
 

 

AN ABSTRACT OF THE THESIS OF 

 
Christopher Wilfred Indrarto for the degree of Master of Science in Mechanical 

Engineering presented on July 15,2022 

 

Title:  Active and Passive Structural Vibration Mitigation for High-Speed Machine 

Tools. 

 

 

 

Abstract approved: 

______________________________________________________ 

Burak Sencer 
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for active to passive vibration mitigation of residual vibrations on high speed machine 

tools. Residual vibrations on high-speed machine tools are triggered when the machine 

axes (table) undergo large accelerations, which induce sudden inertial forces and excite 

the lightly damped structural modes of the machine tool structure. The proposed active 

vibration mitigation design approach utilizes an accelerometer, and feed the spindle 

(tool-tip) acceleration and velocity back to the motion controller to dampen them. On 

the other hand, the passive vibration mitigation approach shapes the frequency 

spectrum of reference motion trajectories (commands) to avoid triggering residual 

vibrations of the feed drive transmission system. Design of the proposed active and 

passive techniques require accurate modeling of the machine tool’s structural 

dynamics. Hence, time and frequency domain identification methods are presented. In 

order to facilitate a practical tuning strategy, a convex-optimization based iterative 

tuning approach is also presented. The proposed active and passive vibration mitigation 

design method are tested experimentally and show significant improvements in the 

command tracking and vibration suppression performance. 
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1. Introduction 

Computer Numerical Control (CNC) milling machines are commonly used in 

manufacturing industries. They are able to produce consistent quality products with 

very tight geometric tolerances. However, their production speed is often limited by 

the desired accuracy of the product, i.e., a higher production speeds typically need 

larger error tolerances. This error is due to the structural resonances of the machine 

components such as spindle columns, ball-screw shafts, and the machine frame itself. 

These structural resonances dictate the upper limit of the achievable control bandwidth. 

In addition, vibration modes can be excited by the reference acceleration profile as well 

as external disturbance forces, such as cutting force, which result in uneven surface on 

the product.  

Many studies have been done to address the limitations of CNC milling machines. 

Proposed methods include techniques to design and implement feedforward control 

[1],[2] , acceleration feedback control [3], [4], [5], [6], [7], [8], [9] trajectory pre-filter 

[10], and combinations of multiple methods [11],[12]. Most studies utilized the 

methods mentioned above to increase the motor or workpiece tracking performance 

[1], [3], [10], vibration damping of a specific structural resonance [5], [7], [11], and 

robustness against external disturbances [5]. However, few studies have been done 

regarding the relative vibrations between multiple structural resonances. These relative 

vibrations between certain structural resonances, especially between work piece and 

cutting tool as shown in Figure 1, directly affect the product’s surface roughness. 

Hence, additional studies on minimizing relative vibrations are needed.   

 



2 

 

 

 

Figure 1. Illustration of workpiece – cutting tool relative vibration on NC Milling 

Machine 

This thesis proposes novel tuning techniques for acceleration feedback and 

trajectory modification method to minimize the vibration of the motor, workpiece, 

spindle and the relative vibration between the work piece and the tool. These methods 

require position measurement of the tool, which can be achieved either by placing 

accelerometers or by installing a laser sensor on the spindle column. Systematic 

frameworks that utilize frequency domain and pole placement approaches to tune 

acceleration feedback, as well as optimization algorithm to tune the optimal trajectory 

pre-filter are presented. Furthermore, stability analysis on optimization algorithm is 

also presented.  

The remainder of this thesis is divided into 5 chapters. Chapter 2 consists of a 

literature review on some previous studies on this research topic such as feedforward 

control, acceleration feedback control, trajectory pre-filter and combinations of those 

methods. Chapter 3 explains dynamic modelling of the machine both utilizing 

frequency and time domain approaches. This explanation is followed by acceleration 

feedback design in chapter 4. Then, trajectory pre-compensation design method is 
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presented on chapter 5, followed by iterative tuning stability analysis on chapter 6. 

Then, conclusion is presented on chapter 7.  
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2. Literature Review 

2.1. Introduction 

Consider a commonly used position feedback controller used in industrial settings: 

 

Figure 2. Common Feedback Controller 

where C is the controller and 
mG is the representation of the machine or torque to motor 

dynamics. A considerable amount of research has been done modify the common 

controller to reduce a specific structural vibration—which originated from the spindle 

column or ball screw drive. Various modification methods, ranging from active to 

passive compensation techniques have been implemented to the control scheme to 

mitigate structural vibration. These methods include acceleration feedback control [3], 

[4], [5], [6], [7], [8], [9] feedforward control [1], [2] , trajectory pre-filter [10] and 

combinations of these methods [11], [12]. This section of the thesis focuses on studies 

that has been done on these methods.  

2.2. Acceleration Feedback Control 

Acceleration feedback is one of the most commonly used methods used to mitigate 

structural vibration as it modifies the feedback controller which adds robustness against 

changes on the system. It requires acceleration measurement data from the structure of 

interest, which is usually obtained through accelerometers or derivation of position 
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encoder measurement. Figure 3 represents the common control scheme for acceleration 

feedback. 

 

Figure 3. Common Acceleration Feedback Control Scheme 

where 
accC is the acceleration feedback controller. Through actively changing the 

virtual mass of the system based on the real-time acceleration signal, the modified 

controller is able to reduce the effect of disturbance forces. However, high controller 

bandwidth is usually required to avoid phase lag and ensure the overall controller is 

stable with respect to its stability margins.  To compensate for this limitation, Butler 

[3] utilized a loop shaping method to tune and split the acceleration feedback controller. 

Butler’s proposed method allows the performance of closed loop position controller to 

be minimally affected by the acceleration feedback at all frequency while having 

increased disturbance rejection at selected frequencies. Figure 4 shows the proposed 

method by Butler. 
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Figure 4. Butler’s Acceleration Feedback Control Scheme 

Other types of acceleration feedback methods also existed in the literature such as 

the method to mitigate the relative vibration between 2 structures by Kai [9] and the 

acceleration feedback method where the feedback signal is taken from the load side 

instead of the motor side by Marushita [8]. Despite being robust to slight changes in 

the system, the stability of the existing controller is still affected by the addition of 

acceleration feedback, which might lead it to instability. In contrast, there are other 

methods which sacrifice the robustness of the controller in exchange for retaining the 

stability of the original controller, namely feedforward controls and trajectory pre-

filtering techniques. By avoiding altering the feedback loop, the stability of the existing 

controller is maintained. 

 

2.3. Feedforward Control  

Unlike acceleration feedback, feed forward controller doesn’t modify the feedback 

loop and thus the stability of the original controller is preserved. The main idea of 

feedforward control is to achieve accurate tracking performance or passive vibration 

mitigation by compensating for a known system behavior  [13]. Therefore, feedforward 
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control generally requires an accurate model of the system which is shown in Eq(1). 

Figure 5 shows the general feedforward control scheme. 

 

Figure 5. Common Feedforward Control Scheme 
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where F is the feed forward controller. To construct the optimal feed forward F on a 

system with multiple resonances, Hosseinabadi et al. [5] proposed a high-order system 

identification procedure to accurately model a system with multiple resonances. 

Hosseinabadi’s proposed procedure utilized the Gauss – Newton optimization 

algorithm on a high order transfer function to minimize the differences between 

identified model transfer function and actual system frequency response function 

(FRF). The proposed high order transfer function used for the identification procedure 

is the multiplication of a set of second order transfer function, each corresponds to 

every dominant resonance frequencies of the system as shown below. 
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where 
n  and  is the natural frequency and the damping coefficient for each of the 

resonances respectively. 
0 1 2[ ]b b b b= is the numerator parameters which is updated by 

the Gauss – Newton optimization algorithm. Since the fitting algorithm is done in 

frequency domain, it is required to have the frequency response function of the system 

which can be obtained through multiple means which will be explained in section 3 of 

this thesis. Model parameters identified from the identification procedure are then used 

to construct an accurate feedforward controller.  

