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The goal of my dissertation was to explore how scale influences stream 

restoration prioritization strategies for an anadromous species and identify influential 

uncertainties that exist at different scales.  My objectives were to (1) produce a 

comprehensive review of the Chinook salmon management challenges in California’s 

Central Valley and identify the those related to scale of the management, (2) apply a 

structured decision making (SDM) to a large scale, spatially implicit stream restoration 

decision problem and derive an optimal stream restoration strategy, (3) apply a SDM to a 

small scale, spatially explicit stream restoration decision problem and use dynamic 

programming to derive an optimal stream restoration strategy, and (4) develop an 

approach to derive optimal policies for multi-scale stream restoration decision problem 

with multiple decision makers working in a hierarchy. 

Issues of scale can create distinct problems in natural resource management.  I 

used salmon management in the Central Valley of California an example where scale 

mismatches that have hindered conservation goals.  Salmon stocks in California’s Central 

Valley have been declining steadily over the last century, which has resulted the 



 
 

congressional establishment of the Central Valley Plan Improvement Act (CVPIA) in 

1992 to address the declines. Despite the oversight of the CVPIA, fisheries management 

in the basin has remained largely uncoordinated and unstructured with management 

actions often occurring simultaneously and at potentially conflicting scales. Having such 

large differences in spatial scales meant that any reduction of system uncertainties wasn’t 

necessarily transferable to other populations of anadromous fish within the Central 

Valley.  The hierarchical structure of the CVPIA and the entities that implement CVPIA 

related actions provide an opportunity to evaluate how scale may influence restoration 

decision making. 

 I developed a large scale, spatially implicit decision model to evaluate the effects 

of potential habitat restoration projects on populations of fall-run Chinook salmon in 

California’s Central Valley.  The extent of the model was the entire Central Valley and 

the grain was an individual watershed, 25 in total.  Large scale natural resource 

management problems require special considerations relative to smaller scale problems 

due in part to the fact that uncertainties tend to increase as spatial scale increases.  The 

model was primarily parameterized with expert judgement due to a lack of available 

empirical data at the watershed scale.  This model and the decision alternatives were 

formatted as a Markov decision model (MDP) that I solved using dynamic programming 

and policy iteration.  The results of the policy optimization suggest that focusing multiple 

restoration efforts on a small set of watersheds is the most effective habitat restoration 

strategy.   

 Most stream restoration efforts occur on a small spatial scales, often on reaches 

less than 1 km.  I developed a fine scale, spatially explicit structured decision model to 



 
 

derive a state-specific stream restoration strategy for a population of Chinook salmon 

from a stream in lower American River.  The decision problem was represented as 

Markov decision problem and I used dynamic programming to derive a state-specific, 

optimal policy for individual reaches within the study stream.  The optimal policies 

depended on four pieces of observable information in a given reach: the amount of 

spawning habitat, the amount of juvenile rearing habitat, the average number of redds 

counted over a 5 year period, and the temperature suitability of the reach.  Implementing 

the optimal policy during a 100 year simulation resulted in significant increases in natural 

production compared to a scenario where no actions were taken over the same time 

horizon.   

Decision problems in natural resource management often involve several, 

interconnected decision makers, usually working at different temporal and spatial scales.  

Multitime-scale Markov decision processes (MMDPs) provide a framework to derive 

optimal decisions from hierarchically structured sequential decision making processes.  

The work in this study bridges the gap between large and small-scale decision models in 

natural resource management by applying a MMDP to a Chinook salmon management 

problem in CVPIA streams with two tiers of decision makers.  The fundamental objective 

of each tier of decision makers was to maximize the production of natural origin Chinook 

salmon.  The decision problem was structured with an upper tier decision maker (large 

scale) allocating funds to lower tier decision makers (fine scale) who actually implement 

on the ground restoration projects.  The upper tier optimal policy identified optimal 

resource allocation strategies that favored providing funds to watersheds with high 

juvenile survival despite high costs.  
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CHAPTER 1: GENERAL INTRODUCTION 

 

The heart of natural resource management includes objectives, alternative 

management actions, and decision makers who choose the alternative that would best 

accomplish their objectives.  Unfortunately, this process is subject to the uncertainty 

inherent in managed systems, which makes it difficult for the managers to decipher the 

best or optimal alternative management action (Conroy and Peterson 2013).  This 

uncertainty is increased when objectives and management actions occur at different 

spatial and temporal scales (Peterson and Dunham 2010).  There are two primary 

components to scale: extent and grain.  Extent refers to the broadest spatial and temporal 

dimensions over which decisions are made (e.g., a management area or the time horizon) 

and grain refers to the finest spatial and temporal resolution that the decisions and 

observations (e.g., sample unit, time step) are conducted.  For instance, broad natural 

resource management goals are often set at large or regional spatial extents and over 

extended time periods; however the specific or individual management actions usually 

take place on smaller, more local spatial scales and with greater frequency (Beechie and 

Bolton 1999, Beechie et al. 2008).  Scale considerations coupled with stochastic variation 

in natural resources create problems in evaluating the efficacy of management actions, a 

requirement for effective adaptive resource management (Clemen 1996, Conroy and 

Peterson 2013).  These scale related discrepancies between management goals and 

actions can make large, regional goals almost seemingly impossible to accomplish when 

management actions are implemented locally. Ideally, management actions and goals 

would be pursued at identical scales; however due to logistical constraints and 
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uncertainties this is usually not an option.  Monetary, spatial, and even political 

constraints can all prevent natural resource management actions and the evaluation of 

those actions from occurring at appropriate scales (Beechie and Bolton 1999, Hermoso et 

al. 2012). 

Examples of how conflicting spatial scales can cause disconnect between 

management actions and management goals can be found in both terrestrial and aquatic 

systems.  American Black Ducks (Anas rupribes) are migratory waterfowl that are found 

primarily in the Atlantic flyway of the United States and Canada.  Since a noticeable 

decline in black duck populations in 1970’s, managers in the region have been trying to 

increase population sizes for both conservation and recreational harvest purposes.  

However, the large region this species occupies, combined with the local (i.e., small 

scale) influence of many if not most management actions (e.g., increase breeding habitat) 

make it is difficult for managers to determine the efficacy of their actions (Conroy et al. 

2002).  Similar difficulties hinder the management of widespread freshwater aquatic 

invasive species (AIS; e.g. zebra mussels Dreissena polymorpha or rusty crawfish 

Orconectes rusticus).  These species usually invade large areas of diverse habitats and 

complete eradication is not typically a feasible option (Vander Zanden and Olden 2008, 

Vander Zanden et al. 2010).  Managers are forced to focus control efforts on individual 

lakes or sections of stream despite the regional extent of the invasion.  Unfortunately, 

eradication or control efforts must be maintained almost indefinitely due to widespread 

distribution and high colonization rate of many AIS (Ricciardi and Rasmussen 1998).  As 

a result, managers need to decide which sites to prioritize for control efforts to achieve a 

larger more regional objective of invasive species control.  It’s easy to imagine how the 
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examples above can be further complicated when the temporal scales of management and 

ecological processes do not align.  Both these examples demonstrate how a single 

problem can be dissected into different scales and how those scales can influence 

available management actions.  The question of how local management actions can 

influence larger regional objectives can be difficult to decipher. 

The causes for the decline of Pacific salmon and steelhead populations are well 

documented.  With the arrival of Europeans came commercial fishing operations as well 

as mining, logging and large-scale agricultural industries.  Starting at the turn of the 20th 

century, the ease that salmon and steelhead could be caught due to their predictable 

homing behavior and high densities attracted the interest of commercial fishing 

operations.  The increase in fishing effort led to the stocks being over exploited with most 

fish being processed at canning facilities for export (Netboy 1974).  Overexploitation was 

combined with practices that severely degraded salmon habitat, such as dredge mining, 

logging, water development for agricultural irrigation, and impoundment (Busch 2000, 

Montgomery 2003).  In fact, salmon in the Pacific Northwest of the United States only 

occur in 40% of their historical range and approximately one half of those remaining are 

at risk of extinction in the next 100 years (Nehlsen et al. 1991, Levin and Schiewe 2001).  

However, salmon runs have increased in the last 50 years with the help of several 

conservation efforts.  Habitat restoration, fishing quotas and hatcheries have all 

contributed to help slow and in some cases, reverse the decline many salmon stocks.  

Unfortunately, these efforts have failed to restore salmon and steelhead to their historic 

distribution and densities (Lichatowich 1999, Ruckelshaus et al. 2002). 
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Attempts to increase Pacific salmon and steelhead populations vary in scope and 

scale but most include some or all of the following: habitat restoration/remediation, 

harvest reduction, and use of hatcheries (Roni et al. 2002, Ruckelshaus et al. 2002).  Most 

habitat restoration projects operate under the assumption that habitat is limiting at some 

point in the salmon or steelhead life cycle.  These small scale (e.g. stream reach) projects 

usually involve adding spawning gravels, adult holding habitat, or engineering off-

channel juvenile rearing habitat as an attempt to alleviate the hypothesized habitat 

bottleneck (Beechie et al. 1996, Beechie and Bolton 1999).  On the other hand, a large 

scale management action that has been used to recover depressed populations is the 

reduction of both commercial ocean and recreational angler harvest (Ruckelshaus et al. 

2002).  Both these control measures attempt to ensure that salmon are not over exploited 

and have had some success at recovering populations.  Lastly, and perhaps most 

controversial, is the use of hatcheries as a means to recover salmon populations. 

Hatcheries can be used as a means to rescue a population of fish that would otherwise go 

extinct without outside supplementation but more commonly, hatcheries are used to 

supplement harvest.  In recent years it’s been shown that runs that require extensive 

hatchery supplementation tend to become dependent on supplementation and may lose 

their ability to self-sustain (Lackey 2003).  Again, I would consider the use of hatcheries 

to be a large scale management action because hatcheries can influence the dynamics of 

the target population and potentially nearby populations as well.  

There are several challenges that have hindered salmon and steelhead restoration 

in the North Pacific.  The first has been the failure to identify explicit, achievable 

objectives (Lichatowich et al. 1995, Beechie et al. 2008).  Too often multiple 
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management actions are pursued simultaneously, often with conflicting or competing 

objectives.  For instance, local (small scale) efforts to restore spawning habitat to increase 

natural production may occur in streams with hatchery supplementation whose aim is to 

provide angling opportunities.  Previous studies demonstrated that when hatchery fish 

and wild fish interbreed, the net result is a decrease in fitness for their offspring and 

potentially an increase in straying rates (Nehlsen et al. 1991, Chilcote et al. 2011, Lister 

2014).  This illustrates how management actions, however well intentioned, can be 

counterproductive or less productive if appropriate objectives are not identified first.  

Salmon and steelhead also tend to have a highly variable life history, which creates 

difficulties in both monitoring and modeling populations (Groot and Margolis 1991, 

Gross 1991).  This is especially evident in steelhead populations where within a single 

generation some offspring become resident rainbow trout and others become anadromous 

steelhead (Withler 1966, Thorpe 2007).  Also, many salmon and steelhead populations 

have diverse life histories that allow young-of-year to migrate to the ocean as fry, parr, or 

smolts (Groot and Margolis 1991).  These diverse life history strategies often exist in a 

single population and create substantial uncertainty of how specific management actions 

may influence population dynamics.  Lastly, it is often not possible to assess an entire 

population of salmon or steelhead due to the large spatial area they inhabit.  Intra-

population differences in adult ocean residence time, which are typically between 2 and 6 

years, add further complexity to population or management action assessments.  Instead, 

population size and status often has to be extrapolated from a handful of observations and 

the grain of the monitoring efforts often do not match the scale of the overall 

management objectives (Beechie et al. 2008, Beechie et al. 2009).   



6 
 

 

In general, the challenges outlined above all introduce substantial uncertainty into 

the decision making process when mangers are considering alternative management 

actions with the goal of recovering declining salmon populations.  The uncertainty that 

exists in natural resource is often perceived as risk to decision makers.  Risk is a well-

defined concept that is represented as the possibility of an unintended, negative 

consequence for a given action (Walters 1997, Conroy and Peterson 2013).  For salmon 

managers, this might be perceived as the possibility that salmon numbers or harvest rates 

decrease after an action that was meant to bolster the population or increase harvest rates.  

Management actions are typically not pursued if the perceived risk outweighs any 

expected potential benefits.  The result is that managers tend to be risk adverse in their 

decision making, which can lead to inaction or actions that may not directly address their 

goal but are otherwise perceived as safe.  Because management under significant or large 

uncertainty is generally perceived as more risky, an approach to management that 

acknowledges uncertainty and may be able to reduce key uncertainties in the decision 

making process is needed. 

Structured decision making (SDM) and adaptive resource management may be 

useful tools for the management of Pacific salmon and steelhead.  SDM approaches are 

valuable in natural resource problems because they directly connect quantifiable 

objectives and explicit alternative decisions with quantitative models to identify optimal 

management decisions (Clemen 1996, Conroy and Peterson 2013).  As the name implies, 

a SDM approach structures and formulizes the decision making process, avoiding ad-hoc 

decision making.  The first step in the SDM process is for decision makers and relevant 

stakeholders to identify and agree on objectives.  This is perhaps the most critical step in 
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SDM because poorly worded or vague objectives can result in conflicts of interest or the 

implementation of ineffective decision alternatives.  Secondly, the decision makers and 

stakeholders identify those decision alternatives that are available to meet the objectives.  

The next step in SDM process is to build quantitative models to connect decisions to 

objectives and estimate the outcomes of the various decision alternatives.  Optimal 

decisions are then identified via a closed form mathematical equation or through heuristic 

optimization algorithms depending on the specific approach used.  Although the details 

of the process are more involved than what I have outlined here, this is the basic 

framework of the SDM process.   

Quantitative, structured approaches to fisheries management and decision making 

were first introduced over 30 years ago as adaptive resource management (ARM; 

(Holling 1978, Walters 1986).  In fact, ARM is special case of SDM where decisions are 

revisited through time in an iterative process.  In essence, ARM is just the SDM process 

repeated through time.  The iterative process allows the effects of decisions to be fully 

realized through time (and /or space) and for the opportunity to learn about the system 

through continued monitoring, this process is sometimes known as information feedback.  

Part of what makes ARM so attractive for problems in natural resources is that it allows 

managers to make decisions while simultaneously reducing uncertainties about the 

system at hand.  In fact, ARM allows for the explicit testing of competing hypotheses 

about system dynamics or processes through information feedback.  This iterative process 

of observing the state of the system, implementing a decision alternative, and 

reevaluating the state of the system can be modeled as a Markov Decision Problem 

(Bather 2000, Ross 2014).  MDP’s require a class of optimization routines that allows 
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managers to model sequential decisions that occur over time and also derive what the 

optimal sequence of decisions would be given a pre-specified utility function.  MDP’s are 

especially appealing for modeling natural resource management problems because they 

intuitively follow the decision making process (e.g. evaluate the system, make a decision, 

reevaluate the system and update current knowledge) and are able to incorporate 

environmental stochastic processes. 

However since its development, ARM has yet to be widely applied.  The primary 

impediments have kept this both ARM and SDM from being more widely adopted in 

natural resource management include: a lack of awareness from natural resource decision 

makers, inadequate funding, the lack of leadership to implement such plans, stakeholder 

dissention and high political risks (Walters 1997, McFadden et al. 2011).  This kind of 

rigorous decision making framework has not been successfully applied to Pacific salmon 

and steelhead before, but given the numerous issues Pacific salmon and steelhead face, 

such an approach is needed.  

The goal of my dissertation was to explore how scale influences stream 

restoration prioritization strategies for an anadromous species and to develop dynamic 

optimization approaches that acknowledge uncertainties that exist at different scales.  My 

objectives were to (1) produce a comprehensive review to document the management 

challenges that are endemic to the salmon populations of California’s Central Valley and 

identify the challenges that are related to scale of the management process, (2) apply a 

SDM approach to a large scale, spatially implicit stream restoration decision problem and 

use dynamic programming to derive an optimal stream restoration strategy, (3) apply a 

SDM approach to a small scale, spatially explicit stream restoration decision problem and 
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use dynamic programming to derive an optimal stream restoration strategy, and (4) 

develop a approach to derive optimal policies for multi-scale stream restoration decision 

problem with multiple decision makers working in a hierarchy.  Each objective of my 

dissertation attempted to examine how processes that operate at different scales can 

ultimately influence decision making process. 

Each chapter of my dissertation was designed to address the objectives described 

above.  In chapter 2, I examined how scalar discrepancies between management goals 

and actions can impede the successful management of natural resources.  I used Chinook 

salmon management in California’s Central Valley as a case example to demonstrate the 

importance that scale can have on management outcomes.  The primary objective of 

chapter 3 was to derive optimal habitat restoration decisions and policies for populations 

of fall-run Chinook salmon in California’s Central Valley using coarse resolution 

information at a sub-basin or watershed level.  I used this model to examine which 

sources of uncertainty are influential in a large scale, spatially implicit decision model.  

For Chapter 4, my goal was to understand how a SDM approach could be applied to a 

fine-scale habitat restoration decision problem.  I developed a decision model for fall-run 

Chinook salmon in the Lower American River, CA that operated an individual reach 

level and used that model to derive an optimal policy for habitat restoration.  Lastly, in 

Chapter 5 I developed a hierarchical, a multi-agent stream habitat restoration decision 

model.  This model was meant to act as a bridge between the large scale decision model 

(Chapter 3) and the small scale decision model (Chapter 4).  I used this model to 

demonstrate how optimal habitat restoration policies can be derived in systems were 

decision makers operate at different spatial scales. 
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  The research presented here presents an in-depth evaluation of how scale can 

influence the decision making process in natural resource management.  Additionally, my 

research demonstrates how SDM can be implemented in the context of stream restoration 

decision problems.  Each chapter shows the importance that the definition of scale can 

have on optimal decision making.  Much is known about how scale can influence how we 

view ecological processes, conversely little is known on how scale influences decision 

making in natural resource management. 
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CHAPTER 2: THE EFFECT OF SCALE ON THE MANAGEMENT OF 

CHINOOK SALMON IN CALIFORNIA’S CENTRAL VALLEY AND AN 

OVERVIEW OF THE CENTRAL VALLEY PLAN IMPROVEMENT 

 

 

Abstract 

 

Issues of scale can create distinct problems in natural resource management. I use 

salmon management in the Central Valley of California as an example where mismatches 

of scale have hindered conservation goals.  Salmon stocks in California’s Central Valley 

have been declining steadily over the last 100 years, which has resulted in many efforts to 

rehabilitate depressed populations.  The Central Valley Plan Improvement Act (CVPIA) 

was passed by congress in 1992 to address the decline of several anadromous species in 

the Central Valley. Despite the oversight of the CVPIA, fisheries management in the 

basin has remained largely uncoordinated and unstructured with management actions 

often occurring simultaneously and at potentially conflicting scales. Having such large 

differences in spatial scales meant that any reduction of system uncertainties wasn’t 

necessarily transferable to other populations of anadromous fish within the Central 

Valley.  Structured decision making (SDM) and adaptive resource management may be 

useful tools for the management of Pacific salmon and steelhead.  I believe that the 

salmon populations of California’s Central Valley would benefit from a SDM approach 

to management that would allow for maximum transparency in the decision making 

process.  The hierarchical structure of the CVPIA and the entities that implement CVPIA 

related actions, provide an opportunity to evaluate how scale may influence optimal 

decision making in an SDM/ARM framework. 
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Introduction 

The heart of natural resource management includes objectives, alternative 

management actions, and decision makers who choose the alternative that would best 

accomplish their objectives.  Unfortunately, this process is subject to the uncertainty 

inherit in managed systems, which makes it difficult for the managers to decipher the best 

or optimal alternative management action (Conroy and Peterson 2013).  This uncertainty 

is increased when objectives and management actions occur at different spatial and 

temporal scales (Peterson and Dunham 2010).  There are two primary components to 

scale: extent and grain.  Extent refers to the broadest spatial and temporal dimensions 

over which decisions are made (e.g., a management area or the time horizon) and grain 

refers to the finest spatial and temporal resolution that the decisions and observations 

(e.g., monitoring) are conducted.  For instance, broad natural resource management goals 

are often set at large or regional spatial extents and over extended time periods; however 

the specific or individual management actions usually take place on smaller, more local 

spatial scales and with greater frequency (Beechie and Bolton 1999, Beechie et al. 2008).  

Scale considerations coupled with stochastic variation in natural resources create 

problems in evaluating the efficacy of management actions, a requirement for effective 

adaptive resource management (Clemen 1996, Conroy and Peterson 2013).  These scalar 

discrepancies between management goals and actions can make large, regional goals 

almost seemingly impossible to accomplish when management actions are implemented 

locally. Ideally, management actions and goals would be pursued at identical scales, 

however due to logistical constraints and uncertainties this is usually not an option.  

Monetary, spatial, and even political constraints can all prevent natural resource 



16 
 

 

management actions and the evaluation of those actions from occurring at appropriate 

scales (Beechie and Bolton 1999, Hermoso et al. 2012). 

Issues of scale can create distinct problems in natural resource management.  For 

instance, vertebrate populations are often assessed or managed the over large regional 

extents (e.g., watersheds, basins, flyways), however management actions and associated 

monitoring, when present, are usually implemented on a much more local (smaller) scale 

(Bond and Lake 2003, Lake et al. 2007, Likens et al. 2009).  Specifically, natural 

resource management objectives are often regional (e.g., increase recruitment in a 

specific population in a watershed), whereas management actions almost always occur on 

a very small scale relative to the objectives (e.g., rehabilitating 500m of stream habitat).  

It is difficult to use information that is collected at a small local spatial extent to make 

inferences on the state of the system over a large regional spatial extent without making 

large assumptions.  Scale mismatches generally increase uncertainty and inhibit the flow 

of information (feedback) regarding the effectiveness of management actions making 

management across a large regional extent even more difficult.  In addition, key 

ecosystem processes occur at different spatial and temporal extents, which can directly 

influence how any uncertainties about those processes are perceived (Peterson and 

Dunham 2010).  

In this chapter, I hope to demonstrate that issues of scale that are not taken into 

consideration can adversely affect natural resource management restoration efforts.  I will 

use salmon management efforts in the Central Valley of California as an example where 

mismatches of scale have hindered conservation goals.  In fact, they can inhibit the 

implementation of effective adaptive resource management.  Also, I will make a case for 
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why a structured decision making may be an ideal approach to incorporate and resolve 

some of the uncertainties created by issues of scale. 

 

Background of Pacific Salmon & California 

Pacific salmon and steelhead (Oncorhynchus sp.) are an ideal example of animals 

whose management requires considerations of scale.  Salmon stocks in the North Pacific 

have been declining steadily over the last 100 years, which has resulted in many efforts to 

rehabilitate depressed populations.  The region-wide importance, both economically and 

culturally, of salmon and steelhead cannot be understated (Ruckelshaus et al. 2002).  

Historically, salmon and steelhead were essential for Native Americans that inhabited 

many areas of the Northern Pacific coast and currently salmon and steelhead remain an 

iconic species in areas where they still occur (Lichatowich 1999).  In addition, the Pacific 

salmon fishery is the second largest commercial fishery in the United States with an 

estimated value of over 489 million dollars in 2012 (NOAA-Fisheries 2012).  

Recreational salmon fisheries are also one of the most important recreational fisheries in 

the Western U.S. (Nehlsen et al. 1991). As one would expect, there is substantial interest 

in preserving these stocks. 

The causes for the decline of Pacific salmon and steelhead populations are well 

documented.  With the arrival of Europeans came commercial fishing operations as well 

as mining, logging and large-scale agricultural industries.  Starting at the turn of the 20th 

century, the ease that salmon and steelhead could be caught due to their predictable 

homing behavior and high densities attracted the interest of commercial fishing 

operations.  The increase in fishing effort led to the stocks being over exploited with most 
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fish being processed at canning facilities for export (Netboy 1974).  Overexploitation was 

combined with practices that severely degraded salmon habitat, such as dredge mining, 

logging, and water impoundment  for agricultural irrigation and flood control (Busch 

2000, Montgomery 2003).  In fact, salmon in the Pacific Northwest of the United States 

only occur in 40% of their historical range and approximately one half of those remaining 

are at risk of extinction in the next 100 years (Nehlsen et al. 1991, Levin and Schiewe 

2001).  However, salmon runs have increased in the last 50 years with the help of several 

conservation efforts.  Habitat restoration, fishing quotas and conservation hatcheries have 

all contributed to help slow and in some cases, reverse the decline many salmon stocks.  

Unfortunately, these efforts have failed to restore salmon and steelhead to their historic 

distribution and densities (Lichatowich 1999, Ruckelshaus et al. 2002). 

The story of the decline of California’s Central Valley anadromous salmonids is 

similar to decline of Pacific anadromous salmonids in other areas of Pacific coast of 

North America.  The Central Valley is a large region (approximately 22,500km2) that 

drains the Sierra Mountains in the East and the Coastal Range in the west (Figure 2.1). 

The two primary tributaries in the Central Valley are the Sacramento drainage from the 

north and the San Joaquin drainage from the South.  The tributaries that feed both 

Sacramento and San Joaquin are characterized by a very high gradient in their 

mountainous headwaters which tapers off as they enter the relatively flat historical 

floodplains of the Central Valley.   The Sacramento and San Joaquin come together just 

east of San Francisco to form the Sacramento-San Joaquin River Delta, and eventually 

enter the sea at the San Francisco Bay.  Historically, the Sacramento-San Joaquin Delta 
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was a highly productive, complex estuary environment.  This area and its streams and 

tributaries were historically one of the most productive areas for Pacific salmon. 

Before the large scale decline of salmon and steelhead at the turn of last century, 

spawning salmon could be found in high densities throughout most of the Central Valley 

(Lichatowich 1999).  In fact, before the arrival of European settlers more than one million 

Chinook Salmon (Oncorhynchus tshawytscha) were estimated to have returned to the 

Central Valley each year (Yoshiyama et al. 1998).  However due to several unsustainable 

practices such as high intensity logging and mining as well as commercial fishing, by the 

early 20th century Pacific salmon in the Central Valley were severely reduced in their 

range and numbers.  The main cause for the decline is attributed to actions associated 

with the Central Valley Project (CVP), which was enacted in 1933.  The CVP was a joint 

venture between the state of California and the federal government to reengineer the 

hydrologic system of the Central Valley.  The purpose of the CVP was to fund 

reclamation projects in the Valley to provide jobs in the area as well as to increase the 

availability of water for agricultural and municipal purposes.  The need for water 

reclamation projects that would increase the amount of arable land intensified due to the 

dust bowl that was affecting the historical “bread basket” of the United States during this 

time.  Additionally, these projects provided badly needed jobs due to high levels of 

unemployment that were prevalent during the Great Depression.  The Central Valley Plan 

was an array of water reclamation projects aimed at providing flood control, irrigation, 

and hydroelectric power production projects throughout the Central Valley.  The scope of 

the CVP meant these projects were located in most all of the large tributaries in the 

valley.   Most these projects took the form of impoundments, aqueducts, or water 
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diversions and very few provided any mitigation for the negative effects on native species 

dependent on those streams.  The effects of the CVP along with other factors, such as 

continued overfishing in the ocean and poor logging and mining practices furthered the 

decline of salmon population numbers (Nehlsen et al. 1991, Cummins et al. 2008a).  By 

the 1980’s and into the 1990’s, the population decline of salmon in the Central Valley 

caused the Federal government to get involved in restoration efforts (Figure 2.2). 

Generally, CVP actions had negative effects on anadromous fish populations.  In 

most cases, fish passage was not provided on impoundment projects nor were newly 

constructed irrigation diversions screened to prevent fish entrapment. From 1933 into the 

1960s, almost every major tributary of the Sacramento and San Joaquin had a major 

impoundment preventing fish passage (Yoshiyama et al. 1998).   It is estimated that after 

the construction of these dams that salmon were denied access to roughly one half of 

their traditional spawning and rearing grounds.  In some streams, dams and diversions 

blocked off up to 70-90% of historical spawning and rearing habitat (Cummins et al. 

2008a).  Additionally, the creation of these impoundments cut off the lower available 

reaches from their historical alluvial processes such as natural flow regimes, floodplain 

inundation, and gravel recruitment.  It should be kept in mind that during this time that 

commercial salmon fishing was continuing with salmon being harvested at unsustainable 

levels.  During the 1930’s and 1940’s, there was a substantial effort to provide 

supplemental hatcheries to mitigate the effect of lost spawning and rearing habitat.  

Hatcheries such as Coleman National Fish Hatchery on Battle Creek, Nimbus Fish 

Hatchery outside of Sacramento, and the Feather River Fish Hatchery, began raising and 

releasing salmon smolts in large numbers.  These hatcheries also helped to sustain the 
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commercial fishing industry that had developed around these once abundant fish.  At the 

time, fisheries biologists were confident that the hatchery production would be able to 

compensate for the last productivity caused by the widespread habitat degradation.  The 

main purpose of the hatcheries was to provide adult fish for the commercial fishery as 

well as to provide angling opportunities inland.  In this light, the hatcheries could be 

viewed as a success.  However, despite the success of the mitigation hatcheries, spawning 

and rearing success of the remaining wild populations continued to decline.  The general 

result were fish populations that were heavily dependent on hatchery inputs, which is not 

a mark of self-sustainable populations. 

By the 1980s, the state of California’s Chinook salmon populations were stable 

thanks to the input of the mitigation hatcheries.  However, there remained few places 

were wild salmon still had access to suitable spawning and rearing habitat.  Beginning in 

the 1990s, ocean conditions began to shift due to several consecutive El Niño events.  

This caused higher ocean surface temperatures that has be related to decreases in ocean 

productivity and ultimately Pacific salmon ocean survival (Mantua 2015).  The warmer 

weather associated with El Niño events also reduces snowpack inland, which ultimately 

causes increases in stream temperatures.  This results in higher mortality rates for 

juvenile salmonids rearing in freshwater.  By the early 1990’s, salmon and steelhead 

numbers were at historic lows. 

 

Central Valley Plan Improvement Act 

This confluence of events set the stage for the passage of the Central Valley 

Improvement Act (CVPIA) by congress in 1992. The CVPIA is a large scale, multi-
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agency restoration effort whose primary goal was to restore populations of anadromous 

species in the Central Valley.  The species specifically identified by the CVPIA include: 

four runs of Chinook salmon, Steelhead (O. mykiss), delta smelt (Hypomesus 

transpacificus), Green sturgeon (A. medirostris), White Sturgeon (A. transmontanus) and 

nonnative Striped Bass (Morone saxatilis).  As the name implies, the CVPIA aimed to 

rectify some of the adverse impacts of the original CVP.  The passage of this legislation 

was timely, given the several salmon and steelhead stocks were on the brink of being 

federally listed as threatened or endangered under the Endangered Species Act.  Also part 

of the legislation was the appropriation of moneys to fund reclamation and recovery 

projects to aid salmon.  To date, the CVPIA is the largest federal salmon recovery 

program in the lower 48 states, with funding in excess of $25 million annually between 

1993 and 2008 and over one billion dollars spent as of 2016 (Cummins et al. 2008b).  

Despite the high levels of funding, the CVPIA has yet to meet the goals it set more than 

25 years ago. 

 One of the goals of the CVPIA was to bring together many of the agencies 

involved with salmon management in the Central Valley.  Perhaps the largest problem 

with the CVPIA is the clear lack of structure that was provided by the legislation.  Instead 

of a single entity implementing management actions, the CVPIA identifies multiple 

agencies, working groups and stakeholders.  Officially, the Bureau of Reclamation 

(henceforth Reclamation) and the United States Fish and Wildlife Service (USFWS) act 

as co-program leads to implement the CVPIA.  Reclamation’s responsibilities are 

primarily financial: distributing funds and creating program budgets.  Any biological 

research, restoration planning, implementation or monitoring then fell to the USFWS.  In 
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addition to Reclamation and USFWS, the CVPIA also instructs those agencies to develop 

this restoration program “in consultation with other state and federal agencies, Indian 

tribes, and affected interests.”  This created a situation where Reclamation and USFWS 

were required to coordinate with many other organizations, most of whom they do not 

have any direct authority over.  As one can imagine, implementing such a large effort 

with so many interests proved to be challenging.  

 Within the CVPIA is an explicit list of goals, actions, tools and authorities 

available to Federal managers.  Section 3406 of the legislation is perhaps the most 

important portion because it sets the stage for much of the structure of the 

implementation of the CVPIA.  Section 3406(b) is especially important because it’s in 

this section we first see the “doubling goal” that the CVPIA is often associated with 

(CVPIA 1993; 3406(b)(1)).  It also displays the most important aspects that would later 

become the CVPIA.  Some of the section 3406(b) subsections are quite specific, even 

mentioning specific watersheds or projects, while others are quite vague in nature.  This 

list would form the backbone and direction of the CVPIA.  Although, it should be noted 

that some of these projects were already underway prior to the CVPIA. 

 The result of the subsections in 3406(b) was the proscription of several 

uncoordinated actions throughout the Central Valley.  Usually, for each part of section 

3406(b) a subcommittee was formed to enact that part of the legislation.  Each of these 

subcommittees tended to act independently and with minimal coordination with the 

USFWS and Reclamation leadership. 

 

Lack of Success & Issues of Scale 
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 Ultimately, 2002 came and anadromous fish stocks had not recovered according 

to the “doubling goal” of the CVPIA.  In fact, as of 2016 the doubling goal has yet to be 

reached.  I believe this is in part due to how the CVPIA was structured and implemented, 

specifically the mismatch between management goals (e.g., basin wide doubling of all 

anadromous species) and management actions (e.g., small scale restoration activities).  

Below, I outline a few examples of how I believe issues of scale caused the initial 

implementation of the CVPIA to fail. 

To date, fisheries management in the basin was largely uncoordinated and 

unstructured.  This mostly was the result of multiple agencies (i.e., Fish and Wildlife 

Service, California Fish and Game, Bureau of Reclamation, Army Corps of Engineers) 

operating independently of one another despite all being part of the CVPIA (Cummins et 

al. 2008a).  The way the CVPIA was structured in the past resulted in multiple agencies 

and working groups working independently sometimes at very different spatial and 

temporal scales.  This situation typically arises when the various management agencies 

are responsible to serve different constituencies.  For example, the Bureau of 

Reclamation is tasked with ensuring adequate access to fresh water for agriculture in the 

basin, whereas California Department of Fish and Wildlife (formerly California Fish and 

Game) are simultaneously tasked with providing sustainable angling opportunities to 

their residents.  As this example demonstrates, natural resource management agencies can 

have competing and potentially conflicting management objectives within the basin.  

Perhaps the largest impediment to reaching the natural production doubling goal was the 

lack of structure and transparency in the decision making process within the CVPIA 

(Cummins et al. 2008a).  In addition, I believe the decision making process has been 
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hindered by the differences in spatial temporal scales that the decision makers and 

stakeholders operate at within the Central Valley.  

Overall, the way the CVPIA has been structured has resulted in multiple 

uncoordinated management actions often occurring simultaneously and at potentially 

conflicting scales.  The CVPIA lacks a single entity (i.e., decision maker) to enforce 

management decisions across the entire Central Valley.  Rather, it is composed of 

multiple decision makers, all working at their own scales.  This often created mismatches 

of scale between the working groups and the objectives of the CVPIA.  Looking at 

section 3406(b) of the CVPIA, we can see several example of very specific actions. A 

great example of this was the creation of the gravel implementation team.  This group 

was created specifically to satisfy section 3406(b)(13) of the legislation and they were 

tasked with improving spawning and rearing gravel throughout the Central Valley.  The 

gravel team’s efforts were effective at providing new spawning gravels to several Central 

Valley streams, however they have been generally uncoordinated with the larger CVPIA.  

This team’s spatial grain for their projects were roughly 0.25 mile reaches on individual 

tributaries.  Keep in mind that the overarching goal of the CVPIA is to double the number 

of anadromous fish in the Central Valley.  Working at such a fine scale is necessary for 

implementing these kinds of projects. However, without any coordination with other 

programs within CVPIA these kinds of project may be successful locally but also may be 

misplaced on the larger scale of the Central Valley as a whole.  Some decisions were 

being made at very local scales (e.g., river reaches) and other were being made at very 

large spatial scales (e.g., the entire Central Valley).  This lack of coordination and 

overlapping spatial scales resulted in decisions being implemented that may or may not 
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have been optimal given the doubling goal.  In addition, because of the mismatch of 

scales across the all the actions in the Central Valley understanding and identifying the 

system uncertainties was often not possible. 

On the other hand, there are aspects outlined by the CVPIA that focus on 

individual streams rather than specific actions.  In section 3406(e)(6) several tributaries 

were identified as watersheds where future restoration activities should be considered to 

benefit salmon and steelhead population.  These tributaries include: the Merced, 

Mokelumne, and Calaveras Rivers and Battle, Butte, Deer, Elder, Mill and Thomes 

Creeks.  No specific actions are identified in this portion of the CVPIA, instead the 

restoration methods are left up to the implementing agencies.  The CVPIA does not 

provide a guideline to prioritize actions among these watersheds or between different the 

target species.  It’s also ambiguous as to how any actions implemented in these 

watersheds fit into the larger Central Valley wide doubling goal.   

Having such large differences in spatial scales meant that any reduction of system 

uncertainties wasn’t necessarily transferable to other populations of anadromous fish 

within the Central Valley.  For instance, there have been several efforts to develop a 

model for the Chinook salmon populations in the CVPIA (Bartholow et al. 1997, 

Consultants 2014, Hinkelman 2015).  These models have typically been watershed-

specific and unnecessarily complex that they are only useful in the single basin for which 

they were developed.  The specificity of these models prevents the any derived 

restoration strategy from being applicable to other watersheds.  Additionally, to date there 

is no coordinated effort to collect standardized monitoring data.  Rather, each working 

group in the CVPIA is responsible for collecting and storing their own monitoring data.  
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This results in types of data that may be collected more than once or not at all.  

Additionally, this hinders transferability of knowledge in that information learned by one 

working group is not applicable to another working group.  The result is that many of the 

uncertainties, systemic and parametric, that existed before the CVPIA still exist. 

There are several challenges that have hindered salmon and steelhead restoration 

throughout the North Pacific and in California.  The first has been the failure to identify 

explicit, achievable objectives (Lichatowich et al. 1995, Beechie et al. 2008).  Too often 

multiple management actions are pursued simultaneously, often with conflicting or 

competing objectives.  For instance, local (small scale) efforts to restore spawning habitat 

to increase natural production may occur in streams with hatchery supplementation 

whose aim is to provide angling opportunities.  Previous studies demonstrated that when 

hatchery fish and wild fish interbreed, the net result is a decrease in fitness for their 

offspring and potentially an increase in straying rates (Nehlsen et al. 1991, Chilcote et al. 

2011, Lister 2014).  This illustrates how management actions, however well intentioned, 

can be counterproductive or less productive if appropriate objectives are not identified 

first.  Salmon and steelhead also tend to have a highly variable life history, which creates 

difficulties in both monitoring and modeling populations (Groot and Margolis 1991, 

Gross 1991).  This is especially evident in steelhead populations where within a single 

generation some offspring become resident rainbow trout and others become anadromous 

steelhead (Withler 1966, Thorpe 2007).  Also, many salmon and steelhead populations 

have diverse life histories that allow young-of-year to migrate to the ocean as fry, parr, or 

smolts (Groot and Margolis 1991).  These diverse life history strategies often exist in a 

single population and create substantial uncertainty of how specific management actions 
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may influence population dynamics.  Lastly, it is often not possible to assess an entire 

population of salmon or steelhead due to the large spatial area they inhabit.  Intra-

population differences in adult ocean residence time, which are typically between 2 and 6 

years, add further complexity to population or management action assessments.  Instead, 

population size and status often has to be extrapolated from a handful of observations and 

the grain of the monitoring efforts often do not match the scale of the overall 

management objectives (Beechie et al. 2008, Beechie et al. 2009). 

 

Discussion 

 It has been recommended that the CVPIA adopt a more transparent, structured, 

and holistic approach to their management decision process (Cummins et al. 2008a).  

Specifically, there is a need to implement a structured decision making (SDM) process.  

This process would allow for more transparency in how decisions are made as well as 

allow decision makers to resolve important system uncertainties.  

Structured decision making (SDM) and adaptive resource management may be 

useful tools for the management of Pacific salmon and steelhead.  SDM can be valuable 

tool to address natural resource problems because they directly connect quantifiable 

objectives and explicit alternative decisions with quantitative models to identify optimal 

management decisions (Clemen 1996, Conroy and Peterson 2013).  As the name implies, 

SDM structures and formulizes the decision making process, avoiding ad-hoc decision 

making.  The first step in the SDM process is for decision makers and relevant 

stakeholders to identify and agree on objectives.  This is perhaps the most critical step in 

SDM because poorly worded or vague objectives can result in conflicts of interest or the 



29 
 

 

implementation of ineffective decision alternatives.  Secondly, the decision makers and 

stakeholders identify those decision alternatives that are available to meet the objectives.  

The next step in SDM is to build quantitative models to connect decisions to objectives 

and estimate the outcomes of the various decision alternatives.  Optimal decisions are 

then identified via a closed form mathematical equation or through heuristic optimization 

algorithms depending on the specific approach used.  Although the details of the process 

are a bit more involved than what I have outlined here, this is the basic framework of 

SDM.   

Quantitative, structured approaches to fisheries management and decision making 

were first introduced over 30 years ago as adaptive resource management (ARM; 

(Holling 1978, Walters 1986).  In fact, ARM is special case of SDM where decisions are 

revisited through time in an iterative process.  In essence, ARM is just the SDM process 

repeated through time.  The iterative process allows the effects of decisions to be fully 

realized through time (and /or space) and for the opportunity to learn about the system 

through continued monitoring, this process is sometimes known as information feedback.  

Part of what makes ARM so attractive for problems in natural resources is that it allows 

managers to make decisions while simultaneously reducing uncertainties about the 

system at hand.  In fact, ARM allows for the explicit testing of competing hypotheses 

about system dynamics or processes through information feedback.  This iterative process 

of observing the state of the system, implementing a decision alternative, and 

reevaluating the state of the system can be modeled as a Markov Decision Problem 

(Bather 2000, Ross 2014).  MDP’s require a class of optimization routines that allows 

managers to model sequential decisions that occur over time and also derive what the 
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optimal sequence of decisions would be given a pre-specified utility function.  MDP’s are 

especially appealing for modeling natural resource management problems because they 

intuitively follow the decision making process (e.g., evaluate the system, make a 

decision, reevaluate the system and update current knowledge) and are able to 

incorporate environmental stochastic processes. 

However since its development, ARM has yet to be widely applied successfully.  

The primary impediments have kept this both ARM and SDM from being more widely 

adopted in natural resource management include: a lack of awareness from natural 

resource decision makers, inadequate funding, the lack of leadership to implement such 

plans, stakeholder dissention and high political risks (Walters 1997, McFadden et al. 

2011).  This kind of rigorous decision making framework has not been successfully 

applied to Pacific salmon and steelhead before, but given the numerous issues Pacific 

salmon and steelhead face, such an approach is needed. 

I believe that the salmon populations of California’s Central Valley would benefit 

from a SDM approach to management.  A SDM approach would allow for maximum 

transparency in the decision making process.  This is critical especially when so many 

stakeholders are involved, as there have been in the prior efforts.  Most importantly a 

SDM approach would require managers to identify fundamental and means objectives.  

The lack of clear objectives and how they relate to one another has been at the crux of the 

failure of the CVPIA’s efforts to date.  In addition, I believe the SDM process would 

require managers to identify the scale that their management objectives are at and match 

them with complementary alternative management actions.  Ultimately, this would allow 

for a greater and more efficient reduction of key uncertainties in these systems.   
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 The hierarchical structure of the CVPIA and the entities that implement CVPIA 

related actions, provide an opportunity to evaluate how scale may influence optimal 

decision making in an SDM/ARM framework.  The CVPIA has decision makers that 

work at very different spatial scales.  For instance, the USACOE and Bureau of 

Reclamation tend to work at a coarse, valley-wide scale, whereas, local watershed 

managers work at a very fine scale.  It’s unknown how these differences in scale may 

influence how Chinook habitat restoration efforts are prioritized and implemented in 

CVPIA streams.  The SDM/ARM approach allows me to directly, and transparently 

determine how differences in scale may lead to different optimal decision making rules or 

policies. 

