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Metabolomics and lipidomics lay the foundation of personalized medicine. The 

technological advancements in mass spectrometry techniques in combination with 

computational algorithms and methods have enabled the study of small molecules 

(metabolites and lipids) for understanding the disease state and biological pathways, the 

identification of biomarkers and the generation of predictive models for patient 

management, as well as the identification of natural products as new leads in drug 

discovery research. The computational methods utilize large, complex datasets to gather 

insights about underlying biological processes, trends, and non-random patterns.  

This dissertation focuses on research studies in which the integration of metabolomics with 

computational methods enabled the discovery of active natural products as leads to combat 

Alzheimer's disease, utilization of metabolomics and lipidomics workflows for utilization 

of optimal cutting temperature compound stored heart tissues with mass spectrometry and 

assess the effect of doxycycline on biochemical pathways associated with breast cancer. 



 
 

 

The methodical pipeline and associated workflows and technologies is described in 

Chapter 2. The optimal design of the preanalytical workflows as well as the integration 

with the appropriate measurement technologies are important for successful metabolomics 

and lipidomics studies.  In this thesis, pre-analytical workflows were developed and applied 

for sample extraction procedures to separate metabolites and lipids from tissues, cells and 

botanical extracts, and subsequent chromatographic separation with ultra-performance 

liquid chromatography (UPLC). The metabolite and lipid profile were detected using high-

resolution mass spectrometry in conjunction with tandem mass spectrometry. For 

characterization of isomers travelling wave ion mobility mass spectrometry was utilized. 

Metabolomics and lipidomics approaches were enhanced by computational methods for 

data processing, data visualization and interpretation. 

In this thesis, we developed LC-MS metabolomics approaches for the characterization of 

botanical extracts and applied and evaluated innovative bio-chemometrics approaches to 

assign the bioactive principles. The natural products research in the thesis focused on 

Centella asiatica botanicals have gained popularity for their potential to enhance cognitive 

function and brain vitality in aging. An important contribution to improve effective clinical 

trials is the availability of standardized Centella asiatica extracts to facilitate reproducible 

use to account for substantial variability across natural products using LC-MS/MS 

workflow. A secondary goal in this thesis was method development aimed to reduce 

reliance on bioactivity guided fractionation by combining flow injection mass spectrometry 

with innovative computational methods that allow rapid dereplication of natural products 

and assigning of bioactive natural products. The methodological pipeline in conjunction 

with the applied computational approaches will lead to a decrease in time needed for 

moving bioactive natural products to preclinical testing.  

In another study, methodology was evaluated to allow the use of bio-banked heart tissue 

samples for subsequent biomarker discovery research. The research on optimal cutting 

temperature (OCT) embedded heart tissue was designed to determine the compatibility of 

OCT storage with UPLC-MS/MS lipidomics studies. The results show that OCT stored 

heart tissue is compatible with LC-MS/MS lipidomics - facilitating the use of bio-banked 



 
 

tissue samples for future studies.  The critical evaluation of the developed workflow shows 

that LC-MS/MS lipidomics of OCT-banked tissues samples is reliable for the major lipid 

classes except for plasmalogens that would likely be underestimated with using the 

described protocol.  

In the last research chapter in this thesis outlines studies designed to determine if a 

doxycycline (DOX)-dependent gene expression knockdown system is a viable strategy in 

the context of metabolomic studies of breast cancer cells for studying the biological effects 

of targeted gene silencing. This research utilized a workflow comprising of combination 

of NMR and mass spectrometry. NMR was utilized to identify polar metabolites. 

Hydrophilic interaction liquid chromatography was used in conjunction with MS/MS mass 

spectrometry to determine the effect of doxycycline on metabolites. Reversed phase ultra-

performance liquid chromatography was utilized along with MSE mass spectrometry to 

assess the impact of doxycycline on lipids. The research indicated DOX-based gene 

expression knockdown strategies unexpectedly affected metabolic pathways in the breast 

cancer cell lines. This serves as a cautionary tale for use of doxycycline in gene silencing 

in metabolomics and lipidomics experiments.  

