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Chapter 1: Introduction

As the number of wireless users and the data rates of wireless applications increase, the

task of providing enough network resources that can cope with these demands becomes

challenging. Particularly, downloading (e.g., multimedia) content from di�erent Internet

locations exposes networks to tra�c congestion bottlenecks, consequently, causing delay,

waste of bandwidth, and even network failure. There are various approaches successfully

implemented in literature to overcome these defects. For example, using distributed

small datacenters instead of central cloud in large zones [2, 3, 4, 5], and prefetching

content in edge nodes are promising solutions for alleviating and controlling back-haul

congestions [6, 7, 8, 9, 10, 11]. Large streaming services, online businesses, and websites

are seizing the opportunity provided by the concept of Collaborative Filtering (CF), aka

recommendation systems, to improve performance. CF refers to utilizing the history of

users' behavior for a pattern to predict their future behaviors. CF is divided into two

types: User-Based CF and Item-Based CF, which will be discussed further in chapter 2.

In [11], Niu et al. proposed the idea of applying the concept of CF in networking

and communication. The framework contains a number of base stations (BSs), which

were grouped based on their requests history. In other words, BSs with similar requests'

preferences are grouped in to the same cluster, and the goal of clustering is to sort

history of requests for all base stations within a cluster to �nd �le popularity, where the

number of requests for each �le is used as weight. In addition to �le popularity, their

content placement uses User-Based CF. After �nding the degree of similarity between

BSs within the cluster, they calculate the probability of request to each BS for all �les.

Even though their approach successfully improves the hit ratio, more could be done.

The CF implementation objective was mainly to increase content placement; however,

CF concept can be leveraged to enable more concrete improvement to other network

issues such as congestion bottlenecks. In addition, the purpose of clustering is to obtain

the �le popularity, meaning: �rst, part of caches memory for all BSs within the cluster

is identical, and second, disregarding the opportunity of in-network content caching.

Moreover, �le prediction utilization has several vulnerabilities such as neglecting the �les'
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features and similarities, Item-based CF. Other papers such as [12, 13, 14, 15, 13, 16],

discussed the use of CF to improve the user quality of experience in websites, e-commerce,

applications, media-services provider, and primary care services. However, none of them

used it in networking and communication.

Despite of all its capabilities, CF concept, especially item-based CF, in networking

and communication is not fully used [11].

1.1 Thesis Contributions

The thesis raises three questions, which are:

• Will the implementation of hybrid cache prefetching, �le popularity and content's

prediction increase users' successful attempts to �nd requested �les in their local

caches?

• Will clustering cloudlets based on their history preferences increase users' successful

attempts to �nd requested �les within the cluster?

• Will cache prefetching and in-network caching reduce network back-haul link cost?

By adapting hybrid CF approaches, this thesis aims to maximize the probability that

users requested �les are in the nearest datacenter (or cloudlet), which will help improve

the hit ratio and decrease back-haul tra�c. The focus of this work is on: �rst, using

�le popularity and item-based CF prefetching to bring content to local cache; Second,

clustering cloudlets using user-based CF to enable e�cient in-network caching.

The main contributions of this thesis are:

• Evaluate the performance of an existing CF approach proposed in [11], along with

a base-line Zipf-distribution-based system model [17].

• Present a Collaborative Filtering for content placement and in-network caching

strategy that promises to enhance the latency and network tra�c congestion.

• Simulate the proposed framework and evaluate its performance.
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1.2 Organization of the Thesis

The remaining of the thesis will be organized as follows. Chapter 2 provides a brief

background and literature review on the subject. The system model is described in

Chapter 3. In Chapter 4, we illustrate the proposed Collaborative Filtering-based content

placement and in-network caching scheme. The simulation-based performance evaluation

and results are presented in Chapter 4. Finally, in Chapter 5, we conclude the thesis and

present some tasks for future investigation.
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Chapter 2: Background and Literature Review

2.1 System Architecture and Requirements

Central cloud computing has been an important part of Internet of Things (IoT) envi-

ronment by providing higher computation, control, and maintenance. However, these

advantages come with a cost. With the rapid increase and growth of IoT environments

and users (smart city, IoT, ..etc.), the demand of network resources is escalating causing

link overloading. This means a cloud computing is risking from connection dropping,

losing bandwidth, unnecessary resources consumption, latency, and most importantly, a

single point of failure. As a result, edge computing approach �oated to cover some of

these limitations by promising to improve IoT with better latency handling, mobility,

locations awareness, IoT greening, and higher streaming. This section is illustrating a

literature review of how the use of edge computing (with the mobile device) can overcome

three main challenges, namely connection disturbance, resources wasting, and latency, to

increase the overall network performance [18, 19, 20, 21, 22, 23, 24, 3, 25].

Di�erent systems and architectures in edge computing overcome the main common

issues in cloud computing and o�er more mobility, energy consumption reduction, and

speediness. Next,a few related terminologies will be explained.

Mobile Edge Networks: Over the past few years, mobile devices have obtained

more capacities and computation capabilities. Many researchers show their interest to

make use of these mobile devices' capacities to increase the IoT performance by engaging

them in tasks execution. This simple approach proved to be a very powerful tool to move

the execution of the tasks closer to the edge [26].

Cloudlet: Cloudlet (or edge cloud) approach represents a smaller cloud near to the

edge with all control of power and storage. Despite all its possibilities, cloudlet can only

work in small or limited geographic areas [26, 2].
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2.1.1 Connection Interruption

One of the main drawbacks that cloud computing faces is connection interruption. Due

to its static nature, central cloud computing limits the IoT movements, especially in the

smart city and Internet of Vehicles (IoV) context. Frequent connection dropping impacts

the IoT environments in many aspects, including wasted bandwidth, increased delay,

and increased energy consumption. However, edge computing o�ers a location awareness

which provides more mobility by only collecting the data itself rather than the physical

location [2, 3].

Since the connection dropping increases latency and wastes bandwidth, Wang et al.

aimed to reduce the connection dropping via edge computing in IoV. Their approach is

based on using Information Centric Network (ICN) which, unlike an IP address, is able

to easily adapt to a dynamic environment and guarantee packages delivery. They used

Named data Networking (NCN) as ICN implementation to reduce the delay in package

catching. Unlike IP address, NCN approach simply gives the packages unique names with

their source and destination. This mechanism is basically about classifying data to only

keep and store the useful ones. They kept what they consider as shareable data such as

car accident warnings and road congestion noti�cations, and discard all social interaction

services [26, 27, 28].

On the other hand, some approaches such as in [2, 4] use the available mobile device

resources to minimize the connections interruption and increase mobility.

Shi et al. present a system called Serendipity to handles cases where mobility is

extremely important. The system contains only mobile devices, which can be either

an initiator or a remote computation resource. The basic idea of the system is that

mobile devices share their unused resources to overcome latency and limited resources

challenges [2, 4].

Habak et al. present a system called: Femto clouds. This system goal is to bene�t

from the unused mobile device capacities by involving them into the network as a edge

node to overcome the latency problem. The system environment contains several mobile

devices connected to a control device through TCP. The control device works as a hotspot

to mobile devices [4].

Lastly, to measure the e�ect of resource allocation scheduling strategies with mobility,

Bittencourt et al. test three scheduling strategies with edge computing infrastructure to
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support mobility. The goal of the study is to measure and compare the performance

of these three strategies based on how they handled two types of applications (delay

sensitive and delay tolerant applications) [3].

2.1.2 Multimedia Access

Multimedia content access and streaming requires mechanisms that allow content to

played on the �y while being downloaded [29, 30]. In addition, due to its store na-

ture, content streaming mechanisms allow users to download and play content at any

time, not necessarily live. Multimedia content represents a signi�cant fraction of to-

day's network tra�c and the trend is only increasing with the emergence of the dif-

ferent wireless networking technologies (e.g., vehicular networks [31], sensor/IoT net-

works [32, 33, 34, 35, 36, 37]). With such an increase in network resource demands,

network service providers are being faced with several key challenges crucial to ful�lling

the upcoming data rate needs, so that high quality of user experience is maintained to the

users over wireless networks, thereby prompting the development of new wireless tech-

nologies (e.g. MIMO [38, 39], DSA [40, 41, 42] and many others) to address challenges

like shortage in spectrum supply, user mobility, and interference mitigation.

