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Chapter 1: Introduction

Turbulence is chaotic in nature and spans a tremendous spatial range. In general, tur-
bulent vortices cascade in size starting from large energy-containing structures—which
can be as large as planets—down to energy-dissipating structures on the micro-scale or
smaller [1, 2]. At these smallest scales, coupled interactions between thermal, molecular,
and momentum diffusion dissipate turbulent kinetic energy [1-3]. This dissipation can
be reversed in chemically reacting flows such as turbulent flames, where energy released
during combustion can generate turbulence through the interaction of chemical reactions
and dissipation processes [3]. The complex interaction of turbulence and chemistry cou-
ples the conservation of mass, momentum, and energy with the conservation of chemical
species at diffusion length scales [3].

Practical combustion devices, such as internal combustion and gas turbine engines, are
primarily driven by the turbulent premixed or partially premixed combustion of hydrogen
and hydrocarbon-based fuels [4]. These systems often operate at elevated temperatures
and pressures, raising significant challenges for experimental studies [5, 6]. For example,
practical measurement tools capable of withstanding a combustion environment can be
expensive and can introduce significant bias into an experiment [6, 7]. Moreover, while
optical measurement techniques can alleviate much of these biases, they require optical
access to the flame, which may require fundamentally altering the flow configuration and
limit the practical application of these methods [5-7]. Finally, turbulence and chemistry
within a flame are sensitive to short time scales, much faster than experimental methods
can capture, and as a result practical measurements of combustion processes are inherently
average quantities and fail to provide instantaneous measurements with high spatial
fidelity [6]. Thus, while experimental studies of combustion can provide valuable insight
into combustion physics, they can not sufficiently characterise the complex turbulence-
chemistry interactions present in these flows.

Alternatively, direct numerical simulation (DNS) studies turbulent flows by solving
the governing equations at a fine-enough resolution to directly simulate turbulence with-

out models [8-10]. DNS is often referred to as a “virtual experiment” and simulates



turbulence at high-fidelity down to the dissipation length scales. As a result, DNS is com-
putationally expensive, requiring thousands of CPU cores running for days to simulate a
small spatial domain for a relatively short time. Thus, while it would be computationally
cost prohibitive to simulate an entire engine, for example, DNS can be paired with other
simulation methods or experiments to investigate a wide range of turbulent phenomena.
Moreover, because of its high temporal and spatial resolution, DNS provides a highly
resolved reference data and is often used to develop and verify turbulence closure models
used in other turbulence modeling approaches such as large-eddy simulation (LES) and
Reynolds-averaged Navier—Stokes (RANS) simulation [11-13].

However, the DNS of turbulent combustion suffers from three primary limitations.
First, large energy-containing turbulent structures act as a source of turbulent kinetic
energy into the system, and these are often too large to be simulated in the DNS of
turbulent reacting flows. Capturing the smallest turbulent scales—without incurring
prohibitive costs—generally limits DNS of reacting flows to small domains, e.g., on the
order of millimeters to centimeters [9]. As a result, these large-scale sources of turbulence
must be modeled through turbulence-forcing methods, otherwise dissipation will dominate
and damp out turbulence in the domain [14, 15]. Second, due to the high computational
expense associated with evaluating finite rate chemistry, DNS of turbulent combustion
with detailed chemistry can be computationally cost prohibitive even for small domains [8—
10]. Detailed chemical kinetic models can contain tens to hundreds of chemical species,
and hundreds to thousands of elementary chemical reactions, resulting in a dense system
of differential equations [16, 17]. Thus, to alleviate these high computational costs,
reduced chemical kinetic models are often used to approximate detailed chemistry [9].
Third, the presence of numerous chemical species gives rise to multicomponent mass and
thermal diffusion, which significantly increases computational complexity [18-21]. As a
result of this increased complexity, a range of diffusion approximations are used to reduce
the computational expense associated with these diffusion processes [18, 22, 23]. While
the turbulent forcing and multicomponent thermal diffusion assumptions have been well
characterised for use in the DNS of turbulent combustion, the impact of multicomponent
mass diffusion and chemical kinetic model reduction on these simulations is not fully
understood [8-10, 16-19, 24].

