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Interactions between proteins are essential to life, driving and regulating a majority of 

processes within all living cells. Study of protein-protein interactions reveals that some 

proteins act as hubs within networks of interactions, binding to many partner proteins. 

These hubs therefore are of particular importance to understanding protein function, 

interwoven as they are with dozens of biological functions. LC8 is one such hub protein, 

binding to over 100 known clients and playing a role in many unrelated pathways. LC8 

binding, mediated by a short linear motif in client proteins, induces a dimeric structure on 

clients, leading the protein to be referred to as a dimerization engine. 

 This thesis discusses the function of LC8, examining both the general properties 

of LC8 that facilitate LC8-client binding, and documenting and characterizing new LC8-

binding proteins. Each of the three chapters of original work is a report of primary research. 

Chapter 2 is a detailed investigation of the thermodynamics of LC8 binding, which 

necessitated the development of a new method of analysis built on principles of Bayesian 

statistics. This method allowed us to measure detailed thermodynamics of LC8 binding, 

and demonstrate that LC8 favors a fully bound state, consistent with its function as an 

engine for dimerization. Chapter 3 is concerned with characterizing the LC8-binding linear 

motif, and development of a tool for prediction of LC8 binding. We collate a database of 

LC8-binding proteins and find that residues flanking the core motif sequence play an 

important role in regulating binding. The predictive tool uses a library of known LC8-

binding and non-binding sequences to generate a scoring matrix for potential clients and 

has already been adopted by researchers studying LC8 interactions. In chapter 4 we 

present a characterization of a new LC8-binding protein named Kank1. Kank1, a 

cytoskeletal regulator found at the cell cortex, binds LC8 multivalently, forming a large 



 

 

complex consisting of at least five LC8 dimer units. The complex forms with significant 

cooperativity, and unlike many multivalent LC8-interacting proteins, forms a homogenous 

stable oligomer, indicating that the complex may play a structural role, rigidifying the 

scaffold of Kank1. Lastly, chapter 5 discusses the impact of this work, and highlights of 

the work presented in each chapter. It additionally presents ongoing and future steps in 

the study of LC8 interactions.  

 This thesis additionally contains two appendices reporting primary research that is 

unrelated to LC8. The first is concerned with a protein from the Peroxiredoxin family of 

redox proteins. Peroxiredoxins unfold during catalysis, and we demonstrated that our 

model peroxiredoxin unfolds transiently in absence of catalysis, emphasizing that the 

protein is finely structurally tuned for catalysis. The second appendix discusses the 

nucleocapsid of the SAR-CoV-2 virus, examining the protein’s interaction with RNA, which 

is essential to viral replication. We find that the protein can interact both specifically and 

nonspecifically with RNA, and that nonspecific binding is correlated to liquid-liquid phase 

separation, which is believed to be essential to some viral functions. 
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Specificity, Allostery, and Multivalency in Binding to the Hub Protein LC8 

 

Chapter 1 

 

Introduction 
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Interactions between proteins play an essential role across biological systems1,2. Nearly 

all biological processes are accomplished and/or regulated by multiple proteins working in 

concert1–3. As such, careful study of protein-protein interactions is key to understanding 

cell functions. Examination of networks of protein-protein interaction has revealed that 

while most proteins function through interaction with a handful of partners, some proteins 

act as hubs, with dozens or hundreds of interacting partners of diverse function4–6. The 

essential nature of such hubs is demonstrated by the impact of hub knockout mutants, 

which often exhibit several unconnected phenotypes4,7. For these reasons, Hub proteins 

are of particular interest in the study of protein interactions, sitting at the center of complex 

networks of function and regulation5,6.  

 

Figure 1.1: LC8 is an essential hub protein. (a) Structure of LC8 colored in shades of 
purple, with client strands colored orange. Selected LC8-binding proteins are listed in 
spokes around the diagram, colored corresponding to the functions listed at the edges of 
the panel. (b) Sequence alignment of known LC8-binding sequences taken from the 
database LC8Hub. (c) Live cell images containing LC8-GFP and (d) localization of known 
LC8-interacting proteins demonstrate that LC8 is localized throughout the cell. Panels (c) 
and (d) are adapted from Jespersen et. al. (2019)8. 
 
LC8 – an essential hub protein 

LC8, a 20 kDa dimer, is one such hub protein9. While LC8 takes its name from its initial 

discovery as a light chain of the axonemal dynein complex, it has since been shown to 

bind over 100 clients with a wide variety of functions throughout the eukaryotic cell (Fig. 

1.1c,d)8. All LC8 clients share a short linear motif sequence found in regions of intrinsic 

disorder that facilitate binding to the hub8,10. LC8-interacting proteins play roles in cell 

replication10–12, tumor suppression13,14, structural scaffolding15–18, and viral infection8,19,20 

(Fig. 1.1a), among other functions8,21–24. With binding partners in such a wide variety of 
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cell functions, LC8 knockout mutations are fatal in several organisms and cell lines25–27. 

Consistent with this importance, LC8 is highly conserved across eukaryotes (with 94% 

sequence identity between drosophila and human)9 and is present in all explored 

eukaryotic organisms, including plants, which lack all other dynein subunits28. 

 

Structure and function of LC8 binding 

LC8 contains a mix of alpha and beta structures, forming two antiparallel beta sheets along 

its dimer interface, which are flanked by two alpha helices on each side (Fig. 1.1a)9. The 

primary binding grooves of the protein form at the edge of each beta sheet, one on either 

side of the protein, which accommodate disordered peptides approximately eight amino 

acids in length29. Bound clients take on an induced beta-strand structure, forming 

backbone hydrogen bonds with the LC8 beta strand at the dimer interface9,29. Investigation 

of sequence conservation has revealed that this binding groove is highly conserved 

relative to other elements of LC8 structure, pointing to client binding as the primary 

function of LC86,8. The importance of the groove is additionally supported by the fact that 

all known LC8-binding interactions occur at this binding groove, making it an example of 

what has been referred to in the literature as a ‘dynamic’ or linear motif-binding hub, that 

accommodates many different clients through the same mechanism6,9.  

As a component of dynein, LC8 was first proposed to act as a cargo adaptor, 

attaching proteins to dynein for movement around the cell9,30. However, there has been 

little evidence in support of this hypothesis, and in 2008 our lab introduced a new paradigm 

for LC8 function – that of a dimerization hub9. As proposed, LC8 binds to client proteins 

such as the intermediate chain of dynein to dimerize them (Fig. 1.2a). Since 2008, a 

substantial body of evidence demonstrating that LC8-interacting proteins take on a dimeric 

structure has been collected, making clear the association between LC8 and client 

dimerization. Following is a brief discussion of several LC8-binding interactions studied in-

depth over the last decade, where dimerization plays a key role. 

 

The PICTS complex 

The Panoramix-induced co-transcriptional silencing (PICTS) complex, consisting of 

proteins Panoramix, Nxf2 and Nxt1, is an important component of the PIWI-interacting 

RNA pathway, which silences transposon activity in animal gonads31,32. Panoramix 

contains two LC8-binding sequences within a region of disorder at its C-terminus31,32. 
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Mutation of the LC8-binding sequences to abolish binding results in failure of the pathway, 

evidenced by an increase in transposon activity31,32. Crucially, replacement of the LC8-

binding sequence with a leucine zipper results in a full rescue of transposon silencing32. 

The leucine zipper acts as a simple dimerization domain, and the zipper’s effectiveness 

as a substitute for LC8 binding indicates that the primary role of LC8 in the PICTS complex 

is as an engine for dimerization.  

 

 
 
Figure 1.2: Three binding modes of LC8. Cartoon diagrams of the role of LC8 binding 
in 3 LC8-dependent systems. (a) LC8 dimer inducing a dimeric structure in the 
intermediate chain (IC) of Dynein. (b) LC8 dimer binding to Swallow, stabilizing a transient 
coiled-coil domain near the LC8-binding site. (c) LC8 dimer binding to the rabies 
phosphoprotein, which restricts the orientation of the C-terminal domain (yellow) and 
compacts the structure of the protein complex. 
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Swallow 

Swallow is a predominantly disordered protein roughly 62 kDa in size that is essential for 

proper localization of mRNA in drosophila oocytes11,12. Essential to this function is 

swallow’s only element of structure, a 71-residue predicted coiled-coil roughly in the 

middle of the protein sequence12. Experiments probing the coiled-coil domain of the 

protein reveal it to be only marginally stable, and prone to aggregation in vitro12. Addition 

of LC8 dramatically stabilizes the coiled-coil structure, resulting in a high-affinity, stable 

complex12. The domain can also be stabilized through mutation, resulting in a coiled-coil 

structure, confirming that LC8 is stabilizing an already-present dimer12. Corroborating the 

findings, biochemical investigations have revealed that LC8 is essential to swallow 

function, and loss of the LC8 motif from swallow results in mis-regulation of mRNA 

localization, eventually leading to embryonic defects12,33. The function of LC8 in this 

complex is therefore of a stabilizer, binding to an already-dimeric protein and inducing a 

tightly-bound complex, allowing swallow to perform downstream functions (Fig. 1.2b).  

 

Rabies Virus Phosphoprotein 

The rabies virus phosphoprotein (RavP) is one of five constituent proteins of the rabies 

virus and plays several roles in viral function, including regulation of viral transcription by 

connecting the nucleoprotein that wraps around the RNA to the RNA-dependent 

polymerase19,34. Roughly 300 residues in length, the protein forms a 70 kDa homodimer 

driven by a dimerization domain roughly 1/3 of the way through its sequence19,19. It 

additionally contains a folded C-terminal domain, separated from the dimerization domain 

by a long (~60 residue) linker containing an LC8-binding motif. Abolishing LC8 binding 

through mutation of the linker results in a dramatic drop in virus lethality, suggesting LC8 

is critical for virus function35. While RavP is already a strong dimer in absence of LC8, 

binding to LC8 restricts the motion of the linker between dimerization domain and C-

terminal domain, compacting the structural ensemble of the RavP and locking the relative 

orientation of the C-terminal domains (Fig. 1.2c)19. Downstream, this restricted 

conformation increases the rate of viral transcription, by increasing the rate that the protein 

‘walks’ along RNA19. This indicates that LC8 effectively acts as a switch for viral 

transcription, where the transcription rate, a limiting step of viral replication, is maximized 

in the presence of LC8. 
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LC8 is a dimerization hub  

While the details of the role that LC8 plays in each of these complexes varies from system 

to system, the common factor is the importance of a dimer structure in the complex. It 

appears that while LC8 does induce dimerization in some clients, in others it is merely 

adopting or stabilizing an already-present dimer structure. Indeed, a significant 

percentage of LC8-binding proteins contain coiled-coil or dimerization domains, in close 

sequence proximity to their LC8-binding motif8,36. It bears mentioning that several LC8-

binding proteins, such as ANA2 or Ebolavirus VP35 are tetrameric, and remain tetrameric 

in the presence of LC8, indicating that LC8 complexes at other stoichiometries are 

possible in some cases20,37. Individual exceptions aside, it is now clear from available 

examples of LC8-binding proteins that the core function of LC8 is as a driver, stabilizer, 

and modifier of dimeric complexes containing regions of disorder.  

Structurally, the dimerization hub theory has also been aided by detailed 

investigation into the structure and thermodynamics of LC8-client binding. Nuclear 

magnetic resonance (NMR) studies of LC8 indicate the presence of an intermediate LC8 

state, bound at only one groove38. The intermediate state appears to have an increased 

affinity for client strands, resulting in LC8 favoring a fully occupied induced-dimeric state. 

Additionally, structural examination reveals this increased affinity may be driven by shear 

movement at the dimer interface and suggests that the effect may drive homologous 

binding – i.e., binding where LC8 binds the same client at both sites, thereby dimerizing 

the client38. The thermodynamics of LC8 binding have not been explored in detail, 

however, and a deeper investigation into LC8-client thermodynamics is the focus of 

chapter 2 of this work. 

 

The LC8 Motif  

LC8 binds to intrinsically disordered regions (IDRs) of client proteins which lack rigid 

structure. As is the case for many binding interactions within IDRs, the sequence alone is 

therefore the determinant of binding, and such binding sequences are referred to as short 

linear motifs6,8,9 (SLiMs). The essential component of the LC8 linear motif is a TQT residue 

triad (Fig. 1.1b, 1.3a). All known LC8-binding proteins contain a TQT or TQT-like 

sequence8,10. Structurally conservative substitutions such as T->S,I,V and Q->N,M,L are 

tolerated without abolishing binding, although motifs only rarely contain more than one 

such substitution. Outside the TQT, five additional residues (one towards the C terminus 
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and four towards the N terminus) contact LC8 in bound structures. In contrast to the 

essential TQT, sequence alignments of known LC8-interacting proteins reveal no clear 

trend in the sidechains present at these other five motif positions8 (referred to as ‘flanking’ 

positions hereafter) (Fig. 1.1b). Structural alignment of known LC8 motifs also reveals a 

great degree of structural heterogeneity at these positions (fig. 1.3b,c), suggesting the 

LC8 binding groove can accommodate a variety of structures at flanking positions. A 2016 

examination of crystal structures of LC8 bound to clients revealed that, when bound, the 

flanking residues are relatively flexible, and the TQT relatively rigid10. This has led to the 

‘anchored flexibility’ hypothesis of LC8 binding – the TQT anchors the client strand within 

LC8, and the remainder of the binding motif remains flexible and therefore capable of 

accommodating a variety of sequences10. Such sequence-permissivity at the flanking sites 

raises a question of function – is the binding grove agnostic to these flanking sequences, 

or do they play a functional role? 

While the TQT anchor is essential for LC8 interaction, it is not the sole determinant 

of binding. A 2019 investigation of new LC8-binding sequences, published alongside work 

presented in this dissertation (chapter 3), utilized phage display experiments to generate 

potential new LC8-binding sequences8. A set of 53 sequences selected by phage display 

were tested for binding to LC8 by isothermal titration calorimetry (ITC). Surprisingly, while 

nearly all contained a TQT anchor, only 16 of the peptides bound to LC8 with a measurable 

affinity , indicating that the flanking sequences do play a significant role in determining 

whether LC8 binds a potential motif8. Succinctly, the TQT is essential but not sufficient for 

LC8 binding, a poor flanking sequence can eliminate LC8 binding even in the presence of 

a TQT. By extension, the binding affinity between a motif and LC8 is determined in part 

by the flanking sequence, as TQT-containing motifs can vary in affinity for LC8 over 

several orders of magnitude, from nanomolar affinities up to tens or hundreds of 

micromolar8. 
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Figure 1.3: Structure and thermodynamics of the LC8 motif. (a) Diagram of preferred 
residues at each position in the LC8-binding motif. “Ф” denotes hydrophobic residues; “X” 
signifies any residue (unless certain residues are disfavored); underlined “X” signifies any 
residue but with strong preferences for specific residues; “+” denotes positively charged 
amino acids. Physiochemical properties beneficial for binding are colored dark blue or light 
blue, based on magnitude, and deleterious properties are colored in red. (b,c) overlay of 
modeled structure (assembled in Chimera) for tight (KD < 10 μM) LC8-binding (b) and LC8-
nonbinding (c) sequences. Residues are colored based on whether they are beneficial 
(blue) deleterious (red) or neutral (white) for binding. (d) Thermodynamics of several LC8-
binding interactions, organized by the extent to which they are driven by enthalpy (left) or 
entropy (right). Panels a-c are adapted from Jespersen et. al., (2019)8, and d from figures 
and data presented in Nyarko et. al., (2012)39. 
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Investigation of LC8-client binding by ITC has revealed a substantial degree of 

variability in the thermodynamics of binding. Variations in the entropy of binding indicate 

that LC8-client binding is seemingly dictated in part by entropy-enthalpy compensation 

(Fig. 1.3d). While all LC8-binding interactions are enthalpically favorable, the entropic 

favorability varies – some interactions are driven entirely by enthalpy with an entropic cost 

(e.g. Bim, Swallow in Fig. 1.3d), while others are driven by both entropy and enthalpy (e.g. 

IC, nNos in Fig. 1.3d)8,39. In correlation with binding entropy, NMR analyses of LC8 find 

that the protein is flexible, in motion on the micro-millisecond timescale39,40. Binding to 

clients rigidifies LC8, eliminating these motions, but the degree of rigidification is not 

uniform across client sequences39,40. Particularly, the flexibility of client-bound LC8 

correlates with the entropy of binding to a given client: Clients that are entropically 

favorable do not alter the motions of LC8 when bound, where enthalpically-driven LC8-

binding sequences rigidify LC839. As tested sequences all share an identical anchor 

sequence, it falls to the flanking sequences to be the source of this variation in flexibility 

in the bound state. The exact relationship between binding sequence and binding entropy 

remains unclear, however, as no obvious trends are present in the currently available data. 

The flanking sequences, as the presumptive source of variation in both the overall 

binding affinity as well as the degree of LC8 rigidification, are therefore arguably the more 

important components of a given LC8 motif. Given LC8’s role as a hub with many client 

proteins, it appears advantageous to have some variation in the binding affinity between 

LC8 and various clients. The flanking sequences offer a method for tuning LC8-client 

binding, varying individual interactions for the needs of individual systems. A substantial 

amount of work remains to fully understand the interplay between flanking sequences and 

LC8 affinity, and chapter 3 of this thesis presents a study of the LC8 motif, what flanking 

residues are preferred in LC8 binding, and development of a method for predicting 

whether a given sequence will bind to LC8.  

 

Multivalency in LC8 Binding 

The simple and flexible nature of linear motifs makes them ideally suited for multivalent 

recruitment of large complexes. LC8-binding sites are no exception, and a growing list of 

LC8-binding proteins with multiple motifs in a row has appeared in recent years10,41. 

Multivalency in binding introduces a substantial challenge to structural characterization of 

these complexes, as multivalency introduces a great degree of heterogeneity of both 
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structure and conformation, rendering many standard methods of structural investigation 

ineffective41. Nevertheless, multivalent LC8-client complexes play an important role in cell 

function. Following is a brief overview of several examples of such interactions.  

 

Nup159 

Multivalent binding appears to play a predominantly structural role in many complexes, as 

demonstrated in the complex between Dyn2 (LC8’s ortholog in yeast) and Nup159. 

Nup159 contains five Dyn2 motifs within a span of ~120 residues towards its C terminus15. 

The five motifs, separated by short linkers, induce a unique ladder-like ‘polybivalent’ 

structure in Nup159 on binding15,41. Detailed thermodynamic investigation reveals that 

each motif appears to add to the overall affinity of binding between Dyn2 and Nup159, 

indicating that the motifs act cooperatively, in concert, to stabilize a high-occupancy state 

(Fig. 1.4a)15. Electron micrographs of the Nup82 subcomplex of the nuclear pore (which 

includes Nup159 and Dyn2) reveals a beads-on-a-string-like structure, where each Dyn2 

appears as an individual bead16. While conformational heterogeneity complicates 

structural analysis of the complex42, this bound state is rigid, relative to a disordered 

strand15,16, indicating that the rigidity of Nup159 is controlled by the amount of Dyn2 

present around it – In an apo state, the Dyn2-binding region of Nup159 is disordered and 

flexible. The presence of a switchable structured domain dependent on Dyn2 binding likely 

allows the protein to be either flexible or rigid when needed, a useful trait for Nup159’s 

function as a structural scaffold.  

Other LC8-interacting proteins that act as structural scaffolds in large protein 

complexes include RSP322, Bassoon17, P53BP130, and the newly discovered Kank1, 

which is discussed in detail in chapter 4 of this work. These proteins have similar 

architecture to Nup159 – large regions of disorder, and a sequence containing multiple 

LC8-binding motifs separated by short linkers10,36. Their similarity to Nup159 makes it 

tempting to suggest that LC8-binding plays a similar structural role in these complexes, 

although the exact role of multivalent LC8 binding in these proteins remains to be seen. 

 

Chica 

The LC8-binding protein Chica is associated with the mitotic spindle, responsible for 

asymmetric localization of Dynein during cell division. This function is dependent on LC8, 

and knockdown of LC8 or mutation of Chica aimed at abolishing LC8 binding results in 
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incorrect Dynein localization10,43. The protein contains four motifs, three of which are 

confirmed to bind LC8, in a ~70 residue IDR towards the C terminus of the protein, 

between two structured domains10. While the exact function of LC8 in this complex is 

currently unknown, Chica presents an interesting contrast to Nup159 in its 

thermodynamics of binding. While each LC8 motif in Nup159 is relatively weak binding, 

they work cooperatively to bind tightly to LC8. Chica, in contrast, contains one tight-binding 

motif and several weak-binding ones10. In fact, the over-all binding affinity between LC8 

and Chica is the same as the tight-binding individual motif (0.4 μM)10. This difference in 

affinity likely plays a role in Chica’s function. Furthermore, it highlights that multivalent 

LC8-client interactions are surprisingly thermodynamically varied. This variation is 

expected to impact the occupancy state of such complexes, impacting downstream 

function. 

 
Figure 1.4: Multivalent LC8-client interaction. (a) Cartoon of binding between Nup159 
and Dyn2. The interaction forms a rod-like complex, which forms part of a structural 
scaffold in the yeast nuclear pore. (b) Cartoon of binding between LC8 and the 
transcription factor ASCIZ. The proteins form a heterogeneous mix of different complexes, 
favoring a mix of varied occupancies over a rigid bound state. 
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ASCIZ 

ASCIZ is an LC8-binding transcription factor responsible for regulating LC8 expression 

which also utilizes multivalent LC8 interaction to sense the cellular LC8 concentration44,45. 

ASCIZ consists of an N-terminal zinc finger domain, followed by a region of disorder that 

stretches to the end of the protein44. In drosophila, the IDR contains 7 recognizable LC8 

motifs (>11 in human ASCIZ), spaced by linkers of variable length44,45. ASCIZ activates 

transcription of LC8, meaning it both binds LC8 and is responsible regulating the 

production of LC844. In fact, ASCIZ acts as both a sensor and a regulator of LC8 

concentration within the cell, inducing transcription when the concentration is low, and 

limiting it when the concentration is high. The multivalent nature of ASCIZ allows for a 

complexly tunable sensor for the level of LC8 present in the cell – the number of bound 

LC8 sites is believed to directly report on the presence or absence of LC844. Distinct from 

both Nup159 and Chica, biophysical characterization of ASCIZ-LC8 binding reveals a mix 

of positive and negative cooperativity resulting in a heterogeneous mixture of several 

partially bound LC8-ASCIZ states (Fig. 1.4b)44. While the exact structural mechanism of 

this mix of different allosteric effects is not yet clear, it appears that the length of the linkers 

between LC8 motifs is a key ingredient of binding allostery44,46. As a result of this mix of 

effects, the LC8-ASCIZ complex remains deeply heterogeneous in both conformation and 

occupancy, even at saturating LC8 concentrations. It is therefore plausible that the 

negative allostery that strongly disfavors saturation of the ASCIZ-LC8 complex is tuned 

for the needs of the cell, which always requires at least a low level of LC8.   

 

Perspective  

The unique nature of each individual LC8-binding system complicates broad classification 

of LC8-binding proteins. Without detailed investigation, it is therefore difficult to predict the 

specific role of LC8 binding in each newly discovered client protein. The common factor 

of LC8 interaction is the bridging together of two client strands. LC8’s general function can 

then be thought of as a molecular staple – in some cases sticking two disordered strands 

together into a dimeric structure, in others simply restricting the conformational flexibility 

of the client. And indeed, the current conception of the thermodynamic details of LC8 

binding supports this theory. In many multivalent cases, a series of staples hold together 

two strands along a region of sequence, inducing the formation of a whole structured 

domain that can be turned on or off dependent on LC8 binding. A great number of 
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questions remain, however, and in this work, I present several investigations into details 

of this fascinating system. My work includes detailed thermodynamic analysis of LC8-

client binding cooperativity using Bayesian statistical modeling (chapter 2), Examination 

of the LC8 motif and development of a method for predicting LC8 binding (chapter 3), and 

biophysical characterization of a newly discovered interaction between LC8 and Kank1 

(chapter 4).  

 

 

Dissertation Contents 

This dissertation includes three chapters and two appendices of original work, each 

prepared in the style of a research manuscript. These include two published papers and 

three manuscripts in preparation or the review process. Chapter two, a manuscript 

currently under review at Biophysical Journal, covers the analysis of calorimetric data with 

a focus on binding between LC8 and clients. The manuscript uses Bayesian statistical 

modeling methods to determine thermodynamic parameters of binding interactions with a 

two-step mechanism and applies these methods to characterize the thermodynamics of 

LC8 binding in microscopic detail. In the process, the work examines the intrinsic 

determinability of multi-step binding parameters and the impact of uncertainty in analyte 

concentration on parameter determinability. 

 Chapter three consists of a portion of an article published in Life Science Alliance 

examining the LC8 motif. The chapter describes a comprehensive analysis of known LC8-

binding motifs, with a focus on examining the flanking motif region, outside the TQT 

anchor. It additionally describes a method for predicting LC8-binding, that utilizes known 

sequences to predict a propensity for binding in new sequences. It additionally describes 

an online resource consisting of a database of LC8-interacting proteins, as well as a public 

form of the tool for LC8 interaction prediction.  

 Chapter four is a manuscript prepared for journal submission, focused on 

characterization of binding between LC8 and the tumor suppressor Kank1. The work 

demonstrates that Kank1 binds LC8 in cells, recruiting it to the cell cortex. Kank1 defies 

expectations, containing only a single predicted LC8-binding motif, but binding LC8 

multivalently at seven sites. We demonstrate that the protein contains no strong-binding 

LC8 motifs, despite the full sequence binding tightly to LC8, indicating the complex is 

strongly driven by cooperativity in binding.  
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 Lastly, the fifth chapter of this dissertation summarizes the important findings in 

chapters two through four, and the impact of the work on the study of LC8 interactions. It 

highlights the importance of studying the thermodynamics of complex binding interactions 

in detail, and discusses the unique challenges presented by multivalent LC8-binding 

interactions, as well as what is being done to begin tackling these challenges.  

Two additional manuscripts of original work can be found in appendices 1 and 2. 

These consist of significant works completed during my PhD that bear no connection to 

my primary thesis project on LC8. The first appendix consists of a manuscript published 

in Structure on the solution dynamics of a protein from the peroxiredoxin family of redox 

proteins. Peroxiredoxins unfold locally as an essential component of their catalytic cycle, 

and we demonstrated that our model peroxiredoxin unfolds transiently even in absence of 

catalysis, emphasizing that the folding-unfolding equilibrium in these proteins is delicately 

tuned for the protein’s function. The second appendix is a manuscript prepared for journal 

submission which discusses the Sars-CoV-2 Nucleocapsid protein, its structure, and 

binding between the protein and RNA. The protein drives the formation of viral particles 

through multivalent binding to RNA, and our investigation focuses on the structure of 

nucleocapsid-RNA interactions, examining the protein’s preference for different RNA 

structures, and demonstrating that phase separation, which is connected to nucleocapsid 

formation in the virus, is driven by weak, nonspecific interactions between protein and 

RNA. 
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Chapter 2 

 

Quantifying Cooperative Multisite Binding through Bayesian Inference 
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Abstract 

Multistep protein-protein interactions underlie most biological processes, but their 

characterization through methods such as isothermal titration calorimetry (ITC) is largely 

confined to simple models that provide little information on the intermediate, individual 

steps. We examine the hub protein LC8, which binds to disordered regions of 100+ client 

proteins in a wide range of stoichiometries. Despite evidence that LC8 binds clients 

cooperatively, prior ITC thermodynamic analyses have relied on models that do not 

accommodate allostery, and furthermore do not account for critical uncertainties in analyte 

concentrations. To characterize allostery in a more rigorous fashion, we build on existing 

Bayesian approaches to ITC to quantify thermodynamic parameters for multi-step binding 

interactions impacted by significant uncertainty in protein concentration. Notably, we 

account for a previously unrecognized intrinsic ambiguity in concentrations in standard 

binding models and clarify how this ambiguity impacts the extent to which binding 

parameters can be determined in cases of highly uncertain analyte concentrations. Our 

approach is applicable to a host of multi-step binding interactions, and we use it to 

investigate two systems. First, we deeply examine 2:2 LC8 binding and find it to be 

significantly positively cooperative with high confidence for multiple clients. Building on 

observations in the LC8 system, we develop a system-agnostic ‘phase diagram’ calculated 

from synthetic data demonstrating that certain binding parameters intrinsically inflate 

parameter uncertainty in ITC analysis, independent of experimental uncertainties. 

Second, we study 2:2 binding between the dynein intermediate chain and binding protein 

NudE, where in contrast, we find little evidence of allostery. 

 

Introduction 

Intracellular processes frequently depend on complex, multistep interactions between 

proteins or between protein and small-molecule ligands3,48,49. The hub protein LC8 

provides an extreme example of binding complexity, accommodating over 100 client 

proteins via two symmetrical binding grooves9,36 – often binding in multivalent fashion with 

a range of stoichiometries8,10,15,41,44. LC8 is found throughout the eukaryotic cell, and 

involved in a host of cell functions, with client proteins including transcription factors8,44, 

tumor suppressors and oncogenes13,50, viral proteins19,51,52, and cytoskeletal proteins10,18.  

Structurally, LC8 forms a small 20 kDa homodimer (Fig. 2.1a), with two identical 

binding grooves formed at the dimer interface9,36. These binding sites induce a beta-strand 
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structure in a well-characterized linear motif anchored by a TQT amino acid sequence 

within disordered regions of client proteins8,10. Despite extensive studies8,18,39, the 

mechanisms and thermodynamics of LC8 binding are still not fully understood, due to the 

difficulty of deconvoluting a multiplicity of microscopic states in its complex binding 

processes.  

 While usually fit to a simple model, LC8-client binding is likely impacted by 

allostery. The first evidence indicating allosteric behavior arose from nuclear magnetic 

resonance (NMR) titrations of peptides with LC8. A partially bound intermediate was 

detected half-way through titrations, with an estimated 2.5 to 6-fold higher affinity for the 

second binding step relative to the first38. Further evidence of allostery emerged from 

isothermal titration calorimetry (ITC) studies. Although ITC data are commonly fit to a 

simple n-independent sites binding model53,54, this model is inadequate for a number of 

LC8-client systems that exhibit non-sigmoidal behavior, dipping slightly in heat per 

injection during early titration points instead of forming a flat plateau (Fig. 2.1b)8. This non-

canonical behavior raises the possibility that these isotherms may fit well to a two-step 

model of binding, more representative of the expectation of dimeric LC8-client binding55.  

 The use of ITC to interrogate complex systems and multi-step binding is 

challenging, as ITC data is of relatively low information, and individual isotherms often fit 

well to varied model parameters55,56. Despite this, well designed experiments can utilize 

ITC to measure cooperativity or allostery57,58, entropy-enthalpy compensation39,59, 

changes in protonation state60,61, and competition between multiple ligands62,63. In general, 

these studies rely on fitting data globally to a model that includes several isotherms 

collected at varied conditions to reduce ambiguity of fit parameters55,56, or a ‘divide and 

conquer’ type approach, where subsections of a complex binding network can be isolated 

and examined 18,57. 

Concentration uncertainty is a critical concern in analysis of ITC data. In principle, 

accurate determination of protein and ligand concentration is a prerequisite for obtaining 

reliable thermodynamic quantities by ITC, yet these values are challenging if not 

impossible to obtain for many systems54,64–66. The most common software package for 

fitting ITC data, built in Origin 7.0 and distributed with calorimeters, attempts to account 

for this uncertainty in its simplest multi-ligand model through the stoichiometric parameter 

n, which can fit to non-integer values to correct for error in cell concentrations53,67. 

However, this implementation ignores uncertainty in concentration of the titrant in the 
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syringe, and is only applicable to the simple binding model, as complex binding models in 

Origin have no comparable correction factor. The popular and highly flexible fitting 

software SEDPHAT greatly improves on Origin’s capabilities, allowing for both explicit or 

implicit (i.e. an ‘inactive fraction’ correction) uncertainty corrections56,68. As the authors 

note, however, allowing for variation in both analyte concentrations makes binding 

constants indeterminable within SEDPHAT due to correlative effects among model 

parameters. 

Bayesian analysis offers a natural framework for incorporating uncertainty in 

concentration measurements in ITC analysis54,69. In a Bayesian framework, 

thermodynamic parameter determination is guided by a mix of experimental data and 

‘prior’ information, such as uncertainty ranges/models, that weights the overall ‘posterior’ 

probability of a given set of thermodynamic parameters. The posterior distribution of 

estimated binding parameters generated through Bayesian analysis is a complete 

description of the probability range of each model parameter – and correlations among 

parameters – based on the input data and priors.  With a meaningful prior description of 

concentration uncertainty, there is reduced risk of underestimating uncertainty in 

thermodynamic binding parameters.  

 We build on earlier applications of Bayesian inference to ITC.  Nguyen et al. 

(2018)54 studied 1:1 binding using a Bayesian statistical framework accounting for 

concentration uncertainty and performed sensitivity analysis on concentration priors. For 

a two-site binding model, Duvvuri et al. (2018)70 demonstrated that a Bayesian method 

can accurately and precisely determine two separate affinities when applied as a global 

model to several isotherms, but the work assumes no uncertainty in measured 

concentrations70, raising the possibility that parameter uncertainty is underestimated54,56.  