 In this dissertation I modeled three different Chinook habitat restoration problems 

in CVPIA related streams.  Each chapter considers a habitat restoration problem at a 

different spatial and temporal scale.  In each chapter I developed a probabilistic decision 

model to evaluate the effect of different habitat restoration management actions.  These 

models were then optimized using dynamic linear programming or a heuristic algorithm 

to derive optimal management actions.  Each chapter provides insight on how spatial 

scale influences optimal decision making. In fact, for the last chapter I developed a 

hierarchical decision model with multiple decision makers, working a multiple temporal 

and spatial scales, to see how scale influences optimal decision making across different 

scales.  It’s my hope that these chapters will provide guidance to future managers and 

encourage them to consider the importance that scale can have on their decision making 

process.   
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Figures 
 

 
 

Figure 2.1 – A map of the California’s Central Valley streams.  The Central Valley is 

primarily made up of the Sacramento River to the North and the San Joaquin River to the 

South and their tributaries. Above depicts the waters where anadromous salmonids were 

once abundant and are also incorporated in the Central Valley Improvement Act. 
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Figure 2.2 – Total number of naturally produced Chinook salmon (wild origin) in 

California’s Central valley across all runs (fall, late-fall, winter, and spring) from 1950 to 

present and the natural production doubling goal (red dashed-line) identified in the 

Central Valley Plan Improvement Act of 1992. 
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CHAPTER 3: EVALUATING LARGE SCALE OPTIMAL HABITAT 

RESTORATION STRATEGIES FOR CENTRAL VALLEY CHINOOK SALMON 

USING QUANTITATIVE DECISION ANALYSIS 

 

Abstract 

 

Large scale natural resource management problems require special considerations 

relative to smaller scale problems due in part to the fact that environmental and structural 

uncertainties tend to increase as spatial scale increases.  Despite this, decision makers are 

often required to make decisions through despite a lack of empirical information.  

Structured decision making (SDM) provides a framework to understand which factors 

drive the decision making process as well as a way to derive management strategies.  I 

used populations of fall-run Chinook salmon in California’s Central Valley to 

demonstrate how a SDM approach can be used to derive a state-specific optimal strategy 

for large scale stream restoration prioritization.  I developed a decision model that was 

able to simulate 25 populations of fall-run Chinook salmon as well as evaluate the effects 

of potential habitat restoration projects.  The total extent of the model was the entire 

Central Valley and the grain was individual watersheds.  The model was almost entirely 

parameterized with expert judgement due to a lack of available empirical data that exists 

as the scale that was identified.  This model and the decision alternatives was used to 

parameterize a Markov decision model (MDP) that I solved using dynamic programming 

and policy iteration.  The solution to the MDP provided a habitat state based optimal 

policy for each watershed. The results of the policy optimization suggest that focusing 

efforts on single watershed is an effective habitat restoration strategy.  I also used the 

decision model to identify influential model components that could influence the decision 

making process.  Model inputs such as fry outmigration survival and the amount 
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spawning habitat were both all highly influential to the decision making process.  In this 

study I demonstrate that stream habitat restoration strategies can be derived using a 

dynamic programming approach at a large scale with limited empirical information. 

 

Introduction 
 

 One of the most important considerations in decision making is the scale of the 

decision problem.  Scale is a fundamental component of natural resource management 

and should be a consideration for any natural resource manager.  Scale has two primary 

components, grain and extent (Peterson and Dunham 2010).  Grain is the finest spatial 

and temporal resolution that decisions and observations are made and extent refers to the 

broadest spatial and temporal dimensions over which decisions are made.  How scale is 

defined ultimately influences how data is collected as well as what types of decision 

alternatives that are available (Peterson and Dunham 2010, Falke et al. 2013).  For 

instance, a fisheries manager would have to make different considerations when 

managing an individual stream reach versus an entire watershed due to how ecological 

processes operate at those different vastly different scales.  Identifying the scale of 

natural resource management decision problem is a crucial component to the decision 

making process. 

 Large scale natural resource management problems require special considerations 

relative to smaller scale problems.  In general, environmental and structural uncertainties 

tend to increase as spatial scale increases (Williams 2011, Getz et al. 2018).  

Environmental uncertainty is the naturally occurring variation in environmental processes 
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and structural uncertainty refers to our lack of understanding regarding the relationships 

between those processes (Williams 2011).  These sources of uncertainty can cause large 

scale management problems to appear too complex or variable for managers to resolve.  

Decision makers may choose less optimal actions or not to act at all if the total system 

uncertainty exceeds their risk thresholds (Thompson 2002, Cullen and Small 2004).  

Additionally, large scale decision problems often include large numbers of stakeholders 

and decision makers, each with their own objectives.  Incorporating a diverse array of 

values and objectives into a decision problem is another challenge for decision makers 

that isn’t a common feature of small scale decision problems.  

Structured decision making (SDM) is an approach to decision problems that 

incorporates environmental and structural uncertainties and provides a useful framework 

for natural resource managers.  SDM is comprised of three basic components.  The first is 

explicit, quantifiable objectives, the second is a set of explicit management alternatives, 

and the third is a model that is able to predict the effect of the management alternatives 

on the resource (Possingham et al. 2001, Martin et al. 2009, Conroy and Peterson 2013).  

The SDM process creates a transparent framework for identifying optimal decision 

alternatives as well as accounting for differing or competing objectives.  One of the 

primary strengths in the SDM approach is the identification of influential parameters.  An 

influential parameter is a parameter that may cause the optimal decision to change across 

its range of uncertainty (Nicholson and Possingham 2007, Martin et al. 2009).  

Identification of influential parameters can help prioritize future monitoring efforts to 

target key uncertainties (Conroy and Peterson 2013).  The characteristics of SDM make it 

an intuitive option for large scale decision problems in natural resource management.  
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Decision problems in natural resource management require managers to make a 

series of decisions through time in the presence of environmental uncertainty.  Solving 

dynamic, sequential decision problems requires optimization methods able to account and 

incorporate stochasticity.  Often these problems are framed as Markov Decision Problems 

(MDPs; also known as stochastic decision processes).  Most applications of MDPs frame 

a sequential decision problem as a set of discrete state transition matrices and reward 

vectors (Ross 2014).  Dynamic programming is one of the most common approaches to 

solve MDPs.  The system stochasticity is captured in the transition matrices where the 

state-specific transition rates influence the expected reward value for each discrete state.  

Dynamic programing results in state-specific optimal policies through a backwards 

inductive computation procedure (Bellman and Dreyfus 1962, Bather 2000, Puterman 

2009).  The ability of dynamic programing to capture large amount of uncertainty and 

deconstruct a decision problem down to its essential elements makes it a great approach 

for sequential, large scale natural resource decision problems.  To date this approach has 

not been applied to the problem of prioritizing river habitat restoration across a large 

scale system. 

Restoration of Chinook salmon populations in the California’s Central Valley 

provides a great opportunity to evaluate decision alternatives in large scale decision 

problem.  Chinook salmon occur in four distinct runs in the Central Valley which are 

identified by the time of year that spawners migrate into freshwater: Fall, Late-fall, 

Winter, and Spring (Vogel and Marine 1991, Fisher 1994).  The fall-run is the largest run 

of Chinook salmon in the Central Valley and in turn it supports large commercial and 

recreation fisheries (Moyle 1994, Yoshiyama et al. 1998).  Chinook salmon were once 
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abundant throughout the Central Valley but since the turn of the last 20th century their 

numbers have been in decline (Yoshiyama et al. 2000).  The decline of Chinook salmon 

populations in the Central Valley was primarily due to overharvest, habitat degradation 

and dams (Yoshiyama et al. 1998, Lichatowich 1999).  In 1992 the Central Valley 

Improvement ACT (CVPIA) was passed by the U.S. Congress to restore anadromous fish 

populations to their historic population levels in the tributaries throughout the Central 

Valley, CA.  The CVPIA became a necessary piece of legislation due to the serious 

decline of these Chinook salmon populations in the two decades leading up to its passage 

(Nehlsen et al. 1991, Cummins et al. 2008b).  Species included in the CVPIA include 

striped bass (Morone saxatillis), sturgeon (Acipenser medirostris and A. transmontanus), 

and steelhead (Oncorhynchus mykiss), but the primary focus of the CVPIA has been on 

Chinook salmon (O. tshawytscha).  One of the primary provisions of the CVPIA is to 

double the abundance of anadromous species in the Central Valley from their 1992 

levels.  Specifically, the doubling goal seeks to increase the number of naturally produced 

(non-hatchery origin) Chinook salmon in the watersheds it oversees.  Spatially, the 

CVPIA considers 26 watersheds that make up the tributaries of the Sacramento and San 

Joaquin Rivers as well as the Sacramento-San Joaquin Delta.  Although the CVPIA was 

passed in 1992, efforts are still on going to restore Chinook populations to the historic 

levels. 

 The large spatial scale and total number of watersheds that the CVPIA 

administers has hindered the effectiveness of past CVPIA activities.  Despite hundreds of 

habitat restoration projects that have been implemented and over 1 billion dollars that 

have been spent, the CVPIA has yielded few significant results in terms of increasing fall 
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Chinook populations thus far.  The CVPIA administers a huge area (> 70,000 km2), and 

the vast majority of CVPIA funded activities occur at a small, reach level scale.  This 

mismatch between restoration activities and the overall doubling objective can make it 

hard to evaluate the efficacy of said restoration activities.  Careful consideration needs to 

be given to how scale is defined while implementing any approach for Chinook salmon 

management in the Central Valley.  The CVPIA requires several agencies from different 

sectors to co-manage these populations of fish (e.g. Bureau of Reclamation, U.S. Fish and 

Wildlife Service, California Fish and Game, and non-governmental organizations; 

Cummins et al. 2008).  The result has been lot of uncertainty or a complete lack of 

knowledge about both the physical (e.g. habitat availability, in-stream temperatures, 

measures of flow) and biological (e.g. juvenile survival, spawning success, and predation 

rates) characteristics of the watersheds the CVPIA oversees.  It is especially difficult to 

prioritize management alternatives without an accurate picture of the current system state.  

Taken together, these factors have caused the CVPIA to remain rather ineffective in its 

efforts to reach the mandated doubling goal. 

  Previous attempts to model salmon population dynamics in the California’s 

Central Valley have focused on understanding simple stock-recruit relationships or 

simulating the life history dynamics of Pacific salmon at a very fine scale (Bartholow et 

al. 1997, Williams 2006, Satterthwaite et al. 2010).  Unfortunately, these models are 

typically very data intensive, require a huge number of parameters, and may not able to 

be able to directly evaluate the influence of potential management actions.  A new, more 

parsimonious approach is needed that can incorporate all the necessary life history 

dynamics while simultaneously using the limited amount of information available in the 
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Central Valley.  Specifically, an approach is required that is able to match the scale of the 

objectives, management alternatives and population dynamics model. 

I developed a decision model that is able to replicate the large-scale system 

dynamics of fall-run Chinook salmon populations in the Central Valley with potential 

management actions identified by the CVPIA implementing agencies.  To accurately 

model these dynamics, the model presented here incorporated available habitat and 

salmon escapement data, the effects of decision alternatives, as well as all the uncertainty 

that exists in the system.  In addition, all the decision alternatives that are considered 

operate at the scale of an entire river basin and population.  I believe this model will more 

accurately represent how decisions regarding Chinook salmon are made by CVPIA 

managers.    

The primary objective of this chapter is to derive optimal decisions and policies 

for the fall-run Chinook salmon of the Central Valley using coarse resolution information 

at a sub-basin or watershed level.  The secondary and tertiary objectives of this chapter 

are to evaluate how well the model performs and to identify key uncertainties that exist in 

the management of fall-run Chinook salmon in the Central Valley at this scale.  Creation 

of a decision model at such a large scale will provides insight into what decisions are 

optimal for increasing natural production of fall-run Chinook salmon and how sensitive 

those optimal decisions are at this decision making scale.   In this chapter I present a 

structured decision model that is able to derive optimal management actions as well as 

determine what environmental or structural uncertainties drive the decision making 

process and fall-run Chinook salmon production at the basin level spatial scale for the 

Central Valley.  
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Methods

Study Sites 

California’s Central Valley covers a huge area (>70,000 km2) and is made up of 

two main tributaries (Figure 3.1).  The Sacramento River is the longest river in California 

and begins in the Northern Sierra Nevada.  From there it flows 719 kilometers south until 

it meets the confluence of the San Joaquin.  The San Joaquin River begins in the southern 

Sierra Nevada and flows north.  The confluence of these rivers creates the large and 

complex Sacramento-San Joaquin delta.  The delta eventually empties into the Pacific 

through the San Francisco Bay.   A total of 25 populations of fall-run Chinook salmon 

were included in the model (Table 3.1; Figure 3.1).  Most the populations (19) are 

distributed throughout the Sacramento basin, with the remaining populations located in 

the San Joaquin basin.  The watersheds vary in size from 18,000 – 3.5M ha (median 

106,000 ha) with between 33 and 209 river kilometers open to anadromous species.  

These watersheds were chosen for this analysis because they are actively managed as part 

of the CVPIA fisheries program. 

The Sacramento River was divided into two sections, the Upper-mid Sacramento 

and the Lower-mid Sacramento.  The Upper-mid Sacramento included all of the main 

stem Sacramento above the Red Bluff Diversion Dam.  The Lower-mid Sacramento 

Reach was defined as the section of the main stem Sacramento between the Red Bluff 

Diversion Dam and the confluence with the American River.  The Upper-mid 

Sacramento was treated like all the other watersheds because it hosts its own spawning 

population of fall-run Chinook salmon.  The lower-mid Sacramento River does not host 
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its own spawning population of Chinook.  Instead it acts as a migration corridor for 

outmigrating juveniles where they could potentially stop and rear during their migration.  

I assumed that all the juveniles in the Sacramento basin watersheds, except those from 

the American, Mokelumne and Consumnes Rivers, were routed through the lower-mid 

Sacramento.  The San Joaquin did not need to be split into two distinct sections because 

unlike the Sacramento, there is no spawning population that uses the upper reaches of the 

San Joaquin.  Instead the entire San Joaquin acted as the migration corridor and provided 

additional rearing habitat to outmigrating juveniles. 

Each watershed was placed into evolutionary significant groups based, in part, by 

location and geological features: Basalt and porous lava, Northern Sierra Nevada, 

Northwestern California, and Southern Sierra Nevada (Figure 3.2; Lindley et al. 2007).  

They all currently have populations of fall-run Chinook salmon that were considered in 

the decision-making framework.  Watersheds within these groups tend to have 

genetically similar populations of Chinook salmon and share similar stream 

characteristics.  Most all these watersheds have experienced substantial habitat 

degradation due to mostly anthropogenic causes discussed in Chapter 1. 

 

Decision Problem 

 Habitat restoration is the primary tool for rehabilitating Chinook salmon 

populations in Central Valley.  Keeping that in mind, this decision problem was designed 

to prioritize habitat restoration projects in the Central Valley.  This decision problem was 

framed from the point-of-view of the CVPIA implementing agencies: the U.S. Bureau of 

Reclamation and the U.S. Fish and Wildlife Service.  These two agencies act jointly as 
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the primary decision makers regarding habitat restoration activities in CVPIA streams.  

For this decision problem, I assumed there was a single decision maker acting on the 

behalf of the CVPIA implementing agencies.  The decision maker is able to implement a 

single decision alternative in each annual time step.  Decision alternatives are assumed to 

be implemented at the start of each time step so their effects can be realized within that 

same time step.  The total extent of the decision problem was the entire Central Valley 

basin.  The grain of problem was each individual watershed.  This meant that decision 

alternatives were not implemented in any spatially explicit way but rather to the 

watershed as a whole. 

 

Objectives 

The decision maker’s single fundamental objective was to maximize the total 

natural production of fall-run Chinook salmon in CVPIA managed watersheds.  The 

terms natural production and naturally produced refer to salmon that are produced by 

adults spawning in the wild regardless as to their origin.  For instance, the offspring of a 

wild and a hatchery origin adult salmon is considered “naturally produced.”  Maximizing 

this metric would ultimately help lead to larger wild populations as well as more Central 

Valley fall-run Chinook salmon towards the CVPIA doubling goal.  I identified two 

means objectives that would address the fundamental objective: increase the amount of 

spawning habitat and increase the amount of rearing habitat.  These means objectives 

were used to identify the decision alternatives available to the decision maker. 

 

Decision Alternatives 
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The decision alternatives available to the decision maker were derived from the 

means objectives identified above. The construction of dams and overall habitat 

degradation has left many of the watersheds in the Central Valley lacking suitable 

spawning and/or juvenile rearing habitats.   In this analysis I consider two of the main 

habitat restoration techniques that are used by managers in the Central Valley: spawning 

gravel additions and floodplain excavation.  Many CVPIA watersheds have dams on 

them that have halted natural alluvial processes such as gravel recruitment.  This has led 

to a decline of suitable spawning habitats.  Spawning gravel additions involved placing 

large amounts of gravel (>1000 m3) in a reach of a stream to provide additional spawning 

habitat.  Land use changes and a high demand for water in some CVPIA watersheds has 

created systems where historic floodplains are no longer inundated with any regular 

frequency.  Floodplain excavations lower the elevation at which floodplains become 

activated which provides additional, off-channel rearing habitat for juvenile salmon 

(Jeffres et al. 2008).  Both these habitat restoration alternatives were available 

alternatives in each watershed along with an option to do nothing.  

The effect size (the mount of habitat added) that both the decision alternatives 

have on their respective target habitats in each watershed was determined by through 

expert elicitation and evaluating previous habitat projects in the Central Valley (Table 

3.2).  Cost was indirectly incorporated by choosing effect sizes that represent projects 

that would cost the same to implement.  In the case that a decision alternative has equal 

utility to the “do nothing” option, the do nothing option is the de facto optimal decision.  

 

Salmon decision model 
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The underlying Chinook salmon population dynamics for this decision model was 

a salmon life cycle model, similar to many previous salmon life history modeling efforts 

(Bartholow et al. 1997, Satterthwaite et al. 2010).  A life history approach was desirable 

because it allowed me to directly evaluate the effects of different habitat restoration 

projects that target different stages of the Chinook life cycle.  Most of the previous 

modeling efforts require not only a lot of data but also data at a very small temporal and 

spatial resolution (e.g., daily temperatures and reach specific estimates of habitat).  

Unfortunately, these types of data do not exist for many of populations of Central Valley 

Chinook Salmon.  I developed a life cycle model that could incorporate both the available 

empirically derived data and the expert derived data, both occur at large temporal and 

spatial scales.   

 

Model inputs 

The primary inputs for the decision model were watershed level estimates of 

habitat availability and several measures of stream conditions as they relate to Chinook 

salmon.  A majority of the model parameters and inputs were estimated using expert 

elicitation due to the lack of empirical information available for many watersheds.  

Empirical data is always preferable when parameterizing a model; however data from 

expert elicitation can serve as a starting point when it comes to prioritizing data needs.  

The amount of spawning, in-stream rearing, and floodplain rearing habitats were 

provided by experts and managers from each watershed (Table 3.3).  Habitat availability 

is often related to stream flows (Beakes et al. 2014).  Generally, in years with little 

precipitation and a shallow snow pack (“dry years”), there is less water available when 
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compared to years with lots of precipitation and a deep snow pack (“wet years”).  The 

effect of wet and dry years is especially noticeable in the amount of available floodplain 

habitat.  The variation of available habitat due to precipitation is reflected in the amount 

of spawning and juvenile rearing habitats in the population model.  For now, I assume 

that dry and wet years are equally probable.  Other model inputs include watershed 

specific measures of water quality, stream flows, and other habitat conditions (Tables 4-

7). 

The model can be broken down into roughly seven sub-models (Figure 3.3).  The 

model began with the ocean harvest and in-river survival sub-model which was initiated 

with a starting number of adult Chinook salmon, of both natural and hatchery origin, in 

the ocean.  Chinook salmon typically reside in the ocean for 2 to 5 years before migrating 

to their natal streams to spawn.  Fish that were ready to spawn then experienced mortality 

related to ocean harvest, recreational harvest, and in-river conditions as they migrated to 

their respective spawning grounds.  Once on the spawning grounds, the reproductive 

success sub-model was applied, which simulated redd creation and egg-to-fry survival.  

Next, there were several transitions that occur for newly hatched fish: fry survival, parr 

survival, and pre-smolt survival.  In each of these sub-models if there were more fish than 

suitable habitat, excess fish migrated downstream towards the ocean.  Thus, it was 

possible to migrate to the ocean as a fry, parr, pre-smolt.  Fish that did not migrate 

remained to survive to the next life stage until they become smolts, after which they 

migrated to the ocean.  The fry, parr, pre-smolt and smolt migration success sub-model 

was then used to calculate life stage specific juvenile-to-adult survival rates.  These rates 

were applied to outmigrating fish to determine the number of ocean dwelling adults 
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produced.  Lastly, there was the hatchery smolt migration success sub-model which 

determined the contribution of hatchery fish to the number of ocean dwelling adults. 

 

1 - Ocean harvest and in-river survival 

 The model started with a spawning cohort of adult salmon (Xocean,j) from a single 

watershed (j) that returned from the ocean to spawn in their natal streams.  Fall run 

salmon begin returning to their natal streams beginning in July and continue through 

December.  Once the spawning cohort was identified, total escapement (Xescape,j), the 

number of salmon that arrive to the spawning areas was estimated as,: 

[1]    𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗 = 𝑋𝑜𝑐𝑒𝑎𝑛,𝑗 ∙ 𝑠𝑐𝑜𝑚𝑚,𝑗 ∙ 𝑠𝑟𝑒𝑐,𝑗 ∙ 𝑠𝑎𝑑𝑢𝑙𝑡,𝑗, 

where scomm,j was the probability of surviving ocean commercial fishing, srec,j was the 

probability of surviving freshwater recreational angling, and  sadult,j was baseline survival.  

The commercial and recreational survival rates varied by watershed and were random 

draws from a beta distribution whose mean and standard deviation are provided in Table 

3.1.  Due to a lack of other information, the beta distribution was parameterized using 

method of moments estimation.  The survival rate sadult,j was calculated using logistic 

regression: 

[2]    𝑙𝑜𝑔𝑖𝑡(𝑠𝑎𝑑𝑢𝑙𝑡,𝑗) = 𝑿𝑎𝑑𝑢𝑙𝑡,𝑗𝜷𝑎𝑑𝑢𝑙𝑡, 

where Xadult,j was a random vector of independent environmental covariates for the adult 

survival in watershed j and βadult was a random vector of independent regression 

coefficients for adult survival.  The values and distributions used to parameterize the 

elements of these vectors can be found in Table 3.4 for Xadult,j and Table 3.7 for βadult.  

Finally, the value of sadult,j as found using the inverse logit function: 
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[3]   𝑠𝑎𝑑𝑢𝑙𝑡,𝑗 =
(𝑒𝑿𝑎𝑑𝑢𝑙𝑡,𝑗𝜷𝒂𝒅𝒖𝒍𝒕 )

(1 + 𝑒𝑿𝑎𝑑𝑢𝑙𝑡,𝑗𝜷𝒂𝒅𝒖𝒍𝒕)
⁄  

Run Timing 

  Run timing was incorporated into the model as a means to incorporate the effect 

of environmental factors (e.g. temperature) that can delay returning adult migration.  Run 

timing was modeled using a triangle distribution that is parameterized using dates for the 

start, peak, and end of the run (Table 3.1).  The peak of the run was assumed to be the 

mid-point between the beginning and the end of the run (Table 3.1).  The model tracked 

three groups of salmon: early, mid, and late spawners.  These groups will correspond to 

the 0-33%, 33-66% and 66-100% tertiles respectively.   

Migration delays cause more salmon to enter natal watersheds at the same time, 

which may affect adult survival and spawning success.  Run delays (in weeks) were 

calculated using a simple linear equation: 

[4]    𝑑𝑒𝑙𝑎𝑦𝑗 = 𝑿𝒅𝒆𝒍𝒂𝒚,𝒋 ∙ 𝜷𝒅𝒆𝒍𝒂𝒚 

where Xdelay,j was a vector of environmental predictors for watershed j where the first 

element equal to 1 (Table 3.4), βdelay was a vector of linear coefficients, and delay is the 

number of weeks a run may be delayed (Table 3.7).  The value of delay was added to the 

value of the start date of the run and a new triangle distribution was calculated.  The 

original tertile cutoffs were retained and still used to determine the early, mid and late 

groups of salmon.  This process ensures that if a run delay occurred, more fish were 

pushed into the mid and late groups, which created more competition during the 

escapement process for spawning habitat.   
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For sake of simplicity, I will only describe the remainder of the model in terms of 

single run timing group, however the model did track all three groups in unison within 

each watershed.  The model followed the cohorts of offspring that were produced by each 

run timing group, thus the model allows run timing groups to influence each other.  For 

instance, if fish in the early group occupy habitat, it is unavailable to fish in the mid and 

late groups. 

 

2 - Reproductive success 

Spawning typically occurs from early October through late December.  Once the 

number of escaped adults was set, the number of fry produced (fryj) by those adults was 

estimated as: 

[5]    𝑓𝑟𝑦𝑗 = 𝑟𝑒𝑑𝑑𝑗 ∙ 𝑓𝑒𝑐𝑢𝑛𝑑𝑗 ∙ 𝑠𝑒𝑔𝑔,𝑗 

where reddj was the number of redds produced in watershed j, fecundj was fecundity, and 

segg,j was the egg-to-fry survival in watershed j.  Fecundity (fecundj) was a random 

sample from the distribution (Mills et al. 2004): 

[6]    𝑓𝑒𝑐𝑢𝑛𝑑𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(5522,1104) 

The value of reddj was calculated by dividing the total amount of suitable spawning 

habitat in each watershed (Habspawn,j, m
2) by the mean redd size (reddsizej, m

2) to 

determine each watershed, j, redd capacity (reddcapj).  The value of Habspawn,j was 

dependent on if it’s a “wet” or “dry” scenario, each occurred with an equal probability.  

The variable reddsizej, was a random sample from a normal distribution with mean 12.38 

and a standard deviation 2.48.   

The number of viable redds created, reddj, follows: 
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[7]    𝑟𝑒𝑑𝑑𝑗 = {
𝑟𝑒𝑑𝑑𝑐𝑎𝑝𝑗, 𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗 ∙ 𝑝𝑓𝑒𝑚𝑎𝑙𝑒 > 𝑟𝑒𝑑𝑑𝑐𝑎𝑝𝑗

𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗 ∙ 𝑝𝑓𝑒𝑚𝑎𝑙𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where pfemale was the proportion of females in the population.  Equation 7 represented the 

process of how redds can be superimposed on top of one another (Gallagher and Gard 

1999).  The assumption is that if the entire spawning habitat was occupied, another 

salmon could dig a new redd on top of an existing redd, effectively destroying the first 

redd.  This process occurred across run timing groups, with later spawning groups super 

imposing redds on top of earlier run timing groups.  Lastly, the variable segg,j was 

calculated using the same process outlined in equations 2-3. The vectors Xegg,j, and βegg 

were parameterized using the relevant values from tables 4-8.   

 

3 - Fry habitat and fry survival 

At this point, fry could either remain in freshwater to rear to parr or migrate to the 

ocean (Figure 3.3).  This portion of the model represents the first two months after 

hatching (January – February).  This process was directly regulated by the amount of 

available fry habitat.  The number of parr produced (parrj) at this step was calculated as: 

[8]    𝑝𝑎𝑟𝑟𝑗 = 𝑟𝑒𝑎𝑟𝑓𝑟𝑦𝑗 ∙ 𝑠𝑓𝑟𝑦,𝑗, 

where rearfryj as the number of fry that remain in watershed j to rear, and sfry,j was the 

fry-to-parr specific survival rate.  The calculation of sfry,j used the same process outlined 

by equations 2-3.  However, for this calculation the vectors Xfry,j and βfry were 

parameterized using the relevant values from tables 4-8. 
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 The number of salmon fry that remained in the stream to rear to parr (rearfryj) and 

the number of fry that migrated out of their natal watershed as fry (migfryj) were 

calculated using the following rule set: 

[9]    𝑚𝑖𝑔𝑓𝑟𝑦𝑗 = {
𝑓𝑟𝑦𝑗 − 𝑓𝑟𝑦𝑐𝑎𝑝𝑗, 𝑓𝑟𝑦𝑗 > 𝑓𝑟𝑦𝑐𝑎𝑝𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[10]    𝑟𝑒𝑎𝑟𝑓𝑟𝑦𝑗 = {
𝑓𝑟𝑦𝑐𝑎𝑝𝑗, 𝑓𝑟𝑦𝑗 > 𝑓𝑟𝑦𝑐𝑎𝑝𝑗

𝑓𝑟𝑦𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where frycapj was the habitat carrying capacity for fry in watershed j.  Habitat carrying 

capacity was calculated as: 

[11]    𝑓𝑟𝑦𝑐𝑎𝑝𝑗 =
ℎ𝑎𝑏𝑓𝑟𝑦,𝑗+𝐹𝑙𝑜𝑜𝑑𝐻𝑎𝑏𝑓𝑟𝑦,𝑗

𝑡𝑒𝑟𝑟𝑓𝑟𝑦,𝑗
 

where habfry,j was the amount of in-stream fry habitat in watershed j, FloodHabfry,j was 

the amount of floodplain fry habitat in watershed j (Table 3.3) and terrfry,j was the 

average amount of territory a fry occupies.  The value of habfry,j was dependent on if it 

was a “wet” or “dry” scenario, each occurred with an equal probability.  To calculate 

terrfry,j I used the fork length – territory size relationship found in Grant and Kramer 

(1990): 

[12]    𝑡𝑒𝑟𝑟𝑓𝑟𝑦,𝑗 = 𝐿𝑓𝑟𝑦
2.61 ∙ 10−2.83 

where Lfry,j was the fork length of a fish (cm).  For this calculation, I assumed that fry 

were 3.75 cm in length (Mills et al. 2004). 

 The last component of the fry rearing process was routing outmigrant fry through 

their respective downstream rearing habitats.  Juveniles that originated upstream of the 

Lower-mid Sacramento or the San Joaquin were allowed to rear for 2 months in these 

habitats as they passed through.  The total number of migrant fry above the lower-mid 
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Sacramento and the San Joaquin was calculated and was compared to the total fry 

capacity in each downstream rearing stream.  The number of individuals allowed to stay 

and rear to parr and the number of fry that were forced to continue their journey to the 

ocean was determined using the same procedures outlined in equations 8 – 12 but with 

habitat values from the lower-mid Sacramento and the San Joaquin.    

 

4 - Parr habitat and parr survival 

The parr to pre-smolt transition used an identical set of rules as the fry to parr 

transition, but with parr specific habitat and fish length values.  This portion of the model 

represents another two months (March – April) following the fry submodel.  In this step, 

parr could either remain in the watershed to rear to pre-smolts or migrate to the ocean as 

a parr.  The parr to pre-smolt transition was calculated by: 

[13]    𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 = 𝑟𝑒𝑎𝑟𝑝𝑎𝑟𝑟𝑗 ∙ 𝑠𝑝𝑎𝑟𝑟,𝑗 

where rearparrj was the number of parr that remained in the watershed to rear to pre-

smolts and sparr,j was parr-to-pre-smolt transition rate.  The calculation of sparr,j used the 

same process outlined by equations 2-3.  However for this calculation, the vectors Xparr,j 

and βparr were parameterized using the relevant values from Tables 4-8.   

The number of rearing parr, rearparrj, depended on the amount of parr habitat, 

parrhabj, available in each watershed j.  Specifically, this relationship used the rule set: 

[14]    𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑗 = {
𝑝𝑎𝑟𝑟𝑗 − 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗, 𝑝𝑎𝑟𝑟𝑗 > 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[15]    𝑟𝑒𝑎𝑟𝑝𝑎𝑟𝑟𝑗 = {
𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗, 𝑝𝑎𝑟𝑟𝑗 > 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗

𝑝𝑎𝑟𝑟𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



56 
 

 

where parrcapj was the habitat carrying capacity for parr in watershed j and was 

calculated as: 

[16]    𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗 =
ℎ𝑎𝑏𝑝𝑎𝑟𝑟,𝑗+𝐹𝑙𝑜𝑜𝑑𝐻𝑎𝑏𝑝𝑎𝑟𝑟,𝑗

𝑡𝑒𝑟𝑟𝑝𝑎𝑟𝑟,𝑗
 

where habparr,j was the amount of parr habitat in watershed j, FloodHabparr,j was the 

amount of floodplain parr habitat in watershed j (Table 3.3) and terrparr,j was the average 

amount of territory a parr occupies.  The value of habparr,j was dependent on if it’s a 

“wet” or “dry” scenario, each occurred with an equal probability.  Parr territory size was 

calculated using eq. 12, except using the average length of a parr, Lparr (4.2 cm ,(Mills et 

al. 2004)). 

[17]    𝑡𝑒𝑟𝑟𝑝𝑎𝑟𝑟,𝑗 = 𝐿𝑝𝑎𝑟𝑟
2.61 ∙ 10−2.83 

The last component of the parr rearing process was routing outmigrant parr 

through their respective downstream rearing habitats.  Juveniles originating upstream of 

the Lower-mid Sacramento or the San Joaquin were allowed to rear for two months in 

these habitats as they passed through.  The total number of migrant fry above the lower-

mid Sacramento and the San Joaquin was calculated and was compared to the total fry 

capacity in each downstream rearing stream.  The number of individuals allowed to stay 

and rear to presmolts and the number of parr that were forced to continue their journey to 

the ocean was determined using the same procedures outlined in equations 13 – 17 but 

with habitat values from the lower-mid Sacramento and the San Joaquin.    

 

5 - Presmolt habitat and presmolt survival 
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The pre-smolt to smolt transition was the last of the in-stream rearing processes in 

a given year.  This process takes place across two months during May – June.  After a 

juvenile Chinook becomes a smolt they cease rearing and immediately begin their 

migration out of their natal stream into the ocean.  The transition from pre-smolt to smolt 

follows and identical rule set as the previous rearing transitions.  The number of 

migrating smolts is calculated by applying a survival rate to the number of rearing pre-

smolt juveniles in watershed j:   

[18]    𝑠𝑚𝑜𝑙𝑡𝑗 = 𝑟𝑒𝑎𝑟𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 ∙ 𝑠𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗 

where rearpresmoltj was the number of pre-smolts that remain in the watershed to rear to 

smolts and spresmolt,j was pre-smolt-to-smolt transition rate.  The calculation of spresmolt,j 

used the same process outlined by equations 2-3.  However for this calculation the 

vectors Xpresmolt,j and βpresmolt were parameterized using values from tables 4-8.  

 The number of rearing pre-smolts, rearpresmoltj, was calculated based on the 

amount of habitat available for pre-smolts to rear in.  Similar to the rearing processes in 

the previous sections, the calculation of rearpresmoltj follows: 

[19]    𝑚𝑖𝑔𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 = {
𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 − 𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑐𝑎𝑝𝑗, 𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 > 𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑐𝑎𝑝𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[20]    𝑟𝑒𝑎𝑟𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 = {
𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑐𝑎𝑝𝑗, 𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 > 𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑐𝑎𝑝𝑗

𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where presmoltcapj was the habitat carrying capacity for pre-smolts in watershed j and 

was calculated as: 

[21]    𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑐𝑎𝑝𝑗 =
ℎ𝑎𝑏𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗+𝐹𝑙𝑜𝑜𝑑𝐻𝑎𝑏𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗

𝑡𝑒𝑟𝑟𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗
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where habpresmolt,j was the amount of pre-smolt habitat in watershed j, FloodHabparr,j was 

the amount of floodplain parr habitat in watershed j (Table 3.3) and terrpresmolt,j was the 

average amount of territory a pre-smolt occupies.  The value of habpresmolt,j was dependent 

on if it’s a “wet” or “dry” scenario, each occurred with an equal probability.  Pre-smolt 

territory size was calculated using eq. 12, except using the average length of a parr, Lparr 

(7.2 cm; Mills et al. 2004). 

[22]    𝑡𝑒𝑟𝑟𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗 = 𝐿𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡
2.61 ∙ 10−2.83 

The last component of the presmolt rearing process was routing outmigrant 

presmolt through their respective downstream rearing habitats.  Juveniles originating 

upstream of the Lower-mid Sacramento or the San Joaquin were allowed to rear for two 

months in these habitats as they passed through.  The total number of migrant fry above 

the lower-mid Sacramento and the San Joaquin was calculated and was compared to the 

total fry capacity in each downstream rearing stream.  The number of individuals allowed 

to stay and rear to smolts and the number of presmolts that were forced to continue their 

journey to the ocean was determined using the same procedures outlined in equations 18 

– 22 but with habitat values from the lower-mid Sacramento and the San Joaquin.    

 

7 - Fry, parr, pre-smolt, and smolt migration and ocean survival 

There were four classes out-migrant juveniles at this point in the model, migfryj, 

migparrj, migpresmoltj and smoltj.  Each of out-migrant size class migrated from their 

natal watershed, j, to the ocean to grow into adults.  The total number of naturally 

produced adults from each watershed j was calculated as: 

[23]   𝑎𝑑𝑢𝑙𝑡𝑛𝑎𝑡𝑢𝑟𝑎𝑙,𝑗 = 𝑎𝑑𝑢𝑙𝑡𝑓𝑟𝑦,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑝𝑎𝑟𝑟,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡 + 𝑎𝑑𝑢𝑙𝑡𝑠𝑚𝑜𝑙𝑡,𝑗 
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where adultfry,j, adultparr,j, adultpresmolt,j, and adultsmolt,j were the number of adults produced 

by each of the juvenile out-migrant life stage.  The juvenile-to-adult transition is 

calculated by applying a life stage specific out-migrant survival rate to each of the 

juvenile out-migrant classes: 

[24]    𝑎𝑑𝑢𝑙𝑡𝑓𝑟𝑦,𝑗 = 𝑚𝑖𝑔𝑓𝑟𝑦𝑗 ∙ 𝑠𝑓𝑟𝑦𝑚𝑖𝑔,𝑗 

[25]    𝑎𝑑𝑢𝑙𝑡𝑝𝑎𝑟𝑟,𝑗 = 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑗 ∙ 𝑠𝑝𝑎𝑟𝑟𝑚𝑖𝑔,𝑗 

[26]    𝑎𝑑𝑢𝑙𝑡𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡,𝑗 = 𝑚𝑖𝑔𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑗 ∙ 𝑠𝑝𝑟𝑒𝑠𝑚𝑜𝑙𝑡𝑚𝑖𝑔,𝑗 

[27]    𝑎𝑑𝑢𝑙𝑡𝑓𝑟𝑦,𝑗 = 𝑠𝑚𝑜𝑙𝑡𝑗 ∙ 𝑠𝑠𝑚𝑜𝑙𝑡𝑚𝑖𝑔,𝑗 

The calculations of sfrymig,j, sparrmig,j, spresmoltmig,j, and ssmoltmig,j use the life stage relevant 

vectors X and β were parameterized using the relevant estimates in tables 4-8.  

 

Hatchery smolt migration success 

  A few watersheds (American, Feather, Battle Creek, and Mokelumne Rivers) 

have hatcheries that supplement their populations of Chinook salmon.  These hatcheries 

release smolts both into their respective streams and directly into the delta, where they 

then migrate to the ocean.  Annual releases range from just over 7 million to just under 3 

million on average between all three hatcheries.  This process is represented by: 

[28]    𝑎𝑑𝑢𝑙𝑡ℎ𝑎𝑡𝑐ℎ𝑒𝑟𝑦,𝑗 = 𝑠𝑚𝑜𝑙𝑡ℎ𝑎𝑡𝑐ℎ,𝑗 ∙ 𝑠𝑠𝑚𝑜𝑙𝑡𝑚𝑖𝑔,𝑗 ∙ ℎ𝑎𝑡𝑐ℎ𝑎𝑑𝑗 

where adulthatchery,j was a random variable that represents the number of hatchery origin 

smolts, smolthatch,j, and hatchadj were a survival adjustment parameter.  The adjustment 

parameter was a constant value and represents the comparatively lower survival hatchery 

origin smolts typically experience (Quinn 1993).  Currently hatchadjj takes a value of 

0.14. 
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7 - Adult Age Structure 

Next the number of naturally produced adults, adultsnatural,j, and the number of 

hatchery origin adults, adultshatch,j, were assigned ages that they will return to freshwater 

to spawn.  In the Central Valley fall-run Chinook salmon spend between two to five years 

in the ocean before returning to their natal stream to spawn.  The majority of fall-run 

Chinook salmon spend three or four years residing in the ocean. This process is modeled 

using a multinomial distribution: 

[29]   𝒙𝑜𝑐𝑒𝑎𝑛,𝑗,𝑙~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ((𝑎𝑑𝑢𝑙𝑡𝑠𝑛𝑎𝑡𝑢𝑟𝑎𝑙,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑠ℎ𝑎𝑡𝑐ℎ,𝑗), 𝒑𝑟𝑒𝑡𝑢𝑟𝑛)  

[30]    𝒑𝒓𝒆𝒕𝒖𝒓𝒏 = [0.13 0.85 0.015 0.005] 

where xocean,j,l was a vector where each element represents the number of ocean adults 

from watershed j in the ocean residence class l= 2, 3, 4, or 5 years and preturn was the 

associated probability vector for each class l (Palmer-Zwahlen and Kormos 2015). 

 

Initial Conditions and Simulations 

 The model was initiated using escapement values from 2009 – 2013 (California 

Department of Fish and Wildlife 2015).  Because of the lag caused by ocean residence 

times, the model required to be seeded with five years of escapement data.  This was also 

the rationale for letting the model run for at least 6 years during any model evaluation or 

sensitivity analysis. 

The base population model was simulated 50,000 times at each time step to 

ensure the system uncertainty was adequately captured.  In each simulation, new values 

for every random process were sampled.  The sampling distributions for each randomly 
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distributed parameter are found in tables 1 – 8.  The results of the simulations for each 

year were averaged before any relevant information (e.g. run size, proportion hatchery 

fish, ect…) was passed into the next time step.  At every time step the relevant 

information to calculate each component of the utility function was also reported. 

 

Model Calibration 

 The model was calibrated to ensure the estimated escapement in was relatively 

accurate for of each watershed.  The calibration was necessary because without it the 

model reproduced unrealistic population dynamics (e.g. exponential growth) in several of 

the watersheds.  To ensure that the model was able to produce reasonable population 

dynamics, I chose to calibrate the intercept terms on all the out-migration survival rates.  

The utility value that I wanted to minimize during the calibration was the absolute 

difference between the estimated escapement value in 2014 and the actual escapement 

values for that same year summed across all the watersheds.  I seeded the model with 

escapement values in each watershed from 2009 to 2013 to estimate the 2014 escapement 

values.  This was necessary to allow fish from each age class to contribute to the 

estimated escapement in 2014. 

 I used a genetic algorithm found in the R package rgenoud (Mebane and Sekhon 

2011) to derive intercept values for the migratory survival rates that was used in each 

watershed.  A total of three parameters were subject to the calibration optimization.  A 

heuristic method such as a genetic algorithm is ideal for solving this kind problem that 

requires simultaneous fitting of several interdependent parameters.  I constrained the 

optimization to only consider combinations of parameters that would result in sfrymig < 
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sparrmig < ssmolt.  This constraint meant that the baseline outmigrant survival rate would 

increase as the size of the outmigrant also increased.  I used the default number of 

generations, iterations, and population size found in the rgenoud package. 

  

Utility Calculation 

 For this decision problem, the primary utility is the total number of naturally 

produced adult equivalents per escapee: 

[31]    𝑈𝑡 =
∑ 𝑎𝑑𝑢𝑙𝑡𝑠𝑛𝑎𝑡𝑢𝑟𝑎𝑙,𝑗𝑗

∑ 𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗𝑗
⁄  

where Ut is the total utility at time step t.  This utility was the metric that I maximized 

during policy optimization.  It should also be noted that the parameter Xescape,j includes 

both wild and natural origin escapees.  In the utility value the total number of adult 

equivalents produced was standardized by the total number of escapees so the utility 

value represented a mean per capita production rate.  This utility definition prevented any 

differences in escapement from influencing optimal restoration strategies. 