As a result, quality of user's experience for mobile content streaming has received

considerable attention from the research community. For instance, [43] proposes rate

adaptation and scheduling solutions for video multicasting when some users in a given

region are interested in viewing the same content at the same time. [44] discusses video

streaming quality when streaming over wireless networks. [45, 46, 47] study video stream-

ing over vehicular networks. For instance, [46] proposes EUDP, which unlike UDP, uses

Sub-Packet Forward Error Correction, and adopts the unequal protection of video frame

types to enhance video quality.

2.1.3 Smart City

Key challenges have arisen that need to be overcome to be able to support various new

smart city applications that are unique in their requirements and characteristics, in terms

of numbers, amounts of needed bandwidth, network connectivity, etc. These challenges

have called for the development of innovative techniques and technologies across the
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board, ranging from wireless access (e.g., cognitive radios [48, 49, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], MIMO [73, 74, 39], and

spectrum access [75, 76, 77, 78, 79, 79, 80]) to edge cloud computing and networking

(e.g., fog computing [81, 82, 83, 25, 84, 85] and in-network caching [6, 9, 8]), with the

ultimate aim of improving end-to-end latency, enhancing spectrum resource e�ciency,

and reducing tra�c congestion. City resident populations have also been increasing at a

rate of nearly 60 million per year. By 2050, it is projected that more than 2/3 of the pop-

ulation worldwide will be in urban cities 1. As urban cities are getting densely populated,

providing network speeds that can meet the unprecedented demands is becoming more

challenging. Sending and receiving data between end-users and central cloud computing

faces the threat of delay, especially with the rapidly growing number of end-users [2, 86].

Shi et al. introduce a comparison between three cloudlet-assisted edge computing archi-

tectures to measure their performance in the matter of reducing delay and latency in a

real-time application [2]. Mtibaa et al. create a hyper system where the mobile device

can o�oad tasks to traditional cloud computing, Cloudlets, or locally. The execution of

the tasks depends on the tasks requirements and the available resources [86].

Therefore, it is important to leverage new emerging networking technologies such

as in-network caching and edge cloud computing to enable fast and e�cient access to

network services to improve the overall experience of city users.

2.1.4 Energy Consumption

In central cloud computing IoT, the senses communicate with the server in order to

request resources such as storage or power. The server then sends these requests to the

cloud datacenter to process and send the requested resources to the senses. Going back

and forth costs the network bandwidth and increases the delay. In addition, part of the

energy is wasted during transmission. Using a small power source (Microgrid) close to

the edge computing promise to enhance the power consumption [87, 2, 88].

Serendipity system [2] has many goals, and one of them is energy awareness. The

system aiming to decrease the energy consumption since it basically relays on mobile

devices which has limited battery power. The idea of the system is that mobile devices

balance between accomplishing their assigned tasks and keeping their energy as long as

1World population data sheet: http://www.prb.org/

http://www.prb.org/
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possible. In order to do so, the system establishes a utility function illustrating the energy

consumption for all nodes in the range, and how much residual energy these nodes have,

therefore, enhancing tasks assignment decision.

Jalali et al. propose power consuming reduction technique that combines edge com-

puting and microgrid system. The paper describes how minimizing the need to request

resources from the central grid decreases the energy consumption in IoT application. The

paper conducted a literature survey comparing between cloud and edge computing energy

consuming to underline the main factors which impact the energy consumption [88].

Energy consumption is the main scope in [87], where the authors addressed the

problem of connection dropping in mobile ad hoc networks (MANET), which leads to

wasted energy. Their proposed framework uses the fog computing principles and consid-

ers MANET with D2D connection and cloudlet as a datacenter. This framework increases

MANET mobility, where end-users can move and restore their needed services instantly,

at the same time, minimizing the energy spending [87].
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2.2 Collaborative Filtering

Collaborative Filtering (CF) has been adapted by many large corporations such as Net�ix,

Amazon, YouTube etc. Anticipating what users might like and o�er it before they ask

for it is proven to be successful in terms of advertising, user satisfaction, and most

importantly, minimizing latency [27]. CF can be de�ned as the technique of predicting

users' behaviours based on deducing a pattern in their previous behavior using di�erent

data sources. CF relies on two methods to predict users' interest: User-Based and Item-

Based Collaborative Filtering [89, 90, 91, 92, 93].

• User-Based Collaborative Filtering(UB-CF): In this type of CF, prediction

is based on �nding users with similar preferences, and the process consists mainly

of grouping users with similar preference, see Table 2.1. After that, the items which

are more frequently requested or highly rated by the users in that group will be

suggested to the users in the same group who did not request it yet. The similarity

here is observed and measured by users' responses and actions to a set of items.

The rating or, in some cases, number of requests will be treated as a weight in the

similarity calculations [94, 95, 96, 97, 98].

• Item-Based Collaborative Filtering(IB-CF): Contrary to UB-CF, Item-Based

Collaborative Filtering compares between items instead of users, see Table 2.2.

These items might be �les that users rated or requested. The similarity in IB-CF is

mainly based upon measuring how many features these items share. Item Features

or attributes capture the properties of the items; for e.g, Genre could be used to

capture movies' attributes. In this type, unlike UB-CF, each user will be considered

individually using their own datasets [94, 95, 96, 97, 98],

Both approaches have their strengthens and weaknesses; however, a hybrid ap-

proach of Collaborative Filtering will overcome the weakness of each type.

Similarity Measure: Various algorithms and mathematical formulations have been in-

troduced for applying Collaborative Filtering. The choice of the method or mathematical

formulations depends on the nature of the available dataset [1]. Based on [1], Table 2.3

compares di�erent popular similarity measures by illustrating their strength and weak-

ness, Where rAi denotes the number of requests/ratings-value user A made for item i,

and I is the total number of co-rated/co-requested items.



10

Table 2.1: User-Based Collaborative Filtering.

Users / Files F1 F2 F.. Fi F.. FI
A .. .. .. .. .. ..
B .. .. .. .. .. ..
C .. .. .. .. .. ..
D .. .. .. .. .. ..
E .. .. .. .. .. ..

Table 2.2: Item-Based Collaborative Filtering.

Users / Files F1 F2 F.. Fi F.. FI
A .. .. .. .. .. ..
B .. .. .. .. .. ..
C .. .. .. .. .. ..
D .. .. .. .. .. ..
E .. .. .. .. .. ..

Table 2.3: Similarity Measure [1].

Similarity Measure Equation Strengths Weaknesses

Cosine Coe�cient sim(A,B) =
∑I

i=1 AiBi√∑I
i=1 A2

i

√∑I
i=1 B2

i

Consider the absolute value of the index Neglect the user preference

Pearson Correlation Coe�cient sim(A,B) =
∑I

i=1(Ai−A)(Bi−B)√∑I
i=1(Ai−A)2(Bi−B)2

Consider the user preference product a misleading results

Mean Squared Di�erence sim(A,B) = 1−
∑

i∈I(rAi
−rBi

)2

|I| Consider the absolute value of the index Neglect the item feature �

Jaccard sim(A,B) = IA∩IB
IA∪IB Consider the item feature Neglect the absolute value of the index 4
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2.3 In-Network Caching

2.3.1 Proactive Caching

In last few years, many papers discussed prefetching contents as a way to improve net-

work performance. Prefetching is a promising solution to improve the cache hit ratio,

minimizing network tra�c congestion, decreasing bandwidth consumption etc. Some ap-

proaches purpose pre-fetching popular items. For instance, in [8], Abuhadra et al. used

hybrid approaches combining proactive caching and prefetching contents, where proac-

tive caching proposes fetching the most popular contents in the local base station in a

proactive fashion, and the prefetching is fetching content (e.g. video), in advance, to the

next base station that users are expected to be connected to in their path. This approach

is built on high mobility networks where the user connection time to one base station is

very low [8, 11, 99], leading to frequent cell handovers. In [9], Sinky et al. also used hybrid

approaches of popularity and cooperative content caching where the decision of caching

a content is shared within the cluster cloudlets. The analysis of cloudlets states, such as

the available resources, and the content popularity have been taken into consideration

for the caching decision [9].

