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Chapter 1: Introduction

Turbulence is chaotic in nature and spans a tremendous spatial range. In general, tur-
bulent vortices cascade in size starting from large energy-containing structures—which
can be as large as planets—down to energy-dissipating structures on the micro-scale or
smaller [1, 2]. At these smallest scales, coupled interactions between thermal, molecular,
and momentum diffusion dissipate turbulent kinetic energy [1–3]. This dissipation can
be reversed in chemically reacting flows such as turbulent flames, where energy released
during combustion can generate turbulence through the interaction of chemical reactions
and dissipation processes [3]. The complex interaction of turbulence and chemistry cou-
ples the conservation of mass, momentum, and energy with the conservation of chemical
species at diffusion length scales [3].

Practical combustion devices, such as internal combustion and gas turbine engines, are
primarily driven by the turbulent premixed or partially premixed combustion of hydrogen
and hydrocarbon-based fuels [4]. These systems often operate at elevated temperatures
and pressures, raising significant challenges for experimental studies [5, 6]. For example,
practical measurement tools capable of withstanding a combustion environment can be
expensive and can introduce significant bias into an experiment [6, 7]. Moreover, while
optical measurement techniques can alleviate much of these biases, they require optical
access to the flame, which may require fundamentally altering the flow configuration and
limit the practical application of these methods [5–7]. Finally, turbulence and chemistry
within a flame are sensitive to short time scales, much faster than experimental methods
can capture, and as a result practical measurements of combustion processes are inherently
average quantities and fail to provide instantaneous measurements with high spatial
fidelity [6]. Thus, while experimental studies of combustion can provide valuable insight
into combustion physics, they can not sufficiently characterise the complex turbulence-
chemistry interactions present in these flows.

Alternatively, direct numerical simulation (DNS) studies turbulent flows by solving
the governing equations at a fine-enough resolution to directly simulate turbulence with-
out models [8–10]. DNS is often referred to as a “virtual experiment” and simulates
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turbulence at high-fidelity down to the dissipation length scales. As a result, DNS is com-
putationally expensive, requiring thousands of CPU cores running for days to simulate a
small spatial domain for a relatively short time. Thus, while it would be computationally
cost prohibitive to simulate an entire engine, for example, DNS can be paired with other
simulation methods or experiments to investigate a wide range of turbulent phenomena.
Moreover, because of its high temporal and spatial resolution, DNS provides a highly
resolved reference data and is often used to develop and verify turbulence closure models
used in other turbulence modeling approaches such as large-eddy simulation (LES) and
Reynolds-averaged Navier–Stokes (RANS) simulation [11–13].

However, the DNS of turbulent combustion suffers from three primary limitations.
First, large energy-containing turbulent structures act as a source of turbulent kinetic
energy into the system, and these are often too large to be simulated in the DNS of
turbulent reacting flows. Capturing the smallest turbulent scales—without incurring
prohibitive costs—generally limits DNS of reacting flows to small domains, e.g., on the
order of millimeters to centimeters [9]. As a result, these large-scale sources of turbulence
must be modeled through turbulence-forcing methods, otherwise dissipation will dominate
and damp out turbulence in the domain [14, 15]. Second, due to the high computational
expense associated with evaluating finite rate chemistry, DNS of turbulent combustion
with detailed chemistry can be computationally cost prohibitive even for small domains [8–
10]. Detailed chemical kinetic models can contain tens to hundreds of chemical species,
and hundreds to thousands of elementary chemical reactions, resulting in a dense system
of differential equations [16, 17]. Thus, to alleviate these high computational costs,
reduced chemical kinetic models are often used to approximate detailed chemistry [9].
Third, the presence of numerous chemical species gives rise to multicomponent mass and
thermal diffusion, which significantly increases computational complexity [18–21]. As a
result of this increased complexity, a range of diffusion approximations are used to reduce
the computational expense associated with these diffusion processes [18, 22, 23]. While
the turbulent forcing and multicomponent thermal diffusion assumptions have been well
characterised for use in the DNS of turbulent combustion, the impact of multicomponent
mass diffusion and chemical kinetic model reduction on these simulations is not fully
understood [8–10, 16–19, 24].

Another factor relevant to DNS of turbulent reacting flows is the choice of chemical
kinetic model, and particularly the impact of using a reduced kinetic model. Though
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this topic has only been investigated by one or two studies [25], its analysis is outside the
primary scope of this work. Appendix A provides an initial assessment on the impact of
reduced chemical models on turbulent combustion.

Multicomponent mass transport is critical to the understanding of combustion physics
as the diffusion of mass, heat, and momentum occur in parallel in turbulent reacting
flows [20, 26]. Moreover, the coupling of turbulence and chemistry during the combustion
processes can locally impact the flame’s structure, causing it to curve and forming steep,
multi-directional gradients in the temperature and scalar fields [3]. These strong, highly
variable gradients can cause large diffusion fluxes, which increase mass transport through
the flame front and may further impact flame structure and dynamics [3]. However, imple-
menting full multicomponent mass diffusion transport in DNS can be memory-intensive
and computationally expensive. This is because evaluating the diffusion fluxes depends
on numerous spatial gradients and requires point-wise knowledge of the multicomponent
diffusion coefficient matrix, which scales in size with the number of chemical species
squared [20, 27]. While several approximations attempt to reduce the complexity of
diffusion modeling, including (in order of increasing complexity) the unity Lewis number,
constant non-unity Lewis number [28], and mixture-averaged assumption [20, 23], to my
knowledge the accuracy and appropriateness of these assumptions has not been evaluated
relative to full multicomponent diffusion transport.

Finally, while efficient multicomponent transport models do exist, namely those de-
veloped by Ern and Giovalgigli [29–31] and Ambikasaran and Narayanaswamy [32], they
focus primarily on reducing the computational cost of determining the multicomponent
diffusion coefficients but do not reduce the large memory requirements associated with
evaluating the diffusion fluxes themselves. Motivated by the dearth of affordable computa-
tional tools for evaluating full multicomponent mass diffusion, a fast, stable, low-memory
algorithm is needed to implement full multicomponent transport in DNS. Moreover,
as demonstrated by the lack of available data from simulations using multicomponent
transport, a thorough evaluation of the impact of multicomponent transport turbulent
combustion is needed to evaluate the accuracy and appropriateness of existing diffusion
approximations.
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1.1 Motivation

An improved method for implementing multicomponent mass diffusion in DNS for three-
dimensional reacting flows is currently needed. This is motivated by the importance of
mass diffusion in understanding the fundamental physics and chemistry at the smallest
scales of turbulent combustion. These motivations can be summarized as a need to:

• Eliminate assumptions used in DNS,

• Evaluate the limitations of existing diffusion approximations relative to full multi-
component mass diffusion, and

• Understand the impact of multicomponent diffusion on the underlying physics of
turbulent combustion.

This research has broad implications for the greater combustion community. For DNS
to be considered a true “virtual experiment” it should rely on the smallest number of
assumptions or approximations as possible. Thus, developing and implementing a model
for multicomponent mass diffusion would eliminate the need for long standing diffusion
assumptions and enable a more-correct evaluation of the complex physics at play in
turbulent combustion. More generally, improved diffusion modeling would enable the
development of better closure models for LES and RANS, which do not currently include
multicomponent diffusion effects. Finally, low-memory algorithms are not limited to
diffusion modeling and could be implemented for a wide range of numerical schemes to
improve performance and reduce temporary memory requirements.
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1.2 Objectives

The primary objectives of this work are to develop and implement a fast, low-memory,
and stable algorithm for implementing multicomponent transport in DNS, and evaluate
the accuracy and appropriateness of the existing diffusion approximations relative to
full multicomponent mass diffusion. More specifically, this study will focus on these six
objectives:

1. Develop and implement a memory-efficient rearrangement of the floating-point
operations associated with evaluating multicomponent diffusion in the low Mach
number reacting-flow equations.

2. Develop and implement a fast and stable semi-implicit algorithm for implementing
multicomponent diffusion in DNS.

3. Demonstrate the accuracy and stability of the proposed semi-implicit algorithm
for use in the DNS of premixed, turbulent combustion in the moderate-to-high
Karlovitz number regime.

4. Assess the accuracy of the mixture-averaged diffusion approximation relative to
multicomponent diffusion for premixed, turbulent combustion in the moderate-to-
high Karlovitz number regime.

5. Assess the impact of the mixture-averaged diffusion approximation on the turbulent
flame speed and global flame statistics relative to multicomponent diffusion for
premixed, turbulent combustion in the moderate-to-high Karlovitz number regime.

6. Assess the impact of mixture-averaged and multicomponent diffusion modeling
on the average internal flame structure of premixed, turbulent combustion in the
moderate-to-high Karlovitz number regime.
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1.3 Outline of Thesis

In this dissertation I present the development and implementation of a fast, low-memory,
stable algorithm for modeling multicomponent transport in DNS and assess the impact
of multicomponent transport on the complex chemistry and physics present in turbu-
lent combustion. In Chapter 2 I briefly review relevant studies and existing methods
for modeling diffusion in DNS. I then present the proposed algorithm for implementing
multicomponent diffusion into the DNS code NGA [33, 34], demonstrate the method’s per-
formance and accuracy, and comprehensively assess its computational costs. In Chapter 3
I assess the accuracy of mixture-averaged diffusion fluxes relative to full multicomponent
mass diffusion in unsteady laminar and turbulent flames of three fuels, and evaluate
the impact of that error on global flame statistics. In Chapter 4 I assess the impact of
diffusion modeling on the turbulent transport and flame structure to better understand
the underlying physics present in turbulent combustion.

Finally, in Chapter 5 I present general conclusions for this work, and discuss their
context within the reviewed literature. To help provide further insight on the relative
accuracy of existing DNS assumptions, in Appendix A I present a preliminary assessment
of the impact of chemical kinetic model reduction on the relative accuracy of DNS for
premixed turbulent flames. In addition, in Appendix B I present LIB-LAB: The Library
Laboratory, an educational video series focused on communicating academic research to
a K-12 audience using evidence-based teaching practices. While Appendices A and B
fall outside the primary scope of this dissertation, they are relevant to the continued
improvement of DNS tools and broad communication of this work.



7

A fast, low-memory, and stable algorithm for implementing
multicomponent transport in direct numerical simulations

Aaron J. Fillo, Jason Schlup, Guillaume Beardsell, Guillaume Blanquart,
and Kyle E. Niemeyer

Journal of Computational Physics
In print, 2019.
https://doi.org/10.1016/j.jcp.2019.109185

https://doi.org/10.1016/j.jcp.2019.109185


8

Chapter 2: A fast, low-memory, and stable algorithm for
implementing multicomponent transport in direct numerical

simulations

Implementing multicomponent diffusion models in reacting-flow simulations is compu-
tationally expensive due to the challenges involved in calculating diffusion coefficients.
Instead, mixture-averaged diffusion treatments are typically used to avoid these costs.
However, to our knowledge, the accuracy and appropriateness of the mixture-averaged
diffusion models has not been verified for three-dimensional turbulent premixed flames.
In this study we propose a fast, efficient, low-memory algorithm and use that to eval-
uate the role of multicomponent mass diffusion in reacting-flow simulations. Direct
numerical simulation of these flames is performed by implementing the Stefan–Maxwell
equations in NGA. A semi-implicit algorithm decreases the computational expense of
inverting the full multicomponent ordinary diffusion array while maintaining accuracy
and fidelity. We first verify the method by performing one-dimensional simulations of
premixed hydrogen flames and compare with matching cases in Cantera. We demonstrate
the algorithm to be stable, and its performance scales approximately with the number
of species squared. Then, as an initial study of multicomponent diffusion, we simulate
premixed, three-dimensional turbulent hydrogen flames, neglecting secondary Soret and
Dufour effects. Simulation conditions are carefully selected to match previously published
results and ensure valid comparison. Our results show that using the mixture-averaged
diffusion assumption leads to a 15% under-prediction of the normalized turbulent flame
speed for a premixed hydrogen-air flame. This difference in the turbulent flame speed
motivates further study into using the mixture-averaged diffusion assumption for DNS
of moderate-to-high Karlovitz number flames.

Keywords: Turbulent flames; Direct numerical simulation; Multicomponent diffusion;
Mixture-averaged diffusion
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2.1 Introduction

Implementing full multicomponent mass diffusion transport in direct numerical simula-
tion (DNS) can be memory intensive and computationally expensive. This is because
calculating diffusion fluxes requires point-wise knowledge of the multicomponent diffusion
coefficient matrix, which scales with the number of chemical species squared [20]. The
unity Lewis number, non-unity Lewis number, and mixture-averaged diffusion assump-
tions have been used to reduce the costs associated with mass diffusion by approximating
the full diffusion coefficient matrix as a constant scalar value, a constant vector, and a
matrix diagonal, respectively. In addition, several approaches further reduce the system’s
complexity by approximating multicomponent diffusion processes in terms of equivalent
Fickian processes, such as those used by Warnatz [35] and Coltrin et al. [36]. However,
to our knowledge, the accuracy and appropriateness of these assumptions have not been
evaluated in turbulent reacting flows against multicomponent diffusion transport due to
its high computational expense and a dearth of affordable computing tools.

As further motivation for this study, Lapointe and Blanquart [22] recently investigated
the impact of differential diffusion on simulations using unity and nonunity Lewis number
approximations. They reported that methane, n-heptane, iso-octane, and toluene flames
have similar normalized turbulent flame speeds and fuel burning rates when neglect-
ing differential diffusion, but flames using the nonunity Lewis number approximation
underpredict the normalized flame speed when including differential diffusion due to
reduced burning rates [22]. Building on these results, Burali et al. [23] evaluated the
relative accuracy of the nonunity Lewis number assumption relative to mixture-averaged
diffusion for lean, unstable hydrogen/air flames; lean, turbulent n-heptane/air flames;
and ethylene/air coflow diffusion flames. They demonstrated that the relative error as-
sociated with the nonunity Lewis number assumption could be minimized with careful
selection of the Lewis number vector for a wide range of flames [23]. Similarly, Schlup
and Blanquart [18] examined the impact of multicomponent thermal diffusion on DNS of
turbulent, premixed, high-Karlovitz hydrogen/air flames. They showed that simulations
using the mixture-averaged thermal diffusion assumption underpredict the normalized
flame speeds compared with results from simulations using full multicomponent thermal
diffusion. In addition, including multicomponent thermal diffusion results in increased
production of chemical source terms in regions of high positive curvature [18]. These
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observed discrepancies in similar flame simulations with different diffusion models warrant
a detailed investigation of the fundamental transport phenomena involved.

While data are sparse from three-dimensional reacting-flow simulations with multi-
component transport, several groups have investigated the effects of multicomponent
transport in simpler configurations. These studies include one-dimensional [31, 37–41]
and two-dimensional flames [19, 42, 43] at various unburnt conditions. These works com-
pared the multicomponent model with various levels of diffusion and transport property
models, from constant Lewis number to mixture-averaged properties. In general, prior
studies found some errors between multicomponent and mixture-averaged formulations
for simplified hydrogen/air and methane/air flame configurations, such as unstretched
laminar flames. However, these studies did not assess flames where diffusion effects may
be more important, such as two- and three-dimensional, unsteady laminar and turbulent
flames. Moreover, advancing clean and efficient combustion technology requires incorpo-
rating realistic fuel chemistry in large-scale turbulent simulations relevant to practical
applications. Thus, there is a clear need for a computationally efficient algorithm capable
of modeling full multicomponent diffusion transport [44].

The studies by Lapointe and Blanquart [22], Burali et al. [23], and Schlup and
Blanquart [18] each took care to isolate the diffusion assumptions in question by neglecting
higher-order terms that may affect diffusion transport. For example, with the exception
of Schlup and Blanquart [18], these studies neglected Soret and Dufour diffusion, as it
would be difficult to determine the direct cause of an observed effect when including both
molecular and thermal diffusion. However, despite this methodical approach, the results of
these studies were presented with reference to mixture-averaged diffusion, rather than full
multicomponent diffusion. This further highlights the need for a computationally efficient
method for implementing full multicomponent transport, and a subsequent examination
of the differences between its “true” results and those resulting from the approximations
conventionally used.

In this direction, several studies have examined the impact of full multicomponent
transport on simplified three-dimensional flame configurations. Giovangigli [19] demon-
strated that multicomponent Soret effects significantly impact a wide range of laminar
hydrogen/air flames. Specifically, they noted that multicomponent Soret effects influence
laminar flame speeds and extinction stretch rates for flat and strained premixed flames,
respectively. For high-pressure systems, Borchesi and Bellan [45] developed and analyzed
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a multi-species turbulent mixing model for large-eddy simulations. They focused on
turbulent crossflow mixing of a five-species combustion-relevant mixture of n-heptane,
O2, CO2, N2, and H2O. The multi-species transport model significantly improves the
accuracy and fidelity of the solution throughout the mixing layer; however, this study
only considered non-reacting flows and, as a result, did not assess the impact of multi-
component transport on the chemistry inherent in turbulent combustion. In addition,
these simulations implement a simplified diffusion model to approximate multicompo-
nent diffusion but do not directly solve the diffusion terms present in the generalized
conservation equations for species and energy [46].

Motivated by the dearth of affordable three-dimensional multicomponent transport
models, Ern and Giovangigli [29–31] developed the computationally efficient Fortran
library EGLIB for accurately determining transport coefficients in gas mixtures. More
recently, Ambikasaran and Narayanaswamy [32] proposed an efficient algorithm to com-
pute multicomponent diffusion velocities, which scales linearly with the number of species.
This significantly reduces computational cost compared with previous methods that di-
rectly invert the Stephan–Maxwell equations and thus scale with the number of species
cubed. Although both libraries reduce the computational cost of determining the multi-
component diffusion coefficients, they do not provide a method for reducing the resulting
large memory requirements for multidimensional simulations.

Overall, these prior studies provide compelling evidence that multicomponent trans-
port is important and can affect the accuracy of combustion models. However, none
assessed how multicomponent transport impacts three-dimensional turbulent systems
with detailed chemistry. In this article, we demonstrate and analyze an efficient, dynamic
algorithm that reduces the computational expense of calculating the multicomponent
diffusion fluxes. We demonstrate the approach is accurate and stable for a wide range
of time-step sizes. In addition, we present a comprehensive assessment of the numerical
costs associated with this method. To verify the proposed algorithm we present one-
dimensional freely propagating, laminar hydrogen/air flames and compare with results
from Cantera. Finally, we simulate three-dimensional, turbulent, premixed, hydrogen/air
flames. As a preliminary comparison of the mixture-averaged and multicomponent diffu-
sion models, we perform an a posteriori assessment of how the choice of diffusion model
impacts the turbulent statistics of the three-dimensional hydrogen simulation.
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2.2 Governing equations

This section presents the low-Mach number reacting Navier–Stokes equations used in this
study. In addition, this section outlines the method used to determine the mass diffusion
fluxes for both the mixture-averaged and multicomponent approaches, abbreviated here
as MA and MC, respectively.

2.2.1 Low Mach-number equations

In this work we solve the variable-density, low-Mach number, reacting-flow equations [33,
34]. The conservation equations are

∂ρ

∂t
+∇ · (ρu) = 0 , (2.1)

∂ρu
∂t

+∇ · (ρu⊗ u) = −∇p+∇ · τ , (2.2)
∂ρT

∂t
+∇ · (ρuT ) = ∇ · (ρα∇T ) + ρω̇T −

1
cp

∑
i

cp,iji · ∇T + ρα

cp
∇cp · ∇T , (2.3)

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · ji + ω̇i , (2.4)

where ρ is the mixture density, u is the velocity vector, p is the hydrodynamic pressure,
τ is the viscous stress tensor, T is the temperature, α is the mixture thermal diffusivity,
cp,i is the constant-pressure specific heat of species i, cp is the constant-pressure specific
heat of the mixture, ji is the diffusion flux of species i, Yi is the mass fraction of species
i, and ω̇i is the production rate of species i. In Equation (2.3), the temperature source
term ω̇T is given by

ω̇T = −c−1
p

∑
i

hi(T )ω̇i , (2.5)

where hi(T ) is the specific enthalpy of species i as a function of temperature. The density
is determined from the ideal gas equation of state

ρ = PoW

RT
, (2.6)

where Po is the thermodynamic pressure, R is the universal gas constant, and W is the
mixture molecular weight determined via W =

(∑N
i Yi/Wi

)−1
, where Wi is the molar
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mass of the ith species and N is the number of species.
The diffusion fluxes are calculated with either the mixture-averaged [20] or multi-

component [27] models, which are both based on Boltzmann’s equation for the kinetic
theory of gases [27, 47]. The baro-diffusion term is commonly neglected in reacting-flow
simulations under the low Mach-number approximation [48]. We have also neglected
thermal diffusion because our objective in this work is to investigate the impact of mass
diffusion models; Schlup and Blanquart [18, 49] previously explored the effects of thermal
diffusion modeling.