Cardoso et al. (2020)69 used a simplified 4-step binding model with a single common 

binding enthalpy for a set of isotherms to determine 3 of 4 distinct affinities between protein 

and ligand, with the fourth being uncertain across a range of several orders of magnitude. 

Although Cardoso et al. (2020)69 include concentrations as model parameters, they greatly 

narrow concentration priors using a preliminary ‘calibration’ assuming independent sites. 

We note that the n-independent sites model is not appropriate for complex systems, 

particularly in cases where the independent-sites model does not fit well to the isotherm 

shape. A sensitivity analysis regarding concentration uncertainty was not performed in 
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either multisite study, and neither work probed the information content of single isotherms 

for multisite systems. 

Here, we report a Bayesian analysis of allosteric effects in two-site systems with a 

careful accounting of concentration effects critical for reliable analysis. We show that LC8-

client interactions unambiguously exhibit positive allostery, driving binding towards a fully 

bound state. In contrast, symmetric two-site binding between the coiled coil domain of the 

dynein cargo adaptor NudE and the intermediate chain (IC) of dynein71 shows no 

significant evidence for allostery.  

 

 
Figure 2.1: LC8 binds clients through a two-step mechanism. (a) Diagram of LC8-
client binding, showing a structure of apo LC8 on the left, and a fully bound structure (PDB 
3E2B) on the right. Intermediates are boxed to indicate they are symmetric and 
indistinguishable species. (b) example isotherms for binding between LC8 and client 
peptide taken from GLCCI (left) and binding between the intermediate chain (IC) and 
partner NudE (right). 

 

We also provide methodological advances.  First, we derive simple mathematical 

relations that govern the influence of concentration uncertainties on different binding 

parameters, providing a fundamental basis for the previously noted strong sensitivity of 

enthalpies – but not free energies – to concentration uncertainty56.  Second, by using 

synthetic models, we systematically characterize the causes of binding-parameter 

uncertainties in two ways: we  demonstrate that substantial uncertainty can result from the 

binding parameters themselves, e.g., strong vs. weak binding; and we also determine the 

effects of different prior functional forms and uncertainty ranges in a multisite context, 

extending the work of Nguyen et al. (2018)54.  Finally, we outline best practices for 

determining model parameters and uncertainties in a multisite Bayesian framework. 
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Results 

A mathematical “degeneracy” in thermodynamic parameters impacts analysis at any 

stoichiometry 

We first present a simple mathematical analysis that explains previously reported 

correlation effects among titrant and titrand concentrations56, and which significantly 

impacts the overall analysis of ITC data.  Importantly, our analysis applies to monovalent 

or multivalent binding.  Specifically, when the concentrations are uncertain, as is common 

in analysis of ITC data54,56, we show below that only the ratio of titrant:titrand 

concentrations can be estimated, rather than the individual values, and this ambiguity 

propagates to all thermodynamic parameters.  Hence, there is a “degeneracy” in that 

multiple solutions (sets of concentration values and thermodynamic parameters) will 

equally describe even idealized ITC data lacking experimental noise (Fig. 2.2).  

 

Figure 2.2: Exact degeneracy in binding isotherms. Based on the scaling relations of 
Eq (2), for any set of ligand and total macromolecule concentrations (Xt, Mt), there are 
infinitely many alternative concentrations (e.g., filled circles) on a diagonal line in the ([Xt], 
[Mt]) plane which yield exactly equivalent isotherms (inset) for a fixed set of 
thermodynamic parameters. For any given point in parameter space, equivalent 
degenerate lines can be drawn in a radial manner (e.g. the two additional solid black lines), 
passing through the point and the origin. The plotted synthetic isotherms are for 1:1 
binding, but analogous degeneracy also holds for multivalent binding - see text.   
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We first describe the degeneracy for standard 1:1 binding between a 

macromolecule M and ligand X, following the scheme 

                                                           M+ X ⇌ MX                                   (1) 

                                                

The heat, Q, of a 1:1 binding system at any titration point can be described using the 

standard quadratic binding equation used in the independent sites model47,53: 
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where [Mt] and [Xt] are the concentrations of macromolecule and ligand (i.e., cell 

component and syringe component) respectively, while Kd and ΔH are the binding affinity 

and enthalpy.  

The degeneracy is demonstrated by introducing a linear scaling of all parameters 

by an arbitrary number denoted 𝛼. Specifically, we apply the following transformations: 
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Applying this set of transformations, we can rewrite the binding equation: 
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Regardless of the value of the factor α, all introduced factors cancel leaving Q unchanged.  

Nearly identical considerations apply in the two-step binding model of primary 

interest here.  As detailed in the methods, the value of Q is unchanged when both 

concentrations and both Kd values are multiplied by α and both ΔH values are divided by 

α. The underlying model is more complex as it requires solving a system of nonlinear 

equations (see Methods for details), but the result is that α is propagated through the 

nonlinear equation solutions, and once again cancels in the calculation of Q, leaving the 

heat value unchanged.  

For reference, the corresponding concentration degeneracy scaling relations for 

2:2 binding derived in Methods are as follows: 
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To facilitate analysis and discussion of allostery below, from this point on we 

parameterize our model using ΔG, ΔΔG, ΔH and ΔΔH. The ΔΔG and ΔΔH value 

correspond to the differences between the first and second binding steps. Thus Kd1 = 

eΔG/RT, Kd2 = e(ΔG+ΔΔG)/RT, and ΔH2 - ΔH1 = ΔΔH. The energy-like formulation allows for easy 

assessment of allostery, as ΔΔG is the free energy of allostery (which will be zero in the 

absence of allostery and positive or negative for negative or positive cooperativity, 

respectively), and ΔΔH is the change in enthalpy between binding steps with analogous 

characterization.  

The degeneracy and associated scaling relationships in Eq (3) provide important 

insight into assessment of thermodynamic parameters inferred from ITC data.  We see 

directly that binding enthalpy changes proportionately to concentrations of titrant and 

titrand.  That is, a given percent error in an assumed concentration of either ligand 

(characterized by alpha) translates to the same scale of error in ΔH.  On the other hand, 

the binding free energy ΔG, is less sensitive to concentration errors, due to scaling with 

ln(α), rather than directly multiplied by α. 

The scaling relationships of Eq. (3) also presage a significant issue in Bayesian 

inference, namely, sensitivity to the choice of priors. Within the set of degenerate solutions 

(diagonal lines of concentration pairs in Fig. 2.2), the Bayesian ‘likelihood’ probability – 

which describes how well a parameter set fits the data in the absence of prior information 

– will be constant, as solutions are mathematically identical. Thus, within any degenerate 

set, the assumed prior distributions for concentrations, will determine the overall posterior 

distributions (see Methods). Because the posterior distributions ultimately determine the 

uncertainty ranges, this is a key point. 
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Below, we continue to examine the ramifications of the concentration degeneracy, 

demonstrating concretely that enthalpy is more impacted by uncertainty in concentrations 

than free energy. We also examine the influence of priors on parameter distributions, and 

discuss parameter distributions determined from isotherms in cases of high concentration 

uncertainty.  

 
Validation of Bayesian inference pipeline with synthetic data 

To test our Bayesian pipeline (Methods), we generated ‘synthetic’ simulated isotherms 

using hand-chosen sets of thermodynamic parameters ΔG, ΔΔG, ΔH, ΔΔH (see Fig. 2.1) 

inserted in Methods Eq (15) with added Gaussian noise. Following an exploration using 

synthetic data of how allostery impacts binding isotherms (e.g. Fig. 2.3a), we selected 

synthetic model parameters to mimic the isotherm shape seen in LC8-peptide binding 

examples. Specifically, slight positive allostery (ΔΔG = -1, ΔΔH = -1.5 kcal/mol) was best-

suited to imitating real LC8-peptide isotherms, along with ΔG = -7 and ΔH = -10 kcal/mol. 

Synthetic noise is taken from a Gaussian distribution with a zero mean and standard 

deviation σ = 0.2 μcal.  As shown in Fig. 2.3, we used our pipeline to sample posterior 

distributions for these isotherms. For concentrations, we chose uniform prior distributions 

of ±10% of the true value (which simply limits sampled concentration values to these 

ranges).  The choice of 10% approximates what we view to be an attainable level of 

uncertainty for experimental protein concentrations.  

Under these representative conditions, inferred posterior distributions fell around 

the known model parameters, and model parameters equate to isotherms which closely 

matched the isotherm shape (Fig. 2.3b,c). The finite widths of the distributions are due to 

synthetic experimental noise.  The posterior distribution for ΔG covers a range of ~1 

kcal/mol distributed around the true value of -7 kcal/mol. Examination of the distribution 

lets us define a ‘credibility region,’ that contains 95% of the distribution probability (i.e., 

from the 2.5 to 97.5%ile of the distribution), which is directly analogous to a frequentist 

confidence interval. For ΔG, the 95% credibility region is -7.5 to -6.4 kcal/mol. Similarly, 

the 95% credibility region for ΔΔG covers a range of ~1.5 kcal/mol, evenly distributed 

around -1 kcal/mol. ΔH and ΔΔH both have slightly wider credibility regions, with widths 

of 2.3 and 3.3 kcal/mol respectively, but both are distributed around the true values of -10 

and -1.5 kcal/mol respectively.  
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Figure 2.3: Analysis of two-step model using synthetic isotherms. (a) A set of 
synthetic isotherms for two-step binding with varied ΔΔG parameters demonstrating how 
allostery changes isotherm shape. Thermodynamic parameters are ΔG = -7, ΔH=-10, and 
ΔΔH=0. Concentrations are set at 17 and 500 μM for cell and syringe respectively, and 
injection volumes are 6 μL.  (b) A synthetic isotherm with added gaussian noise (points) 
with 50 fitted isotherms (lines) generated through the Bayesian pipeline, i.e., sampled from 
the posterior. (c) One and two-dimensional marginal distributions for thermodynamic 
parameters, with contours in the two-dimensional plots set at 95 (yellow), 75 (orange), 
50(purple) and 25%(black) confidence. Red lines and dots indicate true values for the 
synthetic isotherm. Marginal distributions, along with MCMC chains for all eight model 
parameters, including nuisance parameters can be found in SI Figure 2.1. (d) Marginal 
distributions for concentration parameters, exhibiting characteristic diagonal shape (Fig. 
2.2) with contours as in (c). (e,f) One-dimensional distributions for ΔG (e) and ΔH (f) plotted 
for models with prior ranges for concentrations of 1, 5, 10, 30 and 50% of the stated 
concentration. (g) Width of the 95% Bayesian credibility region, akin to a confidence 
interval, for thermodynamic parameters as a function of the width of the concentration 
prior used in modeling, plotted from models with prior ranges for concentrations of +/-1, 5, 
10, 30 and 50% of the stated concentration.  
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One benefit of Bayesian inference is the ability to examine multi-dimensional 

likelihood distributions to obtain correlations between model parameters. For example, in 

our two-dimensional distributions for the thermodynamic parameters, the ΔG and ΔΔG 

values are strongly negatively correlated (Fig. 2.3c), indicating a compensatory effect in 

the model, where increases in ΔG can be compensated by decreases in ΔΔG to arrive at 

similar solutions. Resultantly, the distribution for both ΔG and ΔΔG are broader than the 

‘total’ free energy (i.e., 2𝛥𝐺 +  𝛥𝛥𝐺), evidence that we can know the overall energy of 

binding more precisely than we can know the energy of each step (SI Fig. 2.2). 

Additionally, the mathematical degeneracy for concentrations described above can clearly 

be seen in these two-dimensional correlations: the two-dimensional marginal distribution 

for each concentration is a noise-broadened straight line covering the entire prior range 

(Fig. 2.3d).  The scaling relationship of the model parameters outlined previously means 

that each point along this diagonal corresponds to a degenerate solution, i.e., each point 

has equivalent likelihood based on the data.  

 

Impact of concentration degeneracy on two-site thermodynamic parameters assessed via 

synthetic data. 

Bayesian inference enables determination of distributions for thermodynamic parameters 

even in cases of a concentration degeneracy. The net result, as will be seen, is a 

broadening of (posterior) parameter distributions based on multiple equally likely solutions, 

constrained by the priors used.  Despite intrinsic limitations surrounding concentrations, 

the ratio of concentrations can be quantified with relatively high precision even when 

individual concentrations are highly uncertain. 

To quantify the impacts of the concentration degeneracy within a Bayesian 

inference pipeline, we examined a series of uniform prior distributions for concentrations, 

ranging from ±1% to ±50% for both concentrations. These priors were applied to a 

synthetic isotherm mimicking experimental parameters, as described in the pipeline 

validation above. The choice of concentration priors – which embody assumed or 

estimated experimental uncertainties – greatly impacts the predicted uncertainty of 

thermodynamic parameters.  The distributions for ΔG and ΔH, not surprisingly, both widen 

as the prior range is increased (Fig. 2.3e,f). As anticipated by the degeneracy scaling 

relations of Eq (3), the width of the distributions for ΔH and ΔΔH increases roughly linearly 

with the concentration prior range, while the distributions for ΔG and ΔΔG increase initially 
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at low concentration ranges then level off. This can be explained by the logarithmic 

relationship between the KD (which is what scales with the degeneracy) and free energy. 

Functionally, high uncertainty in concentrations therefore only slightly increases 

uncertainty in binding free energy, while having a more significant impact on binding 

enthalpy.  

The concentration degeneracy of the model limits the degree to which erroneously 

determined individual concentrations can be corrected.  As discussed above, the fact that 

the Bayesian likelihood is equal at any point along the degeneracy lines (Fig. 2.2) means 

that the data have little impact on the posterior distributions for individual concentrations, 

which instead takes the shape of the prior used. This can be seen in the model validation 

example (Fig. 2.3d), where the posterior distribution is approximately uniform, echoing the 

uniform prior.   

The ratio of concentrations (‘macromolecule’ to ‘ligand’), on the other hand, is a 

more meaningful parameter, and the quality of the ratio can improve a single uncertain 

concentration.  For example, when we sample the posterior for the same isotherm, but 

use a normal (i.e. Gaussian) distribution for one concentration prior and a uniform 

distribution for the other, both posteriors take the shape of a normal distribution (SI Fig. 

2.3).  This is a direct result of the degeneracy identified above. SI Table 2.2 shows 

concentration ratio credibility regions for the experimental systems. 

Because of the nearly determinative relationship between the prior and posterior 

concentration distributions, we elected to use uniform priors for concentrations throughout 

this work to avoid undue influence on our results from model priors.  We believe varying 

the widths of uniform priors is the best way to probe concentration uncertainty effects.  

For completeness, we also examined 1:1 binding with synthetic data.  Overall, the 

impact of the concentration degeneracy on model parameters is similar (SI Fig. 2.4): 

binding enthalpy posterior distributions are wider than free energy distributions.  In 

response to changes in concentration prior ranges, the posterior for ΔG is more impacted 

than in the two-step model, but the distribution remains much narrower than that of the 

enthalpy in every case. 
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Figure 2.4: LC8 binding to a peptide from the protein SPAG5. (a) Experimental titration 

isotherm of SPAG5 into LC8 (points) with 50 example traces (lines) drawn from the 

posterior distribution of thermodynamic parameters and concentrations. (b) One and two-

dimensional marginal distributions for thermodynamic parameters, with contours in the 

two-dimensional plots set at 95 (yellow), 75 (orange), 50(purple) and 25%(black) 

credibility. (c) Marginal distributions for concentrations of LC8 and peptide, showing a line 

of degenerate solutions, which may be compared to Fig. 2.2. (d) Marginal distributions for 

entropy (-TΔS) and entropy of allostery (-TΔΔS).  

 

Application to 2:2 LC8:IDP Systems 

We applied the Bayesian analysis pipeline to a set of 7 experimental isotherms of binding 

between LC8 and client peptides, all of which bind in a 2:2 ratio. Note that the two LC8’s 

form a strong homodimer (Kd ~ 60 nM)72 and this initial homodimer formation is excluded 

from our analysis. The systems were selected from a prior study8 for tight binding and their 

deviation from the standard sigmoidal isotherm shape. As noted above, the user-supplied 

uncertainties for concentrations may impact uncertainty in other parameters. Following 

analysis with priors of ±10% and ±20% of the measured LC8 concentration as determined 

by absorbance at 280 nm, we have elected to focus on results at ±10% (Table 2.1), as 

moving to ±20% does not greatly alter the posterior distributions (SI. Table 2.3), and we 

believe ±10% to be an achievable uncertainty in protein concentration for most cases. The 

high degree of purity (>95%) and high absorbance at 280 nm, due to  the presence of 6 

chromophores (1 Trp, 5 Tyr) allow for a high signal-to-noise ratio for the absorbance, 

reducing uncertainty in the measurement. Comparatively, because of the difficulty in 

accurately measuring concentration for peptides with few or no chromophores65,73 (1 Tyr 
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residue for the peptides discussed here8), we used a prior of increased width for the 

peptide concentration, up to a limit of ±50% of the initially measured value estimated by 

absorbance at 280 nm. As discussed above, the posterior distributions processed through 

the Bayesian pipeline are limited by the most restrictive prior used, owing to the 

concentration ratio being well defined (SI. Table 2.2). As a result, this approach ensures 

that posterior distributions are limited to the range around the measured concentration of 

LC8, allowing us to effectively infer the uncertain peptide concentration.  

 Bayesian analysis of the seven systems reveals significant heterogeneity in the 

precision with which binding parameters can be determined (Table 2.1).  As will be 

described in detail below, this is only partially reflective of apparent data quality (e.g., noise 

level).  Instead, certain binding parameters, particularly binding enthalpies, are intrinsically 

more difficult to characterize.  Variations in precision do not stem from inadequate 

sampling in the Bayesian pipeline: triplicate runs are performed to confirm sampling quality 

(see Methods) (example in SI Fig. 2.5). 

 

Table 2.1: Ranges for thermodynamic parameters for LC8-client binding. Values 

delineate 95% Bayesian credibility regions from sampled posterior distributions, which are 

akin to 95% confidence intervals.  

Peptide 
ΔG ΔΔG ΔH ΔΔH -TΔS -TΔΔS 

Min Max Min Max Min Max Min Max Min Max Min Max 

SPAG5 -6.9 -6.2 -2.1 -1.1 -18 -14 -1.8 3.6 6.9 11 -5.7 0.6 

BSN (I) -5.6 -4.9 -2.1 -0.9 -37 -14 0.1 45 8.8 32 -51 -2.6 

BSN (II) -7.1 -6.5 -1.2 -0.4 -5.8 -4.8 -9.1 -7.0 -1.9 -1.0 6.1 8.3 

SLC9A2 -6.8 -5.5 -2.6 -0.5 -24 -10 -5.0 23 3.7 18.3 -26 4.4 

VP35 -7.4 -6.8 -1.7 -0.9 -14 -11 -0.7 1.5 4.0 6.7 -3.0 -0.2 

GLCCI -6.1 -5.1 -2.6 -1.0 -27 -9.7 -0.5 36 3.7 22 -39 -0.5 

BIM -9.5 -7.1 -2.0 0.8 -12 -10 -0.5 2.9 1.4 4.4 -0.7 2.2 

 

In particularly tractable cases, such as for SPAG5 binding in Figure 2.4, the 

analysis provides marginal distributions of similar precision to those seen with synthetic 

data.  For binding between a peptide from the protein SPAG5 and LC8, Bayesian analysis 

yields a 95% credibility region of -6.9 to -6.2 kcal/mol for ΔG (Table 2.1), equivalent to a 

range for Kd1 of 8.7 μM to 27 μM. The 95% credibility region for ΔΔG, the allosteric 

difference between the first and second binding event, is -2.1 to -1.1 kcal/mol, roughly 
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equivalent to a 6 to 30-fold increase in affinity for the second binding step relative to the 

first. The change in binding enthalpy between first and second events, ΔΔH, is distributed 

around zero (Fig. 2.4c), with uncertainty >2 kcal/mol for all cases, meaning we are unable 

to discern conclusively if there is any allosteric change in enthalpy between binding steps. 

From ΔG and ΔH values for both binding steps, we can additionally calculate -TΔS and -

TΔΔS, for the entropy of binding and the change in entropy across binding steps 

respectively. Although the marginal distributions for these terms are quite broad (Fig. 

2.4d), the -TΔΔS mostly sits at negative values, indicating that binding allostery has a 

greater probability of being entropically driven.  See Table 2.1 for the full set of credibility 

regions. 

Some general conclusions about allostery are apparent from the full set of data 

(Table 2.1).  In all cases except one (binding to BIM), the distribution for ΔΔG is negative, 

indicating that all isotherms exhibit some positive cooperativity. Even for BIM, which has 

the widest ΔΔG distribution, the range predominantly covers negative values. All 

isotherms exhibit precisely determined free energies: 95% credibility regions cover a 

range of 2 kcal/mol or less for all cases except BIM. A common feature among some 

isotherms, seen clearly in the ‘fair’ and ‘poor’ examples in Figure 2.5, is an apparent loss 

of precision in our ability to determine model enthalpies, as both show wide distributions 

for ΔH and ΔΔH. For these isotherms (e.g., SLC9A2, GLCCI, and BIM), the two-

dimensional marginal distribution for ΔH and ΔΔH shows a clear correlative effect (SI Fig. 

2.6), and the one-dimensional distribution for the ‘total’ enthalpy (i.e. 2𝛥𝐻 +  𝛥𝛥𝐻) is 

narrower than the individual parameter distributions (SI Fig. 2.2). In sum, the wide enthalpy 

distributions represent an inability to precisely determine ‘microscopic’ enthalpies for 

individual binding events, even when the overall enthalpy can be determined with high 

precision. 

 

 

Parameter inference from multiple isotherms 

The use of additional experimental information is expected to increase the precision of 

parameter determination, and Bayesian inference is readily adapted to employ multiple 

isotherms, whether at matching or different experimental conditions70.  For some systems 

where two isotherms were available, we therefore used a ‘global’ model that included both 

isotherms. Despite the higher dimensionality resulting from additional nuisance 

parameters (see Methods), we found it relatively easy to sample the parameter space for 
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a two-isotherm model (SI Fig. 2.7). In some cases, such as for GLCCI, the addition of a 

second isotherm usefully narrowed posterior distributions, while in others (e.g. BSN motif 

I) it proved less impactful, largely just taking the same shape as the distribution for 

individual isotherms. We note that the isotherms examined were designed as technical 

replicates, not as optimized isotherms at different conditions for a global model. We expect 

results on multiple isotherms with varied experimental setups, e.g., different 

concentrations, to be more consistently valuable. Nevertheless, the global models 

demonstrate our ability to apply the pipeline to multiple isotherms simultaneously, a key 

step toward improved precision going forward. 

 

 

Figure 2.5: Example distributions for thermodynamic parameters from 3 LC8-

peptide isotherms. Binding between LC8 and peptides from Ebola VP35 (left), SLC9A2 

(middle) and motif 1 from BSN (right). Isotherms are shown at the top, and distributions 

for thermodynamic parameters are shown below. Horizontal axes represent the full width 

of the uniform prior range for each parameter to allow for direct comparison between each 

isotherm. 

 

IC-NudE binding 

To confirm the utility of the Bayesian pipeline for a range of systems, we tested it on 

binding of the intermediate chain of dynein (IC) to the non-dynein protein NudE. Binding 
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between IC and NudE can be described by the same model as binding between LC8 and 

clients – NudE forms a dimeric coiled-coil structure which then accommodates two strands 

of monomeric disordered IC for a 2:2 complex stoichiometry (Fig. 2.6a)71. Prior 

characterization of NudE-IC binding used a simple independent sites binding model 

without taking in consideration any binding allostery, and thus provides a good system for  

re-analysis as well as for comparison to LC8-client binding71,74. 

 
Figure 2.6: binding between the intermediate chain (IC) and NudE. (a) A model of IC-
NudE binding, which forms a 2:2 complex, similar to what is seen in LC8. A cartoon 
diagram of NudE is shown in purple and IC in orange. (b) Sampled distributions modeled 
from two isotherms for binding between IC and NudE from yeast. Marginal distributions 
for thermodynamic parameters are shown on the left, and the top right corner contains the 
experimental isotherms (points) with model values (lines) drawn from the posterior. 

 

For IC-NudE binding, a two-step model recapitulates the parameters determined 

in fits to independent sites modeling with little evidence of allostery. For high confidence 

in model parameters, we applied a global model, identical to the one used in LC8-client 

binding, to two titrations of IC into NudE. Bayesian sampling returns distributions that are 

narrowly dispersed for all thermodynamic parameters, both for individual-isotherm models 

(SI. Fig. 2.8), and for the global, 2-isotherm model (Fig. 2.6). Neither ΔΔG nor ΔΔH are 

significantly shifted from a distribution around zero, suggesting little, if any, allostery in 

binding. Simple models on these data indicate that binding has an enthalpy of -3.1 

kcal/mol, and an affinity of 2.3 μM (i.e. a ΔG of -7.6 kcal/mol) implying a TΔS value of 4.5 

kcal/mol, meaning binding is entropically favored75. Our two-step model predicts a ΔH 



32 
 

distribution centered near -3 kcal/mol, and a ΔG distribution centered near -7.5 kcal/mol, 

aligning well with the published values. This binding interaction works well as a 

counterexample to LC8-client binding: distributions for allosteric terms are centered 

around zero and determined distributions match closely to reported values modeled from 

an independent sites model.  

 

‘Phase diagram’ analysis reveals weak binding affinities underlie loss of precision in 

binding enthalpies 

We exploit synthetic isotherms to systematically survey binding parameters and determine 

the extent to which the physical parameters themselves intrinsically lead to lower precision 

in parameter inference.  That is, for a fixed level of experimental noise, we quantify the 

widths of posterior marginal distributions and array the information in an interpretable 

‘phase diagram.’  This effort was motivated by initial anecdotal observations that weaker 

binding was correlated with increased uncertainty, i.e., broader posterior marginals, in 

binding parameters, especially ΔH and ΔΔH.  We created a series of synthetic isotherms 

on a grid of ΔG and ΔΔG values and determined posterior distributions for each isotherm. 

Two-dimensional plots of the width of these distributions (Fig.  2.7) as a function of ΔG 

and ΔΔG capture trends in our ability to determine model parameters.  

 

Figure 2.7: Phase diagram of width of posterior distributions as a function of model 

parameters. Two-dimensional plots along axes of ΔG and ΔΔG, wherein synthetic data 

with those parameters were generated, then sampled for posterior distributions at each 

point. Boxes are colored by the width of the 95% credibility region for ΔH (a) and ΔΔH (b), 

with lighter colors correspond to wider credibility regions (color bars). Red polygons 

demonstrate where each Kd (Kd1 for left, Kd2 for right) is greater than 17 µM, the cell 

concentration set for these synthetic isotherms. Red dots indicate mean values for 

experimental isotherms for binding for BSN motif I and SLC9A2 
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Generally, we lose precision in binding enthalpy in situations of weaker binding. 

Interestingly, the relationship appears to differ somewhat between ΔH (Fig. 2.7a) and ΔΔH 

(Fig. 2.7b). For ΔH, the primary dependence appears to be on the value of ΔG, with 

precision decreasing when ΔΔG is 0 or negative (top left corner of 7a). Conversely, the 

precision for ΔΔH appears dependent on both ΔG and ΔΔG, with the worst precision found 

in the top right quarter of the plot, where binding is weak and allostery is positive. In 

particular, precision reduces meaningfully in the red boxed areas shown in Fig. 2.7, where 

the affinity of each binding step is above the cell concentration (17 μM). This is consistent 

with our experimental results, wherein tighter-binding isotherms, higher magnitude ΔG 

value) such as Ebola VP35 and SPAG5 (Fig. 2.4, Fig. 2.5) perform better in terms of 

enthalpy determination than slightly weaker-binding isotherms such as SLC9A2 (Fig. 2.5), 

and much better than weakly-binding isotherms such as for BSN motif I (Fig. 2.5).  

This overall loss in precision in cases of weaker binding is consistent with the 

concept of c in ITC experimental design47,76, with additional considerations. The parameter 

𝑐 =  𝑛[cell]/𝐾𝑑, where n is binding stoichiometry, is a guide for setting experimental 

concentrations: ideally, c should be between 10 and 1000.  For example, when n=1, the 

concentration in the cell should be 10-1000 times the Kd.  In a multisite system, the exact 

relationship between each Kd and enthalpy determination is complicated by the existence 

of two binding constants, both of which may be outside of the relevant range and therefore 

limit precision. Conversely, model precision appears highest when both Kd1 and Kd2 are 

within the 10 to 1000 range for their respective c values. This neatly explains the steep 

drop-off in precision we see above -6.5 kcal/mol ΔG values for precision in ΔH, boxed in 

red in Figure 2.7. Similarly, when ΔG2 (i.e. ΔG + ΔΔG) is above -6.5, the precision drops 

off steeply for ΔΔH, seen along a diagonal boxed in red in the figure. 

For weak-binding isotherms such as BSN motif I, the lack of precision in enthalpy 

determination can be explained by a value for Kd1 that is above the experimental 

concentration. For BSN motif I (location marked in Fig. 2.7, along with SLC9A2), ΔG is 

near -5 kcal/mol, compensated for by a negative ΔΔG value such that overall binding still 

appears relatively strong. Functionally, this means that the first-glance evaluation of 

binding affinity excluding allosteric considerations can be somewhat misleading, hiding 

the fact that ΔG (and therefore Kd1) is relatively weak. Even hidden in this fashion, the 

weakness of Kd1 nonetheless hurts our ability to accurately determine binding enthalpies 
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and explains the variation we see in precision in enthalpy parameters throughout our 

tested data. 

 

 

Discussion 

This work examines the application of two-step binding models to isothermal titration 

calorimetry binding data, focusing on the hub protein LC8 and on accounting for critical 

uncertainties. LC8 binds over 100 client proteins in eukaryotic cells, and is involved in 

regulating a host of cell functions, motivating the detailed mechanistic study of LC8 

binding. Using a Bayesian framework, we sought to determine precisely how much 

information can be extracted from a single isothermal titration (ITC) calorimetry isotherm, 

and examine how uncertainty in analyte concentration impacts model parameters, an 

investigation greatly aided by the use of simulated ‘synthetic’ isotherms with known 

parameters. Building on prior work54,69,70, we have advanced Bayesian analysis of binding, 

and applied it to rigorous biophysical characterization of binding between LC8 and client 

peptides, as well as binding between the intermediate chain of dynein and the coiled-coil 

domain of NudE.  We also used synthetic data to unambiguously separate effects of 

experimental error from intrinsic limitations, and we systematically surveyed the latter to 

generate a ‘phase diagram’ of intrinsic (in)tractability. 

 

Allostery in LC8 binding 

Our data show that LC8 can bind client proteins with significant positively 

cooperative allostery. Of the 7 peptides examined here, Bayesian analysis for all except 

one (BIM) yields a highly certain negative ΔΔG value, in agreement with early NMR studies 

that suggested positive allostery in LC8 binding38. Further investigation is required to 

determine whether such behavior is universal for LC8 client peptides.  For the present 

study, we selected test isotherms with preference for two criteria we anticipated would 

leverage Bayesian modeling: (1) tight-binding to LC8 and (2) an isotherm shape that 

breaks from a strict sigmoid. Because this was neither a comprehensive nor random 

selection of systems, more work will be needed to determine conclusively whether LC8 

binding is uniformly positively cooperative and whether the degree of allostery is sequence 

dependent.  
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 Our findings are a step toward understanding the underlying biological function of 

LC8 allostery. While LC8-client complexes are varied, the putative functional unit of many 

LC8-client interactions is a 2:2 bound structure, where LC8 promotes dimerization in client 

proteins11,21,77. Further, In proteins where LC8-binding plays a structural role, such as at 

the nuclear pore in yeast15,16, fully bound states driven by cooperativity are more likely to 

be highly rigidified. In both the case of 2:2 binding, and structural complexes, then, the 

functional state is promoted by cooperativity. We have proposed that positive allostery 

could drive the formation of homodimeric complexes38, with the same client bound to each 

LC8 motif, and that allostery could effectively encourage homologous complexes while 

discouraging heterologous ones. In the future, ITC or nuclear magnetic resonance 

titrations of a second peptide into a bound LC8-peptide complex could be used to examine 

whether heterologous binding is indeed disfavored. The picture of LC8-client binding is 

additionally complicated by the discovery over the last decade of multivalent LC8-binding 

proteins such as the nucleoporin NUP159 or the transcription factor ASCIZ. Complexes 

between LC8 and multivalent clients are often highly heterogeneous in both stoichiometry 

and conformation42,44,46, and particularly in the case of ASCIZ, the fully bound state is 

highly disfavored by some form of negative cooperativity, thought to be mediated through 

the linker sequences between LC8 motifs. This negative cooperativity ensures that ASCIZ 

is sensitive to LC8 even at high LC8 concentrations. The role that allostery of LC8 binding 

plays in these interactions is likely very complicated, and its relationship to effects seen in 

multivalent binding that rely on the length and structure of linkers between motifs46,78, 

remains to be seen. 