The conclusion of thesis provides a summary of the insights obtained by using 

computational methods in metabolomics. It provides perspectives on future of patient 

management, discovery of compounds with potential for treatment of diseases, obtaining 

in-depth understanding of disease state using mass spectrometry-based metabolomics and 

lipidomics.  
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1. Introduction 
 

Advances in “omics’ technologies combined with innovative use of computational 

methods pave the way for personalized medicine in peruse of optimal health in hitherto 

unprecedented ways. Previously treatments provided to all patients were uniform. Analysis 

of omics data will help in transforming the uniform treatment into personalized medicine 

to provide better care to patients and improve the reliability in terms of safety and efficacy 

(Alyass, Turcotte, and Meyre 2015; Vogenberg, Barash, and Pursel 2010). The omics 

profile which comprises of genomic (DNA), transcriptomic (mRNA), proteomic (protein), 

metabolomic and lipidomic data will help in understanding the complex patient specific 

interactions occurring in diseases, such as cancer and cardiovascular diseases. Omics 

provide information about changes across patients due to changes in gene pool, 

environmental factors, alterations in gut microbiota and modified enzyme levels (Beger 

2013; Nicholson and Wilson 2003). Statistical analyses and data integration will help in 

establishing links between different omics regimes. Data enrichment tools may aid in the 

biological contextualization of “omics” data. Multi-omics strategies provide integrated 

system-level understanding of host environment interactions, and when applied in 

medicine may have implication for patient subtyping and treatment stratification.  

Metabolomics strives to obtain a complete snapshot of the metabolites involved in a 

biological system. As such, metabolomics provides chemical fingerprints of biological 

systems that can be further interrogated.  Due the vast chemical diversity of metabolites 

chemical analysis strategies is needed that allow determining the chemical structures and 

provide access to quantitative information at a given time point. As such, the 

comprehensive analysis of the metabolome of cells, tissues or plant materials necessitates 

use of robust analytical platforms, such as liquid chromatography – mass spectrometry 

(LC-MS) or nuclear magnetic resonance (NMR) spectroscopy, for the detection, 

identification, and quantification of metabolites.      

1.1 Metabolomics for the discovery of aberrant biochemical pathways associated 

with disease  
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Metabolomics is defined as a method to analyze metabolites in a biological entity (Beger 

2013). The metabolites will include phytochemicals, organic acids, lipids, small molecules 

of metabolic pathways. These metabolites could serve as intermediates in metabolic 

pathways that impact biological function. Their effect on biological function also makes 

them an ideal candidate for biomarkers. Quantification of levels of metabolites across 

treatment and control samples allows identifying the effect of treatment on metabolic 

pathways (Johnson et al. 2015). Disparate metabolites point to deregulation of metabolic 

pathways that are associated with diseases.  Metabolomics has been extensively applied to 

study metabolic processes associated in cancer cells. 

Energy production takes place in cancer cells mainly by aerobic glycolysis instead of 

oxidative phosphorylation (Hirayama et al. 2009). Oxidative phosphorylation occurs in 

mitochondria using the TCA (tricarboxylic acid cycle) (Acin-Perez et al. 2009). Study of 

intermediates in glycolysis and TCA cycle would reveal mechanism cancer cells use to 

synthesize amino acids, lipids required for rapid cell division and migration (Beger 2013; 

Lawrence, Willoughby, and Gilroy 2002; Van Meer, Voelker, and Feigenson 2008; 

Menendez and Lupu 2007).This would help in developing novel targets for diagnostics and 

therapeutics (Beger 2013).  