2.2.2 Mixture-averaged (MA) species diffusion flux

The ith species diffusion flux for the mixture-averaged diffusion model is related to the
species gradients by a Fickian formulation and is expressed as

ji = −ρDi,m
Yi
Xi
∇Xi + ρYiu′c , (2.7)

whereXi is the ith species mole fraction, Di,m is the ith species mixture-averaged diffusion
coefficient as expressed by Bird et al. [20]:

Di,m = 1− Yi∑
j 6=iXj/Dji

, (2.8)

where Dji is the binary diffusion coefficient between the ith and jth species. Finally, u′c
is the correction velocity used to ensure mass continuity:

u′c =
N∑
i=1

Di,m
Yi
Xi
∇Xi . (2.9)

The expression for species diffusion flux can be re-stated in terms of mass fraction Yi as

ji = −ρDi,m

(
∇Yi − Yi

N∑
k=1
∇Yk

W

Wk

)
+ ρYiu′c , (2.10)

where Di,m corresponds to the ith element of the diagonal mixture-averaged diffusion
coefficient matrix, defined herein as DMA.
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2.2.3 Multicomponent (MC) species diffusion flux

The multicomponent diffusion model for the ith species diffusion flux is

ji = ρYi
XiW

N∑
k=1

WkDik∇Xk , (2.11)

where Dik is the ordinary multicomponent diffusion coefficient (computed using the
MCMDIF subroutine of CHEMKIN II [50] with the method outlined by Dixon–Lewis [21]).
Equation (2.11) can be restated in terms of mass fraction as

ji = ρ
∑
k

−DMC
ik ∇Yk , (2.12)

where

DMC
ik = −Wi

W

Dik −
W

Wk

∑
j

DijYj

 . (2.13)

The diagonal of the ordinary multicomponent diffusion matrix, Dii, is zero. As will be
shown later, the DMC matrix is singular with a kernel of dimension one. Interestingly,
the vector of species mass fractions is in the kernel:

N∑
k=1

DMC
ik Yk = −Wi

W

(∑
k

DikYk

)
−
(
W
∑
k

Yk
Wk

)∑
j

DijYj

 = 0 . (2.14)

This property will be important later (in Section 2.3.4) for the stability analysis.
The multicomponent diffusion coefficients, thermal conductivities, and thermal diffu-

sion coefficients are computed by solving a system of equations defined by the L matrix,
composed of nine sub-matrices:

L00,00 L00,10 0
L10,00 L10,10 L10,01

0 L01,10 L01,01



a00

1
a10

1
a01

1

 =


0
X
X

 , (2.15)

where the right-hand side is composed of the one-dimensional mole fraction arrays X.
Based on this system of equations, the inverse of the L00,00 block provides the multicom-
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ponent diffusion coefficients:

Dij = Xi
16T
25P

W

Wj
(qij − qii) , (2.16)

where
q =

(
L00,00

)−1
. (2.17)

The L00,00 sub-matrix block is given by

L00,00
ij = 16T

25P

N∑
k=1

Xk

WiDik
{WjXj(1− δi,k)−WiXi(δi,j − δj,k)} , (2.18)

where δi,j is the reduced dipole moment corresponding to the ith component of the vector
of dipole moments.

2.3 Methods

As discussed previously, multicomponent mass diffusion has not yet been incorporated
into three-dimensional turbulent flame simulations due to its high computational expense.
This section presents the discretized equations, numerical algorithm, and preconditioner
proposed. The method is based on the semi-implicit time-marching scheme for species
mass-fraction fields proposed by Savard et al. [34].

2.3.1 Multicomponent model implementation

This work was completed using the structured, multi-physics, and multi-scale finite-
difference code NGA [33, 34]. NGA can solve a wide range of problems, including
laminar and turbulent flows [51–53], constant- and variable-density flows [15, 33, 54],
large-eddy simulation [52, 55], and DNS [15, 54, 56]. NGA discretely conserves mass,
momentum, and kinetic energy with an arbitrarily high-order spatial accuracy [33].

NGA’s variable-density flow solver uses both spatially and temporally staggered vari-
ables, storing all scalar quantities (ρ, P , T , Yi) at the volume centers and velocity
components at their respective volume faces [33, 57]. The convective term in the species
transport equation is discretized using the bounded, quadratic, upwind-biased, interpola-
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tive convective scheme (BQUICK) [58]. The diffusion source term is discretized using a
second-order centered scheme and the variables are advanced in time using a second-order
semi-implicit Crank–Nicolson scheme [59].

An iterative procedure is applied to fully cover the nonlinearities in the Navier–Stokes
equations and the species diffusion terms. Prior studies demonstrated this iterative
process to be critically important for stability and accuracy [33, 34, 59, 60]. Savard et
al. [34] fully detailed the numerical algorithm sequence; we summarize this method here.
This summary is independent of the preconditioning strategy employed in NGA, to which
propose modifications in Section 2.3.2.

The algorithm for advancing one time step follows, using a uniform time-step size
∆t. The density, pressure, and scalar fields are advanced from time level tn+1/2 to tn+3/2,
and the velocity fields are advanced from time tn to tn+1, where tn is the current time.
Each iteration (i.e., time step) consists of Q sub-iterations and follows this procedure:

0. Upon convergence of the previous time step, the algorithm stores the density
(ρn+1/2), pressure (Pn+1/2), velocity fields (un), and scalar fields (Yn+1/2), where
Y represents the vector of species mass fractions (Y1, . . . , YN ). The solutions for
pressure, species mass fraction, and momentum from the previous time step are
used as an initial guess for the iterative procedure:

P
n+3/2
0 = Pn+1/2 , Yn+3/2

0 = Yn+1/2 , and (ρu)n+1
0 = (ρu)n . (2.19)

An Adams–Bashforth prediction evaluates the initial density:

ρ
n+3/2
0 = 2ρn+1/2 − ρn−1/2 , (2.20)

which ensures that the continuity equation is discretely satisfied at the beginning
of the iterative procedure.

1. For the sub-iterations k = 1, . . . , Q, the semi-implicit Crank–Nicolson method
advances the scalar fields in time [33, 59]:

ρ
n+3/2
k Yn+3/2

k+1 = ρn+1/2Yn+1/2 + ∆t (C∗k + Diff∗k + Ω∗k)

+∆t
2

(
∂C
∂Y + ∂Diff

∂Y + ∂Ω
∂Y

)n+1

k
·
(
Yn+3/2
k+1 −Yn+3/2

k

)
,

(2.21)
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where Diff = −∇· ji and Y∗k, C∗k, Diff∗k , and Ω∗k are the mass fraction, convection,
diffusion, and chemical terms evaluated on the mid-point (or half time-step) scalar
field Y ∗k :

Y∗k = Yn+1/2 + Yn+3/2
k

2 . (2.22)

To simplify the discrete notations for spatial differentiation, the operators corre-
sponding to the convective and diffusive terms in Equation (2.4) are written as C
and Diff, respectively [34]. ∂C

∂Y and ∂Diff
∂Y are the Jacobian matrices corresponding

to the convective and diffusive terms with respect to the species mass fractions, re-
spectively. C and ∂C

∂Y are functions of the density and velocity, while Diff and ∂Diff
∂Y

are functions of the density, diffusivity, and molar weight. They are consistently
updated at each sub-iteration [34].

2. The density field, ρn+3/2
k+1 , is evaluated from the new scalar fields using Equation (2.6).

We do not rescale the scalar fields as proposed by Shunn et al. [60]. However, upon
convergence of the sub-iterations, this method is equivalent to the density treatment
they proposed [34].

3. The momentum equation is advanced in time using a similar semi-implicit Crank–
Nicolson method for the scalar fields as described by Savard et al. [34].

4. A Poisson equation is then solved for the fluctuating hydrodynamic pressure using a
combination of HYPRE [33, 61], BICGSTAB[62], and/or FFTW [63]. The predicted
velocity field is then updated.

5. Upon convergence of the sub-iterations, the solutions are updated.

The procedure summarized above becomes equivalent to the fully implicit Crank–Nicolson
time-integration scheme upon convergence of the sub-iterations [59].

2.3.2 Preconditioning

We expand the above numerical procedure to incorporate multicomponent diffusion by
modifying the time-marching step for species mass fraction fields. Specifically, this
method modifies the treatment of the mass-diffusion source term in the species mass
fraction fields. All other intermediate steps are unchanged.
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2.3.2.1 Preconditioning iterative method

For simpler implementation, Equation (2.21) is solved in its residual form:

[
ρ
n+3/2
k I− ∆t

2

(
∂C
∂Y + ∂Diff

∂Y + ∂Ω
∂Y

)n+1

k

]
·
(
Yn+3/2
k+1 −Yn+3/2

k

)
= ρn+1/2Yn+1/2 − ρn+3/2

k Yn+3/2
k + ∆t

(
Cn+1
k + Diffn+1

k + Ω∗k
)
.

(2.23)

This equation can be restated as

Yn+3/2
k+1 = Yn+3/2

k −∆tJ−1 ·Θk , (2.24)

where the matrix J is

J = ρ
n+3/2
k I− ∆t

2

(
∂C
∂Y + ∂Diff

∂Y + ∂Ω
∂Y

)n+1

k

(2.25)

and the vector

Θk = ρ
n+3/2
k Yn+3/2

k − ρn+1/2Yn+1/2

∆t −
[
Cn+1
k + Diffn+1

k + Ω∗k
]

(2.26)

is the residual of the species transport equation at the previous sub-iteration, which
asymptotes to zero as the sub-iterations fully converge.

Written in its residual form, the time advancement of the species transport equations
described here resembles the standard preconditioned Richardson-type iterative method
[34, 64], where the matrix J acts as a preconditioner. The choice of J as a preconditioner
is arbitrary and only affects the convergence characteristics of the iterative method [34].
For example,

J = ρ
n+3/2
k I (2.27)

is equivalent to the fully explicit integration of the convective, diffusive, and chemical
source terms in the species transport equations. Alternatively,

J = ρ
n+3/2
k I− ∆t

2

(
∂C
∂Y + ∂Diff

∂Y + ∂Ω
∂Y

)n+1

k
(2.28)

is equivalent to fully implicit integration of the convective, diffusive, and chemical source
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terms [34].
There is a clear tradeoff in selecting the preconditioner. Since preconditioning is

applied to each step of the iterative methods, the form of matrix J should be optimized
for low computational and inversion cost while maintaining strong convergence. The fully
explicit preconditioner provides the cheapest option but in our experience results in poor
convergence performance, requiring extremely small time steps. Alternatively, the fully
implicit preconditioner would provide excellent convergence criteria and unconditional
stability; however, the Jacobian matrices for the chemical and diffusion source terms
are typically dense [20, 50, 65]. Thus, constructing a fully implicit preconditioner is
prohibitively expensive for large kinetic models.

To achieve strong convergence while maintaining a low-cost form for the precondi-
tioner, we propose an approximation of the diffusion Jacobian that lies between the fully
implicit and fully explicit extremes: a semi-implicit preconditioner. Savard et al. [34]
previously implemented a similar approach for preconditioning the chemical Jacobian.

2.3.2.2 Semi-implicit preconditioner

In Equation (2.28), the Jacobian of the diffusion source term depends on the multicom-
ponent diffusion flux, which is proportional to the multicomponent diffusion coefficient
matrix, DMC. However, DMC is a dense matrix and would be a computationally ex-
pensive approximation for the Jacobian. Alternatively, the mixture-averaged diffusion
coefficient matrix, DMA, is a simplified approximation of DMC and thus may provide a
reasonable, low-cost approximation of the fully implicit Jacobian.

The mixture-averaged diffusion coefficient matrix, DMA, and the multicomponent
diffusion coefficient matrix, DMC, are of a similar order and depend on the underlying
species diffusivities. In addition, since DMA is computed from the local species and
temperature values rather than global changes, it is inexpensive to compute. Finally,
since DMA is strictly diagonal and thus inexpensive to invert, it provides a low-cost
approximation to the diffusion Jacobian. In practice the approximate diffusion Jacobian
is a tri-diagonal block matrix, where each block is the diagonal DMA matrix. In other
words, for each species the part of the Jacobian corresponding to that species is tri-
diagonal and described by DMA.
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2.3.3 Dynamic memory algorithm

As mentioned previously, high-fidelity simulations with full multicomponent mass diffusion
will have a high computational expense. Thus, to facilitate a cost-effective implementation
of full multicomponent diffusion we propose a simple dynamic memory algorithm that
significantly reduces the computational resources needed for such simulations.

The cost of simulating full multicomponent diffusion comes from evaluating the DMC

matrix. Thus, we can reduce computational cost significantly by limiting the evaluation
of DMC to strictly once per grid-point. (In contrast, a naive implementation would
involve repeated and redundant evaluations when calculating the species diffusion flux
vector and its gradient.) This is possible because the central-difference scheme used is
linear and thus additive and commutative by nature. In other words, the terms in the
discretized equation are simply added together, and thus are strictly independent of each
other and require no information from the surrounding grid points.

Recognizing this, it follows that the order of addition does not matter so long as all
of the appropriate terms are included in the discretization. Thus, we can calculate the
DMC matrix once per grid point, and calculate and store for each species the discrete
terms of the discretized scalar field corresponding only to the information available at
that grid point. The process then repeats at the next grid point and fills in the remaining
information. This approach is simply a memory-efficient rearrangement of the floating-
point operations and does not alter the final result. Moreover, this dynamic memory
scheme avoids the need to calculate local gradients at each grid point.

In practice, we calculate and store the portions of the enthalpy and species-diffusion
source terms (in Equations (2.3) and (2.4), respectively) that can be computed from the
information available at the ith grid-point for the (i − 1/2) and (i + 1/2) flux vectors.
For example, the discretized form of the diffusion source term is

Diffi = −∇ · ji =
−ji+1/2 + ji−1/2

∆x
=
[
(ρiDi + ρi+1Di+1) Yi+1 − Yi

∆x

− (ρi−1Di−1 + ρiDi)
Yi − Yi−1

∆x

] 1
2∆x2 , (2.29)
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where the diffusion source term contributions from the i− 1, i, and i+ 1 grid points are

Sourcei−1 = ρi−1Di−1
2∆x2 (Yi − Y1−i) , (2.30)

Sourcei = ρiDi

2∆x2 (Yi+1 + Yi−1 − 2Yi) , and (2.31)

Sourcei+1 = ρi+1
D i+1

2∆x2 (Yi+1 − Yi) , (2.32)

respectively.
At the ith grid point, information on the diffusion coefficients at the i− 1 and i+ 1

grid points is not available; thus, only the diffusion coefficients for the ith grid point can
be stored. However, by recognizing that Di at the ith grid point is equal to Di+1 and
Di−1 at the i−1 and i+1 grid points, respectively, it is possible to solve Equation (2.30),
Equation (2.31), and Equation (2.32) for the i + 1, i, and i − 1 grid points, and store
them in their respective memory locations. At the next grid point (i + 1) the process
repeats and the remaining information for the ith grid point is calculated and added to
the previously stored partial solution, thus completing the information needed at the
ith grid point. Figure 2.1 summarizes this process; fluxes are located at cell faces while
source terms are at cell centers.

This approach reduces the number ofDMC evaluations from once per species per grid
point to strictly once per grid point. Finally, it reduces temporary memory requirements
from an array sized nx×ny×nz×N2 to a 1×7 array corresponding to only the information
needed at the current grid point (i, j, k) and its six surrounding points, where nx, ny,
and nz are the numbers of grid points in the x, y, and z directions. This optimizes
performance by reducing cache calls for both the species mass fractions and species
diffusion coefficients.

The algorithm is most efficient for a structured grid, but the proposed method is
easily extendable to finite-volume discretizations on unstructured meshes with scalars
located at the cell centers. In such schemes, the diffusion term is written as the sum of
fluxes on each cell surface. In turn, these fluxes are written as differences of cell-averaged
scalar values. The regrouping of the contributions of the diffusion term to each cell in
Equations (2.30)–(2.32) would follow a similar approach.
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ii− 1 i+ 1

Diffin Diffout

for i=1:X do
Calculate diffusion coefficient matrix;
for isc=1:N do

Flux(i− 1/2) += Diffin,isc;
Flux(i+ 1/2) += Diffout,isc;

end
Source(i) += influence from Diff(i− 1/2) and Diff(i+ 1/2) ;
Source(i− 1) += influence from Diff(i− 1/2);
Source(i+ 1) += influence from Diff(i+ 1/2);

end

Figure 2.1: Dynamic algorithm for calculating multicomponent enthalpy and species
diffusion source terms. Fluxes are located at cell faces while source terms are at cell
centers. N is the number of species.



23

2.3.4 Method stability

To evaluate the theoretical stability of the proposed treatment of the diffusion source
terms, we will perform a one-dimensional von Neumann stability analysis. First, we
decompose the vector of species mass fractions into the exact steady-state solution (Y◦)
and a small perturbation vector. Then, we expand this perturbation in a Fourier series
by assuming a solution of the form

Y(x, t) = Y◦(x) + f(t)eiκx , (2.33)

where κ is the wavenumber and f(t) is the time-varying amplitude of the perturbation.
Under small deviations from a steady-state solution, we can make the simplifying as-
sumption that

ρ
n+3/2
k ≈ ρn+1/2 = ρ◦ . (2.34)

Similarly, all diffusion coefficients are evaluated from the steady-state solution.
From here, we rewrite Equation (2.21) in a point-wise form neglecting both the

chemical source term—demonstrated to be stable by Savard et al. [34]—and the convective
transport term, which is integrated explicitly in this stability analysis (i.e., not modified
by sub-iterations). This transforms the set of N partial differential equations into a set
of N ordinary differential equations, where N is the number of species. Equation (2.23)
reduces to the form(

I + ∆t
2 D

MAκ′2
)(

fn+3/2
k+1 − fn+3/2

k

)
= fn+1/2 − fn+3/2

k

− ∆t
2 D

MCκ′2
(
fn+3/2
k + fn+1/2

)
, (2.35)

where κ′2 is the modified wavenumber, and DMA and DMC are the mixture-averaged
and multicomponent diffusion coefficient matrices calculated from Equations (2.8) and
(2.13), respectively. For the second-order central differencing scheme used, κ′2 takes the
form

κ′2 = 2
∆x2 [1− cos(κ∆x)] . (2.36)

While here we apply this to a second-order central difference scheme, the stability analysis
holds for any spatial discretization of the diffusion terms in Equation (2.23). In the
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present case, the most unstable mode manifests as cell-to-cell oscillations corresponding
to κ = π/∆x and κ′2 = 4/∆x2.

Recall that fn+1/2 is the value at the previous time step as defined in step 0 of
Section 2.3.1 and

fn+3/2
0 ≡ fn+1/2 . (2.37)

Dropping the superscripts for clarity, we can reduce Equation (2.35) to

fk+1 = Af0 + Bfk , (2.38)

where
A =

(
I + ∆t

2 κ′2DMA
)−1 (

I− ∆t
2 κ′2DMC

)
(2.39)

and
B =

(
I + ∆t

2 κ′2DMA
)−1 (∆t

2 κ′2
(
DMA −DMC

))
. (2.40)

Inspecting Equation (2.38), matrix A is multiplied by the constant value of the previous
time step (f0) and therefore does not contribute to the stability of the sub-iterations. We
focus on the properties of the B matrix, which acts as the amplification/growth factor.
Theoretically, the stability of the sub-iterations is ensured if the spectral radius of matrix
B, defined as the largest absolute value of the eigenvalues, is less than one:

ρ(B) ≤ 1 . (2.41)

The matrix B has some interesting properties that deserve further discussion.
First, this matrix is proportional to the difference between the two diffusion matrices

DMA and DMC. Recall that the DMA is a purely diagonal matrix. Table 2.1 compares
the eigenvalues of these matrices on the burned side of the lean hydrogen premixed flames
(see Section 2.4.1 for details on the flame). The burned side of the flame is characterized
by the largest diffusion coefficients and is expected to be the most unstable location
within a flame as far as diffusion is concerned. The two sets of eigenvalues are extremely
close, which is expected as the mixture-averaged diffusion model approximates the multi-
component diffusion model. As a result, the norm of the difference of the two matrices is
expected to be much less than the norm of either matrix. In other words, we anticipate
that ρ(B)� 1 regardless of the time-step size (∆t) and grid spacing (∆x).
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DMC† DMA† Bimp Bexp

0.0000 0.2984 0.0095 0.0000
0.3033 0.3003 0.0096 25.629
0.3053 0.3014 0.0126 25.800
0.3070 0.3023 0.0131 25.945
0.3860 0.4069 0.0163 32.614
0.4644 0.4585 0.0265 39.239
0.4735 0.4672 0.0276 40.012
1.1163 1.0859 0.0450 94.327
1.8968 1.8145 0.9634 160.276

Table 2.1: Eigenvalues for the multi-component (left) and mixture-averaged (center-
left) diffusion matrices (DMC and DMA) and absolute values of the eigenvalues for
the amplification matrix (B) for the implicit formulation (center-right) and explicit
formulation (right) evaluated on the burned side of the lean hydrogen premixed flame
(see section 2.4.1). † units are 10−3m2/s. A time-step size of ∆t =10−5 s was used for B.

