income residents. Furthermore, as a form of greenspace, gardens raise surrounding 

rent prices, and have been shown to be correlated with gentrification. The 

socioeconomic dynamics associated with UA are complex and not studied well in part 

because UA is not well mapped in most U.S. cities. The goal of this study is to 

accurately map UA by exploiting the unique spatial pattern of UA in addition to 

spectral, structural, and temporal characteristics of UA vegetation. I used very high 

resolution aerial NAIP imagery from 2016, Sentinel-2 satellite imagery (2016-2020), 

and GEDI space lidar data (2019-2021) collected over the case study city of Portland, 

Oregon. I adopted a Geographic Object-Based Image Analysis (GEOBIA) approach 

by segmenting and classifying imagery using a Random Forest classifier. In an effort 



to capture the UA pattern, I applied morphological operators to the classified image 

and compared my results to an open database on community gardens from the 

Portland Bureau of Parks and Recreation. The object-based image classification 

achieved a 79.6% accuracy and the morphological operations captured 66.9% of the 

area of Portland Bureau of Parks and Recreation Community Gardens. The detection 

rate at individual community gardens averaged 65.4% and ranged from 3.8% to 

98.2%. Higher detection rates were found in gardens that had strong vegetation 

signals in garden beds intermixed with bare paths between them. Lower detection 

rates resulted from tree canopy covering or casting shade over the community 

gardens. In achieving a fully automated and accurate UA detection using open remote 

sensing data, this approach can be applied to studying the spatial distribution and 

dynamics of urban agriculture across the U.S. 
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Chapter 1. Introduction 
Urban agriculture (UA) is a practice that has had waves of popularity in the U.S. 

(Nogeire-McRae et al., 2018). Nogeire-McRae et al. (2018) define urban agriculture as 

“community, home, and market gardens located within urban areas and includes the production 

of vegetables, fruits, and livestock”. This definition includes gardens on front or backyards, 

vacant lots, rented land, commercial land, or lots designated by municipalities for community 

gardens. UA management ranges from individuals to non-profits or municipalities (McClintock, 

2014). Historically, the creation of UA in the United States was motivated by the U.S. 

Government Victory Garden movement during the Second World War, producing 40% of the 

U.S.’s demand for fresh vegetables (Nogeire-McRae et al., 2018). Post-industrial cities have 

turned to urban agriculture for food security, and resilience in the second half of the 20th 

century, and UA has been growing in popularity in cities across the country since the 1980s 

(Palmer, 2018). In the past five years, the U.S. government has passed legislation encouraging 

UA (Nogeire-McRae et al., 2018), and in 2020 the COVID-19 pandemic generated a renewed 

interest in urban agriculture for alternative food networks (Lal, 2020). 

Urban agriculture offers benefits to urban communities in terms of food security, 

community cohesion, ecosystem services, and sustainability (McClintock, 2014). UA is known 

for providing fresh produce at the individual house level and for friends or neighbors with 

whom the gardeners share their produce (Opitz, 2016). UA has the potential to provide food 

security for those without access to healthy food (Clinton et al., 2018; Dubbeling & de Zeeuw, 

2011). Neighborhoods without food security are often categorized as food deserts, swamps, or 

brownfields. Food deserts are neighborhoods without the presence of food outlets. Food 

swamps are neighborhoods with two types of food outlets: one outlet “where the ratio of fruits 

and vegetables to energy-dense snack foods, commonly referred to as junk food, is close to 

zero” and another outlet where there is a “disproportionate presence of fast-food restaurants 

offering meals containing more than the necessary caloric content per serving” (Osorio et al., 

2013). Food brownfields are neighborhoods where food is unsafe for human consumption 

(Osorio et al., 2013). Urban agriculture can play a major role in providing healthy food to the 

communities in all these situations (Dubbeling & de Zeeuw, 2011; Nandwani, 2016). In 

addition to nutrition, UA has myriad social benefits. Urban agriculture can create community 
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cohesion. When neighbors come together to grow their food, they build trust, relationships, and 

support for issues they are facing (Saldivar-Tanaka & Krasny, 2004; Valley & Wittman, 2019). 

Learning to grow food increases food literacy and a focus on accessing healthy foods (Valley & 

Wittman, 2019). Growing food in urban areas to sell at markets can provide an income for farm 

laborers (Valley & Wittman, 2019). In addition to direct social benefits, the establishment of 

UA creates greenspaces, increasing the livability of the neighborhood and the wellbeing of its 

residents (Clinton et al., 2018; Jorgenson, 2010). 

Food security is not homogenous across racial lines; it is worse for non-Hispanic Black 

and Hispanic families than non-Hispanic white families across the US. It is also more difficult 

for non-Hispanic Black families to reach and maintain a state of high food security 

(McDonough, 2019). There is now research that documents the value of UA in mitigating 

environmental justice issues such as lack of access to healthy food, some of which can be traced 

back to country-wide redlining practices from 1934 through 1951 that restricted home 

ownership loans to African Americans and immigrants (Locke et al., 2021; Nardone et al., 

2020). Urban agriculture may play a role in achieving high food security by creating produce 

and encouraging community development and activism as seen in community gardens in New 

York City and Vancouver, BC (Saldivar-Tanaka & Krasny, 2004; Valley & Wittman, 2019).  

In addition to social benefits, urban agriculture also has the potential to positively impact 

the environment and climate. UA can improve the physical urban landscape with increased 

vegetation and biodiversity (Jorgenson, 2010; Parece & Campbell, 2017). Gardens provide 

many ecosystem services such as nitrogen sequestration, minimizing stormwater runoff, plants 

for pollinators, and potentially energy savings from standard food production methods (Clinton 

et al., 2018). The increased vegetation cover can also help lower the urban heat island and in-

turn increase livability (Clinton et al., 2018). The environmental sustainability of small-scale 

UA has been studied in depth with mixed results (Kulak, 2013). The greenhouse gas savings of 

growing food through UA versus conventional agriculture found in the grocery store depends on 

the specific produce. The local production of vegetables may result in fewer emissions 

compared to vegetables transported over long distances and usually requires less packaging or 

large land use changes (Goldstein, 2016; Kulak, 2013).  