On the other hand, van der Meulen et al [1] proposed a feedforward structure and 

tuning procedure that does not require an accurate system model, which also bypasses 

the need to have a frequency response function of the system. His proposed method is 

to feed an additional signal obtained from a combination of reference velocity, 

acceleration, jerk and snap, each multiplied by a constant. Figure 6 shows his proposed 

feedforward method.  Each constant is tuned simultaneously with Newton’s 

optimization algorithm to minimize the dynamic tracking error, which is the difference 

between the actual motor position and the reference position.  
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Figure 6. Meulen’s Feedforward Control Scheme 

In contrast to acceleration feedback control, feedforward control doesn’t interfere 

with the stability of closed loop position controller. However, feedforward control’s 

main idea is to compensate for errors that is both predictable and repeatable. Hence, 

any mismatch between the model and the actual system, as well as any changes to the 

system during cutting process, cannot be compensated and results in imperfect error 

mitigation. 

 

2.4. Trajectory Pre-compensation 

Both previous methods are sometimes not applicable in commercial machines due 

to the need to modify the controller directly.  Some of the commercial machines don’t 

allow the user to access and modify its controller, leaving the only modifiable 

parameter in the system is the reference trajectory. Therefore, instead of injecting a 

compensation signal directly to the torque command in feedforward control, trajectory 

pre-compensation modifies the reference trajectory to compensate for any predictable 
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and repeatable error between the actual motion and the desired motion. Figure 7 shows 

the trajectory pre-filter control scheme.   

 

Figure 7. Trajectory Pre-filter Control Scheme 

where F is the trajectory pre-filter. Dumanli et al. [10] proposed a trajectory pre-

filter method to modify the trajectory such that the difference between motor position 

and reference position i.e. motor tracking error, is significantly reduced. Similar to van 

der Meulen’s tuning method, Dumanli’s proposed tuning method utilized Newton’s 

optimization algorithm, along with time domain experiment measurement data to 

obtain the optimal pre-filter parameters.   

Similar to feedforward control, due to the lack of real-time feedback of the 

acceleration, trajectory pre-compensation method can only compensate for predictable 

and repeatable error. Therefore, any changes that happen to the system during the 

cutting process cannot be compensated and tracking error will occur.  

However, unlike feedforward control, trajectory pre-compensation method doesn’t 

require the user to modify the controller. Therefore, trajectory pre-compensation is 

sometimes preferred over feedforward controller especially if there is a lack of access 

to the machine’s control system. 

2.5. Conclusion 

Accurate dynamic positioning can be achieved by modifying the overall control 

system to compensate for structural vibrations, especially low frequency vibrations 
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(<60Hz). A lot if control modification techniques has been proposed in literature to 

improve the dynamic positioning accuracy of machine. However, many of them 

requires accurate mathematical modelling or is not robust to external disturbances and 

changes on the system. Moreover, close to none of the proposed technique address the 

relative vibrations between multiple structural vibrations.   
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3. Dynamic Modelling of Torque to Motor Dynamics 

3.1. Introduction 

One of the most common high-speed machine tool used in industrial standards are 

the 3-axis CNC milling machine. Figure 8 shows an example of an actual 3-axis CNC 

milling machine while Figure 9 is a constructed 3D model of a 3-axis CNC milling 

machine.  

 

Figure 8. Example of a 3-Axis CNC Milling Machine 

 

Figure 9. 3D Model of 3-Axis CNC Milling Machine 
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These machine tools typically utilize ball screw driven mechanism to drive its axis.  

Figure 10 shows the visual representation of a ball screw drive mechanism. 

 

Figure 10. Ball Screw Drive Mechanism 

As torque command is sent to the motor, the motor will rotate which rotates the gear 

box and the ball screw drive. The ball screw translates the rotary motion to linear 

motion of the table. This mechanism is controlled by a closed loop controller to 

ensure the system moves as desired.  

The design procedure of control system often requires accurate mathematical 

model of the machine as it has direct effects to the controller performance as well as 

the stability of the controller with respect to its margins. The most common way of 

representing the system behavior is through a Frequency Response Function (FRF) 

[14]. In this chapter, systematic procedure to obtain FRF of a CNC machine, as well as 

transfer function identification algorithm in time and frequency domain will be 

explained. 

The basic multi degree of freedom model structure will be explained in section 

3.2. Although there are a few methods to tune the mathematical model of the machine, 

2 methods will be explained in this thesis; frequency domain identification that utilize 

the frequency response function (FRF) in section 3.3.1. and time domain identification 

in section 3.3.2. Then, the experimental results of the aforementioned methods will be 

presented in section 3.4.  
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3.2. Multi Degree of Freedom (MDOF) Model 

Most high-speed motion system utilized the ball screw drive systems. However, 

ball screw drives mechanism suffers from translational and torsional vibration modes. 

These vibrations are mainly caused by the flexibility of the ball screw shaft, bearings, 

and couplings. Since the torsional vibration mode is typically on a much higher 

frequency than the translational mode, it is usually attenuated by the controller. On the 

other hand, translational mode typically dictates the stability bandwidth which limit the 

dynamic positioning accuracy of the system.  

Since the first vibrational modes contributes the most to the limitation of control 

bandwidth, a popular model used to estimate the machine’s behavior is a simple 2 

degree of freedom (DOF) transfer function [15]. Figure 11 shows the simplified two 

mass spring system of a ball screw drive. Eq(3) shows the equation of motion for Figure 

11. 

 

Figure 11. Two mass spring model of a flexible ball screw drive 

 

( ) ( )

( ) ( )

1 1 1 1 2 1 2 1 1

2 2 2 2 1 2 1 2 2

m x b x k x x c x x u d

m x b x k x x c x x d

= − + − + − + +

= − + − + − +
 (3) 
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where 
1m and 

2m represent the equivalent motor and table inertias, k  is the stiffness of 

the ball screw drives, 
1b and

2b  are the viscous friction on the motor and table 

respectively, and c is the viscous friction of the ball screw. u is the input to the motor, 

which can be in voltage or torque. 
1d and 

2d  are disturbance forces applied on the 

motor and table respectively. This spring mass model can be further simplified under 

2 assumptions; the model only operates on low frequencies and the controller feedback 

will be taken from the motor side. Under these 2 assumptions, the ball-screw system 

can be modelled as a rigid body mass translating on a viscous medium. This results in 

a transfer function representation below. 

 

1 1 1 1

1

2

1 1

1
m

u m x b x

x
G

u m s b s

= +

= =
+

 (4) 

The transfer function presented in Eq(4) is used to model the system. Identification 

procedure is required to obtain the correct transfer function parameters. Hence, the next 

section explains 2 commonly used method for transfer function parameter 

identification method; frequency domain and time domain identification. 

 

3.3. Parameter Identification of Torque to Motor Dynamics Transfer Function 

3.3.1. Frequency Domain Identification 

Frequency Response Function identification, which can be commonly defined as 

FRF identification, is an identification technique that focuses on constructing and 

tuning transfer function parameters which has a very similar frequency response to that 

of the actual system [14]. Frequency response of a system is a quantitative measure of 
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how the system will behave, both in magnitude and phase, as a function of frequency. 

To simplify the definition, it is the input to output relationship in terms of magnitude 

and phase of the system for any given frequencies. Figure 12 presents a systematic 

framework of how a frequency response of a system can be obtained.  

 

Figure 12. Procedure of obtaining the System’s FRF 

By sending sine waves of multiple frequencies within a frequency range, especially 

with considerably small frequency step (e.g. every 1 Hz from 5 Hz to 40 Hz), the input 

and output relationship for each frequency steps can be obtained. Hence, FRF of the 

system within that frequency range can be constructed. Figure 13 shows an example 

FRF of a commercial machine’s spindle dynamics.  
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Figure 13. FRF of a CNC Milling Machine’s Spindle Dynamics 

In addition to obtaining the FRF of the machine, mathematical models of the system is 

generally required for controller tuning procedure and simulating any control system 

design algorithm. Therefore, in this section, a frequency domain transfer function 

tuning approach utilizing the least squares algorithm is explained.  

First, the general form of a system’s FRF can be written in the form of complex 

numbers with respect to its frequency such as in Eq(5). 