 The mechanism of allostery appears to be entropically driven. While entropy is 

often the term with the widest distribution (Table 2.1), owing to its dependence on both 

the free energy and the enthalpy, there is a clear trend in our results towards positive 

TΔΔS values, which equates to the second binding step being more entropically favorable 

than the first. Relatedly, NMR dynamics measurements indicate LC8’s flexible core is 

rigidified on binding to clients39,40. Since LC8-binding allostery necessarily requires some 

change in the structural ensemble of LC8, it is possible that the first binding step can be 

thought of as ‘paying up-front’ for the entropic cost of both binding steps–i.e., rigidifying 

the whole LC8 core. This mechanism would also allow for variation in allostery on a per-

peptide basis, as the degree of rigidification in the core seen by NMR is dependent on 
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client sequence39. Future molecular dynamics simulations can examine the differences in 

rigidity of the LC8 core in different bound states and across binding to different peptides.  

 

Bayesian inference in binding analysis 

 “How much information is contained in an ITC isotherm?” is a fundamental 

biophysics question that Bayesian inference is uniquely suited to answer.  Building on 

prior work54,69,70, we have improved the ability of the Bayesian approach to account for the 

uncertainty that intrinsically occurs in both titrant and titrand concentrations.  Our approach 

was motivated in large part by the apparently novel recognition of a mathematical 

“degeneracy” in ITC analysis, i.e., the existence of multiple solutions even in the absence 

of experimental noise, which prevents inference of a fully unique set of thermodynamic 

parameters.  This degeneracy holds for simple 1:1 binding and apparently for arbitrary 

stoichiometry, as described in the Results. 

While fitting ITC data to multi-step binding and other complex models is 

challenging, Bayesian inference allows for quantified “posterior” probability distributions 

for model parameters, reducing the risk of overfitting a complex model to insufficient data. 

These posterior distributions – or more accurately, the joint distribution over all binding 

parameters – fundamentally answer the question of the information contained in an ITC 

isotherm54,70.  Bayesian inference is particularly powerful both for handling the degenerate 

nature of binding models that account for concentrations, and for experiments like ITC, 

which are very ‘low-information’ by nature55,56. 

The Bayesian approach offers several advantages over frequentist fitting 

methods54,56 that are particularly useful in the case of ITC-measured binding: (1) Bayesian 

inference is not hampered by correlative or degenerate model solutions, allowing for 

inclusion of concentration parameters,  (2) inferred distributions offer insight into 

correlative relationships in model parameters, and (3) the Bayesian model is highly 

flexible, and allows for incorporation of additional experimental data, whether additional 

isotherms or through the implementation of a variety of prior distributions.   

Our investigation of how concentrations impact model parameters has shown that, 

as expected from the correlative relationships of the model parameters, that uncertainty 

in concentration significantly increases uncertainty in binding enthalpy, and has a reduced 

impact on free energy. This agrees well with Nguyen et al. (2018) who reported results on 

1:1 binding, suggesting the concentration-enthalpy relationship is likely to be generic to all 
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binding models. We have shown that while the individual concentrations may be 

indeterminable from the model alone, the ratio of concentrations can be readily 

determined, provided the underlying stoichiometry of binding is known (SI Table 2.3).  

Our primary goal has been to quantify uncertainty as completely as possible in 

determination of thermodynamic binding parameters. From a single isotherm, we sample 

marginal posterior distributions with widths on the scale of 1-2 kcal/mol for a two-step 

model of binding with four thermodynamic parameters, consistent with prior Bayesian 

analysis69,70. Although this is much higher uncertainty than the fractions of a kcal/mol 

usually reported in the analysis of ITC data57,58, the difference can be explained to a great 

extent by the complexity of the two-step model, which intrinsically includes other 

correlative effects, e.g., between ΔG and ΔΔG, which are not accounted for in frequentist 

fitting methods. Additional uncertainty, beyond what can be attributed to the two-step 

binding model, arises from our ‘skeptical’ consideration of analyte concentrations, 

modeled by realistically wide concentration priors (± 10% for LC8, up to ±50% for peptides) 

that contribute to uncertainty in determined parameters.  While ‘microscopic’ free energy 

and enthalpy parameters for individual binding steps cannot always be determined with 

good precision, the total values accounting for both steps show improved precision (SI 

Table 2.3, SI Fig. 2.2). 

We believe that, in cases where higher precision is required for binding 

parameters, uncertainty can be decreased through the use of careful concentration 

determination through multiple methods, and the use of global models derived from 

multiple isotherms at varied concentrations. 

 

Synthetic datasets guide experimentation 

 Our investigation has benefited greatly from the use of synthetic isotherms. Built 

from known thermodynamic parameters, and modeled using our Bayesian pipeline, the 

value of synthetic isotherms as an aid in experimental design is well-established54,56. They 

are particularly valuable in cases of complex binding, where it is not necessarily clear how 

determinable model parameters are, such as in our case. Synthetic isotherms have 

allowed us to test and troubleshoot our pipeline (Fig. 2.3), probe the information content 

of isotherms under variable conditions of concentration and priors (Fig. 2.3, SI Fig. 2.4), 

and examine how thermodynamic parameters themselves impact our ability to determine 

information from isotherms, resulting in the ‘phase diagram’ of relative tractability (Fig. 
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2.7). In the context of multi-isotherm modeling, we believe that utilizing synthetic data to 

design new experiments, such as is done with frequentist fitting in the program 

SEDPHAT56,68 will be particularly valuable.  

 

Practical limitations of Bayesian sampling and global modeling 

Bayesian statistical analysis is much more computationally expensive than 

frequentist fitting methods. It usually relies on Markov chain Monte Carlo (MCMC) 

sampling, which requires simulating a sufficient number of steps to adequately explore the 

parameter space, potentially including a need to locate and sample multiple probability 

peaks (akin to energy basins in conformation space). For our ITC model, simple MCMC 

sampling methods proved unable to adequately sample the model space, even following 

sampling times of several days and over 4 million samples. While the ensemble sampler79 

used by us and others applying Bayesian models to ITC69,70 has been robust for our 

purposes, sampling  continues to be an important consideration, especially when 

considering future study of more complex models. For all work presented here, wall-clock 

sampling times were on the scale of hours, and hence readily feasible.  More complex 

models could require significantly more sampling, although there is no simple scaling law 

that applies because of the uncertain nature of the parameter-space ‘landscape’. Global 

modeling of multiple isotherms may also require additional sampling: as additional 

isotherms are added to a global model, each one brings with it a new set of nuisance 

parameters (4 per isotherm in our work - see Methods). In our hands, global models of 

two isotherms could be well-sampled within half a day. While global models of technical 

replicates may improve signal to noise ratios, ideally, global experiments should be 

designed with the intent of covering several experimental conditions69,70, and all 

experiments must be high quality to ensure they contribute to global fits. 

As an aid to investigators employing Bayesian inference in future studies, we have 

developed a set of guiding best practices (see manuscript). 

 

Concluding remarks and future steps 

Bayesian inference has allowed us to characterize the binding and allostery with 

high confidence for two different protein-protein interactions of 2:2 stoichiometry, despite 

meaningful uncertainties in analyte concentrations and inherent limitations of isothermal 

titration calorimetry. Our analysis was enabled by improvements to prior work 54,69,70 in 
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treating concentration uncertainties, and further demonstrates the value of Bayesian 

inference to ITC analysis.  We used synthetic data to systematically characterize the 

uncertainty landscape for 2:2 binding based on intrinsic binding properties, an approach 

that readily can be extended to other models. 

We examined two multi-step binding systems, the hub protein LC8 and the dynein 

intermediate chain (IC), For LC8, every client peptide studied showed evidence of 

allostery, corroborating hypotheses from a decade ago38, and thus serving as an important 

step toward quantitative  characterization of more complex LC8-client complexes.  In 

contrast, the dynein IC/NudE complex showed minimal evidence of allostery. 

While our focus here has been on two-step symmetric-site binding systems, 

Bayesian methods can be applied to other complex models investigated by ITC.  

Measurement of complex multivalent systems, enthalpy-entropy compensation, and 

ternary complexes or competition binding are all likely to benefit from analysis under a 

Bayesian framework. Although there is a limit on how much information can be gained 

from individual isotherms, investigation utilizing synthetic data can guide design, to help 

determine experimental conditions that maximize gain from additional ITC experiments 

within a given system.  
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Methods 

Binding Models - 1:1 binding 

For a 1:1 binding interactions between some macromolecule M, and ligand X: 

                                                          M + X ⇌ MX                             (1) 

 
The energy of binding is described by the following quadratic equation47  

𝑄

𝑉0
=
[𝑀𝑡]∆𝐻

2
{1 +

[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

− √(1 +
[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

)
2

−
4[𝑋𝑡]

[𝑀𝑡]
 } 

(2) 

[Mt] and [Xt ] are the total concentrations of macromolecule and ligand after each 

injection, ΔH is the binding enthalpy, Kd is the binding affinity, V0 is the volume of the 

cell, and Q is the heat of the system. This is directly equivalent to Origin’s independent-

sites model53 when n=1. The observed measurement is dQi (i.e. the heat of injection i), 

which is calculated from Q using the following equation: 

𝑑𝑄𝑖 = 𝑄𝑖 +
𝑉𝑖
𝑉0
(
𝑄𝑖 + 𝑄𝑖−1

2
) − 𝑄𝑖−1 + ∆𝐻0 

(3) 

where Vi is the injection volume for injection i, to account for the change in volume 

associated with the injection. ΔH0 is a correction term to account for heat of dilution and 

other effects that can shift, assumed constant over all injections in a given isotherm.  

 

Two-step binding 

Two-step binding is modeled in a standard fashion, such as in the binding polynomial 

model 80 as: 

                                                      M + X ⇌ MX + X ⇌  MX2            (1) 

                                                

Under this scheme, each binding affinity is as follows: 

2𝐾𝑑1 =
[𝑋][𝑀]

[𝑀𝑋]
 

1

2
𝐾𝑑2 =

[𝑋][𝑀𝑋]

[𝑀𝑋2]
 

(5,6) 
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where Kd1 and Kd2 are the affinities for the first and second binding step. Factors of 2 and 

½ account for the existence of indistinguishable rotationally symmetric intermediates in 

our model. The total concentrations of X and M can be written as: 

[𝑀𝑡] = [𝑀] + [𝑀𝑋] + [𝑀𝑋2] 

[𝑋𝑡] = [𝑋] + [𝑀𝑋] + 2[𝑀𝑋2] 

(7,8) 

Through rearrangement and substitution of equations 5 and 6, the total concentration 

equations can be rewritten only in terms of [M] and [X], the concentrations of free 

macromolecule and ligand: 

[𝑀𝑡] = [𝑀] + 2
[𝑋][𝑀]

𝐾𝑑1
+
[𝑋]2[𝑀]

𝐾𝑑1𝐾𝑑2
 

[𝑋𝑡] = [𝑋] + 2
[𝑋][𝑀]

𝐾𝑑1
+ 2

[𝑋]2[𝑀]

𝐾𝑑1𝐾𝑑2
 

(9,10) 

This system of equations is solved numerically for each given injection point to 

determine the unbound concentrations [M] and [X]. With both free concentrations 

determined, the system heat can be calculated: 

𝑄

𝑉0
= ∆𝐻1[𝑀𝑋] + (∆𝐻1 + ∆𝐻2)[𝑀𝑋2] 

(11) 

where ΔH1 and ΔH2 are the enthalpies of binding step one and two respectively. The 

concentrations of each bound state can be calculated from [X] and [M] and equations 5 

and 6. As in the 1:1 binding model, equation 3 is used to calculate the observed heat of 

injection, dQ, for each injection. 

 

Degeneracy in two-step binding 

When protein concentrations are included as model parameters, degenerate solutions 

are introduced. As outlined in the manuscript, the degeneracy is exposed from the 

following transformation:  

[𝑀𝑡]
        
→  𝛼[𝑀𝑡] 

[𝑋𝑡]
        
→  𝛼[𝑋𝑡] 

𝐾𝑑1
        
→  𝛼𝐾𝑑1 

∆𝐺1
        
→  ∆𝐺1 + 𝑅𝑇 log𝛼 

𝐾𝑑2
        
→  𝛼𝐾𝑑2 
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∆𝐺2
        
→  ∆𝐺2 + 𝑅𝑇 log𝛼 

∆𝐻1
        
→  
∆𝐻1
𝛼

 

∆𝐻2
        
→  
∆𝐻2
𝛼

 

(12) 

Here, α can be any positive number. Following this transformation, the equations used to 

calculate [X] and [M] (eq. 5 and 6 in the methods) are transformed:  

𝛼[𝑀𝑡] = [𝑀] + 2
[𝑋][𝑀]

𝛼𝐾𝑑1
+
[𝑋]2[𝑀]

𝛼2𝐾𝑑1𝐾𝑑2
 

𝛼[𝑋𝑡] = [𝑋] + 2
[𝑋][𝑀]

𝛼𝐾𝑑1
+ 2

[𝑋]2[𝑀]

𝛼2𝐾𝑑1𝐾𝑑2
 

(13,14) 

In these transformed concentration-sum equations, the new solutions for both [X] and 

[M] are exactly the previous solutions multiplied by 𝛼, as can be verified by substitution.    

Finally, applying the transformed values into the equation for Q yields  

𝑄

𝑉0
= 2

∆𝐻1
𝛼

𝛼[𝑋]𝛼[𝑀]

𝑎𝐾𝑑1
+
(∆𝐻1 + ∆𝐻2)

𝛼

𝛼[𝑀](𝛼[𝑋])2

𝛼2𝐾𝑑1𝐾𝑑2
 

(15) 

As in the 1:1 binding model, cancellation of α shows there is no change in the value of Q 

for any α value. This demonstrates the degeneracy for 2:2 binding, which we can expect 

to generalize to higher stoichiometries. 

 

Bayesian inference 

Bayesian inference is a method to calculate a “posterior” distribution of model parameter 

values based on prior assumptions (encoded as prior distributions for parameters 

presumed to hold in the absence of data) and the data. In general, as more data is 

analyzed, the influence of the prior will decrease81,82 . The posterior distribution of 

parameters provides rich information such as the parameter means and confidence 

intervals (technically “credibility regions”), in addition to correlation information regarding 

whether and how parameters vary together.  

Bayesian inference is based on Bayes’ rule81,83 which enables us to infer a 

distribution of parameters  (e.g., binding free energy and enthalpy, etc.) consistent with 

a given set of data D (e.g., ITC isotherms):  
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𝑃(|𝐷)  = 𝑃(𝐷|) 𝑃() / 𝑃(𝐷)  

(16) 

where 𝑃(|𝐷) is the (posterior) probability distribution of the model parameters, , given 

the data, D; 𝑃(𝐷|) (the likelihood) is the probability distribution of the data given the 

model parameters and is given below; 𝑃() (the prior) is the probability of the model 

parameters, specified below; and 𝑃(𝐷) (the evidence) is the probability of the data. For a 

given set of data, the unknown denominator 𝑃(𝐷) is constant, independent of 

parameters, so it does not affect the inference of posteriors.  Typically, it is not possible 

to analytically solve Bayes’ rule, so numerical methods such as Markov chain Monte 

Carlo are used to determine the target (posterior) distribution84–86. Details of our 

implementation are given below. 

 

Bayesian model 

Following prior work65,70, we assume the data has Gaussian noise with a mean of zero 

and an unknown standard deviation. The ITC model parameters  include concentration 

terms (Xinitial,Minitial) and thermodynamic terms (ΔG, ΔΔG, ΔH, ΔΔH), as well as the 

nuisance parameters (ΔH0 and σ) for heat of dilution and Gaussian noise. We use 

uniform prior distributions for the model parameters specified below and the unknown 

noise standard deviation unless otherwise stated. For global models (e.g. SI Fig. 2.7, 

Fig. 2.6), while it may be possible to assume a global noise or concentration model, we 

instead elected to apply global models with an additional set of concentration and 

nuisance parameters for each additional isotherm (bringing the total parameter count up 

to 12 for two-isotherm models). Uniform prior ranges for thermodynamic parameters 

were identical for all models, listed in SI Table 2.1. For nuisance parameters ΔH0 and σ, 

uniform priors of -10 to 10 μcal and 0.001 to 1 μcal respectively were used in all models.  

The likelihood for a set of data 𝐷 = {𝑥1, 𝑥2, … }, denoted (𝑝(𝐷|𝜃)), is the product of 

the probabilities at all data points xi based on a normal distribution of standard deviation 

σ centered around 𝜇𝑖(𝜃), the calculated value of point i for the binding model and 

parameters θ. It therefore takes the following form: 

𝑝(𝐷|𝜃) =  ∏
1

√2𝜋𝜎2
exp {−

(𝑥𝑖 − 𝜇𝑖)
2

2𝜎2
}

𝑖
 

(17) 
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and we note that  is assumed unknown and sampled as part of the Bayesian inference 

process.  When the priors are uniform, as we most often assume, the posterior is simply 

proportional to the likelihood given here. 

 

Sampling 

We use the affine-invariant Markov chain Monte Carlo sampling method87 to perform 

Bayesian inference, as also used by Duvvuri et al. (2018) and Cardoso et al. (2020). The 

affine-invariant sampler is an ensemble-based method in which multiple walkers move 

through the sample space in a correlated fashion. We empirically found this method to 

sample significantly better than the standard Metropolis-Hastings 84,85 sampler for our 

model. In our hands, the Metropolis-Hastings method was unable to converge on the 

target distribution after 4,000,000 sampling steps, whereas the affine-invariant sampler 

was able to converge after 100,000 sampling steps.  

 

Implementation 

We used the EMCEE package79 in Python to perform the affine sampling, using a 

20%:80% mix of the “differential evolution” and “stretch” move sets with 25-50 walkers.  

For each experiment, 3 replicas are run for 50,000-200,000 sampling steps/replica until 

convergence. Each replica converged, as determined by the autocorrelation time, where 

sampled steps must be greater than 50x the autocorrelation. Convergence was 

additionally assessed through examination of posterior distributions from model replicas, 

which were nearly identical in all cases (SI Fig. 2.5). This implementation runs at ~9 

samples for each walker per second on 4 cores of a node on the Oregon State College 

of Science computing cluster.  

 

The code, data, and an example notebook are available at: 

https://github.com/ZuckermanLab/Bayesian_ITC 

 

Experimental ITC 

All isothermal titration calorimetry experiments used here have been previously reported 

in other publications8,75. Briefly, LC8, IC and NudE were all expressed in BL21 or 

Rosetta cell lines, and purified to 95% purity using a combination of 6xHis TALON 

affinity purification and size exclusion chromatography. LC8-binding peptides were 

https://github.com/ZuckermanLab/Bayesian_ITC
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purchased from Genscript. Proteins were dialyzed prior to calorimetry into a buffer of 50 

mM NaPO4, 50 mM NaCl, 5 mM β-mercaptoethanol and 1 mM NaN3, at pH 7.5. In the 

case of LC8-peptide binding, Peptides were dissolved into buffer following dialysis to 

ensure minimal buffer mismatch between peptide and protein. All ITC experiments were 

performed at 25 C, with an initial injection of 2 μL, which was discarded to account for 

the first injection anomaly. Peak integration was performed in Origin 7.0.  

 

Synthetic ITC isotherms 

Synthetic isotherms for 1:1 and two-step binding were generated following equation 2 for 

1:1 binding and equations 8,9 and 10 for two-step binding.  Parameters were chosen to 

mimic typical experimental conditions employed in our group.  For 1:1 binding (SI Fig. 

2.4), we used ΔG and ΔH values of -12 and -8 respectively, and concentrations of 34 μM 

in the cell and 500 μM in the syringe. For two-step binding, varied thermodynamic 

parameters were used (e.g. Fig. 2.3, Fig. 2.7), but concentrations were fixed at 17 μM in 

the cell and 500 μM in the syringe. For all synthetic isotherms under both models, we 

simulated one injection of 2μL followed by 34 injections of 6 μL, with a ΔH0 of 0 μcal, and 

added synthetic noise from a Gaussian distribution with standard deviation 0.2 μcal. To 

accurately replicate experimental conditions, we eliminated the first injection when 

applying models to this data.  
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SI Figure 2.1: example MCMC traces and marginal distribution for all model 
parameters. MCMC traces and distributions are drawn from model on synthetic isotherm 
from Fig. 2.3, generated from parameters ΔG = -7, ΔΔG = -1, ΔH = -10, ΔΔH = -1.5, 
[peptide]initial = 500, [LC8]initial = 17, ΔH0 = 0 and sigma = 0.2. Each trace includes multiple 
walkers, each of which is drawn as its own chain (see methods for details). Traces are 
thinned to one step for every fifty.  
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SI Figure 2.2: Distributions of thermodynamic parameters plotted with total free 
energies and enthalpies. Each plot shows a set of either ΔG and ΔΔG or ΔH and ΔΔH, 
along with the ‘total’ value for that parameter, i.e. 2ΔG+ΔΔG or 2ΔH+ΔΔH. The 
distributions for this sum value are often narrower than the individual parameters, as the 
total enthalpy and free energy of binding can be determined with higher precision from a 
given isotherm than the individual values. ΔG,ΔH are the energy and enthalpy of binding 
step 1, while ΔG+ΔΔG,ΔH+ΔΔH are the energy and enthalpy of binding step 2, making 
the total values reported here the energy and enthalpy of both binding steps combined. 
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SI Figure 2.3: Marginal distributions comparing models with uniform and normal-
distribution priors. Distributions are taken from models on an identical synthetic isotherm 
generated from parameters ΔG = -7, ΔΔG = -1, ΔH = -10, ΔΔH = -1.5, [peptide]initial = 500, 
[LC8]initial = 17, ΔH0 = 0 and sigma = 0.2. All priors are identical except for [peptide]initial, 
where the uniform prior model (red) was run with a ±10% of stated value uniform prior, 
and the normal prior model (black) was run with a normal distribution prior with standard 
deviation = 1% of stated value. 
 

 

SI Figure 2.4: Effect of concentration priors on marginal posterior distributions for 
thermodynamic parameters in a 1:1 binding model. Distributions are taken from 
models on an identical synthetic isotherm generated from parameters ΔG = -8, ΔH = -12, 
[X]initial = 500, [M]initial = 34, ΔH0 = 0 and sigma = 0.2. Model priors ar0e uniform distributions 
of varied width in each plot for [X]initial and [M]initial, varied from ±1% to ±50%. 
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SI Figure 2.5: Example marginal distributions of replicate models for the LC8-
SPAG5 interaction. Each model replicate is run on an identical isotherm with a different 
random seed dictating random starts for MCMC chains and trial move selections. Each 
model returns near-identical marginal distributions. 
 

 

 

SI Figure 2.6: two dimensional marginal distributions of enthalpy for selected 
isotherms. Marginal distributions for BSN I, SLC9A2, and GLCCI are shown, each of 
which has wide 1D distributions for both ΔH and ΔΔH. Enthalpy parameters are closely 
correlated, resulting in a diagonal two-dimensional distribution within the enthalpy space.  
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SI Figure 2.7: Marginal distributions of thermodynamic parameters for individual 
and global models for three LC8-peptide interactions. Distributions for each individual 
isotherm and distributions for the global model are shown in purple, orange and green 
respectively. While the global model improves precision in determined parameters in some 
cases (e.g. GLCCI), in others it appears to follow the shape of the distributions for 
individual isotherms (e.g. BSN I). 
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SI Figure 2.8: Marginal distributions for thermodynamic parameters for IC-NudE 
binding isotherms. Distributions for each individual isotherm and distributions for the 
global model are shown in green, orange, and purple respectively. 
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SI Table 2.1: Model priors and sampling lengths for all isotherms.  

Isotherm samples walkers dG prior 

(kcal/mol) 

dH prior 

(kcal/mol) 

ddG prior 

(kcal/mol) 

ddH Prior 

(kcal/mol) 

X initial 

Prior 

(μcal) 

M initial 

Prior 

(μcal) 

Synthetic 

isotherm models 

50,000 25-50 -3 to -10 -50 to 0 -4 to 4 -40 to 40 Varied* Varied* 

Single isotherm 

experimental 

models 

100,000 50 -3 to -10 -50 to 0 -4 to 4 -40 to 40 ± 10% of 

stated 

Varied* 

Two isotherm 

experimental 

models 

200,000 50 -3 to -10 -50 to 0 -4 to 4 -40 to 40 ± 10% of 

stated 

Varied* 

* ±10% of stated unless otherwise noted 

 

 

SI Table 2.2: Credibility regions for ‘sum’ thermodynamic parameters and ratios of 
concentrations. 95% credibility region from sampled posterior distributions for the ΔG 
sum(2ΔG+ΔΔG) and dH sum(2ΔH+ΔΔH) as well as the ratio of concentrations 
([peptide]/[LC8]). Credibility regions for ΔG and ΔH sums are frequently narrower than the 
credibility regions for individual parameters (Table 2.1). 
 

Isotherm 

ΔG sum 

min 

ΔG sum 

max 

ΔH sum 

min 

ΔH sum 

max 

conc ratio 

min 

conc ratio 

max 

SPAG5 -15.0 -14.5 -34 -28 71 75 

BSN (I) -12.2 -11.7 -29 -21 64 86 

BSN (II) -14.5 -14.1 -20 -17 61 66 

SLC9A2 -14.2 -13.5 -29 -22 72 84 

VP35 -15.7 -15.3 -27 -22 21 22 

GLCCI -13.2 -12.6 -21 -16 85 99 

BIM -18.2 -16.1 -26 -22 25 28 
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SI Table 2.3: Ranges of thermodynamic parameters for LC8-client binding when 
modeled with ±20% LC8 concentration. Table 2.1 in the main text contains equivalent 
information at ±10% LC8 concentration. Values delineate 95% Bayesian credibility regions 
from sampled posterior distributions, when modeled with ±20% priors for LC8 
concentration. Distributions are largely very similar to those presented in Table 2.1, with 
a slight decrease in precision. BSN I, for which posterior distributions are significantly 
broader, is the only notable exception. 
 

 

Isotherm ΔG min 

ΔG 

max 

ΔΔG 

min 

ΔΔG 

max ΔH min 

ΔH 

max 

ΔΔH 

min 

ΔΔH 

max 

-TΔS 

min 

-TΔS 

max 

-TΔΔS 

min 

-TΔΔS 

max 

SPAG5 -6.93 -6.2 -2.12 -1.13 -19.11 -12.59 -1.87 3.7 5.97 12.61 -5.78 0.69 

BSN (I) -7 -4.76 -2 0.28 -36.87 -7.57 -15.87 48.08 0.77 31.97 -50 16.02 

BSN (II) -7.09 -6.44 -1.22 -0.39 -6.41 -4.44 -9.75 -6.53 -2.22 -0.46 5.68 8.99 

SLC9A2 -6.85 -5.47 -2.64 -0.53 -24.97 -9.75 -5.19 24.76 3.19 19.49 -27.42 4.6 

VP35 -7.4 -6.81 -1.67 -0.92 -15.23 -10.29 -0.77 1.45 3.22 8.08 -3.11 -0.18 

GLCCI -6.11 -5.21 -2.27 -0.99 -19.49 -9.35 -0.52 21.35 3.43 14.12 -23.57 -0.48 

BIM -9.5 -6.95 -2.18 0.8 -13.5 -9.57 -3.17 -0.47 1.05 5.54 -0.93 2.32 
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Chapter 3 

 

Systematic Identification of Recognition motifs for the hub protein LC8 

 

Aidan B Estelle, Nathan Jespersen, Nathan Waugh, Norman E Davey, Cecilia Blikstad, 
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Abstract  

Hub proteins participate in cellular regulation by dynamic binding of multiple proteins within 

interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners 

through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner 

pool, we screened for LC8 binding partners using a proteomic phage display library 

composed of peptides from the human proteome, which had no bias toward a known LC8 

motif. Of the identified hits, we validated binding of 29 peptides using isothermal titration 

calorimetry. Of the 29 peptides, 19 were entirely novel, and all had the canonical TQT 

motif anchor. A striking observation is that numerous peptides containing the TQT anchor 

do not bind LC8, indicating that residues outside of the anchor facilitate LC8 interactions. 

Using both LC8-binding and nonbinding peptides containing the motif anchor, we 

developed the “LC8Pred” algorithm that identifies critical residues flanking the anchor and 

parses random sequences to predict LC8-binding motifs with ∼78% accuracy. Our 

findings significantly expand the scope of the LC8 hub interactome. 

 

Introduction 

Most proteins interact with few partners, but a class of proteins referred to as hubs interact 

with a large number of partners in complex protein–protein interaction networks88,89. Hubs 

can be static or dynamic. Static hubs bind a large number of partners simultaneously at 

different sites, for example, BRCA25. Dynamic hubs bind multiple partners that compete 

for the same site90,91. Well-known examples of dynamic hubs include calmodulin and 14-

3-3 proteins92–94. A more recently discovered member of dynamic hub proteins is the 

dynein light chain LC89. 

There are more than 280 binary interactions for human LC8 in the Mentha 

database95, some of which have been extensively studied, including the dynein 

intermediate chain (IC)96–98 and the transcription factor ASCIZ44,99,100. In addition, 

expression patterns show that LC8 is highly expressed across a wide variety of cell 

types101 and is broadly distributed within individual cells102,103. 

LC8 is an 89–amino acid homodimeric protein first identified as a subunit of the 

dynein motor complex. Colocalization and binding studies with dynein led to a common 

perception that LC8 functions as a dynein “cargo adaptor” to facilitate transport of dynein 

cargo104,105. However, further studies have shown that LC8 interacts with many proteins 

not associated with dynein at the same symmetrical grooves in the LC8 dimer interface 
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(Fig 3.1A). Because of the symmetry of the binding sites of the LC8 dimer, and its 

association with dimeric proteins, it is now generally accepted that LC8 serves not as a 

cargo adaptor in the dynein machinery but rather as a dimerization hub in a variety of 

systems9. 

LC8 interacts with an 8–amino acid recognition motif within intrinsically disordered 

regions of its partners. Sequences bound to LC8 form a single β-strand structure 

integrated into an LC8 antiparallel β-sheet106 (Fig 3.1). Although there is some variation in 

the binding motif, it is most frequently anchored by a TQT sequence10. The glutamine in 

the TQT anchor is typically numbered as position 0 because it is the most highly conserved 

amino acid29. The flanking threonines are therefore defined as positions −1 and +1. The 

TQT anchor is highly enriched among known LC8 partners and will be referred to in this 

article as the “motif anchor”10 (Fig 3.1B). 

A dynamic binding interface, determined from nuclear magnetic resonance (NMR) 

relaxation and hydrogen/deuterium exchange experiments29,40,107, allows for large 

sequence variation in LC8 binding partners; however, several steric and enthalpic 

restrictions are placed on binding sequences. One restriction is inferred from analysis of 

solvent accessible surface areas of peptides bound to LC810 (Fig 3.1C). The side chains 

of the amino acids at positions –1 and 1 of the peptide (both threonines in Fig 3.1C) are 

completely buried, leading to a strong preference for amino acids with branched side 

chains that are either hydrophobic or, as is the case for threonine, participate in hydrogen 

bonding. In fact, these two positions are the only side chains that are completely buried 

(Fig 3.1C, orange versus pink side chains), suggesting that these residues are under more 

stringent selective pressures. Interestingly, even though the amino acids on both sides of 

the anchor are highly variable, their side chains are easily fit within discrete pockets (Fig 

3.1B). In contrast, outside of the 8–amino acid LC8-binding motif, there is higher variability 

in amino acid sequence and in side chain rotamer conformations (Fig 3.1B). Analysis of 

these structures explains the preference for the “TQT” anchor within the LC8 recognition 

motif but falls short of capturing the spectrum of amino acids that can flank the anchor in 

potential binding sequences. 
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Figure 3.1: Motif sequence logo and surface analysis of LC8. (A) Crystal structure of 
a representative LC8 dimer (protomers shown in shades of green) bound to a peptide 
(shades of red). (B) Electrostatic charge potential for the LC8 pocket structure using 
PyMOL’s charge-smoothed potential calculator, with positive potentials shown in blue, 
negative in red, and neutral in white. Peptides from available crystal structures of bound 
LC8 are shown, and colored based upon amino acid chemical characteristics (right). 
Amino acid enrichment is shown below each position within the LC8-binding motif, 
calculated from 79 known binder motifs listed on the LC8 database 
(http://lc8hub.cgrb.oregonstate.edu). Amino acid letter heights represent relative 
enrichment of that amino acid. (C) Solvent accessible surface area depiction of the same 
LC8/peptide pair shown in (A). Color scheme was defined at the atomic level using the 
GetArea program108, with magenta representing more solvent exposed and orange 
regions more buried atoms. 
 

In an effort to determine a consensus binding motif, Rapali et al (2011)109 used 

phage display and randomized all 8 amino acid positions of the motif except for the 



58 
 

conserved glutamine at position 0, and determined VSRGTQTE to be the most 

thermodynamically favorable binding sequence109. Although this experiment led to the 

discovery of multiple LC8 binding partners, the idea of a specific “consensus sequence” 

belies the dynamics of the LC8 binding site. In addition, by selecting for the tightest binder, 

many weaker binders were likely outcompeted and therefore not visible in their study. Our 

goal in this work is to determine the extent of the variability in LC8 binding sequences 

flanking the motif anchor. 