Despite the benefits provided by UA, communities of color may not experience the 

benefits from UA because of high prices for locally grown produce (McClintock, 2014; Valley 
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& Wittman, 2019), or because of racial othering created by white bodies in the garden space - 

despite intentions for diversity (McClintock, 2018b). Additionally, recent research has shown 

that UA in low-income neighborhoods may be anchoring gentrification processes (Pearsall & 

Eller, 2020; Shokry et al., 2020). Multiple studies have found correlations between UA and 

gentrification in the US (Braswell, 2018; Maantay & Maroko, 2018), which could displace 

gardeners and community members at the cost of their food security. The presence of UA raises 

property values (Voicu & Been, 2008) and attracts white and wealthy populations (Pearsall & 

Eller, 2020). Gentrification may occur differently based on the racial composition of 

neighborhoods (Rucks-Ahidiana, 2020), the visibility of UA, and the sentiment towards UA and 

environmental sustainability (McClintock, 2018a). Once a neighborhood begins gentrification, 

the original residents may face physical or cultural displacement, and those with lower incomes 

may not benefit from the urban agriculture and greenspaces as much as wealthier residents 

(Cole et al., 2019). Understanding where and how UA arises, as well as the social and cultural 

associations of the space provides context for its contribution to gentrification and impact on the 

neighborhood (Amorim Maia et al., 2020; McClintock, 2014).  

Without thorough data of UA within a city, it is not possible to gauge UA dynamics or 

the spatially differentiated socioeconomic benefits and limitations of UA. Mapping the 

distribution of UA throughout a city requires data on urban garden and farm locations and 

extents. Since UA exists at many scales, there are often incomplete datasets of UA locations in a 

given city. Cities and non-profits that organize community gardens may have lists or databases 

of their gardens, but these databases often only include a fraction of the full extent of UA in a 

city. Researchers have mapped UA in some cities, but these maps are often a specific type of 

garden or are incomplete. The mapping approaches taken by researchers include internet and 

social media searches, visually scanning high resolution Google Earth imagery, and verifying 

potential UA locations by physically visiting the sites (Kremer & DeLiberty, 2011; McClintock 

et al., 2016; Pulighe & Lupia, 2019; Taylor & Lovell, 2012). These manual methods are time 

intensive, unsustainable to maintain, and cannot be efficiently scaled up for large cities. A 

remote sensing analysis of the spatial and temporal patterns of UA, however, would offer a 

more efficient method for mapping UA and monitoring for changes over time. Open-access 

high resolution aerial imagery from the National Agricultural Imagery Program (NAIP) and 

various public satellite imagery are freely accessible and well documented. Similarly, Google 
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Earth Engine (GEE) is a free web-based remote sensing analytical framework that provides 

access to established methods, routines, as well as a curated data catalog of publicly accessible 

remote sensing and other geospatial datasets (Gorelick et al., 2017). GEE supports systematic, 

rapid, and customizable detection of UA, and is less expensive than manually searching for UA 

on high resolution imagery or physically exploring a city.  

The goal of this thesis is to develop a method for automated detection of UA using 

remote sensing data in the case study city of Portland, Oregon. Portland has over 60 known 

community gardens organized by the city alone, and over 3,000 front and backyard gardens 

(McClintock et al., 2016). Portland is also experiencing rapid gentrification (Armstrong et al., 

2018) and has a culture that favors environmental values, meaning that UA may have the 

potential to anchor eco-gentrification (McClintock, 2018a). To map Portland’s urban 

agriculture, I used open-access aerial and satellite imagery and mapped gardens using an object-

based classification approach using GEE. The first objective of this work is to achieve a high 

classification accuracy of identifying garden pixels in community gardens recorded by the 

Portland Bureau of Parks and Recreation. The second objective is an analysis of how well this 

approach detected individual gardens and a qualitative assessment of the detection rate at the 

garden level. The resulting approach is an open-access methodology that can be replicated over 

time, expanded to other cities, and scaled over large areas easily. Further development of this 

approach can support the mapping of UA across Portland, UA density, hot spots, and spatial 

correlations with gentrification. Additionally, a map of urban agriculture may be used for 

studying food production, greenspaces, and for separating UA from other vegetation or 

greenspaces. 
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Chapter 2. Urban Agriculture Identification 
Urban agriculture (UA), defined as “community, home, and market gardens located 

within urban areas and includes the production of vegetables, fruits, and livestock,” is 

expanding in towns and cities across the U.S. (Nogeire-McRae et al., 2018). Movements for 

food supply and security, community development, and environmental sustainability are 

motivations for creating UA (Palmer, 2018). Urban agriculture has socioeconomic and 

environmental benefits. UA can be a source of healthy food for low-income neighborhoods that 

only have access to unhealthy or unsafe food (Clinton et al., 2018; Dubbeling & de Zeeuw, 

2011; Osorio et al., 2013). Produce from UA can supplement healthy vegetables in the diets of 

gardeners, their households, and neighbors or friends with whom they share produce (Opitz, 

2016). Bringing people together to grow food builds trust and relationships between community 

members, as well as food literacy and a focus on accessing healthy foods (Valley & Wittman, 

2019). Urban farms that sell their produce can provide a source of income where job availability 

is low (Valley & Wittman, 2019). Additionally, UA is a type of greenspace and therefore 

increases the livability of neighborhoods and the community member wellbeing (Clinton et al., 

2018; Jorgenson, 2010). Conversely, the benefits from urban agriculture are not always 

accessible to people with low income and communities of color. The high price for produce 

grown on urban farms and sold at markets are prohibitive for low-income communities 

(McClintock, 2014; Valley & Wittman, 2019). Secondly, white bodies in community gardens 

create racial othering, regardless of their intentions, making people of color feel as though they 

do not belong (McClintock, 2018b).  

Mapping urban agriculture in a city provides information to map its density, distribution, 

and how it changes over time and space, which can be used to study the impacts of UA on 

communities and its potential contribution to eco-gentrification. However, urban agriculture can 

be difficult to map because of its scale, complexity, and temporal variation. UA ranges in sizes 

and management from a single square meter garden box in a backyard to large urban farms on 

the scale of 8,000 square meters, that sell their produce to markets. Many gardens have plots - 

raised boxes, beds on the ground, or even on rooftops - that are rectangular and have paths 

between them (Fig. 2.1). The small but clearly separated beds create patterns that are unique to 

urban agriculture. Vegetation changes in appearance throughout the growing cycle every year 

because of changing photosynthetic activity. Changes in photosynthesis are reflected in satellite 
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imagery and therefore monitored. There may also be inconsistencies in what plots are planted 

each year, and what is planted in them. In personal yard- and community gardens, the gardeners 

choose what, when, and where to plant within their beds, and therefore the vegetation may be 

dense in one area and sparse in another. The combination of garden beds, paths, and potentially 

sheds and compost piles, make it a land use made up of multiple land covers, all of which are 

smaller than the spatial resolution of commonly used satellite imagery such as 30-m Landsat 

pixels. 

 
Figure 2.1. Three focus gardens in high resolution Google Earth imagery. While the Kenton 

Community Garden and the Errol Heights Community Garden have more regular plot sizes, the 
Rigler Community Garden has varying plot sizes. 