  

Policy Optimization 

 I structured this decision problem as Markovian Decision Process and used 

dynamic programming to derive a set of optimal policies.  The goal of solving an MDP is 

to find a set of decisions or actions that maximize the cumulative utility value through 

time while simultaneously accounting for various inherent sources of stochasticity.  In 

addition, they are computationally more consistent and efficient than heuristic methods or 

grid search optimization routines. 
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 These problems can be generally formalized in discrete time as: 

[32]    max
[𝒅(𝑡)∈𝑫]

∑ 𝛾𝑡 ∙ 𝐹(𝒙, 𝒅, 𝒛, 𝑡)
𝑡𝑓

𝑡=𝑡0
+ 𝐹𝑇[𝒙(𝑡𝑓)] 

subject to: 

 

           𝒙(𝑡 +) = 𝒙(𝑡) + 𝑓(𝒙, 𝒅, 𝒛, 𝑡) 

[33]    𝒙(𝑡0) = 𝒙𝟎 

           𝒙(𝑡) ∈ 𝑿 

where F() is a time specific utility function, FT() assigns a terminal value to the system, x 

is a vector of system states, d is a vector of time-specific decisions or actions, z is a vector 

of random variables influencing dynamics but not under decision control, γ is a discount 

factor and f() describes system dynamics.  In other words, we want to maximize the 

function F() over time steps ti for i = 0,1,…, f, given system dynamics in the function f().  

I assumed the parameter γ to have a constant value of 0.99 for these analyses.  As the 

constraints in equation 33 indicate, this is a Markov process, meaning that the value of 

x(t+1) is only dependent on the value of x(t) and the system dynamics, f(x,d,z,t), at time t.  

Thus, we can invoke the principle of optimality (Bellman 1957) and use backwards 

induction to optimize our utility function.  Consider the Hamilton-Jacobi-Bellman (HJB) 

equation: 

[34]    𝐽∗[𝒙(𝑡), 𝑡] = max
[𝑑(𝑡)∈𝐷]

[𝐹(𝒙, 𝒅, 𝑡) ∙ 𝛾𝑡 + 𝐽∗(𝒙(𝑡 + 1), 𝑡 + 1)] 

Equation 34 states that a decision at time t (assuming time steps of 1) is only optimal if 

all the remaining decisions are also optimal.  Under this framework, we can derive an 

entire set of optimal decisions by finding the optimal decision at the final time step, tf, 
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then working backwards to find the optimal decision at tf-1.  This process is repeated until 

an entire set of optimal decisions is found for the entire time series [t0,tf].  In the end, this 

process guarantees an optimal decision set when they are implemented forwards in time.  

If this process is repeated over a long enough time frame, the vector d(t,x) may converge 

to a set of a set of stationary, state-specific optimal decisions.  This process of is known 

as policy iteration because it provides the optimal decision for each possible system state.  

Given the unintuitive nature of inductive reasoning, the formal proof can be found in 

either Bellman’s (1957) article or Bathers (2000) text. 

 To simplify solving equation 34 and deriving a time-specific set of optimal 

decisions, we can define the HJB equation as using transition probabilities to create a 

Markov chain of system dynamics.  If we define the conditional probability of being in 

state xt+1 at time t+1 as: 

[35]    𝜋(𝒙𝑡+1|𝒙𝑡, 𝒅𝑡) 

then the HJB equation can be rewritten as: 

[36]    𝐽∗[𝒙(𝑡), 𝑡] = max
[𝑑(𝑡)∈𝐷]

[
𝐹(𝒙, 𝒅, 𝑡) ∙ 𝛾𝑡 +

∑ 𝜋(𝒙𝑡+1|𝒙𝑡, 𝒅𝑡)𝐽∗(𝒙(𝑡 + 1), 𝑡 + 1)𝑥𝑡+1

] 

where 𝐹(𝒙, 𝒅, 𝑡) is the expected utility for the next immediate time step. 

The dynamic programming approach for solving a MDP described above provides 

the framework I used to solve the decision problem in this chapter.  The utility function 

(F(x,d,t)) for this problem was the same as equation 31.  Next, I derived transition 

probability matrices (π(xt+1|xt,dt)) using the salmon decision model for a single time step.  

I chose to define the system state as discrete combinations of fry rearing habitat and 

spawning habitat in an individual watershed (see section below).  Using this definition of 
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system states, I was able to generate optimal management alternatives for any given 

watershed given its current habitat configuration. 

 

System State Definition 

I chose to define the system state as the configuration of two different habitat 

types in a single watershed.  The system state for any watershed was made up of three 

pieces of observable information: the number of spawning females, the total amount of 

spawning habitat (m2), and the total amount of juvenile rearing habitat (m2).  A 

combination of these variables defined the two dimensional state-space as a whole: 

[37]    𝑥𝑠,𝑤 = [
𝑆𝑝𝑎𝑤𝑛ℎ𝑎𝑏𝑠,𝑤

𝑅𝑒𝑑𝑑
,

𝐹𝑟𝑦𝐻𝑎𝑏𝑠,𝑤

𝑅𝑒𝑑𝑑
], 

where s represented whether the watershed was composed of a large or small tributary, 

and w represented the salmon diversity watershed grouping (Fig. 2).  The indexing in 

equation 37 meant that a separate policy was derived for watersheds with both large and 

small tributaries in each salmon evolutionary diversity group. Tributary size was 

important to consider in the system-state definition because populations in small and 

large tributaries may respond differently to habitat restoration projects.  The salmon 

diversity grouping provided a way to incorporate a spatial component to the system state 

definition.  It’s more likely that streams that are in close proximity and share similar 

characteristics will react in similar ways to habitat restoration projects.  Additionally, the 

salmon diversity grouping is a metric already used by local managers.  The combinations 

of tributary size and salmon diversity groupings resulted in a total of 7 policies (the 

Northwestern California diversity grouping was only included watersheds with large 

tributaries).   
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This definition of the system state required discretize values, rather than 

continuous to implement the HJB equation presented above.  I discretized both the habitat 

dimensions of the defined states into bins of 50 in the range of 0 to 1000+ (212 total 

habitat states).   This range and binning was chosen so the effect of each decision (or no 

decision) would have an effect on future system states and it also reflected the potential 

range of state values possible in CVPIA administered watersheds. 

 Under these state definitions, I calculated both transition matrices (π) and the 

reward function (𝐹(𝒙, 𝒅, 𝑡)) for each combination of watershed size and salmon diversity 

group.  To calculate the transition matrices, I simulated a single time step for every 

system state configuration.  The new system state configurations was recorded after 

decision was implemented.  This process was repeated 10,000 times for each decision 

alternative and allowed to me determine state specific transition probabilities for a given 

management action.  Simultaneously, I calculated the utility (total number of naturally 

produced adults) after implementing each decision.  These values were averaged across 

the system states, x, to determine the expected state-specific reward for each decision  

𝐹(𝒙, 𝒅, 𝑡).  I assumed the discount parameter, γ, was equal to 0.99.  All analyses were 

programmed and run in the statistical program R (R Core Team 2018).     

 

Forward Simulation 

 I simulated 50 years of decision making using the salmon decision model 

described above.  In each simulation year, the optimal decision in each watershed was 

identified using the relevant optimal policy for each watershed.  The current amount of 

habitat in each watershed was assumed to be known and observable.  The number of 
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redds present in particular watershed, for a given year was not likely to be directly 

observable in time to implement a decision in the same year.  Typically, the number of 

redds in watershed are estimated using carcass counts, aerial photography, or another 

escapement based estimation process after the spawning season (Williams 2001, 

Gallagher and Gallagher 2005).  I calculated the mean redd count over the previous five 

years in each watershed to account for the lag in redd estimation and the variability in 

redds that occur between years.  The mean redd count was used with the habitat 

information to determine the optimal decision in each watershed using the appropriate 

policy.  The optimal decision was identified in each of the 25 watersheds, which resulted 

in a set of 25 decision alternatives. The single decision that maximized the utility was 

chosen from that set to be implemented in that year.  The single decision alternative that 

was implemented was the one that maximized the utility function.  This process was 

repeated for every year of the simulation.  A complementary set of simulations was 

performed where no actions were implemented across the same time horizon to provide a 

comparative control.  Each simulation began with the same initial starting parameters 

with 10,000 simulations taken for each year.   

 

Sensitivity Analyses 

One-way sensitivity analysis 

I ran a one-way sensitivity analysis by estimating the utility value while varying 

the mean value of each of the population model’s parameters (Tables 1 - 8) by +50% and 

-50% while holding all the remaining model parameters at their expected values.  The 

utility value was calculated after a six time steps for every parameter perturbation.  This 
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process isolates the influence that each individual parameter can have on the utility 

function value and demonstrates how influential parameters are relative to one another.  

If a mean value wasn’t available (e.g. due to the multinomial distribution used to 

determine predator prevalence), it was varied across its full range of effects (e.g. low and 

high).  A parameter is considered influential if the utility value responds while the 

parameter is varied between +50% and -50% of its original value.  Due to the large 

number of parameters in this model (+100), I divided the parameters into two groups: 

environmental inputs and biological parameters (Tables 1 – 8).  Environmental inputs are 

reflect environmental conditions whereas biological parameters are parameters that are 

used to estimate survival and transition rates.  Additionally, in this sensitivity analysis I 

perturbed the parameter of interest across all 27 watersheds simultaneously to gage the 

parameter’s influence at the full spatial extent of the model rather than just an individual 

watershed.   

   

Survival sensitivity analysis 

 I also performed sensitivity analysis to determine juvenile in-river survival and 

outmigrant survival influence the number of naturally produced adult equivalents given 

current habitat conditions.  The goal of this analysis was to provide some insight on how 

these groups of influential parameters interact with one another.  This analysis was a two-

way sensitivity analysis but instead perturbing two individual parameters, I’m perturbed 

two groups of parameters.  The survival rates were divided into two groups: in-river 

survival (sfry, sparr, spresmolt) and outmigrant survival (sfrymig, sparrmig, ssmoltmig).    The total 

number of naturally produced adults was estimated in a single time step while these 
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groups of parameters were varied across ±50% of their estimated mean value.  The 

survival rates were perturbed across all the watersheds during this analysis.  All the other 

model parameters and inputs were held constant at their mean values.   

 

Response Profiles 

 A response profile sensitivity analysis evaluates how the identity of optimal 

decisions vary across a range of values of one or more parameters.  A one-way response 

profile sensitivity analysis is similar to the one-way sensitivity analysis, in that a single 

parameter is perturbed at a time.  However, instead of focusing how different parameters 

affect the utility, these analyses evaluate how the optimal decision alternative may 

change across a range of parameter values.  In other words, it answers the question, 

“would your optimal decision be different if this individual parameter took a different 

value?”  I varied the value of each parameter in the model across a range of ±50% of its 

mean value using 5% intervals while all the other parameters were held at their expected 

values.  For every value of the parameter being varied, all the decision alternatives were 

applied and the decision with the greatest utility value was reported.  So for any given 

parameter, I can determine if the optimal decision changes across a range of its values 

and where (at what value) those changes occur in that range. 

 

Results 

Population Model Performance 

 In general, the population model was able to represent target the population 

dynamics within all 26 populations at the watershed level, however the calibration was 
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unable to exactly match the target escapement levels.  The model overestimated 

escapement for watersheds with lower targets and underestimated escapement for 

watersheds with higher targets (Figure 3.4).  This was due to interactions among the 

watersheds in the model.  Many of the watersheds shared the downstream rearing habitats 

(lower-mid Sacramento and San Joaquin Rivers), which made some of the watersheds 

highly dependent on each other.  Also, the parameters I chose to calibrate ended up being 

highly sensitive parameters (see below).  Small perturbations in these values had large 

impacts on escapement and natural production levels.  Despite these issues I believe the 

calibration provided escapement estimates that are adequate for the purposes of this 

study.   

Simulated escapement levels were constant with little fluctuation due to density 

dependence induced by habitat limitations in several watersheds (Figure 3.5 -3.7).  

However, the current simulated production estimates show that production was still well 

below the doubling goal of 750,000 fish (Figure 3.8).  The streams with the largest 

estimated escapement were the American and Feather Rivers in the Sacramento Basin 

and Merced River in San Joaquin Basin.  Many of the watersheds sustained escapement 

levels that are almost nonexistent such as Bear Creek or Paynes Creek.  Additionally, the 

number of adult equivalents produced in each year followed very similar patterns 

(Figures 5 -7).  The population model was stable (e.g., populations are not unexpectedly 

increasing or decreasing exponentially), which allowed me to evaluate the influences of 

decision alternatives effectively.  Current habitat conditions and mean survival rates were 

used in the model and did not move through time.  This is the primary reason why the 

population model appears to be so stable.   
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 All of the juvenile out-migrant life history strategies were also represented in the 

population model and contributed to the overall production of adult equivalents (Figure 

3.9 and 3.10).  The model estimated that juvenile fall-run Chinook salmon migrate to the 

ocean as fry, parr or smolts to some degree in almost all of the CVPIA streams.  

However, the vast majority of juveniles were estimated to leave their natal watersheds as 

fry.  The extent to which each life history strategy contributes to natural production 

changed from watershed to watershed based on watershed specific outmigration survival 

rates.  

 

Policy Optimization 

 The policy optimization identified a habitat based, state-dependent optimal policy 

for a watershed with each combination of watershed tributary size and salmon diversity 

group.  Five of the seven policies had very similar shapes across the different values of 

spawning habitat per redd and juvenile habitat per redd (Figure 3.11).  In these policies 

the optimal decision was to implement a gravel addition project at the lowest values of 

spawning habitat per redd.  The optimal decision was to implement a floodplain 

excavation project at the highest values of spawning habitat per redd in these policies as 

well.  The policies derived for watersheds in Southern Sierra Nevada salmon diversity 

group were no similar to the other policies.  In these streams the optimal decision wasn’t 

determined by the amount of juvenile habitat per spawner, instead the value of spawning 

habitat per spawner solely determined the optimal decision.  Additionally, the decision to 

“do nothing” was only optimal in small tributaries in the Southern Sierra Nevada 
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grouping.  The differences in the derived policies highlights how differences in survival 

rates can influence what the optimal decision is for a particular combination of habitats. 

 

Forward Simulation 

 The forward simulation using the optimal policies resulted in both types of habitat 

restoration projects being implemented across several different watersheds (Figure 3.12).  

Only 9 different watersheds were selected to have projects implemented in them using 

the policies.  Stony Creek had the most habitat projects implemented (9) while Antelope 

Creek had the fewest (1).  Spatially, projects were not concentrated in a single region or 

area.  In almost half the years (23) projects were implemented in watersheds in the 

Norther Sierra Nevada salmon diversity group.  Watersheds belonging to the Northwest 

California diversity group had the next largest number of projects (18), followed by 

watersheds in the Southern Sierra Nevada diversity group (5) and watersheds in the 

Basalt and Porous Lava diversity group (4).   Implementing a floodplain excavation 

project was only optimal in seven of the 50 years simulated with gravel additions being 

the optimal decision in other 43 years of the simulation. 

 Implementing the optimal policy resulted in large gains in both escapement and 

natural production during the 50 year simulation (Figure 3.8).  At the end of the 

simulation where the optimal policies were used total natural production had climbed to 

just under 500,000 adults and total escapement has increased almost 300,000 total 

individuals.  Both these metrics represent large increases relative to the simulation where 

no actions where implemented.  This means that on average the number of natural origin 
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adults produced by each escapee increased as a result from implementing the optimal 

policy (Figure 3.13).   

 

Sensitivity Analyses 

One-way sensitivity analysis 

 The one-way sensitivity analyses on the model parameters showed that baseline 

fry outmigration rate (sfrymig intercept, Table 3.8) had the largest influence on the utility 

value (Figure 3.14).  The effect of this single parameter was several times greater than 

any other model parameter in the model, which isn’t surprising given how many 

outmigrant fry are produced system wide.  The next most influential parameter was the 

baseline adult survival rate (sadult intercept, Table 3.8).  Four of the six most influential 

parameters were all related intercept parameters used to calculate juvenile in-river or out-

migration survival rates.   

 As mentioned above,  two separate one-way sensitivity analyses to evaluate the 

environmental inputs, one for a wet year (high precipitation) and one for dry year (low 

precipitation; Figures 15 - 16).  The top five most influential environmental parameters 

were identical in both the wet and dry conditions.  The most influential parameter in both 

cases was the amount of spawning habitat.  This was followed closely by the parameter 

that represents the proportional size of the pulse of water that occurs when fry are out-

migrating from the system.  The next three most influential parameters were the instream 

temperature during presmolt rearing, the amount of fry habitat, and the amount of fry 

floodplain habitat.  Three of the five most sensitive parameters are used to calculate fry 
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out-migration survival or are related to fry habitat.  For comparison, the amount of parr 

and presmolt habitats were all in the bottom quarter of the most influential parameters. 

None of the parameters used to calculate reproductive success or adult survival 

were very influential to the utility value (Figure 3.14).  The early life history portions of 

the model (e.g. fry survival) seemed to have the largest influence on the overall utility 

value for these populations.  The one-way sensitivity analysis of model inputs (Figure 

3.15 – 3.16) indicated that fry rearing temperature and fecundity are the most influential 

environmental parameters.  Surprisingly, none of the temperature effects on out-migrant 

juveniles had much influence on the overall utility value.  The parameter that resulted in 

the largest increase in utility from the one-way analysis was the fry rearing temperature 

and the parameters that resulted in the largest decrease in utility values was fecundity and 

the amount of stream available for anadromous species.  The one-way sensitivity analysis 

for estimated model parameters showed that the effect of temperature on fry survival and 

parr survival were the most influential on production.  Overall, the environmental 

parameters appear to have a much larger influence over utility values than the estimated 

biological parameters. 

 

Survival Analysis 

 The two-way survival sensitivity analysis showed that increases to outmigrant 

survival are more likely to achieve the natural production recovery goal compared to 

increases to in-river survival (Figure 3.17).  The influence of in-river juvenile survival 

rates decreases as outmigration survival increases.  At the current rates of survival, total 

natural production appeared to be more sensitive to outmigrant survival compared to in-
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river survival rates.  Figure 3.17 demonstrates that under the current habitat conditions 

and configurations it may be possible to reach the doubling goal with increases to either 

class of juvenile survival. 

 

Response Profiles 

 The response profile identified 7 model components that were influential 

changing the optimal decision in a single time step (Table 3.9).  The single most 

influential component was the logistic intercept term used to calculate sfrymig.  The 

optimal decision changed a total of three times across ±50% of its original mean value 

(Figure 3.18).  When sfrymig has a small value the optimal decision was to implement 

gravel additions in one of two different watersheds.  At larger values, the optimal 

decision switches to a floodplain excavation project in a third watershed.  The amount of 

spawning habitat was the only influential habitat component.  In both wet and dry 

scenarios the optimal decision changed one, but only at the very low end of the values I 

evaluated (Figure 3.19).  All the other parameters had no influence on the optimal 

decision across the ranges of values evaluated. 

 

Discussion 

 In this study, I demonstrated how a dynamic programming approach could be 

used to derive polices to guide restoration strategies for fall-run Chinook salmon in 

California’s Central Valley.  The results of the policy optimization suggest that focusing 

efforts on single watershed is an effective habitat restoration strategy.  During the 
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forward simulation, the optimal strategy included the implementation of a specific 

decision alternative in a single watershed for several years at a time.  This suggests that 

spreading efforts across multiple watersheds (e.g.  implementing a decision in a new 

watershed every year) was a suboptimal strategy when maximizing natural production for 

fall-run Chinook salmon.  Allocating restoration efforts to a different watershed only 

occurred after a specific habitat limitation was fully resolved.  Also, during a fifty year 

simulation there were some watersheds that were never selected for restoration.  In fact, 

only a small number (9) of watersheds were selected for restoration during the forward 

simulation.  This suggests that future habitat restoration activities for Chinook salmon in 

the Central Valley should be intensively focused on a small number of watersheds. 

The appeal of the SDM approach is in its ability to identify key model 

components and assumptions that are able to alter optimal decision making (Possingham 

et al. 2001, Conroy and Peterson 2013).  All of the parameters that were used to calculate 

survival rates in this model were parameterized by expert opinion rather than from 

empirical sources (Table 3.1-3.7).  Thus, identifying influential parameters and processes 

is important when prioritizing future monitoring efforts.  Through several sensitivity 

analyses, I’ve identified several key parameters whose measures of uncertainty influences 

optimal decision making for fall-run Chinook salmon in the Central Valley.  In the one-

way sensitivity analyses, I perturbed the value of a single parameter across all 26 

watersheds simultaneously.  It’s important to keep in mind that these analyses provide a 

look at how a single parameter may influence natural production at the full spatial extent 

of this decision problem.  I would expect slightly different results if a similar analysis 
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was performed at the individual watershed scale due to the different watershed specific 

parameter values.  Four of the six most influential parameters in the one-way sensitivity 

analyses were all related intercept parameters used to calculate juvenile in-river or out-

migration survival rates.  These parameters are influential because they are essentially 

shifting the entire baseline survival rate for a given life stage.  However, if we ignore 

these intercept parameters, the estimated parameter effects that had the largest effects 

were all temperature related.  Specifically, the in-river 10-day average stream 

temperature that influences in-river survival was influential to total production.  These 

results suggest that future monitoring should be focused on estimating baseline juvenile 

survival rates in all the CVPIA streams.  Thus future monitoring efforts should be made 

to minimize the uncertainty around those parameters. 

The single fundamental objective in this decision model represents the primary 

goal of the stakeholders in this decision problem.  Ultimately, objectives reflect the 

values of the stakeholders or decision makers (Conroy and Peterson 2013).  The SDM 

framework provides the opportunity to incorporate and evaluate multiple objectives if 

necessary.  Multiple objectives can be combined into a single utility by using relative 

weights for different model outputs that represent other objectives.  For instance, the 

scope of this analysis was limited to fall-run Chinook salmon.  However, the managers 

that implement the CVPIA have obligations to other three other runs of Chinook salmon 

and several other anadromous species.  It’s likely that these additional runs and species 

would be influenced by the decision alternatives evaluated in this analysis and their 

incorporation into this decision making process would likely yield different strategies for 

habitat and stream restoration work in the Central Valley.   
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Broad scale restoration strategies can be difficult to develop due to the high 

amounts of uncertainty that exist at large spatial extents.  In natural resource 

management, uncertainty often manifests itself as a lack of empirical information.  A lack 

of information can paralyze decision making, resulting in no decisions being 

implemented.  In this study, I addressed the lack of information by making use of expert 

judgement.  Expert judgment may be biased or highly variable, but it still enables 

managers to model their decision making process.  This is important because decision 

models allow managers to identify the portions of their model that are the most influential 

to the decision making process.  Expert participation also creates more confidence in the 

final model which results in a decision tool that managers are more likely to use.  

Identifying influential parameters is essential to prioritizing future study and monitoring.  

In this study I had to parameterize most the model with expert judgement, but a decision 

model on this scale would not be possible without it.  Instead, I was able to identify 

several parameters that are highly influential to this decision making process.   

 Decision problems that operate at large spatial scales often require data to be 

summarized at large spatial extents and grains.  Most freshwater fisheries data and 

assessment methods are focused on much finer resolutions such as at a reach level (Lewis 

et al. 1996, Frissell et al. 2001).  Data observed at smaller spatial resolutions (e.g. reach 

or tributary) has to be aggregated when objectives occur at larger spatial scales (e.g. 

population or watershed; Wager et al. 2006).  Aggregating data or processes spatially 

ignores any heterogeneity present in a system and tends to lead to higher levels of 

variance and bias in parameter estimates (Clark and Avery 1976).  This is referred to as 

“ecological bias,” in which a lot of fine scale data and/or processes (e.g. juvenile rearing 
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and migration) are homogenized in order to be represented at a coarser scale (Greenland 

and Morgenstern 1989).  It’s essential that the variance associated with aggregating data 

is accounted when evaluating decision alternatives.  One strength of the SDM process is 

it can facilitate a quantitative evaluation of the potential of those uncertainties to 

influence the optimal decision. 

 The observability of the current system state is a key assumption in dynamic 

decision problems and should be a consideration when implementing any large scale 

optimal policy.  System states can be classified as being either fully observable or only 

partially observable to decision makers in dynamic decision problems (Williams 2011, 

Alpaydin and Bach 2014).  In this analysis, I assumed the current system states were fully 

observable. However, there could arise situations where this assumption would not be 

valid.  For instance, incomplete habitat estimates due to a lack of resources or redds not 

being estimated in due to the remoteness of the sampling site are situations that could 

lead to partial observability.  Our ability to accurately identify large scale system states 

can become more difficult if they depend on aggregating fine scale monitoring data.  

Partially observable Markov decision processes (POMDPs) are an approach to dynamic 

decisions problems that account for partially observable system states (Monahan 1982, 

Fackler and Pacifici 2014).  POMDPs are extensions of hidden Markov processes, which 

are like traditional Markov processes except the current system state isn’t known with 

complete accuracy (Ross 2014).  The partially observable system states are handled by 

putting a probability distribution on the system states themselves.  POMDPs may be 

especially useful in large scale decision problems in natural resource management due to 

the increased levels of environmental uncertainty and potential difficulties of monitoring 
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system states across large areas.  However, deriving optimal strategies using a POMDP 

can be difficult due to a more complex state space, which can limit the complexity of the 

problem that can be evaluated (McDonald-Madden et al. 2011). 

 MDPs have some limitations in the application to natural resource decision 

problems.  Infinite horizon MDPs, such as the one presented here, require stationary 

reward vectors and transition matrices.  The stationarity assumption is violated when 

state-specific transition rates or reward values shift through time.  In this analysis I 

assumed habitat transition rates and the number of salmon produced from decision 

alternatives were static through time.  Climate change is an example of a large scale 

stressor that could influence those parts of this decision problem.  Non-stationary 

resource dynamics create new issues in decision optimization and dynamic programming 

(Nichols et al. 2011, Williams 2011).  Heuristic approaches (e.g. reinforcement learning, 

genetic algorithms) can handle nonstationary decision problems, but they do not provide 

always provide the optimal decision set.  Another solution is to assume stationarity for 

short periods of time and revising solutions optimal solutions periodically (Nichols et al. 

2011, Williams and Johnson 2013). 
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Diversity Group Run Beginning

Run 

End

Watershed 

Area (ha)

Freshwater 

Angler Harvest 

Rate

Commerical 

Ocean 

Harvest Rate Hatchery Smolt Release

s rec s comm smolt hatch

Sampling Distribution Beta(α ,β ) Beta(α ,β ) Gamma(α,β )

Watershed

American River Northern Sierra Nevada Sept. Sept. 490803 0.45 (0.23) 0.4 (0.1) 4709043.33 (371232.55)

Antelope Creek Northern Sierra Nevada Oct. Oct. 31857 0.1 (0.05) 0.4 (0.1) 0 (0)

Battle Creek Basalt and porous lava Aug. Aug. 93240 0.1 (0.05) 0.4 (0.1) 0 (0)

Bear Creek Basalt and porous lava Oct. Oct. 93240 0.1 (0.05) 0.4 (0.1) 0 (0)

Bear River Northern Sierra Nevada Sept. Sept. 75628 0.1 (0.05) 0.4 (0.1) 0 (0)

Big Chico Creek Northern Sierra Nevada Aug. Aug. 18648 0.1 (0.05) 0.4 (0.1) 0 (0)

Butte Creek Northern Sierra Nevada Aug. Aug. 38850 0.1 (0.05) 0.4 (0.1) 0 (0)

Calaveras River Northern Sierra Nevada Sept. Sept. 103600 0.2 (0.1) 0.4 (0.1) 0 (0)

Clear Creek Northwestern California Sept. Sept. 61642 0.1 (0.05) 0.4 (0.1) 0 (0)

Cosumnes River Northern Sierra Nevada Sept. Sept. 191659 0.1 (0.05) 0.4 (0.1) 0 (0)

Cottonwood Creek Northwestern California Sept. Sept. 242941 0.1 (0.05) 0.4 (0.1) 0 (0)

Cow Creek Basalt and porous lava Sept. Sept. 110074 0.1 (0.05) 0.4 (0.1) 0 (0)

Deer Creek Northern Sierra Nevada Sept. Sept. 59311 0.1 (0.05) 0.4 (0.1) 0 (0)

Elder Creek Northwestern California Oct. Oct. - 0.1 (0.05) 0.4 (0.1) 0 (0)

Feather River Northern Sierra Nevada Sept. Sept. 952080 0.2 (0.1) 0.4 (0.1) 7005944.67 (3940843.92)

Lower-mid Sacramento River - Aug. Aug. - 0.05 (0.1) 0.4 (0.1) 0 (0)

Merced River Southern Sierra Nevada Sept. Sept. 329705 0.1 (0.03) 0.4 (0.1) 0 (0)

Mill Creek Southern Sierra Nevada Sept. Sept. 34706 0.1 (0.05) 0.4 (0.1) 0 (0)

Mokelumne River Southern Sierra Nevada Sept. Sept. 171198 0.1 (0.05) 0.4 (0.1) 2945667.33 (2588701.62)

Paynes Creek Southern Sierra Nevada Oct. Oct. - 0.1 (0.05) 0.4 (0.1) 0 (0)

San Joaquin River - Sept. Sept. 3506067 0.05 (0.05) 0.4 (0.1) 0 (0)

Stanislaus River Southern Sierra Nevada Sept. Sept. 278424 0.1 (0.03) 0.4 (0.1) 0 (0)

Stony Creek Northwestern California Oct. Oct. 191659 0.1 (0.05) 0.4 (0.1) 0 (0)

Thomes Creek Northwestern California Oct. Oct. 48692 0.05 (0.05) 0.4 (0.1) 0 (0)

Tuolumne River Southern Sierra Nevada Sept. Sept. 398858 0.1 (0.03) 0.4 (0.1) 0 (0)

Upper-mid Sacramento River Basalt and porous lava Oct. Oct. - 0.2 (0.05) 0.4 (0.1) 0 (0)

Yuba River Northern Sierra Nevada Sept. Sept. 346799 0.1 (0.05) 0.4 (0.1) 0 (0)

Table 3.1 - Descriptions of the 26 watersheds administered by the CVPIA in California's Central Valley .  Values for freshwater angler harvest rate,  

commercial ocean harvest rate, and hatchery smolt release represent the mean with the standard deviation in parenthesis.  Values of s rec  and s comm 

used in simulations of the population model were sampled from a beta distribution parameterized using Method of Moments.  Simiarly, values of 

smolt hatch  used in simulations of the popualtion model were sampled from a normal distribution.
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Decision Description Model Component(s) Affected Effect Size

1.) Gravel Addition Gravel is added to 

watershed to increase 

the total amount of 

suitable spawning 

habitat.

SpawnHab  (wet and dry scenarios) 1194 m
2 

increase in 

spawning habitats

2.) Excavate Floodplain River banks are 

excavated to lower the 

elevation that 

floodplains are activated 

at and creates additional 

floodplain rearing 

habitat for juvenile 

Chinook salmon. 

FloodHab fry , FloodHab parr , and 

FloodHab presmolt  (wet and dry 

scenarios)

7031 (m2) increase in 

floodplain rearing 

habitats.

3.) Do Nothing No habitat restoration project implemented- -

Table 3.2 - The 3 different decision alternatives and their effects for fall-run Chinook Salmon population 

model fo the Central Valley, CA.  Each of the decisions can be implimented on any of the 28 different 

watersheds/populations.  The Effect sizes represent cost equivalent projects. 
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Watershed Holding

Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry

American River 53 81551 81008 392933 392933 956654 956654 50721 45649 45649 45649 15216 22824

Antelope Creek 240 22666 22666 131680 131680 142473 142473 23876 17509 23876 16714 7163 0

Battle Creek 149 5850 7421 27034 27889 50356 58077 13597 8498 11473 11473 8923 3824

Bear Creek 152 7504 7504 43595 43595 47169 47169 7365 5261 7891 6313 789 0

Bear River 33 15648 15648 0 0 235 235 17941 17941 37676 18838 0 0

Big Chico Creek 87 8728 8728 50705 50705 54861 54861 7891 4856 9105 4553 0 0

Butte Creek 810 61405 61405 503578 503578 721967 721967 29569 22177 33265 24949 11088 2772

Calaveras River 33 33451 33451 107785 107785 78051 78051 35450 23634 22157 17725 0 0

Clear Creek 561 18367 15696 43707 45589 29562 27579 0 0 0 0 0 0

Cosumnes River 27 204259 204259 1186649 1186649 1283915 1283915 143124 114499 300560 150280 42937 42937

Cottonwood Creek 377 2889 3670 127536 120962 91105 86246 82246 63266 47449 56939 0 9490

Cow Creek 166 40180 40180 243225 257311 157510 153009 39470 28193 42290 33832 4229 0

Deer Creek 256 12187 12187 70799 70799 76602 76602 11898 6799 15297 10198 5099 3824

Elder Creek 28 12484 12484 72527 72527 78472 78472 11399 8768 6576 7891 1315 1315

Feather River 114 117375 117375 406899 406899 2128396 2128396 482399 438545 723599 460472 394690 263127

Lower-mid Sacramento River 372 0 0 4746594 4746594 5135660 5135660 70280 63252 73794 52710 10542 10542

Merced River 487 263822 263822 389854 389854 598361 598361 75757 46620 52447 52447 87412 52447

Mill Creek 990 8141 8141 47298 47298 51175 51175 7365 3966 8498 5949 6799 2550

Mokelumne River 13 44179 44179 1878973 1878973 326858 394299 82421 63401 133142 76081 123632 66571

Paynes Creek 49 2490 2490 14466 14466 15652 15652 2630 1403 1315 789 0 0

San Joaquin River 7 0 0 3231871 3231871 3496778 3496778 1098655 894410 3793688 2804899 1214422 1214422

Stanislaus River 386 102777 109361 97963 97963 78146 78146 35963 107889 242751 269723 107889 134862

Stony Creek 7 11303 11303 65664 65664 71047 71047 8755 6367 3581 4775 0 0

Thomes Creek 27 22351 22351 129848 129848 140491 140491 20342 14083 16430 11736 4694 2347

Tuolumne River 56 50226 50226 291787 291787 315704 315704 112988 112988 317780 190668 148297 127112

Upper-mid Sacramento River 229 264699 289527 101435 104115 44586 48547 1611932 1518193 1301308 1257198 0 0

Yuba River 120 85604 83400 27765 27861 17767 16565 283091 202208 394306 242650 212319 121325

Parr Floodplain Presmolt Floodplain

Table 3.3 - Habitat estimates for fall-run Chinook salmon in each of the 26 CVPIA watersheds.  All estimates are in m
2
 except holding habitat which is expressed in 

number of holding pools in each watershed.  Habitat values are considered to be constant in popualtion model and  are  differentiated into wet or dry years.

Hab spawn Hab fry Hab parr FloodHab fry FloodHab parr FloodHab presmolt

Spawning Fry Parr Fry Floodplain
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≤ 20°C  > 20°C & ≤ 25°C  > 25°C

Sampling Distribution Constant Constant Normal(µ ,σ ) Binomial(p )
Watershed

American River 0 0.596 0.381 0.023 0 0.656 (0.165) 0.01

Antelope Creek 1 0.596 0.381 0.023 0 0.827 (2.801) 0.04

Battle Creek 1 0.581 0.381 0.038 1 0.88 (0.274) 0.04

Bear Creek 1 0.596 0.381 0.023 0 1.936 (4.484) 0.04

Bear River 1 0.596 0.381 0.023 0 0.896 (0.91) 0.04

Big Chico Creek 1 0.581 0.381 0.038 2 1.179 (0.532) 0.03

Butte Creek 1 0.581 0.381 0.038 3 1.003 (0.512) 0.03

Calaveras River 1 0.426 0.501 0.073 4 3.852 (3) 0.05

Clear Creek 1 0.596 0.381 0.023 1 1.973 (0.319) 0.05

Cosumnes River 1 0.426 0.501 0.073 1 4.639 (4.328) 0.02

Cottonwood Creek 1 0.596 0.381 0.023 0 1.279 (0.564) 0.01

Cow Creek 1 0.596 0.381 0.023 0 3.613 (2.902) 0.04

Deer Creek 1 0.596 0.381 0.023 2 4.092 (4.957) 0.05

Elder Creek 1 0.596 0.381 0.023 1 1.427 (33.5) 0.00

Feather River 0 0.596 0.381 0.023 0 0.592 (0.286) 0.20

Lower-mid Sacramento River 0 0.596 0.381 0.023 0 1.703 (0.107) 0.01

Merced River 1 0.426 0.501 0.073 0 1.506 (0.824) 0.04

Mill Creek 1 0.596 0.381 0.023 0 3.065 (1.321) 0.03

Mokelumne River 1 0.426 0.501 0.073 1 1.427 (2.701) 0.04

Paynes Creek 1 0.596 0.381 0.023 0 1.257 (4.484) 0.04

San Joaquin River 0 0.426 0.501 0.073 0 1.039 (0.501) 0.01

Stanislaus River 0 0.426 0.501 0.073 0 1.936 (0.404) 0.04

Stony Creek 1 0.596 0.381 0.023 0 1.427 (2.398) 0.05

Thomes Creek 1 0.596 0.381 0.023 1 1.348 (2.558) 0.03

Tuolumne River 1 0.426 0.501 0.073 1 1.042 (1.082) 0.05

Upper-mid Sacramento River 0 0.596 0.381 0.023 0 0.785 (0.286) 0.18

Yuba River 0 0.596 0.381 0.023 1 0.498 (0.189) 0.02

Table 3.4 - Below are the environmental variables that are used to estimate s adult  and delay  for Chinook Salmon in the Central Valley, 

CA for each watershed.  The small tributary variable is an indicator variable.  The Prob. Mig. Corridor Temp columns represent the 

probability of the migratory corrridor for each watershed is between 20-25°C or greater than 25°C.  These probabilities are used in a 

multinomial distribution with a single trial to create a respective indicator variable.  Number of migration barriers include things such as 

passable dams, diversions, or other obsticles.  The Pulse column represents the mean (sd) of proportion increase in the base flow that is 

created while adults are migrating. 

Temperature Probability of Migration Corridor

Multinom(p )

Small 

Tributary

# migration 

barriers

Pulse Flow Prob. 

Scouring 

Flow
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Low Medium High

Sampling Distribution Poisson(µ ) Poisson(µ ) Constant Binomial(p ) Binomial(p ) Binomial(p )

Watershed

American River 1 1 3 0.070 0.730 0.200 0.018 0.014 0.011

Antelope Creek 1 3 0 0.330 0.500 0.170 0.150 0.075 0.025

Battle Creek 7 7 0 0.070 0.830 0.100 0.086 0.025 0.010

Bear Creek 7 8 4 0.330 0.500 0.170 0.150 0.075 0.025

Bear River 15 15 1 0.000 0.330 0.670 0.158 0.134 0.150

Big Chico Creek 3 3 4 0.070 0.870 0.070 0.191 0.022 0.010

Butte Creek 146 85 5 0.070 0.870 0.070 0.095 0.035 0.007

Calaveras River 153 145 1 0.170 0.330 0.500 0.050 0.020 0.010

Clear Creek 3 3 1 0.000 0.000 1.000 0.100 0.073 0.029

Cosumnes River 22 16 0 0.170 0.500 0.330 0.129 0.044 0.008

Cottonwood Creek 10 2 3 0.130 0.600 0.270 0.147 0.090 0.025

Cow Creek 25 35 0 0.270 0.570 0.170 0.229 0.171 0.050

Deer Creek 5 4 0 0.557 0.330 0.113 0.068 0.019 0.010

Elder Creek 4 4 7 0.130 0.600 0.270 0.189 0.112 0.043

Feather River 81 60 6 0.000 0.277 0.723 0.311 0.259 0.200

Lower-mid Sacramento River 517 441 6 0.000 0.000 1.000 0.000 0.011 0.006

Merced River 196 190 7 0.170 0.500 0.330 0.157 0.155 0.271

Mill Creek 2 3 0 0.557 0.330 0.113 0.166 0.217 0.305

Mokelumne River 104 97 6 0.170 0.500 0.330 0.020 0.021 0.078

Paynes Creek 14 15 0 0.330 0.500 0.170 0.150 0.075 0.025

San Joaquin River 449 378 8 0.000 0.170 0.830 0.498 0.500 0.500

Stanislaus River 51 44 5 0.000 0.170 0.830 0.036 0.016 0.010

Stony Creek 5 4 4 0.500 0.500 0.000 0.080 0.045 0.020

Thomes Creek 6 9 0 0.130 0.600 0.270 0.150 0.100 0.040

Tuolumne River 123 96 6 0.330 0.330 0.340 0.317 0.237 0.355

Upper-mid Sacramento River 187 95 4 0.087 0.613 0.300 0.323 0.238 0.217

Yuba River 17 14 1 0.000 0.830 0.170 0.119 0.152 0.371

Table 3.5 - Environmental parameters used to calculate rearing survival probabilities (s fry ,j ,  s parr ,j , and s presmolt ,j ) for juvenile life stages for each watersheds.  

Note any value followed by a second number in parenthesis represents the mean and standard deviation respectively.  The sampling distribution 

assocaited with each variable indicated how random samples were generated during simulations of the population model.  The Predator prevelance 

columns are used in a multinomial distribution with a single trial to create a respective indicator variable.

Multinom(p )

Probability of Predator Prevelance# TMDL 

violations

# of Operating 

Diversions

# Unscreened 

Diversions

Prob. Fry 

Stranding

Prob. Parr 

Stranding

Prob. 

Presmolt 

Stranding
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Sampling Distribution Normal(µ ,σ ) Normal(µ ,σ ) Normal(µ ,σ ) Constant Constant Constant Constant Constant Constant

Watershed

American River 12.134 (1.112) 15.041 (1.261) 16.747 (1.628) 0.0561 0.0808 0.0621 0.0866 0.0941 0.0966

Antelope Creek 9.879 (3) 11.035 (4) 18.815 (6) 0.0000 0.0000 0.0300 0.0450 0.3070 0.4149

Battle Creek 9.176 (3) 9.222 (4) 16.845 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bear Creek 9.176 (3) 9.222 (4) 16.845 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bear River 9.355 (2) 13.239 (4) 15.958 (4) 0.0000 0.0000 0.0000 0.0000 0.1072 0.1099

Big Chico Creek 14.288 (7.075) 11.353 (2.377) 24.52 (4.561) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Butte Creek 8.216 (1.189) 12.677 (2.523) 19.248 (1.469) 0.0362 0.0460 0.3067 0.4488 0.7283 0.4595

Calaveras River 15.215 (3) 16.138 (2) 20.958 (4) 0.1210 0.2419 0.4550 0.5345 0.9599 0.9582

Clear Creek 9.176 (2) 9.222 (3) 16.845 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Cosumnes River 15.215 (3) 16.138 (4) 20.958 (4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Cottonwood Creek 9.176 (3) 9.222 (4) 16.845 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Cow Creek 9.176 (3) 9.222 (4) 16.845 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Deer Creek 8.61 (0.747) 13.368 (2.197) 24.637 (5.371) 0.0000 0.0000 0.0362 0.0669 0.3330 0.4655

Elder Creek 9.879 (3) 11.035 (4) 18.815 (6) 0.0014 0.0043 0.0106 0.0166 0.0572 0.0754

Feather River 9.45 (0.598) 15.639 (2.3) 19.509 (4.35) 0.0124 0.0096 0.2252 0.3176 0.5297 0.5278

Lower-mid Sacramento River 15.482 (1.356) 17.021 (3.201) 25.564 (3.629) 0.0244 0.0209 0.1576 0.1986 0.5213 0.5948

Merced River 11.385 (2.543) 16.905 (6.532) 25.909 (2.723) 0.0029 0.0094 0.1812 0.3493 0.3547 0.5050

Mill Creek 15.215 (1.47) 16.138 (3.149) 20.958 (2.756) 0.0000 0.0000 0.0493 0.0848 0.3118 0.4237

Mokelumne River 9.879 (3) 11.035 (4) 18.815 (4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Paynes Creek 15.708 (3) 19.551 (4) 23.98 (6) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

San Joaquin River 12.46 (1.968) 14.991 (2) 18.879 (4.174) 0.5419 0.4414 0.4034 0.4754 0.8070 0.7571

Stanislaus River 9.176 (2.298) 9.222 (1.921) 16.845 (3.073) 0.0000 0.0000 0.0045 0.0285 0.0884 0.1013

Stony Creek 9.879 (2) 11.035 (3) 18.815 (6) 0.0016 0.0000 0.2056 0.2589 0.4620 0.5622

Thomes Creek 11.87 (3) 12.991 (4) 15.41 (6) 0.0021 0.0029 0.0106 0.0152 0.0524 0.0804

Tuolumne River 11.111 (0.957) 11.753 (1.943) 11.587 (3.078) 0.0000 0.0006 0.0037 0.0268 0.0539 0.1536

Upper-mid Sacramento River 10.591 (2) 15.233 (4) 20.796 (4) 0.0002 0.0002 0.0097 0.0219 0.0569 0.0511

Yuba River 9.259 (2) 10.838 (4) 12.407 (4) 0.0239 0.0239 0.0835 0.1758 0.5209 0.7775

Dry Wet Dry Wet

Table 3.6 - Temperature and water diversion parameters used to calculate rearing survival probabilities (s fry ,j ,  s parr ,j , and s presmolt ,j ) for juvenile life stages for each 

watersheds.  Note any value followed by a second number in parenthesis represents the mean and standard deviation respectively.  The sampling distribution 

assocaited with each variable indicated how random samples were generated during simulations of the population model.  The water diversion estimates are given for 

both wet (high precipitation) and dry (low precipitation) years.  

