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Chapter 1: Introduction

Electric grids are the most complex machines ever built. The birth of electrical grids in

the United States occurred in 1882 in Manhattan, New York with a fossil-fuel generator

in a direct current distribution system [13]. Over the past century and a half electric

grids have grown into an intricate web of alternating current (AC) transmission and

distribution systems with centralized generation largely based on high inertia fossil fuel

and hydroelectric generation. Large regional electrical grid outages during the 20th

century lead to federal regulation of the electric utilities as such outages caused significant

economical and social harm [14]. Federal regulation brought operation and planning

standards that must be met by utilities under penalty of fines. These operation and

planning standards have historical been based on the traditional electrical grid model of

centralized high inertia rotating mass generation.

The past four decades have brought rapid growth of renewable, decentralized, and

non-rotating mass generation in electrical grids. In the United States this growth is

largely due to state and federal policies incentivizing renewable energy research and de-

ployment to reduce carbon emissions in light of climate change and to increase energy

independence for national security. The relationship between the adoption of state re-

newable portfolio standard adoption and the growth of renewable energy consumption

and reduction of fossil fuel and rotating mass generation by the electricity sector can be

seen in Figures 1.1-1.2.

Both solar and wind energy experienced rapid growth at year 2000 and after while

coal and petroleum decreased. The growth of consumption of hydroelectric and nuclear

energy flatten during this time frame. Though hydroelectric and nuclear energy are not

fossil fuel based they are shown grouped with the fossil fuel based resources due to their

similar resource availability, electrical grid locations, and generating machine types. The

fossil fuel, hydroelectric, and nuclear generators all use dispatchable resources and there-

fore are highly available and reliable sources of energy. Additionally, since their resources

are all transported to the generation site these generators can be located anywhere in the

system, with the exclusion of hydroelectric. Therefore, these generators, excluding hy-
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Figure 1.1: Electric Power Sector Energy Consumption of Renewable Energy Generation from 1949
to 2018 [1, 2]

Figure 1.2: Electric Power Sector Energy Consumption of Fossil Fuel and Rotating Mass Energy
Generation from 1949 to 2018 [1, 2]

droelectric, can be placed near population centers to reduce transmission losses between

generation and consumption. All these generation types also use synchronous genera-

tors which have a rotating mass providing inertia to a synchronous AC electrical grid.

Inertia is a critical grid resource which acts as a stabilizing force during disturbances

on the grid such as unexpected transmission line or generating unit losses. This inertia

acts as natural damping control to grid frequency. All of the traditional operation and

planning standards were built around these assumptions of dispatchable, centralized,

and high-inertia resources. Solar and wind are not dispatchable nor do they have a

synchronously grid-connected rotating mass to provide inertia to the grid. This lack of
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dispatchability is one cause of the increase in natural gas seen after 2000. Natural gas

generation has a fast ramp rate which can help integrate these non-dispatchable variable

resources. Solar and wind also need to be located where the resource is present, often

placing these generation resources in remote locations distant from population centers.

If the electrical grid infrastructure was built under the assumptions of non-dispatchable,

decentralized, and no inertia resources the electrical grid, all connecting infrastructure,

and operation and planning procedures and standards would all be designed to function

well under these constraints. Instead the electrical grid is integrating resources which

function and location are very different from what the system was built for. In compari-

son, you would not put diesel fuel into a gasoline car. The system here being the car was

not designed to run on diesel fuel and the car will break. The question now is how do

we transform our electrical grid infrastructure and operating and planning procedures

and standards to stably, reliably, and affordably integrate these resources to meet our

climate and national security goals.

This question is not unique to the United States. All nations, developed and devel-

oping, are faced with the same climate and national security challenges. For developing

nations this challenge looks differently from developed nations due to less existing infras-

tructure. Here, another goal is increasing energy access through building new electrical

grids either through transmission expansion or off-grid mini or microgrids. This goal is

one of the 17 United Nations Sustainable Development Goals, as specified as Goal 7:

Affordable and Clean Energy [15]. The affordability component is especially critical. A

component not listed in the goal is reliability. Electricity reliability in developed elec-

trical grids is a result of decades of learning from electrical grid outages and developing

operation and planning procedures and standards to prevent them. This electricity relia-

bility is taken for granted in most developed countries and is often taken as a guarantee.

The value placed on reliability in the United States is now being tested as a result of

multi-hour outages to prevent wildfires in California [16]. Public outcry has resulted from

these outages confirming the great value that people of developed countries place on elec-

tricity reliability [16]. These types of electrical grid outages are a common occurrence in

several developing countries. This is due to the high cost associated with the infrastruc-

ture, organizations, and policies needed to achieve such reliability. Therefore, achieving

reliability in an affordable manner that matches the value that each society places on

reliability is important and should be considered when addressing energy access, climate,
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and national security goals.

This dissertation takes deep dives into how to transform the planning procedures

and standards to achieve energy access, climate, and national security goals associated

with the evolving resource mix. The second chapter addresses increasing energy ac-

cess through development of off-grid minigrids. This work introduces an open-source

planning tool which optimizes resource and equipment size and creates a distribution

network placement map factoring in cost and reliability for minigrid development in

partnership with Lesotho based company OnePower. Chapter three investigates the ac-

curacy of measurement-based dynamic load modeling techniques used in transmission

planning. Accurate dynamic load modeling is key to stable integration of distributed

energy resources (DERs) such as solar and wind energy. This work highlights the need

for improvements of these methods due to a lack of correlation between model accuracy

and output response error. Chapter four draws the connection between dynamic loads

and DERs. This chapter investigates the impact of dynamic loads and DERs on tran-

sient voltage stability in transmission grids. Transient voltage stability is necessary for

stable and reliable operation of electrical grids and is assessed in planning procedures

and regulated by federal regulating agencies. The fifth chapter calls for development

of transmission hosting capacity studies of DERs and evaluates modeling strategies and

their impacts on the results of hosting capacity studies. Hosting capacity studies deter-

mine the greatest amount of DERs that can be integrated into the system stably and

reliably. These studies are commonly performed in distributed system and have yet to

be performed in transmission systems. The conclusion of this dissertation covers the

discovered highlights from each chapter and provides suggestions for continued efforts in

these areas of research.
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Chapter 2: uGrid: Reliable Minigrid Design and Planning Toolset

for Rural Electrification

2.1 Introduction

Over one billion people globally lack access to electricity; of those, 84% live in remote ar-

eas [17]. The UNDP Sustainable Development Goal 7 (“Affordable and Clean Energy”)

aims to increase affordable and clean energy access for all [15]. Minigrids are one option

for achieving this in remote communities where it is uneconomical to install transmis-

sion lines from a national electrical grid. It is estimated that 30% of newly electrified

connections will be served by minigrids by 2030 [17] (up to 70% in rural areas [18]).

The goal of an energy service provider in deploying a minigrid, as for grid-connected

utilities providing energy via a national grid, is to provide affordable and reliable elec-

tricity service to customers. Designing and planning a minigrid is a multi-phase project

that includes (i) sizing of energy generation equipment and resource allocation, (ii) lay-

out of the power distribution network, and (iii) incorporation of reliability cost-benefit

analysis. Optimization is required at each stage to minimize the cost of electricity to the

customer while maintaining an acceptable level of reliability. Industry standard tools to

perform minigrid design, such as HOMER [19], are not free nor open source, typically

providing fixed capabilities for an upfront fee and requiring additional fees for customized

or added functionality (if available). Such tools can be financially infeasible for minigrid

developers who operate within highly constrained budgets when aiming to provide a rea-

sonable cost of electricity to customers in rural areas where operations costs are already

much higher than those for grid-connected utilities operating in dense urban areas. In

addition, in most cases the customer base of a minigrid has far less ability to pay than in

productive urban environments. Free industry and academic tools exist, such as REopt

Lite and DER-CAM among others [9,10], however they are still proprietary, i.e., do not

permit adaptability of the source code, which limits applicability in the context of evolv-

ing and highly variable off-grid markets. Alternately, open source tools are affordable

and adaptable, and many open source tools are on par with licensed tools in terms of
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functionality and capability [6].

A review of software designed for techno-economic optimization of hybrid energy sys-

tems (including HOMER, Hybrid2, RETScreen, iHOGA, INSEL, TRNSYS) is covered

in [11] and [20], which also compares tool capabilities and limitations for PV hybrid sys-

tem design. Tables 2.1-2.2 expand upon these works by including additional commonly

used academic and industry standard tools and mature open-source minigrid develop-

ment tools. Of note Switch, TEMOA, and OSeMOSYS are mature minigrid design open

source tools generating results comparable to licensed tools [6] for certain tasks. The

original uGrid tool, which forms the foundation of the work presented in this manuscript,

is also included [8].

While the tools listed in Tables 2.1-2.2 address the issue of resource sizing and al-

location, network layout design and reliability cost-benefit analysis represents a critical

gap in the available minigrid development toolset. To the best knowledge of the authors

the only tool that automates geographical distribution network layout for minigrids is

ViPOR, created by NREL [21], which is no longer publicly available. There is therefore

a pressing need for a network layout design tool with project level cost optimization

capabilities.

Furthermore, network layout design is a prime opportunity for enhancing reliability.

Unlike utilities where decisions are heavily influenced by amortizing costs of existing

infrastructure, minigrid developers have an opportunity to use these metrics in action-

able minigrid design. In rural electrification applications, however, there is a dearth of

historical data from which to calculate reliability indexes to determine a cost benefit.

For utilities with established electrical grids that have such data gaps, probabilistic

value-based analysis added to deterministic distribution planning criteria has been con-

sidered, e.g., for overhead distribution network planning, quantifying expected unserved

energy availed as a cost (similar to EENS and ECOST) [22]. Distribution network lay-

out has also been designed for high reliability through adding loops in existing systems

to create meshed networks as a method for increasing reliability [23]. The idea of us-

ing a probabilistic value-based analysis is brought to rural electrification applications

in [24, 25], which present the first distribution system planning model with topology

decisions including reliability cost benefit (derived from N-1 line loss contingencies).

However, this method does not provide geographical layout of the network as part of a

publicly available tool.
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The comparative review of available minigrid design tool capabilities supports a need

for a holisitic approach that integrates equipment sizing and resource allocation, geo-

graphical distribution network layout, and reliability cost-benefit analysis. This work

addresses this deficit by extending a coupled techno-economic minigrid development

toolset, called uGrid, to integrate electricity distribution network layout optimization

and reliability cost benefit analysis into the optimization. The original uGrid tool [8,26]

was developed primarily for optimized sizing and design of hybrid energy generation

systems. The extended toolset builds on this base in collaboration with the minigrid

developer OnePower to add capabilities lacking across the discipline and tuned to the

minigrid development context of sub-Saharan Africa, where OnePower is based. This

paper presents the extended open-source uGrid toolset.

The main contributions of this paper are summarized as follows:

• Present a holistic open-source minigrid toolset to simultaneously address optimiza-

tion of sizing power generation equipment and distribution network layout opti-

mization with incorporated cost-benefit reliability analysis.

• Present an improved control algorithm to the uGrid tool to minimize propane

generator run-time and maximize the part load on the generator when it is in

use. This is performed to reduce use of the generator at low-efficiency areas of the

operation curve.

• Present a distribution network layout optimization method designed for flexible

use in off-grid application. The optimization uses a Google Earth placemark file,

geolocation of relevant community features, and economic/practical constraints to

determine geographic utility pole placement, distribution wiring layout, and ser-

vice drop wiring layout. A combination of Gaussian-mean clustering and network

reduction is used to optimize pole placement and wiring layouts. The optimiza-

tion includes cost-benefit analysis of N-1 contingency line-loss probability, called

reliability probability, for improved network reliability.

The remainder of this paper is organized as follows: Section II briefly summarizes

the uGrid minigrid design and planning toolset. Section III describes updates to the

previously published uGrid equipment sizing and resource allocation tool that improves
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the generation balance control algorithm. Section IV provides the network layout op-

timization formulation using Gaussian-mean clustering and network reduction used in

the uGridNet tool. Section V presents a validation study, discussing the results of using

the uGrid toolset for designing a minigrid for a reference community (the village of Ha

Makebe, Lesotho). Section VI discusses the outcomes and contributions of the uGrid

toolset for minigrid development and makes suggestions for future additions to the uGrid

toolset.

2.2 uGrid Toolset Overview

The extended uGrid toolset is designed with accessibility in mind. The code base is built

in Python which, in addition to having numerous available open source packages, also

interfaces with industry standard tools such as Siemens PSS/E. Unlike other minigrid

design tools which contain fixed and blackbox algorithms, the uGrid toolset is fully

customizable. The optimization structure can be changed to perform multi-objective

optimization, e.g., for emissions or fuel use minimization in addition to lowered cost.

The project economic structure can be changed for specific location tax structures and

project financial structure.