2.3.2 Clustering

Clustering refers to grouping 'similar' data points in the same cluster. Determining the

correct clustering method depends on the goal of the clustering and the nature of the

dataset. There are several clustering algorithms that each having its weaknesses and

strengths [100, 101].

2.3.2.1 Hierarchical Clustering

Hierarchy Clustering initially assumes that each data point is a cluster by itself, then,

depending on the goal of clustering, groups numbers of data points into one cluster. In this

method, the number of clusters can not be controlled. Sinky et al. [9] used Hierarchical

Clustering to form multiple communities of cloudlet datacenters. The paper clusters

cloudlets based on distance between the cloudlets and the server. The main purpose

of the cluster is to allow in-network caching where the cloudlets can access other cache
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content within the cluster; therefore, it maximizes the possibility of �nding the content in

a Neighbors cloudlet rather than fetching it from the core network, consciously, improving

number of cache hits and back-haul delay [9].

2.3.2.2 Partitional Clustering

On the other hand, K-means clustering starts with a certain number of clusters and

adds data points to the cluster with the closest centroid value. That means the optimal

number of cluster should be determined before applying the clustering. Niu et al. in [11]

established K-means clustering to �nd the similarity between base stations based on

the number of requests to certain set of �les. The goals of the paper are: �nd the �le

popularity within the cluster, and predict the BS future requests by using the history of

requests of other base stations within the cluster, user-based CF [11, 102].
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Chapter 3: System Model

As shown in the Figure 3.1, a three-tier network architecture covering and serving a highly

dense urban area is considered in this work, where the top layer of the architecture is the

core network where the content/database/library server resides. This server also keeps

tracks of all access history from the various cloudlets that it serves. The middle (or

distribution) layer is composed of a number of cloudlet data centers (CD), with each CD

being associated with a number of end-users/devices. The set of end users constitutes the

access (bottom) layer of this architecture. Throughout, we use R to denote the number of

CDs, with the set of CDs being CD={CD1,CD2,..,CDR}, and N to denote the number of

users, with the set of users being U={U1,U2,..,UN}, with users having diverse preferences

and interests. The library/database contains a set F of Q �les, F={F1,F2,..,FQ}, where

all �les in the library have the same size of L Mbits. We assume that each �le has a

set A of I attributes, A={A1,A2,..,AI}, with each attribute representing/capturing some

feature. For e.g., if the �les represent movies, then attributes could represent the Genre

of the movies, i.e., horror, drama, comedy, etc., with each moving having an index value

(between 0 and 1) for each Genre. For instance, a horror movie with lots of scary action

scenes may be assigned larger index values for its Horror and Action attributes.

We now introduce two tables: CD features Table 3.1 and File features Table 3.2.

Table 3.1: CD features.

Cloudlets/Features A1 A2 A.. AI

CD1 .. .. .. ..
CD2 .. .. .. ..
CD.. .. .. .. ..
CDi .. .. .. ..
CD.. .. .. .. ..
CDR .. .. .. ..
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Table 3.2: File features.

Features/Files F1 F2 F.. Fj F.. FQ
A1 .. .. .. .. .. ..
A2 .. .. .. .. .. ..
A.. .. .. .. .. .. ..
AI .. .. .. .. .. ..

For each �le and each CD, the sum of all values of the attributes is equal to one.

That is,
∑I

j=1Aj = 1 for every �le and for every CD.

To obtain the number of times cloudlet CDi requests �le Fj, a history of request Table

3.3, REQ, is created, with the i× j entry being calculated as:

REQi,j =
CDi · Fj

I
≤ 1 (3.1)

where CDi represents a row in Table 3.1 and Fj represents a column in Table 3.2. Alter-

natively, from a practical viewpoint, REQ can also be updated through history by setting

REQi,j to the fraction of times �le j is requested by CD i among all �le requests. Note

that the history of requests, REQ, will be used later to decide for content placement.

Table 3.3: REQ: History of Request

CD/�le F1 F2 F.. Fj F.. FQ
CD1 .. .. .. .. .. ..
CD2 .. .. .. .. .. ..
CD.. .. .. .. .. .. ..
CDi .. .. .. .. .. ..
CD.. .. .. .. .. .. ..
CDR .. .. .. .. .. ..

We assume that each CD is equipped with a cache of size Sm with

Sm = Library × η (3.2)
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where η is a tunable parameter representing a fraction between 0 and 1, and Library is the

total capacity of the database. We consider that the cache size is divided into two halves:

One half, Srank = Sm/2, used for caching content based on CDs' local popularities, P

for each CD.

Srank contains a set of the M most popular �les, F1,. . . ,FM, with F1 being the most

requested �le, F2 being the second most requested �le, and so on. The ranking of these

�les depends on the P value, where PCDi,Fm represents the popularity of Fm in cloudlet

CDi. The value of P is obtained from the history of requests. The second half of the

cache, Ssim = (1− Srank), is used for caching H �les based on item-based collaborative

�ltering (CF), which will be further explained in Chapter 4. In these two cache spaces,

cache placement is assumed to be done during the o�-peak hours.

All CDs are clustered into C clusters, CLS={CLS1,CLS2,.. CLSC}. How to determine

the optimal number of clusters, C, as well as which clustering algorithm to use will be

explained in Chapter 4.
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Figure 3.1: System model
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Chapter 4: Hybrid Collaborative Filtering Based In-Network Content

Placement and Caching

4.1 CD Clustering

Using the entry of history of request Table 3.3, REQ, whose entries are given in Eq. 3.1,

K-means clustering is applied to group the cloudlets into C clusters. We use the Cosine

distance metric, as de�ned in Eq. 4.1, to model the distance between any pair of cloudlets,

CDi and CDj . Cloudlets within the same cluster tend to have distance values that are

close to 0, whereas distance values of those dissimilar cloudlets will be close to 1. Finally,

a zero value means that the cloudlet is located exactly in the middle of two clusters. In

the following Eq.4.1, REQi,m denotes the number of request that CDi made for Fm.

dist(CDi, CDj) = 1−
∑Q

m=1REQi,mREQj,m√∑Q
m=1(REQi,m)2

√∑Q
m=1(REQj,m)2

(4.1)

In this section, we illustrate how the optimal number of clusters was achieved. To

determine the optimal number of clusters, there are multiple existing methods, such as

elbow and Silhouette methods, that can be used. In this thesis, we used Silhouette

coe�cient [103, 104] as the metric for deciding how well the clustering method is. The

Silhouette coe�cient measures how much a certain observation �ts to its cluster. As

the average silhouette coe�cient value gets closer to one, it implies how well these data

points lie within its current cluster. To obtain the optimal number of clusters, the average

silhouette coe�cient is calculated for every possible number of clusters, and the one

with the highest average silhouette coe�cient value is chosen. Figure 4.1 illustrates the

di�erent silhouette coe�cients for 2 to 8 clusters, and Figure 4.2 shows the observations

within the cluster [103, 104].
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Figure 4.1: Optimal number of clusters

Figure 4.2: Silhouette Value



19

4.2 CD Caching

Each cloudlet CDi contains its own cache space Sm. Recall that content placement in

Part-I of Sm is based on the local popularity of the �les. But part-II of Sm contains the

�les with the highest probability to be requested in the future. In this part, item-based

CF is implemented and works as follows. First, using Cosine Coe�cient as expressed in

Eq. 4.2, a similarity index between any pair of �les, Fi and Fj , is calculated [94].

sim(Fi, Fj) =
Fi.Fj

||Fi||.||Fj ||
=

∑I
a=1 Fa,iFa,j√∑I

a=1(Fa,i)2
√∑I

a=1(Fa,j)2
(4.2)

where again Fi and Fj are the ith and jth columns File feature Table 3.2, and a is the ath

feature of I total number of features. Unlike Cosine distance metric, Cosine Coe�cient

has the value 1 when the two �les are identical, and the value zero when they are not

sharing any properties. As shown in Table 4.1, we assume that the similarity index

between the same �le is zero; that is, sim(Fi, Fi) = 0 for all i.

Table 4.1: File Similarity.