Fry Water Diversion             

(% of total flow diverted)

Parr Water Diversion          

(% of total flow diverted)

Presmolt Water Diversion 

(% of total flow diverted)

Fry High 

Temp (°C)

Dry Wet

Parr High 

Temp (°C)

Presmolt High 

Temp (°C)
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Fry Pulse 

Flow

Parr/Presmolt 

Pulse Flow

Smolt Pulse 

Flow

Fry Mig. High 

Temp

Parr/Presmolt Mig. 

High Temp

Smolt Mig. High 

Temp

Sampling Distribution Normal(µ ,σ ) Normal(µ ,σ ) Normal(µ ,σ ) Normal(µ ,σ ) Normal(µ ,σ ) Normal(µ ,σ )

Watershed

American River 1.334 (0.692) 1.21 (0.512) 0.782 (0.172) 15.341 (3.786) 20.141 (3.629) 21.708 (1.078)

Antelope Creek 1.837 (1) 1.256 (1) 0.5 (0.25) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Battle Creek 1.114 (0.3) 0.982 (0.14) 0.703 (0.108) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Bear Creek 1.261 (1) 1.011 (1) 0.622 (0.25) 10.591 (1.356) 15.233 (3.201) 20.796 (3.629)

Bear River 6.832 (9.11) 0.782 (0.303) 0.635 (0.411) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Big Chico Creek 1.711 (0.767) 0.708 (0.306) 0.548 (0.059) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Butte Creek 1.515 (0.755) 0.865 (0.172) 0.615 (0.139) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Calaveras River 1.453 (1) 1.025 (1) 0.527 (0.25) 15.708 (1.968) 19.551 (3) 23.98 (4.174)

Clear Creek 1.125 (0.302) 0.919 (0.213) 0.649 (0.133) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Cosumnes River 1.766 (0.862) 0.913 (0.419) 0.403 (0.158) 15.708 (1.968) 19.551 (3) 23.98 (4.174)

Cottonwood Creek 1.518 (1.087) 1.102 (0.929) 0.575 (0.178) 10.591 (1.356) 15.233 (3.201) 20.796 (3.629)

Cow Creek 1.286 (0.707) 1.042 (0.899) 0.56 (0.194) 10.591 (1.356) 15.233 (3.201) 20.796 (3.629)

Deer Creek 1.081 (0.095) 1.143 (0.26) 1.071 (0.463) 10.591 (1.356) 15.233 (3.201) 20.796 (3.629)

Elder Creek 1.837 (1.803) 1.256 (1.065) 0.5 (0.167) 10.591 (1.356) 15.233 (3.201) 20.796 (3.629)

Feather River 1.415 (0.584) 0.843 (0.225) 1.264 (0.478) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Lower-mid Sacramento River 2.798 (0.301) 1.124 (0.3) 0.393 (0.21) 15.708 (1.356) 19.551 (3.201) 23.98 (3.629)

Merced River 1.445 (1.932) 0.849 (0.503) 0.613 (0.137) 13.155 (1.968) 18.489 (3) 21.067 (4.174)

Mill Creek 1.14 (0.343) 1.138 (0.165) 0.65 (0.091) 17.595 (2.144) 21.913 (3.122) 24.243 (3.058)

Mokelumne River 1.837 (0.759) 1.256 (0.549) 0.5 (0.291) 10.591 (1.968) 15.233 (3.304) 20.796 (3.609)

Paynes Creek 1.47 (1) 1.101 (1) 0.624 (0.25) 13.155 (1.356) 18.489 (3.201) 21.067 (3.629)

San Joaquin River 1.519 (0.931) 1.54 (0.326) 0.563 (0.12) 15.708 (2.144) 19.551 (3.122) 23.98 (3.058)

Stanislaus River 1.261 (0.952) 1.011 (0.673) 0.622 (0.173) 13.155 (1.968) 18.489 (3) 21.067 (4.174)

Stony Creek 1.837 (0.5) 1.256 (1) 0.5 (1) 10.591 (2.144) 15.233 (3.122) 20.796 (3.058)

Thomes Creek 1.993 (1) 1.041 (1) 0.362 (0.25) 15.708 (1.356) 19.551 (3.201) 23.98 (3.629)

Tuolumne River 0.972 (1.83) 1.22 (0.931) 0.972 (0.19) 15.341 (1.968) 20.141 (3) 21.708 (4.174)

Upper-mid Sacramento River 1.109 (0.268) 0.924 (0.39) 0.925 (0.195) 10.591 (3.786) 15.233 (3.629) 20.796 (1.078)

Yuba River 1.362 (0.573) 0.999 (0.369) 0.875 (0.517) 13.155 (2.144) 18.489 (3.122) 21.067 (3.058)

Table 3.7 - Environmental parameters used in the calculating out-migration survival for each of the juvenile life stages.  Note any number 

followed by a second number in parenthesis is the mean and (sd).
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Parameter Description mean (sd)
delay Intercept 0.1419 (0.0823)

Small tributary 0.9647 (0.5272)

Temperature migratory coord > 25 1.4972 (0.7172)

Temperature migratory coord 20-25 0.4087 (0.2205)

No of barriers 0.1994 (0.1015)

Pulse flow*small trib -0.2379 (0.1385)

pulsed flow squared* small trib 0.011 (0.0059)

s adult,j Intercept 3.5783 (0.8946)

Adult holding habitat density -0.0033 (0.0008)

Water temperature  20-25 C -1.2171 (0.3043)

Water temperature  >25 C -1.9486 (0.4872)

Passage delay (weeks) -0.5063 (0.1266)

s egg.j Intercept -0.5914 (0.1183)

Hatchery fish interactions 0.5332 (0.2133)

Scouring flow -0.6554 (0.1311)

dewater Intercept 2.113 (0.382)

Discharge ratio -6.656 (0.271)

sfry,j Intercept 2.6541 (0.5308)

Number of unscreened diversions -0.0102 (0.0034)

No. diversions operating during rearing and outmigration -0.0295 (0.0105)

Stranded -0.8465 (0.211)

Moderate predator prevalence -0.9304 (0.254)

High predator prevalence -2.2771 (0.7942)

10-day maximum temperature during rearing -0.2042 (0.0808)

Water quality impairments -0.0484 (0.0173)

sparr,j Intercept 5.4358 (1.0872)

Number of unscreened diversions -0.0081 (0.0024)

No. diversions operating during rearing and outmigration -0.03 (0.0079)

Stranded -0.72 (0.3165)

Moderate predator prevalence -0.9047 (0.3938)

High predator prevalence -1.6575 (0.4574)

10-day maximum temperature during rearing -0.2222 (0.0853)

Water quality impairments -0.0842 (0.0347)

spresmolt,j Intercept 7.6015 (1.5203)

Number of unscreened diversions -0.0042 (0.001)

No. diversions operating during rearing and outmigration -0.0155 (0.0031)

Stranded -0.219 (0.0889)

Moderate predator prevalence -0.81 (0.2577)

High predator prevalence -1.56 (0.6835)

10-day maximum temperature during rearing -0.2687 (0.0555)

Water quality impairments -0.078 (0.0268)

sfrymig,j Intercept† -4.958 (0.9916)

10-day maximum temperature during migration -0.15 (0.0413)

Pulsed flow during outmigration 0.198 (0.0594)

sparrmig,j Intercept† -1.951 (0.36)

10-day maximum temperature during migration -0.175 (0.0481)

Pulsed flow during outmigration 0.2188 (0.0656)

ssmolt,j Intercept† -1.07 (0.214)

10-day maximum temperature during migration -0.175 (0.0481)

Pulsed flow during outmigration 0.2975 (0.0893)

Table 3.8 - The coefficients used to in the logistic regression functions to calculate different survival 

parameters.  The values represent the mean followed by the (sd).  These parameters are used to 

sample values from a normal distribution, which populate the β , coefficient vector.  The description 

column describes the environmental model parameter that matches these coefficients.  Intercepts 

for the some of the survival rates differed between watersheds and can be found on table 7. All 

parameters were estimated by expert opinion except those fit during the calibration process 

(indicated with †).
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Parameter Description Type

# Optimal 

Decisions

# Decision 

Changes

s frymig : intercept Baseline fry migration survival Biological Parameter 3 3

s egg : intercept Baseline reproductive success probability Biological Parameter 2 2

s frymig : pulsed flow
Effect of that the migration water pulse has 

on fry outmigration survival
Biological Parameter 2 2

s smolt : intercept Baseline smolt migration survival Biological Parameter 2 2

SpawnHab  (wet)
Amount of spawning habitat during a wet 

year
Environmental Input 2 2

SpawnHab  (dry)
Amount of spawning habitat during a dry 

year
Environmental Input 2 2

Fry Pulse Flow
The relative increase of flow during fry 

outmigration
Environmental Input 2 2

Table 3.9 - Results from the response profile analysis for the salmon decision model.  The response profile 

analysis identifed how many times the optimal decision would change across a range of values ( ±50% of the 

original mean value) for each parameter in the model.  Only the parameters that had the optimal decision 

change more than once are reported.
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Figures 

 

 

Figure 3.1 – A map of the primary watersheds that make us the Central Valley, CA.  

Shasta Lake is not considered part of this analysis since it is not open to anadromy.  In 

this analysis, the mainstem of the Sacramento river is divided into two reaches, upper and 

lower, with the dividing line at Red Bluff Dam.   
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Figure 3.2 – A map of the 4 different Chinook salmon diversity groups for the CVPIA.     
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Figure 3.3 – Conceptual diagram of the life history of a fall-run Chinook salmon in the Central Valley, CA.  Circle nodes represent 

mature adult fish, diamonds represent freshwater juvenile stages, and boxes represent outmigrant juvenile life stages.  Each arrow 

represents a different survival or reproductive process. 
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Figure 3.4 –Each point represents how close the simulated escapement sizes were to their 

target escapement sizes for every watershed after the calibration.  The calibration 

adjusted the baseline survival rates for each of the outmigrant size classes.  The line 

represents a 1:1 relationship.  Points above the line were over-estimated and points below 

the line were under-estimated.    
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Figure 3.5 – Simulated mean escapement (red) and mean total natural production (blue) 

of fall-run Chinook salmon for 9 of the 26 CVPIA watersheds.  Shaded areas represent ± 

1 standard deviation.  Simulations were ran for 25 years total, starting in 2009. 
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Figure 3.6 – Simulated mean escapement (red) and mean total natural production (blue) 

of fall-run Chinook salmon for 9 of the 27 CVPIA watersheds.  Shaded areas represent ± 

1 standard deviation.  Simulations were ran for 25 years total, starting in 2009. 
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Figure 3.7 – Simulated mean escapement (red) and mean total natural production (blue) 

of fall-run Chinook salmon for 9 of the 27 CVPIA watersheds.  Shaded areas represent ± 

1 standard deviation.  Simulations were ran for 25 years total, starting in 2009. 
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Figure 3.8 – Results from the forward simulation of the population model for fall-run 

Chinook salmon in the Central Valley, CA while applying the strategies derived from the 

optimization routines.  Lines represent the estimated mean values of total (system wide) 

escapement (left) and production of adult equivalents (right).  The solid black line 

represents abundance and production levels when no action is implemented, the dashed 

lines represent the same metrics but after optimal management alternatives are 

implemented.   
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Figure 3.9 – Each bar presents the proportion of total juvenile fall-run Chinook salmon 

outmigrants produced by life stage for each watershed in the CVPIA.  For instance, over 

90 percent of the juvenile outmigrants produced in the American River leave as fry while 

the remainder leave as smolt.  These data were produced by letting the population model 

run for 6 years, to account for population momentum from known escapement values.  

The model suggests that in almost all the CVPIA streams most Chinook salmon leave 

their natal streams as fry. 
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Figure 3.10 – Each bar presents the proportion of the total number of each stage specific 

outmigrant that was produced in each CVPIA watershed.  For instance, the model 

estimates that approximately 50 percent of all parr outmigrants produced in the entire 

Central Valley originated from the Upper-mid Sacramento.  These data were produced by 

letting the population model run for 6 years, to account for population momentum from 

known escapement values. 
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Figure 3.11 – Optimal policies that were derived from framing the decision problem as a MDP.  Policies were derived for different 

combinations of tributary size (large and small) and evolutionary diversity groupings (BPL – Basalt and Porous Lava, NSN – 

Northern Sierra Nevada, SSN – Southern Sierra Nevada, and NWC – Northwest California)  The different colors represent state 

space configurations where the optimal decision was different.  Light grey represents floodplain excavations, dark grey represents 

gravel additions and black represents the do nothing option.   
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Figure 3.12 – The optimal decision was determined in each time step of the forward simulation and reported here.  The watersheds 

are grouped into their evolutionary diversity groups (BPL – Basalt and Porous Lava, NSN – Northern Sierra Nevada, SSN – 

Southern Sierra Nevada, and NWC – Northwest California) on the y-axis.   
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Figure 3.13 –The dashed line represents the change in utility during the forward 

simulation when the optimal policies were implemented.  The solid line represents the 

utility if no actions were implemented during the 50 year time horizon. 
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Figure 3.14 – Tornado diagram showing the results from the one-way sensitivity analysis 

for the biological parameters in the population model.  
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Figure 3.15 – Tornado diagram showing the results from the one-way sensitivity analysis 

for the environmental parameters during a “wet” scenario in the population model.  
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Figure 3.16 – Tornado diagram showing the results from the one-way sensitivity analysis 

for the environmental parameters during a “dry” scenario in the population model. 
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Figure 3.17 – Results from the two-way sensitivity analysis between the outmigration 

survival (sfrymig, sparrmig, ssmoltmig) and in-river survival (sfry, sparr, spresmolt) rates for fall-run 

Chinook salmon in CVPIA administered streams.  The contours represent the mean total 

natural production as each of these parameters are varied by ± 50% of their original mean 

value.  The red contour line represent the CVPIA system wide “doubling goal.”  The 

mean natural production was estimated using the population model and running the 

model for a single year for each combination of parameter values. 
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Figure 3.18 – The response profile analysis identified the baseline survival rate for 

outmigrating fry (the intercept term for calculating sfrymig) as the most influential 

parameter in the decision model.  Each line represents how the utility of a specific 

decision changes across a range of parameter values.  The optimal decision changes three 

times in total. 
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Figure 3.19 - The response profile analysis identified the amount of spawning habitat as 

the most influential habitat component of the decision model. Each line represents how 

the utility of a specific decision changes across a range of parameter values.  Spawning 

habitat in both a wet (a) and dry (b) scenario was evaluated.  The optimal decision 

changes twice for both habitat measures. 
 

  



114 
 

 

CHAPTER 4: QUANTITATIVE DECISION ANALYSIS FOR IDENTIFYING 

THE OPTIMAL ALLOCATION OF CHINOOK SALMON HABITAT 

RESTORATION PROJECTS IN A CALIFORNIA CENTRAL VALLEY STREAM 

 

 

Abstract 

 

Effective management of natural resources requires decision makers to embrace 

uncertainty and understand how different types of uncertainty can influence the decision 

making process.  A determining factor of the types of uncertainty a decision problem has 

is the scale that it exists at.  Most stream restoration efforts are implemented on a small 

spatial, often on reaches less than 1km. I used a population of Chinook salmon from a 

stream in California’s Central Valley to develop a structured decision model to derive a 

state-specific stream restoration strategy.  The fundamental objective of the decision 

maker in the decision problem was to maximize the production of natural origin adults.   

The model was a spatially explicit, habitat based life cycle that simulated adult migration 

into freshwater, spawning, juvenile rearing, and juvenile outmigration.  Two habitat 

based decision alternatives were considered in the decision model: spawning gravel 

additions and floodplain excavations.  The decision problem was represented as Markov 

decision problem and I used dynamic programming to derive a state-specific, optimal 

policy for individual reaches within the study stream.  The optimal policies depended on 

four pieces of observable information in a given reach: the amount of spawning habitat, 

the amount of juvenile rearing habitat, the average number of redds present, and the 

temperature suitability of the reach.  Implementing the optimal policy during a 100 year 

simulation resulted in significant increases in natural production compared to a scenario 

where no actions were taken over the same time horizon.  Sensitivity analyses were 
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performed on the decision model to identify model inputs that could influence the 

decision making process.  Structured decision modeling and dynamic programming 

provide a frame work and tools that can break a complex problem down to more 

manageable components which can inform future decision making. 

 

Introduction 

Uncertainty is a key feature of decision making in natural resource management.  

Effective management requires decision makers to embrace uncertainty and understand 

how different types of uncertainty can influence the decision making process (Mowrer 

2000).  Almost all uncertainty comes from the natural variation inherent in nature or from 

the inability to perceive systems correctly (Nichols et al. 2011, Williams and Johnson 

2013).  Structured decision making (SDM) provides a quantitative approach to fish and 

wildlife management and decision making that transparently incorporates uncertainty into 

decision making models (Holling 1978, Walters and Hillborn 1978, Walters 1986).  SDM 

is comprised of just three basic components.  The first is explicit, quantifiable objectives, 

the second is a set of explicit management alternatives, and the third is a model that is 

able to predict the effect of the management alternatives on the resource (Possingham et 

al. 2001, Martin et al. 2009, Conroy and Peterson 2013).  The biggest strength of SDM is 

its ability to transparently identify how different sources of uncertainty can influence 

optimal decision making.   

Decision problems are especially difficult if they require a decision maker to 

make a series of decisions through time.  Sequential decision making often means that 

decisions are not independent through time (i.e., a decision at time t can affect a decision 
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at time t+1). These problems are typically framed as Markov decision problems (MDPs) 

due to the Markovian property of the decisions and system.  MDPs frame a sequential 

decision problem as a set of discrete state transition matrices and reward vectors where 

the probability of being in any given system state is only dependent on the system state at 

the previous time step (Ross 2014).  The goal of a MDP is to find the optimal sequence of 

decision alternatives that maximize some utility function.  Dynamic programming is one 

of the most common approaches to solve MDPs.  The system stochasticity is captured in 

the transition matrices where the state-specific transition rates influence the expected 

reward value for each discrete state.  Dynamic programing results in state-specific 

optimal policies through a backwards inductive computation procedure (Bellman and 

Dreyfus 1962, Bather 2000, Puterman 2009).  The ability of dynamic programing to 

capture large amount of uncertainty and deconstruct a decision problem down to its 

essential elements makes it a great approach for sequential resource decision problems.   

Streams are highly dynamic systems that makes stream habitat restoration 

decision problems a great example of a natural resource management issue that would 

benefit from structured approaches.  In the last 100 years, anthropogenic fragmentation 

and degradation of in-stream fish habitat across North America has led to an increase in 

stream restoration activities.  Past activities that have directly destroyed fish habitat 

include unsustainable mining and forestry practices and artificial channelization (Nehlsen 

et al. 1991, Lichatowich 1999).  Some activities such as the construction of 

impoundments and irrigation diversions acted to deny fish access to historic habitats 

(Yoshiyama et al. 1998).  These actions have caused populations of many freshwater fish 

species to decline across North America.  This is especially true for highly migratory fish, 
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such as Pacific salmon (Oncorhynchus spp.), whose life history requires access to 

multiple types of habitat.  The degradation of fish habitats has led to the development and 

implementation of stream restoration programs to rehabilitate these streams and hopefully 

the fish populations that depend on them. 

Scale is an important consideration when attempting to solve any decision 

problem.  There are two primary components to scale: extent and grain.  Extent refers to 

the broadest spatial and temporal dimensions over which decisions are made (e.g., a 

management area or the time horizon) and grain refers to the finest spatial and temporal 

resolution that the decisions and observations (e.g., monitoring) are conducted (Peterson 

and Dunham 2010).  Stream habitat restoration is an example of a decision problem can 

vary largely in both their scale and complexity.  Some restoration projects occur on very 

large scales and can take years to accomplish.  An example of this is large dam removal 

(e.g., Elwa River, Washington; McHenry and Pess 2008, East et al. 2015) or a complete 

stream restoration from headwaters to confluence (e.g. Clear Creek, CA; Cummings et al. 

2008).  In contrast, some restoration efforts might occur at smaller scales, such as placing 

a few trees into a stream reach to increase the amount of woody debris habitat or through 

connecting a river channel to an off-channel habitat.  Despite the wide range of spatial 

and temporal scales that restoration activities can occur, most stream restoration actions 

take place at spatial scales smaller than a 1 km reach (Bernhardt et al. 2005).   Actions 

that occur at these small scales are usually due to limited available funds or personnel, 

limited stream access, and/or complicated permitting processes.  In addition, landowner 

cooperation can be difficult to obtain. Thus, projects may be limited to locations where 

access is assured, regardless if that location is optimal for a given restoration activity or 
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not.  For these reasons, effective, large-scale restoration activities can be prohibitively 

expensive or too logistically complex to achieve (Roni et al. 2002, Beechie et al. 2008). 

Unfortunately, stream restoration projects are often implemented in an ad-hoc 

manner due to the opportunistic nature of natural resource management.  Systemic 

uncertainty and other key uncertainties also can result in managers pursuing smaller 

projects where the outcomes are more certain.  Uncertainty creates a risk adverse decision 

making environment for natural resource managers (Thompson 2002, Cullen and Small 

2004).  That is, the perceived risk of an unintentional negative outcome resulting from an 

action or set of actions is so great that managers many choose not to pursue said 

management action even if it has the potential to achieve their objectives.  This generally 

results in inaction or mangers pursuing less than optimal management actions.  

Management actions that are implemented in an unstructured or ad-hoc manner often lead 

to suboptimal outcomes that do not achieve their intended effect.  The previous work that 

has been done on prioritizing stream habitat restoration has mostly focused on qualitative 

approaches where stakeholders use ranking systems to evaluate alternative habitat 

projects (Beechie et al. 2008, Roni et al. 2018).  Although these approaches are useful for 

gaging support for different alternatives within a stakeholder group, they do not 

quantitatively connect management alternatives with models of system dynamics.  Thus, 

stream restoration activities may benefit from employing a transparent, structured 

approach to decision making (Hobbs and Norton 1996, Suding 2011). 

Restoration of Chinook salmon populations in the California’s Central Valley 

provides a great opportunity to evaluate decision alternatives in fine scale decision 

problem.  Chinook salmon occur in four distinct runs in the Central Valley which are 
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identified by the time of year that spawners migrate into freshwater: Fall, Late-fall, 

Winter, and Spring (Vogel and Marine 1991, Fisher 1994).  The fall-run is the largest run 

of Chinook salmon in the Central Valley and in turn it supports large commercial and 

recreation fisheries (Moyle 1994, Yoshiyama et al. 1998).  Chinook salmon were once 

abundant throughout the Central Valley but since the turn of the 20th century their 

numbers have been in decline (Yoshiyama et al. 2000).  The decline of Chinook salmon 

populations in the Central Valley was primarily due to overharvest, habitat degradation 

and dams (Yoshiyama et al. 1998, Lichatowich 1999).  In 1992 the Central Valley 

Improvement ACT (CVPIA) was passed by the U.S. Congress to restore anadromous fish 

populations to their historic population levels in the tributaries throughout the Central 

Valley, CA.  The CVPIA became a necessary piece of legislation due to the serious 

decline of these Chinook salmon populations in the two decades leading up to its passage 

(Nehlsen et al. 1991, Cummins et al. 2008b).  One of the primary provisions of the 

CVPIA is to double the abundance of anadromous species in the Central Valley from 

their 1992 levels.  Specifically, the doubling goal seeks to increase the number of 

naturally produced (non-hatchery origin) Chinook salmon in the watersheds it oversees.  

The primary tool of the CVPIA has been habitat restoration to restore and improve 

habitats that would benefit Chinook salmon.  These projects typically occur on a reach 

scale within a watershed.    A quantitative approach to prioritizing habitat restoration 

projects within a watershed would benefit the management of Chinook because it would 

directly evaluate which uncertainties influence.  

I developed a decision model that is able to replicate the fine-scale system 

dynamics of a population of fall-run Chinook salmon in a stream in California’s Central 
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Valley.  The goal of the model was to accurately portray system dynamics and how 

managers implement management alternatives to benefit fall-run Chinook salmon.  The 

model presented here is able to incorporate available habitat data, stream dynamics, 

management alternatives, and salmon life history to develop optimal habitat restoration 

policies.  The model operates at a fine spatial grain (individual reaches) across an entire 

stream.  The model was used as part of a SDM approach to evaluate how an optimal 

habitat restoration strategy could be used to increase fall-run Chinook production.  

The primary objective of this chapter was to demonstrate how a quantitative decision 

analysis approach could be used to prioritize habitat restoration projects at a fine scale 

resolution.  I used a structured approach and dynamic programming to derive optimal 

strategy for a habitat restoration problem in a Central California Chinook salmon stream.  

The habitat restoration strategy considers current values of two different kinds of habitat 

(spawning and fry rearing) to determine the optimal management alternative at a reach 

scale.  The secondary objective of this chapter was to identify key uncertainties that drive 

the decision making process.  Creation of a decision model at such a fine scale provides 

insight into what decisions are Chinook salmon management and how sensitive those 

optimal decisions are at this decision making scale.  

 

Methods 

Study Site 

 The American River is a 120 mile long tributary to the Sacramento River, whose 

confluence is in the city of Sacramento (Figure 4.1).  The headwaters of the American 

River begin in Sierra Nevada Mountains in the Eldorado and Tahoe national forests.  The 
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American River is made up of three primary branches (North, Middle, and South) that 

flow into Lake Folsom.  Lake Folsom is created by Folsom Dam, which has blocked 

upstream passage for anadromous fish since its construction in 1956.  Since no fish 

passage mitigation was provided at Folsom Dam, only the lowest 35.4 kilometers of 

stream are currently accessible to Chinook salmon (Williams 2001) and included in my 

analysis.  This portion of the river is known as the Lower American River (LAR).  The 

LAR watershed covers 4,856 km2 and consists primarily of developed and urbanized land 

cover.  In this study, the spatial extent of the decision was the length of the LAR and the 

grain consisted of 87 sections of the LAR that were approximately 400 m (0.25 mi) long 

beginning at Folsom Dam.  The 400 m grain size was chosen to reflect the average size of 

past restoration projects, current monitoring, and hydraulic modeling.   

The LAR supports one of the single largest populations of fall-run Chinook 

salmon in the Central Valley.  In the last decade, approximately over 40,000 adult salmon 

have returned to the LAR on average.  Wild and hatchery-origin fish are represented in 

the run, with the majority of the fish being hatchery origin in any given year (Palmer-

Zwahlen and Kormos 2015).   The Nimbus Fish Hatchery was built shortly after the 

construction of Folsom Dam and located just downstream of the dam.  The Nimbus 

Hatchery releases and average of 4.7 million fall-run Chinook salmon smolts every year 

in late summer to minimize any overlap between hatchery and wild origin juvenile 

Chinook salmon.  Currently, the hatchery does not release any other life stages of 

Chinook salmon into the river. 

 The construction of Folsom Dam has altered the hydrology and flow regimes in 

the LAR and contributed to the decline of suitable salmon habitats in the LAR.  High 
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levels of urbanization along the stream bank combined with high flows and the 

elimination of coarse sediment inputs have caused the river to excise into its channel 

(James 1997).  This has effectively cut the river off from its historic floodplains 

throughout much of the river.  The slow moving, off channel habitats associated with 

floodplain inundation are believed to be necessary for rearing juvenile salmonids 

(Sommer et al. 2001, Jeffres et al. 2008).  In addition, the construction of Folsom Dam 

has interrupted the delivery of gravels and sediment from the headwaters into the LAR 

(Fairman 2007).  This degraded and reduced the amount of suitable spawning habitat for 

adult Chinook salmon. 

 

Decision Problem 

 This decision problem was framed from the point-of-view of the CVPIA 

implementing agencies: the U.S. Bureau of Reclamation and the U.S. Fish and Wildlife 

Service.  These two agencies act jointly as the primary decision makers regarding habitat 

restoration activities in the LAR.  They are tasked with developing and implementing 

habitat restoration actions that would best benefit the fall-run Chinook salmon population 

in the LAR.  As a CVPIA stream, the LAR is also bound by a legislatively mandated 

“doubling goal” regarding the natural production of Chinook salmon.  The term “natural 

production” refers to salmon that are produced by adults spawning in the river regardless 

as to their origin.  For instance, the offspring of a wild and a hatchery origin adult salmon 

is considered “naturally produced.”  The legislative mandate means that the decision 

makers implement restoration actions that they think will achieve Chinook salmon 

natural production that is double that observed in 1991.   



123 
 

 

In 2013, the representatives of the implementing agencies and their collaborators 

participated in a series of workshops to develop an SDM framework for this decision 

problem.  The workshops included the decision makers and other stakeholders including 

fisheries and hydrology experts from local state, federal, and private entities.  The result 

of this workshop was the identification of the decision maker’s fundamental and mean 

objectives, management alternatives, data sources, and the framework for a Chinook 

salmon decision model that would serve as the quantitative link between their potential 

management actions and objectives. 

 

Objectives 

One of the most important steps of SDM processes is the identification and 

structuring of both fundamental and means objectives.  A fundamental objective is an 

objective that relates to the core values of the decision maker(s) or stakeholder(s), while a 

means objective is an objective that contributes to a fundamental objective without 

directly contributing to the fundamental objective (Conroy and Peterson 2013).  In other 

words, a fundamental objective answers the question, “why is this important,” and a 

means objective answers the question, “how do I accomplish that?”  Typically, means 

objectives help achieve fundamental objectives. 

The decision makers identified a single fundamental objective based on their 

legislative mandate, which was to maximize the number of naturally produced fall-run 

adult Chinook salmon.  They hypothesized that increasing this measure would ultimately 

help lead to a more stable wild population as well as move the Chinook population 

towards its CVPIA doubling goal.  Since a single fundamental objective was identified, 
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the number of naturally produced adult Chinook salmon served as the utility (the metric 

that will be optimized) for the decision model.  The decision makers also identified two 

means objectives that they hypothesized would help accomplish the fundamental 

objective of maximizing the number of naturally produced fall-run Chinook salmon.  The 

first means objective was to increase the amount of spawning habitat available to 

returning adult salmon.  The second means objective was to increase the amount of 

rearing habitat available to juvenile Chinook salmon.  Although there may be other 

means of increasing the number of naturally produced Chinook salmon (e.g., decreasing 

in-stream temperatures or increasing pulse flows at critical times), the means objectives 

identified are aspects of the LAR that the decision makers could influence given their 

available resources and oversight. 

 

Management Alternatives 

The decision alternatives that the decision makers identified were derived from 

their means objectives.  The two management alternatives considered were to add gravel 

to the stream channel or to excavate the stream bank to lower the floodplain, actions that 

have been previously performed in the LAR.  The decision makers noted that these types 

of management actions are generally implemented on river reaches approximately 400 m 

(0.25 miles) long.  They also decided that due to monetary and permitting constraints 

only a single restoration action could occur in a single year.  Both management 

alternatives and their implementation were assumed to be cost equivalent based on 

previous work.  Lastly, the decision makers chose not to evaluate management actions in 

the lowest 6.2 km of the LAR.  From their previous experience, this stretch of river rarely 
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holds either spawning adults or rearing juveniles due to seasonally high stream 

temperatures.  

The first alternative the decision makers wanted to evaluate the effect of adding 

roughly 9000 m3 of gravel into a single 400 m section (henceforth, reach) of the LAR.  

This volume represented a typical amount of gravel material that was added in previous 

gravel addition projects.  During a gravel addition, gravel is trucked to the site and placed 

into the stream channel using heaving machinery.  Ideally, the gravel is able to settle into 

the contours of the stream channel and thus provide spawning habitat.  The whole process 

takes approximately two weeks to complete.  The change in salmon spawning and 

juvenile rearing habitat availability resulting from a gravel addition to each reach was 

determined using 1-D hydrodynamic model (Table 4.1). The hydrodynamic model 

incorporated the effect of streambed contour, stream flows, and the channel shape of each 

reach to determine how a gravel addition would be distributed in an individual reach 

(Hammersmark 2014, Hammersmark and Tu 2015).  Since the gravel is subject to the 

scouring flows, a gravel project may decay over time as gravel is scoured and transported 

downstream during high flow events.  Thus, gravel additions do not permanently alter the 

stream channel or the amount of habitat.  Previous studies on the LAR have shown that 

under low flows spawning gravel additions may have a life span of roughly 20 years 

(Horner 2015). Given this information, I decided that these projects would experience an 

exponential decay with a decay rate of 0.23 based on the recommendations of local 

experts (C. Hammersmark, CBEC eco engineering; T. Horner, Sacramento State 

University).  This rate translates to an 85% reduction in suitable spawning area 

approximately five years after a gravel project was implemented. 
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The excavate a stream bank decision requires heavy machinery to manually 

excavate a volume of earth to lower the effective floodplain to create juvenile rearing 

habitat with slower currents with more cover.  These are the types of habitats that 

juvenile Chinook salmon require to avoid predation and efficiently feed (Sommer et al. 

2001).  Previous excavation projects in the LAR have excavated an area of soil roughly 

400 m long and 10 m wide adjacent to the river channel.  These projects also excavate to 

a depth were the water depth in the new habitat is roughly 0.3-0.9 m.  To estimate the 

extent of excavation needed to lower the floodplain, I used stream bank height data 

derived from a digital elevation model.  The average stream bank height within 15.2 m of 

the stream edge at a discharge of 56.6 m3/s was calculated for each stream reach.  I 

assumed that this height corresponded to the excavation depth plus an additional 1m 

depth to create suitable juvenile habitat.  Because bank height varied from reach to reach, 

the exact dimensions and volume required for excavation varied among the stream 

reaches.  I also assumed that the habitat created from the excavation projects would be 

available to all juvenile salmon (fry and parr) in that reach.  These projects are much 

more resilient than the spawning gravel projects (C. Hammersmark, personal 

communication). Thus, I assumed that any excavation project decay was negligible. 

 

Salmon decision model 

 The model framework I used was developed during the stakeholder workshops 

and reflects participants’ beliefs regarding system dynamics and how management 

alternatives change the system.  The model operates on an annual time step beginning 

with adult Chinook salmon returning to the LAR to spawn and ending with juvenile 
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Chinook salmon exiting the LAR on their way to the ocean.  A single management 

alternative can be implemented in each time step of the model.  When implemented, the 

habitat changes occur that same year and were experienced by the adult salmon returning 

in that time step and their progeny.  The model required several inputs that included: 

three types of habitat data, spawning, in-channel rearing and off-channel rearing; the 

probability of a wet year (high flow) versus a dry year (low flow); and survival rates for 

returning adult salmon and the juveniles produced.  At the end of each time step, I 

estimated the expected number of wild adults produced for that cohort of out-migrating 

Chinook salmon.  This metric represented the number of naturally produced adults that 

would be produced from single cohort of out-migrating juvenile salmon (i.e., natural 

production: the fundamental objective).  Henceforth, I define this metric as adult 

equivalents.  

A life history based population model was used to represent the dynamics of the 

fall-run Chinook salmon population in the LAR.  Although salmon life history models 

have been developed for a large variety of applications in the past, these models are often 

data intensive and work at incompatible spatial scales (Bartholow et al. 1997, 

Satterthwaite et al. 2010).  As such, I developed a model that used the available data and 

simulated the dynamics of the LAR fall-run Chinook population in response to 

restoration actions and external population drivers.  The primary inputs for the model 

were initial adult escapement, habitat data, adult spawning success rates, juvenile survival 

rates, and juvenile-to-adult outmigration and survival rates.  The primary outputs of the 

model were the number of naturally and hatchery produced adult equivalents for a given 

cohort.   
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A single time step (annual) of the population dynamics model consisted of six 

sub-models: escapement, reproductive success, fry rearing and habitat, parr rearing and 

habitat, hatchery migration success, and fry, parr and smolt migration success (Figure 

4.2).  I define a fry as a juvenile salmon <65mm in total length, a parr juvenile salmon 

between >65mm and <90mm, and a smolt as a juvenile salmon >90mm.  The escapement 

sub-model simulated adult Chinook salmon in the ocean that migrated from the ocean 

into the LAR.  These migrating individuals experience mortality from ocean harvest and 

recreational angler harvest.  After entering freshwater, adult salmon fish are distributed 

throughout the reaches in the LAR.  The escapees then dig redds and produce fry in the 

reproductive success sub-model.  The fry rearing and habitat and parr rearing and 

habitat sub-models simulate the juvenile rearing process.  During these sub-models, 

individuals either find habitat, grow, and survive or they migrate to the ocean as fry or 

parr.  If habitat is not immediately available to a fish, they do have the opportunity to 

move downstream in an attempt to rear.  Fish that survive both rearing processes 

ultimately become smolts, after which they migrate to the ocean.  The hatchery 

component of the LAR is simulated in the hatchery migration success sub-model where 

hatchery origin smolts are released from the Nimbus Fish Hatchery.  Lastly, the fry, parr, 

and smolt migration success sub-model applies a juvenile-to-adult survival rate.  This 

rate is dependent on which life stage a juvenile fish migrates out of the watershed.   

 

Escapement 

 The escapement submodel begins with adult salmon returning from the ocean to 

the LAR to spawn, Xocean,j, where j represented the current time step (annual).  These fish 
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are then exposed to several sources of mortality before they are available for spawning: 

[1]    𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗 = 𝑋𝑜𝑐𝑒𝑎𝑛,𝑗 ∙ 𝑠𝑐𝑜𝑚𝑚.,𝑗 ∙ 𝑠𝑟𝑒𝑐.,𝑗 ∙ 𝑠𝑎𝑑𝑢𝑙𝑡,𝑗 

where Xescape,j is the number of escaped adults available for spawning, scomm.,j is the 

survival associated with commercial fishing in the ocean, srec.,j is the survival attributed to 

freshwater recreational angling, and sadult,j is the freshwater survival rate of migrating 

adults (Table 4.2).  Stochasticity was imposed by randomly sampling all of the above 

survival rates from beta distributions, whose shape and scale parameters were calculated 

via method–of-moments estimation. 

Spawning adults were distributed within the river using a multinomial 

distribution: 

[2]    𝑠𝑝𝑎𝑤𝑛𝑗,𝑘 = 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗, 𝒑) 

where spawnj,k is the number of spawners in reach k at time step j and p is a probability 

vector of length k.  Reaches in the LAR closer to the dam are colder and tended to be 

favored by spawning adults. In addition, hatchery origin adults have an affinity for areas 

closer to Nimbus hatchery (Williams 2001).  To account for this behavior, the probability 

that an individual attempted to spawn in a specific reach of the river was related to the 

distance from the dam.  This relationship was represented using the following 

exponential decay function: 

[3]    𝑝𝑘 = 1
(1 + 𝑒−2.4+0.36∗𝑑𝑎𝑚𝑑𝑖𝑠𝑡𝑘) ∙ 𝑛𝑐⁄  

where damdistk is the distance from Folsom Dam reach k is, nc is a normalizing constant 

to ensure that function integrates to one over the support of [0,35] river kilometers.  I 

integrated equation 3 over each reach to determine the total probability of an individual 
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adult spawning within that reach k.  The value of k was calculated as the river kilometer 

at the upstream boundary for each 400 m reach that serve as the grain for this analysis.  

 

Reproductive success 

After the number of spawning adults (escapees) in each reach has been 

determined [eq. 2], females create redds and spawn to produce viable eggs.  I assume that 

if there were more female spawners in a given reach than space for redds, those fish 

superimposed redds on top of one another destroying the original redd.  This process 

reflected the density dependent relationship between spawning habitat and the total 

number of spawners.  Soon after spawning, the adult fish died due to the energetic costs 

of freshwater migration and spawning.  If these eggs experienced suitable temperatures 

and are undisturbed, they hatched to produce fry.  This process occurred in each 400 m 

reach, k, and was approximated by: 

[4]    𝑓𝑟𝑦𝑘,𝑗 = 𝐶𝑜𝑛𝑅𝑒𝑑𝑑𝑘,𝑗 ∙ 𝑓𝑒𝑐𝑢𝑛𝑑𝑗 ∙ 𝑠𝑒𝑔𝑔,𝑗 

where fecundj was a random variable that represented the average fecundity in the 

population, segg,j was a random variable that represented egg-to-fry survival and 

ConReddk,j was the number of contributing redds at reach k (Tables 4.2 and 4.3).  The 

value of ConReddk,j was determined by: 

[5]    𝐶𝑜𝑛𝑅𝑒𝑑𝑑𝑘,𝑗 = {
𝑟𝑒𝑑𝑑𝑐𝑎𝑝𝑘,𝑗, 𝑟𝑒𝑑𝑑𝑘,𝑗 > 𝑟𝑒𝑑𝑑𝑐𝑎𝑝𝑘,𝑗

𝑟𝑒𝑑𝑑𝑘,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where reddcapk,j was the redd capacity in reach k and reddj,k was the potential number of 

redds produced in reach k.  The potential number of redds in each reach k, reddk,j was 

determined using: 
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[6]     𝑟𝑒𝑑𝑑𝑗,𝑘 = 𝑋𝑠𝑝𝑎𝑤𝑛,𝑘,𝑗 ∙ 𝑠𝑒𝑥𝑗  

[7]     𝑋𝑠𝑝𝑎𝑤𝑛,𝑘,𝑗 = 𝑋𝑒𝑠𝑐𝑎𝑝𝑒,𝑗 ∙ 𝑝𝑘 

where Xspawn,k,j was the number of spawners in reach k, sexj was the proportion of females 

and pk was the probability of spawning within the reach with the upper boundary k (Table 

4.3). 

 Lastly, the redd capacity of each reach was calculated by dividing the amount of 

spawning habitat (m2) by the average redd size (m2): 

[8]    𝑟𝑒𝑑𝑑𝑐𝑎𝑝𝑘,𝑗 =
𝑠𝑝𝑎𝑤𝑛ℎ𝑎𝑏𝑘,𝑗

𝑟𝑒𝑑𝑑𝑠𝑖𝑧𝑒𝑗
⁄  

where spawnhabk,j was amount of spawning habitat in each reach k, and reddsizej was the 

average redd size (Table 4.3).  Also, the amount of spawning habitat varied depending on 

the amount of flow in the river (Table 4.4).  Stream flows in the LAR are largely under 

the control of managers during spawning provided there is sufficient storage above 

Nimbus dam. Therefore, two flow conditions during spawning were included in the 

model, high (56.6 m3/s), which represented typical LAR spawning flows when storage is 

sufficient and low (32.6 m3/s), which represented storage-limited flow conditions.  The 

candidate restoration actions were designed to have maximal benefits (i.e., most habitat 

available) between these flows.  Both flows are equally probable in the model and were 

applied to every reach k. 

 

Fry survival and fry habitat 

 In this sub-model, the fry produced in each reach k, rear to become parr if rearing 

habitat is available or begin to migrate downstream to look for available habitat.  This 
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portion of the model represented a roughly three-month period after larval swim-up.  If 

downstream habitat was not available, migrating fry left the watershed and began their 

migration to the ocean.  Fry that remained to rear survived as they transitioned from fry 

to parr.  The number of parr produced in each reach k, parrk,j, was calculated by applying 

a survival rate to the fry that reared in each reach: 

[9]     𝑝𝑎𝑟𝑟𝑘,𝑗 = 𝑟𝑒𝑎𝑟𝑓𝑟𝑦𝑘,𝑗 ∙ 𝑠𝑓𝑟𝑦,𝑗 

where rearfryk,j was the number of fry that will rear in reach k, and sfry,j was the fry-to-

parr survival rate (Table 4.2).  This survival rate was then applied to rearing fry in all the 

reaches. 

 The number of fry that remained to rear to parr, rearfryk,j, included the fry that 

were able to find available habitat initially in the reach they were hatched in as well as 

those fry that migrated downstream and find available habitat.  This process was modeled 

as: 

[10]    𝒓𝒆𝒂𝒓𝒇𝒓𝒚𝑗 = 𝒔𝒕𝒂𝒚𝒇𝒓𝒚𝑗 + 𝒎𝒊𝒈𝒇𝒓𝒚𝑗 

where stayfryj was a vector formulization of the fry that found habitat initially after 

hatching and migfryj, was a vector formulization of the excess fry that were unable to 

find available habitat after hatching but found habitat downstream.  In the vector format 

above, the first element in the vector represented the furthest upstream reach and each 

subsequent element represented the next adjacent downstream reach. 