One noticeable difference between DMC and DMA is the presence of a null eigenvalue
for multi-component diffusion. As described in Section 2.2.3, the multi-component matrix
is singular, and its kernel is spanned by the species mass fraction matrix, here Y◦.
Consider the special case of f0 = Y◦. Leveraging the fact that f0 lies in the kernel of
DMC, the amplitude at the next sub-iteration will be

f1 = (A + B) f0 = f0 . (2.42)

By recursive reasoning, one can show the property holds for all sub-iterations. In other
words, this mode is unaffected by the iterative process and remains the same between
time steps. This time-invariant mode is nothing more than the steady-state solution Y◦.
To avoid “double counting” in Equation (2.33), the eigenvalue analysis of the matrix B
should be performed on the linear space not including the vector Y◦.

Table 2.1 provides an example of the eigenvalues of the amplification matrix B for
a time-step size of ∆t = 10−5 s. Practically, the eigenvector associated with the largest
eigenvalue of B forms a small angle (∼ 0.08 deg) with the species mass fraction vector
(Y◦). Hence, most of it is in the kernel of DMC. Following the previous discussion,
this eigenvalue (indicated in italics) should not be considered, and the overall stability
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is controlled by the second-largest eigenvalue, in this case 0.0425. As expected, this
eigenvalue is much less than unity, thus proving the stability of the iterative procedure.
This should be compared to the stability of the explicit formulation obtained by setting
DMA = 0 in Eq. (2.40). Under these conditions, the spectral radius of B becomes

ρ(B) = 2 ∆t
∆x2 ρ

(
DMC

)
≈ 2 ∆t

∆x2 max
(
DMA

)
, (2.43)

which resembles a Fourier number. As shown by the large eigenvalue of the explicit-
method amplification matrix, Bexp, in Table 2.1, solving the system of equations would
not be stable at ∆t = 10−5 s without the proposed implicit formulation. Section 2.5.1
presents an in-depth comparison of this theoretical stability criterion against practical
numerical convergence results for a one-dimensional freely propagating flame.

2.4 Test cases

We will evaluate the performance of the proposed iterative method and the relative
cost of the implemented memory algorithm in Section 2.5. We base our evaluation on
two flow configurations: a one-dimensional, unstretched, laminar flame and a three-
dimensional, statistically stationary, turbulent flame; both are premixed hydrogen/air
flames. All simulations used the same nine-species hydrogen mechanism of Hong et al. [66]
with updated rate constants from the same group [67, 68]. This section describes the
configuration and conditions used for the one- and three-dimensional simulations used
for this study. C includes additional method verification.

2.4.1 One-dimensional premixed flame

To verify the implementation of the multicomponent mass-diffusion model and evaluate
its accuracy, we performed one-dimensional, unstretched (flat), laminar flame simulations
and compared these with similar mixture-averaged and multicomponent results computed
using Cantera [69]. We selected the one-dimensional flat flame configuration because it
restricts all transport to the streamwise direction. As a result, the spanwise fluxes are
zero by definition for this geometry. This condition may not hold in a multidimensional
flow simulation where the multicomponent diffusion fluxes may be misaligned with the
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species gradient vector. This simplified geometry allows us to directly compare the
multicomponent mass diffusion model to the commonly used mixture-averaged diffusion
model.

The simulations used an unburnt temperature of 298K and pressure of 1 atm, with
an equivalence ratio of φ = 0.4 and inlet velocity equal to the laminar flame speed for all
Cantera and NGA cases. The flame was centered in a computational domain comprised
of 720 grid points where ∆x =15.4µm. To ensure fidelity in the results, we selected the
domain to have at least 20 points through the laminar flame, with the thickness defined
using the maximum temperature gradient: lF = (Tmax − Tmin)/|∇T |max. Schlup and
Blanquart [18] used an identical configuration to investigate the impact of Soret and
Dufour thermal diffusion effects.

We ran the Cantera simulations similarly using both mixture-averaged and multicom-
ponent diffusion models with matching inlet conditions, equivalence ratio, and domain
size. The freely-propagating adiabatic flat flame solver (FreeFlame) was used with grid
refinement criteria for both slope and curvature set to 0.1 and a refinement ratio of 2.0
for 860 grid-points.

2.4.2 Three-dimensional flow configuration

We simulated a three-dimensional, turbulent, premixed, freely propagating flame as a test
of the proposed algorithm for multicomponent mass diffusion and to assess the impact
of diffusion model choice on global statistics such as the turbulent flame speed. The
computational domain consists of inflow and convective outflow boundary conditions in
the streamwise direction. The two spanwise directions use periodic boundaries. We set
the inflow velocity to the mean turbulent flame speed, which keeps the flame statistically
stationary such that turbulent statistics can be collected over an arbitrarily long run
time. In the absence of mean shear, we use a linear turbulence-forcing method [14, 15]
to maintain the production of turbulent kinetic energy through the flame. We carefully
selected the Karlovitz number to fall within the distributed reaction zone regime while
avoiding the broken reaction zone regime [70]. Moreover, the computational setup for
this case is similar to those of Lapointe et al. [70], Burali et al. [23], and Schlup et at. [18],
who studied differential-diffusion effects, local extinction, and flame broadening using the
mixture-averaged model and constant non-unity Lewis number assumptions.
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Table 2.2: Three-dimensional simulations parameters. ∆x is the grid spacing, ηu is
Kolmogorov length scale of the unburnt gas, ∆t is the simulation time-step size, φ is the
equivalence ratio, P0 is the thermodynamic pressure, Tu is the temperature of the unburnt
mixture, Tpeak is the temperature of peak fuel consumption rate in the one-dimensional
laminar flame, SL is the laminar flame speed, lF = (Tb − Tu) / |∇T |max is the laminar
flame thickness, l = u′3/ε is the integral length scale, u′ is the turbulence fluctuations,
ε is the turbulent energy dissipation rate, Kau is the Karlovitz number of the unburnt
mixture, Ret is the turbulent Reynolds number of the unburnt mixture, and νu is the
unburnt kinematic viscosity.

Parameter MA MC
Domain 8L× L× L
L 190∆x
Grid 1520× 190× 190
∆x [m] 4.24× 10−5

ηu [m] 2.1× 10−5

∆t [s] 6× 10−7

φ 0.4
P0 [atm] 1
Tu [K] 298
Tpeak [K] 1190 1180
SL [m/s] 0.230 0.223
lF [mm] 0.643 0.631
l/lF 2 2.04
u′/SL 18 18.6
Kau = τF /τη 149 151
Ret = (u′l)/νu 289
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Table 2.2 provides further details of the computational domain, unburnt mixture, and
inlet turbulence. The unburnt temperature and pressure are 298K and 1 atm, respectively.
The inlet equivalence ratio is φ = 0.4, with an unburnt Karlovitz number Kau = τF /τη =
149, where τF = lF /SL is the flame time scale and τη = (νu/ε)1/2 is the Kolmogorov time
scale of the incoming turbulence with unburnt kinematic viscosity νu and turbulent energy
dissipation ε. The unburnt turbulent Reynolds number is Ret = u′l/νu = 289, where
u′ is the fluctuation of the mean velocity and l is the integral length scale. The mean
inflow velocity at the inlet boundary condition approximately matches the turbulent
flame speed so that the flame remains relatively centered in the domain and we can
perform arbitrarily long simulations. Once the turbulence has fully developed, we run
the simulations for 22 eddy turnover times, τeddy = k/ε ≈ 500 µs.

The domain has 1520 points in the streamwise direction and 190 points in both
spanwise directions, with a uniform grid size of ∆x = lF /16. This domain is about 100lF
long and 12lF in the spanwise directions. Given the prescribed turbulence intensity, this
mesh has a grid spacing equivalent to ∆x ≈ 2ηu, where ηu is the Kolmogorov length scale
for the unburnt region; this resolution improves in the burnt region of the flame. Lapointe
et al. [70] previously confirmed the suitability of the selected grid spacing and resolution in
the flame front using a mesh refinement study, which found no difference when using this
grid spacing compared with half the size. Figure 2.2 shows a two-dimensional schematic
of the domain, including the locations of the flame and the forcing region. Figure 2.3
shows a three-dimensional view of the iso-surface of Tpeak defining the flame front, where
Tpeak is the temperature of peak fuel consumption rate in the one-dimensional laminar
flame. The flame surface shows the complex behavior of the flame in the turbulent field.

End 
forcing y L t

Begin

In Flow 

�°d� ��( �sc \) 
0 Out Flow 

�0('� 
0 0.25 6.SL 8L X L 

forcing 

Figure 2.2: Two-dimensional schematic of the three-dimensional flame configuration.
Adapted from Burali et al. and Schlup and Blanquart [18, 23]. The red line indicates
the approximate location of the flame.
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Figure 2.3: Iso-surface of peak temperature colored by OH mass fraction for a three-
dimensional turbulent hydrogen/air flame with multicomponent mass diffusion.

2.5 Results and discussion

To start, we present a practical assessment of the method’s convergence and stability,
by comparing the numerical rate of convergence to the theoretical rate of convergence.
Following this demonstration of the proposed method’s stability, we verify the accuracy
of the method through a posteriori assessment of one-dimensional, unstretched, premixed,
laminar flame simulations. Finally, we present a preliminary evaluation of the relative
differences between the mixture-averaged and multicomponent diffusion models for the
three-dimensional turbulent premixed flame simulations.

2.5.1 Stability analysis results

We use the one-dimensional flame to numerically evaluate the convergence stability of
the sub-iterations with respect to time-step size. The simulations for these tests were
initialized from a mixture-averaged data file to provide a worst-case scenario for the
initial iterative step in converging to the multicomponent solution. While the theoretical
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analysis was performed assuming explicit transport of the convective terms and constant
density/diffusion coefficients, we performed this test with semi-implicit transport and
variable density/diffusion coefficients. This demonstrates the stability of the proposed
preconditioner for the semi-implicit multicomponent diffusion transport in a practical
numerical simulation. Savard et al. [34] previously showed the numerical stability of the
chemical and convective terms, so we do not discuss these terms in detail in this analysis.
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Figure 2.4: Convergence of the density residual as a function of sub-iteration for the
proposed semi-implicit method, for a smaller and larger time-step size. Dashed lines
are the spectral radii shown in Figure 2.5 and are determined by numerically fitting an
exponential curve to the slope of the density residual

.

We focus on the maximum density residual over the whole domain, because its
convergence is controlled by the convergence of all chemical species. Figures 2.4a and 2.4b
present the density residuals as a function of sub-iteration, starting from the initial time
step, for a small and large time-step size, respectively. For the time-step sizes tested,
converging (as opposed to converged) sub-iterations implies a stable simulation, which
agrees with behavior shown by Savard et al. [34]. In other words, unless the sub-iterations
diverge, the simulation remains stable. As expected, the explicit method diverges quickly
even at very small time-step sizes (Figure 2.4a), while the semi-implicit method remains
stable up to a time-step size of ∆t ≤ 1× 10−5 s (Figure 2.4b).
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The rate of convergence of the sub-iterations for each of the source terms in Fig-
ures 2.4a and 2.4b follows an exponential relationship, i.e., Resk ∼ rk, where Resk is
the residual of the kth sub-iteration and r is the convergence rate. We compute the
numerical convergence rate r by fitting an exponential curve to the slope of the density
residuals; the convergence rate is represented by dashed lines in Figure 2.4. Since density
is a function of the species mass fractions, its convergence rate should tend towards that
of the slowest-converging species mass fraction.
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Figure 2.5: Theoretical convergence rate determined from diagonalizing matrix B corre-
sponding to the worst-case modified wavenumber for the one-dimensional premixed flame,
compared with the numerical convergence rates determined by fitting an exponential curve
to the slope of the density residual.

Figure 2.5 compares the results of the theoretical and numerical stability analyses,
showing the spectral radius of matrix B as a function of the time-step size for the one-
dimensional test case. For the explicit scheme, the theoretical and numerical results
agree well for the full range of time-step sizes. However, for the implicit scheme, the
predicted spectral radius is much smaller than the measured one. The proposed implicit
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formulation thus yields a convergence rate that is not limited by diffusion, but rather
constrained by other processes that were not considered in the stability analysis, such as
chemistry. The predicted convergence rate can nonetheless be observed in the implicit
case. As mentioned in Section 2.3.4, the eigenvector associated with the largest eigenvalue
of Bimp in Table 2.1 forms a small angle with Y◦. Hence, a fraction of the error, albeit
tiny, is associated with this eigenvector, which will slowly converge. In Figure 2.4b,
the convergence rate for the last sub-iterations of the implicit case closely matches that
eigenvalue.

Overall, these results suggest that the theory well-approximates actual stability and
provides a practical limit for the numerical stability of the proposed algorithm.

2.5.2 Method verification

To verify the multicomponent model, we compare a posteriori the one-dimensional un-
stretched species profiles and laminar flame speeds. Figure 2.6 compares the nine species
profiles for the steady-state one-dimensional flat flame solutions relative to local mix-
ture temperature for the multicomponent and mixture-averaged models from both NGA
and Cantera. The profiles all agree within 1% at all points, with the exception of N2.
The laminar flame speeds (SoL) for these simulations are approximately 23.0 cm/s and
22.3 cm/s for the mixture-averaged and multicomponent diffusion NGA cases, respec-
tively; the laminar flame speeds for both cases agree with those from Cantera within 1%.
The unstretched laminar flame speed is

SoL = −
∫
ρω̇H2dx

ρuYH2,u
, (2.44)

where ρu is the unburnt mixture density and YH2,u is the unburnt fuel mass fraction. We
attribute the larger difference in the species profile for N2 to the correction velocity term
associated with the mixture-averaged diffusion model, which is weighted by mass fraction
and thus can be heavily impacted by differences in N2 due to its high concentration
throughout the flame. The minor differences between the multicomponent species profiles
are less than 1% at all points. The strong agreement between the other eight species
profiles for both the NGA and Cantera results verifies the multicomponent model’s
functionality.



34

400 800 1200

0.756

0.758

0.76

400 800 1200

0

2

4

10
-5

400 800 1200

0.15

0.2

0.25

400 800 1200

0

5

10
10

-4

400 800 1200

0

5

10

10
-4

400 800 1200

0

0.005

0.01

400 800 1200

0

0.05

0.1

400 800 1200

0

1

2

10
-4

400 800 1200

0

5

10

10
-5

NGA MC NGA MA Cantera MC Cantera MA

Figure 2.6: A posteriori comparisons of species mass fractions relative to mixture local
temperature in a hydrogen/air flame with φ = 0.4 using NGA and Cantera.
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2.5.3 Accuracy

With the proposed algorithm’s stability limits and functionality verified, we now examine
the accuracy for a given stable simulation. We determine the order of accuracy of the
method based on the 1D freely propagating flame case by examining the power-law
dependence of the error as a function of the time-step size.

Figure 2.7 shows the normalized error for the 1D freely propagating flame case for
various time steps. We initialize the simulation using an input flame profile corresponding
to a fully converged statistically stationary flame, generated with a time-step size of
∆t = 1× 10−7 s and seven sub-iterations. A wall is then set at the simulation inlet,
allowing the flame to propagate upstream in the domain. We then let the reference flame
propagate for two flame pass-through times to ensure a fully converged freely propagating
flame profile free of any initial transients due to the transition from the input stationary
flame profile. This reference file then serves as the input for a set of freely propagating
flames with time-step sizes ranging 10−5–10−7 s and for seven sub-iterations. Finally, we
allow these test flames to propagate for an additional flame pass-through time to ensure
statistical independence from the initial reference-flame input file.

With the freely propagating flame tests completed, we interpolated the species and
density fields to a constant temperature space corresponding to the temperature dis-
tribution in the flame region. This interpolation ensures a direct comparison of the
species error independent of variation in the temperature space over the range of time-
step sizes. We then calculate error as the L2-norm of the species and density profiles in
temperature space, relative to the reference flame profile with ∆t = 1× 10−7 s and seven
sub-iterations:

error =

√√√√∫ (Yi − Yi,ref)2 dT∫
Y 2
i,refdT

(2.45)

and

error =

√√√√∫ (ρ− ρref)2 dT∫
ρ2
refdT

. (2.46)

We selected the species H2, H2O, OH, and H to evaluate the accuracy of the method
because they represent the reactants, intermediate species, and products present in
hydrogen combustion. Density (ρ) is also included to globally assess error, since it
depends on all species. As shown in Figure 2.7a, all quantities exhibit second-order
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Figure 2.7: Relative accuracy of the method as a function of time step size for the
one-dimensional, freely propagating flame test case with seven sub-iterations. Errors are
defined as the absolute difference of their integrated value in temperature space compared
with a reference solution obtained for ∆t = 1× 10−7 s and seven sub-iterations. Black
dashed line corresponds to y = x−2.
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accuracy in time with seven sub-iterations. The errors corresponding to the L1- and
L∞-norms are similar in magnitude and also demonstrate second-order accuracy in time
with seven sub-iterations.

While the method is fully second-order accurate for seven sub-iterations and above,
the solution transitions to first-order accuracy as the number of sub-iterations decreases.
Figure 2.7b shows that the solution exhibits first-order accuracy when using four sub-
iterations. Between four and seven sub-iterations the solution is second-order accurate
for large time-step sizes but transitions to first-order accuracy as the time step size
decreases. The range of time-step sizes that achieve second-order accuracy grows until
the solution becomes fully second-order accurate at seven sub-iterations for all time-step
sizes considered.

To evaluate the absolute magnitude of error associated with the proposed method, as
opposed to the order of accuracy (as time step size approaches zero), Figures 2.8a and 2.8b
present the temperature as a function of distance and fuel mass fraction as a function of
temperature, respectively, for a range of freely propagating flames with several time-step
sizes and sub-iterations. The solutions exhibit negligible error in both temperature and
fuel mass fractions for the time-step sizes considered, and even when using as few as four
sub-iterations; these tests demonstrate the high accuracy and robustness of the proposed
method.

2.5.4 Three-dimensional assessment of diffusion flux models

In this section we assess a posteriori the species mass diffusion fluxes in the doubly periodic
three-dimensional flames [18, 22, 23]. Differential diffusion effects cause the instabilities
found in lean hydrogen/air flames, and at high Karlovitz numbers the turbulence time
scales match the order of diffusion time scales.

To assess the impact of the mixture-averaged and multicomponent mass diffusion
models on flame chemistry, we compare a posteriori the turbulent and chemistry statistics.
We allow the flames to develop in a turbulent flow field, and compute the statistics after
the transients from the initial flow and scalar fields have advected through the domain.
As an initial assessment, we calculate the effective turbulent flame propagation speeds:

ST = −
∫
V ρω̇H2dV

ρuYH2,uL
2 . (2.47)



38

0 0.005 0.01
200

400

600

800

1000

1200

1400

1600

 t=1e-7, 7 sub

 t=2e-7, 4 sub

 t=5e-7, 4 sub

 t=1e-6, 4 sub

 t=2e-6, 4 sub

(a) Temperature vs. distance

500 1000 1500
0

0.002

0.004

0.006

0.008

0.01

0.012
 t=1e-7, 7 sub

 t=2e-7, 4 sub

 t=5e-7, 4 sub

 t=1e-6, 4 sub

 t=2e-6, 4 sub

(b) H2 mass fraction vs. temperature

Figure 2.8: Impact of time-step size and number of sub-iterations on the accuracy of
one-dimensional freely propagating flames.

Figure 2.9 shows the time history of the turbulent flame speed over twenty-two
eddy turn-over times (τeddy). The average normalized flames speeds from the mixture-
averaged and multicomponent models differ by 15%: SMA

T /SL = 29.6 and SMC
T /S0

L = 34.7,
respectively. Further study is needed on whether the mixture-averaged diffusion model
fully captures the fundamental physics of multicomponent diffusion.

To further assess any differences between the mixture-averaged and multicomponent
mass diffusion models, Figure 2.10 presents the means of fuel mass fraction and its
source term conditioned on temperature for the full time domain. The differences in the
calculated conditional means are small: less than 5.5%. This agreement also extends into
super-adiabatic regions for the hydrogen/air flame; these regions, also called “hot spots”,
result from differential diffusion and have been predicted both in theoretical studies [71]
and numerical analyses of lean hydrogen/air mixtures [72–74]. However, these small
differences in global flame statistics do not explain the 15% difference observed in the
turbulent flame speeds between the mixture-averaged and multicomponent diffusion
models. These results raise questions on the appropriateness of the mixture-averaged
diffusion assumption for direct numerical simulation and warrants further investigation.
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Figure 2.9: Turbulent flame speed history for three-dimensional, freely propagating,
premixed, turbulent hydrogen/air flame with φ = 0.4.
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Figure 2.10: Conditional means on temperature for the three-dimensional, freely propa-
gating, premixed, turbulent hydrogen/air flame with φ = 0.4.
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2.5.5 Computational cost

This section discusses the relative cost for implementing the full multicomponent mass
diffusion to provide context for its use. The presented timing comparisons examine how
the method scales with both number of chemical species and spatial dimension.

We tested three chemical kinetic models (containing 9 [23], 35 [56, 57], and 172
species [75–77]) in a one-dimensional flat flame simulation to determine the cost of
multicomponent mass diffusion over a wide range of model sizes. Figure 2.11 shows the
computational time per grid point for computing the diffusion mass fluxes on a desktop
workstation using an Intel Xeon-X5660 CPU with a 2.80GHz clock speed. The presented
timings include calculation of both the diffusion coefficients and mass diffusion fluxes for
all aspects of the code.
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Figure 2.11: Computational time per grid point for computing diffusion coefficients and
diffusion mass fluxes using kinetic models with 9, 35, and 172 species; black dashed lines
correspond to linear (y = x) and quadratic (y = x2) scaling trends respectively. MC and
MA stand for multicomponent and mixture-averaged, respectively.