The uGrid toolset is comprised of two main tools: 1) equipment sizing and 2) network

layout design. The inputs, outputs, and flow of information through the two tools are

illustrated in Figure 2.1. The formulation and algorithms contained within the tools

illustrated in Figure 2.1 are outlined in the following sections.

2.3 uGrid Resource Sizing and Allocation

The uGrid tool [8,26] optimizes the solar PV [kW] and battery [kWh] sizes (capital equip-

ment) to best match the (statistical model of) expected load and the local solar resource,

with a design availability target of 100% attained by recourse to a backup generator (fu-

eled by, in this case study, propane). The uGrid tool uses particle swarm optimization

(PSO) to select generation equipment sizing, co-optimizing (minimizing) the levelized

cost of electricity for customers and fossil fuel use based on local Typical Meteorological

Year (TMY) weather data, a yearly local load curve (5-15min discretization), equipment

performance constraints, a control scheme minimizing generator run-time, and project
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economics. Simulations are evaluated at hourly timesteps over one year, with power flows

solved with DC power flow approximation (energy balance). This section updates the

dispatch control strategy of the generators and battery storage during dusk and dawn

hours to further optimize fuel usage (and associated CO2 emissions).

The dispatch control of energy to/from generators and storage has significant impact

on overall operating and maintenance costs, driven primarily by fuel usage in running

the backup generator. In [27–29], the need for dispatch control algorithms that account

for battery performance, lifespan, and time of day charging are discussed and developed,

however these do not address issues related to the generator performance, in terms of fos-

sil fuel usage or equipment stresses. The generation balance control algorithm presented

in this paper comprehensively addresses battery performance, battery degradation as

a function of lifetime use, time of day charging (i.e., source of energy for charging),

maximized generator loading while running (for optimal fuel efficiency), and minimized

generator startup demands/runtime (for reduced wear and reduced noise to households

near the equipment). The following subsections outline the equations and procedure of

the updated uGrid generation balance control algorithm.
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Figure 2.1: uGrid Toolset Flow Chart: The blue box denotes the key steps in the uGrid tool to
perform resource allocation and sizing to calculate the levelized cost of electricity and equipment
sizes (ES). The red box denotes the key steps in the uGridNet tool to perform distribution network
layout and cost-benefit reliability to calculate the pole placement locations and network layout.
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2.3.1 uGrid Model Parameters and Inputs

Table 2.3: Sets

H set of time periods, indexed by hour h

Table 2.4: Parameters

PGload propane generator load demand

PGpartload propane generator part load capacity

ηPG propane generator part load capacity efficiency

PGFuel propane generator fuel use for evaluated

duration

PGkW propane generator size

PPG propane generator power flow

BkWh size of batteries

Btemp battery temperature

LimitBatt,charge battery charging limit

LimitBatt,discharge battery discharging limit

SOCh state of charge of the battery

PBatt,charge,h available battery charge power for h ∈ H

PBatt,discharge,h available battery discharge power for h ∈ H

PBatt,freespace total available power battery charge

PBatt,hightrip battery power high trip limit

PBatt,lowtrip battery power low trip limit

PBatt,h battery power flow for h ∈ H

PPV,h solar PV power flow for h ∈ H

Loadleft amount of load not served by solar PV power

generation

Pdump,h excess power generation that can’t be stored in

batteries or serve load for h ∈ H
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Table 2.5: Inputs

Lh local load profile for h ∈ H

Lpeak peak load demand

LkWh total load for the evaluated duration

TMYh typical meterological year weather data for h ∈
H

Tamb ambient temperature

2.3.2 Fuel-based Electricity Generation

The propane generator is used as a backup for times when the load cannot be supplied

by the solar PV generation and/or batteries. The generator is automatically sized for

the maximum instantaneous load (with an added factor of safety) to ensure load is met

24/7 regardless of weather or any malfunctions of solar or battery equipment. Therefore

the size of the generator is Lpeak. The amount of propane consumed by the generator

at any given hour is calculated from load demand on the generator and the part load

efficiency [30]. Equations 2.1-2.3 calculate the fuel consumed for an hour of generation.

Equation 2.2 is curve fitted to the part load efficiency data in [30].

PGpartload =
PPG,h

Lpeak
(2.1)

ηPG = f(PGpartload) (2.2)

PGfuel = PGpartload ∗ ηPG (2.3)

2.3.3 Battery Storage

The batteries are present primarily to shift some fraction of daytime solar energy for

nighttime use. The batteries are also charged by the propane generator when it would

otherwise be running at a part load capacity, an approach that improves generator

efficiency (which generally increases as load fraction increases). The batteries discharge,
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providing power to the minigrid, when there is insufficient solar PV generation to meet

the instantaneous load and the battery state of charge (SOC) is greater than the battery

SOC lower limit (set to prevent equipment damage). The batteries are also subject to

performance degradation due to temperature and lifetime charge/discharge cycling. The

equations calculating battery performance and the algorithm determining battery power

supply or storage (energy balance) are shown below.

PBatt,discharge = f(Tamb,BkWh) (2.4)

SOCh = SOCh−1 − PBatt,discharge (2.5)

ηBatt,temp = f(Tamb) (2.6)

PBatt,hightrip = LimitBatt,high ∗ BkWh ∗ ηBatt,temp (2.7)

PBatt,lowtrip = LimitBatt,low ∗ BkW ∗ ηBatt,temp (2.8)

PBatt,freespace = BkWh ∗ ηBatt,temp − SOCh (2.9)

PBatt,charge = min(LimitBatt,Charge,PBatt,freespace) (2.10)

PBatt,discharge = min(LimitBatt,Discharge, (SOCh − PBatt,lowtrip) (2.11)

Equation 2.4 calculates how much energy is consumed in the battery due to self

discharge over the hour interval; this is subtracted from the state of charge of the battery

in Equation 2.5. The battery efficiency due to temperature is accounted for in both

the battery high power limit and the amount of storage capacity left in the battery

in Equations 2.7 and 2.9 respectively. The maximum amount of energy that can be

supplied by the battery during the hour time period is determined in Equation 2.11, and

the maximum amount of energy that can be stored is determined with Equation 2.10.
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The amount of energy flowing into or out of the battery is determined in Procedure 1

outlined in the following section.

2.3.4 Control

The control algorithm determines whether the propane generator should be running and

if so at what capacity. This determination is based on the instantaneous and projected

load demand and the battery SOC. The control algorithm also maximizes solar energy use

by prioritizing battery charging during the day (as opposed to charging via generator)

and only allowing discharging of the batteries when solar insolation is insufficient to

supply loads (i.e., from evening to early morning and in cases of inclement weather

where clouds reduce insolation). This updates the previous approach which restricted

battery use to nighttime hours which had an unintended side effect of promoting excess

generator use during early morning daytime. The new approach reduces the number of

times the propane generator will turn on per day, reducing wear on the generator.

The nighttime control schema is achieved by forecasting the kWh of demand ex-

pected over the following night (approx. 12 hours), termed LoadLeft (i.e., load demand

remaining to be served before solar generation comes online the following morning). This

forecasting is based on a statistical model for demand, created from historically collected

data, and is a function of time of year and the particular community being served (num-

ber and type of connections), as presented in previous publications [8]. The generator is

engaged when it is determined that the battery SOC is insufficient to meet the forecasted

nighttime demand for the residual period until solar generation comes back online. Once

the generator is turned on, in addition to serving instantaneous demand it is also used to

charge batteries at the maximum rate allowable (by the battery chemistry) to maximize

part load efficiency of the generator. The generator is turned off when the battery SOC is

sufficient to meet the forecasted load. If LoadLeft is accurate, the generator will turn on

a maximum of once per 24 hours and, if it does, will ensure the batteries are charged up

to the level required to meet demand through the night (until morning solar insolation

is sufficient to supply the load).

The power flows from the battery and generators are determined by the decision flow

chart shown in Procedure 1.

An example of a single day of power flows from the month of July in Lesotho and
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Procedure 1 Generation Balance Control, providing the controls decisions for when
the batteries are charged or discharged and when the propane generator will dispatch.
The parameters are described in Tables 2.3-2.5.

1: Input: PPV,h, PBatt,charge,h PBatt,discharge,h, PBatt,freespace, SOCh, LoadLeft, DayHour
2: Output: SOCh,PBatt,h, PPG,h,
3: for h← 0 to H do
4: if PPV,h > 0 then
5: if PPV,h− Lh < 0 then
6: if PBatt,freespace > LoadLeft AND PBatt,discharge,h > Lh then
7: PPG,h ← 0 PBatt,h ← Lh - PPV,h Pdump,h ← 0
8: else
9: PPG,h ← min(PGkW,(Lh - PPV,h + PBatt,charge,h)) PBatt,h ← -(PPG,h + PPV,h - Lh)

Pdump,h ← 0
10: end if
11: else
12: PPG,h ← 0 PBatt,h ← −min((PPV,h - Lh),PBatt,charge,h) Pdump,h ← PPV,h + PBatt,h - Lh

13: end if
14: else
15: if PBatt,freespace > LoadLeft AND PBatt,discharge,h > Lh then
16: PPG,h ← 0 PBatt,h ← Lh Pdump,h ← 0
17: else
18: PPG,h ← min(PGkW,(Lh + PBatt,charge,h)) PBatt,h ← -(PPG,h - Lh) Pdump,h ← 0
19: end if
20: end if
21: end for

battery state of charge (SOC) including the load profile using the control algorithm

covered in this section is shown in Figures 2.2-2.3.

As can be seen in Figure 2.2, the propane generator is used minimally and only when

there is insufficient solar PV generation or battery charge. Note: power flow from the

battery never exceeds charging/discharging limits.

2.3.5 Model Outputs

The output from the uGrid tool is a spreadsheet containing the resulting capital equip-

ment sizes (kW of PV and kWh of batteries) and corresponding projected levelized cost

of electricity (LCOE). Future work includes developing a graphical user interface (GUI)

to increase ease of use of the tool. Additionally, other future improvements to the tool

could include performing a complexity calculation to compare the tool’s run-time to other

available tools, considerations for load growth, and additional power generation sources

such as wind and small scale hydro power where resource input data is available (in com-

parison with solar resource data, location-specific data for assessing yield and financial
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Figure 2.2: Example Day Power Flows: A single day’s power flows from the month of July in
Lesotho is plotted highlighting the power outputs at each hourly timestep from each of the generation
equipment and the load demand.

viability of wind and hydro generation is relatively more dependent on local survey and

measurement campaigns), and AC steady state and dynamic power flow analysis.

2.4 uGrid Net Formulation

The uGridNet tool optimizes the AC distribution grid layout to reduce the cost of the

distribution equipment while including a reliability cost benefit. The uGridNet tool’s

main input is a Google Earth placemark file of the community to be electrified, with

the houses, roads, and other non-buildable areas (e.g., areas identified in site surveys

or Environmental and Social Impact Assessments or Management Plans as culturally,

historically, archaeologically, or ecologically sensitive) highlighted as exclusion zones.

Other inputs include the GPS locations of the structures to be connected to the grid,

the GPS location of the generation equipment, and the desired voltage levels of the

grid. The uGridNet network layout has a medium voltage (MV) line network backbone
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Figure 2.3: Example Day Battery Power Flow with State of Charge of Battery: The black dashed
lines denote the charging and discharging limits on the battery. The battery power flow is negative
when it is charging (storing power from the PV or fuel-based generation) and positive when it is
discharging (providing power to the minigrid).

that connects low voltage (LV) line networks. The default voltage levels in uGridNet

are 6.3kV (MV) and 220V (LV), which conform to regional standard and are realistic

ratings of the lines for the current load levels to be carried in typical community-scale

systems. The LV network connects to the customers with service drops.

Constraints for maximum line capacity must be respected when determining how

many nodes are on each LV line network; for this purpose the load demand for each

household (or business or institution) is set at its expected peak load. This power

system constraint is built into the network reduction algorithm described in more detail

below.

Based on these data and constraints, uGridNet generates optimized pole placement,

MV line network layout, LV line network layout, service drop connections to LV line

networks, and cost. The cost includes a reliability cost-benefit, motivated by the works

of [3, 25, 31]. The uGridNet tool uses network layout with N-1 line loss contingencies
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to determine lost load from contingencies, from which the lost revenue for the minigrid

developer is calculated. This provides the minigrid developer an economic incentive to

consider reliability in network design despite an increased initial cost due to additional

lines.

2.4.1 uGridNet Methods

The uGridNet tool uses two methods to complete the network layout design: Gaussian-

mean clustering (for pole placement) and a network reduction algorithm (for network

layout, see Procedure 2). Figure 2.1 illustrates the process flow of the uGridNet tool.

The Gaussian-mean clustering algorithm is from the publicly available scikit Python

package GaussianMixture [32]; GaussianMixture is the fastest algorithm for learning

mixture models [32].