 

1.2 Metabolomics in conjunction with molecular networks in the context of 

natural products research  
 

Metabolomics is useful for identifying unknown natural products in natural product 

mixtures. Botanical extracts are analyzed using fractionation followed flow injection and 

mass spectrometry. The mass spectral data is used to construct the molecular networks by 

aligning the MS/MS spectra of the parent ions. Global natural products social networking 

(GNPS) helps us visualize metabolites in natural products and their associations with other 

metabolites using spectral similarity. GNPS utilizes MS/MS data and creates network 

based on the similarity of their MS2 fragmentation. The spectral similarity is computed 

using cosine score between two spectra. The cosine score ranges between 0 and 1. 0 

represents no similarity and 1 represents the spectra are identical with each other (Mingxun 
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Wang et al. 2016). Each precursor ion is represented as a node, and they are connected 

using an edge based on the cosine score. GNPS was used to identify metabolites in natural 

products that could be used as potential remedies to treat illnesses along with statistical 

predictive modeling techniques. GNPS constructs the molecular networks by aligning 

MS/MS spectra of the parent ions.  

 

1.3 Lipidomics, a sub-discipline of metabolomics dedicated to the analysis of lipids 
 

The lipidome is part of metabolome composed of lipid species. Lipidomics deals with 

identifying the lipid components involved and understanding the interactions of lipids with 

other lipids and other chemical entities to provide structure and maintain function in 

biological systems (Wenk 2005). Along with metabolites lipids play in important role in 

regulating biological pathways, maintaining structure and functions in cells and tissues 

(Beger 2013). Lipids help maintain structure of cell membrane, impart membrane fluidity 

play an important role in cell signalling and apoptosis (X. Han and Gross 2003; Wenk 

2005). The lipids act as transporters for release of energy and also act as energy reservoirs. 

As a result deregulation of lipids is linked to cancer. Targeting lipids will help in controlling 

cell division and migration of cancer cells (Yan Lim and Yee Kwan 2020). Lipid species 

are classified on the basis of their functional backbone. Lipids can be categorized into eight 

categories, polyketides, fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, 

prenols, sterol lipids and saccharolipids (Fahy et al. 2005).  

Lipids have a polar head group charachteristic of the lipid species and an aliphatic tails 

with different number sof carbon atoms and levels of unsaturations. The lipids are 

represented as XX (NC:UB) with XX representing two letter code for the lipid species, NC 

representing number of carbons and UB representing number of unsaturated bonds. 

1.4 Technologies 
 

Metabolome analyis is performed either by targeted or untargeted methods. Targeted 

metabolomics is used for detection and quantitation of a selected set of metabolites or 

lipids, whereas the untargeted approach aims to detect and measure signals for all 



4 
 

metabolites and then annotate them based on spectral matching with metabolomics 

databases (Bingol 2018). Metabolomics is performed by acquiring data using high 

throughput platforms, such as liquid chromatography (LC), mass spectrometry (MS) and 

nuclear magnetic resonance spectroscopy (NMR). NMR and MS are used together for 

performing metabolomics to obtain higher level of confidence. Mass spectrometry is a 

highly sensitive and selective techniques that allows identification and quantification that 

can be used across a wide range of metabolites and lipids. Mass spectrometry can be 

coupled with ion mobility spectrometry (IMS) that increases the peak capacity and resolves 

the peaks for coeluting isomers that cannot be separated by liquid chromatography. 

Hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid 

chromatography techniques are used to separate polar metabolites and lipids respectively 

and are coupled with mass spectrometry for their detection and quantitation.  

 

1.5 Aims of thesis  
 

The focus of my thesis research was to utilize mass spectrometry techniques, chemometrics 

and bioinformatics tools (1) to obtain an understanding of mechanisms associated with 

disease and associated physiological perturbation, and (2) for characterization of botanicals 

and leverage computational chemistry tools, utilize statistical analyses and machine 

learning algorithms and open-access databases for natural product drug discovery. 

The second chapter provides an overview of the methods, technologies and computational 

tools that are commonly utilized in metabolomics/lipidomics for various biological 

matrices such as tissue and plasma with focus on workflows relevant to this thesis. 

Specifically, methodological details are discussed concerning liquid chromatography 

techniques coupled with mass spectrometry for chemical fingerprinting of botanical 

extracts. and  workflows, technologies and data processing strategies followed to ensure 

robustness and repeatibility of the analytical workflows used for obtaining metabolite and 

lipid profiles for mammalian cells and tissues.  