 The values of the elements in both stayfryj were derived using the following 

habitat driven rule set: 

[11]     𝑚𝑜𝑣𝑒𝑓𝑟𝑦𝑘,𝑗 = {
𝑓𝑟𝑦𝑘,𝑗 − 𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗, 𝑓𝑟𝑦𝑘,𝑗 > 𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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[12]    𝑠𝑡𝑎𝑦𝑓𝑟𝑦𝑘,𝑗 = {
𝑓𝑟𝑦𝑘,𝑗 − 𝑚𝑖𝑔𝑓𝑟𝑦𝑘,𝑗, 𝑓𝑟𝑦𝑘,𝑗 > 𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗

𝑓𝑟𝑦𝑘,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where frycapk,j was the carrying capacity of reach k and movefryk,j was the excess fry that 

were unable to find available habitat in reach k.  This rule set represented the hypothesis 

that if there was insufficient habitat for every fry in reach k to rear, excess fry become 

migratory and search for available habitat downstream.  However, if all the downstream 

habitat was occupied the excess fry migrated directly to the ocean.  The value of frycapk,j 

was determined based on the amount of habitat in each reach and the average size of a fry 

territory: 

[13]    𝑓𝑟𝑦𝑐𝑎𝑝𝑗 =
𝐹𝑟𝑦ℎ𝑎𝑏𝑘,𝑗∙𝑡𝑒𝑚𝑝𝑘∙𝑞𝑢𝑎𝑙𝑓𝑟𝑦

𝐹𝑟𝑦𝑇𝑒𝑟𝑟𝑗
 

[14]    𝑡𝑒𝑚𝑝𝑘 = (1/(1 + 𝑒𝑥𝑝(−(0.6 + 𝑑𝑎𝑚𝑑𝑖𝑠𝑡𝑘 ∙ 0.39 − 0.018 ∙ 𝑑𝑎𝑚𝑑𝑖𝑠𝑡𝑘
2)))) 

[15]    𝐹𝑟𝑦𝑇𝑒𝑟𝑟𝑗 = 𝐿𝑓𝑟𝑦
2.61 ∙ 10−2.83 

where Fryhabk,j was the amount of fry habitat (m2) available in reach k, FryTerrj was the 

average size of an individual fry’s required territory (m2), tempk was a coefficient from 

stream reach k, and qualfry was a measure of the fry habitat quality throughout the LAR.  

The qualfry parameter was a calibrated parameter (see Survival Rates and Model 

Calibration section below) that was necessary to reproduce the diversity of outmigrants 

by life stage (fry, parr, or smolt).  Fry territory size was determined using an allometic 

that related fry territory size to fork length (Grant and Kramer 1990).  Thermal suitability 

(eq. 14) was based on expert opinion of the stakeholders and represented reaches in the 

LAR with thermal regimes that were most suitable for juvenile rearing and growth.  The 

quadratic shape of the function shows depicted the hypothesis that reached immediately 

below the dam were too cold for juvenile rearing and reaches too far downstream it is too 
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warm (Figure 4.3).  Similar to reproductive success sub-model, the value of Fryhabk,j, 

was flow dependent.  Both high (141.4 m3/s) and low flow (93.4 m3/s) rearing scenarios 

were included, both occurred with equal probabilities, and were independent of the 

spawning flows. 

 The elements of migfryj were calculated using a transition matrix, Yfry, that 

allowed excess fry, movefryk,j, to move downstream to find suitable rearing habitat.  Fry 

that are unable to find habitat were forced out of the system to begin their migration to 

the ocean.  The elements of migfryj were calculated by: 

[16]    𝒎𝒊𝒈𝒇𝒓𝒚𝒋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝒎𝒐𝒗𝒆𝒇𝒓𝒚𝑗 ∙ 𝒀𝑓𝑟𝑦 

[17]    𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑦𝑘,𝑗 = {
𝑚𝑖𝑔𝑓𝑟𝑦𝒌,𝒋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − (𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑓𝑟𝑦𝑘,𝑗), 𝑚𝑖𝑔𝑓𝑟𝑦𝒌,𝒋

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > (𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑓𝑟𝑦𝑘,𝑗)

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[18]    𝑚𝑖𝑔𝑓𝑟𝑦𝑘,𝑗 = {
𝑚𝑖𝑔𝑓𝑟𝑦𝒌,𝒋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑜𝑐𝑒𝑎𝑛𝑓𝑟𝑦𝑘,𝑗 , 𝑚𝑖𝑔𝑓𝑟𝑦𝒌,𝒋

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > (𝑓𝑟𝑦𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑓𝑟𝑦𝑘,𝑗)

𝑚𝑖𝑔𝑓𝑟𝑦𝒌,𝒋
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where migfryj was a 1xk vector, and oceanfryk,j was a scalar that represented the final 

number of fry to migrate out of the LAR. 

The transition matrix Yfry is a (k) x (k) diagonal matrix that simulated downstream 

migration:  

 

The rows in the transition matrix Yfry represented a fry’s current position and the columns 

represented the downstream reaches accessible to upstream fry.  Each non-zero element 

represented a probability that a fry would land in that reach of stream given where they 

0 y2|1 y3|1 y4|1 … yk-1|1 yk|1

0 0 y3|2 y4|2 … yk-1|2 yk|2
0 0 0 y4|3 … yk-1|3 yk|3

Y fry	=

… … … … … … …

Y fry	=

0 0 0 0 … yk-1|k-2 yk|k-2
0 0 0 0 … 0 yk|k-1

Y fry	=
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started.  For instance, element y3|1 is the probability a fish rears in the third reach given it 

started in the first reach. These probabilities were the relative proportion of unoccupied 

downstream habitat (after initial seeding of habitat) in each reach given a particular 

upstream starting point.  This process resulted in reaches of river that still have more fry 

than allowable habitat. That is, the number of fry exceeded the carrying capacity of the 

habitat. 

 

Parr survival and parr habitat  

The mechanisms of the parr-to-smolt transition were identical to that of the fry-to-

parr transition.  Similar to the fry sub-model, this model represented another 2.5 month 

period that ended with smolts migrating to the ocean.  As the juvenile salmon grew (e.g., 

fry to parr sized), they required more space to feed and survive.  The parr that remained 

in the watershed had to establish territories and any individuals that was unable to 

establish a territory due to habitat limitations migrated downstream to search for territory 

or potentially, migrate out of the watershed and towards the ocean. This resulted in parr 

that reared in the river to become smolts and parr that migrated to the ocean. 

The fry-to-parr transition was similar to equation 9: 

[19]    𝑠𝑚𝑜𝑙𝑡𝑘,𝑗 = 𝑟𝑒𝑎𝑟𝑝𝑎𝑟𝑟𝑘,𝑗 ∙ 𝑠𝑝𝑎𝑟𝑟,𝑗 

where rearparrk,j was the number of fry that will reared in reach k, and sparr,j was the parr-

to-smolt survival rate (Table 4.2).  Again, the parr-to-smolt survival rate was assumed 

constant across all the reaches. 
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The number of parr that remained to rear and become smolts, rearparrk,j, included 

the (former) fry that were able to find available habitat either in the reach they were 

hatched or a downstream reach.  This process was modeled as: 

[20]    𝒓𝒆𝒂𝒓𝒑𝒂𝒓𝒓𝑗 = 𝒔𝒕𝒂𝒚𝒑𝒂𝒓𝒓𝑗 + 𝒎𝒊𝒈𝒑𝒂𝒓𝒓𝑗 

where stayparrj was a vector formulization of the parr that found habitat, migparrj, was a 

vector formulization of the excess parr that were unable to find available habitat but 

found available habitat downstream.  In the vector format above, the first element in the 

vector represented the furthest upstream reach and each subsequent element represented 

the next adjacent downstream reach. 

 

The values of the elements in stayparrj were derived using the following habitat 

driven rule set: 

[21]    𝑚𝑜𝑣𝑒𝑝𝑎𝑟𝑟𝑘,𝑗 = {
𝑝𝑎𝑟𝑟𝑘,𝑗 − 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗 , 𝑝𝑎𝑟𝑟𝑘,𝑗 > 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[22]    𝑠𝑡𝑎𝑦𝑝𝑎𝑟𝑟𝑘,𝑗 = {
𝑝𝑎𝑟𝑟𝑘,𝑗 − 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑘,𝑗, 𝑝𝑎𝑟𝑟𝑘,𝑗 > 𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗

𝑝𝑎𝑟𝑟𝑘,𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where parrcapk,j was the parr specific carrying capacity of reach k and moveparrk,j was 

the excess parr that were unable to find available habitat in reach k.  The value of frycapk,j 

was determined based on the amount of habitat in each reach and the average size of a fry 

territory: 

[23]    𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑗 =
𝑃𝑎𝑟𝑟ℎ𝑎𝑏𝑘,𝑗∙𝑡𝑒𝑚𝑝𝑘∙𝑞𝑢𝑎𝑙𝑝𝑎𝑟𝑟

𝑃𝑎𝑟𝑟𝑇𝑒𝑟𝑟𝑗
 

[24]    𝑃𝑎𝑟𝑟𝑇𝑒𝑟𝑟𝑗 = 𝐿𝑝𝑎𝑟𝑟
2.61 ∙ 10−2.83 
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where Parrhabk,j was the amount of fry habitat (m2) available in reach k, ParrTerrj was 

the average size of an parr territory (m2) and qualparr was a measure of the parr habitat 

quality throughout the LAR.  Similar to qualfry, qualparr was a calibrated parameter (see 

Survival Rates and Model Calibration section below) that was necessary to reproduce the 

diversity of outmigrants by life stage (fry, parr, or smolt).  Again, the value of Parrhabk,j, 

was flow dependent (Table 4.4).  Both high (141.4 m3/s) and low flow (93.4 m3/s) 

scenarios were included with equal occurrence probabilities.  These parr rearing flows 

were independent of the spawning flows and fry rearing flows. 

 The elements of migparrj were calculated using a transition matrix, Yparr, that 

allowed excess parr, moveparrk,j, to move downstream to find suitable rearing habitat.  

Parr that were unable to find habitat left the system to begin their migration to the ocean.  

The calculation of migparrj was done by: 

[25]   𝒎𝒊𝒈𝒑𝒂𝒓𝒓𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝒎𝒐𝒗𝒆𝒑𝒂𝒓𝒓𝑗 ∙ 𝒀𝑝𝑎𝑟𝑟 

[26]    𝑜𝑐𝑒𝑎𝑛𝑝𝑎𝑟𝑟𝑘,𝑗 =

{
𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝒌,𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑝𝑎𝑟𝑟𝑘,𝑗), 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝒌,𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > (𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑝𝑎𝑟𝑟𝑘,𝑗)

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

[27]    𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑘,𝑗 =

{
𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝒌,𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑜𝑐𝑒𝑎𝑛𝑝𝑎𝑟𝑟𝑘,𝑗 , 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝒌,𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > (𝑝𝑎𝑟𝑟𝑐𝑎𝑝𝑘,𝑗 − 𝑠𝑡𝑎𝑦𝑝𝑎𝑟𝑟𝑘,𝑗)

𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝒌,𝒋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑘,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represented each element of 𝒎𝒊𝒈𝒑𝒂𝒓𝒓𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .  This rule set was identical 

to that found in equations 16-18.  This process mimicked excess parr moving downstream 

in an attempt to search for available habitat.  If none was available, fish begin their out 

migration to the ocean.     
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The transition matrix Yparr was a k x k diagonal matrix that simulated downstream 

migration:  

 

The transition matrix Yparr was parameterized using the same process as Yfry where each 

non-zero element represented a probability that a parr would land in that reach of stream 

given where they started. 

 

Outmigration 

When out-migrant juvenile salmon leave the LAR they migrated through the San 

Francisco Bay-Delta before entering the ocean.  After entering the ocean these juvenile 

fish survived to adults before returning to the LAR to spawn once again.  In this model, 

the decision makers had no control of processes that affect salmon outside of the LAR 

watershed (e.g., harvest).  Thus, I condensed the entire process into a single life stage 

dependent, survival metric that represented the probability of an individual fish leaving 

the watershed to return as an adult.  Up to this point, the model created three classes out-

migrant juveniles, migfryk,j, migparrk,j, and smoltk,j, each of which will migrate to the 

ocean to transition into adults with varying degrees of success.   This was accomplished 

by applying a life stage specific out-migrant survival rate to each of the juvenile out-

migrant classes: 

0 y2|1 y3|1 y4|1 … yk-1|1 yk|1

0 0 y3|2 y4|2 … yk-1|2 yk|2
0 0 0 y4|3 … yk-1|3 yk|3

Yparr	=

… … … … … … …

Yparr	=

0 0 0 0 … yk-1|k-2 yk|k-2
0 0 0 0 … 0 yk|k-1

Yparr	=
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[28]   𝑎𝑑𝑢𝑙𝑡𝑓𝑟𝑦,𝑗 = ∑ 𝑚𝑖𝑔𝑓𝑟𝑦𝑘,𝑗𝑘 ∙ 𝑠𝑓𝑟𝑦𝑚𝑖𝑔,𝑗 

[29]    𝑎𝑑𝑢𝑙𝑡𝑝𝑎𝑟𝑟,𝑗 = ∑ 𝑚𝑖𝑔𝑝𝑎𝑟𝑟𝑘,𝑗𝑘 ∙ 𝑠𝑝𝑎𝑟𝑟𝑚𝑖𝑔,𝑗 

[30]    𝑎𝑑𝑢𝑙𝑡𝑠𝑚𝑜𝑙𝑡,𝑗 = ∑ 𝑠𝑚𝑜𝑙𝑡𝑘,𝑗𝑘 ∙ 𝑠𝑠𝑚𝑜𝑙𝑡𝑚𝑖𝑔,𝑗 

[31]    𝑎𝑑𝑢𝑙𝑡𝑛𝑎𝑡𝑢𝑟𝑎𝑙,𝑗 = 𝑎𝑑𝑢𝑙𝑡𝑓𝑟𝑦,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑝𝑎𝑟𝑟,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑠𝑚𝑜𝑙𝑡,𝑗 

where adultfry,j, adultparr,j, adultsmolt,j, were the number of adults produced after applying 

the respective juvenile outmigrant survival rate (Table 4.2).  The variable adultnatural,j was 

the total number of naturally produced adults.  The contribution of the hatchery 

production was estimated as: 

[32]    𝑎𝑑𝑢𝑙𝑡ℎ𝑎𝑡𝑐ℎ𝑒𝑟𝑦,𝑗 = 𝑠𝑚𝑜𝑙𝑡ℎ𝑎𝑡𝑐ℎ,𝑗 ∙ 𝑠ℎ𝑎𝑡𝑐ℎ,𝑗 

with smolthatch,j as the number of smolts produced in time step j, and shatch,j, is the smolt-

to-adult survival rate for hatchery origin smolts (Table 4.2). 

 

Adult Age Structure 

The number of naturally produced adults, adultsnatural,j, and the number of 

hatchery origin adults, adultshatch,j, were assigned ages that they returned to freshwater to 

spawn.  In the Central Valley, fall-run Chinook salmon spend two, three, four or five 

years in the ocean before returning to their natal stream to spawn (Satterthwaite et al. 

2017).  The assignment of ages was modeled using a multinomial distribution: 

[33]    𝑥𝑜𝑐𝑒𝑎𝑛,𝑗,𝑙~𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ((𝑎𝑑𝑢𝑙𝑡𝑠𝑛𝑎𝑡𝑢𝑟𝑎𝑙,𝑗 + 𝑎𝑑𝑢𝑙𝑡𝑠ℎ𝑎𝑡𝑐ℎ,𝑗), 𝒑𝑟𝑒𝑡𝑢𝑟𝑛) 

 𝒑𝒓𝒆𝒕𝒖𝒓𝒏 = [0.2 0.4 0.3 0.1] 

where xocean,j,l was the number of ocean adults from watershed j in the ocean residence 

class l= 2, 3, 4, or 5 years and preturn was the associated probability vector for each class l.   
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Habitat data 

 Habitat data for these analyses were derived from a 1-D hydrologic model 

(Hammersmark 2014).  This process involved evaluating the relationship between flow 

and depth at multiple cross sections of the riverbed at each 400m river reach.  Within 

each of these cross sections, the amount of suitable spawning, fry, and parr habitat was 

calculated (Table 4.4).  Spawning habitat was calculated using a global habitat suitability 

index derived from both depth and velocity suitability curves (Hammersmark 2014).   

Juvenile habitat included areas of the wetted stream channel with suitable depth within 

1.5 m of the shoreline.  This 1.5 m buffer was used to reflect juvenile salmon’s 

preference for slower moving water (Beakes et al. 2014).  In addition, juvenile habitat 

was divided into fry habitat (0-0.3 m deep) and parr habitat (0.3-0.9 m deep; 

(Hammersmark and Tu 2015).  Spawning and juvenile habitat availability was also 

estimated using two different flows that were chosen reflect two common flow regimes in 

this system, a high and low flow scenario (Table 4.4).  Multiple flows were included 

because habitat availability in the LAR was directly related to flow (Hammersmark and 

Tu 2015). 

 

Survival Rates and Model Calibration 

 Many of the parameters required in the model lacked empirically derived 

estimates.  For these instances, I derived calibrated estimates to ensure that the population 

model produced results that were characteristic of the dynamics of LAR fall Chinook 

Salmon.  Specifically, I calibrated the parameters: segg, sfry, sparr, sfrymig, sparrmig, ssmoltmig, 
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shatch, qualfry and qualparr.  The habitat quality parameters (qualfry and qualparr) were 

required to ensure that all the outmigrant strategies (fry, parr, and smolt outmigrants) 

were represented while keeping the in-river survival rates biologically realistic.  In the 

LAR, all three size classes are have been detected as outmigrants (Williams 2001, Silva 

and Bouton 2015).  Specifically, I wanted to make sure the inequalities segg < sfry < sparr 

and sfrymig < sparrmig < ssmoltmig were true.  The calibrated values provided a starting point to 

begin to evaluate how they influenced the model and the decision making process.  

Evaluating the influence of an unknown parameter on the decision model outputs is a key 

component of the SDM process. 

 I used the genetic algorithm found in the R package rgenoud (Mebane and 

Sekhon 2011) to calibrate these 9 parameters simultaneously.  A heuristic method such as 

a genetic algorithm is ideal for solving this kind of problem with a large, unknown state 

space that requires simultaneous fitting of several interdependent parameters.  This 

genetic algorithm required a utility function and it produced a set of parameters that 

attempted to minimize that utility function.  For this application, I let the model run for 5 

years using observed escapement values from 2004-2009 in each of those years.  The 

model was then allowed to run for another 5 years to allow each simulated ocean 

residence group to contribute to escapement.  After each year, the absolute difference 

between the simulated escapement and the actual measured escapement was calculated.  

The sum of these annual values was used as the utility to minimize.  I constrained the 

optimization to only consider values that fulfilled the survival inequalities mentioned 

above.  These inequalities ensured that larger fish have higher survival, which resulted in 
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more realistic survival estimates.  This ensured that the resulting parameters would 

represent the dynamics of LAR Chinook salmon. 

 The remaining parameters were estimated using local expert judgement (Tables 

4.2 and 4.3).  Empirical data is always preferable when parameterizing a model; however 

data from expert elicitation can serve as a starting point when it comes to prioritizing data 

needs.  The implementing agencies and their collaborators provides estimates for the 

remainder environmental covariates and survival rates. 

 

Policy Optimization 

 Given the decision problem described above, I now have a means to simulate the 

population at each time-step t, a reward function or utility (naturally produced adult 

equivalents), as well as a list of possible actions.  Taken together, these components form 

the basis of a Markov Decision Process (MDP).  MDPs can be solved using stochastic 

dynamic programming (SDP) which is able to take advantage of Markovian processes, 

population dynamics of salmon in this instance, to solve decision problems.  The goal of 

solving an MDP is to find a set of decisions or actions through time that maximize a 

utility function, while simultaneously accounting for various inherent sources of 

stochasticity.  In addition, they are computationally more consistent and efficient than 

heuristic methods or grid search optimization routines. 

 These problems can be generally formalized in discrete time as: 

[34]     max
[𝒅(𝑡)∈𝑫]

∑ 𝛾𝑡 ∙ 𝐹(𝒙, 𝒅, 𝒛, 𝑡)
𝑡𝑓

𝑡=𝑡0
+ 𝐹𝑇[𝒙(𝑡𝑓)] 

subject to: 

          𝒙(𝑡 + 1) = 𝒙(𝑡) + 𝑓(𝒙, 𝒅, 𝒛, 𝑡) 



143 
 

 

[35]    𝒙(𝑡0) = 𝒙𝟎 

 𝒙(𝑡) ∈ 𝑿 

where F() is a time specific utility function, FT() assigns a terminal value to the system, x 

is a vector of system states, d is a vector of time-specific decisions or actions, z is a vector 

of random variables influencing dynamics but not under decision control, γ is a discount 

factor and f() describes system dynamics.  In other words, we want to maximize the 

function F() over time steps ti for i = 0,1,…, f, given system dynamics in the function f().  

As the constraints in equation 35 indicate, this is a Markov process, meaning that the 

value of x(t+1) is only dependent on the value of x(t) and the system dynamics, f(x,d,z,t), 

at time t.  Thus, we can invoke the principle of optimality (Bellman 1957) and use 

backwards induction to optimize our utility function.  Consider the Hamilton-Jacobi-

Bellman (HJB) equation: 

[36]    𝐽∗[𝒙(𝑡), 𝑡] = max
[𝑑(𝑡)∈𝐷]

[𝐹(𝒙, 𝒅, 𝑡) ∙ 𝛾𝑡 + 𝐽∗(𝒙(𝑡 + 1), 𝑡 + 1)] 

Equation 36 states that a decision at time t (assuming time steps of 1) is only optimal if 

all the remaining decisions are also optimal.  Under this framework, we can derive an 

entire set of optimal decisions by finding the optimal decision at the final time step, tf, 

then working backwards to find the optimal decision at tf-1.  This process is repeated until 

an entire set of optimal decisions is found for the entire time series [t0,tf].  In the end, this 

process guarantees an optimal decision set when they are implemented forwards in time.  

If this process is repeated over a long enough time frame, the vector d(t,x) may converge 

to a set of a set of stationary, state-specific optimal decisions.  This process of is known 

as policy iteration because it provides optimal decisions for each possible system state.  
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Given the unintuitive nature of inductive reasoning, the formal proof can be found in 

either Bellman’s (1957) article or Bathers (2000) text. 

 To simplify solving equation 36 and deriving a time-specific set of optimal 

decisions, we can define the HJB equation as using transition probabilities to create a 

Markov chain of system dynamics.  If we define the conditional probability of being in 

state xt+1 at time t+1 as: 

[37]    𝜋(𝒙𝑡+1|𝒙𝑡, 𝒅𝑡) 

then the HJB equation can be rewritten as: 

[38]     𝐽∗[𝒙(𝑡), 𝑡] = max
[𝑑(𝑡)∈𝐷]

[
𝐹(𝒙, 𝒅, 𝑡) ∙ 𝛾𝑡 +

∑ 𝜋(𝒙𝑡+1|𝒙𝑡, 𝒅𝑡)𝐽∗(𝒙(𝑡 + 1), 𝑡 + 1)𝑥𝑡+1

] 

where 𝐹(𝒙, 𝒅, 𝑡) is the expected utility for the next immediate time step. 

   

This approach allowed me to derive policies that were applicable to the entire 

river.  The utility function (F(x,d,t)) for this problem was simply the number of wild 

origin adult equivalents at time step t.  Next, I derived transition probability matrices 

(π(xt+1|xt,dt)) using the population dynamics model described earlier.  I chose to define 

the system state as discrete combinations of fry rearing habitat, spawning habitat, and 

thermal suitability in an individual 400m stream reach (see section below).  Using this 

definition of system states, I was able to generate optimal management alternatives for 

any given stream reach given its current system state. 

 

System state definition 
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 I used the MDP framework to derive a stationary, state specific policy for a 

generic 400 m reach of stream.  The derived policy answers the question of “what would 

the optimal habitat restoration option be in this reach given the thermal suitability, the 

amount of observed spawners, and the amount of available habitat?”  I used metrics to 

define the system state that could capture the ability of an individual reach to 

accommodate both spawners and rearing juveniles.  Additionally, the system states 

needed to be observable and influenced by the each of the management alternatives.  

Keeping that in mind, I chose to define system states as a combination of three variables.  

The first variable was the amount of spawning habitat (m2) per spawning female and the 

second was the amount of fry rearing habitat (m2) per spawning female.  The 

combination of these two habitat variables, along with the temperature profile was what 

defined the state-space (xT) as a whole: 

[39]    𝑥𝑇 = [
𝑆𝑝𝑎𝑤𝑛ℎ𝑎𝑏𝑇

𝑅𝑒𝑑𝑑
,

𝐹𝑟𝑦𝐻𝑎𝑏𝑇

𝑅𝑒𝑑𝑑
] 

where T represented the thermal suitability strata of the reach.  Thermal suitability in a 

specific reach was a function of how far it was from Folsom dam and it directly 

determined the rearing survival rates for juvenile fish (eq. 14).  Thus, juvenile survival 

rates ultimately determined the effect of a habitat restoration project (e.g., bank 

excavation).  For instance, it was more likely that an excavation project would be more 

beneficial (in terms of maximizing natural production) in an area where fry and parr 

survival was higher. To account for this, three separate temperature strata, T, were 

considered, one each for river strata that had low, medium, and high fry survival rates 

(Figure 4.3).  These bins were determined based on the tertiles of the juvenile 

temperature suitability curve (eq. 14) of the reaches of the LAR that were under 
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consideration (Figure 4.3).  Thus, state metric (xT) was made up of four pieces of 

information that were collected by the decision makers: stream temperature, spawning 

habitat availability, fry habitat availability, and the number of females (redds) in a 

specific reach.  I chose these habitat metrics to define the state-space because they were 

influenced by the decision alternatives and because they had the greatest effect on natural 

production (See sensitivity analysis). 

 This definition of the system state required discretized values to implement the 

HJB equation presented above.  I discretized both the habitat dimensions of the defined 

states into bins of 50 in the range of 0 to 1000+ (212 total habitat states).   This range and 

binning was chosen so the effect of each decision (or no decision) would have an effect 

on future system states and it also reflected the potential range of state values possible in 

the Lower American River. 

 All three the decision alternatives (do nothing, gravel addition and bank 

excavation) were considered as decision alternatives while solving this MDP.  The goal 

of this optimization was to derive a state-specific policy that will be applicable to the 

entire LAR; thus I choose to use the system-wide mean effect of each decision 

alternative.  This was to ensure that the policy derived in the MDP wasn’t site specific, 

and thus applicable to the entirety of the LAR. 

 Under these state definitions, I was able to calculate both transition matrices (π) 

and the reward function (𝐹(𝒙, 𝒅, 𝑡)).  To calculate the transition matrices, I simulated a 

single time step and determined how many reaches were in each of the in each system 

state initially.  Then a decision was implemented and the number of reaches in each 

system state was determined again.  This process was repeated 10,000 times for each 



147 
 

 

decision alternative and allowed to me determine the probability that a reach in any 

system state will transition into a different system state given a management action.  

Simultaneously, I calculated the utility (total number of naturally produced adults) after 

implementing each decision.  These values were averaged across the system states, x, to 

determine the expected state-specific reward for each decision 𝐹(𝒙, 𝒅, 𝑡).  I assumed the 

discount parameter, γ, was equal to 0.99.  All analyses were programmed and run in the 

statistical program R (R Core Team 2018).    

 

Sensitivity Analyses 

 To determine which model parameters were the most influential in the decision 

model, I ran several different kinds of sensitivity analyses.  Each of these was aimed at 

identifying the model parameters that influenced either the model’s utility function or the 

optimal decision in a single annual time step.  The one and two-way response profiles 

were used to evaluate how influential specific parameters were to determining the 

optimal decision at a single time step.  The decisions I considered for these sensitivity 

analyses were do nothing, a gravel addition for each reach k, and an excavation project 

for each river reach k for a total of 141 decision alternatives.  These types of analyses 

were important for identifying key uncertainties in the model and learning how these 

uncertainties influenced decision-making. 

 

One-way sensitivity analysis 

 The one-way sensitivity analysis was performed by varying each of the 

population model’s parameters one at a time by +50% and -50% of their original mean 
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value, while holding all the remaining model parameters at their expected values.  During 

each parameter perturbation, I calculated the total number of naturally produced adult 

equivalents, adultsnatural, after a single time step.  This process isolated the influence that 

each individual parameter had on the utility and demonstrated how influential the 

parameters were relative to one another.  A parameter was considered influential if the 

value of the utility changed substantially while the parameter was varied between +50% 

and -50% of its original value. 

 

Two-way sensitivity analysis 

 A two-way sensitivity analysis is used to evaluate how two parameters interact 

with one another across a range of their values to affect the estimated utility.  The two-

way sensitivity analysis isolates a single pair of parameters so their interaction can be 

evaluated.  It is similar to the one-way sensitivity analysis, except that two parameters are 

varied simultaneously.  For every combination of model parameters, I varied each 

simultaneously between +50% and -50% of their mean values while holding all other 

parameters at their expected values.  The total number of naturally produced adults was 

calculated after a single time step for every combination of parameters values.   

 

Total habitat and outmigrant survival sensitivity 

 I also performed a sensitivity analysis to evaluate what combination of juvenile 

outmigrant survival and total habitat amount would be necessary to achieve the CVPIA 

doubling goals.  This analysis is a two-way sensitivity analysis but instead of perturbing 

two individual parameters, I’m perturbing two groups of parameters.  The first group is 
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all the wild-origin outmigrant survival rates (sfrymig, sparrmig, ssmoltmig).  The second group of 

parameters were all the habitat inputs (Spawnhabk, Fryhabk, Parrhabk) in each reach k.  

Both groups of parameters were perturbed from their current value to +900% of their 

current value.  For each combination of parameter perturbations I determined the number 

of naturally produced adult equivalents after a single time step.   

 

Response Profiles 

A response profile sensitivity analysis evaluates how the identity of optimal 

decisions vary across a range of values of one or more parameters.  A one-way response 

profile sensitivity analysis is similar to the one-way sensitivity analysis, in that a single 

parameter is perturbed at a time.  However, instead of focusing how different parameters 

affect the utility, these analyses evaluate how the optimal decision alternative may 

change across a range of parameter values.  In other words, it answers the question, 

“would your optimal decision be different if this individual parameter took a different 

value?”  I varied the value of each parameter in the model by +50% and -50% of its mean 

value while all the other parameters were held at their expected values.  For every value 

of the parameter being varied, all the decision alternatives were applied and the decision 

with the greatest utility value was reported.  So for any given parameter, I can determine 

if the optimal decision changes across a range of its values and where (at what value) 

those changes occur in that range. 

 

Two-way Response Profiles  
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I also performed a two-way response profile to explore how the optimal decision 

changed across the values of two model parameters simultaneously.  The goal of this 

analysis is to determine how two components of the model interact to determine an 

optimal decision alternative.  During this analysis, two model parameters were varied 

independently between -50% and +50% of their mean values, while any other model 

parameters were held constant at their expected values.  For every combination of values 

of each of the parameters that are being perturbed, the optimal decision was determined 

for a single time step.  This analysis was run for all combinations of the model 

parameters. 

I also performed a two-way response profile analysis using the effect size of each 

decision alternative.  This analysis answers the questions of how much more or less 

habitat would a project have to create before the optimal decision would change.  The 

amount of habitat the gravel addition and the floodplain excavation decision alternatives 

could make were varied simultaneously by ±50% of their original values across every 

reach.  For each combination of gravel addition effect size and floodplain excavation 

effect size I determined the optimal decision. 

 

Forward Simulation 

 I used the policy derived from the MDP to evaluate how the optimal policy 

performed compared to taking no action over the course of 100 years.  In each year, I 

used the current habitat conditions (amount of spawning and fry rearing habitats and the 

thermal suitability) and an estimate of the number of number of redds to determine the 

optimal decision for each reach using the appropriate policy.  The number of redds 
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present in particular reach, for a given year is not likely to be directly observable in time 

to implement a decision in the same year.  Typically, the number of redds in watershed 

are estimated using carcass counts, aerial photography, or another escapement based 

estimation process after the spawning season (Williams 2001, Gallagher and Gallagher 

2005).  I calculated the mean redd count over the previous five years in each watershed to 

account for the lag in redd estimation and the variability in redds that occur between 

years.  I then applied those optimal decisions to those river reaches one at a time.  The 

action in the reach that maximized natural production was then chosen as the decision 

that would be implemented in that time step.  This process was repeated for each year in 

the simulation.  I then ran another simulation of 100 years with no actions being taken to 

compare how the MDP policies performed compared to taking no action. 

 

Results 

Population Model performance 

 Overall, the population model tracked the population dynamics and features of the 

Lower American River well.  The model was able to reasonably replicate the variable 

levels of escapement seen in previous years (Figure 4.4).  Letting the model run for a 

single year produced a mean escapement of 25,625, with a standard deviation of 11,161.  

The mean natural production after a single year was 9,658, with a standard deviation of 

4,225.  Additionally, the mean hatchery production was 72,321 with a standard deviation 

of 16,274.  It should be noted, that this model was calibrated using data from a period of 

time when ocean conditions were generally poor (2010-2014).   
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The population model was able to accurately represent the diversity of out-

migrant Chinook salmon life histories as well.  A single year of simulation showed that 

the average proportion of Chinook leaving as fry, parr, and smolts produced 66%, 14%, 

and 20% of the adult equivalents produced respectively (Figure 4.5).  This follows 

closely what was observed during 2015 when a screw trap was run at the confluence of 

the American River and the Sacramento River: 71% fry, 14% parr, and 15% smolts (Silva 

and Bouton 2015).    

 

Policy optimization 

 The policy optimization identified three different state-dependent optimal 

decisions for all three water temperature strata.  In each case, the policy iteration was able 

to reach policy convergence in less than 10 iterations.  The effect of the thermal strata on 

the policy was marked, especially comparing the policy from the reaches where juvenile 

survival was lowest to the other two thermal strata (Figures 4.6-4.8).  Unlike the policies 

from the strata with higher survival, in this policy there was a great range of optimal 

decisions across all the system values.  The decision to implement a floodplain 

excavation was optimal at larger values of spawning habitat/redd compared to the other 

policies. 

 

Sensitivity Analyses 

One-way sensitivity analysis 

 The one-way sensitivity analysis showed only a few parameters had much 

influence on the adult equivalents produced in a single year (Figure 4.9).  The parameters 
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with the largest influence both were related to the hatchery production of the model.  The 

size of the hatchery release, the number of smolts that were produced and released by the 

Nimbus fish hatchery, was the most influential and the out-migrant survival of those 

hatchery fish was the next closest parameter.  Both these parameters caused the total 

number of adult equivalents to vary almost ±50% of its original, unperturbed value.  The 

models sensitivity to the hatchery submodel wasn’t surprising as currently hatchery fish 

make up the largest proportion of returning adults in the Lower American River (Palmer-

Zwahlen and Kormos 2013, Palmer-Zwahlen and Kormos 2015).  However, hatchery 

production and survival are not under the authority of the decision makers, so for the rest 

of sensitivity analyses I focus on the remaining model parameters. 

 Aside from the parameters associated with the hatchery, the next most influential 

parameters included: fry size, egg-to-fry survival, sex ratio, and fry outmigrant survival.  

With the exception of the sex ratio of spawning adults, all these parameters were focused 

on the early life history of these Chinook salmon.  Also, a fish’s decision to stay and rear 

or to migrate downstream was directly tied to the territory size of each individual as well 

as the available habitat.  In the model, fry size was a proxy for the amount of available 

habitat in the model.  This one-way sensitivity analysis shows that fry habitat availability, 

in-stream survival and out-migration survival were all the largest drivers of the 

production of adult equivalents. 

 I was surprised that both redd size and the age-specific fecundity rates were not 

influential parameters.  I had assumed that redd size would have been an effective 

predictor of the number of adult equivalents produced because the number of redds dug 

directly determines the number of potential juveniles that are produced.  The same was 
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true for all the age-specific fecundity rates.  Both these adult associated parameters were 

not as influential as other parameters associated with the juvenile life stages. 

 

Two-way sensitivity analysis 

 Almost all the two-way sensitivity analyses where similar to the one-way 

sensitivity analyses, only a handful of the results indicated that two parameters interacted 

in a non-linear manner.  One of the most interesting two-way sensitivity analysis was that 

between the fry habitat quality parameter and the parr habitat quality parameter (Figure 

4.10).  Varying these parameters simultaneously showed that generally at low levels of 

parr habitat quality, fry habitat quality no longer becomes influential.  Conversely, at high 

levels of parr habitat quality, fry habitat quality becomes influential.  Specifically, at high 

values of juvenile habitat quality as fry habitat quality decreases we see that overall 

production of adult equivalents increases.   

 The interaction between the mean size of juveniles and outmigrant survival also 

were influential in determining the production of adult-equivalents. When the size of fry 

are small (and the amount of habitat each individual occupies), the out-migration survival 

of fry begins to have little effect on the number of adult equivalents produced (Figure 

4.11).  This was likely because territory size is proportional to body size so that fry 

carrying capacity is greater than parr carrying capacity.  As a result, more fry remain to 

rear to become parr and smolts.  The total number of adult equivalents produced also 

increased as the size of fry decreased.  When we consider how the size of parr interacted 

with juvenile out-migration survival rates (Figure 4.12), we see a similar pattern as in fry.  

Again when mean size of parr is decreased, outmigration survival becomes less 
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influential because fewer and fewer juveniles migrate out of the watershed due to the 

higher densities they are able to sustain.   

 

Total habitat and outmigrant survival sensitivity 

 The two-way sensitivity analysis between the total amount of habitat and all the 

outmigrant survival rates demonstrated that increasing both would result in the biggest 

gains in natural production (Figure 4.13).  Attaining the CVPIA doubling goal would 

require huge increases in both the total amount of habitat and outmigrant survival.  

However, increasing one without the other would more than likely not result in reaching 

that goal.  

 

Response profiles  

 The response profile identified five influential parameters that caused the optimal 

decision to change across their perturbed values (Table 4.5).  Redd size caused the 

optimal decision to change twice under the values considered (Figure 4.14).  It was 

interesting that red size had such a large influence on determining the optimal decision 

given it was relatively insensitive in the one-way sensitivity analysis.  Adult freshwater 

survival was also an influential model component (Figure 4.15).  Again, the optimal 

decision changed twice over the span of values this parameter took.  The optimal decision 

was to make gravel additions except at very lowest values of adult survival.  The other 

influential parameters identified by the response profile analysis were the sex ratio, 

commercial ocean harvest survival and recreational river harvest survival. 
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Two-way Response Profiles  

Almost all the two-way response profile sensitivity analyses showed that the 

optimal decision was insensitive to most parameters.  One combination of parameters did 

show some sensitivity, fry out-migration survival (sfrymig) and the size of fry (Figure 

4.16).  This only occurred while the value of the mean fry out-migration survival was 

decreased by 30% and simultaneously the value of the mean size of fry was decreased by 

20%.  Only in this small region of parameter values did the optimal decision change.   

 The optimal decision changed several time across a range of effect sizes for the 

two decision alternatives. The optimal decision was generally insensitive to the amount 

of habitat that the excavation projects were able to produce (Figure 4.17).  Even a 

doubling in the amount of juvenile habitat that those projects did not change the optimal 

decision.  The optimal decision was much more sensitive to the amount of habitat that the 

gravel projects create.  However, the amount of habitat that the gravel projects would 

have to create would be almost nothing before the optimal decision becomes riverbank 

excavation.  This definitively points to the advantages that creating spawning habitat has 

over creating juvenile rearing habitat in the LAR. 

 

Forward Simulation 

 The forward simulation using the optimal policies showed that on a system wide 

scale it is almost always optimal to create gravel habitat (Figure 4.18).  In the 100 years 

of the simulation, bank excavation was never identified as the system wide optimal 

decision.  This is almost certainly because in the model spawning gravels (and thus 

spawning habitat) is decaying every year.  The system begins deficient in spawning 
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habitat and even with gravel additions, it remains spawning habitat deficient due to the 

gravel decay that occurs every year.  Additionally, actions were only implemented in a 

total of 16 different reaches of the LAR.  There also appeared to be a cyclic pattern to the 

where and when gravel additions took place (Figure 4.18).  

The population level response to implementing the optimal decisions was 

noticeable, but unable to reverse the declining trend of natural production in the Lower 

American River (Figures 4.19 and 4.20).  However, after 100 years of implementing the 

optimal policies there was a decrease in the rate of decline in both total escapement and 

total natural production.  The decline in escapement was due to a decline in spawning 

habitat through the gravel decay that occurs each year.  Hatchery production remained 

almost constant throughout the simulation.   

 

Discussion 

The optimal state-specific derived policy obtained from the MDP demonstrated 

that the amount of fry and spawning habitat within a specific reach ultimately determined 

what management alternative will be optimal.  The policies indicated that stream 

restoration activities in the Lower American River were highly site specific.  

Unsurprisingly, there doesn’t appear to be a single management action that was 

appropriate for all stream reaches. Models that operated at larger spatial grains would 

likely miss this important result.  The lower reaches of the river may become too warm 

during the time juvenile fall Chinook salmon rear (Williams 2001).  It also may be more 

beneficial to have juveniles migrate out of the basin as fry rather than to stay and rear 

only to experience near lethal temperatures later in the summer.   
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The forward simulation showed that there were only a handful of sites on the 

LAR where implementing a restoration project would be optimal.  After implementing 

the optimal policies for 100 years, there were only 16 reaches out of 70 where projects 

were implemented.  This resulted in a pattern in which reaches would be repeatedly 

visited through time (Figure 4.17).  Ideally, a strategy like this may allow decision 

makers to make targeted gravel supplements to the LAR through time.  Also, in each 

instance the optimal decision was always to add spawning gravels.  The LAR is thought 

to have limited spawning gravels available for Chinook salmon and these results seem to 

confirm this (Merz et al. 2012).   

  The result of the sensitivity analyses demonstrated that that the early life history 

stages of the Chinook salmon in the Lower American River are essential not only to 

population dynamics but they are also largely influential to the decision problem. It has 

been suspected that out-migrating fry and parr Chinook salmon contribute to the adult 

returns in Central Valley streams (Healey et al. 1991, Waples 1991).  The simulated 

numbers of Chinook salmon leaving the LAR as fry, parr and smolts is seen in other 

Central Valley streams, where fry and parr make up the majority of outmigrants (Miller 

et al. 2010).  The large number of simulated fry out-migrants explains why the 

parameters associated with the fry life stage (size of fry, fry in river survival, and fry out-

migrant survival) had such a large effect optimal decision making.  Small perturbations in 

almost any aspect of early life history survival can have large population level effects.  It 

should be reiterated, that in this model, fry size directly influences the territory size of 

those animals.  In fact, the state-specific optimal decisions point seem to be aimed at 

increasing the number of fry, and to a lesser extent parr, that migrate out the stream.  This 
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especially evident when we see that the optimal decisions in all the reaches (even the 

lowest reaches) was to create spawning habitat.  This demonstrates how this model 

assumes fry use habitat and how that can ultimately affect optimal decision making.  

Although smolts tend to have better ocean survival, fish that remain in freshwater to rear 

also experience a lot of additional mortality.  From the sensitivity analyses, it appears that 

management actions that increase the number of fish that can rear in may actually be 

detrimental to maximizing natural production.  Although not directly incorporated in this 

model, I believe this may be especially true if stream temperatures continue to rise 

(Yoshiyama et al. 1998, Myrick and Cech Jr 2004).  I believe that if we were able to 

incorporate in-stream temperatures we’d see that management actions that attempt to 

hold fish to rear to larger sizes (via habitat additions) would result in decreases in natural 

production.   