Another factor relevant to DNS of turbulent reacting flows is the choice of chemical

kinetic model, and particularly the impact of using a reduced kinetic model. Though



this topic has only been investigated by one or two studies [25], its analysis is outside the
primary scope of this work. Appendix A provides an initial assessment on the impact of
reduced chemical models on turbulent combustion.

Multicomponent mass transport is critical to the understanding of combustion physics
as the diffusion of mass, heat, and momentum occur in parallel in turbulent reacting
flows [20, 26]. Moreover, the coupling of turbulence and chemistry during the combustion
processes can locally impact the flame’s structure, causing it to curve and forming steep,
multi-directional gradients in the temperature and scalar fields [3]. These strong, highly
variable gradients can cause large diffusion fluxes, which increase mass transport through
the flame front and may further impact flame structure and dynamics [3]. However, imple-
menting full multicomponent mass diffusion transport in DNS can be memory-intensive
and computationally expensive. This is because evaluating the diffusion fluxes depends
on numerous spatial gradients and requires point-wise knowledge of the multicomponent
diffusion coefficient matrix, which scales in size with the number of chemical species
squared [20, 27]. While several approximations attempt to reduce the complexity of
diffusion modeling, including (in order of increasing complexity) the unity Lewis number,
constant non-unity Lewis number [28], and mixture-averaged assumption [20, 23], to my
knowledge the accuracy and appropriateness of these assumptions has not been evaluated
relative to full multicomponent diffusion transport.

Finally, while efficient multicomponent transport models do exist, namely those de-
veloped by Ern and Giovalgigli [29-31] and Ambikasaran and Narayanaswamy [32], they
focus primarily on reducing the computational cost of determining the multicomponent
diffusion coefficients but do not reduce the large memory requirements associated with
evaluating the diffusion fluxes themselves. Motivated by the dearth of affordable computa-
tional tools for evaluating full multicomponent mass diffusion, a fast, stable, low-memory
algorithm is needed to implement full multicomponent transport in DNS. Moreover,
as demonstrated by the lack of available data from simulations using multicomponent
transport, a thorough evaluation of the impact of multicomponent transport turbulent
combustion is needed to evaluate the accuracy and appropriateness of existing diffusion

approximations.



1.1 Motivation

An improved method for implementing multicomponent mass diffusion in DNS for three-
dimensional reacting flows is currently needed. This is motivated by the importance of
mass diffusion in understanding the fundamental physics and chemistry at the smallest

scales of turbulent combustion. These motivations can be summarized as a need to:
o Eliminate assumptions used in DNS,

e Evaluate the limitations of existing diffusion approximations relative to full multi-

component mass diffusion, and

e Understand the impact of multicomponent diffusion on the underlying physics of

turbulent combustion.

This research has broad implications for the greater combustion community. For DNS
to be considered a true “virtual experiment” it should rely on the smallest number of
assumptions or approximations as possible. Thus, developing and implementing a model
for multicomponent mass diffusion would eliminate the need for long standing diffusion
assumptions and enable a more-correct evaluation of the complex physics at play in
turbulent combustion. More generally, improved diffusion modeling would enable the
development of better closure models for LES and RANS, which do not currently include
multicomponent diffusion effects. Finally, low-memory algorithms are not limited to
diffusion modeling and could be implemented for a wide range of numerical schemes to

improve performance and reduce temporary memory requirements.



1.2

Objectives

The primary objectives of this work are to develop and implement a fast, low-memory,

and stable algorithm for implementing multicomponent transport in DNS, and evaluate

the accuracy and appropriateness of the existing diffusion approximations relative to

full multicomponent mass diffusion. More specifically, this study will focus on these six

objectives:

1.