The second chapter also reviews statistical analyses and machine learning algorithms for 

testing hypothesis, assessing the effect of compounds on disease mechanisms, visualization 
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of similarities and differences of metabolites developing prediction models based on 

spectral data that can be used for drug discovery, and performing biomarker discovery.  

The third chapter deals with the characterizing of botanical extracts (focus on Centella 

asiatica), how chemical fingerprinting can be utilized for evaluating extract reproducibility 

This will help in producing botanical supplements with reliable efficacy and in reducing 

time involved in testing them in clinical trials. In this chapter the combination of mass 

spectrometry-based metabolomics was explored for facilitating dereplication of botanical 

extracts and reducing the reliance on bioactivity-guided fractionation using computational 

tools for discovery of bioactive principles.  

The fourth chapter explores untargeted lipidomics for studying integrity of bio-banked 

tissue for subsequent lipid profiling. This study developed analytical workflow to utilize 

optimal cutting temperature compound (OCT) embedded heart tissue typically used to store 

bio-banked tissues as it imparts stability to the tissue for long term storage. This study 

performed comparative lipidomics on OCT stored heart tissues and previously used liquid 

nitrogen stored heart tissues with the help of reversed phase liquid chromatography coupled 

with mass spectrometry. 

The fifth chapter reports on the critical evaluation of the compatibility of a widely used 

doxycycline-based inducible gene-silencing strategy with metabolomics utilizing 

hydrophilic liquid chromatography coupled with MS/MS mass spectrometry and 

lipidomics using reversed phase liquid chromatography coupled with MSE mass 

spectrometry for studying breast cancer metabolism.  The findings provide evidence that 

doxycycline knockout strategies cause disturbances in biochemical pathways, which 

should be considered when the study design includes metabolomics assays. 

The sixth chapter provides a summary about the application of mass spectrometry in 

detection and identification of biomolecular fingerprints in biomedical research through 

metabolomics and lipidomics. It highlights the importance of mass spectrometry 

technology in conjunction with computational methods such as global natural product 

social molecular networking (GNPS), statistical and machine learning techniques for 

patient management, biomarker discovery, identification of bioactive molecules and 

understanding of disease states. It provides a future perspective of how metabolomics can 
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be translated into accurate point of care diagnostic technique with advances in mass 

spectrometry technologies.  
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2. Methodical Pipeline 
 

This chapter focuses on methodologies involved in metabolomics and lipidomics. This 

chapter will provide information about sample preparation, liquid chromatography and 

mass spectrometry, high throughput technologies, bioinformatics, and computational tools 

to visualize and interpret the underlying biology.  The conceptual methodological 

workflow is described in the Figure 2.1. 

 

Figure 2.1 Workflow for LC-MS based metabolomics. 

Analysis of metabolites and lipids can be divided into two categories of targeted and un-

targeted approaches (Checa, Bedia, and Jaumot 2015). Targeted analysis is performed by 

measuring only a specific set of metabolites and lipids whereas untargeted analysis 

involves measuring all the detectable metabolites and lipids from the sample (Patti 2011; 

Vinayavekhin and Saghatelian 2010). This thesis focuses on untargeted analysis which 

provides comprehensive chemical fingerprints and allows us to look for novel compounds.   

2.1 Sample preparation in metabolomics and lipidomics 
 

Sample preparation procedures were developed to perform high throughput metabolomics 

using LC-MS analytical workflows to detect phytochemicals in botanical extracts and 

metabolites and lipids from mammalian cells and tissues. These analytical procedures have 

been described in this section. 
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2.1.1 Homogenization 

Homogenization lyses the tissues or cells to release metabolites, lipids and proteins into 

the solvent. The energy involved in homogenization needs to be controlled otherwise 

compounds of interest will be potentially destroyed. The tissues or cells are suspended in 

a solvent along with 0.2 mg/mL of butylated hydroxytoluene to prevent lipid oxidation in 