Similarity F1 F2 F.. Fj Fi F.. FQ
F1 0 .. .. .. .. .. ..
F2 .. 0 .. .. .. .. ..
F.. .. .. 0 .. .. .. ..
Fj .. .. .. 0 .. .. ..
Fi .. .. .. .. 0 .. ..
F.. .. .. .. .. .. 0 ..
FQ .. .. .. .. .. .. 0

Next, using Table3.3 and Table4.1, we construct a �le prediction Table 4.2, PRE,

whose entry PREi,j is calculated as [94, 95]:

PREi,j =

Q′∑
k=1,k 6=j

sim(Fk, Fj)REQi,k (4.3)

where Q′ represents the set of all the �les requested by CDi. Here, the higher the value
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of PREi,j , the more likely that CD i will request �le j in the future. We want to mention

that in our simulation evaluation presented in Chapter 5, the prediction value provided

by Eq. 4.3 was normalized by dividing it by the sum of the similarities between the

considered �le and all the other �les.

Table 4.2: PRE

CD/�le F1 F2 F.. Fj F.. FQ
CD1 .. .. .. .. .. ..
CD2 .. .. .. .. .. ..
CD.. .. .. .. .. .. ..
CDi .. .. .. .. .. ..
CD.. .. .. .. .. .. ..
CDR .. .. .. .. .. ..

4.3 File Downloading Scheme

Each cloudlet CDi will have its own cache content, and we assume that the number

of cloudlets is large enough to cover the residential area, and the communication time

between the users and the cloudlet is large enough to deliver the requested contents to

the users. Assume that each user Un will be associated with one cloudlet CDi, which

is typically the nearest one to it. Now considering that Un (associated with CDi) is

requesting �le Fx, �rst, CDi will be checked whether it contains Fx in its local cache. If

Fx is available, it will be delivered to Un. Otherwise, CDi will search for the �le within

all CDs belonging to its cluster, CLSD. If Fx is founded within the cluster, it will be

delivered to Un without fetching it to the local cache. Otherwise, if Fx is neither in

CDi nor or in any CD in CLSD, the �le will be requested and downloaded from the core

network library, and the fetched �le will replace the least requested �le in CDi's local

cache. The searching algorithm is illustrated in Algorithm 1.

In this work, the likelihood of requesting �les by users generated based on the history

of request Table 3.3. Each user is assumed to stay connected to the same cloudlet for a

duration that is long enough to allow full content delivery [105, 95].
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Algorithm 1 Searching for Fx

Input: CDi, x
Output: Fx

if CDi request Fx then

(Srank, Ssim)⇐ Check
if Check 6= 1 then
(Clsz)⇐ Check, CDi ∈ CLSD
if Check 6= 1 then
CNLibrary ⇐ Check
return Fx

else

return Fx

end if

else

return Fx

end if

end if
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Chapter 5: Performance Evaluation

5.1 Simulation Setup and Methodology

In this section, we evaluate the proposed Collaborative �ltering-based in-network content

placement and caching by comparing it to the existing CF and the base-line approaches.

We used MATLAB for the simulation. The system contains di�erent numbers of cloudlet

with di�erent cache capacities. It has 2000 users in low mobility network, where we

assume to have connection time that is long enough to transmit one �le before the users

change their locations. We also assume that all cloudlets are connected to one server

where it is located outside the area and the distance between the server and all cloudlets

is 100 kilometers, and the searching time within the cluster is neglectable. The core

network contains a library with 10000 �les, which will be cached based on a certain

method explained in Chapter 4. It also contains the history of requests for all cloudlets.

The system parameters are described in Table 5.1.

Table 5.1: System Parameters

Parameter Value
Number of users 2000

Number of cloudlets 16;32;64;128;256
Number of �les 10000

Number of attributes 4
Local cache size 20%,30%,40%,50%

Back-haul link capacity 10 Gbit/s
Front-haul link capacity 1 Gbit/s

File size 30 blocks= 15 Gbits/s
Block size 0.5 Gbit/s

Number of Clusters 4
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5.2 Performance Metrics

In order to evaluate the performance, we investigate how much the proposed approach

impacts the network performance in three di�erent aspects: Hit ratio, overall delay and

Back-haul congestion. The three performance metrics are described as follows:

1. Hit Ratio (HR): In this thesis, three di�erent hit ratios are calculated: (1) In-Cache

hit ratio: calculates number of times a requested �le is successfully found in the

local cloudlet cache. (2) In-Cluster hit ratio: number of times a requested �le

is successfully found within the cluster. (3) Overall Hit ratio: the summation of

In-Cache and In-Cluster hit ratio [105].

Hit ratio =
Number of hits

Total number of requests
(5.1)

The improvement will be measured as:

TotalHR Improvement =
Existing approachHR − Proposed approachHR

max{Proposed approachHR, Existing approachHR}
(5.2)

The improvement value ranges from -1 to 1, where value closer to one means positive

improvement. A zero value means no improvement at all, and as the number gets

lower than zero, it means negative performance.

2. Back-haul network congestion (BHC): To avoid a bottleneck, the back-haul link us-

age must be minimized. In this thesis, we are interested in doing that by prefetching

content in the local cache. To measure how successful is the proposed approach in

avoiding a bottleneck, we will measure the Back-haul delay. The Back-haul delay

is calculated every time the a requested �le is not found locally, in local cache or

within a cluster, and fetched from the core network library. This will allow us to

see the impact of the proposed approach on network tra�c and contribution to the

bottleneck problem.

TotalBHC Improvement =
Existing approachBHC − Proposed approachBHC

max(Proposed approachBHC , Existing approachBHC)
(5.3)
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Again, the value of improvement will range from -1 to 1 Eq.5.2.

3. Total delay (Delay): The total delay measures how long it takes from initiating a

request until the requested data is delivered. This delay includes the time used to

�nd out whether the �le is found locally, within cluster or fetched from the core

network using Back-haul link. So:

TotalDelay = Fronthauldelay +Backhauldelay (5.4)

Front-haul delay calculates the time required from requesting a �le to check whether

it is available locally, in the local cache or within the cluster. If the �le is found

locally, the Back-haul delay will be equal to 0, otherwise, the Back-haul delay will

be calculated accordingly.

The improvement will be measured:

TotalDelay Improvement =
Existing approachDelay − Proposed approachDelay

maxProposed approachDelay, Existing approachDelay

(5.5)

Again, the value of improvement will range from -1 to 1 Eq.5.2.

5.3 Simulation Results

We compared the performance of the proposed approach with other current approaches.

For the base-line approach, the clustering is based on the physical distance between the

cloudlets, where the cloudlets that are near to each other are most probably to be grouped

in the same cluster. Content placement in the local cache follows zipf distribution, which

means all cloudlets have the same content. The second exiting approach is the CF-based

approach [11], in which clustering the cloudlets is based on their history of requests, REQ.

Within each cluster, the history of requests will be in descendant order. The content

with the highest number of requests will be at the top of the rank. In this approach,

cloudlets within a cluster will have identical content in the �rst part of the cache. The

second part will contain the �les with highest prediction values, user-based CF. The �le

prediction value will be measured using similarity coe�cients, between cloudlets [11], and

the decision of caching is dependent on the value of P; for more details, see [11]. In both

systems, K-means clustering is applied.
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The simulation yielded very positive outcomes. The results of each performance

metric will be presented and analysed separately.

5.3.1 Hit ratio results

In case of overall hit ratio, the following three Figures 5.1,5.2, and 5.3 illustrate that

the proposed approach outperforms the other approaches across di�erent numbers of

cloudlets. It can be seen clearly that the increment of cloudlets number has a positive

impact on the proposed and the existing CF approaches. However, with di�erent cache

sizes, the overall hit ratio for all approaches is a�ected positively.
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Figure 5.1: Overall hit ratio with 32 cloudlets

From Figure 5.1, for all di�erent cache size values, the proposed CF is higher than

both the base-line and the existing CF approaches. A steady progression is observed.