 All the sensitivity analyses suggested that resolving key uncertainties surrounding 

juvenile (fry and parr) survival and how they use in-stream habitats use should to be 

prioritized in future monitoring efforts.  Minimizing these uncertainties would provide 

clearer insight into how effective the different management alternatives can be.  In the 

decision model, I assumed that a juvenile’s decision to migrate downstream was directly 

related to the amount of available habitat.  This is a rather large assumption that needs to 

be evaluated empirically.  There may be other environmental cues (e.g. time of year, 

flow, or temperature, genetics) not incorporated in this model that could explain the when 

and how juveniles decide to migrate.  Alternative models of system dynamics can be 

evaluated in dynamic programming in a process known as adaptive optimization 

(Williams et al. 2002, Conroy and Peterson 2013).  There are two forms of adaptive 
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optimization: passive and active.  In passive adaptive optimization the alternative models 

of system dynamics are used to produce separate sets of state transition matrices which 

are then averaged using weights identified a priori to derive an optimal policy.  Active 

adaptive optimization treats the probability of one alternative model being correct over 

another as another system state known as the information state.  The initial values of the 

information state are allowed to evolve through time and an optimal policy is derived for 

each information state.  In both forms of adaptive optimization monitoring can be used to 

begin to resolve structural uncertainty while incorporating that uncertainty into decision 

making process.  The SDM process started in this study would provide a very appropriate 

framework to test and resolve systemic uncertainties regarding different migration 

strategies that may occur in the Chinook salmon streams. 

Defining the system states can be perhaps the most difficult parts of designing a 

MDP optimization.  Simplification or discretization of the system state space is typically 

required to solve traditional MDPs due to the “curse of dimensionality” (Bellman and 

Dreyfus , Bellman 1957).  I used just three metrics in a single reach to define the state 

space: fry habitat per red, spawning habitat per red and distance from the dam as a proxy 

for temperature.  Although this approach provides an interpretable measure to represent 

the system state of a given reach, in reality there may exist several, continuous reach 

specific characteristics that may prove to be important to determining optimal decisions.  

MDPs that include multiple continuous state-spaces are known as general state-space 

MDPs, and require more advanced algorithms to accurately depict state-space transitions 

and rewards (Feng et al. 2004, Li and Littman 2005).  I believe that such applications 

could be beneficial to stream restoration planning because they could allow for the 
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effective computation of state specific optimal decisions while incorporating a complex 

state space. 

 Decision problems that operate at fine scales require data sources to match.  

Parameterizing fine scale decision problems can be difficult because of the high 

resolution data that is required.  Although data can be aggregated to provide information 

for coarser resolutions, the opposite isn’t always true.  For instance, information that is 

gathered at a coarser scale (e.g. watershed level) may not be appropriate to apply to a 

fine-scale, spatially explicit decision model.  The SDM approach allows information gaps 

to be parameterized using expert opinion if empirical data is lacking.  Expertly derived 

data can also be evaluated to determine if they influence how optimal decisions are made.  

The result allows decisions to be modeled and key uncertainties to be identified despite 

uncertainties that are the result of working at fine scales.  Although fine scale decision 

problems can be data intensive, structured approaches to decision modeling can identify 

which data gaps are most critical to decision process which can inform future monitoring. 

Structured decision modeling and dynamic programming provide a frame work 

and tools that can break a complex problem down to more manageable components 

which can inform future decision making.  In this decision problem, there were a total of 

141 decision alternatives (70 reaches, each with two decisions available plus the option to 

do nothing) that could be considered in a single time step.  Solving a stochastic, 

sequential decision problem with that many decision alternatives would test the 

capabilities of even the most advanced heuristic optimization routines. Also, there is no 

guarantee that heuristic solution is an accurate approximation of the actual solution 

(Conroy and Peterson 2013, Alpaydin and Bach 2014).  On the other hand, dynamic 
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programming provides optimal polices that rely on just a handful of informative system 

states.  The generality of the derived policies provides insight on which model parameters 

actually drive the decision making process.  Identifying influential parameters is essential 

for natural resource managers as they plan future monitoring. 

Risk is an inherent component of decision making and has to be considered in decision 

modeling.  The discount factor (γ) used during the optimization is one way to represent 

risk because it represents the relative value of a reward across time steps.  

Mathematically γ needs to be < 1 in order for policy and value iteration methods to 

converge.  Typically γ is set to either 0.95 or 0.99 to satisfy this condition.  Smaller 

values of γ represent a decision maker that values rewards more immediately than over 

the long term.  In this decision problem, keeping the discount factor close to 1 made 

sense because I assumed the decision maker was able to value salmon in the future at 

near the same rate as salmon in present.  Decision makers may tolerate increased risk for 

more immediate returns in fish or wildlife populations that are self-sustaining and 

productive.  The opposite would be true for populations that are imperiled or endangered 

because there is smaller margin for error.  SDM and dynamic programming provides a 

frame work to quantitatively test these assumptions and determine how risk over a time 

horizon (as represented by γ) can alter optimal policies. 
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Tables 

 

Action

Flow 

Scenario

Habitats 

Adjusted
Spawning Fry Parr Spawning Fry Parr Fry Parr Fry Parr

Reach # River km

1 35.08 8412.3 -322.0 6070.2 -770.0 349.0 -648.0 3180.7 3180.7 3180.7 3180.7

2 34.67 -2401.1 -321.7 1590.1 -3199.1 2032.1 110.0 3692.6 3692.6 3692.6 3692.6

3 34.27 13649.4 -321.7 -7989.3 1305.0 -553.0 -3254.1 3281.3 3281.3 3281.3 3281.3

4 33.87 6956.2 -321.1 7266.2 7508.2 -189.0 139.0 3610.3 3610.3 3610.3 3610.3

5 33.48 9509.3 -321.8 -533.0 655.0 -1404.0 -3583.1 3857.1 3857.1 3857.1 3857.1

6 33.09 11759.4 -320.4 3716.1 9005.3 -465.0 -7242.2 3290.4 3290.4 3290.4 3290.4

7 32.69 13366.4 -316.2 12903.4 12121.4 -425.0 -4848.2 3948.5 3948.5 3948.5 3948.5

8 32.28 1119.0 -317.1 1370.0 2951.1 -1362.0 -866.0 3555.5 3555.5 3555.5 3555.5

9 31.86 2023.1 -321.9 719.0 3117.1 -1042.0 -1597.1 3628.6 3628.6 3628.6 3628.6

10 31.45 3534.1 -321.2 945.0 11586.4 -1149.0 -2300.1 3747.4 3747.4 3747.4 3747.4

11 31.05 522.0 -320.8 -1607.1 -3811.1 -2814.1 -8916.3 3528.0 3528.0 3528.0 3528.0

12 30.65 -9103.3 -318.4 -4200.1 -16798.5 -1322.0 -3995.1 3802.2 3802.2 3802.2 3802.2

13 30.25 5635.2 -321.8 5963.2 7775.3 -1628.1 1808.1 3637.7 3637.7 3637.7 3637.7

14 29.81 3609.1 -317.4 2065.1 2042.1 -1218.0 -213.0 4076.4 4076.4 4076.4 4076.4

15 29.32 3349.1 -318.4 3281.1 -220.0 -1485.0 -1645.1 4387.2 4387.2 4387.2 4387.2

16 28.87 7352.2 -320.5 5165.2 4396.1 -170.0 -972.0 2056.5 2056.5 2056.5 2056.5

17 28.35 13802.5 -322.5 1766.1 1133.0 766.0 -969.0 5100.1 5100.1 5100.1 5100.1

Table 4.1 - The effect size of implementing either a gravel decision or a riverbank excavation on each type of habitat under two 

likely flow scenarios in each reach of the Lower American River, CA.  The effect size was measured as the change in habitat (m
2
) for 

each decision.  The high and low flow scenarios correspond to inriver flows of 32.6 m
3
/s and 56.6 m

3
/s respectively.

High

Gravel Addition

Low High

Riverbank Excavation

Low
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Action

Flow 

Scenario

Habitats 

Adjusted
Spawning Fry Parr Spawning Fry Parr Fry Parr Fry Parr

Reach # River km

18 27.90 7041.2 -322.8 -2458.1 559.0 -1529.1 -2356.1 2659.7 2659.7 2659.7 2659.7

19 27.41 4577.1 -321.6 -2531.1 -988.0 -1597.1 -2202.1 3683.4 3683.4 3683.4 3683.4

20 27.04 11006.4 -322.1 -36.0 6462.2 -1068.0 -2200.1 3390.9 3390.9 3390.9 3390.9

21 26.64 642.0 -322.1 11091.4 5868.2 -723.0 -2037.1 3464.1 3464.1 3464.1 3464.1

22 26.24 9040.3 -321.4 142.0 7366.2 -253.0 -7946.3 3281.3 3281.3 3281.3 3281.3

23 25.84 2551.1 -318.3 -3111.1 -5887.2 -930.0 -3064.1 3784.0 3784.0 3784.0 3784.0

24 25.44 -221.0 -320.7 -4598.2 2951.1 -1930.1 -6593.2 3116.7 3116.7 3116.7 3116.7

25 25.03 -2014.1 -317.7 -7322.2 -6067.2 -482.0 -2540.1 3582.9 3582.9 3582.9 3582.9

26 24.63 -390.0 -321.1 -8162.3 -3832.1 345.0 -3852.1 3473.2 3473.2 3473.2 3473.2

27 24.22 7968.3 -320.5 1587.1 -782.0 1589.1 -4827.2 3646.9 3646.9 3646.9 3646.9

28 23.82 11291.4 -319.3 4792.2 6171.2 -29.0 -3561.1 3354.4 3354.4 3354.4 3354.4

29 23.42 12251.4 -318.2 9738.3 -124.0 -377.0 -7726.3 3875.4 3875.4 3875.4 3875.4

30 23.01 13099.4 -317.8 3807.1 6040.2 338.0 -5611.2 3253.8 3253.8 3253.8 3253.8

31 22.61 10249.3 -321.1 9019.3 7424.2 386.0 -3486.1 3244.7 3244.7 3244.7 3244.7

32 22.21 8189.3 -321.4 -2937.1 2616.1 -1642.1 -3372.1 3354.4 3354.4 3354.4 3354.4

33 21.82 9220.3 -320.9 -1764.1 4088.1 -1140.0 -3600.1 2815.1 2815.1 2815.1 2815.1

34 21.41 23132.8 -321.3 7420.2 16344.5 -327.0 -3763.1 3875.4 3875.4 3875.4 3875.4

35 21.00 19197.6 -320.6 20515.7 12385.4 -777.0 334.0 3784.0 3784.0 3784.0 3784.0

36 20.57 188.0 -310.3 7832.3 -1604.1 7478.2 6147.2 2202.7 2202.7 2202.7 2202.7

37 20.16 10804.4 -325.4 12641.4 7043.2 -1305.0 4954.2 3299.5 3299.5 3299.5 3299.5

38 19.75 3706.1 -323.2 21726.7 414.0 -4598.2 5574.2 2751.1 2751.1 2751.1 2751.1

39 19.31 8421.3 -315.6 14040.5 516.0 -9763.3 19231.6 4588.3 4588.3 4588.3 4588.3

Riverbank Excavation

Low High Low High

Table 4.1 - Continued

Gravel Addition
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Action

Flow 

Scenario

Habitats 

Adjusted
Spawning Fry Parr Spawning Fry Parr Fry Parr Fry Parr

Reach # River km

40 18.86 7908.3 -327.8 1982.1 7541.2 3254.1 -1060.0 3537.2 3537.2 3537.2 3537.2

41 18.41 3614.1 -322.1 3221.1 1117.0 1751.1 -1077.0 3619.4 3619.4 3619.4 3619.4

42 17.99 12194.4 -321.1 807.0 11721.4 -111.0 -274.0 3811.4 3811.4 3811.4 3811.4

43 17.59 6922.2 -321.1 649.0 5249.2 -257.0 -1708.1 3518.9 3518.9 3518.9 3518.9

44 17.17 2802.1 -321.2 1945.1 5349.2 -690.0 -8881.3 3975.9 3975.9 3975.9 3975.9

45 16.76 2768.1 -318.6 623.0 3306.1 -201.0 -1612.1 3911.9 3911.9 3911.9 3911.9

46 16.34 7532.2 -321.1 4661.2 13023.4 -453.0 -8408.3 3774.8 3774.8 3774.8 3774.8

47 15.93 3718.1 -318.0 6204.2 2388.1 -952.0 -15070.5 3729.1 3729.1 3729.1 3729.1

48 15.53 6912.2 -314.7 13819.5 9261.3 1077.0 -11607.4 3729.1 3729.1 3729.1 3729.1

49 15.11 -8202.3 -315.6 -999.0 1858.1 422.0 -19667.6 4030.7 4030.7 4030.7 4030.7

50 14.71 -26256.9 -312.5 -5974.2 -7257.2 -390.0 -30267.0 3125.9 3125.9 3125.9 3125.9

51 14.31 4191.1 -310.2 -2004.1 5145.2 -1440.0 -13561.4 3464.1 3464.1 3464.1 3464.1

52 13.91 14.0 -316.3 -6482.2 -3148.1 -1693.1 -2735.1 3765.7 3765.7 3765.7 3765.7

53 13.51 -358.0 -322.0 -6468.2 -3107.1 -1642.1 -7222.2 3866.2 3866.2 3866.2 3866.2

54 13.11 409.0 -321.3 -361.0 264.0 -1456.0 -7474.2 3774.8 3774.8 3774.8 3774.8

55 12.73 2419.1 -321.1 3800.1 890.0 -1906.1 -9488.3 3582.9 3582.9 3582.9 3582.9

56 12.33 390.0 -319.8 4683.2 2252.1 -2158.1 -14386.5 3902.8 3902.8 3902.8 3902.8

57 11.92 -1707.1 -317.8 4414.1 414.0 -2254.1 -16556.5 3948.5 3948.5 3948.5 3948.5

58 11.52 -1866.1 -317.3 -2710.1 -4840.2 -2596.1 -22318.7 3674.3 3674.3 3674.3 3674.3

59 11.12 1572.1 -316.3 2812.1 -1704.1 -1946.1 -18450.6 4368.9 4368.9 4368.9 4368.9

60 10.70 7123.2 -316.9 10398.3 2644.1 -5325.2 -25462.8 4113.0 4113.0 4113.0 4113.0

61 10.28 15257.5 -305.1 22877.7 11243.4 -4951.2 -13796.5 3491.5 3491.5 3491.5 3491.5

Riverbank Excavation

Low High Low High

Table 4.1 - Continued

Gravel Addition
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Action

Flow 

Scenario

Habitats 

Adjusted
Spawning Fry Parr Spawning Fry Parr Fry Parr Fry Parr

Reach # River km

62 9.87 22779.7 -306.7 15065.5 14054.5 -5416.2 -26134.9 3665.1 3665.1 3665.1 3665.1

63 9.50 14723.5 -303.9 14638.5 6304.2 -4872.2 -17456.6 3098.5 3098.5 3098.5 3098.5

64 9.09 12505.4 -307.6 24643.8 8469.3 -3131.1 -3050.1 2239.3 2239.3 2239.3 2239.3

65 8.69 1298.0 -310.4 -23861.8 -14704.5 -63.0 -5054.2 2431.2 2431.2 2431.2 2431.2

66 8.24 13048.4 -319.6 15866.5 15172.5 -2962.1 -833.0 4670.5 4670.5 4670.5 4670.5

67 7.81 9501.3 -310.8 13306.4 2721.1 -2934.1 -860.0 3893.6 3893.6 3893.6 3893.6

68 7.37 62.0 -310.5 11686.4 -2087.1 -3082.1 -1009.0 3875.4 3875.4 3875.4 3875.4

69 6.97 -898.0 -310.6 7870.3 -4724.2 -2942.1 -1599.1 3528.0 3528.0 3528.0 3528.0

70 6.60 8894.3 -309.9 15411.5 9238.3 -2837.1 -581.0 3144.2 3144.2 3144.2 3144.2

Riverbank Excavation

Low High Low High

Table 4.1 - Continued

Gravel Addition
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Parameter Description Mean Stand. Dev.

s comm,j Ocean harvest survival 0.4000 0.1000

s rec,j Recreational in-stream survival 0.4500 0.2250

s adult,j Adult in-river survival 0.9963 0.0100

s egg,j egg-to-fry survival* 0.1527 0.0305

s fry,j fry-to-parr survival* 0.4223 0.0845

s parr,j parr-to-smolt survival* 0.5031 0.1006

s frymig,j fry outmigration survival* 0.0011 0.0002

s parrmig,j parr outmigration survival* 0.0185 0.0037

s smolt,j smolt outmigration survival* 0.0291 0.0058

s hatch,j hatchery survival adjustment* 0.0151 0.0030

Table 4.2 - Annual survival estimates for the fall-run Chinook salmon 

population dynamics model for the Lower American River, CA.  These values 

were derived using from the calibration process.  Calibrated parameters are 

indicated with *.



173 
 

 

 
 

 

  

Parameter Description Mean Stand. Dev.

X ocean, 1 Initial population size used to seed the model 77257 NA

X ocean,2 Initial population size used to seed the model 77703 NA

X ocean,3 Initial population size used to seed the model 77845 NA

X ocean,4 Initial population size used to seed the model 79699 NA

X ocean,5 Initial population size used to seed the model 80470 NA

sex sex ratio 0.5 NA

Reddsize j Redd size (m2) 9.476 1.895

Fecund 2,j fecundity for age 2 adults 4185 837

Fecund 3,j fecundity for age 3 adults 5838 1167

Fecund 4,j fecundity for age 4 adults 5994 1198

Fecund 5,j fecundity for age 5 adults 7403 1480

L fry mean length (mm) of a fry sized fish 65 13

L parr mean length (mm) of a par sized fish 90 18

qual fry fry habitat quality parameter* 0.89 NA

qual parr parr habitat quality parameter* 0.25 NA

Table 4.3 - Other parameter values for the fall-run Chinook Salmon population model in the 

Lower American River, CA.  Parameters without a standard deviation are static.  Calibrated 

parameters are indicated with *.
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Flow Scenairo

m3/s 32.6 93.4 93.4 56.6 141.6 141.6

Habitat Type Spawning Fry Parr Spawning Fry Parr

Reach # River km

1 35.08 3337 2802 7128 3422 2256 6003

2 34.67 6888 4204 10831 6980 3250 8906

3 34.27 8735 4812 19280 15007 2419 12086

4 33.87 3073 7294 12938 4097 7265 14299

5 33.48 1257 3503 7799 1706 2578 7849

6 33.09 0 4933 9059 411 2308 9858

7 32.69 4639 4837 12610 3183 3233 10552

8 32.28 7073 4920 7997 2794 4870 10330

9 31.86 0 1240 4046 5 882 3105

10 31.45 4021 2869 9226 3951 2124 7281

11 31.05 1851 2641 7497 1689 3371 6720

12 30.65 13777 3419 11123 14491 4988 7177

13 30.25 5932 12987 11804 6347 6817 19243

14 29.81 3022 1487 4730 1819 1078 3088

15 29.32 5864 8780 21272 4133 8805 18537

16 28.87 833 6056 11131 936 6339 12579

17 28.35 3049 2277 7196 3840 2809 5792

18 27.90 6246 6733 22693 8842 5718 16502

19 27.41 970 2146 7238 1935 1627 4825

20 27.04 20 1741 3993 4 1590 3533

21 26.64 17588 3168 12033 13904 1815 7567

22 26.24 7616 2211 8549 6049 2333 5651

23 25.84 12898 4780 12126 11045 2598 9597

24 25.44 11617 1948 8805 6872 1338 4678

25 25.03 539 1523 6626 1913 970 3641

26 24.63 132 2784 6394 350 2524 6341

27 24.22 2508 5511 11478 3968 2962 12488

28 23.82 0 2376 5176 212 1085 4911

29 23.42 13731 6204 25169 18761 4658 18219

30 23.01 7535 5441 16304 9100 4767 14106

31 22.61 13170 5590 22366 14378 4578 12186

32 22.21 4527 2990 10382 4066 2429 7917

Low High

Table 4.4 - Habitat estimates (m
2
) within each reach (~400m).  Note that no habitat is 

available after river km 6.06 (reach # 70).  The LAR stakeholders indicated the the 

temperatures in the  lower reaches of the LAR are typically too warm for salmon 

spawning and rearing.
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Flow Scenairo

m3/s 32.6 93.4 93.4 56.6 141.6 141.6

Habitat Type Spawning Fry Parr Spawning Fry Parr

Reach # River km

33 21.82 0 2082 5833 81 2050 5407

34 21.41 63 2625 9079 338 1465 8147

35 21.00 8085 13838 25823 9655 11952 24863

36 20.57 4810 28141 27751 9247 21844 41178

37 20.16 7121 16572 25275 4198 12398 28781

38 19.75 7376 25147 35985 8846 21012 48559

39 19.31 2937 4669 13853 4898 8045 11558

40 18.86 1393 2544 6700 1616 1968 5933

41 18.41 3505 5572 8046 3858 3402 9593

42 17.99 593 4561 9906 778 1462 9174

43 17.59 0 7408 25719 5 4877 26021

44 17.17 0 8829 18024 1 5441 17992

45 16.76 0 7944 19740 200 4761 16837

46 16.34 3234 5159 14387 2404 2596 12815

47 15.93 67 1537 5490 961 870 3776

48 15.53 6757 1889 5416 4278 1713 4065

49 15.11 20920 1708 10180 8239 1159 5854

50 14.71 13883 3029 11214 7231 2393 8883

51 14.31 5703 7043 25072 8029 6032 17035

52 13.91 1800 2158 12359 2599 1402 6531

53 13.51 0 2979 12735 0 2755 9383

54 13.11 0 7727 17531 0 5842 16669

55 12.73 0 3856 14892 0 2366 11854

56 12.33 963 3644 10239 804 864 9747

57 11.92 0 1606 4547 34 1008 3888

58 11.52 0 1335 5374 0 973 3941

59 11.12 0 757 2393 0 640 1854

60 10.70 0 691 1841 0 595 1607

61 10.28 13 1001 2897 256 812 2357

62 9.87 3120 5091 19704 8962 3801 16619

63 9.50 11934 3223 12127 8372 2206 8780

64 9.09 15811 5077 17115 15959 3434 10568

Table 4.4 - Continued

Low High
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Flow Scenairo

m3/s 32.6 93.4 93.4 56.6 141.6 141.6

Habitat Type Spawning Fry Parr Spawning Fry Parr

Reach # River km

65 8.69 12243 3976 27042 11965 2798 7262

66 8.24 4694 2478 8577 4256 2688 4994

67 7.81 6884 2782 11449 8036 1384 4120

68 7.37 3166 1804 5090 3191 2633 3887

69 6.97 0 896 2470 0 1291 1379

70 6.60 0 670 1770 0 1764 2011

71 6.16 0 0 0 0 0 0

72 5.74 0 0 0 0 0 0

73 5.33 0 0 0 0 0 0

74 4.92 0 0 0 0 0 0

75 4.50 0 0 0 0 0 0

76 4.09 0 0 0 0 0 0

77 3.68 0 0 0 0 0 0

78 3.26 0 0 0 0 0 0

79 2.85 0 0 0 0 0 0

80 2.44 0 0 0 0 0 0

81 2.02 0 0 0 0 0 0

82 1.61 0 0 0 0 0 0

83 1.20 0 0 0 0 0 0

84 0.78 0 0 0 0 0 0

85 0.37 0 0 0 0 0 0

Table 4.4 - Continued

Low High
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Parameter Description

# 

Optimal 

Decisions

# Decision 

Changes

sex Adult sex ratio 2 1

reddsize Redd size 2 1

s comm Commercial ocean harvest 2 1

s rec Recreational river Harvest 2 1

s adult Adult in-river Survival 2 1

Table 4.5 - Results from the response profile analysis for the Lower 

American River decision model.  The response profile analysis 

identified how many times the optimal decision would change across a 

range of values (±50% of the original mean value) for each parameter in 

the model.  Only parameters where the opitmal decision changed more 

than once are reported.



178 
 

 

Figures 

 

 

Figure 4.1 – A map of the American River watershed (grey) and the Lower American 

River.   
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Figure 4.2 – A graphical representation of the life cycle of Chinook salmon.  In this figure circles represent adults, diamonds 

represent rearing juveniles and boxes represent out-migrant juveniles.  
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Figure 4.3 – The relationship between river kilometer and juvenile rearing thermal 

suitability (tempk, eq. 14) for Chinook salmon in the Lower American River, CA.  The 

shaded grey area represents the portions of the LAR that were considered for habitat 

restoration. 
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Figure 4.4 – Total escapement in the LAR from 2000 to 2015.  The dashed line represents 

the mean simulated escapement from the population model for an additional 20 years. 
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Figure 4.5 – The mean contribution of each out-migrant size class to the total number of 

adult equivalents produced each year.   
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Figure 4.6 – Habitat restoration policy plot from river sections that experience “low” 

juvenile rearing temperature suitability.  The different colors indicate which of the three 

management alternatives is optimal for that area of state-space.   
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Figure 4.7 – Results from the SDP policy iteration from river sections that experience 

“medium” juvenile rearing temperature suitability.  The different colors indicate which of 

the three management alternatives is optimal.  
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Figure 4.8 – Results from the SDP policy iteration from river sections that experience 

“high” juvenile rearing temperature suitability.  The different colors indicate which of the 

three management alternatives is optimal. 
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Figure 4.9 – Results of the one-way sensitivity analysis.  The parameters are ordered 

from the most influential (top) to least influential (bottom). 
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Figure 4.10 – A contour plot showing the results of the two-way sensitivity analysis of 

the fry habitat (y-axis) quality and parr habitat quality (x-axis).  The contours represent 

the total number of naturally produced adult equivalents.   
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Figure 4.11 – Two-way sensitivity analysis depicting how the total number of naturally 

produced adult equivalents (contour lines) changes with different values of the size of fry 

(x-axis) and fry out-migrant survival (y-axis) in the LAR population model.  The red 

cross represents the current mean values of both parameters used in population model. 
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Figure 4.12 - Two-way sensitivity analysis depicting how total number of naturally 

produced adult equivalents (contour lines) changes with different values of the size of 

parr (x-axis) and parr out-migrant survival (y-axis) in the LAR population model.  The 

red cross represents the current mean values of both parameters used in population 

model. 
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Figure 4.13 – The contours on this plot represent different levels of natural production of 

fall-run Chinook salmon in the Lower American River, CA.  The axes represent different 

levels of juvenile out-migrant survival (for all size/age classes) and the total amount of all 

types of habitat.  The red contour indicates the 160,000 doubling goal stipulated by the 

CVPIA.  For instance, if the total amount of habitat (in its current relative configuration) 

was increased by 100% (e.g. doubled), all things being constant, juvenile out-migrant 

survival for all size/age classes would have to increase over 700% to meet the doubling 

goal.  

  



191 
 

 

 

 

 

 
 

Figure 4.14 – One way response profile for the parameter for the mean redd size in the 

LAR decision model.  The arrow on the x-axis indicates the current mean value used in 

the decision model. 
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Figure 4.15 – One-way response profile for the parameter for the mean s_adult_mean in 

the LAR decision model. The arrow on the x-axis indicates the current mean value used 

in the decision model. 
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Figure 4.16 – Two-way response profile sensitivity plot depicting the optimal decisions 

across different values of both fry out-migrant survival and the size of fry.  The red cross 

represents the current mean value of both parameters used in the population model. 
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Figure 4.17 – Two-way response profile plot evaluating how changes to the effect sizes 

of the two types of restoration activities in the LAR can affect the optimal decision in a 

single time step.   
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Figure 4.18 – Optimal decisions implemented from the forward simulation of the population of fall-run Chinook salmon in the 

Lower American River.  The plot indicates the location in the river each decision was implemented at, which decision was 

implemented, and the simulated year it was implemented.  The dashed line indicates the upper extent of the river (e.g. Folsom 

Dam). 
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Figure 4.19 – Total escapement vs. simulation year the forward simulation of the optimal 

habitat restoration policies and no action alternative. The shaded areas represent ±2 SE. 
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Figure 4.20 –Natural production vs. simulation year the forward simulation of the optimal 

habitat restoration policies and no action alternative. The shaded areas represent ±2 SE. 
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CHAPTER 5: APPLICATION OF A MULTITIME-SCALE MARKOV DECISION 

PROBLEM TO IDENTIFY OPTIMAL CHINOOK HABITAT RESTORATION 

STRATEGIES IN A HIERARCHICAL MANAGEMENT SYSTEM 

 

 

Abstract 

 

Uncertainty is a defining feature of the decision making process in natural 

resource management and can manifest in several ways: environmental variation, partial 

controllability, partial observability, or as structural uncertainty.  Decision problems in 

natural resource management often involve several, interconnected decision makers, 

usually working at different temporal and spatial scales.  Multitime-scale Markov 

decision processes (MMDPs) provide a framework to derive optimal decisions from 

hierarchically structured sequential decision making processes.  I developed a MMDP 

approach to solve a stream habitat restoration problem with two tiers of decision makers 

working at different spatial scales.  The objective of tiers of decision makers is to 

maximize the production of natural origin Chinook salmon.  The decision problem was 

structured with an upper tier decision maker (large scale) allocating funds to lower tier 

decision makers (fine scale) who actually implement on the ground restoration projects.  I 

was able to simultaneously derive state specific optimal policies for both tiers of decision 

makers.  The upper tier optimal policy identified optimal resource allocation strategies 

given different funding states.  The lower tier policies identified optimal habitat 

restoration projects for a given configuration of habitat in each watershed.  Sensitivity 

analyses identify…   The work in this study bridges the gap between large and small-

scale decision models in natural resource management by applying a MMDP to a 

Chinook salmon management problem in CVPIA streams.   
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Introduction  

Uncertainty is a defining feature of the decision making process in natural 

resource management.  In the context of natural resource management, uncertainty can 

manifest itself as environmental variation, partial controllability, partial observability, or 

as structural uncertainty (Nichols et al. 2011, Williams 2011, Williams and Johnson 

2013).  How uncertainties interact and compound with one another is especially 

important when trying to determine what influences decision making in natural resource 

management.  Ultimately, all sources of uncertainty contribute to how natural resource 

managers perceive the systems they are tasked to manage.  Often, large amounts of 

uncertainty can lead to risk adverse decision-making.  That is, the perceived risk of an 

unintentional negative outcome resulting from a management action is so great that 

managers may choose to pursue less optimal management actions (Thompson 2002, 

Cullen and Small 2004).  Risk adverse decision strategies often sacrifice significant, long 

term gains for immediate, less optimal returns.  Acknowledging and identifying types of 

uncertainty is the first step towards more efficient and effective natural resource 

management strategies. 

Structured decision making (SDM) is a decision support framework that connects 

decision alternatives with objectives and allows a formal, quantitative evaluation of 

uncertainty for a decision problem that requires sequential actions (Clemen 1996, Conroy 

and Peterson 2013).  The largest strength of the SDM process is identifying the 

uncertainties that can influence decision-making.  Because the SDM approach can 

incorporate sequential decision making situations, it is possible to reduce uncertainties 

while implementing management actions that can lead to more effective management 
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actions through time.  Examples of decision modeling in natural resource management 

include animal harvest (Conroy et al. 2002, Peterson and Evans 2003), endangered or 

threatened species management (Rout et al. 2009, Runge 2011, Brignon et al. 2017), and 

freshwater management (Pearson et al. 2010, Peterson and Freeman 2016).  Most 

decision problems consist of a single decision maker or a group acting as a single entity 

that implement management actions to achieve some objective in the face of 

environmental uncertainty.  However, decision making in natural resource management 

often involves several, interconnected decision makers, usually working at different 

temporal and spatial scales.  For instance, in any state level natural resource department 

regional fishery biologists coordinate with a statewide fishery manager before 

implementing new rules or regulations.   

Uncertainty is compounded in systems where there is a hierarchy of 

interconnected or dependent decision makers tasked with making sequential decisions at 

different spatial and temporal scales.  Structuring these types of decision problems as 

hierarchies of interdependent problems is a useful approach for decomposing complex 

systems into smaller, more manageable problems.  Typically, these problems are modeled 

with multiple levels of decision makers, with fewer decision makers at higher levels and 

more decision makers at lower levels.  The results, and any associated uncertainty, of 

actions taken by lower level decision makers are passed on to decision makers at higher 

levels (Figure 5.1).  For a given decision problem, as the number of decision makers 

and/or the number of tiers in the hierarchy increase the system state-space also 

exponentially increases.  State-space is defined as the set of all possible configurations of 

the components that define a system.  The exponential expansion of state-space results in 
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what is generally known as “the curse of dimensionality,” since the state-spaces can grow 

(in terms of the number of dimensions) to sizes that prohibit any real world application 

(Bellman and Dreyfus 1962).  Solving hierarchical or multilevel sequential decision 

problems has been a subject of research in fields of machine learning and operations 

research for some time (Sutton 1995, Kristensen and Jørgensen 2000, Guestrin and 

Gordon 2002).  Most of these applications are designed to model and optimize systems 

that involve multiple levels of decision makers that are organized in a pyramid-like 

structure, meaning there are fewer decision makers as you move towards the top of the 

hierarchy (e.g., such as manufacturing; McGovern et al. 1998, Chang et al. 2003).  This 

means the decisions of the top tier affect how decisions are made at lower tiers (Figure 

5.1).  Typically, feedback is also included so that the decisions made at lower tiers also 

influence the higher tiers either indirectly or directly through a utility calculation (Wernz 

and Deshmukh 2010).  A useful feature of these types of decision frameworks is that the 

actions at each level don’t necessarily have to occur at the same time scales (Sutton 1995, 

Sutton et al. 1999).  For instance, a decision can be made once every five time steps (e.g., 

years) at the top of the pyramid, whereas a decision can be made at every time step at the 

bottom of the pyramid.  All the structural, temporal and spatial features of modeling a 

multi-level decision problem require careful consideration when attempting to derive 

optimal management actions. 

One approach to deriving optimal decisions from a multilevel decision problem is 

an extension of traditional Markov Decision Problems (MDPs) known as hierarchical 

Markov decision problems or multi-time scale Markov decision processes (MMDPs).  

These approaches provide the framework to derive optimal decisions from hierarchically 
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structured sequential decision making processes (Chang et al. 2003, Wernz and 

Deshmukh 2012).  MMDPs can be thought of as two or more MDPs that are layered on 

top of one another.  Generally, in MMDPs high level decision makers can influence the 

decision sets available at lower levels.  Additionally, the decision made by lower levels 

influence the utility (the metric to be optimized) of higher levels.  This feedback process 

allows information to indirectly flow between decision makers at different levels, which 

can create situations where cooperation between the decision makers can yield more 

optimal results than if they were operating in isolation.  Although MMDPs have been 

explored in context of systems operations and industrial engineering, it has not yet been 

applied to problems in natural resource management. 

Decision problems in natural resource management are often structured as 

hierarchical sequential decision problems with several decision makers working together 

at different spatial and temporal scales.  It remains unclear how interactions between 

decision makers can affect decision making at each hierarchical level when accompanied 

by ecological uncertainties.  For instance, the anticipated effects of climate change may 

be interpreted differently by decision makers at different levels in the same decision 

hierarchy.  How the interactions between decisions makers might change given their 

specific responses remains unclear.  Similarly, if decision makers work at different 

temporal scales (e.g., an annual decision versus quinquennial decision) they likely face 

different sources of uncertainty and probably use different types of data to inform their 

decision making process.  A better understanding of how uncertainties that work at 

different scales can influence a hierarchical decision problems would provide insights 
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into how decision makers may cooperate to develop better natural resource management 

strategies. 

Restoration of Chinook salmon (Oncorhynchus tshawytscha) populations in 

California’s Central Valley is an ideal example of natural resource decision problem that 

has an explicit hierarchical structure.  Chinook salmon stocks in California’s Central 

Valley consist of four distinct seasonal runs: fall, late-fall, winter, and spring; each of 

which used to be distributed throughout the Sacramento and San Joaquin basins (Figure 

5.2).  These runs of Chinook salmon have been declining for the past 100 years primarily 

due to over harvest and habitat degradation.  The passage of the Central Valley Plan 

(CVP) in 1931 exasperated exacerbated the habitat degradation issues through the 

construction of multiple flood control and irrigation projects throughout the Central 

Valley.  The installation of dams and irrigation canals left salmon unable to access their 

historic spawning and rearing habitats and of those habitats remaining, most were 

severely degraded (Nehlsen et al. 1991, Lichatowich 1999).  The combination of habitat 

degradation and over harvest ultimately lead to a sharp decline in the salmon stocks, 

which ultimately resulted in the passage of the Central Valley Plan Improvement Act 

(CVPIA) in 1992.  The goal of the CVPIA was to rehabilitate many of the populations of 

anadromous species adversely affected by the CVP, particularly Chinook salmon.  

Perhaps of the most iconic goal of the CVPIA is to double natural salmon production 

from the 1991 levels in each CVPIA administered stream (31 populations of Chinook 

salmon).  The term “natural production” refers to fish that are not of hatchery origin.  So 

under this definition, the offspring of two hatchery fish spawning would be considered 
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naturally produced.  Despite efforts since the passage of the CVPIA the natural 

production doubling goal has yet to be attained.  

The spatial scale, goals, and federal oversight of the CVPIA determined how this 

program was structured and ultimately implemented.  The U.S. Fish and Wildlife Service 

and the U.S. Bureau of Reclamation jointly oversee CVPIA actions.  These entities act as 

the primary decision makers regarding salmon management and habitat restoration 

actions in the Central Valley.  Together they ultimately decide which actions are funded 

across all the CVPIA watersheds but at broad scales. That is, these two implementing 

agencies choose the combinations of the types of restoration actions and the streams that 

are best for achieving program objectives.  To implement restorations, the implementing 

agencies cooperate with other entities (e.g., California Department of Fish and Game and 

local watershed councils) and local stakeholders the actually propose and implement 

specific management actions at specific locations within each stream.  This is the general 

hierarchy of decision making process.  The primary decision makers decide to fund some 

habitat restoration process, however it’s up to the local decision makers to determine 

how, where, and when to implement those projects.  The result is a set of decision makers 

operating at two different spatial and temporal scales.  Thus, a multilevel decision 

making framework may provide an ideal approach for dealing with the hierarchical 

structure of Chinook salmon restoration and management in CVPIA streams. 

In this chapter, I bridge the gap between large and small-scale decision models in 

natural resource management by applying a MMDP to a Chinook salmon management 

problem in CVPIA streams.  In the previous chapters, I showed how to identify optimal 

salmon restoration and management decisions at large spatial scales (chapter 2) as well as 
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at small spatial scales (chapter 3) in CVPIA streams.  This hierarchical structure can be 

exploited using hierarchical or multilevel Markovian decision processes, which can be 

solved to find optimal decisions or policies for both sets of decision makers 

simultaneously (Wernz and Deshmukh 2010, 2012).  The objectives for this chapter are 

to 1.) Develop a multiscale habitat restoration decision problem with two tiers of decision 

makers, 2.) Solve the multiscale decision problem as a MMDP using dynamic 

programming and 3.) Identify which uncertainties in the decision models were influential 

to the decision were making process. 

 

Methods 

 I developed and implemented a MMDP to solve a two-tiered hierarchical stream 

habitat restoration decision problem based on CVPIA Chinook salmon management.  In 

this section, I first provide an overview of the decision problem and describe the models 

that I used to parameterize the decision problem. Next, I describe the general MMDP 

framework and the optimality equations used to derive optimal policies.  Finally, I 

describe several sensitivity analyses I performed to evaluate how uncertainties influence 

decision making.  

 

Study Site 

 California’s Central Valley is a large watershed, stretching 720 km north to south, 

70 km east to west and covering > 70,000 km2.  The Sacramento River and the San 

Joaquin River are the primary tributaries that make up the two main branches of the 

Central Valley.  The Sacramento River is the longest river in California and begins in the 
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Northern Sierra Nevada mountain range.  From there it flows 719 kilometers south until 

it meets the confluence of the San Joaquin.  The San Joaquin River begins in the southern 

Sierra Nevada and flows north.  The confluence of these rivers creates the large and 

complex Sacramento-San Joaquin delta.  The delta eventually makes it way out the 

Pacific through the San Francisco Bay.  A total of 25 populations of fall-run Chinook 

salmon are included under CVPIA management.  Most the populations (19) are 

distributed throughout the Sacramento basin, with the remaining populations located in 

the San Joaquin basin (Figure 5.1).  The watersheds vary in size from 18,000 – 3.5M ha 

(median 106,000 ha) with between 33 and 209 river kilometers open to anadromous 

species.  These watersheds were chosen for this analysis because they are actively 

managed as part of the CVPIA fisheries program. 

Although 25 populations of fall-run Chinook salmon are administered by the 

CVPIA, I choose to develop this problem with three distinct watersheds where each is 

representative of a common “type” of CVPIA watershed (Figure 5.1).  I identified three 

basic types of watersheds administered by the CVPIA: upper Sacramento tributaries, 

lower Sacramento tributaries and San Joaquin tributaries.  Each of these types of tributary 

represent a typical combination of instream conditions and habitat configuration.  Upper 

Sacramento (USAC) tributaries have historically been some of the most productive for 

Chinook salmon.  These tributaries all lack hatchery inputs and rely on natural production 

and straying fish to sustain their populations (Palmer-Zwahlen and Kormos 2015).  The 

land use surrounding USAC tributaries is primarily public forest service land or 

agricultural.  Lower Sacramento tributaries (LSAC) all originate in the Sierra Nevada 

mountain range, and flow west into the Sacramento.  These watersheds are closer to the 
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delta or connect directly into the delta, which means juveniles have a shorter route during 

their outmigration.  Also, many LSAC tributaries (Lower American, Feather, and 

Mokelumne rivers) have hatcheries that supplement their populations.  The land use in 

LSAC tributaries is highly developed with most lands being urbanized or in agricultural 

production.  The last type of watershed are tributaries in the San Joaquin (SJ).  These 

watersheds tend to not be as productive as Sacramento tributaries and also lack hatchery 

support.  The land use surrounding the portions of SJ tributaries open to anadromous fish 

are dominated by agriculture.  High summertime water temperatures are major concern 

for cold waters species in SJ tributaries.  In the decision model, the differences between 

the watersheds were realized as differences in in-river and outmigration survival rates 

(Table 5.1). 

 

Decision Problem 

 In this analysis, I developed a two-tiered decision problem for fall-fun Chinook 

salmon habitat management in California’s Central Valley.  The decision problem was 

framed to reflect the current decision making structure of the CVPIA and its local 

management partners.  The upper tier was comprised of the CVPIA implementing 

agencies: the U.S. Bureau of Reclamation and the U.S. Fish and Wildlife Service.  For 

the sake of this analysis, I considered these partners a single decision making entity.  The 

upper tier decision maker decided how to allocate CVPIA resources among the CVPIA 

administered watersheds.  The second tier was made up of local watershed managers 

from different watersheds that decide how to implement funds awarded to their respective 

watersheds.  Each watershed represented a common “type” (USAC, LSAC, and SJ) of 
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tributary found in the Central Valley.  The local watershed managers decided what kind 

of habitat restoration action would be most beneficial to their watershed.  The 

fundamental objective for each tier was to maximize production of natural origin adult 

equivalents fall-run Chinook salmon within their respective spatial extents.  The term 

“Adult equivalents” was defined as wild-origin adults (non-hatchery fish) expected to be 

produced from an annual cohort of juvenile salmon that migrate to the ocean. 

 

Decision Problem - Lower Tier 

 Each watershed in the lower tier operated at the same spatial and temporal scale.  

It should also be made clear that the lower tier decision makers acted independently of 

one another as did the populations of fall-run Chinook salmon that they manage.  The 

spatial extent for each watershed in the lower tier was the entirety of the river that was 

open to anadromy and the spatial grain was 400 m (~0.25 mile) reaches within that 

spatial extent.  The size of the spatial grain was determined by the types of projects that 

have implemented in previous habitat restoration work in CVPIA streams.  Temporally, 

the lower tier works on an annual time step.  During each time step, a single management 

action could be implemented in each lower tier watershed. 

 

Decision Problem – Lower Tier Objectives 

 Each decision maker in the lower tier shared a single fundamental objective, 

which was to maximize the number of naturally produced fall-run adult Chinook salmon 

in their respective watersheds.  The number of naturally produced adult equivalent 

Chinook salmon served as the utility (the metric that will be used in the optimization) in 
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each watershed.  I identified two means objectives that would help accomplish the 

fundamental objective of maximizing the number of naturally produced fall-run Chinook 

salmon.  Both were based on my previous work (Chapters 2 and 3) modeling salmon 

populations and decision processes in the CVPIA streams.  The first means objective was 

to increase the amount of spawning habitat available to returning adult salmon.  The 

second means objective was to increase the amount of rearing habitat available to 

juvenile Chinook salmon.  Although there may be other means of increasing the number 

of naturally produced Chinook salmon (e.g., decreasing in-stream temperatures or pulsing 

stream flows at critical times), I chose to limit the analysis to habitat restoration work, 

because habitat restoration projects are currently the most common types of projects 

implemented in CVPIA streams. 