LC8 motif prediction analyses have increased the number of known binding 

sequences, and enhanced our understanding of the motif specificity13,109; however, 

algorithms generated in these studies were designed for initial screening and are therefore 

not sufficiently stringent for general use nor made publicly available. Here we build on 

initial proteomic peptide phage display (ProP-PD) experiments and position specific 

scoring matrix (PSSM) methods of identifying LC8-binding interactions to examine 

determinants of LC8 binding. We examine validated sequences from both these methods 

to pick out general trends in both LC8-binding and -nonbinding sequences. A database 

that includes partners identified in this work along with published interactions is now 

available and contains all 82 LC8 interacting motifs validated through biochemical or 

biophysical techniques. Finally, we used this database to develop an algorithm that 

incorporates both binding and nonbinding sequences to effectively predict LC8 partners 

and define rules for LC8 partner recognition that underscore the plasticity of the LC8 

binding pocket. 

 

Results 

ProP-PD and PSSM-guided experiments reveal new LC8-binding sequences 

To build our initial dataset of LC8-binding proteins, we performed ProP-PD experiments 

and constructed an initial PSSM to determine new LC8-binding motifs. Initial Pro-PD 

experiments on a library of disordered proteins from the human revealed 53 potential LC8-

binding partners, which were validated by isothermal titration calorimetry (ITC). 

Surprisingly, of the 53 potential sequences, only 16 were demonstrated to bind LC8 by 

ITC (KD < 50 μM).  Further potential sequences were identified through scans of the human 

proteome. Following initial filtering that utilized the sequence’s propensity for disorder and 

degree of evolutionary conservation (see manuscript for details), sequences were scored 

for similarity to known LC8-binding proteins with a PSSM generated from weighing the 
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frequency of each amino acid at each position in known LC8-binding sequences against 

the expected background frequency (see Methods). ITC was performed on the 19 

sequences predicted in this manner, and surprisingly only 7 of the 19 total sequences 

bound to LC8 with a measurable affinity. For a detailed discussion of these experiments, 

and a complete list of tested peptides, see Jespersen et. al., (2019)8. 

 

Common motif features that promote LC8 binding 

To assess common features for binding from this growing dataset of interactions, we 

overlaid all known tight binding partners, (50 sequences with Kds <10 μM, Fig 3.2B) and 

all nonbinding sequences (determined by ProP-PD and PSSM, Fig 3.2C). This 

comparison revealed some conspicuous differences between binders and nonbinders, 

allowing for the determination of the position-based rules that follow (Fig 3.2A and D). 

The anchor is extremely well conserved in both amino acid type and volume. There 

is a strong preference for a mid-sized H-bonding/hydrophobic residue at positions −1 and 

+1 and a clear preference for a glutamine at position 0. Any deviation from this anchor, 

such as the RQT seen in EIF4G3, leads to a nonbinding sequence. Both threonines are 

completely buried in crystal structures (Fig 3.1C), and therefore, deviations to a charged 

group are highly unfavorable (Fig 3.2D, Poor Anchor). 

Position +2, which has no β-strand backbone interactions in any crystal structures, 

shows a large preference for proline, aspartate, and glutamate residues. Interestingly, 

these three residues are classically depleted in β-strands110,111, providing a potential 

explanation for these residues acting as “strand-breaking” amino acids at the periphery of 

the LC8 binding pocket. An alternative explanation for their enrichment is that the negative 

charge for E and D can interact with the positive electrostatic charge on LC8 (Fig 3.1B). 

Proline, however, might energetically assist in binding by reducing the change in entropy, 

as both proline and pre-proline residues are conformationally restricted112. Hydrophobic 

amino acids are not well accommodated at this position (Fig 3.2D, Hydrophobic +2). 

Position −2 shows little charge preference and allows positive, negative, polar, and 

hydrophobic residues; however, there are no examples of bulky aromatic side chains at 

this position among the tightly binding peptides, indicating that there are some steric 

constraints (Fig 3.2D, Bulky Hydrophobic −2). 
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Figure 3.2: Analysis of LC8-binding and nonbinding motifs reveals distinct 
positional preferences. (A) Motif preferences for LC8 binding partners. “Ф” denotes 
hydrophobic residues; “X” signifies any residue (unless certain residues are disfavored); 
underlined “X” signifies any residue but with strong preferences for particular residues; “+” 
denotes positively charged amino acids. Physiochemical properties beneficial for binding 
are colored dark blue or light blue, based on magnitude, and deleterious properties are 
colored in red. (B) Known tightly binding sequences (Kd < 10 μM) are cropped to 8 amino 
acid motifs and built using the Chimera molecular modeling software. This includes LC8 
sequences found on the LC8Hub database, and those determined in this article. (C) 
Overlay of all nonbinding peptides used in this study. Residues are colored based upon 
whether they are beneficial (blue), deleterious (red), or neutral (white) for binding, using 
the amino acid enrichment and depletion in known motifs (Fig 3.4A). (D) Categories of 
nonbinding sequences. Residues highlighted in red depict the reason the sequence is 
placed within a given category. *Denotes sequences placed in multiple categories. 

 



61 
 

Position −3 favors large side chains as nearly all tight binders contain an amino 

acid at least as large as valine at this position, with only two occurrences of an alanine. 

Fig 3.1B reveals a binding pocket where large side chains can fit, which is often occupied 

by lysines or arginines. A small side chain at the −3 position does not immediately exclude 

a sequence from binding, as in CAPRIN2, but seems to be less favorable based on the 

depletion of these residues (Fig 3.2D, Small −3). 

Position −4 favors amino acids capable of making a polar contact, such as 

aspartate, and no sequences identified to date have hydrophobic residues larger than 

alanine at this position (Fig 3.2D, Hydrophobic −4). Finally, the −5 position shows a slight 

bias toward positively charged residues (Fig 3.2B and C), but it is unclear whether this 

effect is significant. 

In general, partners must bind within a deep hydrophobic pocket and form a β-

strand structure; therefore, multiple similar charges within a peptide, or sterically 

challenging prolines at any internal position, makes binding unfavorable. Even with this 

systematic comparison, a number of the nonbinding sequences could not be categorized 

(Fig 3.2D). 

 

The partner-binding pocket is conserved in LC8 sequences but is structurally variable 

A comparison of LC8 amino acid sequences from 58 different eukaryotic species using 

the ConSurf program113 reveals that the partner binding site is strictly conserved across 

these diverse organisms (Fig 3.3A). Interestingly, the conservation of residues creates a 

noticeable gradient pattern that radiates out from the dimeric interface/partner binding site, 

with the most conserved residues near the core (maroon), and the least conserved 

residues at the peripheries (blue). 

We used the Ensemblator program114, which aligns independently determined 3D 

structures and identifies regions of structural conservation or plasticity, to visualize how a 

sequence that is strictly conserved is capable of binding such a wide variety of sequences. 

By overlaying the protomers from five published crystal and NMR structures of free LC8, 

we observed that the β-strand that directly binds to partners is highly variable29,40,107 (Fig 

3.3B) and has the highest root mean squared deviation (RMSD) values between 

structures. It is of note that the most sequence-conserved region is also the most 

structurally variable part of the protein. This structural plasticity allows accommodation of 
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a diverse set of partners with a wide range of properties and sheds light on why definitive 

identification of LC8-binding motifs is such a difficult task. 

 

 

 

 
Figure 3.3: LC8 is structurally variable but conserved in sequence. (A) Surface 
representation of LC8 colored by sequence conservation using ConSurf. More sequence-
conserved regions are shown in magenta, less sequence-conserved regions are shown 
in cyan. Highly conserved residues map to those within the LC8 binding site. (B) Surface 
representation of LC8 colored by structural conservation in the free protein using the 
Ensemblator. Regions that are more structurally variable are shown in red, whereas more 
structurally conserved regions are shown in blue. An overlay of NMR and crystal structure 
protomers used for the structural analysis is shown as a cut-out in (B). (C) 2D depiction of 
the binding interface between an example peptide (orange) and the binding β-strand within 
LC8 (Teal). (D, E) Polar bonds between LC8 and peptides from crystal structures are 
shown in (D) (top down view, only backbone interactions) and (E) (pocket view). Colors of 
polar contacts are based on whether the polar contacts stem from backbone (yellow) or 
side chain (purple) residues on the peptide. Peptide residues with frequent side chain 
interactions are labeled in red. (C, E) Residues outside of the binding β-strand that are 
important interaction sites shown in (C) are labeled in (E). 
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Incorporation of physicochemical features and nonbinder data improves binding 

predictions 

Based on position preferences described above, we developed an LC8Pred algorithm that 

captures common features observed in binding peptides, including size and charge 

preferences, and features present in the 32 anchor-containing nonbinding peptide 

sequences (Fig 3.4A). For each matrix, positive values within the matrix indicate that the 

given amino acid is enriched in binding sequences and depleted in nonbinding sequences, 

whereas high negative values signify depletion of that amino acid in binding sequences 

and enrichment in nonbinding sequences. The addition of nonbinding sequence 

information significantly improved the algorithm’s capacity to differentiate between binding 

and nonbinding sequences; however, with only 32 nonbinding sequences, our data were 

notably sparse, and separation between the two groups was incomplete. To improve our 

differentiation capacity, we binned the 20 amino acids into four categories and developed 

additional PSSMs using these bins, thereby reducing the overall number of matrix terms. 

The first PSSM separated amino acids based on polarity, whereas the second PSSM 

separated according to volume. 

These matrices largely confirm groupings as described in the “common feature” 

section above, but with some exceptions. Notably, although there is a preference for large 

amino acids at the −3 position, the polarity matrix also shows an enrichment in positively 

charged residues. In addition, although the −5 position is the most varied in the matrix, it 

has a high score for positively charges residues (Fig 3.4A). This discrepancy is because 

of the lack of positively charged residues at −5 in the nonbinding sequences rather than 

from any strong enrichment of positive charge in the binding sequences. The −5 position 

also shows a slight enrichment for very large amino acids and is the only position to do 

so. Crystal structures show that the −5 position is not buried within LC8’s binding groove 

and therefore experiences much less steric restriction (Fig 3.1B). 

Using the described matrices, we scored all known binders and nonbinders to 

determine the discriminatory capabilities of the PSSMs (Fig 3.4B). Although the amino 

acid, volume, and polarity matrices were each moderately successful at separating binding 

from nonbinding sequences in isolation, the best separation was achieved when every 

matrix was combined. We combined the volume and polarity matrices to determine a 

volume and polarity score, and the amino acid matrix was used to determine an amino 

acid score (Fig 3.4B). 
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Figure 3.4: Generation and testing of The LC8Pred algorithm. (A) PSSMs for amino 
acids (A, top), bins by chemical property—positively charged, negatively charged, polar, 
or nonpolar (middle), and bins by volume—less than 106 A3, 122 to 142 A3, 155 to 171 
A3, and greater than 200 A3 (bottom). Values correspond to the combined weight at a 
given position for the binder-only matrix and the nonbinder-normalized matrix. (B) 
Scatterplot of available sequences scored using a leave-one-out method of cross 
validation. For binders with a known Kd, the size of the bubble was varied inversely with 
the Kd, with binders with a Kd below 0.5 μM represented as the maximum possible dot 
size. Binder sequences with an unknown binding affinity were plotted as hollow circles 
and nonbinders as red triangles. The light grey box denotes predicted binding sequences 
using this scoring system. A second threshold for the volume and polarity axis indicates 
the very high confidence region, above which the specificity is unity. Outliers are noted in 
the tables (inset) and numbered in figure. (C) Normalized scores from matrices used to 
evaluate known LC8-binding protein Chica, where a score of one equates to the ideal 
amino acids of physicochemical properties at all positions. A sliding window to evaluate 
Chica for predicted binding sites across the protein was used, with the “0” position within 
the motif plotted (i.e., at 400, the 0 position is the 400th amino acid within Chica). A 
diagram of Chica showing secondary structure prediction (grey) and LC8 binding sites 
(purple) is above, and sequences predicted to bind are on the right, along with their 
corresponding scores. (D) Venn diagram of human proteins in the LC8Hub database, 
proteins that contain at least one LC8-binding sequence as determined by LC8Pred, and 
proteins reported to bind LC8 in the protein–protein interaction database Mentha95. 
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Because our goal is to predict partners with high reliability, strict thresholds were 

used to determine what constitutes a binder and a nonbinder. A minimal score of 12.9 on 

the amino acid matrix, and 0.1 on the volume and polarity matrix, is used to determine 

whether a sequence is likely to be considered a binder. These thresholds result in only 

four false positives and 20 false negatives with our available data set, corresponding to a 

75% true-positive rate and an 88% true negative rate (Fig 3.4B). Interesting, although the 

volume and polarity matrices only provide a small increase in accuracy overall at these 

thresholds, they are extremely proficient at separating binders from nonbinders when 

applied stringently. A threshold of 2.7 on the volume and polarity matrix alone results in a 

0% false-positive rate, while retaining 57% of the true positives (Fig 3.4B). 

Although we achieve an accuracy of 78%, there are a number of outliers: both 

high-scoring nonbinders and low-scoring binders. Within the binders, the first sequence, 

DDKNTMTD, is from Myosin Va (Fig 3.4B). It is unsurprising that this sequence scores 

poorly, as it is the only “TMT” anchor with verified binding data, and therefore has a low 

score because of the M instead of Q. However, binding is likely salvaged by the presence 

of the highly favourable amino acids at the other positions and by the presence of adjacent 

coiled-coil domains in the full-length protein. The remaining three lowest scores belong to 

proteins with multiple LC8-binding sequences proximal to one another (namely 

ASCIZ/ATMIN, and BSN), which would facilitate binding of weaker motifs because of their 

bivalency. Within the nonbinders, three of the four well-scoring nonbinders are listed in Fig 

3.2D as “other,” indicating that there is consistency between algorithm predictions and our 

ability to recognize binders/nonbinders based on sequence. This also suggests that there 

are some deleterious interactions that we have yet to understand and will require more 

data to decipher. The fourth sequence contains a hydrophobic valine at the +2 position 

(Fig 3.4B, sequence 8), which is very rare, as this position is often fully solvent exposed 

and prefers β-strand breaking residues (Fig 3.1B). Although LC8Pred weights valine at +2 

negatively (Fig 3.4A), the remaining residues score well enough to result in the erroneous 

categorization of this sequence as a binder. Further accumulation of LC8-binding and 

nonbinding sequences will no doubt help to clarify the importance of one poorly scoring 

residue and improve LC8Pred accuracy. Our LC8 motif algorithm is available on the 

database web page for public use (http://lc8hub.cgrb.oregonstate.edu/LC8Pred.php) for 

any sequence of interest. 
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Predictive scores for the human protein Chica: a known LC8 binder 

To test the ability of LC8Pred to identify binding sequences, we scored a test protein on 

each matrix using a sliding window. For this test, we selected Chica, a protein that contains 

a series of LC8-binding sequences between residues 400 and 47510. To prevent 

algorithmic bias, peptides from Chica were not used in the development of our scoring 

matrix. Upon applying the LC8Pred algorithm, six positive scores were returned within 

Chica (Fig 3.4C). One of these scores fell far below threshold and was ignored. The 

remaining five scores were within the LC8-binding region; four of which have previously 

been determined experimentally to bind LC810. The other is an SQT-containing sequence 

that scored below the designated threshold in the amino acid matrix, indicating that 

although this particular sequence may bind LC8, the prediction is of low confidence (Fig 

3.4C). These test results provide strong evidence of the discriminatory power of our 

algorithm, as it can successfully recognize sequences that bind LC8 while excluding those 

that do not. 

 

Human proteome scan identifies 374 potential binding sequences 

After determining LC8Pred’s reliability and ability to distinguish potential motifs, we used 

it to scan the human proteome to identify high-confidence binding partners. In total, 785 

sequences scored above our PSSM thresholds. These sequences were then further 

filtered using IUpred to eliminate motifs within ordered regions. This process yielded 374 

high-confidence hits from 338 proteins (Table S2 – see manuscript). Of these, 36 have 

been previously described in direct interaction studies and are listed on our LC8Hub 

database (Fig 3.4D). A further 19 partners have been identified in high throughput 

proteomics studies, such as pull-down mass spectrometry, including the highest scoring 

hit (FAM117B)115,116. Our data validate these interactions and define likely binding regions 

within these partners. It is of note that several of the identified partners contain multiple 

putative LC8 sites in close succession. The ability of LC8 to “zip up” partners with multiple 

recognition motifs has been described for both Nup15915 and ASCIZ44, and it is possible 

that many partners within this list contain weaker LC8 sites proximal to these tight-binding 

motifs. 

Prior studies on LC8 interactions have noted an enrichment in LC8 partners within 

the Hippo signalling pathway13. Our proteome scan has identified these same partners 

(e.g., AMOT, WWC1, and WWC2) and additional novel binders from the hippo pathway, 
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such as STK4 and DLG5. Interestingly, this pathway is the only “biological process” 

significantly enriched in LC8 binding partners, based on gene ontology analysis using the 

WebGestalt program117. 

To verify that LC8Pred is correctly predicting partners, we synthesized three 

peptides from Table S2 (see manuscript) and tested their capacity to interact with LC8 via 

ITC. The three peptides were derived from the human proteins: HIV Tat-specific factor 1 

(HTATSF1), a cofactor required for the Tat protein activation of human immunodeficiency 

virus transcription; otoferlin (OTOF), a calcium ion sensor involved in vesicle-plasma 

membrane fusion and neurotransmitter release, associated with hearing loss; and ninein 

(NIN), a component of the core centrosome and a dynein activator protein. These peptides 

were selected based on their mid-level scores and lack of prior data detailing LC8 

interactions (Table S2 – see manuscript). All three peptides bound to LC8, although only 

HTATSF1 was a “strong” binder with a fittable thermogram (Kd of 10 μM). These data 

support the effectiveness of our LC8Pred algorithm and demonstrate that it is capable of 

predicting binding partners of varying affinities despite noncanonical motifs (Table S3 – 

see manuscript). 

 

Discussion 

Hub proteins are essential for cell viability as they are central in protein–protein interaction 

networks. Dynamic hubs such as LC8 often have a recognizable binding motif, which 

should allow for the prediction of binding partners without the need for exhaustive testing 

of each individual interaction118; however, no such program is available for LC8. Instead, 

binding partners are often identified via high-throughput pull-down experiments. For 

example, the interaction between LC8 and OFD1 was initially identified via pull-down mass 

spectrometry study in cilia116. In most cases, follow-up experiments for validation of direct 

binding are not performed, as it is prohibitively expensive to verify these interactions in a 

systematic fashion. Here, we validate purported and previously unreported LC8 binding 

partners (including OFD1), measure their binding affinities and thermodynamic properties, 

and establish a database of known LC8–partner interactions to define and describe 

generalizable requirements for LC8 motif recognition. We use these rules, along with 

amino acid preferences in nonbinding sequences, to develop an algorithm that effectively 

distinguishes between binding and nonbinding sequences, with the aim of facilitating a 



68 
 

priori prediction and discovery of LC8–partner interactions with much greater confidence 

and accuracy than has been possible before now.  

Of the 72 synthesized tetradecameric peptides, we verified binding for 29 peptides 

derived from 27 distinct proteins. Of these 27 proteins, 19 are newly identified LC8 binding 

partners. It is of note that all validated sequences contain the canonical TQT anchor (or 

variation thereof) at the C-terminus of the peptide, supporting the idea that a C-terminal 

anchor is vital for LC8 binding. Although the LC8 binding site is structurally dynamic, there 

are distinct preferences and exclusions for each position within the binding motif (Fig 3.2). 

In addition to the presence of an anchor, binders often have −4 positions capable of H-

bonding, larger positive side chains at −3 positions, and strand breaking +2 positions. 

However, the presence of pre-anchor prolines, a high concentration of charges, or bulky 

hydrophobic groups at the −2 position will each limit the likelihood that a sequence will 

bind LC8 (Fig 3.2). 

Algorithms for motif identifications have been developed for both 14-3-3 and 

calmodulin to efficiently predict potential binding partners. In the case of calmodulin, its 

diverse set of binding motifs has led to multiple programs119–121, which predict potential 

binding partners via a mixture of sequence similarity to known binders, α-helical 

propensity, or the number of canonical calmodulin-binding motifs within a given sequence. 

In the case of 14-3-3, which binds phosphorylated sequences within disordered segments 

of proteins, the algorithm makes use of support vector machines and artificial neural 

networks118 and scores potential binding sequences using a PSSM. Here we succeeded 

in generating LC8Pred, an algorithm with a 78% accuracy rate, by incorporating nonbinder 

data and by reducing the PSSM dimensionality from 20 amino acids to four 

physicochemical categories, based on either polarity or volume. We have tested LC8Pred 

on the known LC8 binder Chica and by scanning the human proteome. In case of Chica, 

LC8Pred efficiently recognized known binding sites and excluded all other regions (Fig 

3.4C). Our proteome scan identified 338 potential LC8 binding partners, including 19 

binding partners that have been identified previously via high-throughput proteomics 

studies (Fig 3.4D and Table S2 – see manuscript), providing a new set of high-confidence 

LC8-interacting proteins. Three peptides were selected from these potential partners and 

shown to indeed bind LC8. 

The ability to bind a wide variety of sequences despite an extremely conserved 

binding interface is a hallmark of dynamic hubs, as exemplified by calmodulin122 and 14-
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3-3 proteins123. Crystal and NMR structures for LC8 show that the β3 strand at the partner 

binding interface has the highest sequence conservation (Fig 3.3A), and surprisingly, it is 

also the most dynamic region (Fig 3.3B). Consistent with the dynamic nature of the binding 

grooves, thermodynamic analyses of tight binding sequences demonstrate a wide range 

of entropy/enthalpy compensation, including some sequences that bind with a favorable 

change in entropy, such as ICE1 and VP4 (see manuscript). Previous studies on LC8 

dynamics of binding to dynein IC and the protein swallow (Swa) show that increases in 

ordered structure upon binding are peptide dependent40. With Swa, the complex is more 

compact, rigid, and homogeneous than with IC, indicating that the IC peptide retains more 

freedom of motion in the bound state than does the Swa peptide. Consistent with these 

observations, IC binds with a favorable entropy, whereas Swa does not. Our work here 

demonstrates that these different modes of binding are not limited to IC and Swa but rather 

that entropic factors commonly modulate LC8 binding to accommodate extraordinary 

variation in binding sequences. 

Hub proteins like LC8 are essential for cell homeostasis as they sit at the center of 

complex interaction networks; therefore, it is imperative to understand the rules that 

govern hub protein interactions. The dynamic nature of the LC8 pocket, and entropic 

contributions to binding, make it difficult to predict partners with high confidence, and yet 

it is this very dynamic characteristic that makes LC8 such a powerfully effective hub 

protein. Here we have amalgamated our experimentally verified LC8-binding sequences 

with all previously described binding sequences and developed an algorithm that 

significantly advances our ability to predict LC8 partners based solely on sequence. 

Confidence in a potential LC8-binding sequence can be further improved by considering 

the structure and conservation of the binding site, and we have therefore linked LC8Pred 

to ProViz, a tool that analyzes protein structure and conservation. In addition, it is 

important to note that LC8Pred is optimized for stringency and predicting tight binding 

interactions and does not account for adjacent oligomerization sites, which would increase 

binding affinities. Future versions of the algorithm will incorporate parameters to account 

for other factors impacting binding, such as oligomerization state or subcellular 

localizations. We also anticipate that the predictive power of our algorithm will improve 

dramatically as more LC8-binding and nonbinding sequences are identified and deposited 

in the LC8hub database, resulting in a comprehensive view of the LC8 hub interaction 

network 
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Materials and Methods 

ProP-PD selections 

Phage display selections were performed using a proteomic library designed from the 

disordered regions of the human proteome described in the study by Davey et al (2017)124. 

Selections were performed with minor adjustments. GST-LC8 (0.1 mg/ml in 100 μl TBS, 

50 mM Tris–HCl, 150 mM NaCl, pH 7.4) was coated on a Maxisorp 96-well plate (Nunc) 

via overnight shake-incubation at 4°C. Plates were blocked with 0.5% BSA in TBS for 1 h 

at 4°C and washed with TBS. The phage library was added to the well (100 μl) and 

incubated for 2 h at 4°C. Unbound phages were removed by washing plates five times 

with 300 μl TBS + 0.05% Tween. Bound phages were eluted by infection into 100 μl log-

phase Escherichia coli Omnimax cells (Invitrogen; OD: 0.3–0.8) in 2xYT media (10 g 

bacto-yeast extract, 16 g bacto-tryptone, 5 g NaCl per liter) supplemented with 10 μg/ml 

tetracyclin. After a 30-min shake-incubation at 37°C, the bacteria were hyperinfected with 

M13K07 helper phages for 45 min to allow phage production. Cultures were transferred 

into 5 ml 2xYT, 0.3 mM IPTG, and grown overnight with antibiotics (25 μg/ml kanamycin 

and 100 μg/ml carbenicillin). The bacteria were pelleted by centrifugation. 1 mL of the 

phage supernatant was extracted and heat inactivated at 65°C for 20 min. Finally, the 

solution was pH neutralized using 10× TBS, and the phage pool was used in the next 

round of selection. Five rounds of phage selections were performed in total. The phage 

pool from the fourth day of selection was used for clonal phage ELISAs and sequencing. 

For next-generation sequencing, 5 μl of the phage pool from the fourth day of selection 

was used as template in a barcoding PCR. The sample was prepared and analyzed as 

described in detail elsewhere125. 

 

Peptide synthesis 

A total of 72 putative binding partners identified from ProP-PD selections and algorithm 

predictions were commercially synthesized from either Genscript, or Synpeptide, as 14–

16 amino acid sequences. Non-native residues were added to the termini of some 

peptides to facilitate solubility and peptide concentration determination (Tables 1 and 2 – 

see manuscript). All peptides were derived from either human or viral proteins. 
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Isothermal titration calorimetry  

Isothermal titration calorimetry (ITC) experiments for the interactions of LC8 with peptides 

were performed using a Microcal VP-ITC microcalorimeter at 25°C in buffer composed of 

50 mM sodium phosphate, 50 mM NaCl, 1 mM sodium azide, and 5 mM β-

mercaptoethanol, pH 7.5. Some peptides contained cysteine residues, so 5 mM β-

mercaptoethanol was included in all solutions for consistency. In all experiments, an initial 

2 μl injection was followed by 26–50 injections of 3–10 μl peptide (500 μM) into 25 μM 

LC8 in the sample cell. Number and volume of injections were adjusted for each 

experiment to minimize ambiguity in the shape behaviour of isotherms and thermograms. 

Peptide concentrations were determined from absorbances at 280 nm using molar 

extinction coefficient values computed with the Protparam tool on the ExPASy website126. 

Peptides lacking aromatic residues were weighed and resuspended in the proper volumes 

to ensure 500 μM final concentrations. Protein samples and buffer were degassed before 

data collection. Data were processed using Origin 7.0 (Microcal) and fit to a single-site 

binding model. Final values for binding parameters are averages of two to three 

independent experiments. 

 

LC8Pred algorithm generation 

The LC8Pred algorithm was developed using 79 LC8 binding sequences and 32 anchor-

containing nonbinding sequences (See Manuscript – Table S4). We selected sequences 

that bind LC8 with high confidence, on which direct interaction data are available. In 

addition, all sequences with a Kd above 25 μM were not included. The TQT (or variation 

thereof) anchor-containing nonbinders were those peptides shown by ITC to have no 

binding to LC8. 

In addition, a new series of matrices were developed which binned amino acids 

into categories based on physicochemical properties. Specifically, a matrix that separates 

amino acids into positively charged, negatively charged, hydrophobic, or polar and 

uncharged, and a matrix that separates amino acids into four groups based on volume, 

with volume bins being selected to minimize the range of volumes within each bin. We 

built these matrices to overcome the limitation of our small dataset, as reducing the 

number of groups from 20 amino acids to four possible properties improves the likelihood 

that some information is available for a given position and a given property within the motif. 
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In total, six matrices were developed, two for each set of bins (amino acid, polarity, 

and volume). For a given bin, one matrix was normalized to the background frequency of 

a given amino acid or a given property within the disordered eukaryotic proteome taken 

from the DisProt database of intrinsically disordered regions127. For the other matrix, 

normalization was done for the frequency of a given amino acid or property in the 

nonbinder dataset. As nonbinding sequences were selected based on the presence of an 

anchor, there is no enrichment or depletion at the anchor positions of −1 to +1. These 

positions were therefore ignored in these matrices. 

To simplify our scoring system, we combined the matrices into two simple scoring 

metrics, Saa and Svp, where Saa is a combination of the two matrices that use amino 

acid–type bins, and Svp is a combination of the four matrices that use volume or polarity 

bins. To determine how effective each individual matrix was at separating binding and 

nonbinding sequences, we scored our available sequences using leave-one-out cross 

validation, where a given sequence was excluded from the matrix and then scored. The 

leave-one-out approach was used to combat the difficulty of our limited dataset. 

We used receiver operating characteristic (ROC) curves (SI Figure 3.1) as a metric 

of the effectiveness of each score. The area under these curves corresponds to the ability 

of each matrix to separate binding sequences from nonbinding sequences. We then 

combined scores into the Saa and Svp scores described above, where each individual 

matrix score was weighted through a grid search of possible weights, where the largest 

area under the ROC was taken to be the optimal weight for each score. Surprisingly, the 

area under the ROC curve was highest when the binder-only polarity matrix was removed 

from the Svp score. Positions −1, 0, and 1 are therefore not weighted in the polarity matrix 

(Fig 3.4A) because the nonbinder normalized matrix was also excluded at those positions 

because of a lack of anchor enrichment, as discussed above. 

 

The LC8 motif repository 

We have manually curated a database that compiles information for all known LC8 binding 

partners. Including the 19 binding partners identified in this work, there are currently 80 

experimentally confirmed LC8 interacting partners containing 116 individual anchor motifs. 

Of these binding motifs, 98 have been confirmed by in vivo or in vitro experiments, with a 

further 18 identified through biochemical screening methods. The database serves to (1) 

provide a source of up-to-date information on LC8 and its cellular role, (2) organize and 
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classify LC8 binding proteins in an easily searchable manner, and (3) list the sequences 

of all TQT motifs to aid in identification of new binding partners. Access to the motif 

repository is available at http://LC8hub.cgrb.oregonstate.edu. For each protein, the 

following information is provided: the species, TQT peptide sequence, number of motifs in 

the protein, Protein Data Bank (PDB) ID (if a structure exists), reference link, and 

interaction type. The interaction type has three levels of classification, depending on the 

method by which the LC8–partner interaction was identified: (1) high-throughput 

biochemical method, such as yeast-2-hybrid, where the interaction has not been 

confirmed by in vivo or in vitro experiments; (2) in vivo experiments, such as mutation or 

knockout experiments, where a function for the LC8-partner complex has been identified; 

and (3) in vitro experiments that determine the binding affinity, structure, or other 

information about the LC8–partner interaction. In addition, sequences of interest can be 

tested at LC8Hub by inputting a .fasta file or a string of letters corresponding to the protein 

sequence of interest. Output provides both the Saa and the Svp scores, and indicating 

sequences that are likely to bind LC8 according to available data. Finally, sequences 

determined to either bind or not bind LC8 despite the presence of an anchor sequence 

can be submitted for incorporation into the database. It is our hope that the information in 

this database will facilitate research on LC8 and, by enhancing our understanding of the 

TQT motif, enable more robust prediction of new binding partners. 

 

Structure and motif analysis 

Structures of LC8 were obtained from the PDB (free LC8 PDB codes: 1PWJ, 1PWK, 

1RE6, 3BRI, 5WOF; bound to peptides: 2XQQ, 4QH7, 3E2B, 2P2T, 3BRL, 3DVP, 3P8M, 

3ZKE, 4D07, 4HT6, 5E0M). All images were generated using PyMol. Peptides without 

structures available were built in silico using Chimera128. Peptides in Fig 3.2 are colored 

according to enrichment and depletion tables for amino acids, shown in Fig 3.4A (blue for 

scores >1, white for scores between 1 and −1, and red for scores <1). Solvent accessible 

surface area analysis was performed using a representative LC8 crystal structure (2XQQ) 

with the GETAREA program108. Protein charge potential was calculated for LC8 using 

PyMol’s built-in charge-smoothed potential calculator. Two-dimensional lig-plots were 

generated using ChemDraw. 