 

Aerial and satellite remote sensing has the potential to efficiently map UA at high spatial 

resolution and over broad geographic extents and long time periods. Remote sensing can also 

detect various vegetation types and conditions by being sensitive to differences in spectral, 

textural, and temporal characteristics of vegetation land cover. This sensitivity may be able to 

distinguish low lying and low-density garden vegetation from other vegetation such as grass, 
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bushes, and trees within a city. UA presents healthy vegetation with vegetation indices and 

phenological cycles similar to greenspaces.  

Brown and McCarty (2017) and Parece and Campbell (2017) found that UA has strong 

vegetation signals detectable by remote sensing imagery, which can be used for monitoring 

change in UA. Parece and Campbell (2017) used a vegetation index product (NDVI) to assess 

urban community gardens with a Landsat 5, 7, and 8 time series analysis. They were able to 

identify when the community gardens were established by a change in the vegetation index.  

The results showed a change in vegetation signals with the construction of new community 

gardens, where some decreased with the initial construction before increasing. Brown and 

McCarty (2017) evaluated whether remote sensing is effective for finding UA. They used 

Landsat 8 and MODIS imagery from three to four years over 58 UA sites, 31 of which were in 

Detroit, Michigan, with the others being outside the U.S. They calculated vegetation and water 

indices (NDVI, NDWI, and EVI) for Landsat and MODIS over all UA sites and nearby 

greenspace for comparison, finding that approximately one-third of UA sites in Detroit had 

significantly different means and variances from greenspace. These results imply that using 

vegetation indices alone to distinguish UA from surrounding greenspaces may not be 

consistently effective (Brown & McCarty, 2017). On a global scale, Thebo et al. (2014) mapped 

urban agriculture by measuring agriculture extent based on low resolution (5 minute) gridded 

crop data within global urban extents. However, this approach assumes that the crop dataset 

accurately represents agriculture in urban areas. Van (2008) classified Landsat imagery (30-m 

resolution) over Ho Chi Minh City, Vietnam, and Forster et al. (2009) classified Quickbird 

imagery (1-m resolution) with an object-based approach in Hanoi, Vietnam to identify UA. 

These approaches worked well at identifying UA resembling agricultural fields, whereas the UA 

in the U.S. is typically composed of garden beds and boxes. Hof and Wolf (2014), Mathieu et 

al. (2007), and Verbeeck et al., (2011) all used object-based approaches to identify private 

gardens such as household yards in New Zealand, Spain, and Belgium, respectively. Hof and 

Wolf (2014) used WorldView-2 imagery with 2-m resolution, Mathieu et al. (2007) used a 

multispectral Geo Ortho Kit Ikonos image with 4-m resolution, and Verbeeck et al. (2011) used 

QuickBird-2 imagery pansharpened to 0.61m resolution. Their object-based classifications all 

had high overall accuracies (ranging from 96.13%, 77.5%, and 63.8% respectively) and were 

successful in distinguishing their classes of interest.  
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While the need for better mapping of UA is clear and the potential of remote sensing-

based detection of UA has been proven, efforts to date have not been able to reliably map UA in 

the U.S. based on spectral conditions or temporal profiles alone. The goal of this study is to 

accurately map UA by exploiting its pattern in addition to spectral, structural, and temporal 

characteristics of UA vegetation. To achieve this goal, I used very high resolution aerial NAIP 

imagery from 2016, Sentinel-2 satellite imagery from 2016-2020, and GEDI space lidar data 

(2019-2021) collected over the case study city of Portland, Oregon. I adopted a Geographic 

Object-Based Image Analysis (GEOBIA) approach, collected training data across the city, and 

classified imagery using a Random Forest classifier. In an effort to capture the UA pattern, I 

applied morphological operators to the classified image and compared my results to an open 

database on community gardens from the Portland Bureau of Parks and Recreation. This study 

has two specific objectives:  

1) Measure the accuracies of UA detection based on object-based and pixel-based mapping  

2) Examine the detection rate of UA for individual gardens throughout Portland and 
qualitatively assess local factors affecting UA detection. 
 

2.1. Background 
The study area for this research is Portland, Oregon, the largest city in the state located 

in the northwest corner across the Columbia River from Washington. In 2019, Portland had just 

over 650,000 people on 133.43 mi2 (345.6 km2), or 4,375.2 people per square mile (1,689.3 

people per square kilometer) (U.S. Census Bureau, 2019). 70.6% of the Portland population 

identifies as white alone (not Hispanic), 9.7% as Hispanic or Latinx, 8.2% Asian alone, 5.8% 

Black or African American alone, 5.3% as two or more races, 0.8% as American Indian or 

Alaska Native alone, and 0.6% as Native Hawaiian or other Pacific Islander alone (U.S. Census 

Bureau, 2019).  

Urban agriculture is a large part of the green lifestyle found in Portland. The Portland 

Bureau of Parks and Recreation manages 58 community gardens across the city, allowing 

anyone with the financial means to participate in urban agriculture. Annual rentals for Portland 

Community Gardens range from $20 to $220 based on the size of the plot, which range from 4.5 

m2 to 74.3 m2 (50 ft2 to 800 ft2). Portland’s UA also includes the many front and backyard 

gardens, primarily focused on the single family residential neighborhoods (McClintock, 2018a), 

and community gardens organized by city and state non-profits. The vegetation types in 
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personal and community gardens are decided by the growers and therefore include a wide 

variety of crops, and planting and harvesting timelines. The food from household and 

community gardens are typically produced for subsistence use by the gardeners, themselves, 

with a smaller number of urban farms operating as businesses and selling their produce to 

markets, restaurants, and stores (Side Yard Farm., n.d.). 

 

2.2. Materials and Data 

2.2.1. Remote Sensing Data 

2.2.1.1. NAIP  
I used three different remote sensing datasets for detecting UA, all accessed through 

Google Earth Engine. The main source of imagery for mapping UA in Portland is very high 

resolution aerial imagery provided by the National Agricultural Imagery Program (NAIP) 

(NAIP Imagery, n.d.), which is run by the United States Department of Agriculture (USDA). 

NAIP is leaf-on aerial imagery with 1-meter spatial resolution collected over the U.S. and is 

designed to document agricultural production to aid national farm programs. The fine spatial 

detail in NAIP imagery makes it possible to detect and characterize small-scale vegetation and 

agriculture typical of UA. NAIP imagery has four multispectral bands: red, green, blue, and 

near-infrared, which support visualization in true color as well as calculation of the normalized 

difference vegetation index (NDVI). NDVI represents the photosynthetic activity of vegetation, 

measured by the difference between near-infrared (NIR) and red (R) reflectance, divided by the 

sum of the two (Equation 1) (Defries & Townshend, 1994). 