 

Decision Problem – Lower Tier Management Alternatives 

 The available alternative management actions were identical across all three 

watersheds and were aimed at influencing the means objectives identified above.  The 

two management alternatives were spawning gravel additions and floodplain excavations.  

The management alternatives are assumed to be cost equivalent in each watershed.  

During a gravel addition, approximately 9000 m3 (12,000 yard3) of gravel are added into 

a single 400m (~0.25 mile) reach of river.  Gravel is trucked into to the site and then 

placed into the stream channel using heavy machinery.  Ideally, the gravel is able to settle 

into the contours of the stream channel and provide additional spawning habitats.  I used 

the results from a 1-D hydrologic model that simulated gravel additions in the Lower 

American River to get an estimate of the average effect size of an individual gravel 
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addition (Hammersmark 2014, Hammersmark and Tu 2015).  For this application, I 

assumed that the average effect size was the same across all three lower tier watersheds.  

The second decision alternative was to excavate a stream bank to create additional 

floodplain, juvenile rearing habitat.  This is done to create juvenile rearing habitat by 

providing access to slower moving waters with more cover.  These are the types of 

habitats that juvenile Chinook salmon require to avoid predation as well as to feed 

(Sommer et al. 2001).  These projects require heavy machinery to manually excavate a 

volume of earth to lower the effective floodplain to provide shallow off-channel habitat.  

The mean effect size of a gravel excavation was assumed to be equal across all three 

watersheds (Table 5.2).  These two management alternatives were scaled so they were 

considered cost equivalent in their implementation. 

 

Decision Problem – Top Tier Overview 

The upper tier decision maker represents both the U.S. Bureau of Reclamation 

and U.S. Fish and Wildlife Service.  Scale is the primary difference between the decision 

makers in the lower tier and the decision maker in the upper tier.  The spatial extent of 

the upper tier decision problem is the sum of the extents in the lower tier and the spatial 

grain in the top tier is each individual watershed in the lower tier.  The difference in scale 

between the two sets of decisions means the lower tier decision maker works on a more 

spatially explicit scale and the upper tier decision maker works on a spatially implicit 

scale.  I structured the top tier decision problem as a resource allocation problem to 

answer the question, “Which watershed should I provide funds to increase total salmon 

production?” At the upper tier, the decision making process occurs at a slower time scale 
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compared to the decision process in the second tier.  Decisions in the upper tier occur 

once every three years compared to on an annual basis in the lower tier.  The top tier 

decision maker only allocates funds to the lower tier watersheds once every three years.  

This difference in time scales to reflect how funding cycles are often structured in the 

CVPIA and other natural resource management decision situations.  

 

Decision Problem – Top Tier Objectives 

   The fundamental objective of upper tier decision maker is to maximize the total 

number of naturally produced Chinook salmon in the entire system given a limited 

amount of resources.  I identified three means objectives that can serve this fundamental 

objective.  Each means objective is simply funding a habitat restoration project in a 

different lower tier watershed.  Unlike the decision makers in the lower tier, this decision 

make does not identify specific projects to implement, just which watershed(s) receive 

funding to implement projects.   

 

Top Tier – Management Alternatives 

 The upper tier decision maker can only influence the levels of natural production 

for fall-run Chinook salmon through allocating funds to lower tier watersheds.  The 

watersheds then use those funds to implement habitat restoration projects.  In this 

decision set, only a single management alternative could be implemented in each lower 

tier time step, which results in a maximum of three projects occurring in a single upper 

tier time step.  There is no restriction that limits how many projects can occur in a single 

watershed over the course of an upper tier time step.  Thus, the management alternatives 
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available to the upper tier decision maker are simply all the permutations of how up to 

three total projects can be allocated between the three watersheds.   

 

Decision Models 

 In this section, I describe the simulation models that were used to parameterize all 

the components of the MMDP.  In the lower tier, the decision model simulates how 

different lower tier management alternatives effect a single reach in each type of 

watershed under different configurations of habitats.  The lower tier decision model was 

used to derive a policy that identifies the type of management alternatives (gravel 

addition or floodplain excavation) that is optimal for different configurations of spawning 

and rearing habitat.  The upper tier decision model determines the system wide expected 

number of adult salmon that would be produced through different funding alternatives.  

The upper decision model was then used to derive a policy that would determine the 

optimal allocation of funds between all three lower watersheds given different 

combinations of total funding and delta migration survival. 

  

Lower Tier Decision Model 

I used the fine scale, life cycle model introduced in chapter 3 as the basis for each 

lower tier watershed’s decision model.  This model is used to simulate the dynamics of a 

fall-run Chinook salmon population in a Central Valley stream.  A key feature of this 

model is that it allowed me to simulate the dynamics of fall-run Chinook salmon 

populations and also evaluate how populations respond to alternative restoration actions.  

The primary inputs for the model are initial adult escapement, current habitat availability, 
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adult spawning success rates, juvenile survival rates and juvenile-to-adult outmigration 

and survival rates.  In turn, the primary outputs of the model are the number of naturally 

produced adult equivalents for a given cohort. 

The population dynamics model consisted of six sub-models: escapement, 

reproductive success, fry rearing and habitat, parr rearing and habitat, hatchery 

migration success, and fry, parr and smolt migration success (Figure 5.3) and operated 

on an annual time step.  I define a fry as a juvenile salmon <65mm in total length (TL), a 

parr juvenile salmon between >65mm and <90mm TL, and a smolt as a juvenile 

salmon >90mm TL.  The escapement sub-model simulated adult Chinook salmon in the 

ocean that migrated from the ocean into each their natal watershed.  These migrating 

individuals experienced mortality from ocean harvest and recreational angler harvest.  

After entering freshwater, adult salmon fish were distributed throughout the spawning 

sections of each watershed. The escapees then create redds and produce fry in the 

reproductive success sub-model.  The fry rearing and habitat and parr rearing and 

habitat sub-models simulated the juvenile rearing process.  For each of these sub-models, 

individuals either found habitat, grew, and survived or they migrated out of the watershed 

as fry or parr.  If habitat was not available in the stream section where a fish resided, that 

fish can moved downstream in an attempt to find rearing habitat.  Fish that survived both 

rearing processes ultimately become smolts, after which they migrate to the ocean.  Also, 

in each section of the river the temperature suitability was determined by how far a 

specific watershed was from the river’s confluence with the Sacramento or San Joaquin.  

The river sections that were further upstream were considered better (colder) with respect 

to temperature suitability.  Temperature suitability influence the habitat quality for each 
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life stage, with colder water representing better quality habitat.  Hatchery contributions 

were only considered in the LSAC watershed.  The hatchery component is simulated in 

the hatchery migration success sub-model where hatchery origin smolts are released from 

the hatchery.  Lastly, the fry, parr, and smolt migration success sub-model applied a 

juvenile-to-adult survival rate.  This rate depended on a juvenile migrant fish’s life 

history stage when it left the watershed.  A complete description of this model can be 

found in Methods section of chapter 2. 

 

Upper Tier Decision Model 

 The upper tier decision model simulated the how the upper tier decision maker 

received and dispersed funds among the watersheds.  During this process, the upper tier 

decision maker allocated funds to the lower tier decision makers that they in turn use to 

implement habitat restoration activities within the watershed they administer.  The output 

for this model was the total number of naturally produced adult equivalent Chinook 

salmon from all lower tier watersheds.  Optimal decisions in the upper tier were 

determined by estimating natural production at different funding levels, of a specific 

funding strategy.  The inputs for the upper tier decision model were the annual funding 

level and the watershed specific cost of implementing a habitat restoration action.  The 

output was the total number of naturally produced Chinook salmon from the second tier 

decision model. 

 The upper tier decision maker only considered their current level of funds and the 

relative costs of implementing each management alternative in each watershed.  The 

amount of money that the upper tier decision maker had at time T depended on the 
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amount of money they had at the end of the previous time step (T-1).  This was 

represented by 

[1]    𝑋𝑇 = 𝑋𝑇−1 + 𝐹𝑇 − 𝐶𝐴(𝑇) 

where XT was the amount of money decision maker has at time step T, FT was the amount 

of funding that upper tier decision maker received at time step T and CA(T) was the costs 

of implementing action A at time step T.  The cost of implementing a specific action was 

determined through the relationship: 

[2]    𝐶𝐴(𝑇) = ∑ 𝑎𝑇,𝑘 ∙ 𝑐𝑘𝑘  

where aT,k was the number of actions that are implemented in lower tier watershed k at 

time step T, and ck was the cost associated with implementing a single action in 

watershed k.  In this model, project costs were randomly sampled from a normal 

distribution with a mean equal to 5, 2.5, and 2.5 for the LSAC, USAC, and SJ watersheds 

respectively.  I assumed each distribution had a coefficient of variation of 0.2, which 

resulted in standard deviations of 1.5, 0.75, and 0.75 for watershed k.  Similarly, FT was 

also a random draw from a normal distribution with mean 6 and standard deviation 1.04.  

I parameterized the funding and cost estimates to reflect the geographical differences in 

costs that typically occur within a multilevel natural resource decision problem. The costs 

associated of implementing a project in each of the watersheds were determined using 

cost estimates from previous habitat projects in the Central Valley.  I decided to make all 

cost estimates relative to one another rather than use exact dollar estimates to make the 

project cost differences between  the watersheds more clear.  

 The total number of naturally produced adult equivalent Chinook salmon in the 

lower tier was determined as: 
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[3]    𝑅𝑇 = {
∑ ∑ 𝑔𝑘(𝐴(𝑇) 𝜖 𝑎𝑇,𝑘, 𝑡)

(𝑇∙3)
𝑡=(𝑇∙3)−2𝑘 , 𝑋𝑇 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where gk was the function that predicts the number of naturally produced Chinook salmon 

in the lower tier population model from watershed k, t represents the relatively faster time 

step of the second tier (annual).  In other words, the output for tier one was simply the 

sum of the amount of salmon that were produced across each all the lower tier 

watersheds.  In the event that a management action was implemented and the costs of that 

management plan exceeded the current level of funding, the decision maker lost those 

funds and no projects were implemented.  This penalty ensured that only actions that 

were fully funded were implemented and it made expensive projects potentially riskier 

endeavors.  It should be noted that the number of fish produced was only tied to the top 

tier by how the top tier decision maker decided to allocate funds.  Once, the top tier 

decision maker allocated funds, it was up to the lower tier decision makers to decide how 

to implement those funds (e.g., gravel project vs excavation project). 

   

System State Definitions 

 To implement the MMDP framework, I also needed to define the system states for 

both decision making tiers.  The decision models described above were used to determine 

the transition probabilities for each set of system states.  The system states were assumed 

to be fully observable for each decision maker.  

 

Lower Tier System state definition   
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I chose to define the state space (x) with two habitat dimensions: the amounts of 

spawning habitat (m2) per redd and rearing habitat (m2) per redd in an individual 400m 

stream reach: 

    𝑥 = [
𝑆𝑝𝑎𝑤𝑛ℎ𝑎𝑏

𝑅𝑒𝑑𝑑
,

𝐹𝑟𝑦𝐻𝑎𝑏

𝑅𝑒𝑑𝑑
] 

This metric was made up of three pieces of information that are already collected by the 

decision makers in each watershed: spawning habitat, fry habitat, and an estimate of the 

number of females (redds) on a specific river section.  The system state definition in the 

lower tiers will answer the question of “what would the optimal habitat restoration option 

be in this given the current amount of observed spawners and habitat?” The number of 

redds present in particular reach, for a given year is not likely to be directly observable in 

time to implement a decision in the same year.  Typically, the number of redds in 

watershed are estimated using carcass counts, aerial photography, or another escapement 

based estimation process after the spawning season (Williams 2001, Gallagher and 

Gallagher 2005).  Instead, I defined the number of redds in the system state (x) as the 

mean redd count over the previous five years in each 400m reach to account for the lag in 

redd estimation and the variability in redds that occur between years.  The current amount 

of habitat in x is assumed to be known and observable.  This is the exact same habitat 

definitions I used in Chapter 3, when deriving optimal policies in the Lower American 

River. 

 This definition of the system state required that system state values are 

discretized, rather than continuous, to implement the optimization approach described 

below.  I discretized both dimensions of the defined state-space into bins of 50 in the 

range of 0 to 1000+ for a total of 212 states.   This range and bin size was chosen so that 
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the effect of each decision (or no decision) on the current system state would be reflected 

in the state transition probabilities and it also reflected the potential range of state-space 

values possible in the CVPIA watersheds. 

 Under this definition of the states, I was able to calculate both transition 

probabilities (Pl) and the reward function (Rl) in each watershed in the lower tier.  To 

calculate the transition matrices, I simulated a single time step and determined how many 

reaches were in each initial state.  Then a decision was implemented and the number of 

reaches in each new state was determined.  This process was repeated 10,000 times for 

each decision alternative and allowed to me determine the probability that a reach in any 

system state will transition into a different system state given a management action. 

 

Upper Tier System state definition 

  I defined the upper tier states as the amount of funding available to the upper tier 

decision maker.  The amount of funding available depended primarily on two pieces of 

information, the costs of implementing a specific management alternative and the funding 

level.  The upper tier state was discretized into three states: low (0-3), medium (4-6) and 

high (7-9).  This range and number of states was chosen to represent a full range of 

funding scenarios.  The state transition probabilities (Pu) for the upper tier were 

calculated through simulation using equations 1 - 2.  In each iteration, I simulated a 

management alternative and associated costs, which were subtracted from the initial 

funding state.  This was done 10,000 times for each decision alternative (lower tier 

funding combinations), during which the initial and ending states were recorded to 

determine the overall transitions probability of each decision alternative.  
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Outmigration survival system state 

 Average outmigration survival was the final system state that was included in the 

MMDP analysis.  In these models, outmigration survival represented the probability that 

an outmigrant juvenile (fry, parr, or smolt) returned to their natal watershed as a 

spawning adult.  Outmigration survival represented the product of two survival processes: 

1.) Migration through the migratory corridor, 2.) juvenile-to-adult survival in the ocean.  

The migratory corridor consists of the lower portions of the Sacramento and San Joaquin 

rivers and the delta.  These areas are known to be survival bottlenecks for outmigrant 

juvenile Chinook salmon (Buchanan et al. 2018).  These survival rates were highly 

influential to decision making at both a large and small scale habitat restoration (Chapters 

2 and 3).  I wanted to know if different migratory corridor conditions that favored 

outmigrants at different times of the year could influence optimal policies at both tiers of 

this decision problem.  I considered three different migratory corridor conditions, each 

favored different outmigrants at different times.  The timing of outmigration 

corresponded with different sizes of outmigrants: fry, parr, and smolt.  Fry outmigrants 

left the natal watersheds earliest and smolts migrated last.  When the migratory corridor 

favored a specific outmigrant size/timing class, I assumed it provided a 3-fold increase in 

the mean outmigration survival for that size/timing class in each lower tier watershed.  

This resulted in three sets of policies for each decision maker, one for each migratory 

corridor survival condition. 

 

The MMDP Framework 



220 
 

 

The best way to envision a MMDP is as sets of traditional MDPs stacked on top 

of one another with upper tier reward (utility) dependent on the optimal policies in the 

lower tier.  The MMDP structure I present here was largely an generalization of the work 

done by Chang et al. (2003).  The primary difference was that I allowed lower tiers to 

have more than one decision maker.  I present a framework that operated with two tiers 

of decision makers.  The upper tier consisted of a single decision maker and the lower tier 

included several decision makers.  For this problem, each decision maker in the second 

tier was treated as an independent MDP.  The optimal policies from lower tier MDPs 

were used to determine the expected utility of implementing the optimal policy in each 

watershed.  The cumulative expected utility values from the optimal policies in the lower 

tier were used as the reward for the upper tier (Figure 5.4).  This allowed the top tier to 

then be solved as a normal MDP, with the caveat that the policy derived was contingent 

on the lower tier decision makers also acting optimally. 

Like a traditional MDP, a MMDPs can be solved using a stochastic dynamic 

programming.  The primary difference is the sequential manner in which the MDPs are 

solved (lowest to highest tier).  The upper MDP had a finite state space I and a finite 

action space Λ.  In this model time, n, was discrete with n ϵ {0,1,2,…,} for the upper 

level.  At each time step, the upper level began at state in ϵ I, and an action λn ϵ Λ was 

taken and in transitioned into in+1 with probability Pu(in+1|in, λn).  The current state and 

action at the upper level determined the actions that were available to the decision makers 

in the lower level.  Time on the lower tier moved in increments t ϵ {t0, t1, t2, …} and tnT = 

n (Figure 5.5).  Thus, T acted as the scale factor between the two tiers and was equal to 

three for this decision model because decisions on the lower tier were made three times 



221 
 

 

more often than on the upper tier.  The action λn then caused a reward, RU, to be accrued 

for the upper tier decision maker at each time step n.  RU was function that is dependent 

on the actions and dynamics in the lower tier.  I provide a full definition for RU after 

describing the dynamics of the lower tier below.   

The lower tier MDPs were structured almost identically to the upper level but on 

the shorter time-scale and with a dependency upper level actions.  For each decision 

maker k, at each time step t, an action ak,t ϵ A occurred that caused the current state xk,t ϵ X 

to transition to the next state xk,t+1.  This transition occurred according to the probability 

Pl
k(xk,t+1|xk,t, ak,t, in, λn) which resulted in a reward calculated according to Rl

k(xk,t, ak,t, in, 

λn). Thus, both the state transition probabilities, and reward functions for the lower tier k 

watersheds were dependent on the upper tier’s current state in and action λn.  A policy in 

the lower tier was defined as dl
k = {πl

k,n}, where πl
k,n was a sequence of actions available 

to watershed k given the state space Xk, I, and action space Λ.  This translated to a 

sequence of decisions being made at the lower tier across a single time step on the upper 

tier which was defined as πl
k,n = {𝜙𝑘,𝑡𝑛𝑇

, … , 𝜙𝑘,𝑡(𝑛+1)𝑇−1
}.   Where 𝜙𝑘,𝑡𝑛𝑇

 was simply an 

action in watershed k that belonged to the policy πl
k,n. 

The discounted reward function for the upper tier was defined as, 

[4]    𝑅𝑢(𝑥1:𝑘, 𝑖𝑛, 𝜆𝑛, 𝜋𝑛
𝑙 ) = 𝐸𝑖𝑛,𝜆𝑛

𝑥1:𝑘 [∑ ∑ 𝛼𝜎(𝑡)𝑅𝑘
𝑙 (𝑥𝑘,𝑡, 𝜙𝑘,𝑡(𝑥𝑘,𝑡, 𝑖𝑛, 𝜆𝑛), 𝑖𝑛, 𝜆𝑛)

𝑡(𝑛+1)𝑇−1

𝑡=𝑡𝑛𝑇𝑘 ] 

where 0 < α < 1 and σ(tnT+r) = r for all n with r = 0,1,…,T-1.  Equation 4 describes a 

summation of the rewards calculated in each watershed in the lower tier given the 

watershed specific policy.  The goal of the MMDP was to obtain a policy for the upper 

tier, du ϵ Du, in addition to the lower level policy dl.   
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Optimal Policy Derivation 

I defined the infinite horizon discounted value function as: 

[5]    𝑉∗(𝑥𝑘, 𝑖) =  max
𝑑𝑢𝜖𝐷𝑢

max
𝑑𝑘

𝑙 𝜖𝐷𝑘
𝑙

𝐸𝑥𝑘,𝑖[∑ 𝛾𝑛𝑅𝑢(𝑥1:𝑘, 𝑖𝑛, 𝑑𝑢(𝑥𝑘,𝑡𝑛𝑇
, 𝑖𝑛), 𝜋𝑛

𝑙 )∞
𝑛=0 ] 

which can be expanded using the definition of Ru
 to: 

[6]    𝑉∗(𝑥𝑘, 𝑖) =  max
𝑑𝑢𝜖𝐷𝑢

max
𝑑𝑘

𝑙 𝜖𝐷𝑘
𝑙

𝐸𝑥𝑘,𝑖 [∑ 𝛾𝑛𝐸𝑖𝑛,𝜆𝑛

𝑥1:𝑘 [∑ ∑ 𝛼𝜎(𝑡) ∙
𝑡(𝑛+1)𝑇−1

𝑡=𝑡𝑛𝑇

3
𝑘=1

∞
𝑛=0

𝑅𝑘
𝑙 (𝑥𝑘,𝑡, 𝜙𝑘,𝑡 (𝑥𝑘,𝑡, 𝑖𝑛, 𝑑𝑢(𝑥𝑘,𝑡𝑛𝑇

, 𝑖𝑛)) , 𝑖𝑛, 𝑑𝑢(𝑥𝑘,𝑡𝑛𝑇
, 𝑖𝑛))]]    

The definition of V* makes clear how the rewards at the upper tier are dependent on those 

at the lower tiers.   

 Optimal policies (du and dl
k) were derived in the same way as a traditional, single 

level MDP.  The upper level dynamics were essentially an MDP where the reward 

function was calculated from the lower tier MDPs.  To solve the MMDP, I defined the 

optimality equation as: 

[7]    𝑉∗(𝑥𝑘 , 𝑖) =  max
𝜆𝜖Λ

( max
𝜋𝑙[𝑖,𝜆]𝜖Π𝑙[𝑖,𝜆]

(
𝑅𝑢(𝑥1:𝑘 , 𝑖𝑛, 𝜆𝑛 , 𝜋1:𝑘,𝑛

𝑙 ) +

𝛾 ∑ ∑ ∑ 𝑃𝑥𝑦
𝑇 (𝜋𝑙[𝑖, 𝜆])𝑃𝑈(𝑗|𝑖, 𝜆)𝑉∗(𝑦𝑘 , 𝑗)𝑗𝜖𝐼𝑦𝜖𝑋𝑘

)) , 

where 𝑃𝑥𝑦
𝑇 (𝜋𝑙[𝑖, 𝜆]) was the probability that state y was reached by T-steps while starting 

in state x by following policy 𝜋𝑙[𝑖, 𝜆].  Equation 6 is a generalization of a Hamiltonian-

Jacobi-Bellman equation (Bellman 1957).  Equation 7 describes how a decision on the 

upper tier (λ) at time n was only optimal if all the remaining decisions on the upper tier 

were also optimal.  Additionally, equation 7 indicates that a decision on the lower tier 

(𝜋𝑘
𝑙 [𝑖, 𝜆]) was only optimal if all the remaining decisions in each of watershed on the 

lower tier were also optimal.  Under this framework, I derived an entire set of optimal 
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decisions at both tiers by finding the optimal decision at the final time step, nf, then 

working backwards to find the optimal decision at nf-1.  This process was repeated until 

an entire set of optimal decisions was found for the entire time series [n0,nf].  If this 

process is repeated over a long enough time frame, both du and dl may converge to a set 

of a set of stationary, state-specific optimal decisions.  This process of is known as policy 

iteration and provides optimal decision alternatives for each possible system state for 

each decision maker (Chang et al. 2003). 

 

Policy Iteration 

 I used stochastic linear programming and the MMDP equations to obtain optimal 

policies for each decision maker through policy iteration.  I assumed a discount reward of 

0.99 for both upper tier discount factor, α, as well as the lower tier discount factor, γ, due 

to the infinite horizon that policy iteration requires.  I considered the policy to be stable 

after five iterations that produced the identical state-specific solutions.  All analyses were 

programmed in R (R Core Team 2018).   

 

Sensitivity Analyses 

One-way sensitivity Analysis 

 I performed a one-way sensitivity analysis to determine how different model 

inputs ultimately influence the expected utility of the upper tier decision maker.  During 

the one-way sensitivity analysis, each model input was perturbed by ±50% of its original 

mean value while all other input parameters were held constant at their mean value.  I 

then derived optimal policies for both tiers of decision makers using the perturbed 
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parameter value.  Lastly, I calculated the expected reward value of the upper tier decision 

maker using the new optimal policy.  The expected number of total adult equivalents 

produced was estimated by calculating the expected reward when implementing the 

optimal policies 𝑑𝑢 and 𝑑𝑘
𝑙  at every state i and xk, respectively. 

[8]   𝑈 = 𝐸𝑥𝑘,𝑖[𝑉∗(𝑥𝑘, 𝑖)]  

The larger the difference between the values U takes when a parameter was perturbed the 

more influential the parameter.  By perturbing each parameter individually and by the 

same relative amount (±50%), I identified the parameters were most influential in 

determining optimal polices and the total number of fish produced in the entire system. 

 

Fund Allocation Response Profile 

 Response profile analyses provided a method to determine how policies change 

over the range of a parameter.  In this decision model, each upper tier policy can be best 

described by the expected amount of funds that the policy allocated to each lower tier 

watershed.  I choose to evaluate how smolt outmigration survival values influenced the 

optimal policy.  For this analysis, I perturbed the mean smolt outmigration survival value 

in each lower tier watershed simultaneously.  Values of smolt outmigration survival were 

perturbed across a range of ±100% of their original values while all other inputs were 

held constant.  The analysis was repeated for each of migratory corridor states.  

Influential parameters would cause the relative amount of resources allocated between 

watersheds to change across the range of values considered.   

 

Relative Cost Policy Plot 
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 The last sensitivity analysis I performed was a two-way sensitivity analysis to 

evaluate how the relative costs of projects influenced the upper tier policy.  I wanted to 

understand the role project costs played in determining optimal fund allocation between 

the watersheds.  I chose to evaluate the expected ratio of funds allocated between the 

LSAC and USAC across a range of different combinations of mean project costs (Eq. 3 – 

4).  A high (>1) ratio indicated that more resources were allocated to the LSAC and a 

lower ratio (<1) indicated the more resources were allocated to USAC.  Similar to the 

other sensitivity analyses, this analysis was done for each migratory corridor condition.   

 

Results 

Lower Tier Policies 

 The lower tier policies were similar across each delta condition and in stream 

temperature suitability.  The policies were almost identical between watersheds when the 

migratory corridor conditions favored parr or smolt outmigrants (Figure 5.6 & 5.7).  

These policies were generally dominated by the decision to do a floodplain excavation in 

stream reaches under high (Figure 5.6.a, 5.6.d, 5.6.g, 5.7.a, 5.7.d, 5.7.g) and medium 

(Figure 5.6.b, 5.6.e, 5.6.h, 5.7.b, 7.e, 5.7.h) stream temperature suitability.  Gravel 

projects were optimal at the lowest values of spawning habitat per redd states.  However, 

when the stream temperature suitability in a reach was low, gravel projects become 

optimal under a greater range of conditions (Figure 5.6.c, 5.6.f, 5.6.i, 5.7.c, 5.7.f, 5.7.i).  

Policies differed when the migratory corridor favored fry outmigrants (Figure 5.8).  There 

was no clear pattern across all the watersheds and rearing temperature suitability and 

gravel projects were only optimal in the LSAC watershed under these conditions.  In 
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every policy plot, there was a threshold in the state combinations where the optimal 

decision became no action (Figure 5.6 – 5.8).  In these regions, there were enough 

juvenile habitat per redd that any action would not yield additional production.  The 

actual threshold values varied with migratory corridor conditions and rearing temperature 

suitability. 

 The migratory corridor conditions was the most influential factor in determining 

optimal policies within the lower tier watersheds.  This is evident from how similar all 

the policies between watersheds were for each migratory corridor state.  When the delta 

was favorable to parr or smolts the policies were similar across the watersheds and in 

each temperature suitability (Figure 5.6 – 5.8).  The optimal policies within each 

watershed varied when the delta conditions favored fry outmigrants.   

The expected reward of lower tier optimal policies followed a similar pattern for 

all three delta conditions (Figure 5.9 – 5.11).  In all three types of watersheds, the greatest 

expected utility occurred when delta conditions favored smolt outmigrants, followed by 

conditions that favor fry outmigrants and lastly by delta conditions that favor parr 

outmigrants.  Regardless of the delta conditions, the policies from the hatchery 

supplemented stream in the lower Sacramento (LSAC) had the highest expected rewards 

and the policies from stream in the San Joaquin basin (SJ) resulted in the lowest expected 

rewards.  Migratory corridor conditions that favored smolt outmigrants resulted in the 

highest expected reward value in every watershed across the range of rearing temperature 

suitability.   

 The optimal policies indicated that lower tier decision makers had similar optimal 

policies despite the differences in survival rates (rearing and migration) between 
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watersheds.  Instead, the primary differences between these policies was the expected 

reward in each watershed.  The reward function was the number of adult equivalents 

produced, which depended on the watershed specific survival rates.  The expected reward 

values were passed to the upper tier decision maker and were influential in determining 

the optimal resource allocation at that coarser scale.     

  

Upper Tier Policies 

 The optimal policy at the upper tier was focused on providing resources to the 

watersheds in the Sacramento basin (USAC and LSAC) across all combinations of 

system states (Figure 5.12).  The policy never allocated resources to the watershed 

located in the San Joaquin basin (SJ) under any conditions, despite that the mean project 

costs in USAC and SJ watersheds were equal.  This outcome was due to the low rearing 

and survival rates that occur in SJ that resulted lower production across lower tier 

management actions (Figure 5.13).  Most resources were allocated to the LSAC 

watershed under most conditions except for medium funding with a delta condition that 

favored fry. Under these combinations of system states, all resources were allocated to 

USAC watershed.  Here, the production of adult equivalents was similar between the 

LSAC and USAC watersheds that it was much more cost efficient to provide funds to 

USAC watershed. Under low funding, the optimal decision was to allocate all the funds 

to the LSAC watershed, regardless of the delta condition.  The number of projects that 

were implemented within a watershed depended on the mean cost of a project in a 

watershed.  Under the optimal policy, resources would be allocated in more than one 
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watershed when funding was high and the delta favored fry migrants, and when funding 

was medium and delta favored smolt or parr outmigrants.  

The expected reward of implementing the optimal upper tier policy varied across 

both delta conditions and funding levels (Figure 5.14).  Regardless of delta condition, the 

total expected reward increased as the funding increased.  This was due to the greater 

number of projects that can be implemented at higher funding levels.  The expected 

reward also was lowest when the delta conditions favored parr across all funding levels. 

 

Sensitivity Analyses 

One-way Sensitivity Analyses 

 Three parameters were the most influential based on the one-way sensitivity 

analyses (Figure 5.15 – 5.17).  The most important parameter for every migratory 

corridor state was the cost of a project in the Lower Sacramento watershed.  The next two 

most important metrics were the mean level of funding and mean fry in-river rearing 

survival.  Smolt outmigration survival in the Lower Sacramento stream was the most 

influential parameter across all three delta conditions regardless of the delta state.  Lastly, 

the survival rates specific to the LSAC watershed were more influential than any of the 

watershed specific survival rates in the USAC or SJ watershed.  Almost all the 

parameters related to the San Joaquin watershed were inconsequential to the estimate of 

adult equivalents produced regardless of the migratory corridor state.   

 

Fund Allocation Response Profile 
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Response profile plots of the mean smolt outmigration survival parameters 

indicated that small changes in smolt outmigration survival influenced the optimal policy 

in the fry migratory corridor condition (Figure 5.18).  A decrease in smolt outmigration 

survival resulted in more resources going to USAC watershed and an increase resulted in 

more resources going to the LSAC watershed.  This effect was dampened under in the 

parr delta state (Figure 5.19).  Smolt delta survival decrease of at least 10% caused a 

change in resources allocation.  Under the smolt delta state, the policy became static 

across all smolt survival rates (Figure 5.20).   

 

Relative Cost Policy Plot 

 The relative cost policy plots evaluated how the costs of projects in the LSAC and 

USAC watersheds interacted to determine how the upper tier decision maker would 

allocated limited resources.  The relative costs of projects in these two watersheds was 

highly influential in determining how the optimal policy would allocate funds (Figure 

5.21 – 5.23).  The same general pattern was seen regardless of the delta condition: if the 

cost of a Lower Sacramento project decreased or the cost of a project in Upper 

Sacramento watershed increased the upper tier policy would allocate all the resources to 

the Lower Sacramento watershed (Figure 5.21 – 5.23).  Small changes to the mean cost 

of a project in these watersheds could result in very different upper tier policies.  

 

Discussion 
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In this study the optimal policies produced a strategy that focused almost all of the 

upper tier resources on the LSAC watershed.  The optimal policy rarely prioritized 

restoration work in the USAC and SJ watersheds, which experienced lower rearing and 

corridor migration survival rates compared to the Lower Sacramento watersheds.  The 

optimal policy never allocated resources to the San Joaquin watershed.  Watersheds in the 

San Joaquin basin tend to experience warmer summer time temperatures than their 

Sacramento basin counterparts, which presumably results in higher mortality rates of 

rearing juvenile salmon (Williams 2006, Isaak et al. 2016).  High temperatures, lethal to 

juvenile salmonids, (> 20°C) in the San Joaquin mainstem are more common than in the 

Sacramento (Marine and Cech Jr 2004, Myrick and Cech Jr 2004).  Additionally, survival 

through the delta of San Joaquin origin smolts has been estimated to be less than 2% on 

average (Buchanan et al. 2018).  For these reasons, the optimal strategy focused 

restoration efforts on the watersheds in the Sacramento (LSAC and USAC). 

The MMDP policy for the decision problem I presented suggests it is almost 

always optimal to focus on a single, highly productive stream, even if it is more costly to 

do so.  Almost all restoration activities are constrained by limited funds, which creates 

tradeoffs between which lower tier decision makers received resources.  Focusing 

resources on a few streams can occur at the expense of doing many smaller projects in 

several streams.  Clear Creek and Butte Creek are two tributaries of the Sacramento River 

where long term, intensive restoration efforts have yielded substantial increases in 

Chinook production (Kondolf et al. 2008).  In Clear Creek, habitat restoration efforts 

began in 1996 and include spawning gravel augmentation, floodplain reconstruction, flow 

alteration, and dam removal.  These efforts resulted in almost a three-fold increase in the 
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escapement of wild fall-run Chinook salmon (Earley et al. 2013).  A similar, 

comprehensive strategy was implemented in Butte Creek to benefit the spring-run 

Chinook population.  After several dam removals and over 40 river kilometers of habitat 

restoration, spring-run escapement jumped from about 500 adults in 1987-1992 to over 

20,000 in 1998 (Pejchar and Warner 2001).   

Migratory species pose unique challenges to natural resource decision problems.  

Often local managers only have influence on a portion of the migratory species life cycle.  

However, processes that occur outside spatial extent that managers administer can still be 

highly influential to management goals.  In this decision problem, the local watershed 

managers could only influence habitats within their own watershed.  However, ocean and 

migratory corridor survival rates were among the most important factors in determining 

natural production and optimal habitat restoration policies.  MMDPs are a tool that can 

transparently connect processes that occur at different scales to decision making.  The 

benefits of monitoring and resolving uncertainties can be shared indirectly across scales 

and decision making hierarchy.   

In this study, I’ve demonstrated how local processes, such as juvenile survival, 

can influence not only local decision making, but also regional decision making.  This is 

an example of indirect feedback between decision tiers in a MMDP.  Techniques that 

deconstruct complex decision problems into a smaller set of problems, such as MMDPs 

and other hierarchical approaches, make intuitive sense for problems that span multiple 

spatial scales (Parr and Russell 1998, Lane and Kaelbling 2001).  MMDPs are essentially 

just generalized versions of a single level MDP, however they allow problems to be 

framed in a more logical and relatable fashion.  The biggest appeal of a hierarchical 
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approach is how it creates individualized policies for every decision maker at each level.  

It would be possible to frame a MMDP as an equivalent traditional single level MDP, 

however that would require the single state space to increase exponentially in size 

because it would cover the state space of each decision maker in the problem. The 

resulting state-space would be almost uninterpretable and any decision rule or policy that 

was derived from it would not be uniquely applicable to individual levels and associated 

decision makers. 

The MMDP approach is a logical tool for hierarchical natural resource 

management decision problems, however some multi-agent, natural resource decision 

problems do not have built in hierarchies.  Decentralized control problems are sequential 

decision problems with multiple, dependent decision makers working towards a common 

goal without a hierarchy (Bernstein et al. 2002).  Decentralized control problems are 

applicable to habitat restoration problems with two or more managers working in a 

connected system where their actions are not independent.  Large river systems, with 

multiple managers and migratory species are especially good candidates for such 

approaches.  Decentralized control problems identify policies where the decision makers 

cooperate in order to reach their common objective.  Although methods exist to derive 

optimal policies for decentralized control problems, they are limited to simple problems 

with few decision makers.  As the number decision makers (n) in the problem increase, 

the number of dimensions of the state space grows n-exponentially.  Habitat restoration 

rarely only involves a single manager.  Identifying additional tools and approaches that 

can provide decision support to multiple managers simultaneously can help identify more 

optimal strategies.  



233 
 

 

One of the most important steps in the SDM process is identifying the objectives 

of the decision makers.  In decision problems with multiple decision makers, objectives 

may be conflicting or competing.  If multiple objectives exist in a traditional MDPs they 

have to be pooled into a single utility value using relative weights or another function.  In 

this study, I assumed that the every decision maker had the same fundamental objective 

(maximize natural production), however this is not a requirement of hierarchical decision 

models.  The MMDP approach breaks the complete decision problem into smaller, 

discrete problems so it is possible to have different or competing objectives at each 

decision making tier.  The objectives from lower tiers directly determine lower tier 

policies which then influence how optimal policies at higher tiers are formed. 

Large scale challenges, such as climate change, make methods that are able to 

quantitatively link large scale decision problems to small scale decision problems 

important tools in natural resource management.  Global climate change is predicted to 

shift precipitation patterns, ocean conditions, and air temperatures across North America, 

which will have ramifications on ecological processes regardless of the scale (Lynch et 

al. 2016, Poesch et al. 2016).  The sheer scale that climate change occurs at and the 

ecological processes it alters requires natural resource managers to consider how spatial 

and temporal scale influences their management actions.  Species that require several 

types of habitat to complete their life cycle (such as salmon) will be uniquely vulnerable 

to climate changes (Crozier et al. 2008).  Effective management of these kinds of species 

will require the cooperation of lots of different managers, working at many different 

spatial scales.  MMDPs and other hierarchical decision tools provide managers working 
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at different levels the means to determine how uncertainties can influence optimal 

decision making at different scales of a decision problem.    

Dynamic programming can provide analytic solutions to decision problems as 

long as the number of dimensions of the state space is kept relatively small.  I limited this 

problem to two tiers of decision makers with only four decision makers in total.  My 

formulation of a resource allocation decision problem was limited in the number of lower 

tier decision makers it can accommodate while utilizing dynamic programming.  The size 

of the decision set for the upper tier decision maker was directly determined by the 

number of decision makers in the lower tier.  Solving larger, more complex decision 

problems may not be possible, or at least practical, with dynamic programming due to the 

computational requirement of calculating the objective function for every combination of 

the discretized state-space.  However, reinforcement learning and other heuristic methods 

provide tools to approximate solutions to MDPs or MMDPs with high dimensionality 

(Barto and Mahadevan 2003, Sutton and Barto 2018).   

To my knowledge, this is the first example of a hierarchically structured decision 

approach to a fisheries resource problem.  The next logical step for future research would 

be to incorporate partial observability and/or partial controllability into a hierarchical 

natural resource decision problem.  Partial observability refers to the uncertainty of 

knowing exactly what your current state is and partial controllability refers to the 

uncertainty that an action has its intended effect. These concepts are important, influential 

sources of uncertainty in other natural resource problems.  It’s unknown how those 

sources of uncertainty may or may not drive optimal decision making with multiple 

decision makers working across different time and spatial scales. 
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Tables 

 
 

 

 
 

  

Watershed Fry Rearing Parr Rearing

Fry 

Migration

Parr 

Migration

Smolt 

Migration

Upper Sacramento 0.3 0.4 0.000013 0.00022 0.00046

Lower Sacramento 0.422 0.503 0.00002 0.0003 0.00059

San Joaquin 0.15 0.3 0.000004 0.00008 0.00019

Table 5.1 - Mean juvenile outmigration survival rates for the three lower tier watersheds.  The 

lifestage specific migration survival rates represent the probability an outmigrant juvnile returns 

to its natal stream as a spawning adult.  All these parameters were assumed to have a 

corresponding standard deviation with a coefficient of variation of 0.2.

Gravel Addtion

Flood Plain 

Excavation

Spawning Habitat 4535 -

Fry Habitat -748 3573

Parr Habitat -690 3573

Action Type

Table 5.2 - Effect sizes for the two habitat restortaion 

projects available for lower tier decision makers.  Values 

refect the changes in the amount of each type of habitat 

(m
2
) in an individual 400m reach.
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Figures 

 
Figure 5.1 – The conceptual design of a multi-tiered decision making process.  Solid 

arrows represent the actions of the regional decision maker.  Dashed arrows reflect 

indirect feedback from Tier 2 back to the Tier 1 decision maker. 
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Figure 5.2 – Map of the Central Valley, CA watershed and the major tributaries the 

Sacramento River and the San Joaquin River.  Both these river system begin in the 

Sierra-Nevada Range and empty into the Sacramento – San Joaquin Delta system before 

exiting to the Pacific Ocean through the San Francisco Bay.  The watersheds 

administered by the CVPIA are shown. 
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Figure 5.3 – A conceptual diagram of the life history population model used to evaluate 

management alternatives on populations of fall-run Chinook salmon for the lower tier 

watersheds.  This process is identical to the model described in chapter 2.  Circles 

represent adult stages, diamonds represent freshwater juvenile rearing stages, and boxes 

represent outmigrant juvenile stages.  Arrows are the processes that transition an 

individual from one stage to the next. 
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Figure 5.4 – The MMDP structure with a single upper tier decision maker and three lower 

tier decision makers (k).  This diagram shows how the MMDP can be decomposed into a 

hierarchy of regular MDPs.  In a regular MDP an action is taken at each time step that 

causes the system state to transition into a new state.  During this process a reward is 

calculated.    The circles represent the states, boxes represent actions, and diamonds 

represent rewards. In a single upper tier time step an action is taken that determines the 

actions space for the lower tiers.  The lower tier MDPs then determines the rewards 

which are used to determine the upper tier reward.   
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Figure 5.5 – A conceptual diagram of a MMDP that shows how the time scale between 

the upper tier (slow) and lower tier (fast) decision makers can differ.  The upper tier 

decision maker makes a decision every time step n where action λ is implemented 

causing state i  to transition to state j with probability PU(j|i, λ).  Meanwhile, a similar 

process occurs at the lower tier, where decisions are made more often in between time 

step n.  In this process, the lower tier decision maker implements action a which causes 

lower tier state x transition to state y with probability Pl(y|x,a,i,λ).  The actions available 

to the lower tier in between time steps n are determined by the upper tier action λ. 
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Figure 5.6 – Derived policies from the lower tier watersheds while in the parr migratory 

corridor state.  Each plot shows the optimal management action for fall-run Chinook 

salmon in California’s Central Valley across a range of habitat configurations.  On the x-

axis is the amount of spawning habitat (m2) per redd and on the y-axis is the amount of 

juvenile rearing habitat (m2) per redd.  The colors represent what management action 

would be optimal for that habitat configuration: Dark grey = gravel project, light grey = 

excavation project, black = do nothing.  Each column represents a different watershed 

and each row represents a different reach temperature suitability. 
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Figure 5.7 – Derived policies from the lower tier watersheds while in the smolt migratory 

corridor state.  Each plot shows the optimal management action for fall-run Chinook 

salmon in California’s Central Valley across a range of habitat configurations.  On the x-

axis is the amount of spawning habitat (m2) per redd and on the y-axis is the amount of 

juvenile rearing habitat (m2) per redd.  The colors represent what management action 

would be optimal for that habitat configuration: Dark grey = gravel project, light grey = 

excavation project, black = do nothing.  Each column represents a different watershed 

and each row represents a different reach temperature suitability. 
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Figure 5.8 – Derived policies from the lower tier watersheds while in the migratory 

corridor state.  Each plot shows the optimal management action for fall-run Chinook 

salmon in California’s Central Valley across a range of habitat configurations.  On the x-

axis is the amount of spawning habitat (m2) per redd and on the y-axis is the amount of 

juvenile rearing habitat (m2) per redd.  The colors represent what management action 

would be optimal for that habitat configuration: Dark grey = gravel project, light grey = 

excavation project, black = do nothing.  Each column represents a different watershed 

and each row represents a different reach temperature suitability.  