For the tested chemical kinetic models, the mixture-averaged model scales linearly
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while the multicomponent model scales quadratically with the number of species. The
multicomponent model is more expensive and does take more time per-point for all three
test cases. For the largest kinetic model (with 172 species) the multicomponent case is
noticeably more expensive than the mixture-averaged model. The increased cost for the
multicomponent simulations comes primarily from the CHEMKIN II [50] routine used
to determine the ordinary multicomponent diffusion coefficient matrix.

The relevant cost for the proposed method can be split into three primary categories:
the costs of calculating the multicomponent diffusion coefficients, calculating the multi-
component diffusion fluxes, and the semi-implicit integration scheme. Since the proposed
method for implementing full multicomponent mass diffusion focuses on efficient low-
memory calculation of the diffusion fluxes, rather than the multicomponent diffusion
coefficients, the cost of CHEMKIN should be considered independently of the proposed
algorithm. Moreover, the semi-implicit scheme is the same for the mixture-averaged and
multicomponent cases, because both cases use the mixture-averaged diffusion coefficient
matrix to approximate the Jacobian for the diffusion source terms. As a result, the two
methods have similar implementation and computational expense, with the exception of
using CHEMKIN II [50].

To evaluate how the multicomponent model scales with increasing spatial dimension,
and evaluate the relative cost of using CHEMKIN II [50], we acquired timings for one-
(720 grid points), two- (1888× 472 grid points), and three-dimensional (1520× 190× 190
grid points) configurations covering the cases presented in this work, with the additional
two-dimensional case matching similar timing tests by Schlup et al. [18]. These timing
tests represent an average cost per point and are determined by averaging the timings
taken for the 20 time steps, skipping the first and last integrations. Figure 2.12 presents
the computational timings for each part of the code for both diffusion models, where
“Scalar” includes scalar field calculation; “Diffusion” includes the flux calculation and
DMA calculation for the implicit solver; “Chemistry”, “Velocity”, and “Pressure” are
as named; and “Rest” account for any remaining computations. “Scalar” includes the
semi-implicit solver for integrating the diffusion source terms, while the semi-implicit
solvers for chemistry and velocity are included in their named categories. To facilitate
comparison between the two models, Figure 2.13 presents the total computational time
per grid point for both three-dimensional hydrogen simulations as a stacked bar chart
broken down by each section of code. We performed these computations on the National
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Figure 2.12: Computational time per grid point for each of the three flame configurations:
one dimensional (blue), two dimensional (red), and three dimensional (yellow).
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Figure 2.13: Comparison of numerical costs for the three-dimensional hydrogen flame
simulations.
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Energy Research Scientific Computing Center (NERSC) high-performance computing
cluster Cori (Cray XC40) [78].

While much of the code exhibits a similar cost per grid point, regardless of the
dimensionality of the problem, the chemistry is more expensive for the one- and two-
dimensional cases. This cost increase is due to NGA’s structure. NGA was written
and optimized for three-dimensional configurations, thus the one- and two-dimensional
cases are artificially more expensive, especially in the chemistry calculations [18]. In
addition, for three dimensions the cost of the pressure solver increases due to using the
HYPRE package [61]. The one- and two-dimensional cases both implement an exact
FFT-tridiagonal solver, while HYPRE—used for the three-dimensional cases—is iterative
and thus more expensive. Despite the minor increase in cost for the pressure solver in
three dimensions, the cost is negligible when considering larger kinetic models (i.e., more
than 35 species).

Consistent with Figure 2.11, the cost of calculating “Diffusion” increases with model
complexity; recall that DMA is calculated for both the mixture-averaged and multicom-
ponent solvers. However, the multicomponent diffusion mass flux calculation represents
only 21% of the total simulation time for the three-dimensional case. As expected, the
cost of calling CHEMKIN II for the diffusion coefficients is large and accounts for roughly
23% of the three-dimensional simulation time. Interestingly, the cost of diffusion in-
creases only slightly moving from one dimension to two dimensions. This results from
the high efficiency of the dynamic memory-allocation algorithm used to implement this
model (see Section 2.3.3). Moreover, the multicomponent diffusion implementation is less
expensive than the mixture-averaged model for the one-dimensional case and equivalent
in cost for the two-dimensional case. Overall, by reducing memory requirements and
optimizing calls to memory, the memory algorithm implemented for the multicomponent
model maintains low computational expense.

These results indicate that, for hydrogen-air combustion, the multicomponent model
is more expensive than the mixture-averaged model; however, the differences in “Diffusion”
costs between the two models are due to the use of CHEMKIN II [50]. Thus, the slowdown
could be minimized by implementing a more-efficient package for calculating the mass-
diffusion coefficients such as EGLIB [29–31]; however, the total cost of computing mass
diffusion fluxes remains notable, even for the mixture-averaged case.
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2.6 Summary and future work

This article presents an efficient and stable scheme for implementing multicomponent
mass diffusion in reacting-flow DNS with minimal memory expense. The proposed scheme
exhibits reasonable computational cost for chemical kinetic models of up to 100 species;
this performance could be further improved by implementing a more-efficient method for
calculating the multicomponent diffusion coefficient matrix.

The results presented for hydrogen flames suggest that the mixture-averaged mass
diffusion model may suffice for DNS of three-dimensional, premixed turbulent flames in
the regimes and configurations considered. However, we observed a 15% difference in the
turbulent flame speeds between the two models, though the differences in the conditional
means of the fuel source term and mass fraction were negligible. The difference observed
in turbulent flame speeds raises questions about using the mixture-averaged model in
DNS of turbulent reacting flows. Moreover, the algorithm proposed in this study provides
a fast, efficient, method for implementing multicomponent mass diffusion in reacting-
flow simulations, which may eliminate the need for the mixture-averaged assumption.
However, despite these results, we do not have sufficient data to draw firm conclusions on
the accuracy and appropriateness of mixture-averaged assumptions for all flames (i.e., all
fuels, configurations, and regimes). Additional data are needed from studies of different
fuels—namely large hydrocarbons—and kinetic models with more species. Thus, future
work should focus on extending these comparisons to other fuels and flame configurations.
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Chapter 3: Assessing the impact of multicomponent diffusion in direct
numerical simulations of premixed, high-Karlovitz, turbulent flames

Implementing multicomponent diffusion models in numerical combustion studies is com-
putationally expensive; as a result, mixture-averaged diffusion treatments are commonly
used to reduce the cost of the numerical simulations. However, the accuracy and ap-
propriateness of mixture-averaged diffusion has not been verified for three-dimensional,
turbulent, premixed flames. In this study we evaluated the role of multicomponent mass
diffusion in premixed, three-dimensional high Karlovitz-number hydrogen, n-heptane,
and toluene flames, representing a range of fuel Lewis numbers. We performed direct
numerical simulations of these flames by implementing the Stefan–Maxwell equations
in NGA. We also studied a premixed, unstable two-dimensional hydrogen flame due
to the importance of diffusion effects in such cases. Our comparison of diffusion flux
vectors revealed significant differences of 10–20% between the mixture-averaged and
multicomponent diffusion models in regions of high flame curvature. To evaluate the
impact of these differences between the two models, we compared normalized turbulent
flame speeds and conditional means of species mass fraction and source term. We found
differences of 5–20% in the mean normalized turbulent flame speeds, which seem to
correspond to differences of 5–10% in the peak fuel source terms. Our results indicate
that the mixture-averaged diffusion model may not be sufficient for the DNS of premixed
turbulent flames.

Keywords: DNS; Turbulent flames; Diffusion; Multicomponent; Mixture averaged

3.1 Introduction

Mass, heat, and momentum diffuse simultaneously in turbulent reacting flows, affecting
local transport and consumption of chemical species at small time and length scales [20,
26]. This coupling of turbulent mixing and heat release during the combustion process
can locally impact the flame’s structure, curving it and forming steep, multi-directional
gradients in the temperature and scalar fields [3]. In these regions of high flame curvature,
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mass diffusion transport is most accurately represented by the multicomponent diffusion
model, which uses a dense matrix of coupled diffusion coefficients to evaluate the relative
transport of each chemical species against the remaining species in the mixture [27].

However, modeling full multicomponent mass diffusion transport in a direct numerical
simulation (DNS) can be computationally expensive, caused both by the cost of calcu-
lating the diffusion coefficients and the memory required to store the multicomponent
diffusion coefficient matrix at every location [82]. As a result, researchers typically use
simplified diffusion models to reduce the computational costs associated with calculating
the diffusion coefficients [23, 40]. These include, in order of increasing complexity and
accuracy, the unity Lewis number, constant non-unity Lewis number [28], and mixture-
averaged diffusion assumptions [20]. These models approximate the full multicomponent
diffusion coefficient matrix as a constant scalar, a constant vector, and a non-constant
diagonal matrix, respectively, reducing the high computational expense associated with
numerical combustion studies [18, 20, 22, 23, 27]. In addition, several approaches further
reduce the system’s complexity by approximating multicomponent diffusion processes in
terms of equivalent Fickian processes, such as those used by Warnatz [35] and Coltrin et
al. [36]. While these assumptions may be computationally efficient, to our knowledge, the
accuracy and appropriateness of the physics they model has not been evaluated against
full multicomponent mass diffusion for DNS of three-dimensional turbulent flames at
moderate-to-high Karlovitz numbers (e.g., 140–210).

Although few results exist from three-dimensional reacting flow simulations with mul-
ticomponent transport, several studies have investigated the effects of multicomponent
transport in simpler configurations. These studies include one-dimensional [31, 37–40]
and two-dimensional flames [19, 42] of various unburnt conditions. These works com-
pared the multicomponent model with various diffusion and transport property models
(from constant Lewis number to mixture-averaged properties). In general, these studies
highlighted the importance of differential diffusion effects but only investigated simplified
flame configurations where these effects are relatively small, such as unstretched laminar
flames.

For example, in evaluating five simplified diffusion models, Coffee and Heimerl [37]
observed that laminar flame speed and species profiles are more sensitive to the input
values of individual species transport properties than the specific model used, in one-
dimensional, steady, laminar, premixed hydrogen flame simulations. They noted that their
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findings do not indicate that transport phenomenon or model selection are unimportant,
but rather that even low-complexity models can be calibrated by carefully selecting the
species transport properties to improve accuracy.

Focusing more on the underlying physics of differential diffusion, Ern and Gio-
vangigli [31] demonstrated that both methane and hydrogen counterflow flames are
sensitive to multicomponent transport. Specifially, neglecting multicomponent effects
can lead to overpredicting the extinction strain rate, especially in rich hydrogen flames.
Similarly, Charentenay and Ern [42] demonstrated that multicomponent transport only
moderately affects global flame properties in two-dimensional, low Karlovitz number,
premixed hydrogen/oxygen flames, thanks to the smoothing induced by turbulent fluctu-
ations. However, when in highly curved flames or flames with local quenching, such as at
moderate-to-high Karlovitz numbers, they concluded that the sufficiently large impact
of multicomponent transport justifies its inclusion in accurate DNS.

Despite this evidence that multicomponent transport may impact the accuracy of
turbulent premixed DNS, studies of three-dimensional turbulent flames continue to rely on
simplified diffusion models and do not consider their accuracy relative to multicomponent
diffusion, in complex configurations. Prior evaluations of diffusion models in three-
dimensional simulations involved comparing the unity Lewis number, constant but non-
unity Lewis number, and mixture-averaged approximations. For example, Lapointe
and Blanquart [22] compared the relative accuracy of the unity and non-unity Lewis
number assumptions for n-heptane, iso-octane, toluene, and methane flames. The flames
simulated using the non-unity Lewis number approximation have lower turbulent flame
speeds than similar flames simulated with the unity Lewis number assumption. They
attributed these differences to reduced fuel-consumption rates caused by differential
diffusion effects [22]. Similarly, Burali et al. [23] compared the non-unity Lewis number
assumption to the mixture-averaged diffusion for lean, unstable hydrogen/air flames and
lean, turbulent n-heptane/air flames. They demonstrated that using the unity Lewis
number assumption underpredicts by 50% or more the conditional means of the fuel
mass fraction and source term, but using the non-unity Lewis number assumption results
in much smaller errors, on the order of 3% or less; both were compared with results
using the mixture-averaged assumption [23]. Moreover, Burali et al. [23] demonstrated
that the relative error associated with the non-unity Lewis number assumption can be
minimized by carefully selecting the Lewis-number vector for a wide range of flames,
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including non-premixed turbulent configurations.
These results reinforce previous conclusions that differential-diffusion effects can

impact flame dynamics. However, there has not been a detailed investigation of the
accuracy and appropriateness of the mixture-averaged diffusion model relative to full
multicomponent diffusion for turbulent reacting flows. For high-pressure, non-reacting
systems, Borchesi and Bellan [45] developed and analyzed multicomponent species mass
flux and turbulent mixing models for large-eddy simulations. They focused on turbulent
mixing of a five-species combustion-relevant mixture of n-heptane, oxygen, carbon dioxide,
nitrogen, and water. Their multicomponent transport model significantly improves the
accuracy and fidelity of the solution throughout the mixing layer. However, as this study
was restricted to non-reacting flows, it did not assess the impact of multicomponent
transport on the chemistry inherent in turbulent combustion.

Motivated by the observed errors of the mixture-averaged and simpler diffusion mod-
els, several groups have developed affordable multicomponent transport models. Ern
and Giovangigli [29–31] developed the computationally efficient Fortran library EGLIB
for accurately determining transport coefficients in gas mixtures. Ambikasaran and
Narayanaswamy [32] proposed an efficient algorithm to compute multicomponent diffu-
sion velocities, which scales linearly with the number of species. Both these methods
focus on reducing the computational cost that comes from inverting the dense matrix
associated with the Stephan–Maxwell equations. Most recently, Fillo et al. [82] proposed
a fast, semi-implicit, low-memory algorithm for implementing multicomponent mass dif-
fusion, which we use here with the DNS code NGA. As a preliminary demonstration
of their method, Fillo et al. [82] simulated lean, premixed, three-dimensional turbulent
hydrogen/air flames at moderate-to-high Karlovitz numbers using the mixture-averaged
and multicomponent diffusion models. In these flames, the mixture-averaged diffusion
model underpredicts the peak mean source term and normalized turbulent flame speed
by 5.5% and 15%, respectively [82].

In addition to mass diffusion, several groups have also investigated the impact of
multicomponent Soret and Dufour thermal diffusion effects. In particular, studies have
examined the importance of including thermal diffusion in a wide range of flame configu-
rations [18, 19, 30, 31, 37, 39, 83, 84]. For example, Giovangigli [19] demonstrated that
multicomponent Soret effects significantly impact a wide range of laminar hydrogen/air
flames. Specifically, multicomponent Soret effects influence laminar flame speeds and
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extinction stretch rates for flat and strained premixed flames, respectively. Using a mech-
anistic approach, Yang et al. [83] observed that Soret diffusion of hydrogen radical (H)
in premixed hydrogen flames actively modifies its concentration and distribution in the
reaction zone. This effect was especially evident in symmetric, twin, counter-flow pre-
mixed hydrogen flames, where Soret diffusion increases and decreases individual reaction
rates in lean and rich mixtures, respectively. Performing a similar mechanistic approach
examining planar and stretched premixed n-heptane and hydrogen flames, Xin et al. [84]
demonstrated that these chemical kinetic effects result from Soret diffusion diluting or
enriching the reactant concentrations in the reaction front, and could substantially impact
fuel burning rates—especially in highly stretched flames.

Finally, Schlup and Blanquart [18] examined the impact of multicomponent ther-
mal diffusion in DNS of turbulent, premixed, high-Karlovitz hydrogen/air flames. They
observed that simulations using the mixture-averaged thermal diffusion assumption un-
derpredict flame speeds compared with simulations using full multicomponent thermal
diffusion. In addition, they observed that including multicomponent thermal diffusion
increases local production rates in in regions of high positive curvature [18]. These ob-
served discrepancies in similar flame simulations with different diffusion models warrant a
detailed investigation of the fundamental transport phenomena involved. However, while
thermal diffusion can be important in some fuel/air mixtures, in this article we focus on
mass diffusion, and direct interested readers to the work of Schlup and Blanquart [18],
for example, for an investigation of these effects.

The primary objective of this study is to evaluate the accuracy and appropriateness of
the mixture-averaged diffusion assumption for use in direct numerical simulations (DNS)
of premixed unsteady laminar and turbulent flames. This objective will be realized via an
a priori analysis of the orientation and magnitude of the mixture-averaged diffusion flux
vector, relative to that of the multicomponent model, for a range of flame configurations.
We will further analyze differences between the diffusion models by considering a posteriori
results of turbulent flame structures (i.e., species mass fraction and source term profiles).
Finally, we will compare the time history and average normalized turbulent flame speeds of
hydrogen/air, n-heptane/air, and toluene/air flames as a global measure of the differences
between the multicomponent and mixture-averaged diffusion models.

The paper is organized as follows: Section 3.2 describes the governing equations,
diffusion models, and flow configurations for the simulations. Then, Section 3.3 presents
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the results from a priori, a posteriori, and turbulent flame speed analyses. Finally, in
Section 3.4 we draw conclusions from the comparisons of the diffusion models.

3.2 Numerical approach

This section describes the governing reacting-flow equations and flow solver used, and
briefly discusses the diffusion models to be studied. It also presents the two- and three-
dimensional flow configurations used.

3.2.1 Governing equations

We solve the variable-density, low Mach number, reacting flow equations using the finite-
difference code NGA [33, 34]. The complete conservation equations are

∂ρ

∂t
+∇· (ρu) = 0 , (3.1)

∂ρu
∂t

+∇· (ρ u⊗ u) = −∇p+∇· τ + f , (3.2)

∂ρT

∂t
+∇· (ρuT ) = ∇· (ρα∇T ) + ρω̇T −

1
cp

N∑
i

cp,iji· ∇T + ρα

cp
∇cp· ∇T , (3.3)

∂ρYi
∂t

+∇· (ρuYi) = −∇· ji + ρω̇i , (3.4)

where ρ is the mixture density, t is time, u is the velocity, p is the hydrodynamic pressure,
τ is the viscous stress tensor, f represents volumetric forces, T is the temperature, α
is the mixture thermal diffusivity, cp,i is the constant-pressure specific heat of species
i, N is the number of species, cp is the constant-pressure specific heat of the mixture,
and ji, Yi , and ω̇i are the diffusion flux, mass fraction, and production rate of species i,
respectively. In Eq. (3.3), the temperature source term is given by

ω̇T = −1
cp

N∑
i

hi(T )ω̇i , (3.5)

where hi(T ) is the specific enthalpy of species i as a function of temperature. The density
is determined from the ideal gas equation of state.

NGA solves Eqs.(3.1)–(3.4) using a numerical scheme second-order accurate in both
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space and time [33, 34], using a semi-implicit Crank–Nicolson time integration method [59].
It uses the third-order Bounded QUICK scheme (BQUICK) [58] as the scalar transport
scheme. We discuss the diffusion solver in more detail next in Section 3.2.2.

3.2.2 Overview of diffusion models

The diffusion fluxes are calculated using the semi-implicit scheme developed by Fillo et
al. [82] with either mixture-averaged [20] or multicomponent [27] models, both of which
are based on Boltzmann’s equation for the kinetic theory of gases [27, 47]. For this
study, we neglect both baro-diffusion and thermal diffusion (Soret and Dufour effects).
The baro-diffusion term is commonly neglected in reacting-flow simulations under the
low Mach number approximation [48]. We also neglect thermal diffusion because our
objective is to investigate the impact of mass diffusion models; Schlup and Blanquart
previously explored the effects of thermal diffusion modeling [18].

The species diffusion flux for the mixture-averaged diffusion model (abbreviated by
MA hereafter) is related to the species gradient by a Fickian formulation, and is expressed
as

jMA
i = −ρDi,m

Yi
Xi
∇Xi + ρYiuc , (3.6)

whereXi is the ith species mole fraction, Di,m is the ith species mixture-averaged diffusion
coefficient as expressed by Bird et al. [20]:

Di,m = 1− Yi∑N
i 6=j Xj/Dji

, (3.7)

where Dji is the binary diffusion coefficient of species i and j, and uc is the correction
velocity used to ensure mass continuity:

uc =
N∑
i

Di,m
Yi
Xi
∇Xi . (3.8)

Alternatively, the multicomponent diffusion model (abbreviated as MC hereafter), as
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presented by Bird et al. [20], calculates the species diffusion flux as

jMC
i = ρYi

XiW

N∑
i 6=j

WjDi,j∇Xj , (3.9)

where W is the mixture molecular weight, Wj is the molecular weight of the jth species,
and Di,j is the ordinary multicomponent diffusion coefficient, which we compute here
using the MCMDIF subroutine of CHEMKIN II [50] with the method outlined by Dixon–
Lewis [21].