                         

   

   
, ,

Re ( ) Im ( )

( )

Re ( ) Im ( )

m m m m

m i m M

m M m M

G j j G j

G j

G j j G j

 



 

=

 +
 

=  
 + 

   (5) 

where 𝜔𝑚 and 𝜔𝑀 denote the first and last frequency in the identified frequency range. 

𝑅𝑒(𝐺) and 𝐼𝑚(𝐺) denote the real and imaginary components of the complex number 
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𝐺 respectively. Then, similar to [5], consider the transfer function in Eq(6).                
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where 𝜔𝑎,𝑘 and 𝜔𝑟,𝑘 denote the antiresonance and resonance frequencies respectively 

while 𝐾 is the number of resonances to be identified. 𝜁𝑎,𝑘 and 𝜁𝑟,𝑘 are antiresonance 

and resonance damping coefficients of the transfer function respectively. To simplify 

the least squares algorithm, the parameters in transfer function in  Eq(6) are grouped 

and simplified as Eq(7). 
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From this point onwards, the system is assumed to have only 1 dominant resonance to 

simplify the explanation of the least squares algorithm and hence 𝐾 = 1. The main idea 

of the least squares algorithm is to match the frequency domain response of the transfer 

function to the FRF of the system for every frequency 𝑖. Thus, the least squares 

formulation is written as Eq(8). 

 
2

2,

1
min

2b a
J Ax B= −  (8) 

Then, the matrix A and B has to be constructed so that the frequency response of the 

fitted transfer function is very close to that of the actual system as follows: 
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Then, Eq(9) is re-arranged to 2 separate equations; 1 for real part of the equation and 

the other for the imaginary part of the equation as shown in Eq(10). 
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These equations are then written in a matrix form to satisfy the least squares objective 

function written in Eq(8). Thus, the resulting least squares objective function and 

analytical solution can be written as Eq(11). 
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 (11) 

As the number of resonances increases, so does the order of the transfer function. The 

formulation shown in Eq(6) can be modified to fit a higher order transfer function by 

increasing the variable 𝐾, which increase the number of second order transfer functions 

and tuning parameters. 

While this method is quite effective at modelling the transfer function, obtaining 

the FRF of the machine is not an easy and fast task. Therefore, another transfer function 
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identification method that doesn’t require the FRF of the system is developed. In the 

next section, time domain identification algorithm will be explained. 

 

3.3.2. Time Domain Identification 

In contrast to frequency domain identification, time domain identification doesn’t 

require the system’s FRF to be obtained, which makes it more practical than frequency 

domain identification [16]. There are two ways to do time domain identification; 

continuous domain and discrete domain. However, both require the same set of data. 

Figure 14 shows the procedure of obtaining the necessary data for the identification 

algorithm. 

 

Figure 14. Experimental Procedure of obtaining the required signals for time domain 

identification 

First, consider the machine dynamics to be identified where the input signal is 

motor position and the output signal is the table position as Eq(12). 

 
table

t

motor

y
G

y
=  (12) 

The model transfer function structure to be identified is the same as Eq(6) in continuous 

domain. To simplify the algorithm explanation, the system is assumed to have only one 

resonance, hence 𝐾 = 1. Thus, the structure of the fitted transfer functions in 

continuous domain as shown in Eq(13). 
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1 2

( ) table

motor

y b s b s b
F s

y s a s a

+ +
= =

+ +
 (13) 

Then, the equation above is discretized with Euler’s discretization method where 

1

s

z
s

T

−
= . All coefficients of z can be grouped and the resulting transfer function is 

shown below. 

 

2

0 1 2

2

1 2

( ) table

motor

y b z b z b
F z

y z a z a

+ +
= =

+ +
 (14) 

Similar to frequency domain identification, the first step is to write a least squares 

formulation that follows Eq(8). To achieve the same objective function equation, A and 

B are formulated in  Eq(15) for continuous time domain identification. 
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+ + − + =
 (15) 

Then, the equation above is transformed from Laplace domain to time domain using 

Inverse Laplace Transform and constructed in a matrix form as below. 

0 1 2 1 2

(1) (1) (1) (1) (1)

( ) ( ) ( ) ( ) ( )

motor motor motor table table table

motor motor motor table table

motor motor motor table table

A

b y b y b y a y a y y
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− − 
 
 
 − − 
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2

1

2

(1)

( )
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yb

b

y Na

a

 
 

  
   =     
  

 
 

 (16) 
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Discrete time domain identification has very similar procedure as continuous time 

domain identification. First, similar to Eq(15), the equation for discrete domain is 

constructed as below. 

 

( ) ( )

2

0 1 2

2

1 2

1 2 1 2
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+ +
= =

+ +
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 (17) 

Since 
kz−
 in discrete domain is a k samples delay in time domain, the equation can be 

constructed into a matrix form as   

0
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( ) ( 1) ( 2) ( 1) ( 2) ( )

( ) ( 1) ( 2) ( 1) ( 2)
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( )table
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 
 

 (18) 

where 𝑛 = 1, … , 𝑁 and 𝑁 is the length of the time domain data used for the 

identification algorithm. Finally, for both continuous and discrete time domain 

identification, the transfer function parameters can be calculated by using the equation 

1x A B−= . 

Note that these identification method can be used for various transfer function 

structure such as a second order transfer function shown in Eq(13), first order transfer 

function like 
1

( )F s
ms b

=
+

, or a higher order transfer function. However, depending 

on the order of the transfer function, discrete time domain identification is often 

preferred over continuous time domain identification. In continuous time domain 

identification, the higher the order of the transfer function, the more derivation and 
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integration that needs to be done. More integration results in amplifying the drift of the 

measured data while derivation amplifies the noise of the measured data. Since drift 

and noise are amplified, the identified transfer function won’t be optimal as it tries to 

fit those unwanted vibrations. Filtering the data before doing the identification 

algorithm also affect the magnitude and phase of the measured data, causing the 

identification to be slightly off. Therefore, discrete time domain identification is often 

preferred over continuous time domain identification especially on higher order 

transfer function fitting. 

3.4. Experiment Results 

This section presents the experiment results of the identification procedure, both 

frequency and time domain approaches. The dynamic that is fitted is the torque to motor 

dynamics. The structure that is used to fit the dynamics is a second order transfer 

function 
2

1
( )m

m m

G s
m s b s

=
+

. 

Figure 15 shows the frequency response functions of X and Y axis’ motor and 

table dynamics obtained through the identification procedure presented in section 3.3.1. 

Figure 16 shows the frequency domain least squares fitting performance on X and Y 

axis’ torque to motor dynamics. The fitting is done on 5 Hz to 20 Hz of the FRF since 

the system model 
2

1
( )m

m m

G s
m s b s

=
+

introduced in section 3.2. doesn’t capture any 

resonances. Since the bandwidth frequency of the controllers used for further 

experiments is significantly lower than the system resonances, it is not required to have 

an accurate model that capture those resonances.  
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Figure 15. X and Y Axis Motor and Table Frequency Response Functions 

 

 

Figure 16. X and Y Axis Torque to Motor FRF and Frequency Domain Least Squares 

Fitting 
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For time domain least squares fitting, only Y-axis experiment and identification is 

conducted. Figure 17 shows the Y-axis time domain least squares fitting performance.  

Table 1 shows the identified transfer function parameters for the frequency domain 

identification method and Table 2 shows the identified transfer function parameters for 

the time domain identification method. 

 

 

Figure 17. Y Axis Torque to Motor FRF and Time Domain Least Squares Fitting 

Axis mm

V

 
 
 

mm  
mm

sV

 
 
 

mb  

X 0.0004 0.009 

Y 0.0006 0.0126 

Table 1. Identified Parameters from Frequency Domain Least Squares Fitting 

 

Axis mm

V

 
 
 

mm  
mm

sV

 
 
 

mb  

Y 0.0004 0.0054 

Table 2. Identified Parameters from Time Domain Least Squares Fitting 
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4. Acceleration Feedback Based Vibration Mitigation  

4.1. Introduction 

Improving the controller’s dynamic positioning accuracy while improving its 

robustness to external disturbances and any changes to the machine are mostly done by 

actively modifying the virtual mass observed by the system at any given time. 