Develop and implement a memory-efficient rearrangement of the floating-point
operations associated with evaluating multicomponent diffusion in the low Mach

number reacting-flow equations.

Develop and implement a fast and stable semi-implicit algorithm for implementing

multicomponent diffusion in DNS.

. Demonstrate the accuracy and stability of the proposed semi-implicit algorithm

for use in the DNS of premixed, turbulent combustion in the moderate-to-high

Karlovitz number regime.

Assess the accuracy of the mixture-averaged diffusion approximation relative to
multicomponent diffusion for premixed, turbulent combustion in the moderate-to-

high Karlovitz number regime.

Assess the impact of the mixture-averaged diffusion approximation on the turbulent
flame speed and global flame statistics relative to multicomponent diffusion for

premixed, turbulent combustion in the moderate-to-high Karlovitz number regime.

Assess the impact of mixture-averaged and multicomponent diffusion modeling
on the average internal flame structure of premixed, turbulent combustion in the

moderate-to-high Karlovitz number regime.



1.3  Outline of Thesis

In this dissertation I present the development and implementation of a fast, low-memory,
stable algorithm for modeling multicomponent transport in DNS and assess the impact
of multicomponent transport on the complex chemistry and physics present in turbu-
lent combustion. In Chapter 2 I briefly review relevant studies and existing methods
for modeling diffusion in DNS. I then present the proposed algorithm for implementing
multicomponent diffusion into the DNS code NGA [33, 34], demonstrate the method’s per-
formance and accuracy, and comprehensively assess its computational costs. In Chapter 3
I assess the accuracy of mixture-averaged diffusion fluxes relative to full multicomponent
mass diffusion in unsteady laminar and turbulent flames of three fuels, and evaluate
the impact of that error on global flame statistics. In Chapter 4 I assess the impact of
diffusion modeling on the turbulent transport and flame structure to better understand
the underlying physics present in turbulent combustion.

Finally, in Chapter 5 I present general conclusions for this work, and discuss their
context within the reviewed literature. To help provide further insight on the relative
accuracy of existing DNS assumptions, in Appendix A I present a preliminary assessment
of the impact of chemical kinetic model reduction on the relative accuracy of DNS for
premixed turbulent flames. In addition, in Appendix B I present LIB-LAB: The Library
Laboratory, an educational video series focused on communicating academic research to
a K-12 audience using evidence-based teaching practices. While Appendices A and B
fall outside the primary scope of this dissertation, they are relevant to the continued

improvement of DNS tools and broad communication of this work.
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Chapter 2: A fast, low-memory, and stable algorithm for
implementing multicomponent transport in direct numerical

simulations

Implementing multicomponent diffusion models in reacting-flow simulations is compu-
tationally expensive due to the challenges involved in calculating diffusion coefficients.
Instead, mixture-averaged diffusion treatments are typically used to avoid these costs.
However, to our knowledge, the accuracy and appropriateness of the mixture-averaged
diffusion models has not been verified for three-dimensional turbulent premixed flames.
In this study we propose a fast, efficient, low-memory algorithm and use that to eval-
uate the role of multicomponent mass diffusion in reacting-flow simulations. Direct
numerical simulation of these flames is performed by implementing the Stefan-Maxwell
equations in NGA. A semi-implicit algorithm decreases the computational expense of
inverting the full multicomponent ordinary diffusion array while maintaining accuracy
and fidelity. We first verify the method by performing one-dimensional simulations of
premixed hydrogen flames and compare with matching cases in Cantera. We demonstrate
the algorithm to be stable, and its performance scales approximately with the number
of species squared. Then, as an initial study of multicomponent diffusion, we simulate
premixed, three-dimensional turbulent hydrogen flames, neglecting secondary Soret and
Dufour effects. Simulation conditions are carefully selected to match previously published
results and ensure valid comparison. Our results show that using the mixture-averaged
diffusion assumption leads to a 15 % under-prediction of the normalized turbulent flame
speed for a premixed hydrogen-air flame. This difference in the turbulent flame speed
motivates further study into using the mixture-averaged diffusion assumption for DNS
of moderate-to-high Karlovitz number flames.