Alignment of LC8 structures was done using the Ensemblator114 program, and the 

RMSD for residues in free LC8 structures (listed above) was calculated using the built-in 
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local alignment tool. This tool works by aligning each dipeptide within the protein and 

calculating the RMSD for the next amino acid within the protein sequence. A 

representative structure was then colored based on these values to demonstrate structural 

conservation. Sequence-based conservation was performed using ConSurf113, with LC8 

sequences from 58 different eukaryotic species. 
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SI Figure 3.1: Optimization of matrix weights. (A) ROC curves of both amino acid 
matrices and Saa. The larger the area under the curve (AUROC), the more effective the 
curve is at separating binder sequences from non-binder sequences. (B) ROC curves of 
each volume and polarity matrix, and Svp. Notably, the Svp curve performed substantially 
better than each volume and polarity matrix individually, which suggests that volume and 
polarity are both essential to understanding the preferences within the LC8 motif. 
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Chapter 4 

 

Multivalency Drives binding between LC8 and the cytoskeletal regulator Kank1 

 

Aidan B Estelle, York-Christoph Ammon, J. Helena Kinion, Anna Akhmanova, Elisar 
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Abstract 

Kank1 is a cytoskeletal regulator localized to the cortex of the cell, where it binds to both 

focal adhesions, which regulate the actin cytoskeleton, and cortical microtubule stabilizing 

complexes. The protein LC8 is a small dimeric protein that acts as a dimerization hub for 

many clients through binding at a short linear motif. Many LC8 clients bind the protein 

multivalently, through repetition of the LC8-binding linear motif. While the exact function 

of each multivalent LC8 client is unique, these interactions are thought to play a structural 

role, rigidifying a disordered region of the client protein. Here, we present work that 

demonstrates that despite containing only a single predicted LC8 motif, Kank1 binds 

multivalently to LC8, driving LC8’s localization to the cell cortex. Kank1-LC8 binding is 

highly cooperative, with an overall binding affinity at least than two orders of magnitude 

greater than the affinity of each individual LC8-binding motif. This cooperativity results in 

a complex that favors a homogenous, fully bound, and rigid state. We believe this 

cooperative complex serves a structural role, with cooperativity ensuring that the protein 

transitions efficiently between a rigid and flexible state.  

 

Introduction 

LC8 is a small (20 kDa) dimeric protein that acts as a binding hub via interaction with 

intrinsically disordered protein (IDP) clients mediated by a short linear motif8,9. Hub 

proteins like LC8 interact with many binding partners, making them central points of 

networks of protein-protein interactions, and therefore important points of regulation5,6. 

The LC8-binding linear motif is found within disordered regions of client proteins and is 

defined by a TQT amino acid sequence which anchors the client within LC8’s binding sites 

(Fig. 4.1a,b)8,10. LC8 contains two symmetric binding grooves, at either side of the protein, 

making it capable of accommodating two client strands29. In many complexes, LC8 acts 

as a dimerization engine, binding two strands of the same protein at each site and inducing 

or modifying a dimeric structure in the client protein (Fig. 4.1a)9,12,19,32. 

 Due to the structural simplicity of linear motifs, such as the LC8-binding motif, they 

are ideally suited to the facilitation of multivalent binding, with several motifs in the same 

sequence of a protein41,129. Such multivalent complexes frequently play essential roles in 

large macromolecular complexes, where IDPs act as scaffolds41. These LC8 complexes 

are involved in a host of cellular functions: at the nuclear pore15,16, regulating 

transcription44,45,100, at neuronal synapses17, and regulating the cytoskeleton during cell 
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division10, among other functions22,37,50. Multivalent LC8-binding interactions result in the 

formation of a ladder-like, ‘polybivalent’ complex, where two strands of the client IDP form 

the body of the ladder and are held together by LC8 rungs41,44. These complexes present 

a significant technical challenge to study, owing to the thermodynamic complexity of 

binding, and heterogeneity in structure and occupancy of bound complexes42,44. Indeed, 

characterized multivalent LC8 complexes are often highly structurally heterogeneous 

when examined by ultracentrifugation or electron microscopy, and this heterogeneity may 

play a functional role, such as in the LC8-binding protein ASCIZ, which senses the LC8 

concentration in the cell and regulates LC8 expression44. 

KN motif and ankyrin repeat protein 1 (Kank1) is a ~150 kDa member of the Kank 

protein family, which share an N-terminal KN motif and C-terminal ankyrin repeat 

domain130,131. Of the Kank family of proteins (Including Kank2-4) Kank1 is by far the most 

extensively studied, although each protein in the family is thought to function similarly to 

Kank1. The protein shares many characteristics with known multivalent LC8-binding 

proteins, including large regions of disorder, coiled-coil domains, and involvement in large 

macromolecular complexes. Beyond the KN motif and repeat domain, Kank1 consists of 

a mix of predicted disorder and coiled-coil structure, including several coiled-coils 

predicted from residues 258-501, and two long stretches of predicted disorder, named L1 

and L2, spanning residues 60-258, and 501-1161 (Fig. 4.1c). Kank1 is a tumor 

suppressor130,132, and frequently found downregulated in cancer tissues in the kidney132, 

brain133,134, and lungs135. The exact mechanism of Kank1’s tumor suppressor activity is 

unclear, although it may be connected to the role that Kank1 plays in regulation of the 

cytoskeleton at the cell cortex. 

 Uniquely, Kank1 can be found in complexes regulating both the actin and 

microtubule cytoskeleton131,136,137. The protein’s KN motif binds tightly to Talin1131, which 

is involved in the formation of focal adhesions (FAs) (Fig. 4.1d), large protein complexes 

at the cell cortex which regulate the growth of the actin cytoskeleton. In addition to this, 

Kank1’s coiled-coil domains bind to Liprin-β1, a component of cortical microtubule 

stabilizing complexes137 (CMSCs), regulatory complexes that control microtubule growth 

(Fig. 4.1d). Kank1 recruits the kinesin KIF21A to these stabilizing complexes, slowing the 

growth of microtubules at the cortex and reducing the incidence of ‘catastrophes’ where 

microtubules grow into the cell membrane137. As a member of both actin and microtubule-
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regulating complexes, Kank1 offers a potential route for crosstalk between the two 

systems.  

 

Figure 4.1: LC8 and Kank1 structure and function. Ribbon diagram of LC8, drawn in 
blue, with two client strands (PDB 2P2T). Clients take a beta-strand structure when bound 
to LC8. (b) Sequence logo of the LC8 motif, constructed from all known LC8-binding 
sequences in the LC8Hub database8. (c) Diagram outlining Kank1 structure, including KN 
motif (orange), ankryin repeat domain (green), coiled-coils (blue) and linker sequences 
(yellow). (d) Schematic of Kank1 (purple) binding to FAs (left) and cortical microtubule 
stabilizing complexes (CMSCs) (right). Kank1 interacts with Talin1 (teal) to bind FAs and 
is additionally recruited to CMSCs by liprins (light green).  
 

 Here, we present work that demonstrates that Kank1 binds to LC8 multivalently, 

at a site within Kank1’s disordered L2 region. We demonstrate that in human cells, Kank1 

recruits LC8 to the edges of focal adhesions at the cell cortex. Despite containing only a 

single predicted LC8 motif, we show that Kank1 binds LC8 multivalently, forming a 

cooperativity-driven ladder-like complex. Uniquely among multivalent LC8-binding 

proteins, the LC8-Kank1 complex is structurally homogenous, suggesting that binding may 

play an inducible structural role, allowing for flexibility when needed during 

macromolecular complex formation, and rigidity when needed to protect the full complex.  

 

Results 

Kank1 colocalizes with LC8 at focal adhesions 

Pulldown mass spectrometry experiments on Kank1 provided the first evidence of 

interaction between Kank1 and LC8, demonstrating that Kank1 pulls down LC8 along with 
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known Kank1-interacting proteins such as talin1 and liprin-β1136. To examine this 

interaction in cells, we stained for paxillin (an FA protein), and Kank1 or Kank2 in HeLa 

cells stably expressing LC8 tagged with C-terminal GFP. Examining localization of each 

protein, the signal for LC8 strongly overlaps with Kank1 in patches at the edge of FAs. 

Kank2 does not exhibit the same pattern of localization, suggesting Kank1 may be the 

only protein in the Kank family to bind LC8. Cells with Kank1 expression suppressed via 

siRNA knockdown see elimination of LC8 localization, confirming that Kank1 is 

responsible for localization of LC8 to FAs. Knockdown of Kank2 does not appear to have 

an impact on LC8 localization, confirming that Kank2 plays no LC8-interacting role.  

 
Figure 4.2: LC8 Colocalizes in Kank1 in HeLa cells. (a) Cells expressing LC8-GFP 
(green), stained for Paxillin (blue) and Kank1 or Kank2 (red). LC8 and Kank1 colocalize 
at the edges of focal adhesions. Cells are transfected with siRNA for luciferase (as a 
control), siKank1 and siKank2. Silencing of Kank1 abolishes LC8 colocalization. (b) 
Diagram of Kank1 structure, with bio-GFP tagged constructs designed for pulldowns 
shown. Motif-like amino acid sequences are marked with a star at the top of the diagram. 
(c) Streptavidin pulldowns of LC8-mCherry with bioGFP-Kank1. Left is input of crude cell 
lysate being pulled down, while right are blotted for GFP (top) and mCherry (bottom). 
Figures are adapted from chapter 4 of Ammon et. al., (2020)136. 
 

Kank1’s intrinsically disordered L2 region binds LC8 

To determine an approximate LC8-binding region for Kank1, we performed a series of 

streptavidin-based pulldown assays on LC8, using constructs of bioGFP-Kank1 as bait. 
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These experiments revealed that the L2 region (residues 501 to 1161) is the primary LC8-

binding component of Kank1 (Fig. 4.2b,c). The L2 construct on its own strongly pulls down 

LC8, and other LC8-binding constructs all contain L2. Detailed examination of the L2 

sequence reveals a canonical TQT anchor motif at residue 710 of the protein, further 

suggesting that LC8 binding occurs at L2 in Kank1.  

Using these pulldown experiments as a guide, we were able to further narrow down 

the LC8-interacting region to a predicted segment of disorder between residues 500 and 

800 of the L2 region. We scored the L2 region on the LC8-motif predicting tool LC8Pred8 

and found that all predicted LC8-binding motifs are within residues 600-720. Within this 

region, LC8pred predicts a single LC8-binding motif, a sequence of ASRGVNTE with the 

N instead of a Q at residue 651 (Fig. 4.3). In addition to this, the analysis yields 5 additional 

sequences with prediction scores above 0. It should be noted that these scores, per 

LC8pred criteria, are not predicted to bind LC8 (which requires a total score over 13)8 but 

are nonetheless worthy of consideration. Of the remaining 5, the lowest-scoring sequence 

(anchored with an unlikely TAT sequence at position 689) can be discarded, due both to 

the alanine at motif position 0, which has never been observed in LC8 binding, and to its 

position between two TNT-sequence containing motifs which overlap the TAT sequence. 

This leaves us with a total of 5 potential LC8-binding motifs: an SNT-containing motif at 

position 605, a VNT-containing motif at 651, two TNT-containing motifs at 685 and 697, 

and the aforementioned canonical TQT-containing motif at 710 (Fig. 4.3). 

 

Figure 4.3: LC8pred predictions for the 500-800 region of Kank1. Diagram of kank1 
(above) showing folded domains, as well as the L2 region where LC8 binding takes place. 
LC8pred scores along a sliding window for residues 500-800 of the L2 region. Scores are 
shown as a stacked bar plot combining the amino acid score (purple, Saa) and volume and 
polarity score (Orange, Svp). A combined score of 13 is sufficient to predict LC8 binding. 
The anchor sequence is listed for each motif.  
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Kank1 binds LC8 multivalently 

To investigate binding between Kank1 and LC8, we recombinantly expressed a section of 

Kank1’s intrinsically disordered region stretching from residue 595 to 720, to include all 

predicted LC8-binding motifs. To measure binding between LC8 and Kank1595-720, we 

performed isothermal titration calorimetry (ITC) experiments titrating LC8 into a sample of 

Kank1595-720 (Fig. 4.4, right). We found binding to be on the low micromolar scale (1.3 µM), 

with an enthalpy of -6.6 kcal/mol, consistent with expectations for a tight-binding LC8-

client complex. Notably, the value of n, as calculated in the ITC analysis package 

implemented in Origin53, is 5.92, suggesting a very high stoichiometry of LC8:kank binding. 

While n is not always a trustworthy parameter in complex cases due to the assumptions 

in the independent-sites model138, this high value of n can be taken as an indicator that 

Kank1 binds LC8 at multiple motifs, indicating that LC8pred (which is not designed with 

multivalent cooperativity in mind) is underpredicting LC8 binding in this case, and several 

of Kank1’s other LC8 motifs play a role in LC8 binding.  

 

Figure 4.4: Isotherms for Kank1595-720 and peptides from kank1 motifs. Figure displays 
the sequence of kank1595-720, with each predicted motif from 4.3 highlighted in green. 
Isotherms for titration of a peptide for each motif into LC8 is shown below. No isotherms 
bind tightly enough to be fit to a model, although isotherms 2 through 5 do show some 
evidence of weak binding. An additional isotherm for the entire Kank1595-720 sequence is 
on the right, which displays tight binding between Kank1 and LC8.  

 

To provide further confirmation of binding stoichiometry we performed size 

exclusion chromatography - multiangle light scattering (SEC-MALS) experiments on 

Kank595-720. First, examining the protein in isolation, we see a single dominant peak eluting 

from the SEC, suggesting a homogenous sample (Fig. 4.5b). The mass of the peak 
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determined from MALS is 18.1 kDa, close to the expected monomer mass of 16.4 kDa for 

the construct. To examine the LC8-Kank595-720 complex, we mixed LC8 and Kank595-720 

at an excess of LC8 and purified the LC8-Kank595-720 complex by SEC, to isolate a sample 

of the bound complex. Unfortunately, we see some dissociation of this complex on the 

SEC-MALS column, evidenced by a long tail on the dominant peak, and a second peak 

that elutes at ~28 minutes, consistent with the expected elution time for LC8 on this 

column. However, a single dominant peak for the LC8-Kank595-720 complex can still be 

seen (Fig. 4.5c). Fitting a mass for only this front peak returns a complex mass of 177 

kDa, close to the expected mass for a 14:2 LC8:Kank595-720 complex (181 kDa). The mass 

is not uniform along the peak however, due in part to the fact that the complex falls apart 

somewhat on the column, so it is difficult to use this metric to definitively determine binding 

stoichiometry. Nevertheless, this confirms expectations set by ITC experiments that the 

stoichiometry of binding is above 5:1, most strongly suggesting a 7:1 (14:2) complex. 

 

Kank-LC8 binding is highly cooperative 

To investigate the details of LC8-client binding and examine the five potential LC8-binding 

motifs in isolation, we synthesized peptides of each motif, and measured binding between 

each peptide and LC8 by ITC. To our surprise, we found that none of the motif peptides 

bound to LC8 at an affinity measurable by ITC. The isotherm for peptide 1 shows no 

evidence of binding at all, while isotherms for peptides 2 through 5 show only very weak 

binding, with isotherms 3 and 5 most closely approaching an acceptable binding curve 

(Fig. 4.4). All isotherms were collected at an LC8 concentration of 60 µM, indicating that 

the affinity between LC8 and peptides is likely well above 60 µM in all cases. This contrasts 

with the measured binding between LC8 and Kank1595-720, suggesting that LC8-Kank1 

binding is strongly driven by cooperativity between multiple LC8 motifs within the Kank1 

sequence.  

To further investigate cooperativity of binding, we performed a series of analytical 

ultracentrifugation (AUC) experiments titrating LC8 into Kank1595-720, which further 

confirmed the high degree of cooperativity in binding (Fig. 4.5a). At 1.25:1 LC8:Kank1, 

three AUC peaks appear, one corresponding roughly to the expected mass for free Kank1, 

one corresponding to some intermediate state at ~3 svedbergs, and one peak 

corresponding to a larger complex at ~5.5 svedbergs. As the titration progresses, the 

minor intermediate state and the peak corresponding to free Kank595-720 both disappear. 
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Specifically, a shift away from a peak of excess Kank595-720 and a towards a new peak for 

excess LC8 occurs between the 5:1 and 10:1 titration point, suggesting a binding 

stoichiometry between 5 and 10:1, and in agreement with the measured n value by ITC. 

The bound state peak appears to shift between the 5:1 and 10:1 titration point from 6 

svedbergs up to 7. This movement could be due to a difference in bound structures at 

these titration points but is more likely due to a shift in equilibrium towards the bound state, 

as the simple sedimentation velocity model used will be impacted by the dynamic 

equilibrium between free and bound states, and therefore be shifted towards lower 

svedberg units for the complex the larger the unbound fraction of protein in the system. 

 
Figure 4.5: Characterization of the LC8-Kank1 complex. (a) A series of sedimentation 
velocity AUC experiments performed at 7.2 µM Kank1, and increasing ratios of LC8. 
Dotted lines show centers of AUC peaks for Kank1 and LC8 in absence of their binding 
partner. To account for variation in the measured wavelength at high LC8 concentrations, 
Y axes are normalized to the tallest bound state (<2.5 svedbergs) peak. (b,c) MALS of 
Kank1 (b) and Kank1 bound to LC8 (c). Red line represents measured mass, with the 
average fit mass listed at the top of each plot. 
 

 

 



85 
 

Discussion 

Multivalency in LC8-Kank1 binding 

Despite LC8Pred predicting a single LC8 site, Kank1 clearly binds LC8 multivalently. The 

MALS-determined mass of the LC8-Kank1 complex suggests a complex of 14:2 

stoichiometry, with 7 dimers of LC8 bound to dimeric Kank1. An alternate possibility is that 

LC8 and Kank1 do not form a polybivalent complex, and instead form a trimeric or 

tetrameric (or higher order) structure. Indeed, several other combinations of Kank595-720 

and LC8 would exhibit a similar mass, such as a 12:3 LC8:Kank complex, with a theoretical 

mass of ~176 kDa. AUC and ITC results seem to confirm a binding stoichiometry between 

10:2 and 14:2, however.   The value of n from the ITC fit is near 6, and the Kank595-720 

peak in the AUC titration disappears between 5:1 and 10:1 LC8:Kank. While the 

stoichiometry determined by ITC does not perfectly match with the stoichiometry of the 

MALS data, this could be due either to error in the measured concentration of Kank595-

720 used for ITC, or due to imprecision of the value of n in cases where all binding events 

are not energetically identical. Beyond these experiments, no evidence has yet appeared 

of a multivalent LC8-client complex that takes a non-polybivalent structure, suggesting 

that such binding appears to be the preferred structure for LC8 complexes15,41,42,44. 

Further, Kank1’s LC8-binding domain directly follows a coiled-coil, which we believe will 

increase the favorability of a dimeric structure in the complex, as seen in the structure of 

the multivalent LC8-binding protein Nup15915,16. Based on these facts, we believe that the 

LC8-Kank1 complex is polybivalent, which raises an additional question. With 6 or 7 LC8 

dimers bound, but only 5 sequences containing recognizable motifs, there must be 1-2 

additional sites that have evaded notice. Kank595-720 does not include any other sequence 

that resembles an LC8 motif, meaning that binding may be happening at a previously 

unrecognized motif sequence.  While TQT (or TQT-like sequences as seen in Kank1) is 

established as the most common LC8-binding motif, new variations on the motif do occur, 

such as the LC8-binding site in MAG, discovered in 2019 with a TLT motif sequence139. 

 

Cooperativity in the Kank1 complex 

The degree to which Kank1-LC8 binding is driven by cooperativity is remarkable among 

multivalent LC8-client binding, although Kank1 is not the first LC8-binding protein to exhibit 

cooperativity. In non-multivalent cases, proteins such as LC8-binding protein Swallow 

exhibit cooperativity driven by a coiled-coil or other dimerization domain – mutation of the 
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domain to a tighter dimer increases the affinity for LC8, indicating that an already-present 

dimer structure enhances LC8 binding12. Other multivalent cases such as ASCIZ and 

Nup159 (with 7 and 5 LC8-binding sites respectively) exhibit cooperativity as well – with 

an ‘overall’ binding affinity that is tighter than each motif’s LC8 affinity in isolation15,44. None 

of these cases exhibit cooperativity above the scale of ~10fold enhancement however, 

while Kank1 appears to exhibit cooperativity in the scale of 2 orders of magnitude:  Kank595-

720 binds LC8 with a 1.3 μM affinity, while each individual motif binds LC8 well above the 

limit of determination by ITC, near 60 μM for our experiments, suggesting a >50-fold 

enhancement of affinity. The exact source of this cooperativity is unclear, but prior 

investigation into multivalent LC8 complexes have suggested that the length of linkers 

between individual motifs plays a role in multivalent cooperativity44,46. The density of LC8 

motifs within the 595-720 region of Kank1 is high in comparison to other multivalent 

complexes (e.g. the LC8-binding domain of dASCIZ is 145 residues and contains 7 

motifs), suggesting that linkers between each motif must be short, which we believe will 

contribute to positive allostery.   

Cooperativity is also apparent when examining the complex by AUC. Highly 

cooperative systems will disfavor states of intermediate occupancy, due to the relatively 

low affinity between LC8 and those low-occupancy states. Effectively, high cooperativity 

means that the system’s equilibrium is balanced to favor either an apo or fully-bound state. 

For Kank1-LC8 binding, this is exactly what we see. The complex does appear to have a 

stable intermediate, but even at low concentrations of LC8, the saturated complex is the 

dominant bound species. This contrasts starkly with similar ultracentrifugation 

experiments on the LC8-binding protein ASCIZ, which, even at a significant excess of 

LC8, shows a mix of partially bound and saturated states44.  While ASCIZ relies on this 

heterogeneous mix of states to sense the concentration of LC844, it seems likely that 

Kank1-LC8 binding plays a more structural role. Effectively, LC8 binding can act as a 

switchable element of structure. When unbound, Kank1 is flexible, allowing it to find its 

many binding partners in focal adhesions and cortical microtubule stabilizing complexes. 

When bound to LC8, the protein is rigid, holding the two complexes in place. This is the 

proposed mechanism for the LC8-binding protein Nup159, found in the nuclear pore, 

which bears several similarities to Kank1 in both structure, containing several coiled-coil 

domains, and function, as a scaffold in a large macromolecular complex15,16. 
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Future directions 

While this investigation reveals and characterizes a new LC8-binding interaction, it raises 

additional questions about the details of the LC8-Kank complex. The exact stoichiometry 

of binding is not yet clear, as calorimetric data conflicts with the MALS-determined mass. 

Confirmation of the mass of the complex through sedimentation equilibrium AUC 

experiments, would assist in determination of its stoichiometry. Additionally, negative stain 

electron microscopy, which has been a powerful tool for other multivalent LC8-client 

complexes42,44, may provide confirmation of complex stoichiometry, as well as 

confirmation of whether the complex takes a polybivalent structure. 

Related to the question of stoichiometry, the location of the one or two additional 

LC8 motifs in the Kank595-720 sequence also remains a mystery. Investigations using 

isolated peptides of these sequences are likely to be of limited use, as we have already 

shown that the predicted LC8-binding motifs in Kank1 do not bind tightly to LC8. As an 

alternative to examining potential motifs in isolation, prior studies of multivalent LC8-

binding proteins have disentangled many details of LC8 binding by examining an LC8-

binding domain in fragments containing a subset of the total sequence. We believe this 

method would assist in elucidating the potential location of Kank1’s additional motifs, as 

well as providing a more comprehensive picture of the thermodynamics of how Kank1-

LC8 binding is so strongly driven by co-operativity. It also has the advantage of making 

Kank1 a more feasible target for nuclear magnetic resonance (NMR) spectroscopy – the 

Kank595-720 construct contains 23 threonines and 16 serines, resulting in a highly 

degenerate NMR spectrum that cannot be fully assigned. Smaller constructs of Kank1 

would doubtless be better suited to NMR analysis, which may allow for direct structural 

determination of each LC8-binding site on Kank1. 

Finally, many questions remain about the larger context of LC8-Kank1 binding. 

While we propose that LC8 plays a structural role in the Kank1 complex, the exact function 

of Kank1-LC8 binding is unconfirmed. The function of Kank1 is not entirely clear either: 

while Kank1 is known to regulate cytoskeletal growth, it’s unclear if this is the source of its 

tumor suppression activity. Therefore it is difficult to examine whether LC8 modulates 

Kank1’s function as a cytoskeletal regulator, or is connected to some other, 

uncharacterized function of Kank1.  
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Conclusions 

Within this work we have characterized a new LC8-binding interaction. LC8 binds the 

tumor suppressor and cytoskeletal regulator Kank1, multivalently and with high affinity. 

Further, the complex binds with a great degree of cooperativity, more than what is seen in 

other LC8-client complexes. Driven by this cooperativity, the Kank1-LC8 complex is 

homogenous in occupancy, rather than forming a mix of partially-bound intermediates. 

This fact points to the Kank1-LC8 complex playing a structural role, facilitating Kank1’s 

function as a bridge between FAs and CMSCs.  

 

Materials and Methods 

Protein Expression and Purification 

For all biophysical assays, LC8 and Kank595-720 were expressed recombinantly in E. coli. 

Proteins were cloned into the pET24d expression vector, with an N-terminal 6xHis and 

TEV-cleavable site and expressed in either Rosetta (LC8) or C41 (Kank595-720) E. coli cells, 

both of which are derived from BL21 DE3 cells. Cells were grown in ZYM5052 auto-

induction media at 37 C for 24 hours. LC8 and Kank595-720 were both purified by affinity 

chromatography with TALON cobalt resin, as previously described44. Kank595-720 

expresses into inclusion bodies and was therefore purified using buffers containing 6 M 

urea as previously described44. Following affinity purification, Kank595-720 was dialyzed out 

of urea, and both Kank595-720 and LC8 were further purified by size exclusion 

chromatography (SEC) using a Superdex S75 hi-load column (GE Healthcare). SEC was 

performed in a buffer of 25 mM Tris, pH 7.5, 150 mM NaCl, 5 mM β-mercaptoethanol, and 

1 mM NaN3. Purified proteins were stored in SEC buffer either used within a week or flash 

frozen to -80 C for storage. 

 

Isothermal titration calorimetry 

We performed isothermal titration calorimetry at 25 C with a VP-ITC microcalorimeter 

(Microcal) in SEC buffer. For Kank595-720, LC8 was titrated into a cell sample of 

Kank595-720, with a syringe and cell concentration of 400 and 4 μM respectively. Each 

injection had an 8 μL volume, and a total of 36 injections were performed. For Kank1 

peptides, which were synthesized in-house using solid-phase synthesis and purified by 

HPLC, peptide was dissolved into SEC buffer at 500 μM and was titrated into a cell sample 

of LC8 at 60 μM. A total of 28 injections of peptide into LC8 were performed, at injection 
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volumes of 10 μL. Peaks were integrated and fit to the n-independent sites model in Origin 

7.0. 

 

Analytical Ultracentrifugation 

We performed sedimentation velocity analytical ultracentrifugation (SV-AUC) on a 

Beckman Coulter Optima XL-A analytical ultracentrifuge, equipped with optics for 

absorbance measurements. We mixed purified LC8 and Kank595-720 at a series of 

increasing concentrations, with a fixed Kank595-720 concentration of 7.2 μM, and LC8 

concentration varied from 9 μM (1.25:1) to 144 μM (20:1). The 1.25, 2.5, and 3.75:1 

complexes were measured by absorbance at 280 nm, 5 and 10:1 used absorbance at 292 

nm, and the 15 and 20:1 complexes used 298 nm. All experiments were performed in SEC 

buffer, dialyzed the night before SV-AUC was performed, to ensure minimal β-

mercaptoethanol degradation. We loaded the complexes into 12 mm path-length 2-

channel cells, and centrifuged the samples at 42,000 rpm and 20 C. We acquired 300 

scans at the relevant wavelength, with no delay between scans. Absorbance profiles were 

fit to a c(S) distribution in SEDFIT, with a calculated buffer density of 1.0009 g/ml, 

calculated using Sednterp.  

 

Size exclusion chromatography – multiangle light scattering  

For size exclusion chromatography paired with multiangle light scattering (SEC-MALS), 

experiments were performed on a 10/300 Superdex 200 analytical SEC column (GE 

Healthcare) attached to an AKTA-FPLC (GE Healthcare) and routed through a DAWN 

multiangle light scattering and Optilab refractive index system (Wyatt Technology). We 

equilibrated the system to SEC buffer, then injected 100 μL of sample onto the column. 

For Kank595-720 we injected a sample of 30 μM Kank595-720, and for the complex, we injected 

a sample of a theoretical particle concentration (assuming 14:2 binding, i.e. 14 μM LC8 

and 2 μM Kank595-720) of 1 μM. Molar masses were estimated in the ASTRA software 

package, using a Zimm scattering model.  

 

Cell culture and streptavidin pulldown assays 

All cell culture, siRNA transfections, and streptavidin pulldowns were performed as 

described in Ammon et. al.,(2020)136. Briefly, HeLa stably expressing endogenous LC8-

GFP cells were transfected with siRNA using HiPerFect (Quiagen), and analyzed 48-72 
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hours after transfection. For imaging, cells were fixed in ice-cold methanol, and proteins 

were visualized with commercially available primary antibodies for Kank1, Kank2 and 

Paxilin, along with fluorescently labeled secondary antibodies. Cells were imaged with a 

Nikon Eclipse Ni upright wide field fluorescence microscope and a Nikon DS-Qi2 CMOS 

camera (Nikon), using Plan Apo Lambda 100x N.A. 1.45 oil objective (Nikon) and Nikon 

NIS (Br) software (Nikon). For streptavidin pulldowns, briefly, bioGFP-tagged Kank1 

constructs were expressed in HKE293T cells and harvested from cell lysates using 

streptavidin beads. Beads were then incubated with (separately prepared) lysates of cells 

expressing LC8-mCherry, washed, and the beads were stripped using a SDS-PAGE 

sample buffer. Gels of pulldown product were visualized using commercially available 

antibodies against GFP and mCherry. 
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Chapter 5 

 

Conclusions 
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Impact 

Each study in this thesis is focused on investigation of the function of the hub protein LC8, 

including investigation of the thermodynamics of LC8 binding, study of the LC8-binding 

motif, and characterization of a new LC8-binding protein. Chapters 2 and 3 are similar in 

that they both attempt to answer concrete questions about LC8 binding and provide tools 

and methods for future research. From these two chapters we have learned that LC8 

binding is dependent on more than simply the TQT of the LC8 motif and that many LC8-

binding clients bind with positive allostery. Both chapters also present new computational 

tools – chapter 2 outlines a method for Bayesian statistical modeling of multistep binding 

interactions, which we hope will be useful both for additional investigation of LC8 binding 

and broadly in the study of complex protein-protein interactions. Similarly, LC8Pred, the 

LC8-motif prediction method from chapter 3 is designed as an easy-to-use tool for 

investigation of new LC8-binding proteins which is already in heavy use by the LC8 binding 

community. Lastly, my investigation of Kank1-LC8 binding incorporates both LC8Pred as 

well as several biophysical techniques (SEC-MALS, ITC, AUC) to characterize a 

previously unknown binding interaction that demonstrates unprecedented binding 

cooperativity to a large number of sites and opens a new avenue of LC8 function through 

its interaction with Kank1. Together, this body of work emphasizes the value of combining 

experimental and computational approaches to maximize the information pulled from 

experimental data and provides tools for future researchers to do the same in their own 

work. This chapter briefly highlights important results from the work and discusses plans 

for ongoing projects and for future work. 

 

Highlights of reported work 

In chapter 2, I examine the thermodynamics of LC8-client binding, with a focus on the 

simple case of a peptide containing a single LC8 site. Although it is simplest LC8-binding 

system, the dimer-driven interaction necessitated the development of a Bayesian 

statistical method for modeling isothermal titration calorimetry (ITC) data using a two-step 

binding model, building on Bayesian approaches to simple ITC models. I dissected the 

impact that uncertainties in analyte concentration can have on thermodynamic 

parameters, demonstrating that even when analyte concentrations are highly uncertain, 

binding free energies can still be determined to within 1-2 kcal/mol uncertainty. I 

additionally demonstrated that the determinability of thermodynamic parameters, 
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particularly binding enthalpies, is intrinsically linked to the microscopic binding parameters, 

and that microscopic parameters that are poorly matched to experimental conditions result 

in loss of parameter determinability. Returning to LC8, I demonstrated with confidence 

that LC8 binds selected clients with positive allostery, indicating the half-bound LC8-client 

complex has a higher affinity for clients than apo LC8. While this may not be universal in 

LC8 binding, it fits with the conception of LC8 as an engine for dimerization: with positive 

allostery, the half-bound state is disfavored, and the fully bound induced-dimer state, 

thought to be the functional state for most LC8 interactions, is favored. 

In chapter 3 I describe work investigating the LC8 motif. Newly characterized LC8-

binding peptides, as well as a set of motif-containing peptides demonstrated to not bind 

LC8, provided data we collated into new insights on LC8 binding. Most notably, we found 

that the TQT anchor, while required for binding, is not a sufficient determinant of LC8 

binding, which depends on both a favorable motif and favorable flanking residues. We 

collated a database of known LC8-interacting proteins and used this dataset, along with 

the LC8-nonbinding sequences, to build a set of scoring matrices for evaluating LC8 

binding, titled LC8Pred. LC8Pred performed with 76% accuracy in validation, 

demonstrating a fair capacity to separate binding and non-binding sequences. Both the 

database of LC8-binding proteins (LC8Hub) and the predictive tool (LC8Pred) are 

maintained online, for anyone interested in studying LC8 binding. 

 Chapter 4 is focused on characterizing the interaction between LC8 and 

multivalent client Kank1. We first examine localization of LC8 and Kank1 in cells and find 

that Kank1 draws LC8 to focal adhesions at the cell cortex, where the proteins colocalize. 

Further, through pulldowns and predictions with LC8Pred, we were able to target Kank1’s 

LC8-binding site to a region of disorder midway through the protein’s sequence. 