However, due to this approach is done by modifying the controller’s feedback loop, a 

high bandwidth controller is usually required to ensure the stability of the machine 

when exposed to external disturbances. Furthermore, most of the proposed acceleration 

feedback technique in the literature are applied only on the motor side to reduce its 

tracking error [3], [4], [5], [6], [7]. In real manufacturing process, the vibration that is 

visible on the product surface is originated from the combination of spindle and table 

vibration. Thus, the feedback loop proposed in this thesis will take both the spindle and 

motor dynamics into consideration. 

This section proposed a novel and systematic design and tuning procedure for 

acceleration feedback control that targets the vibration on the spindle and the motor 

while ensuring the stability of the machine.    

 

4.2. Loop Shaping Approach 

Structural dynamics of the machine tool system can be modelled considering 

multi-body motor/table and spindle/column dynamics. As the table accelerates back 

and forth during positioning, reaction forces excite the machine column and vibrate the 

spindle/column structure. Overall dynamics of table and spindle can be represented in 

Laplace domain as Eq(19). 



27 

 

 

 2 2

1 1
,m s

m s

m s s s

y y
G G

u m s u m s b s k

−
= = = =

+ +
 (19) 

where u is the motor torque, 𝑦𝑚 and 𝑦𝑠 are motor and spindle position respectively. 

𝑚𝑚,  𝑚𝑠, 𝑏𝑠 and 𝑘𝑠 are rigid body parameters of motor and spindle which can be 

identified using identification procedure in chapter 3. 

To compensate for the relative vibration between the spindle and the table, it is 

required to incorporate the feedback loop from the spindle side in addition to the motor 

regular feedback loop. Figure 18 shows FRF of the Y-axis of a commercial cartesian 

CNC milling machine shown in Figure 8 to see the vibration frequency that needs to 

be compensated and Figure 19 shows the proposed acceleration feedback control 

scheme. 

 

Figure 18. Frequency Response Function of Y-Axis 

The position controller C in Figure 19 is an industry standard P-PI controller, which 

is the controller shown in Figure 20. The transfer function of the system can be 

postulated as Eq(20). 
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Figure 19. Proposed Acceleration Feedback Control Scheme 

 

Figure 20. Industry Standard PPI Controller 

where ,p vK K and 
it  are the position and velocity proportional control gain and 

velocity integral gain.  
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In this case, the targeted low frequency vibration is 25Hz. To obtain the spindle 

acceleration, an accelerometer is attached to the spindle housing of the machine. Then, 

spindle’s acceleration signal must be properly filtered by 𝐶𝑎𝑐𝑐 before being fed back to 

the closed loop controller to ensure the stability of the controller. Mainly, the 

acceleration signal must be converted back to voltage to ensure the compensation signal 

unit and amplitude are correct. Then, accelerometer measurement contains noise which 

might distort the compensation signal. These problems can be solved by a simple 

proportional gain on the acceleration feedback. Thus, the structure of the feedback 

controller is chosen to be a simple proportional gain as shown below. 

 

Proportional
Gain

acc aC K=  (21) 

Proportional gain 
aK must be small enough to ensure that compensation signal of the 

acceleration feedback doesn’t have a huge amplitude and also minimize the effect of 

noise to the desired compensation signal. This gain is tuned by trial and error while 

looking at the closed loop FRF of the system, which results in non-optimal control. 

Thus, the next section presents a more systematic approach to tune spindle dynamics 

feedback controller. 
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4.3. State Space Approach 

As described before, the previous acceleration feedback method explained in 

Section 4.2 is not optimal due to the trial-and-error nature of the tuning procedure. This 

means, there exists a parameter value that will result in a better performance than that 

obtained in the previous method. In addition, the goal of the loop shaping acceleration 

feedback method in the previous method is to compensate for the spindle vibration. 

However, the goal of this section is to reduce the relative motion between the table and 

spindle, which is called true error. Thus, to be able to analytically obtain the optimal 

controller parameters that will reduce the relative motion between the table and spindle, 

a new systematic approach utilizing the state space representation is proposed in this 

section.  

To formulate the overall system in a state space representation, a simplified system 

representation is constructed as shown in Figure 21 to obtain the correct equation of 

motion that represents the actual system behavior. 

 

Figure 21. System Representation of a Ball-Screw Driven Machine 



31 

 

 

As a motion command is sent to the motor, it will rotate the ball screw which will 

rotate the table. However, this motion creates a reaction force to the machine base 

which is connected to the spindle. Thus, the spindle experienced a reaction force on the 

opposite direction of the force applied to the table. This representation can be further 

simplified as a simple mass spring and damper system as shown in Figure 22. 

 

Figure 22. Simplified Mass Spring Damper Representation of the System 

where 
mm is the motor mass, 

mx is the motor position, , ,sp sp spm b k are the mass, 

damping and stiffness of the spindle, 
spx is the spindle position and u is the control 

signal. 

Since the goal of this section is to minimize the relative vibration of the spindle and 

workpiece/table, two equations of motion with respect to the motor and spindle position 

are formulated as Eq(22). Note that motor and table position are assumed to be the 

same in this case for simplification of the algorithm and the fact that rotary encoder 

used for the experiment has a cleaner data than linear encoder. 
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m m

sp sp sp sp sp sp

sp sp sp sp sp sp

m x u

m x b x k x u

m x b x k x u

=

= − − −

= − − −

 (22) 

where , andsp sp spx x x  are the velocity, acceleration and jerk of the spindle respectively, 

and u  is the derivative of the control signal. It is important to ensure that double 

integration of accelerometer signal is avoided to reduce the effect of accelerometer 

drift. In this case, accelerometer is used to measure the spindle acceleration, which 

means the spindle position variable may not occur in the equations of motion [17]. 

Once the equations of motion are determined, state space representations for both the 

motor and spindle are constructed as shown in Eq(23) and Eq(24) respectively. 
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 (23) 

For spindle dynamics, consider the basic state space form: 

 
1 21 1 1

3 42 2 2

q q
u

q q

        
= +      

        
 (24) 

Where in this case u  is the input vector, which in this case is the control signal, 1q  is 

the output vector and 2q  is the state vector. Since spindle position variable is avoided, 

it is necessary to modify the state space formula to include u  in addition of u , 

following the equation of motion shown in Eq(22). Generally, 
1q is assigned as the 
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position 
spx . However, in this modified state space, 

1q is assigned as the spindle 

velocity 
spx . The mathematical procedure is shown below in Eq(27). 

 

1 1 1 2 2 1

2 3 1 4 2 2

1 sp

q q q u

q q q u

q x

=  +  + 

=  +  + 

=

 (25) 

Then, 
2q equation of the state space must follow the desired equation of motion in 

Eq(22). Eq(26) shows the calculation to obtain 
2q . 
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 (26) 

Lastly, Eq(25)-(26) are substituted into Eq(24), and the overall state space 

representation is obtained as shown in Eq(27). 
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 (27) 

Then, the combined state space representation consisting of motor and spindle 

dynamics is shown in Eq(28). 
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One way to reduce the relative motion between the spindle and the motor/table is to 

reduce their overall error altogether. Since eq (28) is a state space representation that 

contains both the motor and spindle, the error formulation can be constructed as 

follows.  
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Motor and spindle error can be extracted from Eq(29) by using the equation shown 

below: 

 , ,

0

,m m r m sp sp r spe x x e x x= − = −
 (30) 
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Then, by using Eq(29)-(30), the equation that governs the control signal can be obtained 

as shown below. 

             1 2 3 4 5 5

1
( ) ( )

sp

m m m sp sp sp

sp sp

b
u k e k e k e k e k e k x u

m m
= + + + + + − −  (31) 

To implement Eq(31) in a control system form, Laplace transformed is performed, 

which results in the overall transfer function shown in Eq(32). 

( )21
2 3 4 5 5

5

Motor PID Constant Acceleration Feedback Controller

( ) ( ) ( ) ( )

u

sp sp

m sp sp m
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k

m b sk
u s k k s e s k s k s e s k x s x

m k s m

 
    

= + + + + −     +    
  

 (32) 

Since the overall transfer function is obtained, a new controller block diagram is 

constructed to follow the state space formulation as shown in Figure 23. 