2ml reinforced tube with ceramic beads of 0.1-0.5 mm diameter. These tubes are placed in 

a spinning agitator. The agitator is set at 5000 or 6000 rpm depending on the strength of 

tissue or cells that need to be lysed. The samples should be prechilled, agitator should only 

be spun for short durations with idle time between each run and the samples should be 

rechilled to prevent the sample in the tubes from getting hot. Heart tissues are hard to be 

homogenized (Goldberg 2008) so they had to be homogenized at 6000 rpm with 2.8 mm 

beads for six repeated cycles of 20 seconds with breaks of 30 seconds in between them. 

The homogenate is subjected to extraction to separate the compounds into multiple phases. 

 

2.1.2 Metabolite and lipid extraction 

In liquid-liquid extraction (LLE), the compounds in the homogenate are partitioned using 

solvent systems. Polar and non-polar metabolites for metabolomics and lipidomics, 

respectively, are extracted with a combination of methanol, chloroform and water. The 

metabolite fractions in this method are collected in the top portion comprising of methanol 

and water. The chloroform portion below contains the lipid portion. Sometimes, solid phase 

extraction (SPE) is performed before to collect lipid classes with similar structure (Wolf 

and Quinn 2008). In a collaborative project, the solid phase extraction was performed to 

extract oxylipins from plasma to perform biomarker analysis in plasma samples obtained 

from coronary artery disease patients (Le et al. 2021).   

The single step liquid-liquid extraction procedure was used for the studies described in 

chapters 4, 5 and 6. This extraction protocol is also compatible for metabolomic analysis 

with NMR. Methanol/chloroform/water extraction exhibited lesser variability than 

methanol/water extraction (X. Han 2016). 

Specifically, the tissues or cells were washed with PBS and suspended in 300 µl 

water:methanol 1:1. They were homogenized to release metabolites, lipids and proteins 
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from the biological specimen. The homogenate was transferred to vials with 500 µl chilled 

chloroform and 300 µl chilled water followed by centrifugation at 10000 rcf at 4°C for 10 

min. This resulted in a formation of three phase mixture. The top metabolite portion was 

divided into 2 parts for NMR and LC-MS analysis. The sample for metabolic profiling with 

NMR was suspended in 10mM PBS and NMR buffer comprising of DSS and D2O whereas 

the sample for metabolic profiling with HILIC-MS/MS was transferred to 95% acetonitrile 

and 5% water. Acetonitrile and water are fully miscible with each other and can be used 

with mobile phase additives and buffer. The mobile phase comprising of acetonitrile and 

water have lower viscosity and creates lower back pressure. This allows the LC system to 

operate at higher flow rate and decreases the run times. Acetonitrile is also used in reversed 

phase chromatography as the elution strength of acetonitrile is higher than methanol which 

allows for reduced analyte retention which decreases the total run time. The bottom lipid 

portion was resuspended in 200 µl 50% acetonitrile:isopropanol. Isopropanol dissolves 

lipids and provides higher elution strength needed for eluting of lipids in reversed-phase 

LC systems.  Under these conditions all major lipid classes can be chromatographically 

separated and runs are between 12 and 20 minutes (X. Han 2016).  
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Figure 2.2 Lipid elution pattern for QCs for ESI+ and ESI- mode with elution windows for 

lipid classes in chapter 4. 

 

2.1.3 Internal standards 

Internal standards are used in untargeted and targeted metabolomics and lipidomics. 

Internal standards (IS) are isotopically-coded version of commonly observed metabolites 

and lipids. IS are typically used for marking retention windows, platform performance 

monitoring, determining recovery and quantification. Multiple standards are used in case 

of untargeted lipid profiling wherein each standard is a representative of the lipid class 

because of high price of labelled lipid standards. This approach helps in alleviating the 

problem of normalization because of different ionization efficiency across different lipid 

classes (Bowden et al. 2017; Miao Wang, Wang, and Han 2017). SPLASH lipidomics 

standard mixture comprises of lipids with odd acyl carbon number for normalization 

(Abdullah et al. 1950). SPLASH Lipidomics mixture containing internal standard for each 

lipid class of interest was spiked to QCs (matrix) at different dilutions for calibration, as 

the ionization efficiency for different lipid species is different (Abdullah et al. 1950; Miao 

Wang, Wang, and Han 2017). SRM 1950 NIST sample (NIST1950 Metabolites in human 



11 
 

plasma n.d.) was injected at different dilutions to test for LC mass spectrometer platform 

performance. 