Procedure 2 Network Reduction, where trepair is the estimated time to repair any line
loss contingency (must be determined by the user) and p is the user-selected reliability
probability (ranging from 0-100%).

1: Input: Pole Placements, p, trepair, LCOE, EC
2: Output: Total network cost, wiring layout
3: Calculate distances between all poles
4: Sort connections between all poles by length, longest to shortest
5: Create initial solution:

Wiring solution ← Set all poles connected to each other
Calculate initial total network cost

6: for n← 0 to N do
7: Remove n line from the wiring solution
8: Calculate number of islands in wiring solution
9: if number of islands in wiring solution > then

10: Add n line back to the wiring solution
11: else
12: Calculate total network cost
13: if total network cost > best total network cost then
14: Add n line back to the wiring solution
15: end if
16: end if
17: end for

The network layout algorithm begins with a fully connected network. Here lines are

considered for removal from longest (most expensive) to shortest. However, the order of

consideration for removal is important and if changed will change the end result; there

is therefore room for improvement if other order-determining heuristics are of interest.

For each line in that network then, the line is removed if no islands are created and
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if the total cost of the network (the combined cost of the network equipment and the

reliability cost as seen in Equation 2.12) is lowered by removing that line. Finding

connected components, a theory used in graph theory, is used to verify that removing a

line in the network does not create islands within the minigrid.

Total Network Cost =

Network Equipment Cost + Reliability Cost
(2.12)

(a) (b) (c)

Figure 2.4: (a) Google Earth U.S. town image, (b) with exclusion zones, such as houses and roads
and rivers, highlighted in white, (c) house locations as located on the image

(a) 0% (b) 25% (c) 100%

Figure 2.5: U.S. town network solution with (a) 0%, (b) 25%, and (c) 100% reliability probability:
The red lines denote the LV distribution network lines and the green line denotes the MV distribution
network line. The yellow lines denote the lines to connect the houses to the LV distribution network.
The black dot denotes where the generation station point of connection is located.

The equipment cost includes poles, transformers, and distribution boxes and is a

function of the length and voltage rating of the power lines; regional costs for equipment

components are input by the user. The reliability cost is the cost of the potential loss of

service (load) due to the outage or loss of any line in the system, determined by Equation
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2.13:

Reliability Cost =
N∑

n=1

p ∗ Lloss,n ∗ trepair ∗ LCOE (2.13)

where LCOE is from the uGrid tool, p is the reliability probability which is the

probability of the line loss, and trepair is as defined above. The load loss due to a line

loss, denoted as Lloss,n in Equation 2.13, is calculated using the connected components

method from graph theory as described earlier (identifies customer points islanded by

the line loss).

Without considering a reliability cost, the lowest cost network will have the fewest

number of lines that connects all nodes. From a graph theory perspective, this lowest

cost network will be a radial network. Adding a reliability cost from the reliability cost-

benefit analysis (N-1 line loss contingencies) results in partially meshed networks. The

greater the reliability cost, the more meshed the network will become. Therefore, if any

of the variables in Equation 2.13 are increased, the network will become more meshed

due to the presence of more lines in the network (illustrated in the following section case

studies). Note, however, that costs of any potentially required protection or switching

equipment for network meshing are not yet considered in this algorithm.

Areas for further development of the uGridNet tool include adding ability to prefer

line layout to follow along roads/walkways, considerations for (resiliency in cases of) load

growth, and additional costing that may be associated with network meshing.

2.4.1.1 Network Layout Design Benchmark

The uGridNet code was first benchmarked on a small town in the United States to verify

that the generated network layout out was reasonable in comparison to how electrical

grid network layouts are implemented in the United States. Though the GPS location

of the town and relative house placements reflect the actual community in the United

States, all other inputs to the uGridNet tool (load demand, line voltage ratings, etc.)

were set to reflect a minigrid being built for rural electrification in Lesotho (to provide

an “apples-to-apples” comparison to the Ha Makebe, Lesotho study in Section V). The

LV and MV line voltage rates were chosen to be 220V and 6.3kV respectively.

The input to uGridNet was the Google Earth placemark file of the small town in the
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United States with marked exclusion zones, as seen in Figure 2.4(b). For comparison,

the original Google Earth placemark file without the marked exclusion zones is seen in

Figure 2.4(a). The GPS locations of the 31 houses to be connected and the location of

the generation equipment were also provided.

The output from uGridNet (Figures 2.5(a)-2.5(c)) shows the medium voltage line in

green, the low voltage lines in red, the housing connections in orange, and the generation

location with a black dot. In these three figures, the reliability probability (p) was

set sequentially to 0%, 25%, and 100% to illustrate the effects of the reliability cost

benefit analysis, and the network layouts become more meshed as reliability probability

increases.

At 100% probability, the network is still only partially meshed. This is because a

fully meshed network would only be a result of accepting networks with zero reliability

cost and no allowed load loss (with an obvious trade-off of increased capital cost). In

this method, however, load loss from N-1 line loss contingencies are allowed, with the

reliability cost included in the total cost. Note that the same effect (increasing mesh)

would be seen if any of the variables in the reliability cost were increased (not just p). The

appropriate amount of reliability cost to include depends on the reliability expectations

of the customers (which may be assessed through surveys) and total budget constraints.

In the United States there is a high electrical reliability expectation, which should

logically correspond to higher reliability costs (more meshing), however a typical US

town’s distributed grid actually looks more similar to the fully radial network in the 0%

reliability probability result (Figure 2.5(a)). This is because US electrical grids achieve

high reliability standards in more ways than just increasing mesh. When taking this

into consideration, we can conclude that Figure 2.5(a) demonstrates a realistic looking

electrical grid network that could theoretically exist in the United States.

2.5 Ha Makebe, Lesotho Case Study

The uGrid toolset is built for designing and planning minigrids in sub-Saharan Africa by

OnePower. The village of Ha Makebe, Lesotho is the first village where they are building

a community minigrid. This section provides the results of using the combined uGrid

toolset for designing the Ha Makebe minigrid.

The key inputs and outputs of the uGrid tool for Ha Makebe are shown in Table 2.6.
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Table 2.6: Sample uGrid Inputs and Outputs for Ha Makebe

Number of houses 212

Village peak load 37.4 kW

Battery size 215 kWh

Solar PV size 100 kW

Propane generator size 45 kW

Levelized cost of electricity 0.35 $/kWh

The power flow outputs from the uGrid tool for Ha Makebe for the months of February

and July (southern hemisphere summer and winter, respectively) are shown in Figures

2.6 and 2.2 (above). From these two figures it can be seen that in the winter months the

propane generator is used more (as expected with lower solar insolation but similar or

increased loads, e.g., due to heating).

The levelized cost of electricity generated from the uGrid tool is used as input to the

uGridNet tool. The Google Earth placemark files of the Ha Makebe village (raw and

with exclusion zones) and the locations of the houses to be electrified are seen in Figures

2.7(a)-2.7(c).

Figures 2.8(a)-2.8(d) show the locations of the poles and network layout for three re-

liability probability cases (0%, 10%, 25%). As expected, increasing reliability probability

results in more network meshing. In order to select between these cases, the minigrid

developer must determine a target reliability probability, something which remains chal-

lenging due to the lack of historical data on the likelihood of line losses in minigrids.

Evaluating how the reliability costs compare to the equipment costs gives perspective. A

comparison of the associated equipment and reliability costs for the networks with 0%,

10%, 25%, and 100% reliability probability are reported in Table 2.7.

As seen in Table 2.7, as the reliability probability increases from 10% to 100% the

reliability cost increases from 15% to 55% of the total cost of the system used in the

network reduction algorithm. Evaluating the reliability cost as a percent of the total cost

could help provide insight to minigrid developers to determine an appropriate amount

of reliability probability to use.
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Figure 2.6: Ha Makebe single day February power flows are plotted, highlighting the power outputs
at each hourly timestep from each of the generation equipment and the load demand.

(a) (b) (c)

Figure 2.7: (a) Google Earth Ha Makebe image, (b) with exclusion zones, such as houses and roads
and rivers, highlighted in white, (c) house locations as located on the image
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(a) 0% (b) 10% (c) 25% (d) 100%

Figure 2.8: Ha Makebe network solution with (a) 0%, (b) 10%, (c) 25%, and (d) 100% reliability
probability: The bold dark green lines denote the MV distribution network lines. The thin yellow lines
denote the lines to connect the houses to the LV distribution network. The LV distribution network
are the multicolored lines. Each color denotes a separate grouping of LV distribution lines which
connect to the MV distribution network where seen. The black dot denotes where the generation
station point of connection is located.

Table 2.7: Reliability and equipment costs associated with the networks solutions for 0%, 10%, 25%,
and 100% reliability probability of the Ha Makebe village.

Reliability Probability Reliability Cost Total Cost

0% $0 $20,709

10% $3,691 $24,491

25% $6,620 $27,800

100% $26,500 $47,600

2.6 Conclusions and Future Work

This paper introduces an extended holistic open-source minigrid planning and design

toolset called uGrid. To the best knowledge of the authors, there are no other toolsets

that integrate equipment sizing, geographical distribution network layout, and reliability

cost-benefit analysis for the design of islanded minigrid power systems. The toolset

consists of uGrid, a techno-economic resource sizing tool, and uGridNet, a network layout

design tool. Here we present an updated control algorithm that minimizes propane

generator wear, maximizes generator efficiency, and minimizes fossil fuel usage. The

uGridNet tool uses an inputted Google Earth placemark file of the village and generates

optimized pole placement, connection wiring layout, and distribution wiring layout. A
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combination of Gaussian-mean clustering and network reduction is used to optimize pole

placement and wiring layouts, including cost-benefit analysis of N-1 contingency line-loss

probability for improved network reliability.

The tool is demonstrated through design of a minigrid for the community of Ha

Makebe, Lesotho. The developed LV and MV network layouts based on varying levels

of desired reliability provide guidance for design of the system and point to the need for

collection of reliability metrics to inform future design decisions.

This toolset fills a gap for flexible and affordable holistic minigrid planning, needed

by minigrid developers. The toolset is designed for continued improvement and com-

munity input and is readily accessible through the open-source platform GitHub [33].

Areas for future expansion include: integrating additional resource types (e.g., wind and

hydro) to the uGrid tool, adding steady state and dynamic power flow analysis, pro-

viding considerations for network layout to follow along roads and walkways, projecting

for expected load growth (in both resource sizing and network layout), and adding a

complexity calculation comparing the tool’s run-time in comparison to similar tools.
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Chapter 3: Evaluating Measurement-Based Dynamic Load

Modeling Techniques and Metrics

3.1 Introduction

The introduction of phasor measurement units (PMUs) and advanced metering infras-

tructure (AMI) has ushered in the era of big data to electrical utilities. The ability

to capture high-resolution data from the electrical grid during disturbances enables the

more widespread use of measurement-based estimation techniques for validation of dy-

namic models such as loads. Transient stability studies use dynamic load models. These

studies are key for ensuring electrical grid reliability and are leveraged for planning and

operation purposes [34]. It is imperative that dynamic load models be as representative of

the load behavior as possible to ensure that transient stability study results are accurate

and useful. However, developing dynamic load models is challenging, as they attempt to

represent uncertain and changing physical and human systems in an aggregate model.

Several methods exist for determining load model parameters, such as measurement-

based techniques using power systems sensor data [35–40], and methods that use pa-

rameter sensitivities and trajectory sensitivities [35, 37, 41–43]. A common practice in

measurement-based techniques is to use system response outputs, such as bus voltage

magnitude, from PMU data and simulation data and compare the output with a similar-

ity measure, such as Euclidean distance. The error between PMU data and simulation

output is referred to as response error in this paper. As investigated in [12], the un-

derlying assumption that reducing response error results in a more accurate model and

system is not guaranteed.

This paper examines the relationship between response error and system and model

accuracy to highlight concerns with common measurement-based technique practices.

The methods used in the study examine whether the selection of a load model is accurate

at a given bus. Measurement-based techniques typically perform dynamic load model pa-

rameter tuning to improve accuracy. In parameter tuning, significant inter-dependencies

and sensitivities exist between many dynamic load model parameters [35, 37, 41–43],
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which is one of the reasons why dynamic load model parameter tuning is challenging.

This study compares the selection of two loads models, the dynamic composite load

model (CLM) and the static ZIP model instead of parameter tuning. The static ZIP

model is the default load model chosen by power system simulators and represents loads

with constant impedance, current, and power. The CLM load model has become an in-

dustry standard, particularly for the western United States, which represents aggregate

loads including induction machine motor models, the ZIP model, and power electron-

ics [38,44]. The choice of changing the load model is made to compare known differences

in responses from load motor models with the CLM model and static load models with

the ZIP model. By comparing load model selection, the presence of a correlation between

response error and system accuracy will be assessed.