Keywords: Turbulent flames; Direct numerical simulation; Multicomponent diffusion;

Mixture-averaged diffusion



2.1 Introduction

Implementing full multicomponent mass diffusion transport in direct numerical simula-
tion (DNS) can be memory intensive and computationally expensive. This is because
calculating diffusion fluxes requires point-wise knowledge of the multicomponent diffusion
coefficient matrix, which scales with the number of chemical species squared [20]. The
unity Lewis number, non-unity Lewis number, and mixture-averaged diffusion assump-
tions have been used to reduce the costs associated with mass diffusion by approximating
the full diffusion coefficient matrix as a constant scalar value, a constant vector, and a
matrix diagonal, respectively. In addition, several approaches further reduce the system’s
complexity by approximating multicomponent diffusion processes in terms of equivalent
Fickian processes, such as those used by Warnatz [35] and Coltrin et al. [36]. However,
to our knowledge, the accuracy and appropriateness of these assumptions have not been
evaluated in turbulent reacting flows against multicomponent diffusion transport due to
its high computational expense and a dearth of affordable computing tools.

As further motivation for this study, Lapointe and Blanquart [22] recently investigated
the impact of differential diffusion on simulations using unity and nonunity Lewis number
approximations. They reported that methane, n-heptane, iso-octane, and toluene flames
have similar normalized turbulent flame speeds and fuel burning rates when neglect-
ing differential diffusion, but flames using the nonunity Lewis number approximation
underpredict the normalized flame speed when including differential diffusion due to
reduced burning rates [22]. Building on these results, Burali et al. [23] evaluated the
relative accuracy of the nonunity Lewis number assumption relative to mixture-averaged
diffusion for lean, unstable hydrogen/air flames; lean, turbulent n-heptane/air flames;
and ethylene/air coflow diffusion flames. They demonstrated that the relative error as-
sociated with the nonunity Lewis number assumption could be minimized with careful
selection of the Lewis number vector for a wide range of flames [23]. Similarly, Schlup
and Blanquart [18] examined the impact of multicomponent thermal diffusion on DNS of
turbulent, premixed, high-Karlovitz hydrogen/air flames. They showed that simulations
using the mixture-averaged thermal diffusion assumption underpredict the normalized
flame speeds compared with results from simulations using full multicomponent thermal
diffusion. In addition, including multicomponent thermal diffusion results in increased

production of chemical source terms in regions of high positive curvature [18]. These
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observed discrepancies in similar flame simulations with different diffusion models warrant
a detailed investigation of the fundamental transport phenomena involved.

While data are sparse from three-dimensional reacting-flow simulations with multi-
component transport, several groups have investigated the effects of multicomponent
transport in simpler configurations. These studies include one-dimensional [31, 37-41]
and two-dimensional flames [19, 42, 43] at various unburnt conditions. These works com-
pared the multicomponent model with various levels of diffusion and transport property
models, from constant Lewis number to mixture-averaged properties. In general, prior
studies found some errors between multicomponent and mixture-averaged formulations
for simplified hydrogen/air and methane/air flame configurations, such as unstretched
laminar flames. However, these studies did not assess flames where diffusion effects may
be more important, such as two- and three-dimensional, unsteady laminar and turbulent
flames. Moreover, advancing clean and efficient combustion technology requires incorpo-
rating realistic fuel chemistry in large-scale turbulent simulations relevant to practical
applications. Thus, there is a clear need for a computationally efficient algorithm capable
of modeling full multicomponent diffusion transport [44].