However, use of internal standards is difficult in metabolomics profiling because of the 

large differences in the physicochemical properties of metabolites will not be able to 

provide coverage across all the metabolite classes. This issue was resolved to some extent 

using in house authentic compound reference libraries. 

2.1.4 In house authentic compound reference libraries 

In house library for different chromatographic methods were created using IROA Mass 

Spectrometry Metabolite Library of Standards comprising of 650 metabolites, associated 

with primary metabolic pathways. This library was used for detecting and metabolites of 

interest in metabolic pathways by comparing the retention time, accurate mass, and MS/MS 

fragments. In addition to the metabolic databases that provided putative assignments, 

standards helped in providing additional confidence in their annotation.  

2.1.5 Handling and storage of metabolites and lipids 

There is a risk of degradation, oxidation, or aggregation associated with metabolites and 

lipids  on exposure to light or air, or higher temperatures. Incorrect sampling or sample 

pretreatment procedures could potentially lead to changes in the metabolites or lipids of 

interest resulting in biased results (Álvarez-Sánchez, Priego-Capote, and Luque de Castro 

2010). Along with internal standards, careful sample handling and storage helps preserve 

the reliability and reproducibility of metabolomics experiments. The best practice of 

handling metabolites and lipids is to keep the samples chilled. When there is a delay in 

using the biological samples, they need to be stored at -80oC or snap frozen in liquid 

nitrogen until needed.  

In chapter 4, the impact of different storage conditions on the lipidome of heart tissue 

samples is studied. Specifically, the heart tissue samples had been stored by embedding 

them in optimum cutting temperature (OCT) compound or were flash frozen in liquid 

nitrogen. Sample preparation strategies involve homogenization and vortexing procedures 

which might heat up the sample leading to lipid peroxidation. Lipid peroxidation is 

prevented by keeping samples chilled in ice and use of inhibitors to the enzymes 
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responsible for lipid oxidation such as butylated hydroxytoluene (BHT) to decrease 

oxidation of unsaturated lipids (Wolf and Quinn 2008).  

 

2.2 Analytical platforms for lipidomics and metabolomics  
 

Analysis of metabolites is performed using NMR and mass spectrometry and lipids are 

analyzed using mass spectrometry. High throughput analysis allows analysis of tens to 

thousands of metabolites and lipids in a single run. Mass spectrometry had a higher 

sensitivity than NMR but NMR has the advantage of quantitative analysis to determine the 

concentration of metabolites in the pico- and femtomolar range (L W Sumner, Lei, and 

Huhman 2011).  

 

2.3 NMR  
 

NMR is ideal technique for metabolomics on small polar metabolites. NMR provides 

information about the structure, concentration for metabolites in the micro-molar range 

with higher reliablity without the loss of sample (Naz et al. 2014). The drawbacks with 

NMR technique are lower sensitivity when compared to mass spectrometry and inability 

to identify non-polar lipids (L W Sumner, Lei, and Huhman 2011). 

 

2.4 Liquid Chromatography coupled with mass spectrometry  
 

The drawbacks of lower sensitivity and inability to identify non-polar lipids by NMR is 

addressed by liquid chromatography coupled with mass spectrometry (LC-MS). LC-MS 

approaches enable us to obtain comprehensive chemical fingerprints of complex systems. 