This study performs two experiments to address two main hypotheses. The first

experiment is a system level experiment to test hypothesis 1) can response error deter-

mine the total system accuracy of how many load models at buses in the system are

accurate? The second experiment is a bus level experiment to test hypothesis 2) can

response error indicate if a load model being used at a bus is accurate? The results from

these experiments demonstrate that it can’t be assumed that response error and system

accuracy are correlated. The main contribution of this paper is to identify the need for

validation of techniques and metrics used in dynamic load modeling, as frequently used

metrics can deliver inaccurate and meaningless results.

The remainder of this paper is organized as follows. Section II discusses the use of

dynamic load models in industry and those used in this paper. In Section III, similarity

measures are discussed in relevance to power systems time series data. Section IV details

the methodology used to evaluate the system level experiment of hypothesis 1. Section

V provides and discusses the results from system level experiment. Section VI details the

methodology used to evaluate the bus level experiment of hypothesis 2. These results

are provided and discussed in Section VII. In conclusion, Section VIII discusses the

implication of the results found in this study and calls for attention to the importance

of careful selection and validation of measurement-based technique metrics.
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Table 3.1: Examples of amplitude and time shifting and stretching [12]

Amplitude Time

Shift initialization differences, discontinu-
ities

different/unknown initialization
time

Stretch noise oscillations at different frequencies

3.2 Similarity Measures

A similarity measure compares how similar data objects, such as time series vectors, are

to each other. A key component of measurement-based techniques is to use a similarity

measure to calculate the response error. Then typically, an optimization or machine

learning algorithm reduces this response error to improve the models or parameters in

the system. Several measurement-based dynamic load model estimation studies employ

Euclidean distance as a similarity measure [38,45,46] . However, there are characteristics

of power systems time series data which should be ignored or not emphasized, such as

noise, which are instead captured by Euclidean distance. Power system time series

data characteristics include noise, initialization differences, and oscillations at different

frequencies. These characteristics result in shifts and stretches in output amplitude and

time as detailed in Table 3.1.

The characteristics listed in Table 3.1 are the effect of specific phenomena in the

system. For example, differences in control parameters in motor models and potentially

also playback between motor models can cause oscillations at different frequencies. Cer-

tain changes in output are important to capture as they have reliability consequences to

utilities. An increase in the initial voltage swing after a disturbance can trip protection

equipment. An increase in the time it takes for the frequency to cross or return to 60

Hz in the United States has regulatory consequences resulting in fines. Response error

produced by similarity measures should capture these important changes. Other changes

to output, such as noise, should be ignored.

Different situations when comparing simulation data to simulation data versus com-

paring simulation data to PMU data cause some characteristics listed in Table 3.1. Com-

paring simulation data to simulation data occurs in theoretical studies, and comparing

simulation data to PMU data would be the application for utilities. Initialization differ-

ences and differences in initialization time can occur when comparing simulation data
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to PMU data due to the difficulty in perfectly matching steady-state values. However,

when comparing simulation data to simulation data, initialization differences and differ-

ences in initialization time likely highlight errors in the simulation models, parameters,

or values.

Similarity measures have the capability to be invariant to time shift and stretch or

amplitude shift and stretch. Table 3.2 lists the similarity measures examined in this

study with their corresponding capabilities. These similarity measures are chosen to test

the sensitivities to all four quadrants of Table 3.1.

Table 3.2: Similarity measures capabilities

Amplitude
Shift

Amplitude
Stretch

Time
Shift

Time
Stretch

Euclidean Distance
Manhattan Distance

Dynamic Time Warping • •
Cosine Distance •

Correlation Coefficient • •

Euclidean distance and Manhattan distance are norm-based measures which are vari-

ant to time and amplitude shifting and stretching. Euclidean distance is one of the most

commonly used similarity measures in measurement-based techniques. These norm based

distances can range from 0 to ∞.

The cosine similarity takes the cosine of the angle between the two vectors to de-

termine the similarity. By only using the angle between the vectors, this similarity is

invariant to amplitude shifting [12]. This similarity can range from -1 to 1.

The Pearson correlation coefficient is invariant to amplitude shifting and stretching

and also ranges from -1 to 1 [12].

Dynamic time warping (DTW) identifies the path between two vectors of the lowest

cumulative Euclidean distance by shifting the time axis. DTW is invariant to local and

global time shifting and stretching [46]. The DTW algorithm used in this study is only

invariant to time shifting. DTW can range from 0 to ∞.

Figure 3.1 and 3.2 show how amplitude and time shifting and stretching affect the

error produced by similarity measures. The time series plots in Figure 3.1 show a sine

wave with corresponding amplitude or time shift or stretch. The similarity measures
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calculate the difference between each of the time series subplots. The error generated for

each similarity measure is normalized for comparison. The error is normalized separately

for each similarity measure, so the sum of the error from the amplitude and time shift

and stretch sums to one. Figure 3.2 compares the error results from each of the subplot

scenarios.

(a) Amplitude stretch (b) Amplitude shift

(c) Time Stretch (d) Time Shift

Figure 3.1: Example time series with amplitude and time shift and stretch

The results in Figure 3.2 demonstrate the abilities of each similarity measure. The

similarity measures are denoted as: Euclidean distance (ED), Manhattan distance (MH),

dynamic time warping (DTW), cosine distance (COS), and correlation coefficient (COR).

Correlation coefficient has negligible error produced with both amplitude shift and

stretch. Cosine distance has negligible error with amplitude stretch. Dynamic time
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Figure 3.2: Comparison of similarity measures

warping has negligible error with time shift. These results provide an example of what

can be expected when they are used with simulation or PMU time series data.

3.3 System Level Experiment Methodology

The system level experiment is setup to determine whether system response error can

determine the total system accuracy. This addresses the question: is it possible to

determine if any models or the approximate percentage of models in the system are

inaccurate and need to be updated, with out needing to test at each individual bus?

This is determined by calculating the correlation between system accuracy, as defined in

Equation 3.1, and system response error described below.
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This experiment is performed within the RTS96 test system [47, 48], using Siemens

PSS/E software. Fourteen CLMs are randomly placed on loads in the system enhancing

the RTS96 case to create a load model benchmark system. The remaining 37 loads

are modeled with the static ZIP load model. Test systems are generated by replacing

some ZIP load models from the benchmark system with CLM in the test system and

some CLM in the benchmark system to ZIP load models in the test system. Switching

load models creates ”inaccurate” and ”accurate” load models as a method to change the

accuracy of the system. The ”inaccurate” load models are those in the test system that

are different from the benchmark system. The buses with the same load models in the

test system and benchmark system are ”accurate” load models. Switching these load

models will also create difference responses, as described in Section I.

A hundred of benchmark and test systems are created using the randomized place-

ment of CLMs, based on a uniform random distribution, to reduce the sensitivity of the

results to location of the CLM in the system. The percentage of buses in the test system

with accurate load models is called the system accuracy. System accuracy is defined in

Equation 3.1 and is also used in the Bus Level Experiment.

accuracysystem =
Buses with accurate load models

total number of buses with loads
(3.1)

An example benchmark and test system pair at 50% system accuracy will have half

of the CLMs removed from the benchmark system. The removed CLMs will be replaced

with ZIP load models. System accuracy quantifies how many dynamic load models in

the system are accurate. Accurate dynamic load models in the test systems are those

models which are the same as those in the benchmark system.

A bus fault is used to create a dynamic response in the system. Over a hundred

simulations are performed where the location of the fault is randomized to reduce the

sensitivity of fault location in comparison to CLM location. The bus fault is performed

by applying a three-phase to ground fault with a duration of 0.1 s. During this fault,

there is an impedance change at the bus fault causing the voltage to drop at the bus and

a change in power flows throughout the system. The fault is cleared 0.1 seconds after it

is created, and the power flows returns to a steady-state.

The output captured from the simulations are voltage magnitude, voltage angle, and

frequency from all of the load buses, and line flow active power and reactive power. The
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output from the benchmark system is compared to the test systems using the similarity

measures outlined in Section 3.2. The response error generated by DTW, cosine distance,

and correlation coefficient are a single measure for the entire time span of each output

at each bus. The response error from Manhattan and Euclidean distance is generated at

every time step in the time span. The error at each time step is then summed across the

time span to create a single response error similar to the other similarity measures. The

generation of response error for Manhattan and Euclidean distance is shown by Equation

3.2.

errorresponse =

T∑
t=1

s[t] (3.2)

Similar to response error, system response error is calculated from the difference

between the output of buses between the benchmark and test systems. However, system

response error is a single metric which is the sum of all the response errors from each

bus.

Three time spans are tested: 3 seconds, 10 seconds, and 30 seconds. The disturbance

occurs at 0.1 seconds and cleared at 0.2 seconds for all the scenarios. These time spans

are chosen to test the sensitivity to the transient event occurring in the first 3 seconds,

and sensitivity to the dynamic responses out to 30 seconds.

The Pearson correlation coefficient is calculated between system accuracy and system

response error using the student t-test, to determine the relationship between the two.

The student t-test is a statistical test to determine if two groups of results being com-

pared have means which are statistically different. The output of the Pearson correlation

coefficient is the r and p-value. The r-value denotes the direction and strength of the

relationship. R-values range from -1 to 1, where -1 to -0.5 signifies a strong negative rela-

tionship and 0.5 to 1 signifies a strong positive relationship between the groups. For this

experiment, a strong negative relationship implies that as the system accuracy increases

the system response error decreases. This is the relationship typically assumed by those

performing measurement-based techniques. The p-value is the value which determines if

the two results are different. A p-value of less than 0.05 signifies a statistically significant

difference between the two groups of results being compared. Therefore, a p-value less

than 0.05 signifies a statistically significant relationship quantified by the r-value.
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3.4 System Level Experiment Results

In this section, the correlation between response and system accuracy is calculated to

evaluate the ability of various time spans, output types, and similarity measures to

predict system accuracy as used in measurement-based techniques.

An example outputs from these results is visualized in Figures 3.3 and 3.4. The plots

compare the reactive power times series data from a bus in the benchmark system and

test systems at two levels of system accuracy in a system undergoing a bus fault at the

same bus. Figure 3.4 shows the benchmark and test system responses with low system

accuracy, 8%. Figure 3.3 shows the responses with high system accuracy, 92%.

Figure 3.3: Reactive Power Time Series Plot of Low System Accuracy and High Response Error with
Generator Outage

The response from the high system accuracy test system has a better curve fit to the

benchmark system than the low system accuracy test system. This visual comparison

confirms that with an appropriate similarity measure the response error should decrease
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Figure 3.4: Reactive Power Time Series Plot of High System Accuracy and Low Response Error with
Generator Outage

as system accuracy increases.

The results from all the simulations determining correlation between system accuracy

and response error as grouped by the metrics used are shown as r-values in Figure 3.5.

R-values of less than -0.5 are highlighted in orange to show they represent a strong

relationship. R-values greater than -0.5, which do not have a strong relationship, are

in white. All resulting p-values are found to be lower than 0.05, meaning all r-value

relationships are statistically significant. The similarity measures listed in the plots

use the same abbreviations as in Figure 3.2. The output types listed in the plots are

abbreviated with: voltage angle (ANG), voltage magnitude (V), frequency (F), line

active power flow (P), and line reactive power flow (Q).

Out of the 75 combinations of metrics tested in this experiment, only 12% yielded

statistically significant differences. Considering the visual verification that indeed re-

sponse error should decrease as system accuracy increases from Figures 3.3 and 3.4, the
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(a) 3 second time span

(b) 10 second time span

(c) 30 second time span

Figure 3.5: Bus fault R-values for system level experiment for time spans: a) 3 seconds, b) 10
seconds, c) 30 seconds

lack of strong negative correlations seen in Figure 3.5 are concerning. Only the three

and ten-second time span simulations have strong correlation relationships, none of the
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thirty-second scenarios have strong relationships. During a thirty-second simulation, the

last ten to thirty seconds of the output response will flatten to a steady-state value.

Therefore, in a thirty-second simulation there are many error data points that might

contain flat steady-state responses limiting curve fitting opportunities and reducing a

correlation relationship. This can explain why none of the thirty-second scenarios have

strong relationships.

The distribution of the r-values from the overall strongest correlation relationship,

with an r-value of -0.5199, is examined to further investigate the correlation results.

Figure 3.6 visualizes the distribution of the response error for this r-value at the tested

levels of system accuracy.

Figure 3.6: R-value distribution

The response error in figure 3.6 is normalized for a clearer comparison. A general
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negative correlation is seen, where there is lower response error at higher system accuracy.

However, there are several outliers in the data preventing a stronger overall correlation,

particularly between system accuracy levels 0% and 70%. This suggests at lower system

accuracy levels the correlation is not as high as in the overall distribution. To test

this, the correlation between system accuracy ranges is calculated to highlight where

the weakest correlation regions exist. Table 3.3 outlines the correlation at the following

system accuracy ranges.