Through all cache capacities, the hit ratio increases in the same rate for all approaches.
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Figure 5.2: Overall hit ratio with 128 cloudlets

When comparing the 32 cloudlet scenario with the 128 cloudlets, the proposed CF

approach accomplishes better hit ratio by expanding the performance gap. Likewise, the

progress through the cache capacities is stable.
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Figure 5.3: Overall hit ratio with 256 cloudlets

Similar to the 32 and the 128 cloudlets, Figure 5.3 shows that the 256 cloudlets

keeps a steady distance with the other approaches across all cache sizes. However, the

performance gap is larger between the proposed approach and the other approaches. That

means the increment of the numbers of cloudlet increases the overall hit ratio. For all the

�gures, the base-line hit ratio is not a�ected by the number of cloudlets, since cloudlets

content in this approach is identical, thereby eliminating the possibility of the In-Cluster

caching. Another observation is the hit ratio improvement between the base-line and the

existing CF approach is narrow, especially with 50% cache size.
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Next, the Figures, 5.4 and 5.5, illustrate the overall hit ratio gain over the current

existing approaches with 20% and 50% cache size.
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Figure 5.4: Overall Hit ratio gain for 20% cache size

16 32 64 128 256

Cloudlet Number

0

0.05

0.1

0.15

0.2

0.25

0.3

H
it
 R

a
ti
o

Gain over Existing CF

Gain over Base-line

Figure 5.5: Overall Hit ratio gain for 50% cache size

Generally, the increment of the numbers of cloudlets a�ects the hit ratio gain pos-

itively. In the Figure 5.4, the gain over the base-line approach to the proposed one is

noted. On the other side, the gain over the existing CF is less compared to the base-line

approach. However, with the 32 and the 64 cloudlets, the gain over both approaches is al-

most the same. In the same way, the number of cloudlets has a bene�cial impact. We can

see that with the 64 cloudlets, the gain from the existing CF approach declined slightly.

With the 256 cloudlets, the proposed approach achieved the highest gain with 50% im-

provement from the base-line approach and 45% from the existing CF approach. The
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Figure 5.5 shows a surprisingly higher gain over the existing CF compared to the base-

line approach, except with the 64 cloudlets. This indicates that increment of the cache

capacity has negative in�uence on the existing CF approach. Thus, the 256 cloudlets is

the best numbers of cloudlet for our proposed CF approach, and 20% cache size had the

highest gain in hit ratio.

To answer the �rst and second research questions, the In-Cache and the In-Cluster

hit ratio results will be presented next:
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Figure 5.6: In-Cluster Hit ratio

The Figure 5.6 proves that the proposed in-network caching is successfully imple-

mented. As expected, the base-line has 0% In-Cluster hit ratio, due to the uniform

cache content. Moreover, the existing CF hit ratio is less than 20% compared to the

proposed content placement method, since within the cluster cloudlets, in the existing

CF approach, share 50% identical content.
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Figure 5.7: In-Cache Hit ratio

Figure 5.7 illustrates that our approach achieves lesser In-Cache hit ratios compared

to the other two cases. Through all cache capacities, the existing CF outperforms the

remaining approaches, yet with 50% cache space, the base-line approach has the highest

hit ratio.

5.3.2 Back-haul results

The impact of CF-based content placement and in-network caching on back-haul con-

gestion is illustrated next. The Figures 5.8, 5.9, and 5.10 display how the number of

cloudlets re�ects on the back-haul delay congestion:
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Figure 5.8: Back-haul delay with 32 cloudlets
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Figure 5.9: Back-haul delay with 128 cloudlets
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Figure 5.10: Back-haul delay with 256 cloudlets

Throughout all three numbers of cloudlets, a pattern is observed: expanding the

capacity of the local cache is decreasing the back-haul delay. Also, for the base-line

approach, back-haul delay is relatively the same for all the numbers of cloudlet. For

the existing CF approach, level of delay improvement is negligible, however, a slight

enhancement is noted with the 128 cloudlets. Surely, the proposed approach outperforms

all other approaches with di�erent numbers of cloudlets and cache space values. The

progress of back-haul congestion is rapid with larger cache space and more number of

cloudlets as a result of gaining access to larger In-Cluster contents.

The following Figures present the impact of storage capacity on back-haul congestion.



31

16 32 64 128 256

Cloudlet Number

0

0.05

0.1

0.15

0.2

0.25

0.3

B
a

c
k
-h

a
u

l 
d

e
la

y
 c

o
n

g
e

s
ti
o

n Gain over Existing CF

Gain over Base-line

Figure 5.11: Back-haul gain for 20% cache size
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Figure 5.12: Back-haul gain for 50% cache size

For both cache capacities,20% and 50%, the proposed CF approach back-haul con-

gestion is bigger with various cloudlet numbers. From the Figure 5.11, the gain over

the base-line always outsizes the existing CF system. With the 32 and the 64 cloudlets,

the improvement is limited. For the existing CF, the improvement is sudden from the

16 to the 32 cloudlets. In the Figure 5.12, the gain is greater with all storage sizes.

For all numbers of cloudlets, the improvement from the base-line is greater compared

to the existing CF approach, except with the 16 cloudlets. Thus implies the base-line

approach is performing better with the 16 cloudlets than the existing CF approach. In

total, back-haul congestion enhances with larger cache memory space.
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5.3.3 Overall delay results

In case of overall delay, the Figures 5.13, 5.14, and 5.15 illustrate the delay behaviours

based upon number of cloudlets.
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Figure 5.13: Overall delay with 32 cloudlets
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Figure 5.14: Overall delay with 128 cloudlets

Comparing between the 32 and the 128 cloudlets, with cache size 30% and 40%, the

base-line delay remain the same. Also noted that with the 50% cache size, the existing

CF approach delay did not change. One the other side, our proposed CF approach shows

rapt delay reduction with the increment of cache size and cloudlet number.
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Figure 5.15: Overall delay with 256 cloudlets

The scenario with 256 cloudlets shows further delay reduction for the proposed ap-

proach compared to the other approaches. For the existing CF approaches, the delay is

better with the 32 cloudlets than with the 128 and the 256 cloudlets. For the base-line

approach, the cache capacity in�uences the performance, in terms of delay, positively.

As shown, the proposed approach is scorning less overall delay compared to the other

schemes.

Next, the Figure 5.16 and 5.17illustrate the results of cache capacity on the percentage

of gain.
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Figure 5.16: Overall delay gain for 20% cache size
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Figure 5.17: Overall delay gain for 50% cache size

From both approaches, the gain is always positive with all the ranges of the numbers

of cloudlet and cache capacities. It can be clearly stated that, based on the two Figures,

larger cache space increases the gain. Similar to Figure 5.12, the Figure 5.17, with the 16

cloudlets, the base-line approach performs better than the existing CF approach. Except

with the 16 cloudlets, the proposed approach performs better with higher cache space.

In all performance metrics, the proposed approach evaluation results are better. It

has been observed that the increment in the numbers of cloudlets impacts the CF-based

in-network content placement and caching positively. Nonetheless, In-Cache hit ratio for

the proposed approach is less compared to the other two approaches. This means that

item-based CF was not as successful as anticipated. Moreover, it means that the positive

overall hit ratio results are due to the In-Cluster hit ratio. Hence a larger number of

cloudlets within a cluster means a larger accessible cache content. That will maximize

the possibility of a hit; therefore, the overall performance will respectively progress.

For the existing CF approach, the In-Cache content was accurately placed; however,

this will serve only the local cloudlet users and not the users within the cluster. Yet,

the proposed approach optimized the network performance by increasing the overall hit

ratio, minimizing the back-haul tra�c and overall delay.
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Chapter 6: Conclusion and Future Work

In this thesis, we explore and examine the e�ect of Collaborative Filtering-Based in-

network content placement and caching on network performance. The framework used

multiple techniques, such as clustering, user-based CF, and item-based CF, to increase

the accuracy of content prediction and prefetching. The proposed approach yielded very

promising results in reducing overall network delay, increasing the hit ratio, in addition

to alleviating congestion bottlenecks at backhaul links. Moreover, we found out that

item-based CF did not give an accurate prediction, thus requiring further investigation

and study.

For future work, there are several considerable vulnerabilities. First, �nding a bet-

ter way to implement the concept of item-based CF, and identifying possible applica-

tion's misconduct. In addition, our �ndings could possibly be improved by implementing

machine learning with the proposed Collaborative Filtering-Based in-network content

placement and caching. We believe that Machine learning can enhance item-based CF

accuracy. Finally, mobility needs also to be addressed to cope with the era of mobile

devices, such as smart phones and other hand-held wireless devices.