 

Figure 23. State Space Acceleration Feedback Controller 

To obtain the parameters of the acceleration feedback controller, the pole of the overall 

controller must be determined. Then, by formulating the overall controller in a state 
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space equation in Eq(33), MATLAB’s pole placement function is utilized to obtain the 

best parameters to achieve the desired poles [18]. 

 ( ) rX A Bk X BkX= − +  (33) 

where ( )eig A Bk−  is the desired pole locations. There are 5 poles to be placed; 3 

motor feedback controller poles which in this case are the PPI controller poles, and 2 

desired poles for the spindle dynamics. Therefore, it is possible to directly control the 

damping of the spindle dynamics. Consider a simple second order transfer function 

2 2

, ,

1

2
sp

n sp n sp

G
s s 

=
+ +

representing the spindle dynamics where  is the damping 

coefficient and 
,n sp is the natural frequency of the spindle. This transfer function 

contains poles that is dependent on  and
,n sp . Hence, by selecting the desired  and

n  then obtaining the poles, which is the root of the second order polynomial, the state 

space controller will be able to send a compensated signal to force the spindle to behave 

as desired. As for the PPI poles, since the PPI controller is originally tuned separately 

without the spindle dynamics as will be shown in section 4.4.1, it is possible to obtain 

the pole locations of the PPI controller. 

This controller is able to attenuate the spindle resonance by adding vibration 

compensator signals to the motor. Therefore, the motor will move more, resulting in 

relative vibration between the motor and spindle remains the same if not worse. Thus, 

feedforward H is added to the system to ensure that the overall true tracking 

performance is the same as the motor tracking of original PPI controller without 

acceleration feedback. This is because the motor tracking of the original PPI controller 
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is smooth since it is not affected by the spindle dynamics. Thus, if the true tracking of 

the system with acceleration feedback can be as smooth as the motor tracking without 

acceleration feedback, the vibration is completely compensated. True tracking is how 

well the combination of motor and spindle motions follow the reference trajectory. True 

error is the error between the reference position and combination of motor and spindle 

position. Thus, it can be defined as ( )true

r m spe y y y= − + . The updated control system 

is shown Figure 24. 

  

 

Figure 24.  State Space Acceleration Feedback Controller with Feed Forward 

The purpose of feedforward H is to make the true error of the state space controller to 

be the same as the motor error of a PPI controller. Thus, the objective can be written 

mathematically as true motor

SS PPIe e=  where  and true motor

SS PPIe e are true error of state space 

controller and motor tracking error of PPI controller respectively.  To obtain the proper 

transfer function for H that will satisfy that aforementioned objective, closed loop 
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transfer function for both state space controller and PPI controller has to be obtained. 

Eq(34) shows the closed loop true tracking transfer function for state space controller. 

 
, ( ) ( )

1

t SStrue u m s u m s
SS
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y K C G G K H G G
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y NLT

+ + +
= =

+
 (34) 

Then, the closed loop motor tracking transfer function for a PPI controller is also 

constructed as follows: 

 ,
( )

1 ( )

v m pm PPImotor

PPI

r v m p

C G K sy
G

y C G K s

+
= =

+ +
 (35) 

Where Cv is the velocity controller and Kp is the proportional gain for position 

controller of a regular PPI controller. These closed loop transfer function shown in 

Eq(34)-(35) are derived from the block diagram shown in Figure 24 for state space 

controller and Figure 19 and Figure 20 for PPI controller. 

Then, since the true error of the state space controller has to be equal to the 

motor tracking error of the common PPI controller, the error transfer function of both 

state space and PPI controller are constructed as follows: 
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Finally, the transfer function for H can be obtained in Eq(37). 
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4.4. Simulation and Experiment Results 

4.4.1. PPI Controller Tuning 

This section focuses on the tuning procedure of a PPI controller without 

acceleration feedback which will serve as a base controller to be modified. The 

controller block diagram is shown in Figure 25.  

 

Figure 25. PPI Controller without Spindle Feedback 

There are 3 parameters to tune, ,p vK K and 
it . From the block diagram above, a 

closed loop transfer function is constructed as: 
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1
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The equivalent controller transfer function can be written as: 
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 (39) 

There are 3 frequency domain parameters that has to be determined to tune the 

controller; cross-over frequency ( )c , phase margin (PM) and integrator phase delay 
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( )i . The integrator phase delay is used to calculate the integral time constant 
it  as 

shown in Eq.(40). 
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+
= 

+
= =

 (40) 

Next is to calculate the position gain parameter 
pK . The position gain 

pK  is 

responsible for ensuring that the phase margin around the cross-over frequency is as 

close to the desired phase margin as possible. Phase margin by definition can be found 

by calculating the phase of the system’s NLT when the gain of the NLT crosses 0dB, 

which in this case is at the cross-over frequency. Thus, consider a mathematical 

equation that calculate the phase of the NLT at the cross-over frequency: 

 180p i mG PM = − − − +  (41) 

Where 
p is the phase of the NLT and 

mG  is the phase of the actual system at the 

cross-over frequency. In this case, since the transfer function for the system 

representation is a simple rigid body model, the phase is considered to be -180 degree. 

Then, from Eq(39), the only parameter left that contributes to the phase at the crossover 

frequency is 1pt s + . Thus, by combining it with Eq(41), the position gain 
pK can be 

calculated as: 
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 (42) 

Since the phase margin and integrator phase delay is taken care by 
pK  and 

it , the 

only desired parameters to be considered is the cross-over frequency 
c . Also, the only 
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parameters to be identified is the velocity proportional gain 
vK . Thus, 

vK  must be 

calculated so that the NLT of the system has the desired cross-over frequency. This can 

be achieved by calculating the gain of the NLT at the cross-over frequency and set it to 

0dB or 1 in absolute scale. The mathematical equation is shown in Eq(43). 
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 (43) 

 The desired parameters used for this controller tuning is as follows: 

 

60[ ]

80deg

10deg

c

i

Hz

PM





=

=

= −

 (44) 

Figure 26 shows the frequency domain performance of the explained PPI tuning 

method only on the Y-axis. X-axis is tuned using the same method. 

 
Figure 26. Frequency Domain Performance of PPI Tuning 
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There are significant differences between the frequency domain performance of 

modelled system compared to that of the actual system. When the controller is 

implemented in the actual system, it has significantly reduced phase and gain margin. 

This is caused by the modelling inaccuracy shown in Figure 16. Since pK  is the 

parameter that dictates the phase margin, it can be manually adjusted to ensure that the 

phase margin of the actual system is still stable.  

 

4.4.2  Loop Shaping Acceleration Feedback Experiment Results  

The motors of the machine are controlled by P-PI position controllers with velocity 

feed forward. Since the feedback controller is a simple proportional gain, it is possible 

to tuned them by trial and error, even though the result isn’t optimal. Figure 27 shows 

the closed loop true tracking FRF with respect to 
aK .  

 

Figure 27. Closed Loop True Tracking FRF With Respect to Ka 
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As shown above, 0.001aK =  yield the best closed loop true tracking performance as it 

reduces the amplitude of resonance and antiresonance around 25 Hz the most, which is 

approximately the resonance frequency of the spindle. Hence, the experiment is done 

with 0.001aK = . Time domain experiment result is shown in Figure 28 and frequency 

domain experiment result is shown in Figure 29. 

 

Figure 28. Acceleration Feedback Time Domain Experiment Result with Ka = 0.001 
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Figure 29. True Error Frequency Spectrum of Experiment with Ka=0.001 

Figure 29 shows the true error frequency spectrum of the acceleration feedback 

experiment with 0.001aK = and it shows that the resonance at 23 Hz is greatly 

attenuated when the acceleration feedback is implemented. This proves that the 

acceleration feedback loop shaping method is able to reduce the true error of the 

machine, although the feedback parameters are suboptimal. 