NDVI = (NIR – RED) / (NIR + RED)    (1) 

In Oregon, NAIP imagery was collected in 2003, 2004, and 2006 with partial coverage, 

and 2005, 2009, 2011, 2012, 2014, and 2016 with full coverage. I accessed the most recently 

available NAIP imagery collected over Portland, which was from June 5, 2016. I combined the 

24 individual NAIP images into a single image mosaic covering Portland (Fig. 2.2). To measure 

vegetation condition across the city, I calculated the normalized difference vegetation index 

(NDVI), which has been used for identifying and monitoring UA vegetation (Brown & 

McCarty, 2017; Clinton et al., 2018; Parece & Campbell, 2017). UA may have lower NDVI 

values than other greenspaces because of different watering patterns (Brown & McCarty, 2017). 
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To characterize the spatial texture of gardens, I calculated the Gray-Level Co-occurrence Matrix 

(GLCM) correlation of NDVI, which “measures the linear dependency of gray levels of 

neighboring pixels” (Tassi & Vizzari, 2020). Previous research has shown that including texture 

metrics helps to distinguish land covers that may be similar spectrally (Herold et al., 2003). 

 

Figure 2.2. Overview map including NAIP digital ortho quarter quad (DOQQ) tiles used 
in this analysis (outlined in green), and 58 Community Gardens managed by the City of 

Portland Bureau of Parks and Recreation. The three focus gardens shown here -- Kenton 
Community Garden, Rigler Community Garden, and Errol Heights Community Garden -- are 

used in figures throughout this chapter. 
 

2.2.1.2. Sentinel-2 
The Sentinel-2 MultiSpectral Instrument (MSI) is a satellite sensor that has a 10-day 

global revisit period and a 10-meter spatial resolution for the visible and near-infrared bands run 

by the European Space Agency (ESA) (Sentinel Data Products, n.d.). The relatively high 

temporal resolution of Sentinel-2 data is helpful for capturing temporal changes in vegetation 

condition over the course of a year associated with phenological (green-up and senescent) 

cycles, which may differentiate UA from other vegetation.  
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Sentinel-2 imagery is available with Level 1C (Top-of-Atmosphere) and Level 2A 

(Surface Reflectance) processing, however the earliest 2A imagery over Portland is only 

available in 2017. For this reason, I used Sentinel-2 Level 1C imagery collected from January 

2016 through December 2020. To remove clouds, cloud shadows, and atmospheric haze, I used 

a Sentinel-2 Cloud Probability dataset and eliminated pixels with a 65% or greater probability 

of being clouded (Main-Knorn et al., 2015). Using these cloud-free images, I calculated NDVI 

for all image dates, and then calculated the annual standard deviation of NDVI of each pixel for 

each year. Finally, I calculated the mean annual standard deviation for 2016-2020, which I 

resampled to 1-meter resolution to match the resolution of NAIP imagery. 

2.2.1.3. GEDI 
The NASA Global Ecosystems Dynamic Investigation (GEDI) photon lidar instrument 

is mounted on the International Space Station and collects data on tree canopy height at 25-

meter spatial resolution (Dubayah et al., 2020). The latest release of GEDI data was in 2019 

based on data collected from April through October 2019 (Potapov, 2021). Tree canopy height 

data are useful for differentiating low lying vegetation (i.e., gardens) from taller vegetation such 

as shrubs and trees. As above, I resampled the canopy height data from 25 meters to 1-meter 

resolution to match the resolution of NAIP imagery. 

2.2.2. Geospatial Data 
The Community Gardens Department of the Bureau of Parks and Recreation of the City 

of Portland manages 58 community gardens throughout Portland and has produced a shapefile 

of garden boundaries (Community Gardens, n.d.) with the garden name, area of the garden in 

acres, and number of plots per garden (Fig. 2.1). The community gardens were established from 

the mid 1900s to 2020, however I only consider gardens acquired before 2016 so they would be 

potentially visible in the remote sensing imagery. Although there are many other urban farms 

and community gardens in Portland, this data represents those managed by the city. The three 

community gardens highlighted in Figure 2.1 (Kenton, Rigler, and Errol Height Community 

Gardens) will be referenced throughout to illustrate methods and results because they represent 

a variety of garden and plot structures, sizes, and orientations.  

The community gardens range from 940 m2 to 17503 m2, averaging 3,485.3 m2 (Fig. 

2.3). The gardens vary in shape and orientation, though tend to be approximately rectangular in 

shape and north/south in orientation. Only a few have curved edges or are oriented in other 
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directions. The Errol Heights Community Garden (Fig. 2.1 B) has a northeast to southwest 

orientation, although some others are in other directions or at other angles. The size of the plots 

or garden beds varies between gardens and even within a single garden (Fig. 2.1). The number 

of plots also varies between gardens from 17 and 140, averaging 43.5 plots per garden (Fig. 

2.4). The vast majority of plots are rectangular, ranging from 4.5 m2 to 74.3 m2 (50 ft2 to 800 

ft2) (Portland Parks & Recreation – Garden Plot Request Form, n.d.). The spacing between plots 

also varies within and between gardens. Portland community garden plots are available to the 

public to rent, and therefore each plot has different vegetation and growing periods. 

 
Figure 2.3. Distribution of Portland Community Gardens by area. 
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Figure 2.4. Distribution of Portland Community Gardens by number of plots within the 

garden. 

 

2.3. Methods 

2.3.1. Image Processing 
After collecting and pre-processing imagery, I classified imagery following a 

Geographic Object-Based Image Analysis (GEOBIA) approach to detect UA (Fig. 2.5). 

GEOBIA aims to analyze imagery by “describing the imaged reality using spectral, textural, 

spatial and topological characteristics” (Hay & Castilla, 2008). It does this by grouping adjacent 

pixels with similar properties (spectral, textural, spatial, and topological) into segments or 

clusters of pixels. Individual segments are then classified based on their characteristics. Unlike a 

pixel-based classification, which often has a speckled “salt and pepper” appearance where 

individual pixels may be incorrectly classified, an object-based approach mitigates this effect by 

classifying clusters of pixels. 
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Figure 2.5. Workflow Diagram. 

To create the imagery for classification, I combined the 2016 NAIP with NDVI and the 

GLCM NDVI correlation (Table 2.1). I segmented this eight-band image with the Simple Non-

Iterative Clustering (SNIC) algorithm (Achanta & Susstrunk, 2017). SNIC segments an image 

by creating a grid of superpixels that measures the spatial and spectral distances of pixels to 

include them into the superpixels. It begins with the centroid of each superpixel (the spacing 

designated by the user) and creates a queue of pixels that are 4 or 8 connected to the superpixel 

based on the spatial and spectral distance to the centroid. Every time a pixel is added to the 

superpixel, the centroid is adjusted to the average of all the pixels in the superpixel, and the 

newly added pixel is labeled according to the centroid. 
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Table 2.1. List of bands that were combined for segmentation with SNIC. 