The studies by Lapointe and Blanquart [22], Burali et al. [23], and Schlup and
Blanquart [18] each took care to isolate the diffusion assumptions in question by neglecting
higher-order terms that may affect diffusion transport. For example, with the exception
of Schlup and Blanquart [18], these studies neglected Soret and Dufour diffusion, as it
would be difficult to determine the direct cause of an observed effect when including both
molecular and thermal diffusion. However, despite this methodical approach, the results of
these studies were presented with reference to mixture-averaged diffusion, rather than full
multicomponent diffusion. This further highlights the need for a computationally efficient
method for implementing full multicomponent transport, and a subsequent examination
of the differences between its “true” results and those resulting from the approximations
conventionally used.

In this direction, several studies have examined the impact of full multicomponent
transport on simplified three-dimensional flame configurations. Giovangigli [19] demon-
strated that multicomponent Soret effects significantly impact a wide range of laminar
hydrogen/air flames. Specifically, they noted that multicomponent Soret effects influence
laminar flame speeds and extinction stretch rates for flat and strained premixed flames,

respectively. For high-pressure systems, Borchesi and Bellan [45] developed and analyzed
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a multi-species turbulent mixing model for large-eddy simulations. They focused on
turbulent crossflow mixing of a five-species combustion-relevant mixture of n-heptane,
09, CO9, No, and H20O. The multi-species transport model significantly improves the
accuracy and fidelity of the solution throughout the mixing layer; however, this study
only considered non-reacting flows and, as a result, did not assess the impact of multi-
component transport on the chemistry inherent in turbulent combustion. In addition,
these simulations implement a simplified diffusion model to approximate multicompo-
nent diffusion but do not directly solve the diffusion terms present in the generalized
conservation equations for species and energy [46].

Motivated by the dearth of affordable three-dimensional multicomponent transport
models, Ern and Giovangigli [29-31] developed the computationally efficient Fortran
library EGLIB for accurately determining transport coefficients in gas mixtures. More
recently, Ambikasaran and Narayanaswamy [32] proposed an efficient algorithm to com-
pute multicomponent diffusion velocities, which scales linearly with the number of species.
This significantly reduces computational cost compared with previous methods that di-
rectly invert the Stephan—Maxwell equations and thus scale with the number of species
cubed. Although both libraries reduce the computational cost of determining the multi-
component diffusion coefficients, they do not provide a method for reducing the resulting
large memory requirements for multidimensional simulations.

Overall, these prior studies provide compelling evidence that multicomponent trans-
port is important and can affect the accuracy of combustion models. However, none
assessed how multicomponent transport impacts three-dimensional turbulent systems
with detailed chemistry. In this article, we demonstrate and analyze an efficient, dynamic
algorithm that reduces the computational expense of calculating the multicomponent
diffusion fluxes. We demonstrate the approach is accurate and stable for a wide range
of time-step sizes. In addition, we present a comprehensive assessment of the numerical
costs associated with this method. To verify the proposed algorithm we present one-
dimensional freely propagating, laminar hydrogen/air flames and compare with results
from Cantera. Finally, we simulate three-dimensional, turbulent, premixed, hydrogen/air
flames. As a preliminary comparison of the mixture-averaged and multicomponent diffu-
sion models, we perform an a posteriori assessment of how the choice of diffusion model

impacts the turbulent statistics of the three-dimensional hydrogen simulation.
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2.2 Governing equations

This section presents the low-Mach number reacting Navier—Stokes equations used in this
study. In addition, this section outlines the method used to determine the mass diffusion
fluxes for both the mixture-averaged and multicomponent approaches, abbreviated here
as MA and MC, respectively.