To circumvent the suboptimal acceleration feedback controller of the loop shaping 

method, state space method is developed to ensure it is possible to move the poles of 

spindle dynamics to any desired pole locations.   
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4.4.3. State Space Spindle Feedback Simulation and Experiment Results 

The PPI crossover frequency for this section is reduced from 60 Hz on the previous 

section to 30 Hz. This is done to ensure that the system is more stable and robust than 

before. Thus, all PPI and state space approach simulations in this section used 30 Hz 

crossover frequency. 

Then, as mentioned in section 4.3, the double integration of spindle acceleration 

needs to be avoided. Figure 30 shows the drift that occurred when accelerometer signals 

are integrated. Although the drift can be compensated to some extent by implementing 

high pass filters, a more aggressive filter is needed if the signals are integrated multiple 

times. A more aggressive filter has more gain and phase which will distort the data 

especially if the vibrations measured is at a low frequency (around 25 Hz). Due to this 

limitation, only 1 integration of the spindle acceleration signal is allowed and it is 

filtered by a simple first order high pass filter ( )HPF

HPF

s
H s

s 
=

+
where 

HPF is the cut 

off frequency for the high pass filter and is set to be 2 Hz. 
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Figure 30. Accelerometer Drift Occurs when Integrating Accelerometer Signal 

(Experiment) 

The algorithm is first tested on simulation and its performance and stability is 

confirmed by looking at the FRF of the overall system. Figure 31 shows the difference 

in motor, spindle and true tracking performance between PPI controller without 

acceleration feedback and state space controller with spindle feedback. As can be seen 

from those graphs, there is an attenuation at 25 Hz on both motor and spindle dynamics, 

which results in overall attenuation on the true tracking performance at 25 Hz compared 

to a regular PPI controller which has resonance that frequency.  

Then, a simulation model is made in MATLAB Simulink to simulate the time 

domain response of the controller. Figure 32 shows the reference trajectory used for 

the simulation and Figure 33 shows the time domain simulation results for the motor 

position error and spindle position. 
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Figure 31. Frequency Response Comparison of PPI Controller without Acc Feedback 

and State Space Controller (Simulation) 

 

Figure 32. Reference Trajectory 



48 

 

 

 

Figure 33. Motor Position Error and Spindle Position Time Domain Simulation 

Results (Simulation) 

As can be seen on Figure 33, the spindle vibrations are significantly damped. However, 

the compensation signal introduces a vibration to the motor motion as can be seen by 

the motor error of state space controller has more vibration than that of the PPI. The 

true error data of this simulation is shown in the figure below. 
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Figure 34. True Error Comparison Between State Space and PPI (Simulation) 

Comparison between true error of state space controller and that of the PPI 

controller can be seen in Figure 34. State space controller has less vibration in its true 

error. However, from Figure 31, it shows that the low frequency tracking is not as good 

as that of the PPI controller. Hence, state space controller has a larger peak error then 

the PPI controller. 

Before the experiment is conducted, gain and phase margin are analyzed to ensure 

the system’s stability. However, due to the high frequency model inaccuracy shown in 

Figure 16, the system is unstable as it has a negative gain margin as shown in Figure 

35.  
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Figure 35. Stability Margins Comparison between State Space Spindle Feedback 

Controller with and without Stability Filters 

Therefore, additional filters are introduced to the controller to fix the stability of 

the controller as shown in Figure 36. 

 

Figure 36. State Space Spindle Feedback Controller with Stability Filters 

The transfer function structure of the additional stability filters are shown in Eq(45). 
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 (45) 

Notch filter is used to attenuate high frequency resonance of the motor while the filter 

pack is used to eliminate unmodelled spindle dynamics from the feedback loop. 

Unmodelled spindle dynamics is shown in Figure 37.  

 

Figure 37. Unmodelled Spindle Dynamics for Filter Pack 

State space feedback tuning method without feed forward was experimentally tested 

on a CNC milling machine. Figure 38 and Figure 39 shows the experimental results of 

state space spindle feedback method. 
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Figure 38. Spindle Acceleration Comparison Between PPI and State Space Spindle 

Feedback (Experiment) 

 

Figure 39. Motor Position Error Comparison Between PPI and State Space Spindle 

Feedback (Experiment) 
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Similar to simulation results, the vibration amplitude of the spindle is significantly 

reduced. On the other hand, the motor position error has a larger error to compensate 

for spindle vibration.  

 

To compensate for the deterioration of low frequency tracking performance, the 

feedforward H is added. The goal of the feedforward is to make the true tracking 

performance of the state space controller similar to the motor tracking performance of 

the PPI controller. Figure 40 shows the motor error and spindle position simulation 

comparison  

 

Figure 40. Motor Error and Spindle Position Simulation Comparison (Simulation) 

As can be seen from the figure above, the feedforward helps to move the motor to 

compensate the spindle movement instead of trying to dampen the spindle vibration. 

Figure 41 shows the true error comparison between PPI and state space approach with 

and without the feedforward H. The addition of feedforward completely eliminates the 
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true error vibration. Thus, the trajectory pre-compensation method on the next section 

is developed with the idea that a feedforward or pre-filter is adequate to improve the 

tracking performance at the cost of the robustness granted by the additional feedback.  

 

Figure 41. True Error Comparison Between State Space with and without 

feedforward H and PPI (Simulation) 

Then the state space method with feed forward performance is compared to loop 

shaping method explain on Section 4.2. The simulation result is shown on Figure 42. 
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Figure 42. True Error Comparison Between State Space with Feedforward H and 

Loop-Shaping Acceleration Feedback 

 

In conclusion, state space with feedforward results in the best true error vibration 

mitigation compared to state space without feed forward, loop shaping acceleration 

feedback and a normal PPI controller. State space performance also has the ability to 

move the spindle poles to a desired location analytically, which means spindle vibration 

mitigation of state space controller is better than loop-shaping acceleration feedback 

method. Therefore, the proposed state space approach is better at both true error and 

spindle vibration mitigation compared to a standard industrial PPI controller and loop-

shaping acceleration feedback method. 
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5. Trajectory Pre-Compensation Based Vibration Mitigation  

5.1. Introduction 

Current industrial machine tool servo loops rely heavily on acceleration and jerk 

feedforward (FF) to widen their tracking bandwidth. However, for ball screw drive 

systems exhibiting lightly damped structural resonances, acceleration FF may induce 

unwanted vibrations and jerk FF are only most effective if resonance are rather low 

frequency. There are other attempts on feedforward tuning such as input shapers (IS) 

and Finite Impulse Response (FIR) based trajectory generation [19],[20]. However, 

they introduce a delay to motion, which elongates overall motion duration and 

deteriorates productivity. Other model based approaches exists in literature which are 

able to increase the tracking bandwidth while avoiding unwanted vibrations [21]. One 

of the most well known technique zero phase error tracking controller (ZPETC), which 

has been widely used in high speed precision positioning system such as in hard disk 

drives, metrology and lithography equipment [22]. However, this technique requires 

accurate modelling of the system.  

This section presents a novel IIR trajectory prefilter design to widen closed loop 

tracking bandwidth of machine tool feed drives while avoiding unwanted vibration at 

the same time but doesn’t require accurate system modelling. In addition, the proposed 

method also includes the IIR trajectory prefilter design to compensate for motor to table 

ball screw transmission dynamics.  

5.2. Motor Tracking Dynamics Compensator (𝑭𝑴𝑻𝑫𝑪) Design 

Typical ball-screw feed drive systems are controller based on motor position 

feedback. This section presents design of a motor tracking dynamics compensator to 
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realize perfect motor side tracking. Figure 43 shows the proposed control system 

schematic. 