Table 3.1: Parameters of the two- and three-dimensional simulations. ∆x is the grid
spacing, ηu is Kolmogorov length scale in the unburnt gas, ∆t is the simulation time
step, φ is the equivalence ratio,P0 is the thermodynamic pressure, Tu is the temperature
of the unburnt mixture, Tpeak is the temperature of peak fuel consumption rate in the
one-dimensional laminar flame, SL is the laminar flame speed, lF = (Tb − Tu) / |∇T |max
is the laminar flame thickness, l = u′3/ε is the integral length scale, u′ is the turbulence
fluctuations, ε is the turbulent energy dissipation rate, Kau is the Karlovitz number in
the unburnt mixture, Ret is the turbulent Reynolds number in the unburnt mixture, and
νu is the unburnt kinematic viscosity, and Aforce is the turbulent forcing coefficient used
in NGA [15].

H2 (2D) H2 n-C7H16 C6H5CH3

MA MC MA MC MA MC MA MC

Domain 4L× L 8L× L× L 11L× L× L 11L× L× L
L 472∆x 190∆x 128∆x 128∆x
Grid 1888× 472 1520× 190× 190 1408× 128× 128 1408× 128× 128
∆x [m] 4.24× 10−5 4.24× 10−5 1.8× 10−5 1.8× 10−5

ηu [m] – 2.1× 10−5 9.0× 10−6 9.1× 10−6

∆t [s] 5× 10−6 6× 10−7 6× 10−7 6× 10−7

φ 0.4 0.4 0.9 0.9
P0 [atm] 1 1 1 1
Tu [K] 298 298 298 298
Tpeak [K] 1190 1180 1190 1180 1270 1230 1420 1420
SL [cm/s] 23.0 22.3 23.0 22.3 35.1 37.3 34.3 34.4
lF [mm] 0.643 0.651 0.643 0.631 0.390 0.385 0.410 0.420
l/lF – 2 2.04 1.1 1.1
u′/SL – 18 18.6 18 16.9 17 16.9
Kau = τF /τη – 149 151 220 207 200 204
Ret = (u′l)/νu – 289 190 175
Aforce [1/s] – 973.05 4730 4333
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3.2.3 Flow configuration

We used three flow configurations in this work. The first is a one-dimensional, unstretched
(flat), laminar, hydrogen/air flame with an unburnt temperature of 298K, pressure of
1 atm, and equivalence ratio of φ = 0.4. To ensure the flame remained centered in the
computational domain, comprised of 720 grid points where ∆x =15.4µm, we set the inlet
velocity as equal to the laminar flame speed:

SoL = −
∫
ρω̇H2dx

ρuYH2,u
, (3.10)

where ρu is the unburnt mixture density and YH2,u is the unburnt fuel mass fraction. We
selected the grid spacing to ensure at least 20 points through the laminar flame, with the
thickness defined using the maximum temperature gradient: lF = (Tmax−Tmin)/|∇T |max.
Schlup and Blanquart [18] used an identical configuration to investigate the impact of
Soret and Dufour thermal diffusion effects.

For the second and third configurations, we selected multidimensional cases where
diffusion modeling may be particularly important. The second configuration considered
is a two-dimensional domain used to study unsteady, freely propagating lean hydro-
gen/air flames [18, 23]. The third configuration is a doubly-periodic, turbulence-in-a-box
configuration we used to study three-dimensional statistically stationary hydrogen/air,
n-heptane/air, and toluene/air flames [18, 22, 23]. The selected fuels also span a range
of Lewis numbers: LeH2 = 0.3, LeC6H5CH3 = 2.5, and LeC7H16 = 2.8. This allows us to
evaluate if the relative strength of mass diffusivity relative to thermal diffusivity affects
a flame’s sensitivity to multicomponent diffusion. For example, the low Lewis number
of hydrogen can result in differential diffusion effects, which cause the instabilities found
in lean hydrogen/air flames. Further, we selected the turbulence timescales at the high
Karlovitz numbers considered to match the order of magnitude of the diffusion time
scales, such that diffusion may interact with turbulence. All three configurations have
been used in previous studies, and so we provide only a brief overview here.
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3.2.3.1 Two-dimensional flow configuration

The two-dimensional analysis is performed using a hydrogen/air mixture with a nine-
species, 54-reaction chemistry model from Hong et al. [66–68] (forward and backward
reactions are counted separately). The domain has inlet and convective outlet boundaries
in the streamwise direction and periodic boundaries in the spanwise direction. The inlet
velocity boundary condition is fixed at the mean effective burning velocity, such that
the unstable flame remains statistically stationary in the domain. The mean effective
burning velocity, S2D

eff , is defined as

S2D
eff = −

∫
A ρω̇H2dA

ρuYH2,uL
, (3.11)

where L is the spanwise dimension of the computational domain. This velocity boundary
condition allows the simulation to run for an arbitrary length of time to collect statistics.

Figure 3.1: Temperature contour for the two-dimensional freely propagating unsteady
hydrogen/air flame obtained with the multicomponent diffusion model.

Table 3.1 includes details of the computational domain. The unburnt mixture has an
equivalence ratio of φ = 0.4, unburnt temperature of Tu = 298K, and unburnt pressure
of po = 1 atm. The initial scalar and velocity figures are generated by perturbing a flat,
two-dimensional flame profile, using two sinusoidal modes defined by

xF,0 = E +A
∑
i=1,2

cos
(

2πki
y

H

)
(3.12)

where xF,0, is the initial flame position, E is the average flame position, A = 10−4 m is
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the amplitude, k1 = 20 and k2 = 30 are two coprime modes, y is the vertical coordinate,
and H is the height of the domain [23]. Schlup et al. [18] and Burali et al. [23] used the
same set of disturbance parameters to to initially perturb the flame asymmetrically and
trigger Darrieus–Landau instabilities. Figure 3.1 shows an example temperature contour
with a representative unsteady flame clearly visible.

3.2.3.2 Three-dimensional flow configuration

Three fuel/air mixtures are simulated in the three-dimensional configuration: φ = 0.4
hydrogen/air, φ = 0.9 n-heptane/air, and φ = 0.9 toluene/air. The hydrogen/air mix-
ture uses the same chemical-kinetic model as in the two-dimensional case [66–68]. The
n-heptane/air mixture uses the reduced kinetic model described by Savard et al. [85]
consisting of 35 species and 217 reactions. Finally, the toluene/air mixture uses the
47-species, 290-reaction kinetic model of Bisetti et al. [56].

Table 3.1 gives the details of the computational domains used for the three-dimensional
simulations. The domains consist of inflow and convective outflow boundary conditions
in the streamwise direction, and periodic boundaries in the two spanwise directions. The
inflow velocity is the mean turbulent flame speed, which keeps the flame statistically
stationary such that turbulent statistics can be collected over an arbitrarily long run time.
In the absence of mean shear, a linear turbulence forcing method [14, 15] maintains the
production of turbulent kinetic energy through the flame.

Table 3.1 also provides details on the unburnt mixture, corresponding one-dimensional
flames, and inlet turbulence. The unburnt temperatures and pressures for all cases are
298K and 1 atm, respectively. Table 3.1 gives the definitions of the Karlovitz number,
Kau, and turbulent Reynolds number, Ret, where τF = lF /SL is the flame time scale and
τη = (νu/ε)1/2 is the Kolmogorov time scale of the incoming turbulence.

3.3 Results and discussion

This section presents a priori results for the one-dimensional flat hydrogen/air flame
and two-dimensional, unsteady, premixed hydrogen/air flame, as well as a priori and
a posteriori results for the three-dimensional, turbulent, premixed fuel/air flames of
hydrogen, n-heptane, and toluene.
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3.3.1 A priori diffusion flux comparison

Mass, momentum, and heat diffusion are strongly coupled processes in reacting flows,
and as a result isolating the causes of observed effects can be difficult. To overcome this
challenge we compared the diffusion models with an “a priori” analysis that calculates
the mass-diffusion flux vectors for each method using identical scalar gradient fields. (In
other words, we compare the diffusion flux vectors before any physical effects influence
the flow—any observed differences later will ultimately grow from any initial differences
here.) By calculating the mass diffusion fluxes in this way, we isolate the effects of the
diffusion model on the resulting diffusion vectors from any time evolution of the reacting
flow field. To assess disagreement between the mixture-averaged and multicomponent
diffusion models, we evaluate the relative orientation and magnitude of the diffusion flux
vectors they produce.

3.3.1.1 One-dimensional flame

Figure 3.2 compares the a priori diffusion fluxes for the one-dimensional, flat, hydrogen/air
flame relative to the local mixture temperature. As expected, the flux profiles for the
mixture-averaged and multicomponent cases match in shape and magnitude. However,
the mixture-averaged model underpredicts the maximum flux magnitude for the hydrogen
radical (H) by approximately 40%. Similarly, the mixture-averaged model underpredicts
molecular hydrogen and (H2) and hydroxyl radical OH fluxes by approximately 18%,
and the oxygen radical (O) by 16%. These differences are substantial but agree with
previous results for one-dimensional premixed hydrogen/air flames [31, 42].

These errors disrupt mass continuity by locally altering the equivalence ratio in regions
of high mass-diffusion flux. This effect is clear when considering the correction velocity,
which is based on the mole and mass fractions of the species. As a result, it lumps
a large portion of the correction for mass continuity into the N2 mass flux, which the
mixture-averaged model overpredicts by 40%. The correction velocity is not correcting
for the errors in the mixture-averaged model; rather, it simply ensures mass continuity
is maintained despite the errors.
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Figure 3.2: A priori comparisons of mass diffusion fluxes relative to mixture local tem-
perature in a one-dimensional hydrogen/air flame at φ = 0.4.
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3.3.1.2 Multi-dimensional flames

We next performed an a priori assessment of the species mass diffusion fluxes in the
multi-dimensional flames. However, because of the added degrees-of-freedom in multi-
dimensional flows, we now investigate the relative angles of the flux vectors with respect
to the species gradient vector to assess the relative direction of mass flux, in addition
to the flux magnitudes. As demonstrated in Eq. (3.7), the mixture-averaged flux vector
for a given species is based on the gradient of that species and, as a result, should be
strictly anti-parallel to its gradient. In contrast, in Eq. (3.9), the multicomponent flux of
a given species is based on the net influence of the remaining species (but not itself) and
thus may not necessarily align with its own gradient. Differential diffusion may misalign
the species gradient and multicomponent diffusion flux vectors in regions of high flame
curvature where strong gradients can exist in multiple directions.

As a qualitative assessment, Figure 3.3 shows two-dimensional slices of fuel mass
fraction, fuel mass diffusion flux, and flux-vector angle relative the species gradient vector
from the turbulent hydrogen/air flame for the mixture-averaged and multicomponent
models. For this assessment an angle of π corresponds to alignment between the flux and
species gradient vectors while smaller angles show misalignment. To help highlight small
scale differences between the two diffusion models, we also present the log of the mass
diffusion flux field. The location of the flame is indicated by isolines of T = Tpeak−300K
(red) and T = Tpeak+ 300K (white) included on the fields of fuel mass fraction.

Qualitatively, the angles shown in Figures 3.3g and 3.3h are in good agreement
between the mixture-averaged and multicomponent models. At the far left of both
figures the relative angle is zero at the inlet of the domain. In this region fuel has not
been consumed and so the fuel mass fraction is approximately constant and gradients are
small; as a result the magnitude of the mass flux in this region is at or near zero. This is
confirmed by Figures 3.3e and 3.3f where values of log10(jH2) ≤ −30 at the inlet of the
domain correspond to flux magnitudes of 1× 10−30 kg/(m2 s) or less. At the far right of
Figures 3.3g and 3.3h the relative angles for both models are roughly constant and at π,
anti-parallel to the species gradient vector. In this region fluxes are small but non-zero
as residual fuel is present in small concentrations—as a result, scalar gradients are small.
Finally, although the flux angle appears to deviate from π in small regions throughout
the flame for both the mixture-averaged and multicomponent flames, these deviations
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(a) MA YH2 (b) MC YH2

(c) MA jH2 [kg/(m2 s)] (d) MC jH2 [kg/(m2 s)]

(e) MA log10(jH2) (f) MC log10(jH2)

(g) MA ∇YH2∠jH2 (h) MC ∇YH2∠jH2

Figure 3.3: Fields of fuel mass fraction (a, b), fuel mass diffusion flux (c, d), log of the
fuel mass diffusion flux (e, f), and angle between fuel mass flux and species gradient
vectors (g, h) for one time step of the hydrogen-air turbulent premixed flame for the
mixture-averaged (MA) and multicomponent (MC) diffusion cases. Shown are domain
cross-sections through the midplane. The red and white lines correspond to isosurfaces
of Tu = Tpeak − 300 K and Tb = Tpeak + 300 K, respectively, and represent the inflow and
outflow surfaces of the flame front.
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correspond to areas where the flux magnitude is locally very small, approaching zero.
Furthermore, the relative angle of the flux vector is consistently π in regions of high
species gradients, such as through the flame front, and agrees well between the two
models. The angles between the mass-flux and gradient vectors agree similarly well for
all species and flame configurations considered.
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Figure 3.4: A priori assessment of the mixture-averaged and multicomponent models
comparing the PDFs of the angle between species flux vectors and species gradient vectors
for the two-dimensional unsteady (a) and three-dimensional turbulent (b) hydrogen/air
flames. The inset plots use a semi-log scale on the vertical axis.

To confirm our qualitative observations of the relative direction of the flux vector,
Figure 3.4 shows the probability density function (PDF) of the angles between the H2

diffusion flux vectors and the species gradient vectors for the two-dimensional unsteady
and three-dimensional turbulent hydrogen flames. This quantitatively measures the
alignment of the vectors to compare the multicomponent and mixture-averaged models.
We only consider points in the domain for which the species diffusion flux magnitude is
at least 10% of the peak species diffusion flux magnitude, to emphasize the region where
diffusion is important. For both the two- and three-dimensional hydrogen flames, both
the mixture-averaged and multicomponent diffusion models have maximum PDF values
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at an angle of π, anti-parallel to the species gradient vector; this is expected and indicates
that mass diffusion occurs primarily in the direction of negative species gradient (i.e.,
from high to low concentration). We attribute small deviations of the mixture-averaged
angle away from π to the velocity correction term in Eq. (3.6).

The two-dimensional unsteady flame exhibits negligible differences in the angles
separating the species diffusion flux and gradient vectors; but this agreement does not
extend to the three-dimensional turbulent flame. In this case, the angle PDF is roughly
50% higher for the multicomponent model. Although this difference between the two
models is large, it is tempered by the tiny magnitude of the PDFs away from π. For both
cases these vectors show a clear preferential alignment at π, with the magnitude of the
PDF dropping to much less than one for angles smaller than 63π/64. Figure 3.5 shows
that the three-dimensional turbulent n-heptane/air and toluene/air flames show similar
differences.
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Figure 3.5: A priori assessment of the mixture-averaged and multicomponent models
comparing the PDFs of the angle between species flux vectors and species gradient vectors
for the three-dimensional turbulent n-heptane/air (b) and toluene/air (a) flames. The
inset plots for are semi-log scale on the y axis.

To better show where the two models deviate in the domain, Figure 3.6 presents
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contours of the point-wise difference between the fuel diffusion-flux magnitudes between
the models, normalized by the peak multicomponent fuel diffusion-flux magnitude. These
contour plots provide a reference for the physical location of peak differences between
the mixture-averaged and multicomponent models within the flame.

Examining Figure 3.6, in all cases the highest differences between the two models
occur in regions of high flame curvature where the species gradient field is strong and
highly variable. To more-concisely discuss these differences across multiple species and
flame configurations, Table 3.2 presents the mean and standard deviations of the angles
between the mixture-averaged and multicomponent diffusion fluxes, as well as relative
L1, L2, and L∞ error norms of the differences in magnitude of these diffusion fluxes. We
calculated these statistics in regions where species diffusion is strong, i.e., the diffusion
flux magnitude is greater than 10% of the peak diffusion flux magnitude. The relative
L1, L2, and L∞ error norms measure the modal, mean, and maximum error, respectively,
for the diffusion flux magnitude of species i and are defined as

L1
(
jMA
i

)
=
∑Np
n=1

∣∣∣∣∣∣jMA
i

∣∣∣− ∣∣∣jMC
i

∣∣∣∣∣∣∑Np
n=1

∣∣∣jMC
i

∣∣∣ , (3.13)

L2
(
jMA
i

)
=

√√√√√√
∑Np
n=1

(∣∣∣jMA
i

∣∣∣− ∣∣∣jMC
i

∣∣∣)2

∑Np
n=1

∣∣∣jMC
i

∣∣∣2 , and (3.14)

L∞
(
jMA
i

)
=
∑Np
n=1 max

(∣∣∣jMA
i

∣∣∣− ∣∣∣jMC
i

∣∣∣)∑Np
n=1 max

(∣∣∣jMC
i

∣∣∣) , (3.15)

where Np is the number of points in the domain.
As observed in Table 3.2, a majority of the mixture-averaged diffusion flux vectors

match the multicomponent diffusion flux vectors within a mean angle, µ∠, of 0.06 rad
for the turbulent cases, with negligible differences for the two-dimensional case. The
exception is the diffusion flux of H2O for the hydrogen/air turbulent flame with a mean
angle of 0.12 rad. As expected, the turbulent cases show larger (albeit still small) values
of µ∠. Additionally, the standard deviations of the angle between the diffusion fluxes, s∠,
are small and generally the same order as the mean angles themselves.

Finally, Table 3.2 shows that the magnitudes of the diffusion fluxes agree well through-
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(a) Two-dimensional H2

(b) Three-dimensional H2

(c) n-C7H16

(d) C6H5CH3

Figure 3.6: Local difference of mixture-averaged and multicomponent mass diffusion fluxes
normalized by peak multicomponent mass diffusion flux, ((jMA−jMC)/max(jMC)). Shown
are domain cross-sections through the midplane. The red and white lines correspond to
isosurfaces of Tu = Tpeak − 300 K and Tb = Tpeak + 300 K, respectively, and represent the
inflow and outflow surfaces of the flame front.
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Table 3.2: Statistical quantities of the mixture-averaged and multicomponent diffusion
models for a representative set of major, radical, and product species. The mean (µ∠) and
standard deviation (s∠) of the angles between the mixture-averaged and multicomponent
flux vectors, as well as relative L2 error norms (Eq. (3.14)).

µ∠ [rad] s∠ [rad] L1
(

jMA
i

)
L2
(

jMA
i

)
L∞
(

jMA
i

)
2D unsteady hydrogen

H2 2.7× 10−5 2.1× 10−4 2.8× 10−2 2.6× 10−2 2.2× 10−2

H 5.7× 10−5 1.4× 10−6 3.8× 10−2 3.5× 10−2 2.8× 10−2

OH 2.4× 10−4 3.2× 10−5 1.2× 10−2 1.0× 10−2 8.7× 10−3

H2O 7.4× 10−3 2.1× 10−4 4.2× 10−2 4.0× 10−2 4.1× 10−2

3D hydrogen

H2 3.3× 10−2 7.3× 10−2 1.5× 10−1 2.1× 10−1 3.4× 10−1

H 2.5× 10−2 5.1× 10−3 1.4× 10−1 2.1× 10−1 4.2× 10−1

OH 7.1× 10−4 1.4× 10−4 1.6× 10−1 2.2× 10−1 4.0× 10−1

H2O 1.5× 10−1 7.3× 10−3 1.8× 10−1 2.5× 10−1 4.6× 10−1

3D n-heptane

n-C7H16 4.8× 10−2 4.7× 10−2 1.7× 10−1 2.2× 10−1 4.1× 10−1

H 2.7× 10−2 5.7× 10−2 1.5× 10−1 2.0× 10−1 3.9× 10−1

OH 6.0× 10−2 5.9× 10−2 1.7× 10−1 2.3× 10−1 4.1× 10−1

CO2 4.8× 10−3 1.3× 10−3 1.5× 10−1 2.0× 10−1 3.3× 10−1

3D toluene

C6H5CH3 6.1× 10−2 5.1× 10−2 2.2× 10−1 2.8× 10−1 4.7× 10−1

H 1.4× 10−2 4.8× 10−2 1.8× 10−1 2.5× 10−1 4.0× 10−1

OH 8.6× 10−3 2.7× 10−2 2.1× 10−1 2.7× 10−1 4.6× 10−1

CO2 5.9× 10−3 2.6× 10−3 2.0× 10−1 2.5× 10−1 3.9× 10−1



67

out much of the domain. The L2 error norms indicate the average error in the mixture-
averaged flux magnitude is on the order of 20%. However, by definition, the L2 error
norm weights outliers most heavily and so skews the error high. Alternatively, the L1

error norm weights all points in the domain equally providing a measure of the modal
error. Comparing these two values, we can see the error is less than 20% throughout
the domain for most species, with the largest errors occurring in the three-dimensional
flame configurations. Finally, examining the L∞ error norms, the observed differences
in Figure 3.6 correspond to large relative errors, on the order of 30–50% in regions of
high flame curvature for each of the three-dimensional flame configurations. The largest
errors occur in the n-heptane/air and toluene/air flames.