 

 I set the SNIC compactness factor to zero (disabling distance weighting), the 

connectivity to eight pixels, and the seed grid spacing to seven, which produced the best 

preliminary results. SNIC outputs an image where each segment (superpixel) is individually 

numbered (Fig. 2.6). For each segment, I measured the mean and standard deviation of each 

band. I combined all of the standard deviation value bands with the mean value bands; this 

resulted in 16 bands that would go onto classification (Table 2.2). 

 

Figure 2.6. Sample community garden in A) true-color NAIP image and B) SNIC-
derived segments visualized with random colors. 
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Table 2.2. List of segmented data input to the classifier. Means and standard deviations 

are calculated for each segment. 

 

2.3.2. Training and Validation Data Collection 
I created eight land cover classes to help distinguish UA vegetation from other land 

covers found in Portland: (1) garden vegetation, (2) bare/brown grass, (3) green grass, (4) trees, 

(5) roads, (6) sidewalks, (7) buildings, and (8) cars. The area in community gardens between 

plots with garden vegetation is often bare soil or wood chips, which I include in the bare/brown 

grass class. I initially created a separate class for brown grass but combined it with the bare 

class because of their spectral similarity and common intermixing. Trees, grass, and impervious 

land covers such as roads, sidewalks, buildings, and cars complete the classification scheme. 

Since there are only 53 documented community gardens a random sample of locations across 

Portland would likely capture few garden sites, so I collected and labeled 500 sample locations 

in two neighborhoods that each have three community gardens, which vary in configuration 

(Fig. 2.7, Table 2.3). This order of magnitude of training data has been used in other object-

based classifications with success (Tassi & Vizzari, 2020). Within the community gardens, I 
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sampled garden vegetation and bare/brown grass sites, which I identified through visual 

interpretation of Google Earth-hosted high resolution and NAIP imagery. At each sample 

training site, I measured the values of each band in the segmented image and labeled the land 

cover class based on my visual interpretation. The vegetation classes were the most difficult to 

visually distinguish because of the spectral similarity between these classes and their mixed 

appearance in NAIP imagery. I had higher confidence in the interpretation of road, sidewalk, 

and building classes because of their distinct edges. 

 

Figure 2.7. Sample data locations visualized by land cover class. A) The Buckman 
neighborhood sample locations with the Buckman Community Garden (top left), Colonel 

Summers Community Garden (bottom left), and Blair Community Garden (right). B) The Errol 
Heights neighborhood sample locations with the Brentwood North Community Garden (top), 

Brentwood South Community Garden (middle), and the Errol Heights Community Garden 
(bottom left). 
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Table 2.3. Number of sample data by class and neighborhood. Neighborhood 1 is the 
Buckman Neighborhood and Neighborhood 2 is the Errol Heights Neighborhood. 
 

 

2.3.3. Image Classification 
I used the Random Forest algorithm to classify the 14-band segmented image into eight 

land cover types. To train the classifier, I split the sample data into two groups: 70% went into a 

training dataset and the other 30% went into a validation dataset. I used a Random Forest with 

200 trees, which was found to produce the highest preliminary accuracy (Oshiro et al., 2012).  

I examined the Portland Community Gardens to find the most prominent land cover patterns in 

order to create a garden land use class. Most community gardens in the dataset consisted of 

interspersed bare/brown grass and garden vegetation classes. Often, garden beds were classified 

as garden vegetation and the brown paths between beds were classified as bare/brown grass. I 

therefore exploited this pattern to identify UA with a series of spatial morphological analyses on 

the classified segmented image. First, I isolated the segments classified as garden vegetation or 

bare/brown grass. I then copied this image twice. One copy was translated north six meters, and 

the other copy was translated west six meters to overlap any immediately nearby garden 

vegetation or bare/brown grass segments, which would be expected in UA (Fig. 2.8). The two 

translated images as well as the original image were added together; pixels that were the sum of 

at least one bare and one low vegetation pixel were classified as a garden land use pixel. 

Shifting the image copies six meters, roughly the length of some garden beds, before summing 

created the most overlap of the areas with garden vegetation pixels adjacent to bare/brown grass 
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pixels and produced the highest detection rate of garden pixels in the preliminary results (Fig. 

2.9). I repeated this process in the opposite direction by copying the image and translating it six 

meters southward, translating another copy six meters eastward, and adding those together with 

the original image.  

While the garden pattern image offered improved coverage of likely garden land use 

regions with interspersed garden vegetation and bare earth or brown grass, there were often gaps 

in the coverage within reference community garden boundaries. To fill these gaps, I used a 

standard dilation and erosion spatial morphological process (Tuia et al., 2009). I applied a 

dilation convolution filter with a three-meter kernel window to expand the garden land use pixel 

coverage (thereby filling gaps) followed by an erosion convolution filter with the same three-

meter kernel window to trim away any excess regions caused by the dilation. This produced the 

final composite garden land use map. 

 

Figure 2.8. Illustration of translating and compositing process. A) With garden 
vegetation (green) and bare/brown grass (yellow) classes isolated, B) I created a copy and 

shifted it six meters north, and C) created another copy and shifted it west six meters. D) The 
three images were added up where they all overlapped to capture where the two classes were 

adjacent. This process was repeated shifting the copies eastward and southward. 
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Figure 2.9. Composite from translations in all directions. Three gardens with purple 
pixels indicating gardens from the translating and composting of the bare/brown grass and 

garden vegetation classes. A) Kenton Community Garden, B) Errol Heights Community 
Garden, and C) Rigler Community Garden all show a speckling of non-garden pixels 

throughout the areas that showed bare and garden vegetation pixels. 
 

2.3.4. Objective 1 
I measured the accuracy of my segment-level land cover and pixel-level land use 

classifications. I used the 30% of visually interpreted sample data that was set aside for 

validation to assess the accuracy of the Random Forest classified land cover map. I created a 

confusion matrix that compared visually interpreted labels at each validation site to the 

classified output. I calculated the overall accuracy, which shows the percentage of pixels 

classified correctly in the whole validation dataset, as well the Producer’s (i.e., the percentage of 

validation data that were correctly classified) and User’s (i.e., the correctly classified percentage 

of a class) Accuracies. To assess the accuracy of the garden land use class, I calculated the area 

(in m2) within each community garden that was recorded as garden. The difference between the 

total area and detected area in each garden is the area of the garden that the algorithm missed. 
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To measure the rate of detection outside of known community gardens, I calculated the ratio of 

the city-wide total area of detected garden to the total area of garden recorded in the Portland 

Community gardens dataset. 

2.3.5. Objective 2 
To assess the extent of and reasons for variation in garden land use coverage and 

accuracy between community gardens, I measured the garden area and detection rate for each 

community garden in the Portland Community Garden dataset, examined correlations between 

detection rates and the number of plots in each garden.  