Table 3.3: Correlation within system accuracy ranges

0-30% 38%-54% 62%-77% 84%-100%

-0.0632 -0.2964 0.0322 -0.4505

Seen in Table 3.3, the correlation is greatly degraded at the low levels of the system

accuracy ranges, even reversing the r-value relationship from negative to positive between

levels 62% and 77%. An ideal scenario would have a constant strong negative correla-

tion through all system accuracy levels. This highlights a potential low effectiveness

of measurement-based techniques using these testing conditions at low system accuracy

levels. Overall, the results from this experiment highlight the lack of correlation between

response error and system accuracy across all metrics.

The application of the system level experiment is to use any of the metrics combi-

nations that showed strong negative relationships in a measurement-based optimization

program. Such an optimization program could change the dynamic load models in the

system to reduce system response error in order to improve system accuracy. However,

in order for such an optimization program to successfully improve system accuracy, there

needs to be a strong negative correlation between system accuracy and system response

error. Additionally, even with an overall strong negative correlation, Table 3.3 shows

that such an optimization program may determine a local minimum at a lower accuracy

level to be the global minimum due to the lower correlation relationship strength found

at lower accuracy levels.

These results identify the need for measurement-based techniques, and potentially

other power systems time series data curve fitting techniques, to evaluate the assumption

that the system response error is correlated to the system accuracy. It cannot be assumed
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measurement-based techniques using similarity measures yield meaningful results. Any

optimization or other estimation technique using the reduction of system response error

will not yield accurate results of findings without a strong correlation between system

response error and system accuracy.

3.5 Bus Level Experiment Methodology

The bus level experiment is setup to determine whether response error from an individual

load bus can indicate if a load model being used at the bus is accurate. In comparison to

the system level experiment which looked at system wide model accuracy, this experiment

looks at model accuracy at the bus level. The results of this experiment are the p-values

from the student t-test, indicating whether there is a statistical difference between the

response error from buses with accurate and inaccurate load models. The p-value is the

value which determines if the two results are different. A p-value of less than 0.05 signifies

a statistically significant difference between the two groups of results being compared.

The same system and system setup are used in this experiment as in the system

level experiment. This experiment excludes comparing the output from line flow active

power and reactive power with the previously used outputs of frequency, voltage angle,

and voltage magnitude of the buses. In this experiment the simulations are performed

at various levels of system accuracy to reduce the sensitivity of the results to the system

accuracy. By reducing the sensitivity of the results to fault placement and system accu-

racy, the results focus the correlation to between response error and load model accuracy.

All other metrics remain the same as the system level experiment.

The response error from all the simulations are compared by output type, time span,

and similarity measure, and binned into groups of buses with accurate load models and

buses with inaccurate load models. A t-test is performed on the binned response error

to determine if there is a statistically significant difference between the error from buses

with accurate load models and buses with inaccurate load models. The results of this

experiment are the p-values from the response error separated by disturbance scenario,

output type, time span, and similarity measure.
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(a) 3 second time span

(b) 10 second time span

(c) 30 second time span

Figure 3.7: Bus fault P-values for bus level experiment for time spans: a) 3 seconds, b) 10 seconds,
c) 30 seconds



43

3.6 Bus Level Experiment Results

The bus level experiment tests whether there is a statistical difference between the re-

sponse error at individual buses with the accuracy of the load models at the buses.

The p-values are calculated using response error from the output types, time spans, and

similarity measures. Figure 3.7 shows these p-values.

Less than 15% of the combinations of time span, output type, and similarity mea-

sure have significant p-values. It is noted that the combinations of metrics best used for

this experimental setup are different than those in the system level experiment. This

experiment highlights a serious concern for other experiments using measurement-based

techniques. Only select combinations of metrics in this experiment yielded significant

differences, and this same result is likely present with other measurement-based experi-

ments whether they involve changing load models, changing load model parameters, or

changes in other dynamic models.

The direct application of this experiment is to use any of the disturbance type, output

type, time span, and similarity measure combinations that showed significant p-values in

a measurement-based machine learning technique to identify if a bus in the system need

a load model updated or a different load model. There needs to be a significant difference

between response errors from buses with poor fitting or inaccurate load models and those

which are accurate for such a machine learning algorithms to give meaningful results,

whether it be from simulation or PMU outputs. In this case, if the machine learning

algorithm was using a combination of metrics that did not have a proven significant

difference between response error from buses with inaccurate and accurate load models,

the machine learning algorithm would be unable to accurately tell the difference between

the groups, causing the results to be inaccurate.

The results from this experiment confirm the same conclusion from the system

level experiment that there needs to be verification testing showing that the chosen

measurement-based metrics used to calculate error will capture true differences between

incorrect models and correct models. It cannot be assumed that any combination of

metrics used in measurement-based techniques will yield meaningful results.
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3.7 Conclusion

This paper investigates common metrics used in measurement-based dynamic load mod-

eling techniques to generate response error. These metrics include similarity measures,

output types, and simulation time spans. The correlation between response error and

accuracy is evaluated by comparing the system accuracy to system response error with

the system level experiment and load model accuracy to bus response error with the

bus level experiment. Both experiments demonstrated there is a lack of combinations

of metrics that deliver significant findings. It is noted that the combinations of met-

rics best used in the bus level experiment are different than those in the system level

experiment. This same result is likely to be found with other measurement-based exper-

iments whether they involve changing load models, changing load model parameters, or

changes in other dynamic models. These experiments expose a significant concern for

measurement-based technique validity. This study raises awareness of the importance of

careful selection and validation of similarity measures and response output metrics used,

noting that naive or untested selection of metrics can deliver inaccurate and meaningless

results.

These results implicate that optimization or machine learning algorithms that use

measurement-based techniques without validating their metrics to ensure correlation

between error and accuracy may not generate accurate or meaningful results. These

methods to determine the effectiveness of the use of these common metrics are specific

to these experiments of model accuracy. Future work can expand these methods to

dynamic model parameter tuning experiments.
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Chapter 4: Transient Voltage Stability Effects on Hosting Capacity

of Behind-the-Meter Devices

4.1 Introduction

The contribution of distributed energy resources (DER) is broadening across the U.S.,

with U.S. market penetration forecast to increase from 4.7% in 2015 to 6.7% in 2040 [49].

The presence of large amounts of DERs can cause challenges in forecasting uncertainties

in both day ahead markets and long term planning, coordination of control between sev-

eral time scales spanning from operations to markets, and grid stability [50–52]. Hosting

capacity methods have been developed as a way to determine the maximum amount of

DERs a network can integrate without causing stability concerns such as those men-

tioned in [51]. These hosting capacity methods are typically performed using PV curves

to evaluate voltage stability or evaluate based on transient voltage stability [53–56].

Opportunities have been identified for DERs, and large scale inverter-based resources,

to provide voltage and frequency regulation through proper implementation of reac-

tive power support controls [57, 58] and inertia emulation and frequency response con-

trols [59, 60]. For these applications it is necessary to evaluate the transient stability

effects of DERs because voltage and frequency regulation controls respond on the order

of sub-seconds to seconds depending on the application. Therefore, it is also necessary

for hosting capacity studies to evaluate the transient voltage stability. Similar to host-

ing capacity studies, risk evaluations have been developed that do assess the transient

stability [61, 62]. These risk evaluations provide the user the information to determine

an acceptable amount of DERs or variable energy generation to allow on the system

according to a calculated risk associated with the variability of the resource and the

probability of contingencies on the system. Another benefit of the method developed

by [61] is the consideration of multiple resource variability. As multiple resources in a

system can be variable, such as PV solar and wind generation being variable but with

separate variabilities, it is an important to consider the effects from multiple variabili-

ties in risk or hosting capacity studies. An additional variable element of the electrical
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grid, which has not been considered in mentioned risk or hosting capacity works, is the

variability of load dynamics.

Many DERs are installed at industrial and commercial facilities as methods to reduce

electricity costs and reduce their carbon footprint. Industrial and commercial facilities

have diverse dynamic load compositions including fans, pumps, other industrial motors.

The transient stability effects of certain dynamic load compositions have been well stud-

ied, such as induction motors degrading transient voltage stability [63–65]. Additionally,

induction motor loads have been shown to reduce stable penetration level of wind gen-

eration in distribution networks [66]. DERs and dynamic loads are interlinked in both

placement and transient stability, therefore their interaction and variability must be

evaluated in hosting capacity studies.

This paper evaluates the transient voltage stability effects from all dynamic behind-

the-meter devices including DERs and dynamic loads. Argument is made for the the

necessity of considering the combined effects of these devices on transient voltage stability

and how these effects can impact hosting capacity. These results point to how these

combined effects need to be evaluated to identify vulnerabilities in systems due to all

behind-the-meter dynamic behavior. The methods deployed to evaluate these effects

can also be used to evaluate the effectiveness of measures such as voltage and frequency

regulation controls to increase the hosting capacity of DERs. The main contributions of

this paper are: 1) demonstrate the need for assessment of all behind-the-meter dynamics

and 2) suggest methods to determine the hosting capacity of all behind-the-meter devices

that includes the transient voltage stability.

4.2 Behind-the-Meter Effects on Transient Stability

The dynamics from DERs originate from their controls to activate tripping to provide

auxiliary grid services such as voltage and frequency support. Without these controls

DERs would behave as a constant negative load from a bulk power perspective. With

these controls negative transient stability effects can be caused, such as large amounts of

DERs tripping at once causing a sudden change in generation. Events such as this have

occurred in California resulting in 900 MW of solar being tripped due to over-voltage

transients in 2017 [67]. These types of events precipitated the requirements of fault

ride through capabilities of DERs in the update of California’s Rule 21 [68]. With the
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advent of the updates to Rule 21, DERs can also provide auxiliary services to benefit

the transient stability of the grid, such as voltage and frequency support with dynamic

volt-var management. Due to these capabilities the transient stability effects from DERs

must be considered in reliability, risk, and hosting capacity studies.

The effects of dynamic loads on transient stability of the grid, especially on transient

voltage stability with large industrial loads consisting of induction motors have been

heavily studied as mentioned. To address the concerns of transient stability effects

from dynamic loads, the Western Electricity Coordinating Council put efforts into the

development of the composite load model [69]. The composite load model consists of

four types of motor loads, a power electronic load, and static loads consisting of constant

impedance, constant current, and constant power. This model was designed to assist

utilities improve their load modeling accuracy in transient stability studies. However,

parameter estimation of dynamic load models based on historical or real-time utility

data such as phasor measurement units (PMUs), a method know as measurement-based

estimation, remains a challenge [37, 41, 70]. The Load Model Data tool developed by

the Pacific Northwest National Laboratory assists with dynamic load model parameter

identification with taking a component based approach, basing model parameters on

season, geographical location, and general load type (industrial, commercial, agricultural,

residential) among others [71]. With this ability to adequately represent dynamic load

behavior it is important to study their effects on transient stability in all relevant studies,

such as reliability, risk, and hosting capacity.

4.3 Transient Voltage Stability Study of Behind-the-Meter Devices

4.3.1 Methods

The study examines the effects from varying penetrations of DERs and dynamic load

compositions on transient voltage stability and how this can change the hosting capacity

of behind-the-meter devices. The transient voltage is studied using a 12 bus system simu-

lated in PowerWorld using the distributed energy resource model, DER A, and dynamic

composite load model, CMPLDW. The load components of the composite load model

are: Motor A (constant torque loads such as commercial AC and refrigerators), Motor

B (high inertia loads such as fans), Motor C (low inertia loads such as pumps), Motor D
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(single-phase residential air conditioners), power electronics, constant impedance, con-

stant current, and constant power. Motor D is not considered in this study due to the

single-phase and seasonal nature of this load. In systems with considerable single-phase

residential air conditioners the effects of this type of load should be studied. The variation

of DER active power generation is considered in this study, with the omission of reactive

power generation as most DERs are installed for their active power contributions.

A line fault on the line connecting Bus 4 and 5 is simulated in the system to demon-

strate the effects of these behind-the-meter dynamics on the transient voltage stability.

The line fault occurs at 1 second followed by both ends of the line opening 5 cycles after

the fault.

4.3.2 Individual Device Effects

First, each device is varied individually to examine the isolated voltage stability effects

due to each device. The DER active power generation amount at each load is set to

a percentage of the total load. The DER percentage is varied from 0% to 100% at

2.5% increments. The voltage output at each of the buses in the system is collected

to determine the minimum and maximum of the transient voltage swings across all of

the buses due to the simulated line fault. Examples of the time series output is seen in

Figure 4.1, where (a) shows the results from the DER percentage of 52.5% of the load

and (b) shows the results from the DER percentage of 82.5% of the load.

(a) 52.5% DER (b) 82.5% DER

Figure 4.1: Time series voltage from each bus during line fault with DER percentage of a) 52.5%
and b) 82.5% of the load.
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Figure 4.2: Minimum and maximum voltage swing values from varying contributions of DER as a
percentage of load.