249 
 

 

 
 

Figure 5.9 – The expected reward values for the lower tier policy derived for the LSAC 

in a single lower tier time step.  The expected reward is the expected number of adult 

equivalents produced for at a given delta condition and temperature suitability. 
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Figure 5.10 – The expected reward values for the lower tier policy derived for USAC in a 

single lower tier time step.  The expected reward is the expected number of adult 

equivalents produced for at a given delta condition and temperature suitability. 
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Figure 5.11 – The expected reward values for the lower tier policy derived for SJ in a 

single lower tier time step.  The expected reward is the expected number of adult 

equivalents produced for at a given delta condition and temperature suitability. 
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Figure 5.12 – A dot plot that shows the upper tier policy for fall-run Chinook salmon in 

the CVPIA administered streams.  The y-axis shows all the different combinations of the 

two dimensions of state space: funding level and delta condition.  The left panel shows 

how many cost units are allocated to each watershed in each state.  The right panel shows 

the number of projects that would be implemented given the resources allocation in the 

left panel. 
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Figure 5.13 – A dot plot that shows how the policy for the upper tier policy for fall-run 

Chinook salmon in the CVPIA administered streams would translate into adult 

equivalents for a single time step.  The y-axis shows all the different combinations of the 

two dimensions of state space: funding level and delta condition.  The left panel shows 

how many adult equivalents are produced in a single time step for each watershed in each 

state.  The right panel shows the marginal gain of implementing those actions. 
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Figure 5.14 – The total expected reward (total number of adult equivalents produced 

across all three watersheds) from implementing the upper tier policy in a single time step 

across all funding levels and delta conditions. 
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Figure 5.15 – Tornado diagram from the one way sensitivity analysis under fry migratory 

corridor state.  The mean value of each parameter was perturbed ± 50% of its original 

value and policies for all sets of decision makers were derived.  The expected value of the 

upper tier policy is plotted. 
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Figure 5.16 – Tornado diagram from the one way sensitivity analysis under parr 

migratory corridor state.  The mean value of each parameter was perturbed ± 50% of its 

original value and policies for all sets of decision makers were derived.  The expected 

value of the upper tier policy is plotted. 
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Figure 5.17 – Tornado diagram from the one way sensitivity analysis under smolt 

migratory corridor state.  The mean value of each parameter was perturbed ± 50% of its 

original value and policies for all sets of decision makers were derived.  The expected 

value of the upper tier policy is plotted. 
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Figure 5.18 – Response profile showing how fund allocation from the upper tier policy 

changes across a range of values of smolt outmigrant survival in a fry migratory corridor 

state. 
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Figure 5.19 – Response profile showing how resource allocation from the upper tier 

policy changes across a range of values of smolt delta survival in a parr migratory 

corridor state.   
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Figure 5.20 – Response profile showing how resource allocation from the upper tier 

policy changes across a range of values of smolt delta survival in a smolt migratory 

corridor state.   
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Figure 5.21 – A policy plot showing how the ratio of resources allocated between the 

LSAC and USAC watersheds changes across different configurations of project costs in 

the LSAC and USAC.  The ratio of resources allocated was determined from the policy 

that was derived using each cost configuration.  This plot was produced under the fry 

migratory corridor state.  The lightest grey represents cost configurations where all the 

resources would be allocated to the LSAC and black regions represent cost configurations 

where all the resources would be allocated to USAC.  
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Figure 5.22 – A policy plot showing how the ratio of resources allocated between the 

LSAC and USAC watersheds changes across different configurations of project costs in 

the LSAC and USAC.  The ratio of resources allocated was determined from the policy 

that was derived using each cost configuration.  This plot was produced under the parr 

migratory corridor state.  The lightest grey represents cost configurations where all the 

resources would be allocated to the LSAC and black regions represent cost configurations 

where all the resources would be allocated to USAC.   
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Figure 5.23 – A policy plot showing how the ratio of resources allocated between the 

LSAC and USAC watersheds changes across different configurations of project costs in 

the LSAC and USAC.  The ratio of resources allocated was determined from the policy 

that was derived using each cost configuration.  This plot was produced under the smolt 

migratory corridor state.  The lightest grey represents cost configurations where all the 

resources would be allocated to the LSAC and black regions represent cost configurations 

where all the resources would be allocated to USAC.   
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CHAPTER 6: GENERAL DISCUSSION 

 

 

 

The goal of my dissertation was to explore how scale influences stream 

restoration prioritization strategies for an anadromous species and to develop dynamic 

optimization approaches that acknowledge uncertainties that exist at different scales.  In 

each chapter, I examined how spatial scale influenced the decision making process.  

Chapter 2 evaluated the role that differing spatial scales of management goals and actions 

played in the history of anadromous fish management in the Central Valley of California.  

Chapter 3 examined how a large scale decision model can influence optimal decision 

making at a watershed scale.  The fourth chapter applied a small scale decision model to 

a single river to derive spatially explicit optimal decisions for maximizing natural salmon 

production.  Finally, the fifth chapter combined a large scale decision model and small 

scale decision model and evaluated how those two spatial scales influence one another. 

Scale is a fundamental component of the natural resource management.  How 

scale is defined ultimately determines the sources and amounts of uncertainty in a natural 

resource management decision problem.  Objectives, management alternatives, and 

ecological processes are all scale dependent.  It’s unlikely that an optimal solution to the 

decision problem can be found if the scale is poorly defined.  Effective conservation 

depends on managers acknowledging the role of uncertainty in the decision making 

process.  Structured decision modeling (SDM) approaches are valuable in natural 

resource problems because they directly connect quantifiable objectives and explicit 

alternative decisions with quantitative models to identify optimal management decisions 

(Clemen 1996, Conroy and Peterson 2013).  In my dissertation I used SDM to 
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demonstrate the importance that scale can have on optimal decision making and to 

identify key uncertainties that exist at different scales. 

Issues of scale can create distinct problems in natural resource management.  

Specifically, natural resource management objectives are often regional (e.g., increase 

recruitment in a specific population in a watershed), whereas management actions almost 

always occur on a very small scale relative to the objectives (e.g., rehabilitating 500m of 

stream habitat). Scale mismatches generally increase uncertainty and inhibit the flow of 

information (feedback) regarding the effectiveness of management actions making 

management across a large regional extent even more difficult.  In addition, key 

ecosystem processes occur at different spatial and temporal extents, which can directly 

influence how any uncertainties about those processes are perceived (Peterson and 

Dunham 2010). 

Decision problems that operate at large spatial scales often require data to be 

summarized at large spatial extents and grains.  Most freshwater fisheries data and 

assessment methods are focused on much finer resolutions such as at a reach level (Lewis 

et al. 1996, Frissell et al. 2001).  Data observed at smaller spatial resolutions (e.g. reach 

or tributary) has to be aggregated when objectives occur at larger spatial scales (e.g. 

population or watershed; Wager et al. 2006).  Aggregating data or processes spatially 

ignores any heterogeneity present in a system and tends to lead to higher levels of 

variance and bias in parameter estimates (Clark and Avery 1976).  This is referred to as 

“ecological bias,” in which a lot of fine scale data and/or processes (e.g. juvenile rearing 

and migration) are homogenized in order to be represented at a coarser scale (Greenland 

and Morgenstern 1989).  It’s essential that the variance associated with aggregating data 
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is accounted when evaluating decision alternatives.  One strength of the SDM process is 

it can facilitate a quantitative evaluation of the potential of those uncertainties to 

influence the optimal decision. 

On the other end of the spectrum, fine scale decision problems require data 

sources to match.  Parameterizing fine scale decision problems can be difficult because of 

the high resolution data that is required.  Although data can be aggregated to provide 

information for coarser resolutions, the opposite isn’t always true.  For instance, 

information that is gathered at a coarser scale (e.g. watershed level) may not be 

appropriate to apply to a fine-scale, spatially explicit decision model.  Although fine scale 

decision problems can be data intensive, structured approaches to decision modeling can 

identify which data gaps are most critical to decision process which can inform future 

monitoring. 

In natural resource management, uncertainty often manifests itself as a lack of 

empirical information.  A lack of information can paralyze decision making, resulting in 

no decisions being implemented.  I addressed the lack of information by relying on expert 

judgement to parameterize several of my decision models.  Expert judgment may be 

biased or highly variable, but it still enables managers to model their decision making 

process.  This is important because decision models allow managers to identify the 

portions of their model that are the most influential to the decision making process.  

Identifying influential parameters is essential to prioritizing future study and monitoring.  

In many instances parameterizing a decision model wouldn’t be possible without expert 

judgement.  Instead, expert elicited information can serve as a starting place and be used 
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to identify parameters that are highly influential to decision making process.  Influential 

knowledge gaps can then be used to prioritize future monitoring efforts. 

Dynamic programming can provide analytic solutions to decision problems as 

long as the number of dimensions of the state space is kept relatively small.  Defining the 

system states can be perhaps the most difficult part of designing a MDP optimization.  

Simplification or discretization of the system state space is typically required to solve 

traditional MDPs due to the “curse of dimensionality” (Bellman and Dreyfus , Bellman 

1957).  Although this discretization provides an interpretable measure to represent system 

states, in reality there may exist several, continuous system states that may prove to be 

important to determining optimal decisions.  MDPs that include multiple continuous 

state-spaces are known as general state-space MDPs, and require more advanced 

algorithms to accurately depict state-space transitions and rewards (Feng et al. 2004, Li 

and Littman 2005).  Solving larger, more complex decision problems may not be 

possible, or at least practical, with dynamic programming due to the computational 

requirement of calculating the objective function for every combination of the discretized 

state-space.  However, reinforcement learning and other heuristic methods provide tools 

to approximate solutions to MDPs or MMDPs with high dimensionality (Barto and 

Mahadevan 2003, Sutton and Barto 2018). 

MDPs have some limitations in the application to natural resource decision 

problems.  Infinite horizon MDPs, such as those found in my analyses, require stationary 

reward vectors and transition matrices.  The stationarity assumption is violated when 

state-specific transition rates or reward values shift through time.  In these analyses I 

assumed habitat transition rates and the number of salmon produced from decision 
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alternatives were static through time.  Climate change is an example of a large scale 

stressor that could influence those parts of this decision problem.  Non-stationary 

resource dynamics create new issues in decision optimization and dynamic programming 

(Nichols et al. 2011, Williams 2011).  Heuristic approaches (e.g. reinforcement learning, 

genetic algorithms) can handle nonstationary decision problems, but they do not provide 

always provide the optimal decision set.  Another solution is to assume stationarity for 

short periods of time and revising solutions optimal solutions periodically (Nichols et al. 

2011, Williams and Johnson 2013).  

Migratory species pose unique challenges to natural resource decision problems.  

Often local managers only have influence on a portion of the migratory species life cycle.  

However, processes that occur outside spatial extent that managers administer can still be 

highly influential to management goals.  In the decision problem in Chapter 4, the local 

watershed managers could only influence habitats within their own watershed.  However, 

ocean and migratory corridor survival rates were among the most important factors in 

determining natural production and optimal habitat restoration policies.  MMDPs are a 

tool that can transparently connect processes that occur at different scales to decision 

making.  The benefits of monitoring and resolving uncertainties can be shared indirectly 

across scales and decision making hierarchy. 

I’ve demonstrated how local processes, such as juvenile survival, can influence 

not only local decision making, but also regional decision making.  This is an example of 

indirect feedback between decision tiers in a MMDP.  Techniques that deconstruct 

complex decision problems into a smaller set of problems, such as MMDPs and other 

hierarchical approaches, make intuitive sense for problems that span multiple spatial 
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scales (Parr and Russell 1998, Lane and Kaelbling 2001).  MMDPs are essentially just 

generalized versions of a single level MDP, however they allow problems to be framed in 

a more logical and relatable fashion.  The biggest appeal of a hierarchical approach is 

how it creates individualized policies for every decision maker at each level.  It would be 

possible to frame a MMDP as an equivalent traditional single level MDP, however that 

would require the single state space to increase exponentially in size because it would 

cover the state space of each decision maker in the problem. The resulting state-space 

would be almost uninterpretable and any decision rule or policy that was derived from it 

would not be uniquely applicable to individual levels and associated decision makers. 

Taken together these chapters help expand the knowledge base of fisheries 

management, especially in California’s Central Valley.  Each of my chapters provides a 

look at how optimal habitat restoration was influenced by how the scale was defined.  

Much is known about how scale can influence how we view ecological processes, 

conversely little is known on how scale influences decision making in natural resource 

management.  The work presented here expands our understanding of how scale 

influences decision making in natural resource management and how scale should be 

acknowledged when deriving optimal decisions. 

 

  



270 
 

 

References 
 

Barto, A. G., and S. Mahadevan. 2003. Recent advances in hierarchical reinforcement 

learning. Discrete event dynamic systems 13:41-77. 

 

Bather, J. A. 2000. Decision Theory: An Introduction to Dynamic Programming and 

Sequential Decisions. 

 

Bellman, R. E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. 

 

Bellman, R. E., and S. E. Dreyfus. Applied dynamic programming. 1962. Chapter V 

Decision-making in a fuzzy environment:190. 

 

Bond, N. R., and P. S. Lake. 2003. Local habitat restoration in streams: constraints on the 

effectiveness of restoration for stream biota. Ecological Management & 

Restoration 4:193-198. 

 

Clark, W. A., and K. L. Avery. 1976. The effects of data aggregation in statistical 

analysis. Geographical Analysis 8:428-438. 

 

Cummins, K., C. Furey, A. Giorgi, S. Lindley, J. Nestler, and J. Shurts. 2008. Listen to 

the river: an independent review of the CVPIA Fisheries Program. Prepared under 

contract with Circlepoint for the US Bureau of Reclamation and the US Fish and 

Wildlife Service. Available online at: http://www.cvpiaindependentreview. 

com/FisheriesReport12_12_08. pdf. Last accessed March 15:2010. 

 

Feng, Z., R. Dearden, N. Meuleau, and R. Washington. 2004. Dynamic programming for 

structured continuous Markov decision problems. Pages 154-161 in Proceedings 

of the 20th conference on Uncertainty in artificial intelligence. AUAI Press. 

 

Frissell, C. A., N. L. Poff, and M. E. Jensen. 2001. Assessment of biotic patterns in 

freshwater ecosystems. Pages 390-403  A guidebook for integrated ecological 

assessments. Springer. 

 

Greenland, S., and H. Morgenstern. 1989. Ecological bias, confounding, and effect 

modification. International journal of epidemiology 18:269-274. 

 

Holling, C. S. 1978. Adaptive environmental assessment and management. Adaptive 

environmental assessment and management. 

 

Lake, P. S., N. Bond, and P. Reich. 2007. Linking ecological theory with stream 

restoration. Freshwater Biology 52:597-615. 

 



271 
 

 

Lane, T., and L. P. Kaelbling. 2001. Toward hierarchical decomposition for planning in 

uncertain environments. Pages 1-7 in Proceedings of the 2001 IJCAI workshop on 

planning under uncertainty and incomplete information. 

 

Lewis, C., N. Lester, A. Bradshaw, J. Fitzgibbon, K. Fuller, L. Hakanson, and C. 

Richards. 1996. Considerations of scale in habitat conservation and restoration. 

Canadian Journal of Fisheries and Aquatic Sciences 53:440-445. 

 

Li, L., and M. L. Littman. 2005. Lazy approximation for solving continuous finite-

horizon MDPs. Pages 1175-1180 in AAAI. 

 

Likens, G. E., K. F. Walker, P. E. Davies, J. Brookes, J. Olley, W. J. Young, M. C. 

Thoms, P. S. Lake, B. Gawne, J. Davis, A. H. Arthington, R. Thompson, and R. 

L. Oliver. 2009. Ecosystem science: toward a new paradigm for managing 

Australia's inland aquatic ecosystems. Marine and Freshwater Research 60:271-

279. 

 

Parr, R., and S. J. Russell. 1998. Reinforcement learning with hierarchies of machines. 

Pages 1043-1049 in Advances in neural information processing systems. 

 

Peterson, J. T., and J. Dunham. 2010. Scale and fisheries management. Inland fisheries 

management in North America, 3rd edition. American Fisheries Society, 

Bethesda, Maryland:81-105. 

 

Ross, S. M. 2014. Introduction to probability models. Academic press. 

 

Sutton, R. S., and A. G. Barto. 2018. Reinforcement learning: An introduction. MIT 

press. 

 

Wagner, T., D. B. Hayes, and M. T. Bremigan. 2006. Accounting for multilevel data 

structures in fisheries data using mixed models. Fisheries 31:180-187. 

 

Walters, C. 1986. Adaptive management of renewable resources. 

 

  



272 
 

 

Bibliography 

Alpaydin, E., and F. Bach. 2014. Introduction to Machine Learning. MIT Press, 

Cambridge, UNITED STATES. 

 

Bartholow, J., J. Sandelin, B. Coughlan, J. Laake, and A. Moos. 1997. SALMOD: a 

population model for salmonids. User’s manual. Version 2. 

 

Barto, A. G., and S. Mahadevan. 2003. Recent advances in hierarchical reinforcement 

learning. Discrete event dynamic systems 13:41-77. 

 

Bather, J. A. 2000. Decision Theory: An Introduction to Dynamic Programming and 

Sequential Decisions. 

 

Beakes, M., J. Moore, N. Retford, R. Brown, J. Merz, and S. Sogard. 2014. Evaluating 

statistical approaches to quantifying juvenile Chinook salmon habitat in a 

regulated California river. River Research and Applications 30:180-191. 

 

Beechie, T., E. Beamer, B. Collins, and L. Benda. 1996. Restoration of habitat-forming 

processes in Pacific Northwest watersheds: a locally adaptable approach to 

salmonid habitat restoration. The role of restoration in ecosystem management. 

Society for Ecological Restoration, Madison, Wisconsin:48-67. 

 

Beechie, T., and S. Bolton. 1999. An approach to restoring salmonid habitat-forming 

processes in Pacific Northwest watersheds. Fisheries 24:6-15. 

 

Beechie, T., G. Pess, P. Roni, and G. Giannico. 2008. Setting river restoration priorities: a 

review of approaches and a general protocol for identifying and prioritizing 

actions. North American Journal of Fisheries Management 28:891-905. 

 

Beechie, T. J., G. R. Pess, M. M. Pollock, M. H. Ruckelshaus, and P. Roni. 2009. 

Restoring rivers in the twenty-first century: Science challenges in a management 

context. The future of fisheries science in North America:697-717. 

 

Bellman, R. E. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ. 

 

Bellman, R. E., and S. E. Dreyfus. Applied dynamic programming. 1962. Chapter V 

Decision-making in a fuzzy environment:190. 

 

Bellman, R. E., and S. E. Dreyfus. 1962. Applied dynamic programming. Chapter V 

Decision-making in a fuzzy environment:190. 

 

Bernhardt, E. S., M. Palmer, J. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. 

Clayton, C. Dahm, and J. Follstad-Shah. 2005. Synthesizing US river restoration 

efforts. Science 308:636-637. 



273 
 

 

 

Bernstein, D. S., R. Givan, N. Immerman, and S. Zilberstein. 2002. The complexity of 

decentralized control of Markov decision processes. Mathematics of operations 

research 27:819-840. 

 

Bond, N. R., and P. S. Lake. 2003. Local habitat restoration in streams: constraints on the 

effectiveness of restoration for stream biota. Ecological Management & 

Restoration 4:193-198. 

 

Brignon, W. R., J. T. Peterson, J. B. Dunham, H. A. Schaller, and C. B. Schreck. 2017. 

Evaluating trade-offs in bull trout reintroduction strategies using structured 

decision making. Canadian Journal of Fisheries and Aquatic Sciences 75:293-307. 

Buchanan, R. A., P. L. Brandes, and J. R. Skalski. 2018. Survival of Juvenile Fall‐Run 

Chinook Salmon through the San Joaquin River Delta, California, 2010–2015. 

North American Journal of Fisheries Management 38:663-679. 

 

Busch, R. H. 2000. Salmon country: A history of thePacific salmon. Key Porter Books 

Limited, Toronto, Canada. 

 

California Department of Fish and Wildlife. 2015. Grand Tabulation - California Central 

Valley: Chinook Salmon Escapement. California Department of Fish and Game. 

 

Chang, H. S., P. J. Fard, S. I. Marcus, and M. Shayman. 2003. Multitime scale Markov 

decision processes. Automatic Control, IEEE Transactions on 48:976-987. 

 

Chilcote, M. W., K. W. Goodson, and M. R. Falcy. 2011. Reduced recruitment 

performance in natural populations of anadromous salmonids associated with 

hatchery-reared fish. Canadian Journal of Fisheries and Aquatic Sciences 68:511-

522. 

 

Clark, W. A., and K. L. Avery. 1976. The effects of data aggregation in statistical 

analysis. Geographical Analysis 8:428-438. 

 

Clemen, R. 1996. Making Hard Decisions: An Introduction to Decision Analysis. ed. 

 

Conroy, M. J., M. W. Miller, and J. E. Hines. 2002. Identification and synthetic modeling 

of factors affecting American black duck populations. Wildlife Monographs:1-64. 

 

Conroy, M. J., and J. T. Peterson. 2013. Decision Making in Natural Resource 

Management: A Structured, Adaptive Approach. John Wiley & Sons. 

 

Consultants, A. 2014. Salsim: Salmon Simulator, as implemented for the San Joaquin 

River System. California Department of Fish and Wildlife. 

 



274 
 

 

Crozier, L. G., A. Hendry, P. W. Lawson, T. Quinn, N. Mantua, J. Battin, R. Shaw, and 

R. Huey. 2008. Potential responses to climate change in organisms with complex 

life histories: evolution and plasticity in Pacific salmon. Evolutionary 

Applications 1:252-270. 

 

Cullen, A., and M. J. Small. 2004. Uncertain risk: The role and limits of quantitative 

assessment. Risk analysis and society: an interdisciplinary characterization of the 

field. Edited by T. McDaniels and M. Small. Cambridge University Press, 

Cambridge, UK:163-212. 

 

Cummins, K., C. Furey, A. Giorgi, S. Lindley, J. Nestler, and J. Shurts. 2008a. Listen to 

the river: an independent review of the CVPIA Fisheries Program. Prepared under 

contract with Circlepoint for the US Bureau of Reclamation and the US Fish and 

Wildlife Service. Available online at: http://www. cvpiaindependentreview. 

com/FisheriesReport12_12_08. pdf. Last accessed March 15:2010. 

 

Cummins, K., C. Furey, A. Giorgi, S. Lindley, J. Nestler, and J. Shurts. 2008b. Listen to 

the river: an independent review of the CVPIA Fisheries Program. Prepared under 

contract with Circlepoint for the US Bureau of Reclamation and the US Fish and 

Wildlife Service. Available online at: http://www.cvpiaindependentreview. 

com/FisheriesReport12_12_08. pdf. Last accessed March 15:2010. 

 

Earley, L. A., S. L. Giovannetti, and M. R. Brown. 2013. Fall Chinook Salmon Redd 

Mapping for the Clear Creek Restoration Project, 2008-2012 U.S. Fish and 

Wildlife Service, Red Bluff Fish and Wildlife Office, Red Bluff, California. 

East, A. E., G. R. Pess, J. A. Bountry, C. S. Magirl, A. C. Ritchie, J. B. Logan, T. J. 

Randle, M. C. Mastin, J. T. Minear, and J. J. Duda. 2015. Large-scale dam 

removal on the Elwha River, Washington, USA: River channel and floodplain 

geomorphic change. Geomorphology 228:765-786. 

 

Fackler, P., and K. Pacifici. 2014. Addressing structural and observational uncertainty in 

resource management. Journal of Environmental Management 133:27-36. 

 

Fairman, D. 2007. A gravel budget for the Lower American River. California State 

University, Sacramento. 

Falke, J., J. Dunham, C. Jordan, K. McNyset, and G. Reeves. 2013. Spatial Ecological 

Processes and Local Factors Predict the Distribution and Abundance. 

 

Feng, Z., R. Dearden, N. Meuleau, and R. Washington. 2004. Dynamic programming for 

structured continuous Markov decision problems. Pages 154-161 in Proceedings 

of the 20th conference on Uncertainty in artificial intelligence. AUAI Press. 

 

Fisher, F. W. 1994. Past and present status of Central Valley chinook salmon. 

Conservation Biology 8:870-873. 

 



275 
 

 

Flagg, T. A., B. A. Berejikian, J. E. Colt, W. Dickhoff, L. Harrell, D. Maynard, C. Nash, 

M. Strom, R. Iwamoto, and C. Mahnken. 2000. Ecological and behavioral impacts 

of artificial production strategies on the abundance of wild salmon populations. 

NOAA Technical Memorandum NMFS-NWFSC 41:101-121. 

 

Frissell, C. A., N. L. Poff, and M. E. Jensen. 2001. Assessment of biotic patterns in 

freshwater ecosystems. Pages 390-403  A guidebook for integrated ecological 

assessments. Springer. 

 

Gallagher, S. P., and C. M. Gallagher. 2005. Discrimination of Chinook salmon, coho 

salmon, and steelhead redds and evaluation of the use of redd data for estimating 

escapement in several unregulated streams in northern California. North 

American Journal of Fisheries Management 25:284-300. 

 

Gallagher, S. P., and M. F. Gard. 1999. Relationship between Chinook salmon 

(Oncorhynchus tshawytscha) redd densities and PHABSIM-predicted habitat in 

the Merced and Lower American rivers, California. Canadian Journal of Fisheries 

and Aquatic Sciences 56:570-577. 

 

Getz, W. M., C. R. Marshall, C. J. Carlson, L. Giuggioli, S. J. Ryan, S. S. Romañach, C. 

Boettiger, S. D. Chamberlain, L. Larsen, and P. D’Odorico. 2018. Making 

ecological models adequate. Ecology Letters 21:153-166. 

 

Grant, J. W. A., and D. L. Kramer. 1990. Territory size as a predictor of the upper limit to 

population-density of juvenile salmonids in streams. Canadian Journal of 

Fisheries and Aquatic Sciences 47:1724-1737. 

 

Greenland, S., and H. Morgenstern. 1989. Ecological bias, confounding, and effect 

modification. International journal of epidemiology 18:269-274. 

 

Groot, C., and L. Margolis. 1991. Pacific salmon life histories. UBC press. 

 

Gross, M. R. 1991. Salmon breeding behavior and life history evolution in changing 

environments. Ecology:1180-1186. 

 

Guestrin, C., and G. Gordon. 2002. Distributed planning in hierarchical factored MDPs. 

Pages 197-206 in Proceedings of the Eighteenth conference on Uncertainty in 

artificial intelligence. Morgan Kaufmann Publishers Inc. 

 

Hammersmark, C. 2014. Technical memorandum: explanation of habitat estimates. 

 

Hammersmark, C., and D. Tu. 2015. Technical memorandum: Explanation of revised 

rearing habitat estimates. 

 



276 
 

 

Healey, M., C. Groot, and L. Margolis. 1991. Life history of chinook salmon 

(Oncorhynchus tshawytscha). Pacific salmon life histories:311-394. 

 

Hermoso, V., F. Pantus, J. Olley, S. Linke, J. Mugodo, and P. Lea. 2012. Systematic 

planning for river rehabilitation: integrating multiple ecological and economic 

objectives in complex decisions. Freshwater Biology 57:1-9. 

 

Hinkelman, T. 2015. Emigrating Salmonid Habitat Estimation (ESHE): A Web-Based 

Tool for Estimating Habitat Needs for Outmigrating Juvenile Salmonids.in 145th 

Annual Meeting of the American Fisheries Society. Afs. 

 

Hobbs, R. J., and D. A. Norton. 1996. Towards a conceptual framework for restoration 

ecology. Restoration ecology 4:93-110. 

 

Holling, C. S. 1978. Adaptive environmental assessment and management. Adaptive 

environmental assessment and management. 

 

Horner, T. 2015. Gravel Restoration in Northern California: Success, longevity, and 

management decisions. Geological Society of America: Annual Meeting, 

Baltimore, MD. 

 

Isaak, D., S. Wenger, E. Peterson, J. Ver Hoef, S. Hostetler, C. Luce, and D. Horan. 

2016. NorWeST modeled summer stream temperature scenarios for the western 

US. Fort Collins, CO: US Forest Service, Rocky Mountain Research Station 

Research Data Archive. https://doi. org/10.2737/RDS-2016-0033. 

 

James, L. A. 1997. Channel incision on the lower American River, California, from 

streamflow gage records. Water Resources Research 33:485-490. 

 

Jeffres, C. A., J. J. Opperman, and P. B. Moyle. 2008. Ephemeral floodplain habitats 

provide best growth conditions for juvenile Chinook salmon in a California river. 

Environmental Biology of Fishes 83:449-458. 

 

Kondolf, G. M., P. L. Angermeier, K. Cummins, T. Dunne, M. Healey, W. Kimmerer, P. 

B. Moyle, D. Murphy, D. Patten, and S. Railsback. 2008. Projecting cumulative 

benefits of multiple river restoration projects: an example from the Sacramento-

San Joaquin river system in California. Environmental Management 42:933-945. 

 

Kristensen, A. R., and E. Jørgensen. 2000. Multi‐level hierarchic Markov processes as a 

framework for herd management support. Annals of Operations Research 94:69-

89. 

 

Lackey, R. T. 2003. Pacific Northwest salmon: forecasting their status in 2100. Reviews 

in fisheries Science 11:35-88. 

 



277 
 

 

Lake, P. S., N. Bond, and P. Reich. 2007. Linking ecological theory with stream 

restoration. Freshwater Biology 52:597-615. 

 

Lane, T., and L. P. Kaelbling. 2001. Toward hierarchical decomposition for planning in 

uncertain environments. Pages 1-7 in Proceedings of the 2001 IJCAI workshop on 

planning under uncertainty and incomplete information. 

 

Levin, P. S., and M. H. Schiewe. 2001. Preserving salmon biodiversity. American 

Scientist 89:220-227. 

 

Lewis, C., N. Lester, A. Bradshaw, J. Fitzgibbon, K. Fuller, L. Hakanson, and C. 

Richards. 1996. Considerations of scale in habitat conservation and restoration. 

Canadian Journal of Fisheries and Aquatic Sciences 53:440-445. 

 

Li, L., and M. L. Littman. 2005. Lazy approximation for solving continuous finite-

horizon MDPs. Pages 1175-1180 in AAAI. 

 

Lichatowich, J. 1999. Salmon without rivers: a history of the Pacific salmon crisis. Island 

Press, Washington, D.C. 

 

Lichatowich, J., L. Mobrand, L. Lestelle, and T. Vogel. 1995. An approach to the 

diagnosis and treatment of depleted Pacific salmon populations in Pacific 

Northwest watersheds. Fisheries 20:10-18. 

 

Likens, G. E., K. F. Walker, P. E. Davies, J. Brookes, J. Olley, W. J. Young, M. C. 

Thoms, P. S. Lake, B. Gawne, J. Davis, A. H. Arthington, R. Thompson, and R. 

L. Oliver. 2009. Ecosystem science: toward a new paradigm for managing 

Australia's inland aquatic ecosystems. Marine and Freshwater Research 60:271-

279. 

 

Lindley, S. T., R. S. Schick, E. Mora, P. B. Adams, J. J. Anderson, S. Greene, C. Hanson, 

B. P. May, D. McEwan, and R. B. MacFarlane. 2007. Framework for assessing 

viability of threatened and endangered Chinook salmon and steelhead in the 

Sacramento–San Joaquin basin. San Francisco Estuary and Watershed Science 5. 

 

Lister, D. B. 2014. Natural Productivity in Steelhead Populations of Natural and Hatchery 

Origin: Assessing Hatchery Spawner Influence. Transactions of the American 

Fisheries Society 143:1-16. 

 

Lynch, A. J., B. J. Myers, C. Chu, L. A. Eby, J. A. Falke, R. P. Kovach, T. J. 

Krabbenhoft, T. J. Kwak, J. Lyons, and C. P. Paukert. 2016. Climate change 

effects on North American inland fish populations and assemblages. Fisheries 

41:346-361. 

 



278 
 

 

Mantua, N. J. 2015. Shifting patterns in Pacific climate, West Coast salmon survival 

rates, and increased volatility in ecosystem services. Proceedings of the National 

Academy of Sciences 112:10823-10824. 

 

Marine, K. R., and J. J. Cech Jr. 2004. Effects of High Water Temperature on Growth, 

Smoltification, and Predator Avoidance in Juvenile Sacramento RiverChinook 

Salmon. North American Journal of Fisheries Management 24:198-210. 

 

Martin, J., M. C. Runge, J. D. Nichols, B. C. Lubow, and W. L. Kendall. 2009. Structured 

decision making as a conceptual framework to identify thresholds for 

conservation and management. Ecological Applications 19:1079-1090. 

 

McDonald-Madden, E., I. Chadès, M. A. McCarthy, M. Linkie, and H. P. Possingham. 

2011. Allocating conservation resources between areas where persistence of a 

species is uncertain. Ecological Applications 21:844-858. 

 

McFadden, J. E., T. L. Hiller, and A. J. Tyre. 2011. Evaluating the efficacy of adaptive 

management approaches: Is there a formula for success? Journal of 

Environmental Management 92:1354-1359. 

 

McGovern, A., D. Precup, B. Ravindran, S. Singh, and R. S. Sutton. 1998. Hierarchical 

optimal control of MDPs. Pages 186-191 in Proceedings of the Tenth Yale 

Workshop on Adaptive and Learning Systems. 

 

McHenry, M. L., and G. R. Pess. 2008. An overview of monitoring options for assessing 

the response of salmonids and their aquatic ecosystems in the Elwha River 

following dam removal. 

 

Mebane, W. J., and J. S. Sekhon. 2011. Genetic optimization using derivatives: the 

rgenoud package for R. Journal of Statistical Software 42:1-26. 

 

Merz, J., B. Brook, C. Watry, and S. Zeug. 2012. Evaluation of the 2008-2010 Sailor Bar 

Gravel Placements on the Lower American River, California. Kramer Fish 

Sciences. 

 

Miller, J. A., A. Gray, and J. Merz. 2010. Quantifying the contribution of juvenile 

migratory phenotypes in a population of Chinook salmon Oncorhynchus 

tshawytscha. Marine Ecology Progress Series 408:227-240. 

 

Mills, T. J., P. Bratovich, D. Olson, A. Pitts, M. Atherstone, A. Niggemyer, A. 

O'Connell, K. Riggs, and B. Ellrott. 2004. Matrix of life history and habitat 

requirements for Feather River species: Chinook Salmon  

 

Monahan, G. E. 1982. State of the art—a survey of partially observable Markov decision 

processes: theory, models, and algorithms. Management Science 28:1-16. 



279 
 

 

 

Montgomery, D. R. 2003. King of fish: The thousand-year run of salmon. Westview 

Press, Cambridge, USA. 

 

Mowrer, H. T. 2000. Uncertainty in natural resource decision support systems: sources, 

interpretation, and importance. Computers and electronics in agriculture 27:139-

154. 

 

Moyle, P. B. 1994. The decline of anadromous fishes in California. Conservation Biology 

8:869-870. 

 

Myrick, C. A., and J. J. Cech Jr. 2004. Temperature effects on juvenile anadromous 

salmonids in California’s central valley: what don’t we know? Reviews in Fish 

Biology and Fisheries 14:113-123. 

 

Nehlsen, W., J. E. Williams, and J. A. Lichatowich. 1991. Pacific salmon at the 

crossroads: stocks at risk from California, Oregon, Idaho, and Washington. 

Fisheries 16:4-21. 

 

Netboy, A. 1974. The salmon: Their fight for survival. Houghton Mifflin Co., Boston, 

USA. 

 

Nichols, J. D., M. D. Koneff, P. J. Heglund, M. G. Knutson, M. E. Seamans, J. E. Lyons, 

J. M. Morton, M. T. Jones, G. S. Boomer, and B. K. Williams. 2011. Climate 

change, uncertainty, and natural resource management. The Journal of Wildlife 

Management 75:6-18. 

 

Nicholson, E., and H. P. Possingham. 2007. Making conservation decisions under 

uncertainty for the persistence of multiple species. Ecological Applications 

17:251-265. 

 

NOAA-Fisheries. 2012. Commercial fisheries landing statistics. 

 

Palmer-Zwahlen, M., and B. Kormos. 2013. Recovery of coded-wire tags from Chinook 

salmon in California’s Central Valley escapement and ocean harvest in 2011. 

Fisheries Branch Administrative Report 2. 

 

Palmer-Zwahlen, M., and B. Kormos. 2015. Recovery of coded-wire tags from Chinook 

salmon in California’s Central Valley escapement, inland harvest, and ocean 

harvest in 2012. Fisheries administrative report 4. 

 

Parr, R., and S. J. Russell. 1998. Reinforcement learning with hierarchies of machines. 

Pages 1043-1049 in Advances in neural information processing systems. 

 



280 
 

 

Pearson, L. J., A. Coggan, W. Proctor, and T. F. Smith. 2010. A sustainable decision 

support framework for urban water management. Water resources management 

24:363. 

 

Pejchar, L., and K. Warner. 2001. A river might run through it again: criteria for 

consideration of dam removal and interim lessons from California. Environmental 

Management 28:561-575. 

 

Peterson, J. T., and J. Dunham. 2010. Scale and fisheries management. Inland fisheries 

management in North America, 3rd edition. American Fisheries Society, 

Bethesda, Maryland:81-105. 

 

Peterson, J. T., and J. W. Evans. 2003. Quantitative decision analysis for sport fisheries 

management. Fisheries 28:10-21. 

 

Peterson, J. T., and M. C. Freeman. 2016. Integrating modeling, monitoring, and 

management to reduce critical uncertainties in water resource decision making. 

Journal of Environmental Management 183:361-370. 

 

Poesch, M. S., L. Chavarie, C. Chu, S. N. Pandit, and W. Tonn. 2016. Climate change 

impacts on freshwater fishes: a Canadian perspective. Fisheries 41:385-391. 

 

Possingham, H., S. Andelman, B. Noon, S. Trombulak, and H. Pulliam. 2001. Making 

smart conservation decisions. Conservation biology: research priorities for the 

next decade 23:225-244. 

 

Puterman, M. L. 2009. Markov decision processes: discrete stochastic dynamic 

programming. John Wiley & Sons. 

 

Quinn, T. P. 1993. A review of homing and straying of wild and hatchery-produced 

salmon. Fisheries research 18:29-44. 

 

R Core Team. 2018. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

 

Ricciardi, A., and J. B. Rasmussen. 1998. Predicting the identity and impact of future 

biological invaders: a priority for aquatic resource management. Canadian Journal 

of Fisheries and Aquatic Sciences 55:1759-1765. 

 

Roni, P., P. J. Anders, T. J. Beechie, and D. J. Kaplowe. 2018. Review of Tools for 

Identifying, Planning, and Implementing Habitat Restoration for Pacific Salmon 

and Steelhead. North American Journal of Fisheries Management 38:355-376. 

 

Roni, P., T. J. Beechie, R. E. Bilby, F. E. Leonetti, M. M. Pollock, and G. R. Pess. 2002. 

A review of stream restoration techniques and a hierarchical strategy for 



281 
 

 

prioritizing restoration in Pacific Northwest watersheds. North American Journal 

of Fisheries Management 22:1-20. 

 

Ross, S. M. 2014. Introduction to probability models. Academic press. 

 

Rout, T. M., C. E. Hauser, and H. P. Possingham. 2009. Optimal adaptive management 

for the translocation of a threatened species. Ecological Applications 19:515-526. 

 

Ruckelshaus, M. H., P. Levin, J. B. Johnson, and P. M. Kareiva. 2002. The Pacific 

salmon wars: what science brings to the challenge of recovering species. Annual 

Review of Ecology and Systematics:665-706. 

Runge, M. C. 2011. An introduction to adaptive management for threatened and 

endangered species. Journal of Fish and Wildlife Management 2:220-233. 

 

Satterthwaite, W., M. P. Beakes, E. M. Collins, D. R. Swank, J. E. Merz, R. G. Titus, S. 

M. Sogard, and M. Mangel. 2010. State‐dependent life history models in a 

changing (and regulated) environment: steelhead in the California Central Valley. 

Evolutionary Applications 3:221-243. 

 

Satterthwaite, W. H., S. M. Carlson, and A. Criss. 2017. Ocean size and corresponding 

life history diversity among the four run timings of California Central Valley 

Chinook salmon. Transactions of the American Fisheries Society 146:594-610. 

 

Silva, J., and K. Bouton. 2015. Juvenile Salmonid Emigration Monitoring in the Lower 

American River, California January – May 2015. Sacramento, CA. 

 

Sommer, T. R., M. L. Nobriga, W. C. Harrell, W. Batham, and W. J. Kimmerer. 2001. 

Floodplain rearing of juvenile Chinook salmon: evidence of enhanced growth and 

survival. Canadian Journal of Fisheries and Aquatic Sciences 58:325-333. 

 

Suding, K. N. 2011. Toward an era of restoration in ecology: successes, failures, and 

opportunities ahead. Annual Review of Ecology, Evolution, and Systematics 

42:465. 

 

Sutton, R. S. 1995. TD models: Modeling the world at a mixture of time scales. Pages 

531-539  Machine Learning Proceedings 1995. Elsevier. 

 

Sutton, R. S., and A. G. Barto. 2018. Reinforcement learning: An introduction. MIT 

press. 

 

Sutton, R. S., D. Precup, and S. Singh. 1999. Between MDPs and semi-MDPs: A 

framework for temporal abstraction in reinforcement learning. Artificial 

intelligence 112:181-211. 

 



282 
 

 

Thompson, K. M. 2002. Variability and uncertainty meet risk management and risk 

communication. Risk Analysis 22:647-654. 

 

Thorpe, J. E. 2007. Maturation responses of salmonids to changing developmental 

opportunities. Marine Ecology Progress Series 335:285-288. 

 

Vander Zanden, M. J., G. J. Hansen, S. N. Higgins, and M. S. Kornis. 2010. A pound of 

prevention, plus a pound of cure: early detection and eradication of invasive 

species in the Laurentian Great Lakes. Journal of Great Lakes Research 36:199-

205. 

 

Vander Zanden, M. J., and J. D. Olden. 2008. A management framework for preventing 

the secondary spread of aquatic invasive species. Canadian Journal of Fisheries 

and Aquatic Sciences 65:1512-1522. 

 

Vogel, D., and K. Marine. 1991. Guide to upper Sacramento River chinook salmon life 

history. Report to US Bureau of Reclamation, Central Valley Project. CH2M Hill. 

Inc., Redding, California. 

 

Wagner, T., D. B. Hayes, and M. T. Bremigan. 2006. Accounting for multilevel data 

structures in fisheries data using mixed models. Fisheries 31:180-187. 

 

Walters, C. 1986. Adaptive management of renewable resources. 

 

Walters, C. 1997. Challenges in adaptive management of riparian and coastal ecosystems. 

Conservation Ecology [online]1(2):1. 

 

Walters, C. J., and R. Hilborn. 1978. Ecological optimization and adaptive management. 

Annual Review of Ecology and Systematics 9:157-188. 

 

Waples, R. S. 1991. Genetic interactions between hatchery and wild salmonids: lessons 

from the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences 

48:124-133. 

 

Wernz, C., and A. Deshmukh. 2010. Multiscale decision-making: Bridging 

organizational scales in systems with distributed decision-makers. European 

Journal of Operational Research 202:828-840. 

 

Wernz, C., and A. Deshmukh. 2012. Unifying temporal and organizational scales in 

multiscale decision-making. European Journal of Operational Research 223:739-

751. 

 

Williams, B. K. 2011. Adaptive management of natural resources—framework and 

issues. Journal of Environmental Management 92:1346-1353. 

 



283 
 

 

Williams, B. K., and F. A. Johnson. 2013. Confronting dynamics and uncertainty in 

optimal decision making for conservation. Environmental Research Letters 

8:025004. 

 

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of 

animal populations. Academic Press. 

 

Williams, J. G. 2001. Chinook salmon in the lower American River, California’s largest 

urban stream. Fish Bulletin 179:1-38. 

 

Williams, J. G. 2006. Central Valley salmon: a perspective on Chinook and steelhead in 

the Central Valley of California. San Francisco Estuary and Watershed Science 4. 

 

Withler, I. 1966. Variability in life history characteristics of steelhead trout (Salmo 

gairdneri) along the Pacific coast of North America. Journal of the Fisheries 

Board of Canada 23:365-393. 

 

Yoshiyama, R. M., F. W. Fisher, and P. B. Moyle. 1998. Historical abundance and 

decline of chinook salmon in the Central Valley region of California. North 

American Journal of Fisheries Management 18:487-521. 

 

Yoshiyama, R. M., P. B. Moyle, E. R. Gerstung, and F. W. Fisher. 2000. Chinook salmon 

in the California Central Valley: an assessment. Fisheries 25:6-20. 

 