Thermodynamic investigation of LC8-Kank1 binding revealed that Kank1 binds LC8 

multivalently, at 6 or 7 sites. The complex is strongly driven by cooperativity, to the extent 

that the affinity for the complete LC8-binding region is at least two orders of magnitude 

tighter-binding than each motif in isolation. We believe that the resultant function of the 

LC8-kank1 complex plays a structural role, stabilizing the macromolecular complex Kank1 

forms at the cell cortex.  
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Ongoing work and future directions 

Modeling LC8 binding 

The observed allostery in LC8 binding may not be universal, as we selected a tight-binding 

subset of known LC8-interacting peptides for our study in chapter 2. There is a growing 

library of data on other LC8-binding peptides available to us, however, and future studies 

will hopefully widen the net of examined LC8-interacting proteins. Of particular interest is 

an examination of LC8-binding interactions of seemingly varied entropy. Independent-

sites fits of LC8 interactions report wide variations in binding entropy and enthalpy, 

suggesting there is a degree of entropy-enthalpy compensation occurring in LC8 binding. 

This correlates with measurements that show that the core of LC8 is rigidified on binding 

to clients, to a varying degree dependent on client sequence. This variation in entropy also 

provides a potential explanation for the structural mechanism of allostery, a question left 

unanswered in the work presented in this thesis. We hope that combining further modeling 

work with molecular dynamics simulations of LC8-client complexes will help answer these 

questions and move us towards a complete understanding of two-step LC8 binding.  

 

LC8Hub 

We plan to keep LC8Hub and LC8Pred up to date as research reveals new LC8-binding 

proteins. While scoring criteria will need to be re-evaluated as training data grows, 

LC8Pred is perfectly adaptable to new data – as new LC8-binding sequences are 

discovered, they can easily be added to the LC8Pred training sequences. Additionally, as 

the list of known LC8-binding proteins grows, it will be necessary to update our conception 

of how LC8 binding functions. As an example, work published in 2018 revealed that LC8 

binds to the protein L-MAG through a currently unique TLT binding motif, providing 

evidence that a position 0 leucine is possible in LC8 binding. LC8Pred, which utilizes an 

initial filtering step looking for anchor-like sequences, was therefore adjusted accordingly. 

We expect that new discoveries of LC8-binding proteins will continue to appear, and as 

they are incorporated into LC8Hub and LC8Pred, the quality of LC8-binding prediction will 

improve.  

 

Kank1 

Several questions remain about the details of Kank1-LC8 binding. In particular, the exact 

number and location of Kank1’s LC8 binding motifs stands out as a particularly important 
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unanswered question. We hope that additional studies on fragments of Kank1, alongside 

the application of additional techniques such as nuclear magnetic resonance 

spectroscopy and negative stain electron microscopy will provide answers to these 

questions. Beyond these questions, the function of LC8-Kank1 binding remains unknown, 

and investigating our hypothesis that the interaction plays a structural role will be an 

important next step for the study of the protein. 

 

Multivalent binding 

Multivalent complexes containing intrinsically disordered proteins (IDPs) present a unique 

biophysical challenge, due largely to their tendency to form heterogeneous ensembles of 

different states and the underlying thermodynamic complexity of multivalent interactions. 

Sample heterogeneity confounds many traditional biophysical investigation methods 

reliant on a homogenous sample. To combat this and aid the study of both LC8 and other 

multivalent IDP-containing complexes, we are working to develop methods of analysis 

tailored to multivalent binding. 

 Building on the work presented in chapter 2, we plan to expand our attempts at 

Bayesian modeling to multivalent LC8 complexes. An LC8 binding protein with two motifs 

can form thirteen structurally distinct complexes, with a complicated network of 

intermediate states. While we do not believe that a single isotherm will be sufficient to 

confidently model these entire systems, mutation studies examining each motif in 

isolation, then utilization of global models that incorporate isolated mutation studies will 

hopefully fill in the gaps. We additionally hope that the same models can be applied to 

experimental techniques beyond calorimetry, such as nuclear magnetic resonance (NMR) 

and analytical ultracentrifugation (AUC) experiments, to help fill in the gaps where 

calorimetric data does not provide a full picture. 

Advancements in analysis methods have led native mass spectrometry to become 

a powerful tool for measuring heterogeneous multivalent complexes. LC8 binding provides 

an interesting test case for this technology, where protein complexes are preserved in 

flight and populations of occupancy states can be measured, and our work has provided 

impetus, samples and data towards its development. A recent manuscript46 on LC8 

binding to a region of the transcription factor ASCIZ demonstrated through native mass 

spectrometry that LC8 binds ASCIZ in a predominantly ‘in-register’ duplex, where LC8 is 

bound at symmetric motifs and induces a ladder-like structure on the client. The 
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manuscript demonstrates the power of native mass spectrometry to answer otherwise-

unapproachable questions about multivalent IDP complexes, as they allow individual 

complexes to be picked out of a heterogeneous mix. 

Negative stain electron microscopy also provides an exciting new avenue for 

investigating these complexes. As with native mass spectrometry, our work has provided 

impetus, samples and data for the development of negative stain electron microscopy. 

Each dimer unit of LC8 appears as a small dot in electron micrographs, and multivalent 

LC8 complexes appear as a series of beads on a string. While images can be clustered 

into classes with a fixed structure as is traditional in electron microscopy, this 

oversimplifies the true heterogeneity of multivalent complexes, which retain some 

structural flexibility. As such, we have worked to assist in the development of a method of 

EM analysis that utilizes individual images to build a conformational ensemble of the 

complex structure42. I contributed the design and testing of a synthetic LC8-binding 

peptide to this work, which is the subject of appendix 5 of this thesis. Analysis of 

complexes by this method allows us to both determine the occupancy of LC8-client 

complexes and build an ensemble of their structures.  

While these methods have all been focused on investigating LC8 binding, it is our 

hope that they will be applicable to other multivalent systems. Multivalent binding is a 

common feature to many IDPs, and multivalent IDP binding is a growing area of study, as 

these complexes complexes play a role in a host of biological functions. Proper tools that 

account for the heterogeneity of structure and conformation that are characteristic of 

multivalency will simplify investigation of these systems, both in future studies on LC8-

binding proteins, and many other multivalent systems. 
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Summary 

Peroxiredoxins are ubiquitous enzymes that detoxify peroxides and regulate redox 

signaling. During catalysis, a ‘peroxidatic’ cysteine (CP) in the conserved active site 

reduces peroxide while being oxidized to a CP-sulfenate, prompting a local unfolding event 

which enables formation of a disulfide with a second, ‘resolving’ cysteine. Here, we use 

nuclear magnetic resonance spectroscopy to probe the dynamics of the CP-thiolate and 

disulfide forms of Xanthomonas campestris Peroxiredoxin Q. Chemical exchange 

saturation transfer behavior of the resting enzyme reveals 26 residues in and around the 

active site exchanging at a rate of 72 s-1 with a locally-unfolded, high-energy (2.5% of the 

population) state. This unequivocally establishes that a catalytically-relevant local-

unfolding equilibrium exists in the enzyme’s CP-thiolate form. Also, faster motions imply 

an active site instability that could promote local unfolding and, based on other work, be 

exacerbated by CP-sulfenate formation so as to direct the enzyme along a functional 

catalytic trajectory. 

 

Introduction 

Peroxiredoxins (Prxs) are ubiquitous enzymes which efficiently reduce peroxides using 

simple cysteine chemistry140–142. They are highly efficient peroxide scavengers, with rate 

constants for peroxide reduction up to 108 M-1 s-1, nearing the diffusion limit141,143. 

Historically, Prxs have taken a backseat to well characterized peroxidases such as 

catalase, but evidence implies that Prxs reduce upwards of 90% of cellular peroxides, 

serving as key protectors against oxidative stress, and also, in eukaryotic cells, key 

regulators of redox signaling144,145.    

Prxs have a thioredoxin fold and conserve an active-site PxxxS/TxxC sequence141 

that ends with a so-called ‘peroxidatic’ cysteine (CP) and forms a loop preceding helix α2 

(the CP-loop) and the first turn of helix α2 (Fig. A1.1b). The Prx catalytic cycle begins with 

CP attacking peroxide substrate to yield a CP-sulfenate and a reduced water or alcohol 

product (Fig. A1.1a)141,142, with an active site exquisitely set up to stabilize the transition 

state of this SN2 displacement reaction146. Then an obligatory local unfolding event allows 

a so-called ‘resolving’ cysteine (CR) to attack the CP-sulfenate to form a CP-CR disulfide 

bond. The resolving Cys may come from a different protein, but commonly comes from 

another part of the Prx chain or partner subunit, in which case the required local unfolding 

involves at least one structural element in addition to the catalytic pocket region involving 

https://www.zotero.org/google-docs/?TwqLwy
https://www.zotero.org/google-docs/?iFfdp9
https://www.zotero.org/google-docs/?98gr2e
https://www.zotero.org/google-docs/?F8bjE7
https://www.zotero.org/google-docs/?H2pvMP
https://www.zotero.org/google-docs/?CAlegg
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the CP-loop and the first turn of helix α2141. Disulfide formation covalently locks the protein 

in a locally-unfolded conformation until the Prx is reduced back to an active thiolate state, 

usually by a thioredoxin141. Thus, for 2-Cys Prxs, the enzyme cycles from a resting fully-

folded (FF) CP-thiolate form through a CP-SOH form, to a locally-unfolded (LU) CP-SS-CR-

disulfide form before being recycled to complete the cycle (Fig. A1.1a). Several cleverly 

designed kinetics studies have additionally shown that the local-unfolding event itself can, 

for some Prxs, be the rate-limiting step in disulfide formation147,148. While not the focus of 

this work, many Prxs in eukaryotes are especially sensitive to inactivation via a 

hyperoxidation reaction that is in competition with the local unfolding (Fig. A1.1a) and 

these “sensitive” Prxs are thought to be involved in the regulation of redox 

signaling141,142,147.  

Given the prominent conformational changes during catalysis, the dynamic 

properties of Prxs remain poorly understood because well-studied Prxs form dimeric or 

decameric complexes that are too large for facile study by solution nuclear magnetic 

resonance (NMR) spectroscopy. A major open question in the field is how much 

catalytically-relevant local unfolding already occurs in the resting CP-thiolate form of 2-Cys 

Prxs, versus how much the oxidation to a CP-sulfenate triggers a conformational change 

to the LU state. While few details are known about the thermodynamics or kinetics of local 

unfolding, crystallographic studies have implied that sulfenate formation induces local 

unfolding149–151, and a recent study of hyperoxidation kinetics concluded that sulfenate 

formation promotes local unfolding by over 100-fold147. NMR-based investigation into 

solution dynamics has the potential to answer these questions, and conformational 

exchange measurements in particular have a track record of providing insight into 

catalytically relevant motions in absence of catalysis152–154, as well as folding-unfolding 

equilibria 155–158.  

The PrxQ subfamily of peroxiredoxins159,160 – found in bacteria and many plants 

and fungi, and with subgroups based on CR location (in helix α2, α3 or no CR) – includes 

monomeric members potentially amenable to study by NMR151,161. We selected PrxQ from 

the plant pathogen Xanthomonas campestris (XcPrxQ) as a model system that is both 

monomeric and crystallographically characterized162. XcPrxQ is a 17 kDa monomer with 

its peroxidatic Cys (Cys48) at the N-terminal end of helix α2 (as it is for all Prxs), and its 

resolving Cys (Cys84) in the middle of helix α3 (Fig. A1.1b,c). Also, helix α2 is kinked, due 

to a proline at position 60, giving it distinct N- and C-terminal parts we call here α2N and 

https://www.zotero.org/google-docs/?bCgJNX
https://www.zotero.org/google-docs/?KuzUaj
https://www.zotero.org/google-docs/?TJxPX2
https://www.zotero.org/google-docs/?t4g1Tc
https://www.zotero.org/google-docs/?eVJnqK
https://www.zotero.org/google-docs/?PJqwku
https://www.zotero.org/google-docs/?T7H2iR
https://www.zotero.org/google-docs/?2xWzIq
https://www.zotero.org/google-docs/?93zaxz
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α2C. Disulfide formation for XcPrxQ involves a large shift in the CP-loop, very little change 

in the N-terminal end of helix α2 and the complete unfolding of helix α3 that allows the CP- 

and CR-residues to come together (Fig. A1.1b). Despite the minimal structure change in 

helix α2, based on studies of a closely related PrxQ, Horta et al., (2010) proposed that its 

dynamics were nevertheless very important and that CP- sulfenate formation triggered a 

local unfolding of helix α2 as a necessary intermediate, and that the helix refolded after 

disulfide formation.  

As groundwork for the dynamics studies reported here, we carried out an ~1 Å 

resolution crystallographic analysis of the XcPrxQ catalytic cycle151 that included views of 

the CP-sulfenate and CP-sulfinate forms– formed in the catalytically active crystals – and 

a highly unusual structure for the CP-sulfenate led to the conclusion that its formation does 

indeed destabilize the FF active site. We also assigned the NMR spectra of the CP-thiolate 

and disulfide forms of XcPrxQ163. Notably, while the CP-thiolate spectrum of XcPrxQ could 

be nearly fully assigned (149/152), the disulfide spectrum was missing over half of the 

expected resonances (68/152 assigned), consistent with these regions experiencing peak 

broadening due to intermediate exchange and providing evidence of interesting motion in 

this form. Intriguingly, the one other monomeric PrxQ studied by NMR is from the subgroup 

with CR in α2, and while it also showed extensive peak loss due to intermediate exchange, 

in that case it was for the CP-thiolate form of the enzyme161.  

Here, we use heteronuclear NMR dynamics experiments to characterize the fast, 

intermediate, and slow motions in both the CP-thiolate and disulfide forms of XcPrxQ. We 

find little difference between fast-timescale spin-relaxation behavior of the CP-thiolate and 

disulfide forms in spite of dramatic differences in NMR spectra, identify a slow exchanging 

core that is common to both forms, and most significantly, report unequivocal evidence 

that the resting CP-thiolate form of the enzyme contains, at about a 2.5% level, a 

population of a catalytically-relevant locally-unfolded excited state. 
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Figure A1.1: Overview of XcPrxQ catalysis and structure. (a) Catalytic cycle of Prxs, 

identifying the CP-thiolate, CP-sulfenate, CP-sulfinate and disulfide enzyme forms. Srx is 
sulfiredoxin. (b) Overlay of ribbon diagrams of XcPrxQ CP-thiolate (purple; PDB code 5IIZ) 
and disulfide (orange; PDB code 5IOX) forms. Major secondary structure elements are 
labeled, and a thin trace represents residues 79-81 that are not observed in the disulfide 
form crystal structure. (c,d) Ribbon diagrams as in panel B, but showing the CP and CR 
residues as sticks and with the ribbon colored only for residues with assigned amide 
resonances163.  Excluding prolines, the CP-thiolate and disulfide forms were 97% and 45% 
assigned, respectively. 
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Results 

NMR spectral analysis 

NMR spectra collected on 15N- and 13C,15N-labelled XcPrxQ (Fig. A1.2a) under reducing 

(CP-thiolate form) and non-reducing (disulfide form) conditions closely match available 

assignments163. About half of the backbone amide resonances, including those of the CP 

(Cys48) and CR (Cys84) residues, are not present in spectra of the disulfide form. While 

the lack of peaks for the catalytic cysteines complicates verification of their oxidation state, 

our buffer closely matches that used in crystallization of the disulfide form151,163. 

Furthermore, reduction by DTT restores the CP-thiolate spectrum, confirming that the peak 

disappearance is not an artefact but is specific to the disulfide form. Both the CP and CR 

amides are assigned in the XcPrxQ spectrum under reducing conditions, and the Cβ 

chemical shifts of the CP and CR residues obtained from HNCACB experiments are 

consistent with expected shifts for a Cys thiol/thiolate, confirming the protein is the CP-

thiolate state.  

 

The Ser-44 amide makes an NH...pi hydrogen bond 

The 1H-15N HSQC spectrum of the XcPrxQ CP-thiolate form has a peak with an unusual 

amide proton chemical shift of 4.4 ppm (Fig. A1.2a), that was not present in the previously 

assigned spectra collected at 500 MHz. Using HNCA and HN(CO)CA datasets collected 

at 800 MHz, we unambiguously assigned the peak to the Ser44 NH (Fig. A1.2c), one of 

just three previously unassigned backbone amides. In crystal structures, Ser44 directly 

precedes the beginning of the active site helix α2 (adjacent to the conserved Thr45), with 

its amide proton interacting with the electron-rich face of the aromatic ring of Phe83 from 

helix α3 (Fig. A1.2b). Such an amide-pi hydrogen bond, while uncommon, has been 

observed by NMR in other proteins, and this environment provides a satisfactory rationale 

for the unusual chemical shift, as for example, it matches closely with the 1H shift of 4.3 

ppm seen for Gly 37 of the bovine pancreatic trypsin inhibitor164.  

 

 

https://www.zotero.org/google-docs/?iaLAU6
https://www.zotero.org/google-docs/?hgJFAA
https://www.zotero.org/google-docs/?2YtAeQ
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Figure A1.2: Unusual chemical shift and environment of Ser44 amide. (a) 1H-15N 
HSQC of XcPrxQ under reducing conditions, with the Ser44 amide peak indicated. (b) 
Context and close-up view of the interaction between the Ser44 amide and the Phe83 side 
chain in the XcPrxQ CP-thiolate crystal structure (PDB code 5IIZ). (c) 1H-13C strips of 
HNCA and HN(CO)CA spectra, allowing the assignment of Ser44 amide. 
 

Modelfree analysis reveals that the thiolate and disulfide have similar ps-ns dynamics 

To examine the ps-ns timescale internal motions of XcPrxQ, we measured 15N R1, 15N R2 

relaxation rates and the steady state 1H-15N heteronucelar NOE ({1H}-15N NOE) of XcPrxQ 

in CP-thiolate and disulfide forms (Fig. A1.3a) at 800 and 500 MHz (SI Fig. A1.1). Reliable 

relaxation rates and {1H}-15N NOE values were obtained for 131 of 149 assigned residues 

in the CP-thiolate form, with the remaining being unresolved due to peak overlaps. 

Modelfree analysis for the CP-thiolate form revealed that the N- and C-termini and the ββ 

insert (residues 110-117) are undergoing rapid motion in the ps-ns timescale, with S2 

values dropping below 0.6 in these regions, indicating that they are at least partially 

disordered in solution (Fig. A1.3a). Consistent with this, these three regions have the 

highest B-factors in the crystal structure (Fig. A1.3b). We observed substantive Rex terms 

(> 3 s-1) for 17 residues in total (SI Fig. A1.2). These residues occur throughout the protein, 

and notably include CP (Cys48) and its neighbors Thr45 and Thr49, as well as a set of 

residues for which alternate conformations were seen in the crystal structures (SI Fig. 

A1.3). To provide an alternate measurement of 15N R2 rates we collected an additional 

measurement of 15N R1ρ and used the measured 15N R1ρ and 15N R1 rates to calculate 15N 

R2 relaxation (SI Fig. A1.2). Two residues in particular – CP (Cys48) and Thr49 – had 
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abnormally high 15N R2 rates when determined this way, similar to what was seen in our 

direct 15N R2 measurements, and indicative of exchange contributing to relaxation. 

 

Figure A1.3: Spin relaxation and modelfree analysis. (a)15N R1 (top), R2 (middle) and 
{1H}-15N NOE (bottom) values for CP-thiolate (purple bars) and disulfide (orange circles) 
forms of XcPrxQ. Secondary structure from the CP-thiolate crystal structure is shown at 
the top of the figure (α-helices as rectangles, β-strands as arrows, and 310-helices as 
parallelograms) with the peroxidatic and resolving Cys locations highlighted in yellow. (b) 
Order parameter (top) for disulfide and CP-thiolate forms, and average backbone 
crystallographic B-factors (bottom) from the CP-thiolate (Purple; PDB code 5IIZ) and 
disulfide (Orange; PDB code 5IOX) crystal structure. Residues with missing disulfide-state 
NMR assignments are marked with a dot. Plot scaled to the median B-factor align. 
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For the disulfide form of the protein, the S2 values are generally similar to those of 

the CP-thiolate form, suggesting that the fast motions of these parts of the protein are 

largely unchanged by disulfide formation. The modelfree spectral density functions 

selected for the disulfide form were also generally the same on a residue-by-residue basis 

(SI Tables 1 and 2 – see manuscript), further supporting the conclusion that the fast time 

scale dynamics are similar between the two forms of the protein. With only a handful of 

exceptions, residues with Rex terms in the CP-thiolate form also have Rex terms in the 

disulfide form, and notably all 17 residues with Rex>3 s-1 in the CP-thiolate form are either 

missing or also have an Rex term in the disulfide form.  

 

CEST studies reveal dynamics of local unfolding involving the catalytic helices α2 and α3 

To examine chemical exchange in CP-thiolate XcPrxQ, we performed 15N-Chemical 

Exchange Saturation Transfer (CEST) experiments. Eighteen residues in CP-thiolate 

XcPrxQ showed obvious exchange, as evidenced by two distinct dips in their CEST 

profiles (Fig. A1.4a). Notably, these included CP, CR and most of the residues changing 

conformation in the FF to LU transition: the CP-loop, the N-terminal part of helix α2 (α2N) 

and helix α3. Overall, we identified 26 residues that fit a global 2-state model for chemical 

exchange with a kex = 72 s-1 and a pE = 2.5%. These parameters imply a rate of transition 

from the ground to the excited state (kGE) of 1.8 s-1 and a rate from the excited back to the 

ground state (kEG), of 71 s-1. The exchanging regions were generally clustered between 

residues 43 - 55, and 75 - 100 (Fig. A1.4b and SI Table A1.3). Residues Gly21 and Val143 

are outside of this cluster, but their exchange is reasonably explained by the CP-thiolate 

crystal structure: the amide hydrogen of Gly21 hydrogen bonds to the Asp81 carboxylate 

(in helix α3), and the sidechain of Val143 packs against the α2N (Fig. A1.4b inset).  

In addition to the 26 residues described above, Asp96 appeared to be in a 

system of 3-state exchange, with two separate minor states (SI Fig. A1.S4). However, 

no other residues within the protein showed evidence of such exchange, so we could not 

confidently fit this profile to a 3-state model of exchange. Given its proximity to residue 

99, which fits well to a model with a high kex (SI Table A1.3), this residue provides some 

evidence that the loop connecting strand β5 and helix α4 is in a 3-state exchange 

regime. A handful of residues in these regions that either did not fit to the global model 

(e.g. 96, 99), or were not measured unambiguously due to peak overlap (e.g. 50, 51), 

are shown in gray in Figure A1.4b. Additional residues in the region for which the CEST 
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profile showed no evidence of an excited state (e.g. 77, 79, 88 and 91) may have a 

∆ω~0, such that no excited state peak would be observed. 

 

Figure A1.4: Preexisting local unfolding equilibrium of helices α2 and α3 revealed 
by CEST. (a) CEST profiles at B1 frequencies of 50 Hz (dark purple), 25 Hz (light purple) 
and 10 Hz (blue) are shown for six clearly exchanging residues along with curves based 
on the global fit (dashed lines). (b) CP-tholate ribbon diagram of CP-thiolate XcPrxQ (PDB 
code 5IIZ) distinguishing the 26 residues fit to the global exchange model (pink) from 
residues for which no exchange was detected (purple) or which were not evaluated due 
to lack of assignment, overlapping or otherwise unfittable CEST profiles (grey). Inset 
boxes show the interactions of Val143 and Gly21 with residues from helices α3 and α2, 
respectively. (c-d) Scatter plot of ground state (c) and CEST-measured excited state (d) 
chemical shifts versus those expected for a random coil (Kjaergaard and Poulsen, 2011). 
The 11 residues not initially identified as exchanging but included in the global fit are 
indicated (red). (e) Cartoon summary of the kinetics (bottom) and thermodynamics (top) 
for the inferred transition between a ground state fully-folded CP-thiolate conformation and 
an excited state conformation with 26 residues (pink) experiencing different environments 
due to the local unfolding of helices α2 and α3. 
 

With these CEST experiments revealing that the α2N/α3 region of the protein is in 

equilibrium with a distinct higher energy conformation, we next asked what could be 

learned about the conformation of the excited state. A comparison of the ground state 

and excited state 15N chemical shifts with reference chemical shifts for a random coil165 

shows that while the ground state shifts are highly dispersed (Fig. A1.4c), the excited 

https://www.zotero.org/google-docs/?XxjfCQ
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state shifts consistently match the random coil values (Fig. A1.4d). This provides 

evidence that the excited state of this region is largely unfolded, consistent with this 

process representing a preexisting FF to LU transition in the CP-thiolate form of the 

protein. 

 

Hydrogen exchange reveals a slow-exchanging core distinct from catalytic helices 

We assessed solvent exchange at multiple timescales, using CLEANEX166 to 

characterize very fast exchanging amides and conventional hydrogen-deuterium 

exchange experiments167 to measure the slower exchanging amides in the range of 

minutes to weeks. Based on their exchange rates, we grouped 140 (of 149) assigned 

residues in the CP-thiolate form and 66 (of 68) residues in the disulfide form into four 

classes (Fig. A1.5): very fast (CLEANEX detected, log(P) ~ 0), fast(CLEANEX invisible, 

0 < log(P) < 2.5), intermediate (2.6 < log(P) < 4.5), slow ( 4.5 < log(P) < 7), and very 

slow (log(P) > 7) as described in the methods. In the CP-thiolate structure, the fast 

exchanging amides are at the N and C termini and at the ββ insert, matching well with 

the residues having low order parameters in the modelfree analysis (Fig. A1.3a). 

Interestingly, the active site residues, Arg123 and Cys48 (CP), also exchange on this 

timescale. Both these amides are solvent-exposed, with the CP amide notably involved in 

coordinating the incoming peroxide, but the very rapid exchange implies not just a static 

exposure, but a localized flexibility that allows for formation of the chemical 

intermediates involved in amide exchange chemistry168,169. 

In the disulfide form (Fig. A1.5), most CLEANEX-visible residues are in the ββ 

insert and at the termini, similar to the CP-thiolate form. Over-all, the protection factors 

are lower by one to three orders of magnitude in the disulfide state, indicating some 

loosening of the structure However, the pattern of exchange –regions of the protein that 

are slow-exchanging and those that are fast-exchanging – is the same between the two 

proteins. There remain some “very slow” exchanging amides which cluster to form a 

smaller stable core that is still centered on the ‘lower’ halves of β3 and β6 and the 

central portion of α5 (Fig A1.5). As the ‘upper’ (i.e., closer to the peroxide-binding 

pocket) halves of β3, β4 and β6 do not have assigned resonances, we cannot know the 

extent to which they are protected. The majority of amides in the CP-thiolate form that 

were “fast” exchanging (including those in the α2N and α3 regions) are missing from the 

disulfide form spectra. 

https://www.zotero.org/google-docs/?oP67pp
https://www.zotero.org/google-docs/?REI0j3
https://www.zotero.org/google-docs/?sFJfPG
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Figure A1.5: Hydrogen exchange behavior  of the XcPrxQ CP-thiolate and disulfide 

forms. (a) Ribbon diagrams of CP-thiolate (left) and disulfide (right) XcPrxQ colored based 

on each residue’s rate of hydrogen exchange (see methods): very fast (yellow), fast 

(green), intermediate (teal), low (blue), and  very slow (purple). (b) Plots of logarithm of 

the protection factors for each residue seen in CP-thiolate (top) and disulfide (bottom) 

XcPrxQ, with the coloring as in panel (a). Residues with protection factors inferred despite 

ambiguities due to peak overlap are indicated (asterisks). A schematic of the CP-thiolate 

secondary structure elements (as in Fig. 3) is provided at the top of each plot, with each 

element colored by its predominant exchange category. 
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Discussion 

The three types of NMR measurements we have carried out probe a broad range of 

timescales and paint a consistent and extensive picture of the dynamics of XcPrxQ, 

including the direct observation and detailed characterization of a catalytically-relevant 

local-unfolding equilibrium that occurs for the CP-thiolate form on the ms-s timescale. 

 

A comprehensive picture of CP-thiolate XcPrxQ dynamics 

The hydrogen exchange behavior (Fig. A1.5) provides a useful framework on which to 

build an understanding of XcPrxQ dynamics. The very-slow-exchanging core (log(P)>7) 

is the most stably-folded part of XcPrxQ and centers on strands β3, β6 (with one residue 

each from β4 and β7) and includes residues from α5 and α2C on one face of the sheet 

and from α1’, β1, α1 and α4 on the other. Side chains from these elements form well-

packed hydrophobic clusters on the front and back faces of the central part of the β-sheet. 

Assuming a protection factor of at least ~108 for these core amide groups implies an 

overall protein stability of ~11 kcal/mol or higher170.  

The slow-exchanging positions (4.5≤logP<7) include residues mostly adjacent to 

the very-slow-exchanging core residues. The intermediate group (2.5<logP<4.5) 

encompasses all the central elements of the fold except for helices α2N and α3 along with 

strand β5 which is exposed by the unfolding of α3 and only has a single sidechain (Val94) 

contributing to the main hydrophobic core. The fast exchanging group (0≤logP≤2) includes 

helices α2N and α3, exposed loops and edge strands of the sheet (β2 and β7), and finally, 

the fast (logP~0) exchanging residues are largely the N- and C-termini and the ββ-hairpin. 

The relaxation experiments and modelfree analysis show that the N- and C-termini 

and the ββ insert (residues 110-117) are disordered on the ps-ns timescale (Fig. A1.3), 

fully rationalizing the fast solvent exchange (i.e., log(P)~0) in these regions. In addition, 

the details of the coordinated unfolding of helices α2N and α3 revealed by the CEST 

measurements match well with the level of protection of these residues observed by 

hydrogen exchange. Specifically, the unfolding and folding rate constants of a 1.8 s-1 and 

71 s-1, respectively, mean that 1 in 40 molecules (~2.5%) are unfolded at any moment. 

This predicts a protection factor of P=40, or Log(P)= 1.6, which sits squarely within the 

0≤log(P)≤2 range171.  

 

 

https://www.zotero.org/google-docs/?0elHHa
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How the disulfide form dynamics differ 

The dramatic loss of over half of the expected 1H-15N HSQC peaks in the disulfide form 

was taken to mean that even though only the CP-loop and helix α3 locally unfold in the 

disulfide bonded form, their lack of tight packing impacted about half of the structure163. 

However, the minimal chemical shift differences among the assigned residues, especially 

in the very slow exchanging core, implied that the core structure does not significantly 

change in the disulfide form. Rather remarkably, the spin-relaxation measurements reveal 

no substantive differences in fast-timescale motions for the observable parts of the 

disulfide structure, with the only significant differences in motion found at the borders of 

missing segments (e.g. Ala57, Phe91).  

Similarly, the hydrogen exchange measurements show a conservation of both the 

highly dynamic nature of the N- and C-termini and ββ-hairpin and the location of the slow-

exchanging core, which remains centered on strands β3, β6 and helix α5 (Fig. A1.5). Since 

7 residues remain in the very-slow exchanging group, it is even possible that the stability 

of the fold as a whole is unchanged. But, a lowered stability of much of the protein is 

evidenced by many residues near the core – such as in β1, α2C and other α5 residues – 

showing 1 to 3 orders of magnitude less protection from exchange.  

 

Insights into XcPrxQ catalysis 

The coordinated conformational transition of helices α2 and α3 revealed by the CEST 

experiments unequivocally establishes that the CP-thiolate form of XcPrxQ has a 

preexisting catalytically relevant local-unfolding equilibrium. The close match of the 

excited state chemical shifts with random coil reference values (Fig. A1.4d) leaves no 

doubt that this truly is a folded-unfolded or order-disorder transition rather than a transition 

between two alternate fully structured conformations. This is reminiscent of the paradigm-

setting work on dihydrofolate reductase showing how the energy landscape directs the 

system along a functional catalytic trajectory with each intermediate in the catalytic cycle 

sampling a low-lying excited state conformation that resembles the ground-state structure 

of the following intermediate172.  

For Prxs, the next catalytic intermediate is not the disulfide, but the CP-sulfenate 

(Fig. A1.1a), and there is evidence that the locally-unfolded (LU) conformation is indeed 

the ground-state conformation for this form. In addition to structural evidence that CP-

sulfenate formation creates strain in the FF conformation151, a recent stopped-flow kinetics 

https://www.zotero.org/google-docs/?TDSSZb
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study of yeast Tsa1147 showed that CP-sulfenate form favors the LU conformation by over 

100-fold (kLU = ~65 s-1 and kFF <0.6 s-1). Since the Prx active site is well conserved, we 

propose all Prxs will be qualitatively similar in this regard. Assuming that for Prxs in general 

the CP-thiolate form favors the FF conformation by at least 10-fold (to allow for efficient 

catalysis), we infer that CP-sulfenate formation shifts the equilibrium toward the LU form 

by over 1000-fold.  