The minimum and maximum voltage values are collected from the time series output

after the line is opened. The examples shown in Figure 4.1, simulated at 52.5% and

82.5%, also contain the highest and lowest minimum voltage swing values respectively

out of all variations of DER percentage.

The resulting minimum and maximum voltage swing values for all variations of DER

percentage are shown in Figure 4.2. The simulations that were unstable due to runaway

rotor angle are not plotted. As seen in Figure 4.2, this instability occurs when the DER

percentage is greater than 85% of the load. These results show that the presence of

DERs contributes to the stability of the system due to the ability for DERs to serve load

locally. An increase of DER contribution from 0% to 52.5% of total load increases the

minimum voltage swing from 0.81 pu to 0.91 pu. However, as the mismatch between

load and generation becomes too great, around the DER percent of 80%, the system

becomes unstable.

The effects from the dynamic load types are evaluated the same way. When the

dynamic load component percentage of total dynamic load are varied, the other portion

of the dynamic load is taken to be constant power load. The resulting minimum and

maximum of the voltage swings across all of the buses at varying dynamic load component

percentages are illustrated in Figure 4.3. Dynamic load types do not have as great an

effect on voltage stability as DER contribution when considering a contribution ranging

from 0% to 100%. However, when considering a range from 0% 50%, a more realistic

DER operating range and dynamic load percentage for each type, the minimum voltage

swings have approximately the same range of variation with around a ±0.1 pu change.

A change of 0.1 pu in voltage could make the difference in whether protection relays trip,
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(a) Motor A (b) Motor B

(c) Motor C (d) Power Electronics

(e) Constant Impedance (f) Constant Current

Figure 4.3: Minimum and maximum voltage swing values from varying percentages of dynamic load
types.

resulting in a potentially more detrimental contingency. This highlights the importance

of considering both DERs and dynamic loads for their transient voltage stability effects.

Examining the difference in voltage effects due to dynamic load types, similar trends

are seen across motors A-C, as all are induction motors with varying inertia and torque.
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Also, similar trends are seen across power electronics, constant impedance, and constant

current. These loads also have similar behaviors due to their load being calculated

on different exponential values of voltage. These two grouping of behaviors are here

grouped in two classes, the motor load class and the static load class. The shift from all

constant power load to all motor load has an immediate increase in the entire voltage

profile. Constant power loads consume the same amount of power regardless of voltage,

which results in the greatest load demand during transients in comparison to other

static loads. This behavior is the cause for why the minimum voltages across all static

load types increase as the percentage of that component increases and constant power

load decreases. Induction motors draw more current when the voltage drops due to

a transient event, causing increased voltage instability. At full induction motor load

the minimum voltage swing values are as low as just as low as full constant power

load. However, a combination of both constant power and induction motor results in an

improved minimum voltage.

4.3.3 Combination of Device Effects

Next it is important to consider how the contribution and interaction of both the DERs

and dynamic load types will create a combined effect on the transient voltage stability.

To consider this, the variation of each of the dynamic load components is varied against

a variation of DER active power generation. As the maximum voltage swing values had

little change from individual device variation, they are not considered in this section. The

minimum voltage swing values are determined using the same method in the previous

section. The results are shown in Figure 4.4.

The combined effects of DERs and each dynamic load type follows a predictable and

smooth gradient across the solution space when compared to their individual effects.

However, there is a combined effect due to both making it necessary to understand

and consider the effects of the DER contribution and dynamic load composition. When

DER controls or more sensitive trip settings are activated on DERs or loads the gradients

might not be as smooth or predictable.

Next we investigate the effects due to numerous dynamic load types with DERs.

There is an exponential relationship between number of variable devices and simula-

tions to perform, making it computationally expensive to consider all dynamic load type
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(a) Motor A (b) Motor B (c) Motor C

(d) Power Electronics (e) Constant Impedance (f) Constant Current

Figure 4.4: Minimum voltage swing values cross variations of DER percentage and dynamic load
types percentage.

variations together. Instead, we consider one dynamic model type from the motor load

class, Motor A, and one from the static load class, constant current, with the addition of

constant power load, as constant power load was considered in the combined variations

just examined.

The effects of these behind-the-meter devices on the minimum voltage swing values

are visualized in Figure 4.5. A uniformly distributed sampling of percentage of each de-

vice was used to sample the solution space with simultaneous variations in all the devices.

Approximately 8,000 multivariate data points were produced from this sampling. The

boxplots demonstrate the effects on minimum voltage swing values from cross variations

between devices, where each plot shows the range of voltage values found per percentage

band of device across all variable percentages of all other devices. The blue dots show

the original effects from the individual devices. There are not individual effects to report

for constant power, as this load types filled the other percentage of the load when the

effects from individual load types were calculated.

The results demonstrate the trends from multi variable devices (boxplots) are similar
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(a) DER (b) Motor A

(c) Constant Current (d) Constant Power

Figure 4.5: Minimum voltage swing values from all cross variations of DER and dynamic load types:
motor A, constant current and constant power. Each box shows the results from all minimum voltage
swings across all variations of all other devices for the percentage band specified of the selected device.

to those seen in the original individual variations of devices (blue dots). Due to the

inclusion of the dynamic load types the minimum voltage swing values from all variations

of DER are reduced. This signifies that the inclusion of dynamic loads in the system

degrades the transient voltage stability, and therefore if hosting capacity is based on

minimum voltage swing the hosting capacity would also be reduced. On the other hand,

when a system has dynamic loads, the inclusion of DERs can improve the transient

voltage stability of the system, as seen by increased minimum voltage swing values from

the individual effects to those in the boxes.

These results can be used to form an understanding of what the hosting capacity

of each device, or combination of all devices, should be for the system. The hosting

capacity could be evaluated by setting a minimum voltage swing limit and determining
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the capacity by the percentages of each device that are above that minimum voltage

swing limit. In this study, if we were to determine the hosting capacity on a limit of 0.65

pu, then to remain within the limit the hosting capacity of DERs would range from 20%

to 80% of the total load. To note, in this study only one contingency was used to evaluate

stability. A more realistic evaluation of transient voltage stability would include N − 1

or N − 2 contingencies. Additionally, the transient voltage stability could be evaluated

using different values other than minimum voltage swing to determine if the system is

stable, as most low voltage relay settings have delay times to recheck the voltage value.

Therefore, sustained low voltage or steady state voltage after the contingency could be

used to evaluate transient voltage stability. However, with the onset of controls and

devices that are capable of activating or tripping devices during transients it is necessary

to perform transient stability simulations to capture the effects of these controls and

possible trips even if the value used to evaluate hosting capacity is not taken within the

transient time frame.

4.4 Conclusion

This paper studies the effect of behind-the-meter devices on the transient voltage stability

of the system. The effects from varying the penetration of DERs and dynamic load types

within the composite load model are evaluated as both individual effects and combined

effects. The results demonstrate the need to consider the transient voltage stability effects

from all of these devices as their individual and combined effects change the minimum

voltage swing values seen within the system. If the hosting capacity is determined from

these swing values or other voltage values, the hosting capacity of DERs or dynamic loads

will change based on the inclusion of these devices. The addition of dynamic loads to

the studied system containing DERs reduces the minimum voltage swings which reduces

the hosting capacity based on transient voltage stability. However, the addition of DERs

to the system containing dynamic loads improves the transient voltage stability of the

system. Future work to expand the applications of this study include evaluating: DER

controls for voltage and frequency support, DER and dynamic load placement in the

system, system architecture, N-1 or N-2 contingencies, and optimization methods to

identify solutions close to limits used to determine hosting capacity.
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Chapter 5: Transmission Hosting Capacity of Distributed Energy

Resources

5.1 Introduction

The increasing generation contribution of distributed energy resources (DERs) has cre-

ated challenges on both the distribution and transmission grid. It is important to char-

acterize these impacts to be able to predict and prevent instabilities and reductions in

reliability on the electrical grid. Also to create adequate practices and planning method-

ologies that enable DERs’ continued growth.

Currently, DERs are a salient part of power system planning with the U.S. market

penetration forecasted to increase from 4.7% in 2015 to 6.7% in 2040 [49]. Numerous

factors drive this increase, including: environmental drivers such as limiting green house

gas emissions and avoidance of new transmission and generation construction [72–75],

or national/regulatory drivers such as energy security through diversification [72]. The

impacts of high DER contribution on the distribution grid have been heavily studied and

numerous optimal placement and sizing methods–as well as hosting capacity methods–

have been developed to avoid negative technical impacts while maximizing DER pene-

tration. The technical impacts include overvoltage, power harmonic distortion, thermal

overloading of equipment, exceeding equipment short circuit capacity, and maloperation

of protection equipment [76, 77]. Hosting capacity (HC) methods determine the maxi-

mum amount of DERs that can be integrated into the power system while maintaining

the required system performance, such as the technical impacts just mentioned. Optimal

placement and sizing methodologies aim to increase HC through leveraging topology and

system connectivity properties.

A key component of the HC and optimal placement and sizing methods is the in-

clusion of uncertainty in the system and DERs. The uncertainty is accounted for with

either probabilistic or both probabilistic and deterministic strategies, often completed

with Monte Carlo assessments. In [78–80], Monte Carlo based methods are used to assess

the impact of either distributed generation (DG) placement and size uncertainty, load
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or generation uncertainty, or network topology variability in overall HC of DGs. These

studies constrain the HC via technical and economic limits. These studies highlight the

importance and need to include uncertainty assessments or at a minimum determinis-

tic variations when evaluating HC. They also all solely evaluate steady state technical

constraints and do not consider transient stability limits.

Transient stability is an important consideration, especially in light of new regu-

lations in the U.S.A. allowing DERs to participate in ancillary service markets of the

transmission grid [81]. The type and operating strategies of distributed wind generators

can improve the reactive power savings and impact steady state and transient voltage

stability as shown in [82]. In [83], the dynamic and steady state voltage stability is

evaluated under a moving cloud scenario with solar PV. This demonstrates how the dy-

namic characteristics can be more limiting than the static snapshots, highlighting the

importance of dynamic and transient stability on HC.

Another consideration and variability in HC is load types models, which can be

modeled as either dynamic or steady state. In [84, 85], voltage dependent load models

are considered with DER placement and sizing, demonstrating how load composition

impacts optimal DER portfolios. The effect of time-varying load models and solar PV

size and placement is studied in [86]. HC of solar PV in the distribution grid is compared

between distribution systems with residential, industrial, commercial, and a mix of time-

varying load types. This work demonstrates how the variation in the hourly load profiles

impacts the solar PV HC, with the smallest HC found with residential systems which

have the greatest mismatch in solar PV generation and load demand throughout the

day. [87] also notes the importance of considering different periods of time and the lack

of HC studies that address this, while introducing a dynamic HC study that considers

hourly time frames on numerous days. These studies highlight the effects of load models,

however none included dynamic load models in transient stability simulations.

The impacts of DERs in the transmission systems have been less studied than in

the distribution system. Impacts on transmission transient stability have been noted

due to high DER contributions in [37, 54]. Transmission expansion planning studies

have identified significant impacts on their analysis due to the introduction of DERs

[88–94]. These techno-economical transmission planning methods have been developed

in a similar vein to distribution system DER HC studies to ensure stable and cost

effective planning for higher DER contributions on the transmission grid. However,
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studies directly determining HC of DERs in the transmission grid are limited. A need has

been identified for development of transmission grid DER HC methods, [54] studies the

impacts of increasing DG penetration on the transient stability of a transmission system.

The results show the N − 1 line loss transient impacts of increasing DER penetration,

with various types of DG such as asynchronous and synchronous machines and power

electronics. The findings suggest that contributions of DG in the transmission system can

improve the transient stability by reducing large power flows, which detrimentally affect

the damping of oscillations in the system. This work describes how the contribution of

DERs can improve transient stability in transmission systems, which provides additional

argument for encouraging the growth of DERs. However, also similar to distribution

systems, high contributions of DERs do have the potential to negatively impact both

the steady state and transient stability of transmission systems and it is important to

be able to identify the HC as well as other advanced metrics that provide more accurate

representation of the current state of the system.

This work addresses HC of DERs in the transmission grid and evaluates the impacts

and importance of different modeling strategies. There are numerous modeling setup

considerations to scope when developing a DER HC method for transmission systems.

These considerations include timeframe and scenarios, uncertainty, steady state and/or

transient stability constraints, and scope of models to include such as dynamic load and

DER transient models. It is accepted that these factors can impact the results of a HC

study as shown in the literature reviewed, however the importance and magnitude of

impact of these factors is not known. This study addresses the questions of the relative

importance of these considerations and their impacts on HC results. The HC of DERs

on the 2,000-bus synthetic grid overlaid on the Texas Interconnect [95] is evaluated using

different modeling considerations. The contribution of this work is the evaluation of DER

HC on transmission systems with assessment of the impacts on HC due to the following

modeling considerations:

• Transient contingencies with dynamic load models, dynamic DER models, and

steady state contingencies

• Dynamic load composition variation

• Impact of seasonal and loading variations



59

The remainder of this paper is organized as follows. Section II discusses the impacts of

model fidelity on transmission HC evaluated with transient contingencies with dynamic

load models and dynamic DER models and steady state contingencies. In Section III, we

compare the transmission HC with seasonal and loading variations. Section IV details

the impact of variation in dynamic load composition on Transmission HC. In conclusion,

Section V discusses the implication of the results found in this study.