2.2.1 Low Mach-number equations

In this work we solve the variable-density, low-Mach number, reacting-flow equations [33,

34]. The conservation equations are

dp
% 9. () = 2.1
5 TV (pu) =0, (2.1)
B
%—FV'(pu@u):—Vp—l—V-T, (2.2)
dpT 1
%Jrv-(puT):v-(paVT)erwT—C—Zcp,iji-VTJr’;—avcp-VT, (2.3)
P p
BpY; o
LV (puY)) = =V i+ (2.4)

where p is the mixture density, u is the velocity vector, p is the hydrodynamic pressure,
T is the viscous stress tensor, T is the temperature, « is the mixture thermal diffusivity,
Cp,i is the constant-pressure specific heat of species ¢, ¢, is the constant-pressure specific
heat of the mixture, j; is the diffusion flux of species ¢, Y; is the mass fraction of species
i, and w; is the production rate of species i. In Equation (2.3), the temperature source
term wyp is given by

wr = —c, " Y hi(T)w; (2.5)

i

where h;(T') is the specific enthalpy of species i as a function of temperature. The density
is determined from the ideal gas equation of state

_ PW
 RT "’

(2.6)

where P, is the thermodynamic pressure, R is the universal gas constant, and W is the

~1
mixture molecular weight determined via W = (va Yi/ Wl) , where W; is the molar
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mass of the ith species and N is the number of species.

The diffusion fluxes are calculated with either the mixture-averaged [20] or multi-
component [27] models, which are both based on Boltzmann’s equation for the kinetic
theory of gases [27, 47]. The baro-diffusion term is commonly neglected in reacting-flow
simulations under the low Mach-number approximation [48]. We have also neglected
thermal diffusion because our objective in this work is to investigate the impact of mass
diffusion models; Schlup and Blanquart [18, 49] previously explored the effects of thermal

diffusion modeling.

2.2.2  Mixture-averaged (MA) species diffusion flux

The ith species diffusion flux for the mixture-averaged diffusion model is related to the

species gradients by a Fickian formulation and is expressed as
. Yi /
7

where X is the ith species mole fraction, D; ,, is the ith species mixture-averaged diffusion

coefficient as expressed by Bird et al. [20]:

1-Y

Dim = 20
Y X/ Dy

(2.8)

where Dj; is the binary diffusion coefficient between the ith and jth species. Finally, ul,

is the correction velocity used to ensure mass continuity:

f g, Y
u, =)y Dim< VX . (2.9)
=1 ¢

The expression for species diffusion flux can be re-stated in terms of mass fraction Y; as
al w

ji=—pDim | VYi = Y; > VY— | + pYu., (2.10)
k=1 Wi

where D; ,,, corresponds to the ith element of the diagonal mixture-averaged diffusion

coefficient matrix, defined herein as DMA.
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2.2.3 Multicomponent (MC) species diffusion flux

The multicomponent diffusion model for the ith species diffusion flux is

> WDV Xy, (2.11)

where D is the ordinary multicomponent diffusion coefficient (computed using the
MCMDIF subroutine of CHEMKIN II [50] with the method outlined by Dixon-Lewis [21]).

Equation (2.11) can be restated in terms of mass fraction as

ji=p>_ —Di°VYi, (2.12)
k
where
W; W
D¢ = W Dy, — Wi (Z Dinj) (2.13)
J

The diagonal of the ordinary multicomponent diffusion matrix, D;;, is zero. As will be
shown later, the DMC matrix is singular with a kernel of dimension one. Interestingly,

the vector of species mass fractions is in the kernel:

()5 ) (5

This property will be important later (in Section 2.3.4) for the stability analysis.

N
1%
> D=

: =0. (2.14)
k=1 W

The multicomponent diffusion coefficients, thermal conductivities, and thermal diffu-
sion coeflicients are computed by solving a system of equations defined by the L matrix,

composed of nine sub-matrices:

L0000 0010 a0 0
L1000 1010 1001} 14100 — x| | (2.15)
0 LOl,lO LOLOI a(1)1 X

where the right-hand side is composed of the one-dimensional mole fraction arrays X.