The CEST results also reveal that the unfolding of helices α2 and α3 are tightly 

coupled, and validates the proposal of Horta et al., (2010) that, even though helix α2 is 

virtually unchanged between the CP-thiolate and disulfide forms, disulfide formation does 

not just involve movement of the CP loop, but goes through an intermediate that has helix 

α2N largely unfolded. Also notable is that the FF-LU equilibrium constant, which is ~40-

fold (or ~2.2 kcal/mol; Fig. A1.4d) in favor of the FF conformation strikes an effective 

balance that allows for near maximal activity of the enzyme (with >97% of the enzyme 

with an FF active site), while also ensuring that the unfolding required for disulfide 

formation can readily occur.  

Interestingly, two residues (48 and 49) that exhibit both high modelfree Rex terms 

and elevated R1ρ-derived R2 rates (SI Fig. A1.2) are associated with the active site and 

may indicate an additional dynamic process in the first turn of helix α2 that is faster than 

the local unfolding process identified by our CEST experiments. Furthermore, increased 

solvent exchange at residue Cys48 and Arg123 (which is involved in the same hydrogen 

bond network) vs others that are directly involved with the FF-LU transition is consistent 

with an additional faster timescale motion. We propose these motions are related to 

suboptimal H-bonding interactions in the resting FF active site structure (Fig. A1.6a), 

including possible rearrangements in the active site H-bonding network that could be 

associated with water binding in the place of hydrogen peroxide and/or 

protonation/deprotonation of the CP-thiolate. Since this stretch of the backbone has a 

highly conserved conformation among Prxs146, we propose that such fluctuations will be a 

common feature of Prx family members and that they reflect an intrinsic marginal stability 

of the empty Prx active site pocket that is important for the optimal transition state 

stabilization needed for the high peroxide specificity and catalytic power. Such a role for 

https://www.zotero.org/google-docs/?9MYptR
https://www.zotero.org/google-docs/?0MQTJA
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suboptimal interactions in promoting catalytic power is similar to what we have proposed 

for the enzyme urease, which also binds a small highly polar substrate 173.  

 

Figure A1.6: Suboptimal interactions in the Prx active site and a possible trigger 
linking the unfolding of helices α2 and α3. (a) Stereoview of the active site region 
highlighting three amides (Thr45, Cys 48 and Thr 49). Cys48 and Thr49 (orange) have 

large Rex terms, and high R1ρ-derived R2 rates. Nearby H-bonds are shown (dashed lines) 

with suboptimal (long or non-linear) H-bonds highlighted (magenta, with distances if >3.5 
Å). A close approach (3.2 Å) between the water and the CP-sulfur is also highlighted (wide 
dashes). (b) H-bond network surrounding interactions of Asp43 in the CP-loop with Ser79 
and His80 at the start of helix α3. All H-bonds shown are <3 Å. (c) Conservation pattern 
seen near residues 43 and 80 in PrxQ sequences ≥60% identical to either XcPrxQ with 
CR in helix α3 (top) or EcBCP with CR in helix α2 (bottom). See methods for details. Logos 
were generated using the online WebLogo tool174. 

https://www.zotero.org/google-docs/?XbHHU7
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Not all XcPrxQ dynamic properties are common to Prxs 

Given the universal importance of transient unfolding events to Prx function, it is important 

to discern which properties observed here might be true for Prxs in general and which are 

unique to XcPrxQ and its close relatives. Even though Prx dynamics are little studied, two 

other Prxs – yeast Ahp1175, and Arabidopsis thaliana PrxQ (AtPrxQ)161 – have been 

studied by NMR and provide useful comparisons. As Ahp1 and AtPrxQ have their CR 

residues in different places than both XcPrxQ and each other, their properties can provide 

insight into possible function-related differences in Prx dynamics. For Ahp1, CR was later 

shown to be in an N-terminal loop176, and by NMR, this CR-containing loop was highly 

disordered making it readily available for disulfide formation. The CP-loop and start of helix 

2 included 5 unassigned residues and showed little protection from hydrogen exchange 

consistent with a localized conformational plasticity. For AtPrxQ, a striking difference – 

which we noted earlier163 – is a global behavior opposite to XcPrxQ with the CP-thiolate 

form spectrum missing over half of the peaks (including CP and CR) and the disulfide form 

mostly assigned. The missing assignments in the CP-thiolate form include most residues 

of helix α2 (both in α2N and α2C) and segments surrounding it (α5, β3, the CP-loop and the 

loop preceding β6; XcPrxQ numbering) and are plausibly all due to a preexisting 

catalytically-relevant local unfolding equilibrium centering on the whole of helix α2. 

Consistent with this, crystal structures of other Prxs with CR in helix 2 showed that α2C has 

high B-factors in the CP-thiolate form and becomes more ordered in the disulfide form177.  

While the existence of FF-LU related dynamics thus appears to be common among 

Prxs, a notable difference in the AtPrxQ dynamics is that the preexisting FF-LU 

interchange in CP-thiolate AtPrxQ appears to be at least 20-times faster 161 than the 

exchange rate we observed in this work for XcPrxQ. Another observation is that the 

regions involved in the FF-LU transition differ in a manner consistent with the location of 

CR, again illustrating how the energy landscapes of Prxs have evolved to specifically 

sample a low-lying excited state conformation that resembles the structure of the following 

intermediate172. In addition to parts of the structure surrounding CR being dynamic, it is 

also notable that for both Ahp1 and AtPrxQ helix α3 is a particularly stable part of the 

molecule. Similarly, for Prx1 subfamily members with CR in a C-terminal tail segment, it 

has been shown that the unfolding of the CP-loop specifically triggers an unfolding of the 

CR-containing C-terminal tail region while again leaving helix α3 stably folded150. Looking 

for a “trigger” that could explain the coupled unfolding of the α2 and α3 helices in XcPrxQ, 

https://www.zotero.org/google-docs/?4nHV6Z
https://www.zotero.org/google-docs/?WQBWNw
https://www.zotero.org/google-docs/?YJ0R8f
https://www.zotero.org/google-docs/?XnGNnH
https://www.zotero.org/google-docs/?AG5NEw
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we find a buried H-bonding network between the side chains of Asp43, Ser79 and His80 

that is conserved in this branch of the PrxQs group and not in PrxQs having their CR in 

helix α2 (Fig. A1.6b,c), such as the PrxQ homologue from Escherichia coli (EcPrxQ). We 

propose that the movement of Asp43 upon local unfolding of the CP-loop destabilizes this 

buried position of His80 and triggers the coordinated unfolding of helix α3.  

There also appear to be commonalities regarding Prx dynamics. Two related ones 

are first the intrinsic marginal stability of the FF active site loop in the CP-thiolate form 

(mentioned above) that helps promote catalysis, and second, as we suggested above, an 

~1000-fold destabilization of this loop associated with CP-sulfenate formation. Such a Prx-

wide intrinsic instability centered on the first turn of helix α2 implies that the macroscopic 

FF-LU equilibrium for any Prx, i.e. the “set point” that governs its sensitivity to 

hyperoxidation (see Fig. 9 of Perkins et al., 2013), will be a function of how well other parts 

of the folded protein stabilize the FF CP-loop. This has already been well documented for 

those Prxs sensitive to hyperoxidation, in which interactions with other parts of the protein 

are behind the greater stability and slower-unfolding of the FF-conformation142,147,178–180. 

An awareness of this concept allows us to rationalize why AtPrxQ has a much more 

dynamic CP-thiolate form than does XcPrxQ. Specifically, for XcPrxQ the very stable α2C 

portion of α2 is a well-ordered anchor that helps stabilize the FF CP-loop (i.e., α2N), 

whereas for reduced AtPrxQ this anchor is missing because α2C is part of the 

conformational change. In reduced AtPrxQ, α2C is a very high B-factor region interacting 

only loosely with the protein core, which then switches to a lower B-factor region 

interacting more strongly with the protein core in the disulfide form (Fig. 6 of Perkins et al., 

2012).  

  

Functionally relevant shifts in the slow exchanging core in thioredoxin fold proteins  

Looking beyond Prxs to the broader thioredoxin (Trx) superfamily, this study extends our 

earlier work181 by providing another example of how the position of the slow exchanging 

core varies among Trx-fold proteins in ways that make functional sense. The XcPrxQ core 

differs from both that of the S. typhimurium AhpF N-terminal domain (NTD) and that of E. 

coli Trx (SI Fig. A1.5). In Trx, the core includes the central beta sheet, especially strands 

equivalent to β3 and β6 in XcPrxQ182,183, with little participation of residues from helices, 

and the much more extensive NTD core, which is built on two tandem Trx domains, resides 

primarily in the catalytically inactive vestigial Trx domain and encompasses elements 

https://www.zotero.org/google-docs/?EWaUbb
https://www.zotero.org/google-docs/?5OVzwv
https://www.zotero.org/google-docs/?dmzbPW
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equivalent to β3, β6 α2 and α5, meaning it is shifted toward the interface with the 

catalytically active Trx domain181. While the data are less extensive, the mass 

spectrometry-based hydrogen exchange profile of Salmonella typhimurium AhpC shows 

it has a similar slow exchange of the β3, β6 and α5 trio, but helix α3 is also part of the core 

and supports the decamer-forming interface184. 

  

Outlook 

This study provides another example in which NMR dynamics measurements greatly 

extends insights beyond what could be learned from the static crystal structures 

themselves. In addition to answering the key question motivating this study – showing that 

CP-thiol form of XcPrxQ does indeed readily sample a catalytically-relevant LU 

conformation – this work sets the stage for follow-up NMR and kinetics studies of both 

AtPrxQ and XcPrxQ. These will target understanding the similarities and differences of the 

two wild type enzymes and correlating those properties with their catalytic properties, as 

well as answering additional questions of broad importance for the Prx field, such as 

characterizing how the commonly used mutations of CP or CR to Ser or Ala alter Prx 

dynamics and using CR to Ala and/or Ser mutants to assess the impacts converting CP-

thiolate to CP-sulfenate and CP-sulfinate. 

 

Methods  

Protein Expression and Purification   

Untagged XcPrxQ encoded in the pTHCm plasmid151 was transformed into the C41(DE3) 

E. coli cell line, and was expressed at 37° C in modified M9 minimal media, supplemented 

with 1 g/L 15NH4Cl and 2 g/L U-13C glucose as needed. Cultures, on reaching OD600 ~0.6-

0.7, were induced with 0.4 mM IPTG and harvested after 5-7 h. Cells were lysed by 

sonication, centrifuged for 1 h at 15,000 rpm (~26,000xg) in a sorvall fixed angle rotor, 

and the cleared lysate dialyzed overnight in 20 mM Tris pH 7.5. The dialysate was loaded 

onto a Macro-Prep High Q ion exchange resin (Bio-Rad, Hercules, CA) and eluted at NaCl 

concentration of less than 100 mM, as previously described151,163. The eluate was 

concentrated to 3 mL and further purified on a superdex HiLoad 75 column (GE 

Healthcare, Chicago, IL) in 20 mM Tris pH 7.3, 100 mM NaCl, and 1 mM sodium azide. 

The CP-thiolate form was prepared by adding 5 mM dithiothreitol (DTT) and incubating for 

20 min at room temperature. NMR samples were concentrated to 0.8 - 1.0 mM XcPrxQ, 

https://www.zotero.org/google-docs/?gCEO2c
https://www.zotero.org/google-docs/?qCGfW4
https://www.zotero.org/google-docs/?MHeTPr
https://www.zotero.org/google-docs/?tbUHY8
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with a protease inhibitor cocktail (Roche Applied Sciences, Madison, WI), 7.5% D2O, and 

1 mM dimethylsilapentane-5-sulfonic acid (DSS) as a reference.  

  

NMR Spectroscopy  

Spectra were collected at 20° C on either a Bruker Avance III HD 800 MHz spectrometer 

equipped with a 5 mm triple resonance (HCN) cryogenic probe, or a Bruker Avance III 500 

MHz spectrometer with a conventional triple resonance (HCN) probe. 3D HNCA, 

HNCACB, HN(CO)CA and HN(CO)CACB spectra collected at 800 MHz with non-uniform 

sampling on CP-thiolate XcPrxQ samples with additional uniform-13C labelling confirmed 

published assignments and allowed us to assign residue Ser44. Spectra were processed 

in nmrPipe 185, using a sine-bell window function and one zero-filled point for every real 

point. We used scrub 186 for NUS reconstruction on 3D experiments.   

 

Fast Dynamics 

1H-15N HSQC-type experiments were used for measurement of 15N R1, 15N R2 rates and 

1H-15N Heteronuclear NOE ({1H}-15N NOE) data at both 800 and 500 MHz using the same 

delays. Temperature compensated versions of published pulse sequences187, were used 

for the 15N R1 and 15N R2 measurements, with the latter incorporating CPMG pulses for 

eliminating exchange contributions to R2 relaxation. 15N R1 measurements were collected 

with delays in a range from 20 to 1200 ms, with a 60 ms delay collected in triplicate for 

error analysis. 15N R2 relaxation experiments used delays in a range from 17 to 237 ms, 

with a 34 ms delay collected in triplicate for error analysis. Peak intensities were fit to a 

single exponential decay in NMRViewJ188 to determine the relaxation rates. Error was 

determined in NMRViewJ by the Monte Carlo method, utilizing the replicated 

measurements. {1H}-15N NOE experiments were collected using the187 pulse sequence 

with an 8 s recycle delay at 800 MHz and a 5 s recycle delay at 500 MHz. I/Io ratios were 

calculated in NMRViewJ. Uncertainty was estimated for intensities using the standard 

deviation of the spectrum noise level and propagated through I/Io calculations. R1ρ rates 

were measured using a pulse sequence that incorporated adiabatic pulses and 

randomized phase-altered continuous wave 1H decoupling during the spinlock189. The 

spinlock field strength of 2902 Hz was measured using the off resonance continuous wave 

decoupling method190. The R1ρ-derived R2 rate was calculated from the measured R1ρ and 

https://www.zotero.org/google-docs/?ZQKSFX
https://www.zotero.org/google-docs/?EdG9K8
https://www.zotero.org/google-docs/?a3a2Wq
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R1 rate, using the equation 𝑅1𝜌 = 𝑅1cos
2𝜃 + 𝑅2sin

2𝜃, where 𝜃 = arctan (𝜔1/Ω). 𝜔1 is the 

spin-lock frequency and Ω is the offset from the carrier frequency189. 

Modelfree analysis191,192 was performed in Relax193,194. Relax uses the extended 

modelfree analysis191,192,195, and builds on the frequently-used196–198 5-model modelfree 

method to select a model from one of nine possibilities for each spin, guided by 

AIC194,199,200. The global model is then optimized in response to these models, and the 

process is repeated until convergence. This loop is carried out on each of four global 

diffusion models of increasing anisotropy, and final global model selection performed by 

AIC. The analysis incorporated 15N R1, 15N R2 and {1H}-15N NOE measurements collected 

at 800 and 500 MHz. Data were fit to a diffusion tensor which incorporated available 

crystal structures of the CP-thiolate (PDB 5IIZ) and disulfide (PDB 5IOX) forms of XcPrxQ. 

In the case of 5IIZ, we selected conformation A in places where multiple rotamers were 

present. For both proteins, the global model selected by this analysis was fully anisotropic 

– the ‘ellipsoid’ model, in relax terminology. 

 

Chemical Exchange Saturation Transfer 

Chemical Exchange Saturation Transfer (CEST) measurements used the 1H-15N HSQC-

CEST pulse sequence from the Kay lab201 adapted for Bruker spectrometers, including 

temperature compensation and a 90x240y90x 1H decoupling during the exchange time 

(T1). We collected spectra with a T1 delay of 400 ms and B1 frequencies of 10, 25 and 50 

Hz. 63 CEST slices and one reference spectrum were collected, with B1 increments of 0.5 

ppm in the 15N dimension, stretching from 103 to 133.5 ppm.  

Peak intensities were extracted from all 64 slices in NMRViewJ, and I/Io ratios were 

calculated with in-house scripts. Uncertainty for peak intensities was approximated using 

the standard deviation of the noise floor of the spectrum and propagated through I/Io 

calculations. For residues exhibiting an exchange profile in plots of I/Io, ChemEx201 was 

used to fit profiles to a 2-state system of exchange modelled by the Bloch-McConnell 

equation201. Our initial fit did not assume the existence of a global model, so for each 

residue, we fit data collected with B1 frequencies of 10, 25 and 50 Hz to a model which 

included six parameters: the relaxation rates R2,a R2,b and R1, the difference in chemical 

shift between the ground and excited state ∆ω, as well as the rate constant for the overall 

exchange kex and the population of the excited state pE. After this initial fit, 15 residues 

with similar rates of exchange and pE values were fit to a global model, with R2,a R2,b R1, 

https://www.zotero.org/google-docs/?ZvyRfq
https://www.zotero.org/google-docs/?B2XHaJ
https://www.zotero.org/google-docs/?5MOYMQ
https://www.zotero.org/google-docs/?Sdu9hQ
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and ∆ω fit for each residue, but kex and pE fit globally. Using the kex and pE from our global 

model, we then fit every residue in the region of the 15 residues (residues 43 to 55 and 75 

to 100), and identified additional 9 residues and 2 other residues, Gly21 and Val143, both 

of which are in contact with regions containing a high number of residues undergoing 

exchange. These total 11 additional residues had small ∆ω values so that the Lorentzian 

for the excited state was less notable in the CEST profile.  

 

Hydrogen Exchange Measurements 

Fast-exchanging amide protons were identified using CLEAN chemical EXchange 

(CLEANEX) pulse sequences with a mixing time of 100 ms166. Peaks determined to be 

CLEANEX-visible were those that could be detected above the noise level of the 

spectrum. For hydrogen-deuterium exchange (HD-X) experiments, samples prepared for 

NMR were freeze dried and then resuspended in a volume of D2O matching the sample 

volume before lyophilization, following methods published elsewhere29,181,202. 

Resuspended samples were incubated at 20° C, and best-HSQC spectra were collected 

periodically until 48 h, with final spectra taken after 2 weeks. The midpoint of the first 

best-HSQC was 7.2 min after resuspension. Non-overlapped peaks that dropped 

substantially in peak height within 48 h were fit to rate constants for exchange obtained 

by a least-squares fit to a single exponential decay function, 𝐼 =  𝐼0 ∗ 𝑒
−𝑘𝑒𝑥𝑡 + 𝐶 using in-

house python scripts, where 𝑘𝑒𝑥 is the rate of amide exchange, and 𝐶 is a flat offset to 

account for variations in the spectral noise floor. Uncertainties in the rate constants were 

calculated from the variance of the determined exchange rate. Protection factors (P) 

were calculated relative to the expected random coil exchange rate (krc) as provided by 

SPHERES165 for residues exchanging on an amenable timescale (46 in CP-thiolate, 21 in 

disulfide), with log(P) values ranging from ~2.6 to ~7 (Fig. A1.6b,c, SI Table 4 – See 

manuscript).  

 From these experiments, we grouped each residue into one of five classes: very 

fast, fast, intermediate, slow, and very slow exchanging. “Very fast” exchanging residues 

were those with detectable peaks in the CLEANEX spectrum (i.e. exchanging on the 

timescale of milliseconds). “Fast” exchanging residues were those not appearing in the 

CLEANEX spectrum, but exchanging fast enough that they did not have appreciable 

peaks in our HD-X experiments (i.e. exchanging on the sub-seconds to seconds 

timescale). For the residues that could be fit to an exchange rate (i.e. exchanging on a 

https://www.zotero.org/google-docs/?eAneT7
https://www.zotero.org/google-docs/?OOzvRM
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timescale of minutes to hours), those with 2.5<log(P)<4.5 were termed “intermediate” and 

those with 4.5≤log(P)<7 were termed “slow.” Finally, “very slow” residues were those for 

which the peak intensity decrease after 48 h was not enough to allow accurate fitting to 

an exchange rate (i.e. exchanging on the scale of days or longer). We assigned Log(P)=0 

to residues in the fast exchanging group, because the timescales of reference intrinsic 

exchange rates for residues in a random coil is 1 - 50 s-1, which spans the 100 ms mixing 

time of our CLEANEX spectra. Similarly, we assigned log(P)=1.5 to the fast group, as they 

are expected to range from 0<log(P)<2.5 since they exchange more rapidly than the 

fastest-exchanging residue in the intermediate category which had log(P)=2.6. Finally, we 

plotted the very slow exchanging class at a Log(P)=8, a value just larger than the upper 

end of the “slow” category. 

 

XcPrxQ and EcPrxQ conservation analysis 

Amino acid sequences for proteins with 60% or greater identity to XcPrxQ and EcPrxQ 

(originally called bacterioferritin comigratory protein or BCP), were retrieved from the NCBI 

using BLAST35. We clustered sequences using CD-HIT36,37 at 90% similarity, which 

yielded 166 sequences related to XcPrxQ, and 214 sequences related to EcPrxQ. For 

both datasets, clustered sequences were aligned using MUSCLE38, then filtered to remove 

all proteins which did not have a resolving Cys at the CxxxxC motif in EcPrxQ or at the 

aligned position of CR84 in XcPrxQ.   
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SI Figure A1.1: Spin-relaxation and {1H}-15N NOE values measured at 500 MHz. 
Shown are 15N R1 (top), 15N R2 (middle) and {1H}-15N NOE measurements for the CP-
thiolate (purple bars) and disulfide (orange circles) forms of XcPrxQ. This is equivalent to 
Figure A1.3a, but showing data measured at 500 MHz. 
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SI Figure A1.2: Rex terms for disulfide and CP-thiolate XcPrxQ and R2 rates 
calculated using R1ρ for CP-thiolate XcPrxQ. (a) Transverse relaxation due to exchange 
(Rex) values determined by modelfree analysis are plotted as a function of residue number 
for the CP-thiolate (black bars going up from zero) and the disulfide (black bars going down 
from zero) forms. Shading identifies residues which could be fit to a modelfree model, 
while blank spaces mark residues for which information was not available, either due to 
missing spin-relaxation data or a lack of convergence during modelfree analysis. (b) R2 
relaxation rates for the CP-thiolate form of XcPrxQ, calculated using measured R1ρ and R1 
relaxation rates collected at 800 MHz.  
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SI figure A1.3: Conformational heterogeneity seen in the crystal structure as a 

possible explanation for Rex terms seen in CP-thiolate XcPrxQ. Stereoview of a central 

portion β-of CP-thiolate XcPrxQ (purple carbons) highlighting nine residues that have Rex 

>3 (yellow carbons and orange amide nitrogen atoms and residue labels) and five nearby 

residues that were seen to adopt two conformations in crystal structure (green carbons). 

Relevant H-bonds involving backbone amides are shown (dashed lines), and those 

involving residues with multiple conformations are colored green. 
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SI 

Figure A1.4: CEST profiles of CP-thiolate XcPrxQ. (a) CEST plots at B1 frequencies of 
50 Hz (dark purple), 25 Hz (light purple), and 10 Hz (blue) for all 26 residues included in 
our global model, along with curves based on the global model (dashed lines). (b) The 
same as panel A, but for the 4 residues with clearly evident exchange profiles that did not 
fit well to the global model.  
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 SI Figure A1.5: Comparison of hydrogen exchange in three thioredoxin fold 
proteins. The CP-thiolate XcPrxQ ribbon diagram (left) is shown colored as in Figure A1.5 
by hydrogen exchange rate group from very fast to very slow (see Fig. A1.5). Ribbon 
diagrams of published hydrogen exchange rates for EcTrx182,183(center) and StAhpF 
NTD181 (right) are colored similarly, but to aid the comparison by accounting for differences 
in global stability, the Log(P) boundaries on the groups were adjusted. For EcTrx, the 
boundaries between Very fast (yellow), Fast (green), intermediate (teal) and slow (blue) 
are 0.5, 2.5, 4.5 and 6, respectively. For the StAhpF NTD, the cutoffs are 2.5, 3, 4.5, and 
7, respectively. In EcTrx and the StAhpF NTD, secondary structural elements are labelled 
based on names of homologous structural elements in XcPrxQ, with primes used to 
denote the C-terminal half of the NTD, as that protein contains two Trx domains. 
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SI Table A1.3: Model parameters and chi2 values for residues fit to model of 

exchange.  

*based on these fits, marked residues were excluded from the global model 

 

 

 

 

 

 

 

Residue Number kex  ± kex pE  ± pE Chi2 

D 43 80 8 0.02 0.0013 1.56 

S 44 85 17 0.019 0.002 2.95 

T 45 90 6 0.0176 0.0008 2.57 

C 48 77 10 0.024 0.0018 1.74 

T 49 70 20 0.02 0.004 5.47 

G 52 78 11 0.019 0.0014 1.47 

D 54 80 10 0.03 0.002 5.32 

D 75 66 7 0.032 0.002 1.95 

K 78* 640 130 0.009 0.0009 56.1 

H 80 97 15 0.028 0.003 5.22 

C 84 71 6 0.026 0.0013 1.63 

A 85* 60 24 0.015 0.004 35.46 

K 86 93 8 0.022 0.001 5.07 

Q 87 58 5 0.028 0.0017 4.32 

F 89 72 6 0.024 0.0014 4.26 

L 93 46 5 0.034 0.003 3.67 

S 95 42 5 0.043 0.004 4.93 

E 99* 1010 60 0.0051 0.0002 4.36 
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Specificity and Heterogeneity RNA-binding Domains of the Sars-CoV-2 

Nucleocapsid Protein 
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Introduction 

The ongoing public health crisis known as the COVID-19 pandemic, caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has, since origination in 2019, 

killed over 6 million worldwide at this time of writing203. While development of vaccines has 

aided the crisis to a degree, appearance of vaccine-resistant mutants has highlighted the 

potential value of therapeutics that target highly conserved structures and interactions. 

One potential target is the nucleocapsid (CoV-N) protein. The most abundant protein in 

infected cells204, CoV-N interacts with viral RNA, binds to the membrane protein (CoV-

M)205,206, interferes with the host immune response through binding to INF-β207, and inhibits 

host cell proliferation through binding to EF1α208. The most essential function of CoV-N is 

its interaction with viral RNA, however: The protein coats the 32 kb genomic RNA (gRNA), 

protecting the RNA and promoting assembly of the ribonucleocapsid (RNP) complex209. 

N-RNA interactions are essential for genome packaging, virion assembly, viral 

transcription, and viral replication, making structural understanding of N-RNA interactions 

essential to understanding how SARS-CoV-2 functions204. 

 Structurally, the protein contains a mix of folded domains and disordered linkers 

(Fig. A2.1a). The protein forms a dimer structure binds multivalently to CoV-2’s genomic 

RNA, having been shown to bind RNA at both domains as well as at disordered 

linkers210,211. The N-terminal domain (NTD) spans residues 44 to 182, and takes a 

predominantly beta structure, forming a core beta sheet with surrounding flexible loops. 

The core beta sheet, and the beta hairpin above it, form a cup-like shape that is positively 

charged, and believed to be the RNA-binding site of the domain212–214 (Fig. A2.1c). The C-

terminal domain (CTD) spans residues 247 to 366 and takes a stable dimer structure, 

forming a disc-like shape215. The CTD structure can be divided into an alpha and beta 

face, corresponding to the predominant secondary structure at each (fig. A2.1d). The beta 

face forms a single sheet linking together the two CTD domains, while the alpha face 

consists of a series of interlocking helices. The alpha face is thought to be the RNA-binding 

face of the protein, due in part to its strong positive charge215 (Fig. A2.1). 

The nucleocapsid protein is known to phase separate with RNA, driven by 

multivalent interaction with domains of CoV-N to form liquid droplets206,216,217. While the 

exact details are not yet clear, phase separation is thought to be critical to viral function, 

and infected cells have been shown to contain droplets of N-RNA condensates218. One 

hypothesis suggest that phase separation allows for processing of the viral genome, 
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preventing nucleocapsid formation until required216. Evidence suggests that phase 

separation may be RNA sequence or structure specific, as some RNAs appear to induce 

separation to a greater degree than others219. The mechanism of separation is unclear, 

however, due in part to a lack of detailed information on the structural specificity of RNA-

N interactions.  

 
Fig. A2.1: Structure of the SARS-CoV-2 Nucleocapsid protein. (a) Domain architecture 
of CoV-N. Folded domains are shown in blue and red, while disordered linkers are black 
lines. (b) Cartoon diagram of CoV-N structure, showing dimerization at CTD. (c) Crystal 
structure of the CoV-N NTD (PDB 7CDZ), shown as a ribbon diagram (left) and protein 
surface (right), colored by surface charge calculated in chimera. (d) Crystal structure of 
the CoV-N CTD (PDB 7CE0), shown as a ribbon diagram (left) and protein surface (right), 
colored by surface charge calculated in chimera. 
 

 The NTD has been shown to bind both single stranded RNA (ssRNA) and double 

stranded RNA (dsRNA) in studies examining RNAs of length 7-30 nucleotides212–214. 

Mutation studies reveal that binding is strongly driven by charge, as mutations that reverse 

the NTD’s positive charge negatively impact binding213. Structural studies confirm that that 

both RNA structures interact with the positively charged cup of the NTD (Fig. A2.1c)213. 

However, nuclear magnetic resonance (NMR) investigations reveal qualitative differences 

between the interaction of the NTD with ssRNA and dsRNA, suggesting that the mode of 

binding is dependent on the strand state of the RNA213. Docking models suggest that the 

more flexible ssRNA wraps around the beta hairpin at the center of the NTD’s binding site, 

forming a U shape, while dsRNA sits on one side of the binding domain213. Whether the 

NTD has a preference for a distinct RNA state (i.e. ssRNA or dsRNA) remains unknown, 

along with what the downstream function of any RNA preference.  
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 The CTD also binds to RNA, thought to be mediated through its positively charged 

face (Fig. A2.1d). However, much less structural information on CTD-RNA interaction is 

available. Gel shift assays have demonstrated that the CTD shifts with ssRNA, ssDNA 

and dsDNA215, pointing to a relatively non-specific binding interaction, and fluorescence 

anisotropy experiments between the CTD and RNA suggest that the two interact weakly, 

further pointing towards nonspecific binding220. Molecular dynamics simulations of the 

CTD bound to RNA suggest that the N-terminus of the domain is critical to binding to RNA, 

but do not provide evidence of any significant conformational change in the CTD upon 

RNA binding221.  

 In this work, we examine binding between the CoV-N domains and RNA, looking 

first at the first 1000 nucleotides of the CoV-2 genomic RNA (g1-1000) and then at small 

14-nucleotide RNAs. We find that the NTD binds to ssRNA with a greater degree of 

specificity and binds nonspecifically to dsRNA. Further, a mutation of the NTD thought to 

damage NTD-RNA interactions shows an increase in nonspecific binding, suggesting that 

the NTD is in balance between specific and nonspecific interactions. For the CTD, we 

confirm that the protein interacts only weakly with both ss and dsRNA, binding slightly 

tighter to dsRNA. Examining the propensity of each domain to form phase separated 

droplets, we find that the degree of weak, nonspecific interaction correlates closely with 

the degree of observed phase separation, suggesting separation is driven by weak 

multivalent interactions, and that the NTD in particular is capable of both specific and 

nonspecific binding, providing structural evidence for the dependence of phase separation 

character on specific RNAs.   

 

Results 

The CoV-N domains bind 1-1000 genomic RNA at their positively charged faces 

To examine interactions between the CoV-N domains and RNA, we first took NMR 

measurements of the domains following addition of the first 1000 bases of the CoV-2 

genome (g1-1000). The RNA does not encode any viral proteins and is thought to be a 

primary driver of condensation in the virus211. We have previously examined interactions 

between the full length nucleocapsid protein (FL-N) and g1-1000 and determined that the 

NTD tightly binds g1-1000211. Here, we examine each domain in isolation, and find that 

both domains bind to g1-1000. Both RNA-bound spectra exhibit no significant chemical 

shift perturbation, but dips in peak intensities, indicative of slow exchange with a large 
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bound state. The peak intensity ratios (Fig. A2.2a,c) report on the proximity of each residue 

to the site of binding, allowing us to draw a crude map of binding by mapping intensity 

ratios the protein structure. 

  

Figure A2.2: Binding between g1-1000 RNA and CoV-N domains. Peak intensity ratios 
for the NTD (a) and CTD (c) bound to g1-1000 RNA at a ratio of 100:1 protein:RNA. Peaks 
which disappear completely are marked with stars at the bottom of the plot. Structures of 
the NTD (b) and CTD (d) with peak intensity ratios mapped to their structure, in the form 
of both ribbon diagrams (left) and maps of the protein surface. For the NTD, blue 
represents an I/I0 of 0, and tan represents an I/I0 above 0.25. For the CTD, red represents 
an I/I0 near 0, and tan represents an I/I0 above 0.4. For both structures, unassigned or 
overlapped residues and prolines are colored gray.  
 

The NTD binds RNA in the positively charged groove (Fig. A2.1b) formed around 

domain’s β Hairpin. The sharpest decrease in peak intensities can be seen at the base of 

the β hairpin at residues 91-96 and 101-107, as well as at the β strand at the N terminus 

of the protein, and the C-terminal strand to the right in Fig A2.2b (Fig. A2.2a,b). This 

agrees well with previously published work, including NMR studies of RNA-protein 

interactions of the NTD212,213, and docked models of the NTD-RNA complex which both 

indicate that the RNA-NTD complex forms at the charged surface of the NTD213. 