The differences between the two models seem to increase proportionally to the mag-
nitude of the driving species gradient. In Figure 3.6a, showing the lean, two-dimensional,
unsteady, laminar, hydrogen/air flame, the mixture-averaged model matches the multi-
component model within 2 percent for the full domain. For this two-dimensional case
the species gradient vectors are primarily aligned in the flow-wise direction and roughly
constant across the domain. As a result, the scalar gradient fields locally vary a small
amount and the mixture-averaged diffusion model matches the multicomponent model
well; this is true even near thermal instabilities. In contrast, the lean, three-dimensional,
turbulent hydrogen air flame shows significantly larger differences between the models.
The equivalence ratio between these two flames matches (φ = 0.4) and so any local
increases in the species gradient field are due to an increase in local flame curvature
caused by turbulent mixing. In these regions of high-flame curvature, the scalar gradient
field is steep, highly variable, and not strictly aligned in the flow-wise direction, and,
as a result, mass diffusion may occur in multiple directions. Comparing the definitions
of the mixture-averaged and multicomponent diffusion fluxes in Eq. (3.6) and Eq. (3.9),
respectively, the strict alignment of the mixture-averaged diffusion flux with its own
gradient may overvalue the impact of that gradient and overpredict the mass flux when
the gradient vector is large, such as in regions of high flame curvature.

This overprediction of the mixture-averaged diffusion flux is most evident in the
turbulent, n-heptane/air and toluene/air flames where, in addition to turbulent mixing,
the equivalence ratio is much higher at φ = 0.9. Although it is difficult to compare these
flames one-to-one due to differences in chemistry, the increased equivalence ratio relative
to the lean hydrogen/air flames will result in steeper species gradients through the flame,
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since the unburnt fuel mass fractions are much higher in these flames: 0.056 and 0.063 for
n-heptane/air and toluene/air, respectively, compared with 0.012 for hydrogen/air. This
increase in the unburnt fuel mass fraction, coupled with the presence of turbulent mixing,
will increase the magnitude of the species gradients through the flame front relative to the
three-dimensional hydrogen flame. Furthermore, the increases in error for the n-heptane
and toluene flames over the hydrogen/air flames supports the theory that high species
gradients can lead to the mixture-averaged model overpredicting diffusion flux.

Finally, although the reported errors in the predicted flux magnitudes for the mixture-
averaged over the multicomponent model may seem significant, it is important to examine
these values from the perspective of turbulent scaling. The relative magnitude of both
the mixture-averaged and multicomponent mass diffusion fluxes are small: on the order
of 5× 10−3 kg/(m2 s) or smaller on average for all four simulations, compared to total
mass fluxes on the order of 1 kg/(m2 s) or greater. Moreover, the multicomponent and
mixture-averaged fluxes consistently show the same order of magnitude for a given species
in a point-wise comparison, for most points in the domain. In other words, when com-
paring any given point in the domain, the expected fluxes for the mixture-averaged and
multicomponent fluxes are equivalent from an order of magnitude perspective. This sug-
gests that the over prediction in the mixture-averaged flux calculation may be negligible
in comparison to global turbulent flame statistics.

3.3.2 A posteriori comparison of turbulent statistics

To further compare the mixture-averaged and multicomponent diffusion models, we
present a posteriori statistics for the three turbulent flame simulations using both mixture-
averaged and multicomponent diffusion. In other words, how much does model choice
impact global and statistical quantities in a simulation? For this analysis, we allowed
the flames to develop in a turbulent flowfield, and computed statistics after removing the
initial transients of the input flow and scalar fields. We ran each simulation for at least
20 eddy turnover times (τeddy = k/ε where k is the turbulent kinetic energy) to collect
turbulent statistics1.

1In practice we determine τeddy with the turbulence forcing scheme: τeddy = 1/2Aforce, where Aforce
is the turbulent forcing coefficient imposed as a parameter in the simulation and developed by Carroll et
al. [15].
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Figure 3.7: Time-history of the normalized turbulent flame speed from the turbulent
hydrogen/air configuration for both diffusion models.
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Figure 3.7 shows the time-history of the turbulent flame speed, ST , normalized by
SL, defined as

ST =
∫
V ρω̇F dV

ρuYF,uL
, (3.16)

where ωH2 and YF are the fuel source term and mass fraction respectively, rho is the
density, L is the span-wise domain width, and V is the volume of the domain. We
started the multicomponent and mixture-averaged diffusion models from the same initial
data file, and allowed them to evolve in the domain until any initial transients had
convected through the domain (approximately 6τeddy). We then ran each simulation for
an additional 20τeddy to provide a representative sample of instantaneous flame speeds.
Table 3.3 presents the mean turbulent flame speeds of the three fuels, based on the
collected samples. While the mixture-averaged model seems to lower the normalized
turbulent flame speeds by 13% and 5% for the hydrogen and toluene flames, it causes a
20% higher normalized flame speed for the n-heptane flame. These results do not seem to
depend on the Lewis number for each fuel—recall that LeH2 = 0.3, LeC6H5CH3 = 2.5, and
LeC7H16 = 2.8. The n-heptane/air and toluene/air flames have the most-similar Lewis
numbers but differ in error of turbulent flame speed between the diffusion models.

Table 3.3: Mean turbulent flame speed, normalized by unstretched laminar flame speed
for three-dimensional turbulent hydrogen/air, n-heptane/air, and toluene/air mixtures,
comparing the impact of mixture-averaged and multicomponent diffusion models.

MC MA Difference

H2 33.9 29.6 13%
C7H16 1.70 2.02 20%
C6H5CH3 1.80 1.71 5%

To better understand the observed differences in the turbulent flame speed, we assess
the impact of the diffusion models on flame chemistry via their effects on the average
fuel mass fraction and source term. As demonstrated in previous studies, differential
diffusion can modify the local equivalence ratio in regions of high flame curvature [3,
22, 70]. We have demonstrated this effect in Table 3.2, by showing that the mixture-
averaged diffusion assumption overpredicts the magnitude of the mass diffusion flux in
these regions. The increase in mass flux into these regions of high flame curvature may
impact local chemistry and modify the fuel source term. Lapointe and Blanquart [22]
previously suggested that the normalized turbulent flame speed is proportional to the
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product of turbulent flame area and the mean source term, ω̇F conditioned on flame
temperature:

ST
SL
∝ AT

A

〈ω̇f |T 〉
ω̇F,lam

, (3.17)

where AT is the turbulent flame area, A is the cross-sectional area of the domain, and
ω̇F,lam is the fuel source term in the laminar flame. Moreover, they demonstrated that
the area ratio (AT /A) controls large-scale fluctuations in the flame speed on the order
of their mean values, while the normalized mean source term (〈ω̇f |T 〉/ω̇F,lam) controls
smaller-scale fluctuations [22].
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Figure 3.8: Turbulent flame structure for the three fuel/air mixtures, showing conditional
means of (a) fuel mass fraction and (b) source term as functions of flame temperature
normalized by Tad. All plots are normalized by their peak multicomponent values from
one-dimensional flat flames.

To evaluate if the observed difference in the diffusion mass fluxes correlate to the
observed differences in the normalized turbulent flame speeds between the two models,
Figure 3.8 presents the means of the fuel mass fractions and source term, conditioned
on temperature and normalized by their respective adiabatic flame temperatures of one-
dimensional flames, Tad. The calculated conditional means of the fuel mass fractions
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differ by negligible amounts; less than 1% at all points. This strong agreement between
the conditional means of the fuel mass fraction suggests that although local differences
in the diffusion mass flux fields do exist between the two models, they do not appear to
significantly affect the averaged distribution of reactants in the flame.

In contrast, we observe larger differences for the conditional mean of the fuel source
term in Figure 3.8b. At their peaks, the mean source terms for the multicomponent
flames are 5.5% and 1.6% higher than the mixture-averaged models for the hydrogen
and toluene flames, respectively, and 9.4% lower for n-heptane flame. Moreover, away
from the peak locations, the conditional means agree within 1% for the mixture-averaged
and multicomponent cases. This agreement also extends into super-adiabatic regions for
the hydrogen/air flame. These super-adiabatic regions, also called “hot spots”, result
from differential diffusion, and have been predicted both in theoretical studies [71] and
in numerical analyses of lean hydrogen/air mixtures [72–74].

Comparing the observed differences in the conditional means of the fuel source term
with the mean normalized turbulent flame speeds, the results agree well with the pro-
portional relation in Eq. (3.17) given by Lapoint and Blanquart [22]. Specifically, the
peak normalized source term is 5.5% higher for the multicomponent hydrogen/air flame
over mixture-averaged, resulting in a 13% higher normalized flame speed. Alternatively,
the peak normalized source term is 9.4% lower for the multicomponent n-heptane/air
flame compared to mixture-averaged, resulting in a 19% lower normalized flame speed.
In all three cases, the error in normalized turbulent flame speed appears proportional
to the error in normalized conditional mean by approximately a factor of two. This
strong proportional relationship agrees with similar results observed by Lapointe and
Blanquart [22]. Moreover, our results demonstrate that, relative to the multicomponent
model, the observed errors in the mixture-averaged diffusion flux vectors do impact a
posteriori flame statistics. These results raise questions about the appropriateness of
the mixture-averaged diffusion assumption for simulations where high flame curvature is
present.

3.4 Conclusions

This article compares the mixture-averaged and multicomponent mass diffusion models
for premixed two-dimensional, unsteady hydrogen/air and three-dimensional, turbulent
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flames, considering hydrogen, n-heptane, and toluene fuel/air mixtures. The methods
are compared using both a priori and a posteriori assessments of differences. The a priori
analysis indicated that the mixture-averaged model accurately reproduced the relative
direction and magnitude of the flux vectors through much of the domain. However, we
observed errors as high 50% in the magnitude of the diffusion flux vector for all three
fuels in regions of high flame curvature.

A posteriori analyses indicated that using the mixture-averaged model affects turbu-
lent statistics, such as conditional means of the fuel mass fraction and consumption rates.
The observed impact on a posteriori flame statistics is relatively small: the models result
in differences of less than 20% in normalized turbulent flame speed, 10% in conditional
mean of fuel source term, and 1% in the conditional mean of fuel mass fraction. However,
these errors may not fully reflect the impact of using the mixture-averaged diffusion
model. Differential diffusion can modify the local species transport in regions of high
flame curvature, and the large differences in mass-diffusion flux vectors may have addi-
tional impacts beyond turbulent flame speed and fuel source term. Thus, these results
warrant further investigation into the appropriateness of using mixture-averaged mass
diffusion in the DNS of three-dimensional, premixed turbulent flames at moderate-to-high
Karlovitz numbers.
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Chapter 4: Assessing the impact of diffusion model on the turbulent
transport and flame structure of premixed lean hydrogen flames

Diffusion mass transport occurs at chemical and turbulent dissipation length scales in
turbulent flames. Thus, multicomponent transport directly affects the dissipation and
production of turbulent kinetic energy through the flame front. This study evaluates
the impact of multicomponent mass diffusion on the enstrophy budget of premixed,
hydrogen-air flames, neglecting secondary Soret and Dufour effects. We performed direct
numerical simulations of these flames by implementing the Stefan–Maxwell equations in
NGA. We simulated premixed, three-dimensional, turbulent, lean hydrogen flames using
the mixture-averaged and multicomponent models. Comparing the enstrophy budgets of
these simulated flames, we observed a 15% difference in the normalized viscous dissipation
term through the reaction zone, and up to a 50% difference in super-adiabatic regions
of the flame when comparing mixture-averaged and multicomponent diffusion. To assess
the effect of these differences on flame structure, we reconstructed the average local
internal structure of the turbulent flame through statistical analysis of the scalar gradient
field. Based on this analysis, large differences in viscous dissipation seem to contribute
to significant differences in the average local flame structure between the two models.

Keywords: Multicomponent diffusion; Lean hydrogen; DNS; High Karlovitz; Turbulent
flame

4.1 Introduction

The average internal flame structure and statistical behavior of vorticity and enstrophy
is critical to the evaluating turbulent fluid motion in reacting flows [86–88]. Heat release
during the combustion process can form steep gradients in the temperature and scalar
fields, increasing the importance of diffusion transport [20]. Prior studies have shown
this is especially important in lean hydrogen flames where the Lewis number is much less
than unity, leading to thermal-diffusive instabilities in the flame and a strong coupling
of turbulence and diffusion transport [18, 72, 73, 87].
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Several studies have already examined the importance of including thermal diffusion
in a wide range of flame configurations [18, 30, 31, 37, 39, 72, 73, 83, 84]. These
studies have thoroughly demonstrated that neglecting thermal diffusion can significantly
impact flame properties. For example, studying three-dimensional, premixed, turbulent
hydrogen/air flames, Schlup et al. [18] showed that thermal diffusion can increase flame
propagation speeds and increase the product chemical source terms in regions of high
positive curvature. Studying laminar hydrogen/air flames, Giovangigli [19] demonstrated
that multicomponent Soret effects can significantly influence laminar flame speeds and
extinction stretch rates for flat and stretched premixed flames, respectively. Thus, thermal
diffusion is important in some fuel/air mixtures. However, while several of these studies
have evaluated the impact of multicomponent thermal diffusion models on lean hydrogen
flame simulations [18, 30, 31, 40, 43], we do not know the impact of full multicomponent
mass diffusion on turbulent transport and average flame structure.

The primary objective of this study is to evaluate the impact of the mixture-averaged
diffusion assumption on enstrophy transport and the average internal flame structure us-
ing data from direct numerical simulations (DNS) of turbulent, premixed, lean hydrogen-
air flames. This objective will be achieved in two ways. First, we will analyze the
differences in time- and spatially-averaged enstrophy budgets in the DNS using mixture-
averaged and multicomponent diffusion models. Second, we will evaluate the impact of
these differences on the average local flame structure by evaluating scalar gradient tra-
jectories for the two models and statistically reconstructing the internal flame structures.
Based on the results of these analyses, we will assess the accuracy and appropriateness of
the mixture-averaged diffusion assumption for use in DNS of turbulent, premixed, lean
hydrogen-air flames.

The paper is organized as follows. Section 4.2 describes the governing equations,
diffusion models, and flow configuration for the simulations. Then, Section 4.3 presents,
in order, an a priori qualitative analysis of the scalar and vorticity magnitude fields, the
time- and spatially-averaged enstrophy budgets, and the statistical reconstruction of the
average turbulent flame width. Finally, in Section 4.4 we draw conclusions from the
comparisons of the diffusion models.
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4.2 Numerical approach

This section describes the governing reacting-flow equations, including brief discussions
of the diffusion models to be studied. We also present the three-dimensional flow config-
uration used.

4.2.1 Governing equations

The variable-density, low Mach number, reacting flow equations are solved using the
finite-difference code NGA [33, 34]. The conservation equations are

∂ρ

∂t
+∇ · (ρu) = 0 , (4.1)

∂ρu
∂t

+∇ · (ρ u⊗ u) = −∇p+∇ · τ + f , (4.2)
∂ρT

∂t
+∇ · (ρuT ) = ∇ · (ρα∇T )− 1

cp

∑
i

cp,iji · ∇T

+ ρω̇T + ρα

cp
∇cp · ∇T , (4.3)

∂ρYi
∂t

+∇ · (ρuYi) = −∇ · ji + ρω̇i , (4.4)

where ρ is the mixture density, u is the velocity, p is the hydrodynamic pressure, τ is
the viscous stress tensor, f represents volumetric forces, T is the temperature, α is the
mixture thermal diffusivity, cp,i is the constant-pressure specific heat of species i, cp is the
constant-pressure specific heat of the mixture, and ji, Yi , and ω̇i are the diffusion flux,
mass fraction, and production rate of species i, respectively. In Eq. (4.3), the temperature
source term is given by

ω̇T = −c−1
p

∑
i

hi(T )ω̇i , (4.5)

where hi(T ) is the specific enthalpy of species i as a function of temperature. The density
is determined from the ideal gas equation of state.
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4.2.2 Overview of diffusion models

The diffusion fluxes are calculated using the semi-implicit scheme developed by Fillo
et al. [82] with either mixture-averaged [20] or multicomponent [27] models, both of
which are based on Boltzmann’s equation for the kinetic theory of gases [27, 47]. This
study neglects both baro-diffusion and thermal diffusion (i.e., Soret and Dufour effects).
The baro-diffusion term is commonly neglected in reacting-flow simulations under the
low-Mach-number approximation [48], and we neglected thermal diffusion because our
objective is to investigate the impact of mass diffusion models only; Schlup et al. [18]
previously explored the effects of thermal diffusion models.

The species diffusion flux for the mixture-averaged diffusion model is related to the
species gradient by a Fickian formulation and is expressed as

jMA
i = −ρDi,m

Yi
Xi
∇Xi + ρYiuc , (4.6)

where Xi is the ith species mole fraction and Di,m is the ith species mixture-averaged
diffusion coefficient expressed by Bird et al. [20] as

Di,m = 1− Yi∑N
i 6=j Xj/Dji

. (4.7)

Here Dji is the binary diffusion coefficient of species i and j and uc is the correction
velocity used to ensure mass continuity, given by

uc =
∑
i

Di,m
Yi
Xi
∇Xi . (4.8)

Alternatively, the multicomponent diffusion model for the species diffusion flux as
presented by Bird et al. [20], and implemented in CHEMKIN II [50], is

jMC
i = ρYi

XiW

N∑
i 6=j

WjDi,j∇Xj , (4.9)

where W is the mixture molecular weight, Wj is the molecular weight of the jth species,
and Di,j is the ordinary multicomponent diffusion coefficient computed using the MCMDIF

subroutine of CHEMKIN II [50] with the method outlined by Dixon-Lewis [21].
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Table 4.1: Parameters of the simulations, where ∆x is the grid spacing, ηu is Kolmogorov
length scale in the unburnt gas, ∆t is the simulation time-step size, φ is the equivalence
ratio, Tpeak is the temperature of peak fuel consumption rate in the one-dimensional
laminar flame, SL is the laminar flame speed, lF = (Tb − Tu) / |∇T |max is the laminar
flame thickness, l = u′3/ε is the integral length scale, u′ is the turbulence fluctuations,
ε is the turbulent energy dissipation rate, Kau is the Karlovitz number in the unburnt
mixture, Ret is the turbulent Reynolds number in the unburnt mixture, and νu is the
unburnt kinematic viscosity.

MA MC
Domain 8L× L× L
L 190∆x
Grid 1520× 190× 190
∆x [mm] 0.0424
ηu [m] 2.1× 10−5

∆t [s] 6× 10−7

φ 0.4
P0 [atm] 1
Tu [K] 298
Tpeak [K] 1190 1180
SL [m/s] 0.230 0.223
lF [mm] 0.643 0.631
l/lF 2 2.04
u′/SL 18 18.6
Kau = τF /τη 149 151
Ret = (u′l)/νu 289
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4.2.3 Flow configuration

We used a doubly-periodic domain to model a three-dimensional, premixed, statistically
stationary lean hydrogen flame in this study [18, 22, 23]. This configuration is selected
because diffusion modeling could be important in accurately simulating the instabilities
found in lean hydrogen/air flames due to differential diffusion effects. Further, the
turbulence timescales are of the same order of magnitude as diffusion time scales for the
selected Karlovitz numbers.

The three-dimensional turbulent flames are simulated using an identical flow configu-
ration as in previous works [18, 23, 57], and therefore only a brief description is provided.
The hydrogen/air mixture uses the nine species, 54 reaction chemistry model from Hong
et al. [66–68] (forward and backward reactions are counted separately).

The computational domain consists of inflow and convective outflow boundary condi-
tions in the stream-wise direction. In the two span-wise directions, periodic boundaries
are used. The inflow velocity is the mean turbulent flame speed, which keeps the flame
statistically stationary such that turbulent statistics can be collected over an arbitrarily
long run time. Table 4.1 also gives details of these computational domains. In the absence
of mean shear, a linear turbulence forcing method [14, 15] is implemented to maintain
the production of turbulent kinetic energy through the flame.

The unburnt temperatures and pressures are 298K and 1 atm, respectively. Table 4.1
provides further details of the computational domain, unburnt mixture, corresponding
one-dimensional flame statistics, and inlet turbulence. The definitions of the Karlovitz
number, Kau, and turbulent Reynolds number, Ret, are also given in Table 4.1, where
τF = lF /SL is the flame time scale and τη = (νu/ε)1/2 is the Kolmogorov time scale of
the incoming turbulence.

4.3 Results and discussion

In this section, we first present an a priori assessment of the instantaneous vector and
scalar fields. Next, we present a time- and spatially averaged assessment of the enstrophy
budget, followed by a statistical reconstruction of the average local flame structure.
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4.3.1 A priori results

As an initial assessment of impact of mixture-averaged and multicomponent mass diffusion
on flame dynamics, we presets a priori results for the simulated flames. Both simulations
are initialized with the same scalar and velocity fields, and run for a single time iteration
to evaluate the impact of diffusion on the scalar field, independent of turbulent mixing.