To assess the variation in coverage and accuracy between community gardens, I 

qualitatively examined garden detection results at each garden in the Portland Community 

Garden dataset. I used NAIP and Google Earth imagery to visually examine the shape and size 

of the garden, the shapes of the plots, the materials of the paths throughout the garden (to check 

for impervious surfaces) and their spatial configuration. I considered the amount of visible 

vegetation in the garden plots and shading from trees and structures and how these features may 

have influenced garden detection rates. Finally, I examined the potential detection of gardens 

outside of the Portland Bureau of Parks and Recreations Community Gardens reference dataset 

through visual interpretation of available high resolution imagery. 

 

2.4. Results 

2.4.1 Objective 1 Results 
The overall classification accuracy of the eight-class land cover map was 79.6%. The 

combination of 2016 NAIP imagery with NDVI, the GLCM correlation for NDVI, average 

annual Sentinel-2 NDVI standard deviation, and GEDI tree canopy heights produced the highest 

overall accuracy. Including the Sentinel-2 NDVI standard deviation and the GEDI tree canopy 

height only slightly increased the classification accuracy by 2%. Classifying a segmented image 

based on NAIP, S2, and GEDI imagery provided a 9.2% increase in accuracy compared to a 

pixel-based approach, which is testament to the value of the GEOBIA approach adopted in this 

study. The producer’s accuracies range from 62.5% to 94.12% and the consumer’s accuracies 

range from 60.0% to 92.0% across land cover classes (Table 2.4). The impervious classes of 

roads, sidewalks, buildings, and cars had some of the lowest producer’s accuracies averaging 
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74.42%, and user’s accuracies averaging 70.41%, while non-impervious classes of bare/brown 

grass, grass, garden vegetation, and trees had the highest producer’s accuracies averaging 

87.25% and consumer’s accuracies averaging 86.81%. There was confusion between the 

impervious sub-classes, but it was rare for there to be confusion between impervious and non-

impervious classes. Of the non-impervious classes, the largest inaccuracy was associated with 

grass pixels being misclassified as garden vegetation. 

Table 2.4. Confusion matrix for the classification of segmented image. 

 

 

66.9% (118,740 m2) of the total area of community gardens in the reference Portland 

Bureau of Parks and Recreation Community Gardens dataset was detected as garden in this 

study (Fig. 2.10). There is not a strong relationship between garden area and detection rate. The 

lowest detection rates were among the smallest community gardens because of tree cover and 

shade. Tree cover surrounding a small community garden may cover the entire garden, whereas 

tree cover surrounding a large garden will likely leave the garden pattern visible in between the 

surrounding tree canopies. The three largest gardens have land covers such as trees, roads, and 

grass fields in addition to garden vegetation and bare/brown grass. The land cover pattern within 

these gardens deviates from the typical configuration of garden vegetation interspersed with 

bare/brown grass and results in decreased detection accuracy rates. While much of the known 

community garden areas were successfully detected, the vast majority (99.97%, 371,830,915 

m2) of garden pixels lie outside of gardens as defined by Portland Parks. It is indeed common 

to find bare patches adjacent to garden vegetation throughout the city, which are subsequently 

mapped as garden. As described below, additional reference data are required to thoroughly 

assess whether these sites are truly garden or another land use. 
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Figure 2.10. Area of each garden by the area detected as garden pixels. 

 

2.4.2 Objective 2 Results  
Garden was detected in every community garden within the city. The detected areas 

range from 32 m2 (32 pixels or 2.6%) to 99.5% of a given garden boundary. On average, 65.7% 

of a Portland community garden was classified as garden, ranging from 3.8% to 98.2% (Figure 

2.11). Detection rates vary by the visibility of the garden pattern, which is influenced by the 

amount of vegetation growing in the community garden, the discernibility of bare paths or beds 

throughout the garden, and tree cover and shadows cast on the garden. Gardens with the lowest 

detection rates were covered by trees and shadows, while those with the highest detection rates 

were not obstructed from view and had strong bare/brown grass and garden vegetation signals. 

The six community gardens where I collected training data were detected at rates ranging from 

66.6% to 97.1%, with the exception of Blair Community Garden, which only had 21.5% 

detected because of a shading from trees and a building.  

 

 

 

 

 

 

 



 

 

27 

 

Figure 2.11. Histogram of the distribution of detection rates for community gardens. 

 

There is not a strong pattern in the percentage of area detected in each community 

garden and the number of plots in each garden (Figure 2.12). 83% of the Portland Community 

Gardens have between 20 and 60 plots, and those vary from the lowest detection rate (3.8%) to 

the highest (98.2%). Larger gardens have more plots and are less likely to be completely 

blocked by tree cover. Gardens with more plots inherently have more diversity of vegetation 

between plots, and therefore have a better chance of showing both garden vegetation and bare 

soil throughout.  
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Figure 2.12. Percentage of the garden area detected by the number of plots within 
gardens.  

 

Community gardens with the highest detection rates had intermixed areas of woodchips, 

brown grass, or other ground cover areas between garden beds that were classified as 

bare/brown grass, as well as strong vegetation signals classified as garden vegetation. 

Additionally, garden beds that have no vegetation contributed to the bare class and strengthened 

the bare/garden vegetation pattern where the paths were not clear on their own. This scenario 

can be seen in the larger yellow (bare) patches in Figure 2.13. This configuration of garden 

vegetation and bare segments within six meters of each other in any direction was consistently 

present in gardens. Areas of either class larger than six meters in radius may be detected on the 

edges, but will not be captured in the middle, where the shifting step does not result in 

overlapping classes. The areas detected outside garden boundaries were all areas with the 

pattern of bare and vegetation next to each other. This interface occurred on private properties 

as well as many green spaces. Portland is dry in the summer and many grass lawns turn brown, 

which are classified as bare. Yards with brown grass and vegetation show up as bare and low 

vegetation classes next to each other and are identified as garden. Furthermore, the orientation 

of the gardens or plots has no observable effect on the detection rate; examples of north to 

south, east to west, and southwest to northeast orientations are sampled in Figure 2.13.  
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Figure 2.13. Sample garden 1) classes (garden vegetation in green and bare in yellow) 
and 2) garden pixels (purple). A) Kenton Community Garden is almost completely covered by 

the two classes other than the shaded area in the southwest corner. With an 80% detection rate, 
the same area appears in the garden pixels, with the exception of the northeast corner which is 
consistently vegetation. B) Errol Heights Community Garden follows a similar pattern with the 
two classes other than the shaded area in the northern corner, with matching garden pixels with 
77.8% detected. C) Rigler Community Garden has the two classes throughout the garden other 

than the structure in the middle of the garden and along the north side. The garden pixels 
mirror the garden classes detecting 86.3% of the garden.  
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 The community gardens that were not well detected shared some consistent 

characteristics that challenged the classification approach. Tree canopies completely obstructed 

the view of three community gardens and only ten (out of 53 studied) did not have any 

obstruction from trees, structures, or their shadows, which were classified as trees, inhibiting the 

ability to detect garden vegetation as well as bare areas. Trees or buildings on the west side of 

community gardens were especially problematic since their shadows stretched eastward across 

the garden in the afternoon when NAIP imagery was collected (Figure 2.14). Since the detection 

approach benefits from an intermixed pattern of vegetation and bare areas, gardens with too 

little vegetation or too little bare areas were not well detected.  