 

Figure 43. Proposed Control Scheme for Motor Tracking Dynamics Compensator 

One way to alleviate the model dependency of the compensation method is to introduce 

iterative learning control (ILC) to determine the parameters of 𝐹𝑀𝑇𝐷𝐶 through machine 

in the loop iteration. Note that the ideal transfer function for 𝐹𝑀𝑇𝐷𝐶 is the inverse of the 

closed loop tracking dynamics as shown in Eq (46). 
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where 
My is the motor position, 

,M Cy is the motor position once 
MTDCF is applied and 

ry

is the reference position. Ideally, the form and order of 
MTDCF  requires a detailed 

knowledge of the feedback controller C  as well as the motor dynamics 
mG . Acquiring 

such information in a practical setting requires rigorous identification procedure. In 

order to circumvent these limitations, the form of 
MTDCF is pre-determined based on a 

set of 3N = 2nd order basis functions as: 
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 (47) 
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where 
k is the so-called 2nd order basis function. The denominator parameters; 

k 2, 1, 0,[ ]T

k k ka a a=a  are assigned based on a selected damping ratio 𝜁𝑘 and resonance 

frequency 𝜔𝑛,𝑘 of each basis function is pre-assigned via prior knowledge of the 

system; for example, by simply observing the dominant motor side closed-loop 

dynamics (resonances) through time-domain tracking experiments. 

The numerator coefficients 
k 2, 1, 0,[ ]T

k k kb b b=b  are identified through closed-loop 

tracking experiments and making use of the ILC framework as follows. A motion 

trajectory is commanded to the servo system, motor side tracking errors (eM) are 

recorded and numerator coefficients bk is determined to minimize the following cost 

function iteratively: 

 
 1 2 3, ,

1
min

2T

T

MTDC M MJ
=

 
= 

 b b b b

e e   (48) 

Identical reference trajectory is commanded to the system several times and the 

parameters are updated in each iteration. To ensure monotonic convergence, gradient 

∇JMTDC and hessian ∇2JMTDC of the objective function are generated for N=3 basis 

function case from: 
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 (49) 

Notice that the motor position x
M

before the FMTDC is implemented appears in Eq(49). 

This means that the gradient (∇) and Hessian (∇2) of JMTDC can be obtained in a fully 

data-based fashion without requiring any system model by updating based on the error 

profile eM in each iteration. Numerator coefficients can be optimized 

iteratively through the following update law: 
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where n is the iteration counter, and 
MTDC is the learning gain. Bounds on 

MTDC  can be 

determined as 2MTDC   using discrete-time linear analysis [1], and 1MTDC = is used 

to mitigate the effect of measurement noise. 

Basis function damping and natural frequencies  used in defining 

denominator of FMTDC are tuning parameters and selected approximately by analyzing 

motor side tracking response. However, they can also be optimized to further improve 



60 

 

 

the performance of FMTDC.  

Denominator parameters  in Eq(47) are also tuned through convex 

optimization by re-writing the basis functions from Eq(47) in gain normalized form, 

and re-postulating the objective function from Eq(49) with added stability  and 

DC gain constraints as: 
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Note that inequality constraints in Eq(51) are introduced to ensure stability of FMTDC. 

However, inequality constraints hinder direct use of 2nd order newton’s iteration for the 

hardware-in-the-loop parameter update scheme given in Eq(50). Therefore, 

denominator coefficients are tuned through 1st order iterations, and constraints are 

imposed as follows.  

Firstly, 1st order parameter update law for the denominator is written as: 
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where 𝛄 is the step-size, and n is the iteration number. ∇JMTDC= dJMTDC/da is the 

objective function gradient, and it must to be computed considering the constraints 
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imposed in Eq(51). Consider the truncated Taylor series expansion for motor side 

tracking error w.r.t to the filter parameters, 
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and notice that 1n n

MTDCJ+ = − = a a a in Eq.8. Hence, combining Eq(52) and 

(53), and forcing motor side tracking error at the next iteration to converge to origin 

yields 
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where can be calculated from Eq(54) through the following constrained linear least 

squares problem 

 min
𝛥𝑎

‖𝛻𝑒𝛥𝑎 + 𝑒𝑀
𝑛 ‖2

2 subject to: 𝑎 ≥ 0 and ∑𝐾𝑘 = 1  (55) 

which can be solved easily either through use of KKT conditions or quadratic 

programming [24].  

To summarize, denominator tuning starts with an initial guess, an. FMTDC is 

implemented, and the tracking error profile eM is recorded. 𝛥a is then computed from 

Eq(55), and denominator parameters are updated via an+1 = an + 𝛥a. 1st order hardware-

in-the-loop iterations are continued until parameter convergence is observed. 
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5.3. Table Tracking Dynamics Compensator (𝑭𝑻𝑻𝑫𝑪) Design 

Previous section designed motor side tracking dynamics compensator filter FMTDC 

to ensure that motor follows reference commands precisely. However, FMTDC filtered 

(compensated) reference motor command trajectory may excite the resonances in the 

flexible ball-screw drivetrain and induce unwanted vibrations on the table side. To 

ensure that the table follows the motor accurately, a table transmission dynamics 

compensator FTTDC is added as shown in Figure 44. 

 

Figure 44. Proposed Control Scheme for Table Tracking Dynamics Compensator 

The table transmission dynamics compensator FTTDC is implemented after the motor 

tracking dynamics compensator is FMTDC is tuned, and Figure 44 depicts overall 

prefilter structure. FTTDC takes compensated motor command trajectory and filters it 

again to compensate for the motor-to-table transmission dynamics. FTTDC is designed 

in a similar fashion to FMTDC by making use of the basis function structure given in 

Eq(47). Denominator coefficients, i.e. resonance and damping parameters are pre-

assigned, and the numerator coefficients are tuned through machine-in-the-loop 

iterations by minimizing the following cost function: 
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where xT,MT is the table position compensated by both the FMTDC and FTTDC 

compensators. Whereas, xM,M is the FMTDC compensated motor position. Notice that 
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Eq(56) poses a convex optimization problem as well, and its iterative solution can be 

guided to global optimality with the use of gradient (∇) and Hessian (∇2) of its cost 

function FTTDC, which can be obtained as: 
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 (57)   

In the above Eq(57), xT,M is the table position compensated by the FMTDC, which appears 

in the calculation of ∇(xT,MT -xM,M) and measurable. Therefore, ∇JTTDC and ∇2JTTDC can 

be obtained by using only the measurement data without relying on any system model. 

Once the gradient and Hessian of the objective function JTTDC are obtained, Eq(57) is 

solved iteratively by moving each axis back-and-forth at each iteration and updating 

filter parameters with 2nd order parameter update law: 
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where n is the iteration counter and 1TTDC = is the learning rate.  

Finally, tuning of the denominator coefficients of FTTDC follows a similar strategy 

presented through Eqs(52)-(55). 
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5.4. Trajectory Pre-compensation Experiment Results 

Parameters of the trajectory pre-compensation filter are tuned iteratively using the 

machine in the loop approach. Figure 45 shows the reference trajectory sent to the 

system as well as a marked region where the objective function of the optimization 

algorithm is computed. A linear acceleration region is chosen for the computation of 

the pre-filter parameters to avoid incorporating the effect of non-linear friction to the 

algorithm. Friction can be compensated separately by a friction compensator similar to 

[25]. At each iteration, the same trajectory is sent to both axes and the same region is 

used for calculating the objective function of the optimization algorithm. 

 

Figure 45. Reference Trajectory 

Figure 46 shows the tracking dynamics of the system. 
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Figure 46. Tracking Dynamics 

MTDCF  is used to compensate motor tracking dynamics. Hence, the initial 

denominator parameters are 
, ,[60,65,70] , [45,50,55]n x n yHz Hz = = , and 0.05 = . 

On the other hand, 
TTDCF is used to compensate the motor to table dynamics. Thus, the 

initial denominator parameters are 
, ,[70,75,80] , [75,80,85]n x n yHz Hz = = , and 

0.05 = . These initial parameter guesses for 
MTDCF and 

TTDCF  are based on the 

approximate dominant antiresonance frequency of the dynamics that needs to be 

compensated. This is due to the ideal prefilter transfer function is the inverse of the 

dynamics that needs to be compensated, so the poles of the prefilter should be as close 

as possible to the zeros of the targeted dynamics. 

Figure 47 shows the numerator tuning performance of 
MTDCF . As shown, 

MTDCF

numerator tuning converges is 4 iterations and significantly reduces the motor tracking 

error. Once the numerator tuning is done, denominator portion of 
MTDCF is tuned to 

further improve the performance of the filter. Figure 48 shows the improvement of the 
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pre-filter performance once the denominator is tuned. The peak motor tracking error 

are reduced from 30 micron to 5 micron for Y-axis and from 31 micron to 3 micron for 

X-axis. 