Based on this system of equations, the inverse of the L% block provides the multicom-
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ponent diffusion coefficients:

16T W
Dij = Xig— o (45 — Gii) 2.1
z 25PWj(qa i) (2.16)
where )
a=(L0) . (2.17)

The L% sub-matrix block is given by

N
00,00 16T Xy

ij T o5p WD, i X (1 —0ir) — WiXi(0ij — 95 , 2.1
i 25Pk:1W,-D,-k{WJ (1= 0i) = WiXi(dij — djk)} (2.18)

where ¢; ; is the reduced dipole moment corresponding to the ith component of the vector

of dipole moments.

2.3 Methods

As discussed previously, multicomponent mass diffusion has not yet been incorporated
into three-dimensional turbulent flame simulations due to its high computational expense.
This section presents the discretized equations, numerical algorithm, and preconditioner
proposed. The method is based on the semi-implicit time-marching scheme for species

mass-fraction fields proposed by Savard et al. [34].

2.3.1 Multicomponent model implementation

This work was completed using the structured, multi-physics, and multi-scale finite-
difference code NGA [33, 34]. NGA can solve a wide range of problems, including
laminar and turbulent flows [51-53], constant- and variable-density flows [15, 33, 54],
large-eddy simulation [52, 55|, and DNS [15, 54, 56]. NGA discretely conserves mass,
momentum, and kinetic energy with an arbitrarily high-order spatial accuracy [33].
NGA'’s variable-density flow solver uses both spatially and temporally staggered vari-
ables, storing all scalar quantities (p, P, T, Y;) at the volume centers and velocity
components at their respective volume faces [33, 57]. The convective term in the species

transport equation is discretized using the bounded, quadratic, upwind-biased, interpola-



16

tive convective scheme (BQUICK) [58]. The diffusion source term is discretized using a
second-order centered scheme and the variables are advanced in time using a second-order
semi-implicit Crank—Nicolson scheme [59].

An iterative procedure is applied to fully cover the nonlinearities in the Navier—Stokes
equations and the species diffusion terms. Prior studies demonstrated this iterative
process to be critically important for stability and accuracy [33, 34, 59, 60]. Savard et
al. [34] fully detailed the numerical algorithm sequence; we summarize this method here.
This summary is independent of the preconditioning strategy employed in NGA, to which
propose modifications in Section 2.3.2.

The algorithm for advancing one time step follows, using a uniform time-step size
At. The density, pressure, and scalar fields are advanced from time level ¢"+1/2 to ¢7+3/2,
and the velocity fields are advanced from time " to t"*!, where t" is the current time.

Each iteration (i.e., time step) consists of ) sub-iterations and follows this procedure:

0. Upon convergence of the previous time step, the algorithm stores the density
(p"T1/2), pressure (P"+1/2), velocity fields (u™), and scalar fields (Y"+1/2), where
Y represents the vector of species mass fractions (Y1,...,Yx). The solutions for
pressure, species mass fraction, and momentum from the previous time step are

used as an initial guess for the iterative procedure:
P5L+3/2 = prtl/2 , Yg+3/2 — ynti/2 , and (pu)g"'1 = (pu)" . (2.19)

An Adams-Bashforth prediction evaluates the initial density:

p701+3/2 — 9, n+1/2 _

p P (2:20)

which ensures that the continuity equation is discretely satisfied at the beginning

of the iterative procedure.

1. For the sub-iterations k& = 1,...,Q, the semi-implicit Crank—Nicolson method

advances the scalar fields in time [33, 59]:

pr YR = Ry U AL (C + D + 92))

At (0C  ODIff 9\ [ iz niae (2.21)
at (ob RN (y2 iy
T3 <8Y+ oY +w)k (Vi e
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where Diff = —V - j, and Y7, C;;, Diffj, , and Q} are the mass fraction, convection,

diffusion, and chemical terms evaluated on the mid-point (or half time-step) scalar

field Y,

B ynt1/2 JrYZ%/?
2

Y (2.22)
To simplify the discrete notations for spatial differentiation, the operators corre-

sponding to the convective and diffusive terms in Equation (2.4) are written as C

and Diff, respectively [34]. g—g and (193;3 are the Jacobian matrices corresponding

to the convective and diffusive terms with respect to the species mass fractions, re-

spectively. C and g—g are functions of the density and velocity, while Diff and 8{!%1{&

are functions of the density, diffusivity, and molar weight. They are consistently

updated at each sub-iteration [34].