 The CTD binds RNA along the positively charged alpha face (Fig. A2.1d) of the 

CTD dimer. Here, peak intensity drops are greatest at the N-terminus of the CTD (residues 

247-270), as well as at the helical region 305-314 (Fig. A2.2d). Both these regions are on 

the alpha face of the domain, indicating binding likely happens along this face. The N-

terminal end of the CTD (247-252), which retains flexibility and does not appear in crystal 
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structures, also dips significantly in intensity, suggesting it is also involved in RNA binding 

and confirming initial molecular dynamics studies which indicated the importance of the 

N-terminus of the CTD to RNA binding221.  

 

The CTD drives phase separation with g1-1000 

To examine the role that each CoV-N domain plays in phase separation with RNA, we 

fluorescently labeled g1-1000 and incubated the RNA with samples of each nucleocapsid 

domain, as well as the full length CoV-N protein (FL-N). At the initial tested conditions, we 

found that the both the FL-N and the CTD phase separate with g1-1000 at 37 C. The NTD, 

in contrast, did not phase separate at the tested conditions with g1-1000. To further 

explore the phase space, we prepared samples of each protein with g1-1000 at varied pH, 

temperature, and concentrations (SI Figure A2.1). At all tested conditions, the CTD formed 

droplets with g1-1000, while the NTD did not. FL-N appeared most sensitive to phase 

conditions, forming droplets most readily at low concentrations, high temperatures, and 

neutral pH. The tendency of the CTD to phase separate under all conditions suggests that 

the CTD may be the dominant driver of liquid droplet formation in the nucleocapsid protein, 

to the point that it phase separates very readily, and presence of both domains together 

in FL-N construct allows for separation to be condition dependent. 

 

Figure A2.3: Phase separation of CoV-N with g1-1000 RNA.  (left) Samples of free g1-
1000 RNA, along with each CoV-N construct – FL-N, NTD and CTD. (right) Fluorescence 
(top) and brightfield images of FL-N, NTD and CTD mixed with g1-1000 RNA at 3.5 μM 
protein and 50 nM g1-1000. 
 
The N-terminal domain preferentially binds ssRNA 

Interested in examining the domain-RNA interactions at a detailed structural level, we 

synthesized a 14-nucleotide RNA fragment (ss-14mer), along with a reverse complement 

for the formation of a double stranded fragment (ds-14mer). Our intention in the sequence 
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design was to minimize the possibility of internal base pairing within the 14-base fragment, 

and indeed, 1H NMR spectra of the ss-14mer shows no peaks in the paired imino proton 

region. Upon annealing with the reverse complement sequence, the fingerprint of 1H 

peaks in the 6-8 ppm region changes, and new peaks characteristic of paired imino 

protons appear at 11-15 ppm, indicating the sample contains only the ds-14mer.  

 

Fig. A2.4: EMSA assays of NTD with ss-14mer and ds-14mer. (a-d) EMSA of the NTD 
(top) and Y109A mutant NTD (bottom) with the ss-14mer (left) and ds-14mer (right). All 
lanes contain 25 μM 14-mer, and NTD at ratios of 0,0.2,0.5,1,2,3 and 5:1. The NTD 
concentration in μM is listed above each lane.  
 

The NTD binds to the ss-14mer more tightly than the ds-14mer. To provide an 

estimate of the relative binding affinity between the NTD and our 14-mer RNAs, we 

performed electrophoretic mobility shift (EMSA) assays on both RNAs, titrating the NTD 

into each (Fig. A2.4). The NTD binds both RNAs, resulting in bands shifting up and 

smearing in the agarose gel. Examination reveals that the ss-14mer binds more tightly to 

the NTD, an effect that is particularly apparent at the 1:1 (25 μM) titration point, where the 

ss-14mer is smeared along the lane, and the ds-14mer remains predominantly on the free-

RNA band.  
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Titrations of the ss-14mer and ds-14mer RNAs into 15N labeled samples of the 

NTD reveal intermediate exchange at the binding interface. The titrations induce a mix of 

fast and intermediate exchange in the NTD spectrum, resulting in a heterogeneous 

mixture of peak behaviors, including ~30 peaks that disappear from the spectrum early in 

the titration for both the ss-14mer and ds-14mer. Mapping the disappearing peaks to the 

structure (Fig. A2.5c) reveals they are located at the RNA-binding interface, suggesting 

the intermediate exchange is induced by the protein-RNA interaction. For fast-exchanging 

residues, we were unsuccessful in attempting to fit an affinity from shifted peaks, however 

plotting chemical shift perturbations (CSPs) >σ (where σ is the standard deviation CSP) 

for the ss-14mer titration, reveals a site distal to the RNA-binding site that exhibits 

significant CSPs (SI Fig. A2.2). The underlying cause of this perturbation is unclear but is 

unlikely to be a second binding site due to its dependence on RNA concentration.  

 Examining the ds-14mer titration reveals evidence of nonspecific binding. 

Repeating the same chemical shift perturbation analysis for the ds-14mer reveals a much 

wider pattern of chemical shift perturbations, with no clear structural localization. Analysis 

of these perturbed peaks reveals several that shift linearly with the RNA concentration, in 

contrast to the asymptotic behavior of other shifting peaks (Fig. A2.5d). This behavior is 

characteristic of nonspecific binding, and mapping residues exhibiting this behavior 

reveals a face of the NTD where nonspecific-binding residues cluster (Fig. A2.5c). This 

face corresponds to residues 80-84, 119-120 and 140-146, and is situated opposite the 

canonical binding face. Intriguingly, the ss-14mer titration shows no evidence of 

nonspecific interaction (Fig. A2.5c), indicating nonspecific interaction occurs only between 

the ds-14mer and the NTD.  
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Figure A2.5: Interaction of CoV-N NTD with ss and dsRNA. (a,b) Sample window from 
1H-15N HSQC spectra of the NTD (100 μM) at a titration series with the ss- and ds-14mer. 
14-mer concentrations are 0,25,50,100,150, and 200 μM respectively, colored blue at 0 
μM and purple at 200 μM. Spectra show a mix of intermediate and fast exchange – 
resulting in some peaks disappearing due to exchange broadening (labeled in red) and 
others shifting due to fast exchange (labeled in black). (c) Structure of NTD colored to 
show intermediate-exchanging residues in ss-14mer (left) and ds-14mer (right) titration. 
Assigned residues are colored yellow, and intermediate-exchanging blue. For the dsRNA 
titration, a pink orb is drawn to represent all residues exhibiting evidence of nonspecific 
binding. (d) Slice of 1H-15N HSQC spectra highlighting residues D81 and I146. Colors are 
the same as in panels a,b. slices show evidence of nonspecific binding to the ds-14mer.  
(e,f) 1H NMR spectra of titration of NTD into ss-14mer (e) and ds-14mer (f). NTD 
concentration for each spectrum is listed to the right. Selected peaks labeled with an arrow 
(red for ds-14mer, black for ss-14mer) are analyzed in panel (g). (g) average peak 
intensities as a function of ratio of concentration of NTD to 14mer. Values shown are 
averages taken from selected 5 peaks in e,f. Uncertainty is standard deviation of the set. 
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 To further examine the difference between ss-14mer and ds-14mer binding, we 

performed NMR measurements of titrations of the NTD into solutions of RNA (Fig. 

A2.5e,f). 1H NMR spectra of the ds-14mer are ideally suited for this analysis, due to the 

presence of imino proton peaks in the range of 11-15 ppm (Fig. A2.5f), outside the 

chemical shift region for protein amides. The 1H spectra of the ss-14mer also contains a 

series of peaks where no protein resonances appear, at 5-6 ppm (Fig. A2.5e). For both 

the ss-14mer and ds-14mer, peaks were significantly attenuated upon addition of NTD. 

We selected 5 peaks with minimum overlap from each spectrum (black and red arrows in 

Fig. A2.5e,f) for analysis and plotted peak intensities as a function of the ratio of NTD to 

RNA (Fig. A2.5g), and found significantly more peak attenuation for the titration of NTD 

into the ss-14mer. This attenuation points to tighter binding between the NTD and the ss-

14mer, offering confirmation of our EMSA results above that the NTD binds the ss-14mer 

with a greater affinity than the ds-14mer.  

 

The Y109A mutation interrupts specific binding between the NTD and RNA  

To further explore NTD-RNA interaction, we began investigation of the Y109A mutant of 

the NTD, where a tyrosine thought to be involved in RNA binding through pi-stacking 

interactions is mutated to alanine. The Y109A mutation is reported in the literature to 

weaken binding between the NTD and RNA and thought to reduce the propensity for 

phase separation. We measured binding between the Y109A NTD and both the ss-14mer 

and ds-14mer. EMSA assays (Fig. A2.4) confirmed weaker binding between the Y109A 

NTD and both RNAs, in comparison to the wt NTD. In fact, at the measured concentration 

of 25 μM RNA, barely any binding between the ds-14mer and Y109A NTD could be seen, 

even at 5:1 NTD:RNA.  

We performed NMR titrations of RNA into the Y109A NTD and found that the 

Y109A mutation induces a greater degree of nonspecific interactions between the protein 

and RNA. NMR spectra of the Y109A NTD (which we were able to assign using the wt 

NTD assignments and an HSQC-NOESY spectrum, see SI Fig. A2.3) reveals chemical 

shifts proximal to the Y109 position, suggesting that the global structure is not significantly 

perturbed by the mutation (SI Fig. A2.3). Titrations of RNA into samples of the Y109A NTD 

reveal a similar pattern of fast and intermediate exchange as seen in the wt domain (Fig. 

A2.6a,b). For both the ss-14mer and ds-14mer, a significant number of residues disappear 

at the binding groove (Fig. A2.6c), although notably, fewer residues disappear for the ds-
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14mer titration, suggesting the exchange regime differs slightly for this titration. 

Surprisingly, we see similar evidence of nonspecific binding as was present in the wt NTD-

ds-14mer titration, but now for both the ss-14mer and ds-14mer, although the nonspecific 

binding can be seen most clearly in the ds-14mer titration.  

Titrations of Y109A NTD into RNA, as performed with the wt NTD, revealed weak 

binding between the mutant NTD and the ds-14mer. Titration of Y109A NTD into ds-14mer 

(Fig. 6x) induced less peak attenuation than what is seen for the wt NTD, confirming EMSA 

assays revealing this interaction to be weak. The ss-14mer titration is less conclusive – 

small RNA peaks remain even at saturating conditions, but within noise, this curve cannot 

be said to distinct from the wt NTD+ss-14mer titration.  

 To determine whether the tendency to bind nonspecifically has an impact on NTD 

function, we performed a series of liquid-droplet formation experiments on the NTD with 

the short RNAs at NMR conditions (SI Fig. A2.4) and found that several RNA-NTD 

combinations formed liquid droplets. We tested each of the four combinations of NTD and 

RNA at both 25 and 37 C, at a 2:1 ratio of RNA:NTD, and found that only the ss-14mer 

and wt NTD did not form liquid droplets. At 25 C, only the combination of ds-14mer and 

Y109A NTD formed visible droplets – a fact we first observed when performing titrations 

in the NMR. At 37 C, however, both ds-14mer samples, as well as the ss-14mer+Y109A 

NTD sample all separated readily into liquid droplets.  
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Figure A2.6: Interaction of Y109A NTD with  ss and dsRNA. (a,b) Sample window from 
1H-15N HSQC spectra of the Y109A NTD (100 μM) at a titration series with the ss- and ds-
14mer. 14-mer concentrations are 0,25,50,100,150, and 200 μM respectively, colored 
blue at 0 μM and green at 200 μM. The final titration point for the ds-14mer could not be 
obtained, due to liquid droplet formation in the sample. Spectra show a mix of intermediate 
and fast exchange – resulting in some peaks disappearing due to exchange broadening 
(labeled in red) and others shifting due to fast exchange (labeled in black). (c) Structure 
of NTD colored to show intermediate-exchanging residues in ss-14mer (left) and ds-14mer 
(right) titration. Assigned residues are colored yellow, and intermediate-exchanging blue. 
A pink orb is drawn to represent all residues exhibiting evidence of nonspecific binding. 
(d) Slice of 1H-15N HSQC spectra highlighting residues D81 and I146. Colors are the 
same as in panels a,b. slices show evidence of nonspecific binding to the ds-14mer.  (e,f) 
1H NMR spectra of titration of Y109A NTD into ss-14mer (e) and ds-14mer (f). Y109A NTD 
concentration for each spectrum is listed to the right. Selected peaks labeled with an arrow 
(red for ds-14mer, black for ss-14mer) are analyzed in panel (g). (g) average peak 
intensities as a function of ratio of concentration of NTD to 14mer. Values shown are 
averages taken from selected 5 peaks in e,f. Uncertainty is standard deviation of the set. 
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The CoV-N CTD preferentially binds dsRNA 

We last turned our attention to interactions between the CTD and our 14-mer RNAs, and 

found that interactions between the CTD and RNA are weak. Attempts to assay this 

interaction by NMR were hampered both by peak broadening due to the size of the bound 

complex, meaning that peak shifts due to binding such as those collected on the NTD 

could not be collected. Peak intensity ratios collected at 0.66:1 RNA:CTD showed 

heterogeneity due to binding, offering the clearest picture of binding we were able to obtain 

(Fig. A2.7a,c). Comparing this intensity ratio between the ss-14mer and ds-14mer shows 

a pattern of high structural specificity for the ds-14mer, with much less specificity present 

for the ss-14mer interaction. Particularly the N-terminal region, and the residue 290-320 

region on the alpha face of the CTD shows significantly more peak attenuation in the ds-

14mer titration, with most peaks in these regions disappearing from the spectrum. The ss-

14mer spectrum also dips in these regions, but to a much less significant degree. This 

suggests that the ds-14mer titration is highly specific to the alpha face of the CTD, where 

the ss-14mer shows no clear preference of binding site. no evidence of droplet formation 

was detected at either of these conditions.  

Figure A2.7: binding between the CTD and 14-mer RNA. (a,b) peak intensity ratios 
(relative to apo CTD) for the CTD bound to the ss-14mer (a) and the ds-14mer (b). 
Residues that disappear in the bound spectrum are marked with a star. (c,d) Ribbon 
diagram (left) and surface (right) of the CTD with colors mapped from the intensity ratios 
when bound to the ss-14mer (c) and ds-14mer (d). Darker red/pink corresponds to 
intensities closer to 0, and tan represents an intensity ratio >0.25.  
 

Anisotropy reveals CTD-RNA binding is weak 

To assess the affinity of binding between the 14mer RNAs and the CTD, we performed 

fluorescence anisotropy experiments between the 14mers and the CTD, as well as the 
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NTD. Titrations reveal binding on the scale of 20-30 μM between the NTD and the 14mers 

(22 μM for NTD+ss-14mer, 30 μM for NTD+ds-14mer), in agreement with published work 

on short RNAs. For the CTD, however, anisotropy changes were small, and we were 

unable to fit them to a model of binding, suggesting that binding between the CTD and 

RNA is weak in comparison to the NTD. A greater degree of change in anisotropy was 

observed for the ds-14mer titration, which, taken with our NMR results, suggests that the 

CTD may bind the ds-14mer slightly more tightly than the ss-14mer.  

 
Fig. A2.8: Fluorescence anisotropy measurements of CoV-N domains with RNA. (a) 
titration of NTD (blue) and CTD (red) into fluorescently labeled ss-14mer RNA at 50 nM. 
(b) Titration of NTD (blue) and CTD (red) into fluorescently labeled ds-14mer RNA at 50 
nM. Both plots are normalized to the anisotropy of the RNA in absence of protein.  
 

Discussion 

Binding affinities between CoV-N domains and 14-mer RNA 

We have examined binding between both the N and C terminal domains of CoV-N with 

single and double stranded 14-mers of RNA to determine whether the domains have any 

preference for one RNA over the other. We found that the NTD binds ssRNA slightly more 

tightly than dsRNA, a finding confirmed both by EMSA assays, titrations of NTD into RNA, 

and fluorescence anisotropy measurements. It appears that the reverse is true for the 

CTD, which, based on NMR peak disappearances and anisotropy measurements favors 

dsRNA. These differences are relatively minor, and the more striking difference is between 

the NTD and the CTD. While the NTD binds the 14-mer RNA on the scale of the tens of 
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micromolar, the CTD-RNA binding was weaker than could be determined by any methods 

used, suggesting an affinity >100 μM. Mutation of Y109 to alanine appears to weaken 

binding of the NTD to RNA, based on EMSAs and NMR titration data, and confirming 

expectations set by prior studies. 

 

Nonspecific binding and phase separation 

Examining binding between the NTD and the 14-mer RNAs, we were surprised to find a 

varying degree of nonspecific binding. There is a surprising degree of nonspecific binding 

between the NTD and RNA. Indeed, the degree of nonspecific binding we see evidence 

of seems to be inversely correlated to the affinity of binding to RNA. For the tightest-

binding complex, between the wt NTD and the ss-14mer, we see no evidence of 

nonspecific interaction, while for the ds-14mer, and for both RNAs with the Y109A NTD, 

we see evidence of nonspecific interaction. In fact, the Y109A-dsRNA titration shows the 

most evidence of nonspecific interaction, with many residues showing evidence of 

nonspecific binding. One possible explanation for this trend is that the NTD is only capable 

of one binding mode at a time – in other words, NTD that is tightly bound to RNA (as in 

the wt+ss-14mer case) is unable to bind nonspecifically, and vice versa. This may be due 

to specific NTD-RNA binding effectively closing off the nonspecific binding interface, which 

may be consistent with the differences in NTD-RNA complex seen by docking simulations. 

The Y109A mutation may also disrupt this specific structure, increasing the relative 

favorability of the nonspecific interaction. 

 Nonspecific binding is also closely correlated with the phase separation we see for 

the NTD. While dilute NTD does not phase separate with g1-1000, the protein will phase 

separate with RNA under more concentrated NMR conditions (100 μM NTD). Further, 

phase separation of the NTD correlates with nonspecific binding – the ssRNA+wtNTD 

complex does not form droplets, while the other three complexes do. Multivalent, weak 

interactions are the hallmark of liquid-liquid phase separation222, so it seems natural to 

conclude that the separation of these samples is driven by the nonspecific binding visible 

by NMR. The CTD follows this same general trend, binding weakly to RNA – the domain 

binds only weakly to RNA, but phase separates with it most readily.  

 We can conclude that while the CTD promotes phase separation, the NTD appears 

tuned to promote separation only under certain conditions, dependent on the structure of 

the RNA being bound. As mentioned, the degree to which the nucleocapsid forms liquid-
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liquid droplets is known to be dependent on the RNA being used. Here, we present one 

possible explanation for the variation seen – different structures of RNA bind CoV-N with 

different propensities for nonspecific binding, and those propensities in turn drive phase 

separation to a varying degree. Indeed, studies of phase separation with larger RNAs 

have also pointed towards dsRNA being a significant driver of phase separation, which 

meshes well with the structural information provided here.  

 

Conclusions 

While many questions remain, we have demonstrated here that the CoV-N domains do 

differentiate between different RNA structures. In particular, we have shown that the NTD 

binds RNA more tightly than the CTD, and that it binds to ssRNA more tightly than dsRNA. 

More critically, the tightness of binding is negatively correlated with nonspecific 

interactions visible by NMR, and those nonspecific interactions may drive phase 

separation. This provides a first glimpse into the structural determinants regulating the 

phase conditions of CoV-N, which is thought to be an essential point of regulation in viral 

function.  

 

Materials and Methods 

Expression and purification 

FL-N, NTD, and CTD were expressed as described previously211. Briefly, FL-N was grown 

in 2xYT or MJ9 media to an OD600 of 0.6, then induced with 1 mM isopropylthio- beta- 

galactoside (IPTG). CTD was grown to an OD600 of 2 in terrific broth, then induced with 0.5 

mM IPTG at 18 C overnight. For 15N labeling, cells of either FL-N or CTD were instead 

pelleted at an OD of 0.7, and washed with 15N-enriched MJ9 media, grown for an hour 

then induced with 0.5 mM IPTG at 30C for 4 hours (FL-N) or 18C overnight (CTD). The 

NTD was expressed in either ZYM-5052 autoinduction media (for unlabeled protein )or 

MD-5052 autoinduction media (for 15N labeling) 

Proteins were purified under native conditions using TALON His-tag purification 

protocol (Clonetech). Cells were lysed in lysis buffer (50mM sodium phosphate buffer, 1M 

NaCl, 1mM NaN3, 5mM Imidazole, pH 8.0, 0.6mg/mL lysozyme with proteinase inhibitor) 

for 1hr at 4°C. Cells were further sonicated and centrifuged at 20000 RPM for 45 min to 

collect the supernatant. The supernatant was incubated with Cobolt resin in a gravity 

column. All washing steps in 3M NaCl to ensure removal of bound RNA contaminant. FL-
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N and CTD were eluted with 4 CV elution buffer (50mM sodium phosphate buffer, 300mM 

NaCl, 1mM NaN3, 350mM Imidazole, pH 8.0). Purified NTD was eluted by on-column 

proteolysis with 30 nM untagged fast-acting protease bdSENP1 for 1 hr at 4 C. Proteins 

were further purified on a Superdex 75 gel filtration column (GE Health) in 50mM sodium 

phosphate, 150mM NaCl, pH 6.5. The purity of the recombinant proteins, assessed by 

SDS-polyacrylamide gels, was >95%. Protein concentrations were determined from 

absorbance at 280 nm using molar extinction coefficient values. Purified proteins were 

either stored at 4 C and used within one week or flash frozen to -80 C for long term storage. 

 

NMR spectroscopy 

NMR spectra of the NTD and CTD were collected on a Bruker 800 MHZ Avance II HD 

spectrometer equipped with a triple resonance cryogenic probe. All NMR samples 

contained 7.5% D2O and a commercial protease inhibitor cocktail (Roche applied Science) 

Experiments on the NTD were carried out at 25 C in a buffer of 20 mM PO4 and 150 mM 

NaCl, at pH 6.5. Experiments on the CTD were carried out at 25 C in a buffer of 20 mM 

PO4 and 200 mM NaCl at pH 6 in a shaped NMR to minimize the impact of salt on the 

spectrum quality. Titrations with RNA were performed with concentrated RNA/NTD, to 

ensure less than 10% sample dilution across the titration.  

 

Microscopy  

Fluorescence microscopy images were taken on a Keyence BZ-X700/BZ-X710 

microscope and a 384-well plate (Cellvis P384-1.5H-N); images were processed using 

BZ-x viewer and BZ-x analyzer software. For this experiment, cy3-labeled RNA was 

diluted into Invitrogen UltraPure DNase/RNase-Free Distilled Water to reach a final 

concentration of 50 nM, when added to protein sample for the 1-1000 RNA, respectively. 

Stocks of Atto 488 NHS ester (Sigma 41698) labeled FL-N, unlabeled CTD, and unlabeled 

NTD were prepared by diluting into 20 mM HEPES, 150 mM NaCl, 1 mM DTT, pH 7.5 

droplet buffer to reach 4 µM and 10 µM final protein concentrations. Protein staining was 

accomplished by mixing Atto 488 NHS ester with protein and shaking at 4 C for 1hr 

according to the manufacture’s protocol. Unbound dye was removed by PD-10 column 

(Cytiva). Unstained protein samples were prepared by combining 27 μL of protein stock 

with 3 μL cy3 labeled desired RNA for a total sample volume of 30 μL. For comparison, 

RNA alone samples were prepared with 27 μL of droplet buffer and 3 μL of the desired 
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RNA while protein alone samples were prepared with 27 μL of protein stock and 3 μL of 

Invitrogen UltraPure DNase/RNase-Free Distilled Water. The samples were then 

incubated at 37 C for at least one hour and subsequent imaging was taken. 

 

RNA Design Electrophoretic mobility shift assay (EMSA) 

14-mer RNAs purified by HPLC were purchased from Genscript or Eurofins genomics. 

The ss-14mer sequence was GGCACAUGGACGUC, and the reverse complement used 

to generate the ds-14mer was GACGUCCAUGUGCC. The ds-14mer was generated by 

mixing equal parts ss-14mer and its reverse complement, heating the sample to 75 C, 

then annealing by allowing the sample to cool to room temperature. RNA sequences were 

designed to minimize the possibility of internal base pairing in the ss-14mer, and RNA 

samples were confirmed to be homogeneous by NMR and gel shift assays. The in vitro 

transcription and purification of the 1-1000 RNA generation followed protocols described 

previously [Forsythe et al 2020]. 

RNA was visualized by electrophoretic mobility shift assay in 1% agarose gel. RNA 

at 200 ng/ul was added to increasing concentrations of protein in the range of 0-125 μM, 

and incubated for 30 min at room temperature in a total reaction volume of 10μl. RNA 

bands were stained by the Midori Green Nucleic Acid staining solution (Bulldog Bio. Inc. 

Portsmouth, NH) and visualized by Bio-Rad Gel Doc Image system. 

 

Fluorescence anisotropy 

For fluorescence anisotropy, Both the ss-14mer and ds-14mer were labeledas described 

above in the microscopy. The measurement was performed on a FluoroMax-3 

spectrophotometer (Horiba Scientific). The excitation wavelength was set to 492 nm and 

the emission wavelength to 516 nm. The concentration of RNA was set to 50 nM in 50 

mM NaPO4 pH 6.5, 150 mM NaCl, 1 mM NaN3 buffer and the protein was titrated in the 

concentration range from 0 to 1.5 uM. The data were fitted in GraphPad Prism 9 using the 

OneSite-Total biding model. 
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SI Figure A2.1: Phase diagram of CoV-N interaction with g1-1000 RNA . Bright-field 

and red fluorescent imaging investigating LLPS after 1.5 hours incubation at 37° C in 

droplet buffer (20 mM Tris, 150 mM NaCl, 1 mM DTT, pH 7.5) of 3.6 and 9 μM of FL-N, 

CTD, and NTD with 50 nM of 1-1000 gRNA at pH of 6.0 to 10.0 with 0.5 intervals in 

between. Scale bar is 200 μm. Imaging done using Keyence BZ-X700/BZ-X710 

microscope with a 40X objective lens and a 384-well plate (Cellvis P384-1.5H-N). 
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SI Figure A2.2: Chemical shift perturbations of binding between the ss-14mer and 
the CoV-N NTD. (a) Structure of the NTD with residues where CSP > σ drawn as balls, 
concentrated on a region of the protein behind the main cup of the NTD structure. (b) Plot 
of chemical shift perturbations at each residue. The dotted line represents σ, the standard 
deviation of the chemical shift perturbations.  
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SI Figure A2.3: Assignments of the Y109A NTD. (a) 1H-15N HSQC spectrum of the 
Y109A NTD, with peaks labeled by assignment. Assigned peaks in red are near the site 
of mutation and significantly shifted from the WT spectrum. (b) Mutation-induced CSPs 
plotted for each residue. (c) Ribbon diagram of the NTD with atoms for Y109 drawn in. 
Diagram is colored by CSP, where beige represents low CSP and pink represents high. 
The CSPs are concentrated to an area around the site of mutation.  
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SI Figure A2.4: Phase separation of NTD with 14-mer RNA. (a,b) brighfield images of 
the NTD, both WT and Y109A (100 μM) collected at 25 C (a) and 37 C (b), mixed with 
RNA at ratios of 1:1,1.5:1, and 2:1 RNA:NTD. 100 μm Scale bar in top left image of (a) 
and (b) applies to all images except where an alternate bar is show.  
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Appendix 3 

 

Design and characterization of a synthetic multivalent LC8-binding protein 

 

Aidan B Estelle, Elisar Barbar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Excerpted from ‘Continuum dynamics and statistical correction of compositional 

heterogeneity in multivalent IDP oligomers resolved by single-particle EM’, published in 

in Journal of Molecular Biology, May 2022. 
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The following appendix is taken from a manuscript published in May 2022 on the 

characterization of LC8-IDP complexes through negative stain electron microscopy. I 

designed and performed initial characterization on a synthetic protein designed to tightly 

bind to LC8 in a multivalent fashion, described below. The protein binds tightly to LC8, 

forming a homogeneous 8:2 LC8:IDP complex ideal for testing electron microscopy 

methods. 

 

Design, Expression and purification of the syn-4mer 

 we designed a novel LC8-binding peptide (termed syn-4mer) using a series of 4 repeats 

of the amino acid sequence RKAIDAATQTE, taken from the tight-binding LC8 motif of the 

protein CHICA (Uniprot Q9H4H8), which has a 0.4 μM affinity to LC8, making it one of the 

tightest-known LC8-binding motifs. The motif is spaced by uniform disordered linker 

sequences, totaling 3 linkers, and flanking GSYGS sequences were added to the N- and 

C-termini of the constructs to allow for quantification by absorbance at 280 nm. The final 

sequence is:  

GSYGSRKAIDAATQTEPKETRKAIDAATQTEPKETRKAIDAATQTEPKETRKAIDAATQT

EGSYGS.  

A gene sequence for the LC8-binding syn-4mer peptide was purchased as a block 

(integrated DNA technologies, Coralville, Iowa) and cloned into a pET24d expression 

vector with an N-terminal Hisx6 affinity tag and a tobacco etch virus protease cleavable 

site. The protein was expressed in ZYM-505256 auto-induction media at 37 °C for 24 hr. 

Cells were harvested, lysed by sonication and purified in denaturing buffers containing 6 

M urea on TALON resin. The 4-mer was dialyzed into non-denaturing buffer (25 mM tris 

pH 7.5, 150 mM NaCl) and further purified by gel filtration on a Superdex 75 Hi-load 

column (GE Health), in the same buffer. Full length LC8 of Drosophila melanogaster was 

all expressed and purified as previously described. All proteins were stored at 4 °C and 

used within one week of purification. 

 

SEC-MALS, Isothermal titration calorimetry , and Analytical ultracentrifugation 

Size-exclusion chromatography (SEC) coupled to a multiangle light scattering (MALS) 

instrument was performed using an analytical SEC column of Superdex S200 resin (GE 

Healthcare) on an AKTA-FPLC (GE Healthcare), then routed through a DAWN multiple-

angle light scattering and Optilab refractive index system (Wyatt Technology). The column 
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was equilibrated to a buffer of 25 mM tris (pH 7.5), 150 mM NaCl, and 5 mM BME, then 

injected with 100 μL of LC8/syn-4mer complex in the same buffer at an estimated 2 μM 

particle concentration (16 μM LC8 + 4 μM syn-4mer, assuming 2:8 binding stoichiometry). 

We estimated the molar mass using the ASTRA software package, with a Zimm scattering 

model. 

Isothermal titration calorimetry was carried out at 25 °C using a VP-ITC 

microcalorimeter (Microcal) in a buffer of 25 mM tris (pH 7.5), 150 mM NaCl and 5 mM 

BME. A cell containing 9 μM syn-4mer was titrated with a solution of 300 μM LC8, across 

32 injections of 8 μL. Peaks were integrated and fit to a single-site binding model in Origin 

7.0. 

Samples of the syn-4mer peptide in complex with LC8 were prepared for 

sedimentation velocity analytical ultracentrifugation (SV-AUC) by mixing excess (8:1) LC8 

with syn-4mer, then purifying the complex by gel filtration on a Superdex 200 column in a 

buffer of 25 mM tris (pH 7.5), 150 mM NaCl, and 5 mM β-mercaptoethanol. The estimated 

concentration of the syn-4mer/LC8 complex applied to SV-AUC was at a 4:1 ratio of syn-

4mer (13.8 μM) and LC8 (55 μM). The SV-AUC titration of LC8 into Nup159 was 

performed by mixing Nup159 (12.5 μM) and LC8 at LC8:Nup159 ratios of 0.5:1 to 8:1 in a 

buffer of 50 mM sodium phosphate (pH 7.5), 50 mM NaCl, 5 mM TCEP and 1 mM sodium 

azide. SV-AUC was performed on a Beckman Coulter Optima XL-A ultracentrifuge, 

equipped with optics for absorbance. Complexes were loaded into two-channel sectored 

centerpieces with a 12-mm path length and centrifuged at 42,000 rpm and 20 °C. We 

collected 300 scans at 280 nm with no interscan delay, and fit data to a c(S) distribution 

using SEDFIT.57 Buffer density was calculated using Sednterp. 
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Figure A3.1: Sedimentation velocity analytical ultracentrifugation (AUC) of LC8 
complexes.  A) SEC-MALS of syn-4mer in complex with LC8. Purified complex eluted as 
a single peak, with a mass of 104.4±0.7 kDa, within uncertainty of the expected mass for 
a 2:8 complex, 105.2 kDa.   B) Isotherm of binding between LC8 and the syn-4mer. The 
isotherm fits well to a simple binding model with Kd = 36±3 nM, DH = -10.47±0.04 kcal/mol, 
and N=3.98±0.01. Model fit is shown as a line. C) AUC data for the syn-4mer and size 
exclusion purified LC8/syn-4mer complex. A sharp peak at a sedimentation coefficient of 
4.7 S indicates a tight and homogeneous complex. D) AUC data for LC8 and LC8/Nup159 
complexes formed at increasing ratios of LC8. The dashed line is centered on the LC8 
peak. The multiple peaks in the 6-8 S for the complex indicates heterogeneity of the 
complex and with an S value close to 8, it suggests a higher order assembly than a 5-mer 
and two Nup159 chains. 
 

 

 

 