 

Figure 47. FMTDC Numerator Tuning 

 

Figure 48. Impact of Denominator Tuning of FMTDC 
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Figure 49 shows the frequency response comparison between the closed loop 

motor tracking and the inverse of 
MTDCF .  

 

Figure 49. Frequency Response Comparison of Closed Loop Tracking and FMTDC 

Finally, 
TTDCF is added to improve the table tracking performance. Figure 50 

shows that 
TTDCF  also converges within a few iterations. Once converged, compensated 

table position 
,T MTx  becomes similar to the motor position 

,M Mx . The peak vibration 

level on the table reduces from 60 micron to 8 micron for Y-axis and from 40 micron 

to 6 micron for X-axis. 
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Figure 50. Performance of FTTDC on Table Tracking Performance 

Figure 51 shows the frequency response comparison between the motor to table 

dynamics and the inverse of FTTDC. FTTDC didn’t undergo a denominator tuning because 

the numerator tuning performance already produces satisfactory results as shown in 

Figure 50. The improvement provided by the denominator tuning is negligible due to 

the numerator tuning already performed well.  
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Figure 51. Frequency Response Comparison of Motor to Table Dynamics and FTTDC 
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6. Stability Requirement of Iterative Tuning 

To ensure the optimization algorithm for the pre-filter parameters converges to an 

optimal value, it is required to operate within a stable learning gain range. This section 

presents a mathematical procedure to obtain the range of convergence for . 

The presented analysis is applied on FTTDC tuning algorithm. However, it can also 

be applied to FMTDC  tuning since both prefilters utilize similar tuning algorithms. The 

method to find the convergence range of the learning gain focuses on the propagation 

equation of the newton’s method 
1

( 1) ( ) 2 ( ) ( )k k k ka a J J
−

+    = −       [1],[26].  

         In this method, the system representation needs to be converted from a transfer 

function form to a lifted form which utilized toeplitz matrix [27],[28]. A toeplitz matrix 

is a diagonal constant matrix with each descending diagonal from left to right is a 

constant. To convert from transfer function form to lifted form, a state space 

representation has to be constructed from the transfer function. Consider a transfer 

function: 

 

2
, 0 1 2

2

, 1 2

( )
R MT

R M

x a s a s a
F s

x s b s b

+ +
= =

+ +
 (59) 

To convert the equation above to a state space domain, a placeholder parameter is 

required. In this case, a placeholder z is introduced to Eq(59) as shown below. 

 

( )

( )

2

, 0 1 2

2

, 1 2

R MT

R M

x a s a s a z

x s b s b z

= + +

= + +
 (60) 

Then, Eq(60) is turned in a state space representation as follows. 
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1 1 2

2 2 , 1 2 2 1

Let
R M

q z q q

q z q x b q b q

= =

= = − −  (61) 

Substituting Eq(61) to Eq(60) results in Eq(62). 

 

( )

( )

( ) ( )

, 0 , 1 2 2 1 1 2 2 1

, 0 , 1 2 1 2

, 0 , 1 0 1 2 0 2

R MT R M

R MT R M

R MT R M

x a x b q b q a q a q

x a x b z b z a z a z

x a x a a b z a a b z

= − − + +

= − − + +

= + − + −

 (62) 

Then, the state space representation becomes: 

 

( )

, , ,

2 1

2 0 2 1 0 1 0

where

0 1 0

1

R M R MT R Mq Aq Bx x Cq Dx

A B
b b

C a a b a a b D a

= + = +

   
= =   

− −   

= − − =

 (63) 

Where  0 1 2 1 2a a a b b are the numerator and denominator coefficients of the transfer 

function. Then, the state space is converted from continuous domain to discrete domain 

and the lifted form is derived from the discrete state space form as Eq(64). 

 

, ,

, ,

1

, ,

2 2

( 1) ( ) ( ) ( )

where

( )

0 0 0

0

s

x xR M R MT

d d R MT d d R M

AT

d d d

d d

d

d d d

R MT d d d d d R M

N N

d d d d d d d d d

T

q n A q n B q n x C q n D x

A e B A A I B

C C D D

D

C B D

x C A B C B x

C A B C A B C B D

→

−

− −

+ = + = +

= = −

= =

 
 
 
 =
 
 
 
 

 (64) 
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where 
, ,R M R MTx xT →

is the lifted form of the transfer function from 
,R Mx to 

,R MTx which in 

this case is  FTTDC. 

The objective function for  FTTDC parameter tuning is ( )

, ,

k

T MT M Mj x x= − and it 

can be rewritten in the Toeplitz domain as Eq(65). 

 , , , ,

, ,

( ) ( ) ( )

, ,R M T MT R M M M

T MT M M

k k k

x x R M x x R M

x x

j T x T x→ →= −  (65) 

Then, 
, ,

( )

,R M T MT

k

x x R MT x→ can be expanded to extract the prefilter numerator a as shown 

below. 

 

, , , ,

( ) ( ) ( ) ( )

,

( )

2

1 2

2

, ,

,2

( )

0

( ) ( )

1

( )

2

where

1
 is the lifted form of 

R M T MT R MT T MT

k k k k

x x R M x x b

k

b

R M R M

R M

k

k k

k

T x T T a

T
s b s b

d x dx
x

dt dt

a

a a

a





→ →=

+ +

 
=   

 

 
 

=  
 
 

 (66) 

The propagation equation of the optimization can be written similar to [1] as: 

 

1
( 1) ( ) 2 ( ) ( )

1
( 1) ( ) ( ) ( ) ( ) ( )

k k k k

k k k T k k k

a a J J

a a j j j j





−
+

−
+

   = −     

   = −      

 (67) 

Then, the hessian and gradient term of the equation above can be written in Toeplitz 

form as shown in Eq(68). 

 

( ) ( )

( ) ( )

, , , ,

, ,, , , ,

1

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

...
x x x xR MT T MT R MT T MT

x x x x R M M MR MT T MT R MT T MT

T
k k k k k k

b b

T
k k k k k k

b b x x R M

a a T T T T

T T T T a T x

  

 

→ →

→ →

−

+

→

 
= −   

 
−  

 (68) 
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The equation above is rearranged to obtain the propagation matrix  from

( 1) ( )k ka a c+ = +  where c is a constant. From a linear system theory, the linear discrete 

time system is stable if the eigenvalues of the propagation matrix  are within the unit 

circle,   1   [29]. Thus, the propagation matrix  can be calculated from Eq(68) 

as follows: 

( ) ( ) ( ) ( )

( )

, , , , , , , ,

, , , ,

1

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

...
x x x x x x x xR MT T MT R MT T MT R MT T MT R MT T MT

x x x xR MT T MT R MT T MT

T T
k k k k k k k k k k

b b b b

T
k k

b

a I T T T T T T T T a

T T T



    

 

→ → → →

→ →

−

+
     

= − +         

( ) ( ) ( )
, , , ,

1

) ( ) ( ) ( ) ( )

1

x x x xR MT T MT R M M M

T
k k k k k

b bT T T T 

 

→ →

−

   
      

= −

 (69) 

Since 1 = − , convergence is guaranteed for 0 2  . 
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7. Conclusion 

 This thesis presented various novel and systemic control system design method 

ranging from active to passive structural vibration mitigation.This thesis presented 

various novel and systemic control system design method ranging from active to 

passive structural vibration mitigation. These vibrations include motor, table, spindle 

and also the relative motion between the table and the spindle. The proposed active 

vibration mitigation method include loop shaping acceleration feedback and state space 

spindle feedback method. On the other hand, the proposed passive vibration mitigation 

method include trajectory pre-compensation filter design method. The improvement in 

dynamics positioning accuracy when passive vibration mitigation method is 

implemented is significant, around 85% reduced peak error on the table side. However, 

the improvement is dynamics positioning accuracy when active vibration feedback is 

implemented is smaller than that of the passive vibration mitigation. This is mainly 

caused by inaccurate modelling. Overall, the developed method is able to improve the 

accuracy of high-speed machine tools without modifying the hardware.  
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