 
Figure 2.14. Sample of gardens with significant shade from trees or buildings in the 

NAIP imagery. 
 

I identified 16 UA sites outside the Portland Bureau of Parks and Recreation Community 

Gardens dataset for validation in the final garden map. Two of the detected UA sites were food 

forests, or gardens with fruit and nut trees, and the other 14 UA sites included garden beds or 

boxes in private yards. Of these 16 sites, 13 (81.3%) were detected as garden, offering 
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promising results for detecting gardens outside of known training sites (Figure 2.15). In the food 

forest sites, the low-lying garden vegetation was detected rather than the trees. The other 12 

sites were detected well, however some of them were detected because of a combination of 

bare/brown grass pixels on the garden plots and vegetation bordering the sites.  

 

Figure 2.15. Sample of urban agriculture detected in sites outside of the Portland 
Community Garden dataset. A) and B) show true-color NAIP imagery over urban agriculture 

sites outside of the Portland Community Garden dataset and C) and D) show their detection as 
garden (in purple).  

 
 

2.5 Discussion 
In this study, I have shown that accurate detection of community garden space with 

open-access high resolution imagery is possible. I reached a 79.6% accuracy in an object 

classification of the segmented high resolution dataset based on NAIP, Sentinel-2, and GEDI 

data. With compositing and morphological processing, I detected 66% of the area of Portland 

Bureau of Parks and Recreation Community Gardens. These accuracies were achieved using a 

fully automated and open-source approach to city-level UA detection with multi-sensor remote 

sensing, which has not been done before. Previously, remote sensing had been utilized to 

classify larger scale agriculture but had not successfully been used to identify small-scale urban 

agriculture like those in Portland’s Community Gardens. This study detected garden land use in 

every Portland Community Garden (over 40% in 43/53 gardens) and detected additional UA 

sites outside of the reference gardens dataset. The 1-meter NAIP aerial imagery provides the 

most information at the highest resolution of the three remote sensing datasets used and makes it 
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possible to distinguish the small bare areas between garden beds that are integral to detecting 

the garden land use pattern. The object-based SNIC image segmentation approach exploited 

spatial and spectral clusters of pixels, improved classification accuracies, and broadly 

eliminated the “salt and pepper” effect that occurs when classifying high resolution imagery 

with a pixel-based approach. Shifting and compositing classified segmented images were in turn 

instrumental for identifying the pattern associated with the garden land use. The overall 

approach was most effective at detecting community gardens that had large garden beds with a 

strong vegetation signal that were surrounded by clearly visible paths of bare ground and 

performed best in gardens with negligible tree cover. These results show significant progress 

from the only other study attempting to use remote sensing to identify urban agriculture, which 

found that “even very high resolution remote sensing data cannot be used to distinguish [urban] 

farms from other vegetation types” (Brown & McCarty, 2017). 

This approach to mapping urban agriculture has the potential to make progress towards 

studying the social impact of UA, such as food security, community development, and food 

literacy in neighborhoods across the country. A strength of this approach is the higher detection 

rate of urban gardens in neighborhoods with lower tree canopy cover. Country-wide, high-

income neighborhoods are likely to have more tree cover than low-income neighborhoods 

(Schwarz et al., 2015); this pattern matches the historic redlining zones, with the formerly D-

graded (“red”) zones having on average half the amount of tree canopy as A-graded (“green”) 

zones (Locke et al., 2021) (Figure 2.16). These patterns imply that this approach may perform 

best in low-income and historically redlined neighborhoods due to lower presence of tree cover. 

Accordingly, this approach to mapping urban agriculture has the potential to be particularly 

useful for understanding the distribution of UA in post-industrial cities and neighborhoods that 

have not yet reached a stage of gentrification where the city has invested in increasing tree 

cover. Identifying gardens in areas in earlier stages of gentrification can be used to raise 

attention to the gentrification process and potentially prevent further gentrification. 

Additionally, thorough data on locations of urban agriculture throughout a city can contribute to 

assessments of food security, alternative food networks, and long-term consequences of 

redlining. Studying the distribution of urban agriculture may thus provide insights into the 
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distributions of city investments in food security, greenspaces, and the livability of 

neighborhoods.  

 

Figure 2.16. HOLC neighborhood appraisal map for Portland, Oregon. 

 

The results of this study may shed light on patterns of urban gentrification since 

previous research has found spatial and temporal correlations between UA and gentrification 

(Braswell, 2018; Maantay & Maroko, 2018). Gentrification threatens the stability of renters 

because it brings rising rent prices and the general cost of living in a neighborhood, and 

therefore can lead to displacement (Cole et al., 2019; Voicu & Been, 2008). If urban agriculture 

is in neighborhoods experiencing gentrification, the residents who lack food security and would 

benefit from food produced with UA may be displaced and therefore are no longer able to 

benefit from it (Voicu & Been, 2008). Gentrification is on the rise in Portland (Armstrong et al., 

2018). Known for its environmental sustainability and urban agriculture, Portland attracts 

residents who prioritize a green lifestyle. The director of Portland’s Bureau of Planning and 

Sustainability has stated that the city’s reputation for sustainability attracts investment 
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(McClintock, 2018a). However, the combination of a culture of sustainability and existing 

gentrification warrants further investigation into the plausibility of eco-gentrification from 

urban agriculture. The City of Portland Bureau of Planning and Sustainability commissioned a 

study of gentrification throughout the city, which created a typology of gentrification 

categorizing neighborhoods as early-, mid-, or late-stage gentrification (Armstrong et al., 2018). 

They found that 58 census tracts in Portland are experiencing gentrification and 12 more are 

labeled as susceptible, adding up to 70 census tracts and 33,971 low-income cost-burdened 

renter-occupied households (Armstrong et al., 2018). 