36

Bibliography

[1] J. Deng, Y. Wang, J. Guo, Y. Deng, J. Gao, and Y. Park, �A similarity measure
based on Kullback�Leibler divergence for collaborative �ltering in sparse data,�
Journal of Information Science, p. 016555151880818, Oct. 2018.

[2] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, �Serendipity: enabling
remote computing among intermittently connected mobile devices,� in Proceedings
of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and
Computing - MobiHoc '12, (Hilton Head, South Carolina, USA), p. 145, ACM
Press, 2012.

[3] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
�Mobility-aware application scheduling in fog computing,� IEEE Cloud Comput-
ing, vol. 4, no. 2, pp. 26�35, 2017.

[4] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, �Femto Clouds: Leveraging
Mobile Devices to Provide Cloud Service at the Edge,� in 2015 IEEE 8th Inter-
national Conference on Cloud Computing, (New York City, NY, USA), pp. 9�16,
IEEE, June 2015.

[5] M. Wang, J. Wu, G. Li, J. Li, Q. Li, and S. Wang, �Toward mobility support for
information-centric IoV in smart city using fog computing,� in 2017 IEEE Inter-
national Conference on Smart Energy Grid Engineering (SEGE), (Oshawa, ON,
Canada), pp. 357�361, IEEE, Aug. 2017.

[6] H. Sinky and B. Hamdaoui, �Cloudlet-aware mobile content delivery in wireless
urban communication networks,� in Global Communications Conference (GLOBE-
COM), 2016 IEEE, pp. 1�7, IEEE, 2016.

[7] H. Sinky, B. Khal�, B. Hamdaoui, and A. Rayes, �Adaptive edge-centric cloud
content placement for responsive smart cities,� IEEE Network, 2019.

[8] R. Abuhadra and B. Hamdaoui, �Proactive in-network caching for mobile on-
demand video streaming,� in 2018 IEEE International Conference on Communica-
tions (ICC), pp. 1�6, IEEE, 2018.

[9] H. Sinky, B. Khal�, B. Hamdaoui, and A. Rayes, �Responsive content-centric de-
livery in large urban communication networks: A linknyc use-case,� IEEE Trans-
actions on Wireless Communications, vol. 17, no. 3, pp. 1688�1699, 2018.



37

[10] P. Blasco and D. Gunduz, �Learning-based optimization of cache content in a small
cell base station,� in 2014 IEEE International Conference on Communications
(ICC), (Sydney, NSW), pp. 1897�1903, IEEE, June 2014.

[11] Y. Niu, S. Gao, N. Liu, Z. Pan, and X. You, �Clustered small base stations for
cache-enabled wireless networks,� in 2017 9th International Conference on Wireless
Communications and Signal Processing (WCSP), (Nanjing), pp. 1�6, IEEE, Oct.
2017.

[12] A. Pujahari and V. Padmanabhan, �Group recommender systems: Combining user-
user and item-item collaborative �ltering techniques,� in 2015 International Con-
ference on Information Technology (ICIT), pp. 148�152, IEEE, 2015.

[13] Q. Han, Í. M. d. R. de Troya, M. Ji, M. Gaur, and L. Zejnilovic, �A collaborative
�ltering recommender system in primary care: Towards a trusting patient-doctor
relationship,� in 2018 IEEE International Conference on Healthcare Informatics
(ICHI), pp. 377�379, IEEE, 2018.

[14] S. G. Moghaddam and A. Selamat, �A scalable collaborative recommender algo-
rithm based on user density-based clustering,� in The 3rd International Conference
on Data Mining and Intelligent Information Technology Applications, pp. 246�249,
IEEE, 2011.

[15] C. Yu, Q. Tang, Z. Liu, B. Dong, and Z. Wei, �A recommender system for or-
dering platform based on an improved collaborative �ltering algorithm,� in 2018
International Conference on Audio, Language and Image Processing (ICALIP),
pp. 298�302, IEEE, 2018.

[16] E. Shakirova, �Collaborative �ltering for music recommender system,� in 2017 IEEE
Conference of Russian Young Researchers in Electrical and Electronic Engineering
(EIConRus), pp. 548�550, IEEE, 2017.

[17] T. Tao, �Benfords law, zipfs law, and the pareto distribution,� Retrieved from, 2009.

[18] S. Abdelwahab, S. Zhang, A. Greenacre, K. Ovesen, K. Bergman, and B. Hamdaoui,
�When clones �ock near the fog,� IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1914�1923, 2018.

[19] S. Abdelwahab and B. Hamdaoui, �Flocking virtual machines in quest for responsive
iot cloud services,� pp. 1�6, 2017.

[20] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, �Replisom: Disciplined
tiny memory replication for massive iot devices in lte edge cloud,� IEEE Internet
of Things Journal, vol. 3, no. 3, pp. 327�338, 2016.



38

[21] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, �Cloud of things for
sensing as a service: sensing resource discovery and virtualization,� in Global Com-
munications Conference (GLOBECOM), 2015 IEEE, pp. 1�7, IEEE, 2015.

[22] S. Abdelwahab and B. Hamdaoui, �Fogmq: A message broker system for enabling
distributed, internet-scale iot applications over heterogeneous cloud platforms,�
arXiv preprint arXiv:1610.00620, 2016.

[23] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos, �A Comprehensive Survey on Fog Computing: State-of-the-Art and Re-
search Challenges,� IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 416�464, 2018.

[24] E. Rapti, C. Houstis, E. Houstis, and A. Karageorgos, �A Bio-Inspired Service
Discovery and Selection Approach for IoT Applications,� in 2016 IEEE Interna-
tional Conference on Services Computing (SCC), (San Francisco, CA), pp. 868�871,
IEEE, June 2016.

[25] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, �Fog computing and its role in
the internet of things,� in Proceedings of the �rst edition of the MCC workshop on
Mobile cloud computing, pp. 13�16, ACM, 2012.

[26] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, �A Survey on Mo-
bile Edge Networks: Convergence of Computing, Caching and Communications,�
IEEE Access, vol. 5, pp. 6757�6779, 2017.

[27] B. N. T. Duy, Q. A. Nguyen, P. L. Vo, and T.-A. Le, �Optimal content placement for
adaptive bit-rate streaming in cache networks,� in 2015 2nd National Foundation
for Science and Technology Development Conference on Information and Computer
Science (NICS), pp. 243�247, IEEE, 2015.

[28] S. Guizani, �Internet-of-things (IoT) feasibility applications in information Cen-
tric Networking System,� in 2017 13th International Wireless Communications and
Mobile Computing Conference (IWCMC), (Valencia, Spain), pp. 2192�2197, IEEE,
June 2017.

[29] S. Misra, M. Reisslein, and G. Xue, �A survey of multimedia streaming in wireless
sensor networks,� IEEE communications surveys & tutorials, vol. 10, no. 4, 2008.

[30] A. Majumda, D. G. Sachs, I. V. Kozintsev, K. Ramchandran, and M. M. Yeung,
�Multicast and unicast real-time video streaming over wireless lans,� IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 524�534,
2002.



39

[31] F. Soldo, C. Casetti, C.-F. Chiasserini, and P. Chaparro, �Streaming media distribu-
tion in VANETs,� in Global Telecommunications Conference, 2008. IEEE GLOBE-
COM 2008. IEEE, pp. 1�6, IEEE, 2008.

[32] S. Ehsan and B. Hamdaoui, �A survey on energy-e�cient routing techniques with
qos assurances for wireless multimedia sensor networks,� IEEE Communications
Surveys & Tutorials, vol. 14, no. 2, pp. 265�278, 2012.

[33] I. F. Akyildiz, T. Melodia, and K. R. Chowdury, �Wireless multimedia sensor net-
works: A survey,� IEEE Wireless Communications, vol. 14, no. 6, 2007.

[34] B. Hamdaoui and P. Ramanathan, �Energy-e�cient and mac-aware routing for data
aggregation in sensor networks,� Proc. of Sensor Network Operations, 2004.

[35] B. Hamdaoui and P. Ramanathan, �Cross-layer optimized conditions for qos sup-
port in multi-hop wireless networks with mimo links,� IEEE Journal on Selected
Areas in Communications, vol. 25, no. 4, 2007.

[36] T.-W. Chen, J. Tsai, and M. Gerla, �Qos routing performance in multihop, mul-
timedia, wireless networks,� in Universal Personal Communications Record, 1997.
Conference Record., 1997 IEEE 6th International Conference on, vol. 2, pp. 557�
561, IEEE, 1997.