Figure 4.1 shows contours of temperature, hydrogen mass fraction, z-direction velocity,
and the logarithm of the total vorticity magnitude, ω = [ω ·ω]1/2, where ω = ∇×u. The
inlet and outlet of the flame front are defined by the isosurfaces, Tu = Tpeak − 300 K and
Tb = Tpeak+300 K, respectively, where Tpeak is the temperature of peak fuel consumption
rate in the one-dimensional laminar flame. Shown qualitatively in Fig. 4.1, the Tu
isosurface is located at the transition point between the preheat and reaction zones, while
the Tb isosurface captures the super-adiabatic regions, also called “hot spots”, present
in lean premixed hydrogen flames. These “hot spots” result from differential-diffusion
effects, and have been predicted both in theoretical studies [71] and in numerical analyses
of lean hydrogen/air mixtures [72–74].

As expected, the mixture-averaged and multicomponent contours exhibit little differ-
ence for a single time step. However, as shown in Fig. 4.2, if we examine the difference
of the vorticity magnitude, as an indicator of the relative impact of diffusion model on
turbulence transport through the flame, the two cases notably disagree even after only a
single time step. Although qualitative, Fig. 4.2 highlights the impact that model selection
can have on flame structure and dynamics. On average, these differences can result in a
significant and measurable difference in global flame statistics.

4.3.2 Time-averaged results

To assess the impact of the observed differences on vorticity magnitude contours between
the mixture-averaged and multicomponent mass diffusion models, we present an a pos-
teriori comparison of the turbulent statistics. We allowed the flames to develop in a
turbulent flow field, and computed the statistics after the initial transients of the initial
flow and scalar fields had advected through the domain. The presented statistics were
gathered over 25 eddy turnover times (τ) for both flames, where τ = k/ε ≈ 500 µs.

For this analysis we use enstrophy (ω2) transport derived from the momentum equa-
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(a) MA Temperature [K] (b) MC Temperature [K]

(c) MA YH2 (d) MC YH2

(e) MA uz [m/s] (f) MC uz [m/s]

(g) MA log10(ω2) (h) MC log10(ω2)

Figure 4.1: Fields of temperature T (a, b), fuel mass fraction (c, d), z-direction velocity uz
(e, f), and vorticity magnitude ω2 (g, h) for one time step of the hydrogen-air turbulent
premixed flame for the mixture-averaged (MA) and multicomponent (MC) diffusion
cases. Shown are domain cross-sections through the midplane. The black and white lines
correspond to isosurfaces of Tu = Tpeak− 300 K and Tb = Tpeak + 300 K, respectively, and
represent the inflow and outflow surfaces of the flame front.



83

Figure 4.2: Instantaneous difference in vorticity magnitude, log10(|ω2
MA − ω2

MC|), be-
tween the mixture-averaged and multicomponent diffusion models for a premixed, high-
Karlovitz, hydrogen-air flame. Shown is the domain cross-section through the mid-
plane. The black and white lines correspond to isosurfaces of Tu = Tpeak − 300 K and
Tb = Tpeak + 300 K, respectively, and represent the inflow and outflow surfaces of the
flame front.

tion:

1
2
Dω2

Dt
= ω · (ω · ∇)u− ω2(∇ · u) + ω

ρ2 · (∇ρ×∇P )

+ ω ×
(1
ρ
∇ · τ

)
+ ω · ∇ × f

ρ
, (4.10)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative, τ is the shear force, and f is the
turbulent forcing. Each of the terms on the right-hand side is associated with a specific
physical process: vortex stretching, dilatation, baroclinic torque, viscous dissipation, and
forcing, respectively. Vortex stretching, viscous dissipation, and forcing are active and
constant in low-Mach number, constant-density flows, while dilatation and baroclinic
torque arise due to the presence of the flame. Enstrophy can be interpreted as a potential
density and measures the kinetic energy corresponding to viscous dissipation. Moreover,
while constant, vortex stretching is a convective term and strongly depends on large-
scale turbulent fluctuations that are largely insensitive to small-scale differences caused
by differential-diffusion effects. In contrast, viscous dissipation is relatively significant
throughout the flame at all times and acts at the diffusion length scales directly relevant
to this study.

In its dimensional form, dissipation can vary by more than two orders of magnitude
through the flame and is proportional to the inverse of the Kolmogorov time scale to the
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third power. Given the turbulent cascade, the smallest scales of turbulence result in the
scaling

∇×
(1
ρ
∇ · τ

)
∝ 1
τ2
η

. (4.11)

In the case of high-Karlovitz-number flows, viscous dissipation scales similarly for the
enstrophy equation:

ω · ∇ ×
(1
ρ
∇ · τ

)
∝ 1
τ3
η

. (4.12)

The same scaling was obtained in the case of homogeneous isotropic turbulence by
Tennekes and Lumley [2]. The remaining terms in the enstrophy budget scale similarly
as outlined by [88].
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Figure 4.3: Time and spatially (spanwise) averaged enstrophy budgets for multicomponent
(MC) and mixture-averaged (MA) diffusion models.

As an initial assessment, Fig. 4.3 shows the normalized time- and spatially averaged
enstrophy budgets for the multicomponent and mixture-averaged simulations. Viscous
dissipation acts as a significant sink term for both mixture-averaged and multicomponent
diffusion cases. Vortex stretching is positive and of similar magnitude for both models,
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while dilatation is non-zero and negative, consistent with previous results examining
the effects of Lewis number on vorticity and enstrophy transport in turbulent premixed
flames [87]. Additionally, turbulent forcing is consistent between the two cases, as
expected.

Examining more closely the impact of the diffusion model on the viscous dissipation,
the mixture-averaged assumption consistently under-predicts the normalized dissipation
rate by as much as 10% through the flame front when compared with multicomponent
mass diffusion. This difference is most evident near the flame inlet, defined as the Tu
isosurface in Figs. 4.1 and 4.2, and decreases through the reaction zone. Moreover, despite
under-predicting viscous dissipation through the reaction zone, the mixture-averaged
model over-predicts viscous dissipation by as much as 50% in the super-adiabatic regions
of the flame. This difference in viscous dissipation between the two diffusion models is
significant and may thicken the flame in these super-adiabatic regions.

4.3.3 Flame width and reconstruction

To evaluate the impact of the observed differences in viscous dissipation on global flame
structure, we reconstructed the average local internal structure of the turbulent flames.
The reconstruction method used here was previously described at length by Hamlington
et al. [86], and we refer the reader to that study for details.

The internal structure of the flame is connected to the magnitude of the temperature
gradient, χ̃ = [∇T · ∇T ]1/2. Large χ̃ indicates a thin flame and small χ̃ indicates a
broad flame [86, 89]. Correspondingly, we define δt = χ̃−1 as the local turbulent flame
width. Figure 4.4 shows that for both the mixture-averaged and multicomponent models,
the presence of turbulence thins the flame overall, which is expected in the thin-flame
regime. Consistent with the contours shown in Figs. 4.1 and 4.2, we define the separation
between the preheat and reaction zones based on the Tu = T + Tpeak − 300 K isosurface.
Both flames have similar width in the preheat zone while the multicomponent flame is
slightly thinner in the reaction zone. The value of 〈δt|T 〉/δL in Figure 4.4 has a second
minimum at ∼1600K corresponding to the super-adiabatic region of the flame. At these
high temperatures the mixture-averaged flame is notably broader, consistent with the
observed differences in viscous dissipation in Fig. 4.3. Values of 〈δt|T 〉/δL can be greater
than one since δL (dT/dx)−1

L,max corresponds to the minimum local width of the laminar
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Figure 4.4: Conditional means of the local flame width 〈δt|T 〉 ≡ 〈χ̃−1|T 〉 normalized
using the laminar flame thickness, δL. The inset shows 〈χ̃|T 〉 normalized by δL.
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Figure 4.5: Average local flame structure reconstructed using 〈χ̃−1|T 〉 from Fig. 4.4
and Eq. (4.13) for the turbulent and laminar flames with multicomponent and mixture-
averaged mass diffusion. We chose 〈n|T = Tref〉 = 0 in Eq. (4.13) by requiring that
〈n|Tref〉/δL = 0 for all cases, where Tref = Tpeak − 300 K and 〈n|T 〉/δL > 0 are locations
closer to reactants and 〈n|T 〉/δL < 0 are locations closer to products. The inset highlights
the flame front to facilitate comparison with the average local laminar flame structure.
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flame, and both the turbulent and laminar widths exceed this at most locations.
Using the distributions of 〈δt|T 〉 in Fig. 4.4, we reconstruct the average local internal

structure of the turbulent flames using the procedure outlined by Hamlington et al. [86].
The average flame-normal coordinate, 〈n|T 〉, is calculated from 〈χ̃−1|T 〉/δL as

〈n|T 〉 = 〈n|T = Tref〉+
∫ T

0
〈χ̃−1|η〉dη , (4.13)

where 〈n|T = Tref〉 is the location corresponding to Tref = Tpeak − 300 K, taken as the
transition between the preheat and reaction zones for the present flames. Integration
of Eq. (4.13) gives profiles of T as a function of 〈n|T 〉, which approximate the internal
structure of the turbulent flame.

The resulting profiles in Fig. 4.5 show that the preheat zone thins for the turbulent
flames and confirms that the multicomponent flame is slightly broader in the reaction zone.
Moreover, Fig. 4.5 shows the super-adiabatic regions of the mixture-averaged flame are as
much as 18% broader than in the multicomponent flame. This large difference in flame
structure indicates that mixture-averaged diffusion may not fully capture the complex
interaction between diffusion and turbulent transport in high-temperature regions of the
flame where steep gradients in the scalar field are present.

4.4 Conclusions

In the present study, we assessed the impact of mixture-averaged and multicomponent
species diffusion models on turbulent dissipation and average local flame structure for
three-dimensional, premixed, high-Karlovitz, lean hydrogen air flames. We observed
small differences, (i.e. differences of 20% or less) when comparing the total vorticity
magnitude for the two flames, suggesting that the mixture-averaged diffusion assumption
may not fully model the physical mass transport of the full multicomponent case.

Additional time- and spatially averaged analyses of the enstrophy transport equation
in both flames demonstrated significant differences in viscous dissipation between the
two models. Specifically, we observed a 50% difference in the viscous dissipation term
of the enstrophy budget between the super-adiabatic regions of the mixture-averaged
and multicomponent flames. This large difference seems to contribute to significant
broadening of the mixture-averaged flame relative to the multicomponent flame in these



89

regions. Thus, although the mixture-averaged diffusion model may adequately reproduce
full multicomponent mass diffusion in the preheat and reaction zones, it may fail to
appropriately model mass transport in high-temperature, thermally unstable regions of
the flame.
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Chapter 5: Conclusions

This chapter briefly summarizes the proposed numerical algorithm and results reported
in this study. The summary focuses on overall trends and differences observed between
the mixture-averaged and multicomponent diffusion models for the three studies pre-
sented. The chapter finishes with a discussion of the general conclusions reached and
highlight their significance to the broader combustion and computational fluid dynamics
communities.

5.1 Summary of Results

This dissertation presents a fast, memory-efficient, and stable semi-implicit scheme for
implementing multicomponent mass diffusion in reacting-flow DNS. I show the proposed
method to be second-order accurate in time, and verify it against one-dimensional pre-
mixed, flat, laminar hydrogen flames simulated in Cantera. The proposed scheme is
computationally cost-efficient for chemical kinetic models of up to 100 species. Moreover,
as demonstrated in Chapter 3, the proposed method is only marginally more expensive
than the mixture-averaged diffusion model and its performance could be further improved
by replacing the CHEMKIN II [50] call with a more-efficient method for calculating the
multicomponent diffusion coefficient matrix.

Using the proposed multicomponent algorithm, Chapter 3 compares the relative
impact and accuracy of the mixture-averaged diffusion model against the multicomponent
mass diffusion model for premixed two-dimensional, unsteady hydrogen/air and three-
dimensional, turbulent flames, considering hydrogen, n-heptane, and toluene fuel/air
mixtures. Comparing the relative angle of the flux vectors produced by the two models to
their respective species gradient vectors, the mixture-averaged diffusion model accurately
reproduces the relative direction of diffusion for a wide range of chemical species and
flame configurations. However, when comparing the magnitudes of the flux vectors, I
observed average errors on the order of 20% for the mixture-averaged model relative
to multicomponent diffusion. Furthermore, I observed peak errors on the order of 30–
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50% for the turbulent flames at moderate to high Karlovitz numbers (i.e., Ka ≥ 150).
Evaluating the impact of these differences on the a posteriori global flame statistics such
as the turbulent flame speed and mean fuel source term, the observed errors in mixture-
averaged diffusion appear to cause up to 20% difference in the normalized turbulent
flame speed and up to 10% difference in the conditional means of fuel source term for
the three turbulent flames considered.

Chapter 4 assesses the impact of the mixture-averaged and multicomponent diffusion
models on the turbulent transport and local flame structure in three-dimensional, pre-
mixed, lean, high-Karlovitz hydrogen/air flames. I observed small differences of 20% or
less when comparing fields of vorticity magnitude, even after only one time-step. Com-
paring the time- and spatially-averaged enstrophy transport between the two models,
mixture-averaged underpredicts viscous dissipation in the reaction zone by 10% and
overpredicts viscous dissipation by as high as 50% in super-adiabatic regions of the flame
when compared to the multicomponent model. Evaluating the impact of these difference
on the local average flame structure, the observed differences in viscous dissipation seems
to contribute to a 5% difference in the conditional means of local flame width. These
minor differences in local flame transport correspond to thinning of the average flame
structure in the reaction zone and significant broadening of the average flame structure,
on the order of 18%, in the super-adiabatic regions of the mixture-averaged flame.

5.2 Conclusions

The proposed algorithm successfully reduces the computational and memory costs asso-
ciated with implementing full multicomponent mass diffusion in reacting-flow DNS. This
algorithm enabled a thorough assessment of the accuracy and appropriateness of the
mixture-averaged diffusion approximation against full multicomponent mass diffusion for
a wide range of fuels and flame configurations. Based on the results of that assessment,
I reached four primary conclusions:

1. Mixture-averaged diffusion results in significant errors—as high as 50%—in the
magnitude of diffusion flux vectors produced in regions of high flame curvature. As
shown in Equation (2.7), the mixture-averaged diffusion flux is strictly defined by
its own species gradient. Alternatively, as shown in Equation (2.11) the multicom-
ponent flux depends on the sum of the remaining species gradients. In regions of
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high flame curvature the species gradients are steep and locally vary. The strict
alignment of the mixture-averaged diffusion flux with its own gradient may over-
value the impact of that gradient and, as a result, overpredict mass flux in these
regions.

2. Mixture-averaged diffusion alters the turbulent flame speed by modifying the aver-
aged fuel source term for flames in the moderate-to-high Karlovitz number regime.
As demonstrated, the mixture-averaged model overpredicts mass diffusion fluxes in
regions of high flame curvature. These overpredictions increase fuel mass transport,
locally modifying the equivalence ratio in such regions and resulting in small-scale
changes in the average fuel source term. These differences in the averaged fuel
source term may affect flame dynamics sufficiently to impact the turbulent flame
speed by increasing or decreasing fuel consumption rates, depending on the fuel.

3. Mixture-averaged diffusion significantly impacts viscous dissipation of lean, pre-
mixed, high Karlovitz number hydrogen/air flames. The observed differences in
viscous dissipation are attributed to overprediction by the mixture-averaged model
in regions of high flame curvature. Mass and momentum transport through a flame
are coupled, and, as a result, increased mass transport through the flame front
may also increase the transport of turbulent kinetic energy. This is consistent
with the observed decrease in viscous dissipation in the reaction zone and subse-
quent increase in viscous dissipation in super-adiabatic regions of the flame. It is
plausible that increased mass flux into super-adiabatic regions of the flame caused
by overprediction of the mixture-averaged model causes a similar overprediction
of turbulent kinetic energy transport into these regions, effectively re-distributing
viscous dissipation in the domain.

4. Mixture-averaged diffusion results in significant flame broadening in super-adiabatic
regions of the flame. This is attributed to increased mass and momentum flux into
these regions, consistent with the observed differences in viscous dissipation between
the mixture-averaged and multicomponent flames. At small-enough length scales,
turbulence can lead to flame broadening by locally impacting the internal flame
structure and increasing turbulent dissipation. Increased mass and momentum flux
into these super-adiabatic regions may increase both the local concentration of fuel
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and turbulent kinetic energy within the flame, causing the flame to broaden to
maintain momentum and species conservation.

Overall, my findings raise questions on the accuracy and appropriateness of the
mixture-averaged diffusion assumption in DNS of three-dimensional, premixed, turbulent
flames at moderate-to-high Karlovitz numbers (i.e., Ka ≥ 150). However, these results
are limited in their scope and as such additional study is needed to fully evaluate the
limitations of the mixture-averaged diffusion assumption.

5.3 Significance and Future work

This dissertation presents a novel method for implementing full multicomponent mass
diffusion efficiently in DNS of reacting flows. This method can be adapted to a wide
range of finite-difference solvers to facilitate further investigation on the impact of mul-
ticomponent mass diffusion regardless of flow configurations. Moreover, the proposed
low-memory algorithm has broad applications in finite-differences methods beyond nu-
merical combustion. The method “simply” rearranges the floating-point operations in a
memory-efficient way and does not alter the underlying mathematics, and can be applied
to any finite-difference scheme to reduce memory requirements and improve efficiency.
However, it is most applicable to high-order finite-difference schemes with large stencil
sizes, which can be prone to cache misses and as a result would benefit from reduced
calls to memory.

To fully take advantage of the efficiency of the presented method, future work should
focus on integrating this code with an improved method for calculating the multicompo-
nent diffusion coefficient matrix, such as EGlib [29]. While I have already demonstrated
the presented method is only marginally more expensive than mixture-averaged diffusion
schemes, calculating the diffusion coefficient matrix faster would sufficiently speed up the
code so that multicomponent diffusion would cost nearly the same as mixture-averaged
diffusion.

This dissertation also presents the first assessment of the accuracy and appropriateness
of mixture-averaged diffusion for use in DNS of reacting flows. Moreover, my results
suggest that the mixture-averaged diffusion model may not be appropriate for the DNS
of turbulent flames in the moderate-to-high Karlovitz number regime. The large errors
observed in the mixture-averaged diffusion fluxes clearly impact local mass transport,



94

resulting in fundamental changes to the local flame structure. While these results do
not invalidate previous studies using the mixture-averaged diffusion assumption, they
do warrant further investigation and re-evaluation of previous mixture-averaged results.
These future efforts should focus on:

1. Improving our understanding of the interaction between mass diffusion and chem-
istry in turbulent, premixed flames. While turbulence-chemistry interaction has
been studied for years, diffusion assessments have been limited to Lewis number
comparisons evaluating the relative impact of thermal and mass diffusion. However,
my results indicate that flames with similar turbulence and fuel Lewis numbers
(i.e., n-heptane and toluene) may have different sensitivities to differential diffusion.
These differences suggest additional sensitivities to fuel reactivity and small-scale
interaction between mass diffusion and chemistry and warrant further investigation.

2. Evaluating the impact of full multicomponent mass diffusion on rich turbulent pre-
mixed and turbulent non-premixed flames. My results demonstrate that differential
mass diffusion may be important for turbulent premixed flames where mass diffu-
sion effects are small relative to large-scale turbulent transport. Similar or larger
sensitivities may be observed in flames where mass diffusion dominates more, such
as in rich premixed and non-premixed flames. Additionally, using the proposed
method to investigate these flames in detail may provide insight on the impact of
mass diffusion on chemistry.

3. Implementing the presented memory algorithm to improve additional aspects of
DNS. While the presented semi-implicit preconditioning scheme is limited to diffu-
sion, the memory algorithm has wide applications in evaluating differential equa-
tions in numerical simulations. Implementing this method throughout a finite
difference code could reduce the costs associated with DNS and other simulations,
and facilitate the simulation of larger or more complex flames.

Finally, in light of the computational efficiency of the proposed method, these con-
clusions raise questions on the continued use of the mixture-averaged and other diffusion
assumptions for the DNS of reacting flows.
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Appendix A: Assessing the impact of chemical kinetic model
reduction on premixed turbulent flame characteristics

A.1 Abstract

Using large, detailed chemical kinetic models in simulations of turbulent flames poses
prohibitive computational expense, so typical approaches rely on reduction methods to
generate reduced/skeletal models. Current best practice for the development of reduced
models involves matching homogeneous ignition delay times, perfectly stirred reactor
temperature response curves, and laminar burning parameters such as flame speed and
thickness with predictions from the detailed chemical kinetic models. Prior studies using
reduced models implicitly assume that matching the homogeneous and one-dimensional,
steady laminar combustion behavior of the detailed model in a single-dimensional case
will result in similar behavior for multi-dimensional laminar and turbulent simulations.
However, this assumption has not been tested. Recent experimental studies demonstrated
that real jet fuels with similar chemistry and laminar burning parameters exhibit different
sensitivities to multi-dimensional effects such as flame stretch. This questions the validity
of current best practices for developing reduced chemical kinetic models for turbulent
flame simulations. This study will investigate the validity of using homogeneous and one-
dimensional, steady phenomena to generate reduced models by comparing predictions
of models at multiple levels of fidelity in three-dimensional DNS of premixed, turbulent,
mid- to high-Karlovitz number flames. Combustion parameters will be compared between
calculations using two reduced models from the CaltechMech model; these include flame
speed, flame thickness, and conditional means of the fuel mass fraction and source term
with respect to peak flame temperature. Reduced models will be generated using the
directed relation graph with error propagation (DRGEP) method. Based on the results,
we will make recommendations for the community.
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A.2 Introduction

In this study we evaluate the impact of chemical kinetic model reduction on the premixed
turbulent flame characteristics of simulated high-Karlovitz n-heptane/air flames. The
motivation of this work is to asses the appropriateness of chemical kinetic model reduction
for use in numerical simulation of turbulent reacting flows. Chemical kinetic model reduc-
tion is commonly used to reduce numerical expense and to facilitate three-dimensional
turbulent simulations of these flows [90, 91]. Typically, model reductions are performed by
sampling thermochemical state data in homogeneous, steady, and/or laminar combustion
phenomena (e.g., autoignition, perfectly stirred reactor, one-dimensional laminar flame),
and then evaluating model fidelity using the same [90, 92]. Occasionally, reduced models
are further validated via comparison with experimental results, but generally reduced
models are applied to more complex—and computationally expensive—problems such as
turbulent combustion simulations, and the model fidelity is assumed to extend from that
in simpler phenomena.