5.2 Steady State Contingencies and Transient Contingencies with

Dynamic Load Model and Dynamic DER Model Impacts on

Transmission HC

This study determines the HC of DERs in transmission systems using the 2,000-bus

synthetic grid overlaid on the geographical footprint of Texas Interconnect [95]. This

section evaluates the impacts of modeling differences using a Fall low loading seasonal

scenario on the 2,000-bus system.

5.2.1 Experimental Setup

The modeling scenarios evaluated in this section are:

[label=]: Transient contingency with dynamic load models and dynamic DER mod-

els with high voltage support : Transient contingency with dynamic load models

and dynamic DER models with low voltage support : Transient contingency with

dynamic DER models with high voltage support and no dynamic load models

: Transient contingency with dynamic DER models with low voltage support and

no dynamic load models : Transient contingency with dynamic load models and

no dynamic DER models : Transient contingency without dynamic DER or load

models : Steady state contingency

The HC is defined as the maximum amount of DERs in the system while maintaining

stability, as determined by stability limits. The stability limits include load loss, steady

state and transient under and over voltage limits, under and over frequency limits, and

rotor angle deviation. A set amount of limit violations are allowed per each contingency

and the HC is determined when the amount of violations per contingency surpasses the
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Table 5.1: Transient Limit Monitors for Determining Violations in Transient Stability Contingencies

Violation Type Limit Value Limit Duration (s)

Voltage Dip Load Bus ±0.25 pu 0

Voltage Dip Load Bus Duration ±0.2 pu 0.33

Voltage Dip All Bus ±0.2 pu 0.33

Voltage Dip Non-Load Bus ±0.2 pu 0

Frequency <59.6 Hz 0.1

Rotor Angle ±90 0

allowed amount of limit violations. The amount of load loss allowed per contingency was

5% of the total load. A total of 100 individual violations were allowed per contingency.

The transient contingency violations were determined with transient limit monitors as

specified in Table 5.1, based on the Electric Reliability Council of Texas (ERCOT)

standards. The steady state contingency violations were also determined with limit

monitors, set by minimum and maximum bus voltages and overloading of branches.

Similarly, 100 violations are allowed with steady state contingencies for determination

of the HC.

A set of contingencies are used to evaluate the HC. A subset of critical contingencies

were used instead of N − 1 to reduce the computation time. The set of contingencies

included a contingency from each of the areas in the system. The contingency chosen in

each area corresponded to a line loss whose line had the highest power transfer distri-

bution factor (PTDF) [96] linear sensitivity with power transfers between the different

areas and the slack bus. The PTDF represents what percent of a transfer would appear

on each transmission line. Therefore the line with the highest PTDF is one of the most

critical lines if not the most critical line, depending on the engineering application. This

selection method of contingencies is designed to capture the most severe contingencies

that will limit the HC more drastically.

These contingencies were analyzed both as a steady state and transient contingency

as specified in the modeling scenarios. The steady state contingencies calculate the power

flow due to the loss of a line. The transient contingencies simulate a fault on a line at 1

second with both ends of the lines opening six cycles after the fault.
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5.2.2 Load Modeling

All loads in power systems are inherently dynamic depending on the time scale. It is this

timescale that determines which load models are required for accurate representation

of load behavior. Daily or hourly load profiles capture the steady state load changes

throughout the day. Typical load models for steady state loads are either static MW

or voltage dependent [86]. These load models are used when evaluating steady state

contingencies in this study. To evaluate transient contingencies the load can still be

simulated with static load models, however, dynamic load models, which include static

and dynamic components, are more representative of the behavior of real loads connected

to the grid. These dynamic components have substantial impact on the transient voltage

stability and rotor angle stability of the grid, and the importance of their inclusion when

evaluating stability has been widely recognized [31, 97, 98]. Therefore, dynamic load

models are included in this section when evaluating HC with transient simulations. The

dynamic load model used in this study is the Western Electricity Coordinating Council

(WECC) composite load model which includes models of four types of motors, power

electronics, and static load. The parameters of the composite load model for each of the

loads were generated with the load model data tool [71], and set to an assortment of

residential, agricultural, industrial, and commercial feeders.

5.2.3 DER Modeling

DERs have typically been modeled as load reductions on the transmission system, which

is accurate when considering steady state contingencies. For evaluating steady state

contingencies in this study DER contributions are modeled as load reductions. When

DERs are modeled as a load reduction their sensitivity to tripping during transient

contingencies is not captured, which can detrimentally affect the stability of the grid.

This was witnessed in California when 900 MW of rooftop solar tripped due to over-

voltage transients [67]. Due to concerns from events such as this, fault ride through

capabilities have been required in California [68]. This behavior will only be captured if

DERs are modeled with trip settings. Additionally, with FERC order 841 states DERs

can provide ancillary services such as voltage support to the grid and be compensated

through ancillary markets [81]. These DER capabilities will impact stability on the
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transmission grid and therefore must be represented when modeling transient simulations

to accurately represent DERs. This study includes the DER A model in PowerWorld to

enable simulation of DER trip settings and voltage support [99]. The voltage support

settings are created with the gain constant in the reactive power priority control loop

in the model. The high voltage support setting has a gain constant of 50, and the low

voltage support is modeled by setting the gain constant to zero and therefore is only

based on the reference reactive power input as explained in [99].

The amount of DERs in the system is based as a percentage of the load at the load bus.

In this section the percentage of DERs at each load bus is increased uniformly, meaning

the percentage of DERs at each bus is the same throughout the system. In a system

as geographically large as the Texas Interconnect it is unrealistic that the percentage

of DERs at each load bus would be the same, as most DERs are rooftop solar PV

and the dispersion of rooftop solar PV is neither likely to be present evenly throughout

the system nor generating the same amount of power at the same time. However, this

study considers total HC and not the likely DER generation scenario. Therefore, this

section considers uniformly increasing DER percentages across the system to identify

the maximum system hosting capacity.

5.2.4 Results

The HC is evaluated for the modeling scenarios specified earlier as A-G. The resulting

DER HC for each of these scenarios are illustrated in Figure 5.1. The HC evaluated

with steady state contingencies is significantly greater than all of the evaluations using

transient contingencies. This finding confirms the earlier study result in [83] that HC

evaluated with steady state conditions and contingencies will result in inflated results

due to transient conditions being more limiting. To further investigate the scenarios

involving transient contingencies, the load behavior at load bus 7051 is examined and

the time-series results from the line fault between buses 7304 and 7059 are presented in

Figure 5.2. The time-series plots are separated in scenarios that included dynamic load

models (A,B,E) and those that did not include dynamic load models (C,D,F).

The time-series results are separated by those scenarios with dynamic load models

and those without dynamic load models because the dynamic load model behavior dom-

inates the behavior of the load, this is seen by comparing Figure 5.2 [a] to [b]. It is
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Figure 5.1: Comparison of hosting capacity of DERs on the 2000 bus synthetic grid with different
modeling scenarios: A) Transient Contingency with Dynamic Load Models and Dynamic DER Models
with high voltage support, B) Transient Contingency with Dynamic Load Models and Dynamic DER
Models with low voltage support, C) Transient Contingency with Dynamic DER Models with high
voltage support and no dynamic load models, D) Transient Contingency with Dynamic DER Models
with low voltage support and no dynamic load models, E) Transient Contingency with Dynamic Load
Models and no dynamic DER models, F) Transient Contingency without Dynamic DER or Load
Models, G) Steady State Contingency.

important to note that the current, load MW and Mvar, and DER MW and Mvar time-

series output is not included in Figure 5.2 when no dynamic DER models are included.

This is because when no dynamic DER models are included the DER contribution is

taken directly out of the load and only the net load behavior exists as an output. In a

transient contingency, a load without a dynamic load model exhibits constant impedance

behavior. With a dynamic load model the load behavior includes induction motor compo-

nents and other voltage dependent components. These differences result in a large active

power and current dip in the load without dynamic loads and a large reactive power dip

and current increase with dynamic load models. The active power dip without dynamic
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Figure 5.2: Time-series output from load bus 7051 for [a] scenarios with dynamic load models
(A,B,E) and [b] scenarios without dynamic load models (C,D,F)
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loads is representative of constant impedance behavior. The induction motor behavior

with dynamic load models results in a high current draw and reactive power dip due

to the deceleration of the induction motors [31]. The active power also has less swing

when the dynamic loads are included due to less of the load having constant impedance

behavior. Since the only additional behaviors that dynamic DER models bring are trip

settings and voltage or frequency support controls, the dominant behavior between the

two models is the dynamic load model. In both [a] and [b] one can see that the inclusion

of voltage support reduces the voltage dip from the reactive power input provided by the

DER. The reduction of this voltage dip between scenarios A and B explains the increase

in HC. The reduction of the voltage dip between scenario C and D, without dynamic

load models, does not increase the HC. It is possible that the voltage support plays less

of a crucial role when dynamic load models are not present, and therefore does not have

an impact on HC. When dynamic DER models are not included, as in the scenarios E

and F, the DER contribution is taken directly from the load, so the net load behavior

is based on the load model whether that be a static or voltage dependent model or a

dynamic load model. Therefore when the dynamic DER model is not included what is

missing is voltage support and the voltage dip is greater, which explains why in scenario

F the HC is decreased.

The findings from this section demonstrate how the inclusion of voltage support con-

trols on DERs can have a systemwide increase in HC, specifically when dynamic loads are

considered in the system. It is important to note that dynamic loads are almost always

present in real systems, the question is whether or not this behavior is represented in the

models. There is around a 15% difference in HC between evaluations with steady state

contingencies and transient contingencies. Whereas there is a maximum of a 5% differ-

ence between transient contingency scenarios. Though higher fidelity modeling included

in transient contingencies provides greater insight into the provided system stability ben-

efits due to DER controls and impacts from dynamic loads in the system, in general it

is of greater importance to perform transient contingency evaluations over steady state

contingencies as transient contingency conditions are more limiting and representative

of the system’s actual capabilities. If steady state contingencies or conditions are used

to evaluate the HC of the system it is necessary for it to be understood that the reported

HC is likely inflated or optimistic.
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5.3 Dynamic Load Model Variation in Transmission HC

The experimental setup of this section is similar to Section 5.2, but with transient contin-

gencies with both dynamic load and DER models. This section analyzes the parameters

in the dynamic load models to evaluate how variability in the dynamic load behavior

impacts HC. The parameters varied are the percentages of each type of load within

the composite load model. These parameters were gathered with the Load Model Data

Tool, with settings set to the shoulder season in the Texas regions, as the a Fall loading

scenario is used for this section. The parameters were calculated for every hour of the

day. An example of the parameters for one load at load bus 7051, which is set as a

rural/agricultural feeder, are shown in Figure 5.3.

Figure 5.3: Hourly composite load model parameters for load bus 7051, a rural/agricultural load,
during the shoulder season generated with the Load Model Data Tool Comparison.

The main shift in load behavior over the course of the day is between the constant

impedance load and the motor c load which is representative of low inertia pump type

motors.
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5.3.1 Results

The variation in the load types throughout the day impacts the responses of the load.

The impact of this shifting load profile on transient stability is demonstrated with the

line fault on the line between buses 7304 and 7095 and shown in Figure 5.4. The figures

show the time-series output from load 7051 with the hourly load parameters for (a) hours

1-12 and (b) hours 13-24.

One can see that as the load type shifts from majority motor based at hour 0 to

majority constant impedance based at hour 12 the active power dip increases to represent

more constant impedance behavior and the voltage recovery is a little higher. The HC

was evaluated at each hour with the hourly load parameters and there was no change

in HC. The change in dynamic load parameters are designed to be characteristic of

the load types in Texas and this suggests that the variation in load behavior has a

negligible impact on HC in this system. The variation in load behavior in other systems

with different load profiles could impact the HC, especially in systems with diverse load

behaviors or a high presence of induction motors which can negatively impact transient

voltage stability. However, the finding for this system is that variation in dynamic load

behavior is not critical for evaluating HC.

5.4 Impact of Seasonal and Loading Variations on Transmission HC

This section evaluates HC of the 2,000-bus synthetic system for different seasonal and

loading scenarios. The seasonal and loading scenarios were developed in [95]. The eval-

uation of conditions, stability, and capability of systems throughout numerous seasons

and loading is critical for operations and planning in transmission systems. For example,

the Bonneville Power Administration incorporates seasonal base cases into their short-

term available transfer capability (ATC) methodology [100]. The goal of the evaluation

of HC across the seasonal and loading scenarios in this study is to highlight the impact

that season and loading can have on HC and also to identify specific system conditions

or factors that limit the HC.