[37] B. Hamdaoui and P. Ramanathan, �Su�cient conditions for �ow admission control
in wireless ad-hoc networks,� ACM SIGMOBILE Mobile Computing and Commu-
nications Review, vol. 9, no. 4, pp. 15�24, 2005.

[38] X. Ge, X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, and C.-X. Wang, �Energy-
e�ciency optimization for mimo-ofdm mobile multimedia communication systems
with qos constraints,� IEEE Transactions on Vehicular Technology, vol. 63, no. 5,
pp. 2127�2138, 2014.

[39] B. Hamdaoui and P. Ramanathan, �A cross-layer admission control framework for
wireless ad-hoc networks using multiple antennas,� IEEE Transactions on Wireless
Communications, vol. 6, no. 11, 2007.

[40] B. Hamdaoui and K. G. Shin, �OS-MAC: An e�cient mac protocol for spectrum-
agile wireless networks,� IEEE Transactions on Mobile Computing, vol. 7, no. 8,
pp. 915�930, 2008.

[41] B. Hamdaoui, �Adaptive spectrum assessment for opportunistic access in cognitive
radio networks,� IEEE Transactions on Wireless Communications, vol. 8, no. 2,
pp. 922�930, 2009.



40

[42] M. NoroozOliaee and B. Hamdaoui, �Analysis of guard-band-aware spectrum bond-
ing and aggregation in multi-channel access cognitive radio networks,� in 2016 IEEE
International Conference on Communications (ICC), pp. 1�7, IEEE, 2016.

[43] R. K. Panta, �Mobile video delivery: Challenges and opportunities,� IEEE Internet
Computing, vol. 19, pp. 64�67, May 2015.

[44] K. Piamrat, C. Viho, J. M. Bonnin, and A. Ksentini, �Quality of experience mea-
surements for video streaming over wireless networks,� in 2009 Sixth International
Conference on Information Technology: New Generations, pp. 1184�1189, April
2009.

[45] T. A. Q. Pham, K. Piamrat, and C. Viho, �Qoe-aware routing for video streaming
over vanets,� in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall),
pp. 1�5, Sept 2014.

[46] S. Zaidi, S. Bitam, and A. Mellouk, �Enhanced user datagram protocol for video
streaming in vanet,� in 2017 IEEE International Conference on Communications
(ICC), pp. 1�6, May 2017.

[47] C. Xu, F. Zhao, J. Guan, H. Zhang, and G. M. Muntean, �Qoe-driven user-centric
vod services in urban multihomed p2p-based vehicular networks,� IEEE Transac-
tions on Vehicular Technology, vol. 62, pp. 2273�2289, Jun 2013.

[48] M. NoroozOliaee, B. Hamdaoui, X. Cheng, T. Znati, and M. Guizani, �Analyzing
cognitive network access e�ciency under limited spectrum hando� agility,� IEEE
Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1402�1407, 2014.

[49] M. NoroozOliaee, B. Hamdaoui, T. Znati, and M. Guizani, �Forced spectrum ac-
cess termination probability analysis under restricted channel hando�.,� in WASA,
pp. 358�365, Springer, 2012.

[50] M. NoroozOliaee, B. Hamdaoui, and K. Tumer, �E�cient objective functions for
coordinated learning in large-scale distributed osa systems,� Mobile Computing,
IEEE Transactions on, vol. 12, no. 5, pp. 931�944, 2013.

[51] M. Maiya and B. Hamdaoui, �imac: improved medium access control for multi-
channel multi-hop wireless networks,� Wireless Communications and Mobile Com-
puting, vol. 13, no. 11, pp. 1060�1071, 2013.

[52] M. NoroozOliaee, B. Hamdaoui, and M. Guizani, �Maximizing secondary-user sat-
isfaction in large-scale dsa systems through distributed team cooperation,� Wireless
Communications, IEEE Transactions on, vol. 11, no. 10, pp. 3588�3597, 2012.



41

[53] B. Hamdaoui, M. NoroozOliaee, K. Tumer, and A. Rayes, �Coordinating secondary-
user behaviors for inelastic tra�c reward maximization in large-scale osa networks,�
Network and Service Management, IEEE Transactions on, vol. 9, no. 4, pp. 501�
513, 2012.

[54] P. Venkatraman, B. Hamdaoui, and M. Guizani, �Opportunistic bandwidth shar-
ing through reinforcement learning,� Vehicular Technology, IEEE Transactions on,
vol. 59, no. 6, pp. 3148�3153, 2010.

[55] A. Sivanantha, B. Hamdaoui, M. Guizani, X. Cheng, and T. Znati, �Em-mac:
An energy-aware multi-channel mac protocol for multi-hop wireless networks,� in
Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th
International, pp. 1159�1164, IEEE, 2012.

[56] B. Hamdaoui, M. NoroozOliaee, K. Tumer, and A. Rayes, �Aligning spectrum-user
objectives for maximum inelastic-tra�c reward,� in Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International Conference on, pp. 1�6,
IEEE, 2011.

[57] M. NoroozOliaee, B. Hamdaoui, and K. Tumer, �Achieving optimal elastic tra�c
rewards in dynamic multichannel access,� in High Performance Computing and
Simulation (HPCS), 2011 International Conference on, pp. 155�161, IEEE, 2011.

[58] P. Venkatraman and B. Hamdaoui, �Cooperative q-learning for multiple secondary
users in dynamic spectrum access,� in 2011 7th International Wireless Communi-
cations and Mobile Computing Conference, 2011.

[59] M. Maiya and B. Hamdaoui, �An improved ieee 802.11 mac protocol for wireless
ad-hoc networks with multi-channel access capabilities,� in High Performance Com-
puting and Simulation (HPCS), 2011 International Conference on, pp. 162�168,
IEEE, 2011.

[60] M. Grissa, A. A. Yavuz, and B. Hamdaoui, �TrustSAS: A trustworthy spectrum
access system for the 3.5 ghz cbrs band,� in INFOCOM, IEEE, 2019.

[61] M. Grissa, B. Hamdaoui, and A. A. Yavuz, �Unleashing the power of multi-server
pir for enabling private access to spectrum databases,� IEEE Communications Mag-
azine, 2018.

[62] M. Grissa, B. Hamdaoui, and A. A. Yavuz, �Location privacy in cognitive radio
networks: A survey,� IEEE Communications Surveys & Tutorials, 2017.



42

[63] M. Grissa, A. A. Yavuz, and B. Hamdaoui, �Location privacy preservation in
database-driven wireless cognitive networks through encrypted probabilistic data
structures,� IEEE Transactions on Cognitive Communications and Networking,
vol. 3, no. 2, pp. 255�266, 2017.

[64] M. Grissa, A. A. Yavuz, and B. Hamdaoui, �Preserving the location privacy of sec-
ondary users in cooperative spectrum sensing,� IEEE Transactions on Information
Forensics and Security, vol. 12, no. 2, pp. 418�431, 2017.

[65] M. Grissa, A. Yavuz, and B. Hamdaoui, �When the hammer meets the nail: Multi-
server PIR for database-driven CRN with location privacy assurance,� in Commu-
nications and Network Security (CNS), 2017 IEEE Conference on, IEEE, 2017.

[66] M. Grissa, A. A. Yavuz, and B. Hamdaoui, �Cuckoo �lter-based location-privacy
preservation in database-driven cognitive radio networks,� in Computer Networks
and Information Security (WSCNIS), 2015 World Symposium on, pp. 1�7, IEEE,
2015.

[67] M. Grissa, A. Yavuz, and B. Hamdaoui, �An e�cient technique for protecting loca-
tion privacy of cooperative spectrum sensing users,� in Computer Communications
Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, pp. 915�920, IEEE,
2016.

[68] N. Adem and B. Hamdaoui, �Jamming resiliency and mobility management in cog-
nitive communication networks,� in Communications (ICC), 2017 IEEE Interna-
tional Conference on, pp. 1�6, IEEE, 2017.

[69] N. Adem and B. Hamdaoui, �Delay performance modeling and analysis in clus-
tered cognitive radio networks,� in 2014 IEEE Global Communications Conference,
pp. 193�198, IEEE, 2014.