Several studies have examined the impact of chemical kinetic model reduction on
small hydrocarbon and hydrogen flames [22, 25, 93]. Lapoint et al. [94] observed that
changes in the chemistry model used in DNS simulations of turbulent premixed hydro-
gen/air flames could result in large discrepancies between simulations. Specifically, they
observed that choice of reduced model could affect flame thickness. Differences in the
flame thickness resulted in changes to local flame structure and interaction with large
slow turbulence on the order on the flame front or greater; these discrepancies where
larges when one-step chemistry was used, relative to the detailed model. Conversely, Luca
et al. [25] demonstrated that reduced models of GRI-Mech 3.0 are appropriate for use
in three-dimensional turbulent methane/air flames and negligibly impact the turbulent
statistics relative to the original detailed model. Finally, as Hilbert et al. [93] reviewed,
several studies have examined the impact of reduced chemistry in three-dimensional,
unsteady turbulent phenomena such as ignition delay for n-heptane; but, to the authors’
best knowledge, no detailed investigations have been performed on the impact or ap-
propriateness of chemical kinetic model reduction for use in three-dimensional turbulent
simulation of large-hydrocarbon flames. Thus, the ability of these chemical kinetic model
reduction to properly simulate the turbulence-chemistry interactions present in practical
flames may be limited.
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This paper presents a preliminary investigation on the impact of chemical kinetic
model reduction on the direct numerical simulation (DNS) of three-dimensional, premixed,
high-Karlovitz n-heptane/air flames in the broadened reaction zone regime. We generated
and investigated the performance of two reduced models from the 174-species, 1896-
reaction CaltechMech model [75–77]. As a preliminary assessment of the impact of model
reduction on turbulent flame characteristics the turbulent flame speeds and conditional
means of the fuel mass fraction and source term as evaluated. This is done to asses
the relative impact of these reductions on the turbulent-chemical interactions present
in high-Karlovitz turbulent flames. The preliminary results indicate that relative error
in the turbulent statistics is on the order of quantified error in ignition delay time and
laminar flame speed; however, additional simulations are needed to confirm these results.

Here, we first describe the chemical kinetic model reductions used as the bases for
comparison. We then present the numerical approach and governing equations, with
a brief discussion of the three-dimensional flow configuration used. Finally, we present
preliminary results evaluating the impact of these chemical kinetic model reductions
on the accuracy of the turbulence characteristics of simulated premixed, high-Karlovitz,
n-heptane/air flames.

A.3 Model reduction

The Model Automatic Reduction Software (MARS) package developed by Niemeyer
et al. [16, 17, 24, 92] is used to reduce CaltechMech in this study. Here we used the
directed relation graph with error propagation (DRGEP) reduction method, which has
been described in detail in prior publications. DRGEP determines the importance of each
species to the production/consumption of important, user-selected target species (in this
case, we chose n-heptane, oxygen, and nitrogen; the latter was to prevent its removal).
MARS automatically selects the cutoff threshold used to eliminate unimportant species
(and their participating reactions) based on the The reduction used thermochemical state
data sampled using the full, detailed kinetic model in homogeneous autoignition and
perfectly stirred reactor simulations over initial temperatures of 800–1600K, pressures of
1–20 atm, and equivalence ratios of 0.7–1.4. In addition, the error of candidate reduced
models was based on comparison of predicted quantities over the same range of conditions
with those of the detailed model.
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For this investigation we generated two reduced chemical kinetic models from the
174 species, 1896 reaction CaltechMech [76, 77, 95], to maximum allowable errors of 1%
and 20% in the ignition delay time and perfectly stirred reactor simulations. Figure A.1
presents the relative error in the ignition delay time and laminar flame speeds at 1 atm
for both reduced models. The 1%-error model has 76 species with 509 reactions and
maximum errors of 0.5% in the ignition delay time and 0.9% in the laminar flame speed;
alternatively, the 20%-error model with 49 species and 233 reactions exhibits maximum
errors of 10.6% and 11.6%, respectively.

A.4 Numerical approach

In this section, a description of the reacting flow equations is given. The three-dimensional
flow configurations used is also presented.

A.4.1 Governing equations

The variable-density, low Mach number, reacting flow equations are solved using the
finite-difference code NGA [33, 34]. The conservation equations are

∂ρ

∂t
+∇· (ρu) = 0 , (A.1)

∂ρu
∂t

+∇· (ρ u⊗ u) = −∇p+∇· τ + f , (A.2)

∂ρT

∂t
+∇· (ρuT ) = ∇· (ρα∇T ) + ρω̇T + ρα

cp
∇cp· ∇T , (A.3)

∂ρYi
∂t

+∇· (ρuYi) = −ρω̇i , (A.4)

where ρ is the mixture density, u is the velocity, p is the hydrodynamic pressure, τ is
the viscous stress tensor, f represents volumetric forces, T is the temperature, α is the
mixture thermal diffusivity, cp,i is the constant-pressure specific heat of species i, cp is
the constant-pressure specific heat of the mixture, and Yi and ω̇i are the mass fraction
and production rate of species i, respectively. In Eq. (A.3), the temperature source term
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Figure A.1: Performance comparison of reduced n-heptane models with the detailed
model for (a) ignition delay as a function of normalized temperature and (b) unstretched
one-dimensional laminar flame speed as a function of equivalence ratio at 1 atm. The
models perform similarly at 20 atm.
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is given by
ω̇T = −c−1

p

∑
i

hi(T )ω̇i , (A.5)

where hi(T ) is the specific enthalpy of species i as a function of temperature. The density
is determined from the ideal gas equation of state.

A.4.2 Flow configuration

The three-dimensional flow configuration use in this work is a periodic domain in the y-
and z- directions, and is used to study three-dimensional statistically stationary flames [18,
22, 23]. Both simulations discussed in this study are in the high-Karlovitz broadened
reaction front regime. This configuration has been used in previous studies; only a brief
overview is provided here.

Two reduced models for CaltechMech [76, 77, 95] are used in this study; both simula-
tions use the same n-heptane/air mixture and three-dimensional configuration. The first
model has a 0.5% error in the laminar flame speed and ignition delay times relative to
the full CaltechMech and contains 76 species and 509 reactions. The second model has a
10.6% error in the laminar flame speed and ignition delay times and contains 49 species
and 233 reactions.

The computational domain consists of inflow and convective outflow boundary condi-
tions in the streamwise direction, with periodic boundaries in the two spanwise directions.
An isotropic flow field provides a turbulent inflow condition, which we generated a priori
using the canonical turbulence-in-a-box configuration. Each spanwise plane of the inflow
corresponds to a time step for the inlet; to ensure that the flame front remains within
the computational domain, the inflow velocity is scaled in situ to the mean turbulent
flame speed. Since the flame mean turbulent flame speed is not known a priori, we
used an approximate, user defined, flame speed based on previous n-heptane/air flame
simulations. This allows the flame front to drift slightly within the domain but keeps
the flame statistically stationary such that turbulent statistics can be collected over an
arbitrarily long run time. Table A.1 also gives details of these computational domains. In
the absence of mean shear, we use a linear turbulence forcing method [14, 15] to maintain
the production of turbulent kinetic energy through the flame.

The unburnt temperatures and pressures for each case are 298K and 1 atm, respec-
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tively. The definitions of the Karlovitz number, Kau, and turbulent Reynolds number, Ret,
are also given in Table A.1, where τF = lF /SL is the flame time scale and τη = (νu/ε)1/2

is the Kolmogorov time scale of the incoming turbulence.

Table A.1: Parameters of the simulations. ∆x is the grid spacing, ηu is Kolmogorov
length scale in the unburnt gas, ∆t is the simulation time step, φ is the equivalence
ratio, Tpeak is the temperature at peak fuel consumption rate in the one-dimensional
laminar flame, SL is the laminar flame speed, lF = (Tb − Tu) / |∇T |max is the laminar
flame thickness, l = u′3/ε is the integral length scale, u′ is the turbulence fluctuations,
ε is the turbulent energy dissipation rate, Kau is the Karlovitz number in the unburnt
mixture, Ret is the turbulent Reynolds number in the unburnt mixture, and νu is the
unburnt kinematic viscosity.

n-C7H16 (1%) n-C7H16 (20%)
Domain 11L× L× L
L 128∆x
Grid 1408× 128× 128
∆x [mm] 1.8× 10−5

ηu [m] 9.0× 10−6

∆t [s] 6× 10−7

φ 0.9
Tpeak [K] 1270
SL [m/s] 0.375 0.367
lF [mm] 0.383 0.395
l/lF 1.12 1.09
u′/SL 16.8 17.2
Kau = τF /τη 202 213
Ret = (u′l)/νu 190

A.5 Results and Discussion

To assess the agreement between the two chemical model reductions, we performed two
turbulent flame simulations using each model respectively. Simulations were performed
using the Extreme Science and Engineering Discovery Environment (XSEDE) [96] Stam-
pede resource at the Texas Advanced Computing Center (TACC); both cases were run
across 1024 cores for 24 hours. For this analysis, the flames were allowed to develop in a
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turbulent flow field, and statistics were computed after removing the initial transients of
the input flow and scalar fields. Each simulation was run for at least 15 eddy turnover
times (τeddy = k/ε, where k is the turbulent kinetic energy) to collect turbulent statistics.
The a posteriori analysis presented here corresponds the last seven eddy turnover times.
This is done to ensure the simulations have passed any initial transient behavior; due to
this limited number of eddy turnover times, these results are only preliminary.
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Figure A.2: Early time-history of the normalized turbulent flame speed from the turbulent
hydrogen/air configuration for both diffusion models.

Figure A.2 shows the early time-history of the turbulent flame speed, ST , calculated
using

ST = −
∫
V ρω̇FdV

ρuYF,uL
, (A.6)

and normalized by SL. The two simulations files were started with the same initial flame
profile, and produce similar flame speeds to approximately 5 τeddy before diverging. Even
after the models diverge, the two flame speeds oscillate around similar mean turbulent
flame speeds of ST /SL ≈ 1.848 and 2.01 for the 1% and 20% reduction models, respec-
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tively. However, since the turbulent flame speed will continue to develop for several eddy
turnover times, this behavior should be interpreted as a preliminary result. A minimum
of 25 τeddy is needed to draw any firm conclusions on the similarities of the turbulent
flame speeds.

Figure A.3 presents the means of the fuel mass fractions and consumption rates,
conditioned on temperature and normalized by their respective adiabatic flame tempera-
tures of one-dimensional flames, Tad. The calculated conditional means of the fuel mass
fractions differ by negligible amounts, and the peak fuel consumption rates differ slightly
(6.6%). For both simulations, the conditional means of the fuel mass fraction and source
terms agree extremely well.

These three-dimensional turbulent flame results demonstrate that the calculated error
in the ignition delay times and laminar flame speeds that occur from reduction of the
chemical model do not notably impact the local quantities of the flame structure within
the simulated high-Karlovitz number flames. In the simulated regime, turbulence is a
smaller order than the flame thickness and as a result interacts the flame and broadens
the reaction zone; it is interesting that the two models exhibit similar levels of agreement
in the turbulent simulations compared with those in the laminar flame simulations. The
community relies on evaluating the error of reduced models using homogeneous and steady,
laminar phenomena, so these preliminary results are encouraging since they suggest that
model agreement in turbulent flames may indeed be bounded by agreement in simpler
phenomena. However, longer simulation times may result in these trends diverging, so
the simulations need to be run longer to draw firm conclusions.

A.6 Summary

This article presents an a posteriori assessments of the impact of chemical kinetic model
reduction on premixed three-dimensional, turbulent n-heptane/air flames. Small statis-
tical differences were quantified in the turbulent flame speed and conditional mean of
the normalized fuel source term as a function of normalized flame temperature. Based
on the simulations presented here, these results suggest the impact of chemical kinetic
model reduction on turbulent flame statistics is negligible for DNS of three-dimensional,
premixed turbulent flames in a high-Karlovitz number regime. The level of fidelity of
a reduced model determined with homogeneous and steady, laminar phenomena holds
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Figure A.3: Turbulent flame structure for two reduced models of n-heptane, showing
conditional means of (a) fuel mass fraction and (b) source term as functions of flame
temperature normalized by Tad. All plots are normalized by their peak multicomponent
values from one-dimensional flat flames.
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when extended outside those conditions to (steady) turbulent flames. However, these
results are preliminary and not conclusive; longer simulations are needed to ensure the
statistical significance of these results. For phenomena that are more sensitive to changes
in chemistry, such as the unsteady turbulent ignition reviewed by Hilbert et al. [93],
turbulence could exacerbate the differences between models of different fidelity, resulting
in larger disagreement in turbulent statistics than predicted based on a priori model
evaluations in simpler cases. Finally, additional simulations with different levels of turbu-
lence are needed to fully evaluate the impact on chemical kinetic model reduction on the
turbulence–chemistry interactions present in moderate-to-high Karlovitz number flames.
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Appendix B: LIB LAB the Library Laboratory: hands-on multimedia
science communication

B.1 Abstract

Teaching scientific research topics to a K-12 audience in an engaging and meaningful
way does not need to be hard; with the right insight and techniques it can be fun to
encourage self-guided STEAM (science, technology, engineering, arts, and mathematics)
exploration. LIB LAB, short for Library Laboratory, is an educational video series
produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis–
Benton County Public Library targeted at K-12 students. Each episode explores a
variety of scientific fundamentals with playful experiments and demonstrations. The video
lessons are developed using evidence-based practices such as dispelling misconceptions,
and language immersion. Each video also includes directions for a related experiment
that young viewers can conduct at home. In addition, science kits for these at-home
experiments are distributed for free to students through the public library network in
Benton County, Oregon. This talk will focus on the development of multimedia science
education tools for communicating combustion fundamentals and several techniques that
scientists can use to engage with a broad audience more effectively. Using examples from
the LIB LAB YouTube Channel and collection of hands-on science demonstrations and
take-home kits, this talk will present STEAM education in action.

B.2 Introduction

LIB LAB, short for Library Laboratory, is a hands-on multimedia educational video
series focused on STEAM (science, technology, engineering, arts, and mathematics) com-
munication. The focus on STEAM rather than STEM (science, technology, engineering,
and mathematics) is a similar philosophy to the makers movement [97], which attempts
to engage kids in scientific and engineering fields by highlighting their creative aspects.
To accomplish this goal, LIB LAB utilizes hands-on experiments and demonstrations to
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explore fundamental scientific principles. Every episode includes directions for a do-at-
home science kit to enable viewers to follow along and explore on their own. Finally, to
further break down barriers for engagement, free LIB LAB kits are distributed at the
Corvallis–Benton County Public Library youth circulation desk.

B.3 Education Philosophy

To maximize educational impact, LIB LAB teaches through immersion, using hands-on
experiments, and by dispelling common misconceptions. First, LIB LAB employs immer-
sion teaching techniques commonly used in language education [98]. The philosophy is
that science, technology, engineering, and mathematics are languages used to communi-
cate complex ideas efficiently. Thus, every LIB LAB episode includes appropriate jargon
and mathematical equations used in context, followed by a simple-English definition.
This process of first using a word or equation in proper scientific context followed by
a common language discussion provides viewers firsthand examples of the language in
use, providing them the language skill necessary to ask follow-up questions and pursue
further self-guided investigation.

Second, the do-at-home science kits included with every episode of LIB LAB enable
viewers to interact with each lesson in person regardless of location. The kits are designed
to cost around $1 and are made from common household objects to ensure accessibility
and engagement for all viewers regardless of their socioeconomic background. These kits
provide a component of ownership for viewers, increasing confidence in the material and
facilitating further self-guided exploration at home.

Third, as highlighted by Derek Muller [99], dispelling common misconceptions can
provide a safe, common ground to facilitate learning and retention. By first presenting a
misconception and accepting it as a common and reasonable, if flawed, explanation, you
acknowledge the viewers’ understanding as a legitimate perspective. This acknowledge-
ment demonstrates respect and empathy, helping the viewer to feel understood, which
puts them in an emotional state conducive to learning retention and provides a safe
foundation to teach the correct understanding of the misconception.
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B.4 Episodes

There are currently six LIB LAB episodes available via YouTube, with an additional
10 LIB LAB Extras: shorter videos that investigate viewer questions and follow up
ideas from previous episodes. These episodes cover a range of STEAM topics, including
research topics from several of Oregon State University’s current research labs. These
episodes include:

• “LIB LAB Library Laboratory Pilot Episode: Make your own rocket & learn about
propulsion” [100]: The Pilot episode of LIB LAB investigates the concepts of
combustion chemistry, flame speeds, and propulsion. The associated kit is a small
alka-seltzer rocket to provide a safe analog for chemical propulsion at home.

• “Lib Lab Episode 2: Solar Eclipse” [101]: Episode 2 explores the science of a total
solar eclipse with directions on how to build a pinhole viewer to watch an eclipse
safely.

• “Lib Lab Episode 3: Soft Robots” [102]: Episode 3 showcases the research of the
Oregon State University Soft Robotics Lab and discusses the design of a soft robotic
snake. The included science kit provides directions to build a simple soft-robot
grabber.

• “Lib Lab Episode 4: Vortices” [103]: Episode 4 showcases a performance by the
Oregon State University Drum-line and investigates the science of vortex rings with
directions on how to construct a simple vortex shooter.

• “LIB LAB Episode 5: 5 ways to watch the Eclipse Safely!” [104]: Episode 5 presents
direction on five ways to watch a total solar eclipse safely and encourages viewers
to take time to experience the event first hand.

• “Explosive Fundamentals of Pressure” (LIB LAB/FYFD Crossover): The premier
episode of LIB LAB season 2 is the start of a six-part collaboration produced in
partnership with Nicole Sharp of FYFD1. This episode explores the fundamentals
of pressure and the history of Blaise Pascal and includes direction on constructing
a Cartesian diver. The episode concludes by recreating Pascal’s famous barrel

1http://fyfluiddynamics.com

http://fyfluiddynamics.com
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bursting experiment, and bursting a five-gallon glass carboy with gravitational
head pressure.

• “Under Pressure at the Aquarium” (FYFD/LIBLAB Crossover): Part 2 of the LIB
LAB/FYFD crossover, this episode examines pressure as a function of height by
taking house hold items to the bottom of a 26-foot aquarium tank to show how
they compress. This episode will be hosted on the FYFD channel.

B.5 Summary

This document presents an introduction to the YouTube STEAM education series LIB
LAB, produced by Aaron J. Fillo. LIB LAB is a hands-on, demonstration-based mul-
timedia education tool with accompanying do-at-home science kits. To ensure impact
education and learning retention LIB LAB works to dispel misconceptions and teach
through immersion to provide a safe and productive learning environment. Finally, LIB
LAB is free and openly accessible through YouTube, which enables viewers from around
the world to learn and engage with a variety of STEAM subjects in a comfortable,
self-paced manner.
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Appendix C: Method verification

To verify the method implementation, we generated an artificial species profile where
the direction and relative magnitudes of the flux vectors could be predicted a priori to
remain independent of any differential diffusion effects that may exist in a physical system.
Specifically, we created a two-dimensional V-shaped species profile with a central angle
of 45° and projected it into three dimensions as shown in Figure C.1a.

Such a profile results in flux vectors that are constant in the y-direction, are of equal
magnitude and opposite sign in the z-direction reflected over the x-y-plane, and vary
in magnitude but remain constant in sign matching the initial input profile in the x-
direction. These predictions should be consistent independent of chemical species or
other scalar value for the artificial input profile. We ran the algorithm for one “complete”
set of sub-iterations to convergence and normalized the resulting diffusion flux vectors
to ensure the relative magnitudes and direction were consistent with our expectations.

Figure C.1 shows the results of this artificial test case. The resulting normalized flux
vectors agree with expectation and have equal magnitudes in the x- and z-directions
corresponding to the 45° artificial flame angle. This result indicates proper functionality
of the proposed method.
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(a) Input species profile

(b) x-component of mass flux

(c) y-component of mass flux

(d) z-component of mass flux

Figure C.1: Normalized flux vectors resulting from an artificial species profile after one
full iteration of semi-implicit multicomponent diffusion calculation.
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