The HC in this section was determined usingN−1 line loss steady state contingencies.

Steady state contingencies are used here instead of transient contingencies to reduce the

computational burden of evaluating N − 1 line loss contingencies, which total 3,206
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Figure 5.4: Time-series outputs from load 7051 with hourly composite load model parameters for
[a] hours 1-12 and [b] hours 13-24
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contingencies. The same number of allowed violations per contingency used in Section

5.2 are used to determine the HC in this section. In addition to the limits used in Section

5.2, 32 unsolved contingencies out of the 3,206 are also allowed before the limit of the

HC is reached.

5.4.1 Results

A total of eight scenarios are evaluated in this section, a high (peak) and low loading for

Spring, Summer, Fall, and Winter where each season has a different generation profile.

These scenarios are generated from yearly time series data taken at the lowest and highest

load time periods for each season. The resulting HC for each scenario is illustrated in

Figure 5.5.

Figure 5.5: Seasonal hosting capacity results for high and low loading scenarios for each season. The
high or peak loading is in blue and teh low loading is shown in orange.

The resulting HC across all seasons and loading scenarios varies greatly between

seasons with a total range of 20%. Additionally, all but one season, winter, has high HC

in the peak loading scenario in comparison to the low loading scenario. For explanation

of these results the HC values were compared to several system level factors. The system
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level factors included reserve amount, generation amount, and linear sensitivity factors

such as weighted transmission loading relief (WTLR). The system level factors considered

were:

1.2.3.4.5.6.7.1. Generation Amount (MW and Mvar)

2. Generation Downward Capability (MW and Mvar)

3. Generation Upward Capability (MW and Mvar)

4. Wind Generation (MW)

5. Generation Outage Capacity (MW)

6. Transmission Outage Capacity (MVA)

7. Percent of Branches over 50% loaded

The generation amount, downward and upward capability, generation outage ca-

pacity, and transmission outage capacity all relate and can act as a system reserve.

Numerous studies have shown that system reserves impact the amount of wind genera-

tion that can be stably integrated in transmission systems [101], whose impact in terms

of uncertainty and variability is similar to DERs. Since this test system has a high

presence of wind generation both the wind generation and system reserves could be a

limiting factor in HC. Additionally, in these test cases the dispatch of wind generation

is not curtailed or determined by unit commitment. The percent of branches over 50%

loaded is in reference to their pre-contingency state. Therefore, this percentage is likely

impacted by wind generation amount, and could also be a potential limiting factor.

Each of these factors were compared against the HC for all scenarios to determine if

trends arose to suggest if certain factors were key limiting or dominant factors. Of the

factors evaluated, only three showed strong trends: reactive power generation amount,

active power wind generation amount, and percent of branches over 50% loaded. These

data and their corresponding trend-lines are shown in Figure C.1.

Since the trend between peak and low loading for each season was flipped for the

winter season, the peak and low loading scenarios for the Fall and Winter months are

annotated in Figure C.1. This is to show how the flip between peak and low loading also

appears in the trend between the HC and system level factors.



71

Figure 5.6: Trends between system conditions and hosting capacity

As the amount of reactive power in the system increases and the HC increases, this

trend is seen throughout all scenarios. The amount of reactive power in the system

contributes to the voltage stability. In distribution systems, increasing DER generation

causes a reduction in voltage stability by causing over-voltage within a feeder. The
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Table 5.2: R-values for correlation relationship between area location of limiting contingency elements
and the violation elements of the contingency for against the amount of reactive power generation,
active power wind generation, and percent of branches over 50% loaded in each area.

Reactive
Power Gen-
eration by
Area

Active
Power Wind
Generation
by Area

Percent of
Branches
over 50%
Loaded by
Area

Contingency Element Area -0.014 0.511 0.480

Violation Element Area 0.106 0.604 0.396

trend seen here suggests that reactive power supply is also a limiting factor for HC in

transmission systems as well. The increase in wind active power generation results in

a decrease in HC. It is likely due to this shift in generation, specifically in the areas

where wind generation is present, that causes greater stresses in the system as seen by

the increase in percent of branches over 50% loaded that cause a decrease in HC. The

effective reduction in load, due to an increase in DER contribution in these steady state

contingencies, reduces the loading on the branches. Therefore, the greater the initial

loading on branches present in the high loading seasonal scenarios the more room to

accommodate DERs and greater the HC.

The HC trends were then compared to where the violations in the system occurred

at the HC limit for each scenario. The contingency elements that caused more than 100

violation limits and the elements that reached a violation were binned into each of the

areas of the system. The area locations of the contingency elements and the violation

elements were then compared to the amount of reactive power generation, active power

wind generation, and percent of branches over 50% loaded in each area. The test system

has eight areas which combined with the eight seasonal and loading scenarios created

64 data points to compare to determine a correlation. The correlation r-values were

calculated for these three factors and are shown in Table 5.2.

A strong correlation relationship exists with a r-value of 0.5 or greater for a strong

positive relationship and -0.5 or lesser for a strong negative relationship. Strong relation-

ships are seen between both contingency element area and violation element area and

wind generation confirming the relationship between hosting capacity and wind gener-
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ation. The greater the amount of wind generation the lower the hosting capacity. The

relationship with branch loading is almost strong, and weak relationships exist with re-

active power generation by area. It is also likely that the branch loading is a result from

wind generation amount. We also note that the wind generation trend is the only one

where the trend between high and low loading scenarios between Fall and Winter scenar-

ios switches. There is greater wind generation during the winter high loading scenario

than the winter low loading scenario. This flips for the Fall season where there is more

wind generation in the Fall low loading scenario than the high loading scenario. This

is the only factor where this flip in the trend between Winter and Fall low and high

loading scenarios of hosting capacity and the system factor exists. This implies that the

greatest determining factor in these scenarios is wind generation amount as it is the only

factor whose trend applies to all high and low seasonal scenarios, including the flipped

low and high loading scenarios in the Winter season. These results suggest that the most

limiting factor toward HC of DERs in this test system is the amount of wind generation.

In the setup of these scenarios wind generators do not participate in any curtailment or

unit commitment and they are located in select areas, located in five out of the eight

areas, versus throughout all areas of the system. This study also does not include DERs

in unit commitment or dispatch or curtailment. This lack of dispatch control of wind

generation and DERs from the utility reduces the stability of the system in the case of

high penetration of DERs. Strategic curtailment of DERs and wind generation has the

potential to increase the overall hosting capacity of DERs and is an area of future work.

A key takeaway from these results is unit commitment and dispatch of all generation in

the system plays an important role in the ability of the system to host DERs.

5.5 Conclusion

This paper outlines the increasing need to assess DER HC on the transmission grid as

the generation contribution of DERs increases. This study investigates the impact of

modeling factors on transmission HC results on the 2,000-bus synthetic grid overlaid on

the Texas Interconnect. The modeling factors assessed include transient versus steady

state contingencies, dynamic load and DER models including voltage support control,

variation in dynamic load model composition, and seasonal and loading scenarios. The

results demonstrate transient stability conditions are more limiting to HC than steady
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state stability conditions. Within transient contingency evaluations of HC the results

vary between only 5% of DER contribution versus near 20% between transient and steady

state evaluations. The use of voltage support controls within the DER dynamic model are

proven to increase the HC in the system by 4%. The dynamic load composition variation

assessed for this system makes no impact on the HC, however it is not guaranteed to be

insignificant for all transmission systems. The seasonal and loading variations illustrate

great differences between the resulting HC and highlight the need to assess the HC for

numerous system scenarios to confirm system capabilities, as is similarly done in utility

operation and planning methods. The impact of wind generation in this system also

becomes a critical factor to HC. This is likely due to dispatch strategy employed in this

system and indicates the need for inclusion and evaluation of dispatch of all resources if

DERs are going to be integrated in transmission systems at high contributions. Future

work is aimed at addressing optimal placement of DERs in transmission systems for

improved HC and also assessing HC of DERs in additional test systems. The assessment

of the impact of uncertainty in all aspects of this study will also be addressed in future

work.
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Chapter 6: Conclusion

This work takes deep dives into planning procedures and methods aimed to improve

the integration of renewable, decentralized, and variable resources into electrical grids

ranging from minigrids to transmission systems. The goals of the integration of these

resources is to transform electrical grids to meet climate and national security goals while

maintaining affordability and reliability criteria.

The work in chapter two introduces and provides an open-source tool for minigrid

planning for rural electrification. The tool consists of two parts: optimizing resource and

equipment sizing to minimize cost per unit of energy, and distribution network design

including reliability cost-benefit analysis. The tool demonstrates how when reliability is

valued through loss of customer load the distribution network design shifts from radial to

meshed, justifying the addition of redundant or looping lines. This work fills a critical gap

in open-source minigrid or microgrid planning tools with the addition of the geographical

distribution network design.

The results from the work in chapter three highlight the need for improved measurement-

based dynamic load modeling techniques. The study found of the similarity measures

and system response outputs tested that less than 20% of all simulated tests in this study

resulted in statistically significant correlations. This raises awareness to the importance

of careful selection and validation of similarity measures and response output metrics.

Naive or untested selection of metrics can deliver inaccurate and misleading results.

Chapter four illustrates the interplay between dynamic loads and DERs on transient

voltage stability in a system. The results identified that the addition of dynamic loads

to the studied system containing DERs reduces the minimum voltage swings. However,

taken from the opposite perspective the addition of DERs to the system containing

dynamic loads improves the transient voltage stability of the system. If the hosting

capacity of DERs were to be based off of transient voltage stability the hosting capacity

will change based on the inclusion of dynamic loads in the system.

Finally, chapter five evaluates the impacts of different modeling strategies on the re-

sults of transmission hosting capacity of DERs. Traditionally hosting capacity of DERs
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has been performed for distribution networks. This work shifts the assessment to trans-

mission networks due to the increasing contribution DERs have made to transmission

networks in the last decade. The results demonstrate transient stability conditions are

more limiting to hosting capacity than steady state stability conditions and that voltage

support controls within the DER dynamic model can increase the hosting capacity. In

this test system the dynamic load composition variation made no impact on the host-

ing capacity. The seasonal and loading variations illustrate great differences between

the resulting hosting capacity and highlight the need to assess the hosting capacity for

numerous system scenarios to confirm system capabilities.

These works perform and evaluate methods which push the boundaries of traditional

power system planning methods. They highlight current shortcoming and identify areas

for growth. Power system planning methods would benefit from further development of

dynamic modeling for both DERs and loads and consideration of reliability cost-benefit

in rural electrification cases. Specifically, future investigations into computationally fast

optimization methods of dynamic simulations could aid development of tools and guide-

lines used in power system planning to assist the sustainable, affordable, and reliable

transformation of how we get our electricity.
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W. Kling, M. Gibescu, E. Làzaro, A. Robitaille, and I. Kamwa, “Operating reserves
and wind power integration: An international comparison,” tech. rep., October
2010.



87

APPENDICES



88

Appendix A: All Published Works

Phylicia Cicilio, Eduardo Cotilla-Sanchez, Jake Gentle, “Transient Voltage Stability Ef-

fects on Hosting Capacity of Behind-the-Meter Devices”, 2020 IEEE Power and Energy

Society General Meeting.

Phylicia Cicilio, Lisa Swartz, Bjorn Vaagensmith, Tim McJunkin, Craig Rieger, Jake

Gentle, and Eduardo Cotilla-Sanchez, “Electrical Grid Resilience Metric with Uncer-

tainty”, Power Systems Computation Conference 2020.

Phylicia Cicilio, Matthew Orosz, Amy Mueller, and Eduardo Cotilla-Sanchez, “uGrid:

Reliable Minigrid Design and Planning Toolset for Rural Electrification”, IEEE Access,

2019.

Phylicia Cicilio and Eduardo Cotilla-Sanchez, “Evaluating Measurement-Based Dynamic

Load Modeling Techniques and Metrics”, IEEE Transactions on Power Systems, 2019.

Phylicia Cicilio and Eduardo Cotilla-Sanchez, “Dynamic Composite Load Model Pri-

ority Placement Based on Electrical Centrality”, 2018 IEEE Power and Energy Society

General Meeting, 2018.

Kelly Tray, Phylicia Cicilio, Ted Brekken and Eduardo Cotilla-Sanchez, “Dynamic Com-

posite Load Signature Detection and Classification using Supervised Learning over Dis-

turbance Data”, 2017 IEEE Energy Conversion Congress and Exposition, 2017



89

Appendix B: Twelve Bus System

Figure B.1: Twelve bus test system used in chapter 4
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Appendix C: 2000 Bus Synthetic Grid System

Figure C.1: 2000 bus synthetic grid system overlaid on the geographical footprint of Texas used in
chapter 5.
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