[70] N. Adem and B. Hamdaoui, �The impact of stochastic resource availability on
cognitive network performance: modeling and analysis,� Wireless Communications
and Mobile Computing, 2015.

[71] N. Adem, B. Hamdaoui, and A. Yavuz, �Mitigating jamming attacks in mobile
cognitive networks through time hopping,� Wireless Communications and Mobile
Computing, 2016.

[72] N. Adem, B. Hamdaoui, and A. Yavuz, �Pseudorandom time-hopping anti-jamming
technique for mobile cognitive users,� in 2015 IEEE Globecom Workshops (GC
Wkshps), pp. 1�6, IEEE, 2015.



43

[73] B. Hamdaoui and K. G. Shin, �Characterization and analysis of multi-hop wireless
mimo network throughput,� in Proceedings of the 8th ACM international sympo-
sium on Mobile ad hoc networking and computing, pp. 120�129, ACM, 2007.

[74] B. Hamdaoui and P. Ramanathan, �A cross-layer admission control framework for
wireless ad-hoc networks using multiple antennas,� IEEE Transactions on Wireless
Communications, vol. 6, no. 11, 2007.

[75] B. Khal�, B. Hamdaoui, and M. Guizani, �AirMAP: Scalable spectrum occupancy
recovery using local low-rank matrix approximation,� in 2018 IEEE Global Com-
munications Conference (GLOBECOM), IEEE, 2018.

[76] B. Khal�, A. Elmaghbub, and B. Hamdaoui, �Distributed wideband sensing for
faded dynamic spectrum access with changing occupancy,� in 2018 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2018.

[77] B. Khal�, B. Hamdaoui, M. Guizani, and N. Zorba, �E�cient spectrum availability
information recovery for wideband dsa networks: A weighted compressive sam-
pling approach,� IEEE Transactions on Wireless Communications, vol. 17, no. 4,
pp. 2162�2172, 2018.

[78] B. Hamdaoui, B. Khal�, and M. Guizani, �Compressed wideband spectrum sensing:
Concept, challenges, and enablers,� IEEE Communications Magazine, vol. 56, no. 4,
pp. 136�141, 2018.

[79] B. Khal�, A. Zaid, and B. Hamdaoui, �When machine learning meets compressive
sampling for wideband spectrum sensing,� in Wireless Communications and Mobile
Computing Conference (IWCMC), 2017 13th International, pp. 1120�1125, IEEE,
2017.

[80] B. Khal�, B. Hamdaoui, and M. Guizani, �Extracting and exploiting inherent spar-
sity for e�cient iot support in 5G: Challenges and potential solutions,� IEEE Wire-
less Communications Magazine, vol. 24, no. 5, pp. 68�73, 2017.

[81] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, �Enabling smart cloud
services through remote sensing: An internet of everything enabler,� IEEE Internet
of Things Journal, vol. 1, no. 3, pp. 276�288, 2014.

[82] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl, �Maui: making smartphones last longer with code o�oad,� in Proceedings
of the 8th international conference on Mobile systems, applications, and services,
pp. 49�62, ACM, 2010.



44

[83] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, �The case for vm-based
cloudlets in mobile computing,� Pervasive Computing, IEEE, vol. 8, no. 4, pp. 14�
23, 2009.

[84] J. Flinn, �Cyber foraging: Bridging mobile and cloud computing,� Synthesis Lec-
tures on Mobile and Pervasive Computing, vol. 7, no. 2, pp. 1�103, 2012.

[85] M. D. Kristensen, �Execution plans for cyber foraging,� in Proceedings of the 1st
workshop on Mobile middleware: embracing the personal communication device,
p. 2, ACM, 2008.

[86] A. Mtibaa, K. A. Harras, K. Habak, M. Ammar, and E. W. Zegura, �Towards
mobile opportunistic computing,� in 2015 IEEE 8th International Conference on
Cloud Computing, pp. 1111�1114, IEEE, 2015.

[87] J. Li, X. Li, Y. Gao, Y. Gao, and R. Zhang, �Dynamic Cloudlet-Assisted Energy-
Saving Routing Mechanism for Mobile Ad Hoc Networks,� IEEE Access, vol. 5,
pp. 20908�20920, 2017.

[88] F. Jalali, S. Khodadustan, C. Gray, K. Hinton, and F. Suits, �Greening IoT
with Fog: A Survey,� in 2017 IEEE International Conference on Edge Comput-
ing (EDGE), (Honolulu, HI, USA), pp. 25�31, IEEE, June 2017.

[89] A. Saric, M. Hadzikadic, and D. Wilson, �Alternative formulas for rating predic-
tion using collaborative �ltering,� in International Symposium on Methodologies for
Intelligent Systems, pp. 301�310, Springer, 2009.

[90] P. Melville, R. J. Mooney, and R. Nagarajan, �Content-boosted collaborative �lter-
ing for improved recommendations,� Aaai/iaai, vol. 23, pp. 187�192, 2002.

[91] L. Terveen and W. Hill, �Beyond recommender systems: Helping people help each
other,� HCI in the New Millennium, vol. 1, no. 2001, pp. 487�509, 2001.

[92] P. Melville and V. Sindhwani, �Recommender systems,� Encyclopedia of Machine
Learning and Data Mining, pp. 1056�1066, 2017.

[93] Y. Koren, �Factor in the neighbors: Scalable and accurate collaborative �ltering,�
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 4, no. 1, p. 1,
2010.

[94] G. Yao and L. Cai, �User-based and item-based collaborative �ltering recommen-
dation algorithms design,� University of California, San Diego, 2017.

[95] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., �Item-based collaborative
�ltering recommendation algorithms.,� vol. 1, pp. 285�295, 2001.



45

[96] M. Venu Gopalachari and P. Sammulal, �Personalized collaborative �ltering rec-
ommender system using domain knowledge,� in International Conference on Com-
puting and Communication Technologies, (Hyderabad, India), pp. 1�6, IEEE, Dec.
2014.

[97] G. Badaro, H. Hajj, W. El-Hajj, and L. Nachman, �A hybrid approach with col-
laborative �ltering for recommender systems,� in 2013 9th International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 349�354, IEEE,
2013.

[98] J. S. Breese and D. H. C. Kadie, �Empirical Analysis of Predictive Algorithms for
Collaborative Filtering,� p. 10.

[99] C. Bernardini, T. Silverston, and O. Festor, �Mpc: Popularity-based caching strat-
egy for content centric networks,� in 2013 IEEE international conference on com-
munications (ICC), pp. 3619�3623, IEEE, 2013.

[100] A. Struyf, M. Hubert, P. Rousseeuw, et al., �Clustering in an object-oriented envi-
ronment,� Journal of Statistical Software, vol. 1, no. 4, pp. 1�30, 1997.

[101] J. Leskovec and A. Rajaraman, �Clustering algorithms,� CS345a: Data Mining,
Standford University, United State, 2010.

[102] G. Seif, �The 5 clustering algorithms data scientists need to know,� 2018.

[103] R. C. de Amorim and C. Hennig, �Recovering the number of clusters in data sets
with noise features using feature rescaling factors,� Information Sciences, vol. 324,
pp. 126�145, 2015.

[104] T. Thinsungnoena, N. Kaoungkub, P. Durongdumronchaib, K. Kerdprasopb, and
N. Kerdprasopb, �The clustering validity with silhouette and sum of squared errors,�
learning, vol. 3, p. 7, 2015.

[105] P. Melville and V. Sindhwani, �Recommender systems,� Encyclopedia of Machine
Learning and Data Mining, pp. 1056�1066, 2017.




	Introduction
	Thesis Contributions
	Organization of the Thesis

	Background and Literature Review
	System Architecture and Requirements
	Connection Interruption
	Multimedia Access
	Smart City
	Energy Consumption

	Collaborative Filtering
	In-Network Caching
	Proactive Caching
	Clustering


	System Model
	Hybrid Collaborative Filtering Based In-Network Content Placement and Caching
	CD Clustering
	CD Caching
	File Downloading Scheme

	Performance Evaluation
	Simulation Setup and Methodology
	Performance Metrics
	Simulation Results
	Hit ratio results
	Back-haul results
	Overall delay results


	Conclusion and Future Work
	Bibliography