There are limitations with this approach due to the sample data selection, data 

constraints, and inherent complexity of urban agriculture. The sample data were manually 

collected in two neighborhoods with similar socio-economic statuses, and garden vegetation 

points were only collected within Portland Community Gardens. A random sample of points 

throughout the city for all classes combined with a random sample within Portland Community 

Gardens would provide a more thorough sample of training and validation data. Sample data 

from all across the city will include neighborhoods with different socio-economic statuses, 

providing more information on different city block and vegetation appearances. The inclusion of 

garden vegetation sample points from other urban agriculture sites may improve the detection of 

UA sites with different structures than the Portland Community Gardens. The imagery used in 

this study are limited in spatial and temporal resolution. The 2016 NAIP imagery over Portland 

had an acquisition time in the late afternoon when the sun was low in the sky, therefore shadows 

were cast to the east of trees and buildings. These shadows were cast on gardens and other 

vegetation, preventing them from accurate classification and therefore inaccurate garden 

identification. With imagery collected closer to the solar noon, fewer shadows would obstruct 

views of gardens and other land covers. Furthermore, the 2016 NAIP image was collected on 

June 5th, which is early in the Portland summer. Had the image been collected at a different 

time in the season, the garden pattern and detection rate may have been different. The early 

summer imagery performs well, although late summer imagery would be preferable since that 

timing would likely result in more of the grass being dry and brown and therefore get classified 

as bare, making it easier to discriminate from garden vegetation. Every plot in the community 

gardens is planted by different households, which affects the timing of the vegetation cycle. 

Imagery from later in the summer may provide stronger vegetation signals when crops are 
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fuller. NAIP imagery also only offers red, green, blue, and near-infrared reflectance, and 

valuable information on vegetation type from shortwave infrared imagery are not available. A 

larger number of bands would provide more data for disaggregating vegetation type and 

condition. Finally, the Sentinel-2 imagery has a 10-m spatial resolution, meaning that there was 

only one measure of annual standard deviation of Sentinel-2 NDVI for every one hundred NAIP 

pixels. The 2019 GEDI tree canopy height imagery has a 25-m spatial resolution, providing one 

tree canopy height value for every 625 NAIP pixels, which likely resulted in inaccurate 

representation of canopy height. 

The City of Portland Bureau of Parks and Recreation Community Gardens dataset 

contains gardens organized by the city with plots that households rent, and therefore does not 

represent the full variety of garden, box/bed, and between-box path sizes city-wide. Community 

gardens in the South, Southwest, and Northwest neighborhoods of Portland generally have more 

tree canopy cover than the rest of the city, which contributes to lower garden detection rates. 

Some urban agriculture may have crops in long rows, paved paths throughout, or other patterns 

that may not be captured with this approach. Without a comprehensive dataset of urban 

agriculture throughout Portland, the other potential patterns of UA outside the community 

gardens dataset remain unknown. Likewise, the restricted spatial sample of UA in the reference 

dataset meant that UA detected outside of the garden boundaries could not automatically be 

determined to be misclassified UA or legitimate detection of UA that happened to fall outside of 

the reference dataset (Fig. 2.17). That said, of the 16 urban agriculture sites assessed outside of 

the Portland Community Garden dataset, 13 were correctly identified as garden. 

 

Figure 2.17. A) Example site shown in NAIP imagery that was B) misclassified as garden. From 
a visual inspection of NAIP and Google Earth high resolution imagery, none of the pixels 

detected at this site are urban agriculture. 
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While this approach for mapping urban agriculture produced satisfactory results in 

known gardens based on the Portland Community Gardens dataset, there is room for 

improvement. A random sample of the segmented imagery for training and validation data 

could improve the classification accuracy with a more thorough sample of pixels. Hyperspectral 

imagery and imagery with high temporal and spatial resolution have the potential to provide 

information for segregating vegetation types more accurately. The garden pattern detection 

method used here could be improved with a deep learning approach that better recognizes the 

complex and varied patterns in UA. The issue of commission may also be solved by removing 

clusters of garden pixels below a threshold garden size with a minimum mapping unit. 

Additionally, vector data specific to a desired research focus may be used for eliminating non-

garden pixels. For example, a dataset such as tax lots could be used to eliminate single family 

residences in order to find large UA sites, or building footprint data may be used to remove 

buildings. Redlining data could be used to find UA in historically neglected neighborhoods. 

Furthermore, this research could be improved with ground-truthing. Because of a global 

pandemic, I was not able to validate community gardens in Portland through fieldwork. Ground 

truthing could provide more information regarding urban agriculture patterns and be vital in 

creating an exhaustive dataset of gardens for training and validation across the city. 

 

2.6 Conclusion 
The goal of this study was to create an automated approach to map urban agriculture in 

Portland, Oregon, with high resolution aerial and satellite imagery. With no pre-existing 

method, this approach was built on an object-based classification approach based on multiple 

remote sensing datasets, image segmentation, and machine learning. The approach successfully 

identified 66.9% of the area of Portland Bureau of Parks and Recreation Community Gardens 

with an overall classification accuracy of 79.6%. The detection rate at individual community 

gardens ranged from 3.8% to 98.2%, and urban agriculture with an intermixed pattern of garden 

vegetation and bare land cover and negligible tree cover were consistently detected with high 

accuracy. 43 out of 53 community gardens had shade from trees or a building, however the 

shade was only prohibitive to urban agriculture detection in six gardens where it completely 

obstructed detection. The South, Southwest, and Northwest neighborhoods in Portland had the 

lowest detection rates because of tree canopies casting shadows and covering the community 
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gardens. Although this approach detected 118,740 m2 of the Portland Community Gardens, 

371,830,915 m2 were identified as garden throughout the city. While some of this area contains 

urban agriculture not included in the Community Gardens dataset, without a comprehensive 

dataset of urban agriculture boundaries, the true detection rate cannot be confidently measured. 

The results of this research present a promising path towards fully automated, efficient, and 

accurate detection of city-wide urban agriculture.  
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Chapter 3. Conclusion 
Mapping urban agriculture (UA) with remote sensing is challenging in part because 

urban agriculture is most accurately conceived of as a land use rather than a land cover. The UA 

land use is a combination of low garden vegetation in garden beds or boxes, bare soil or brown 

grass paths between them, and sometimes sheds, structures, and other vegetation types such as 

fruit or nut trees that collectively produce food for the local community. The approach in this 

thesis classifies land cover and then seeks to convert land cover into a land use by identifying 

the intermixed pattern of garden vegetation and bare land covers that typify urban agriculture. 

This approach presents a potential path towards remote sensing of urban agriculture in cities 

across the U.S.  
Urban agriculture (UA) is part of complex global food, social, and economic systems. 

Although produce from gardens may supplement diets, solving food insecurity will require 

addressing the larger systems of racial and social injustice that prevent food security. Mapping 

urban agriculture across multiple cities in the U.S. can be used to investigate differences in 

urban agriculture’s spatial patterns and dynamics with socio-economic factors such as 

gentrification. Existing research has shown a correlation between urban agriculture and 

gentrification (Braswell, 2018; Maantay & Maroko, 2018), which raises concern that the 

households that need food security the most, may face displacement. Previous research on UA 

and gentrification used existing databases of UA sites, which do not exist in most U.S. cities and 

are likely not comprehensive within a given city. If UA has a role in catalyzing gentrification, 

mapping it may bring attention to gardens in low-income neighborhoods at risk for 

gentrification and better protect them and their benefits.  
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