2. The density field, pz_tf/ 2, is evaluated from the new scalar fields using Equation (2.6).

We do not rescale the scalar fields as proposed by Shunn et al. [60]. However, upon
convergence of the sub-iterations, this method is equivalent to the density treatment

they proposed [34].

3. The momentum equation is advanced in time using a similar semi-implicit Crank—
Nicolson method for the scalar fields as described by Savard et al. [34].

4. A Poisson equation is then solved for the fluctuating hydrodynamic pressure using a
combination of HYPRE [33, 61], BICGSTAB|[62], and/or FFTW [63]. The predicted
velocity field is then updated.

5. Upon convergence of the sub-iterations, the solutions are updated.

The procedure summarized above becomes equivalent to the fully implicit Crank—Nicolson

time-integration scheme upon convergence of the sub-iterations [59].

2.3.2  Preconditioning

We expand the above numerical procedure to incorporate multicomponent diffusion by
modifying the time-marching step for species mass fraction fields. Specifically, this
method modifies the treatment of the mass-diffusion source term in the species mass

fraction fields. All other intermediate steps are unchanged.
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2.3.2.1 Preconditioning iterative method

For simpler implementation, Equation (2.21) is solved in its residual form:

ni3/2. At /0C  ODIff  9Q\"! ni3/2  <nt3/2
Planles g < -(Y S /)

k 2 \ay "oy Tay), et (2.23)
= YL R A (Op !+ DI 4+ )
This equation can be restated as
n+3/2 n+3/2 —
Y2y A ey (2.24)
where the matrix J is
At (9C ODiff 9\t
g ey At ( ) 2.95
P 2\ay "oy Tav), (2.25)
and the vector
n+3/2~,n+3/2 _ . nt+l/2yn+1/2
Y Y
Q, = k Atp - [cg“ + Diff ! + Qk} (2.26)

is the residual of the species transport equation at the previous sub-iteration, which
asymptotes to zero as the sub-iterations fully converge.

Written in its residual form, the time advancement of the species transport equations
described here resembles the standard preconditioned Richardson-type iterative method
[34, 64], where the matrix J acts as a preconditioner. The choice of J as a preconditioner
is arbitrary and only affects the convergence characteristics of the iterative method [34].

For example,
J =t (2.27)

is equivalent to the fully explicit integration of the convective, diffusive, and chemical

source terms in the species transport equations. Alternatively,

J:

ni3/2, At (80 ODiff an)"“
I-— (o — 2.2
P > \ay " oy Tavy), (2.28)

is equivalent to fully implicit integration of the convective, diffusive, and chemical source
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terms [34].

There is a clear tradeoff in selecting the preconditioner. Since preconditioning is
applied to each step of the iterative methods, the form of matrix J should be optimized
for low computational and inversion cost while maintaining strong convergence. The fully
explicit preconditioner provides the cheapest option but in our experience results in poor
convergence performance, requiring extremely small time steps. Alternatively, the fully
implicit preconditioner would provide excellent convergence criteria and unconditional
stability; however, the Jacobian matrices for the chemical and diffusion source terms
are typically dense [20, 50, 65]. Thus, constructing a fully implicit preconditioner is
prohibitively expensive for large kinetic models.

To achieve strong convergence while maintaining a low-cost form for the precondi-
tioner, we propose an approximation of the diffusion Jacobian that lies bet