LC-MS approaches provide access to accurate mass information, structural information 

when combined with gas phase fragmentation techniques, abundance. High resolution 

mass spectrometry platforms offer the needed resolving power, dynamic range, and 

sensitivity to obtained comprehensive coverage of chemical entities present in complex 
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mixtures. In this thesis, untargeted analysis were performed with ultra-high-performance 

chromatography for both polar and non-polar compounds (Dettmer, Aronov, and 

Hammock 2007; Griffiths and Wang 2009; Patti, Yanes, and Siuzdak 2012).  

There are two major types of liquid chromatography used in metabolomics and lipidomics, 

hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid 

chromatography (RPLC) (Gika et al. 2014).   

 

2.4.1 HILIC 

Hydrophilic interaction liquid chromatography (HILIC) uses hydrophilic stationary phase. 

HILIC column separates the metabolites based on primarily their partitioning in mobile 

and stationary phases. The additional mechanism that helps in retention of polar 

metabolites is adsorption. Zwitterionic stationary phases are used because of their ion 

exchange interactions. The stationary phase adsorb water using hydrogen bonding that 

controls retention of metabolites. These columns are referred to as ZIC-HILIC columns. 

The mobile phase used in HILIC consists of polar organic solvents miscible in water like 

acetonitrile (Buszewski and Noga 2012). Isocratic or gradient modes can be used for 

HILIC. Isocratic modes use higher concentration of organic solvent and gradient mode use 

a gradient from high percentage of organic solvent to high percentage of water (Alpert 

1990).   We used a gradient method as were performing untargeted metabolomics and were 

trying to detect as many metabolites as possible. Buffers like ammonium acetate and 

ammonium formate are added to the mobile phase. This helps in maintaining the pH and 

ion strength. pH was maintained at neutral for both ESI positive and ESI negative modes 

as that would allow us to detect wide range of metabolites. This also helped in preventing 

asymmetric shapes of peaks and tailing of chromatographic peaks (Buszewski and Noga 

2012).  

HILIC optimization and HILIC library creation 

HILIC method is usually utilized for separation of polar metabolites. Metabolites are 

commonly represented by a few isomers in human cells. This elevates the importance of 

chromatographic separation for identification and quantification of these metabolites. 
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Optimization of chromatographic separation would also help in minimizing ion 

suppression. The mechanism of separation in HILIC chromatography involves hydrophilic 

partitioning of polar metabolites in stationary polar phase. The analytes are retained using 

dipole-dipole interactions, hydrogen bonding and ion exchange with the stationary phase 

in the column. Therefore, the mobile phase gradient was optimized to prevent non-polar 

metabolite elution in dead volume and peak tailing. Using authentic IROA standards, 3 

different gradients, 80%, 90% and 95% of acetonitrile were tested in order to optimize the 

analysis (avoiding non-polar compounds at dead volume, accumulation of compounds 

and/or equilibration time after each run), peak suppression (at high concentration of 

acetonitrile) and peak shape (Figure 2.4). At least 5% water was maintained in the mixture 

during the process of gradient selection to improve the life of the column (Snyder et al. 

2013). The chromatograms for the conditions tested are shown in the following Figure 2.4. 

 

Figure 2.3 HILIC LC-MS/MS method optimization using authentic standards. Final 

gradient is shown in the graph. 

The gradient with 90% B was selected to obtain sharp peaks of metabolites without losing 

any metabolite information. Once the HILIC method was optimized, a library was created 

from authentic standards for the HILIC-MS method that helped in metabolite assignments 
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based on matching, retention time and mass spectral data with the curated spectral 

information.            

2.4.2 RPLC 

The other chromatographic method used in this thesis is reversed phase chromatography 

(RPLC) that uses a C8 or C18 column where the stationary phase consists of silica particles 

with C8 or C18 aliphatic carbon tails (Chester 2013). This makes the stationary phase 

hydrophobic, and the hydrophobic interactions help in retaining the non-polar metabolites. 

Analysis of non-polar metabolites was conducted using a gradient of isopropanol and other 

solvents such as acetonitrile and methanol with mixture of organic solvents (methanol and 

acetonitrile) and water (Cajka and Fiehn 2014, 2016b; Sarafian et al. 2014). The mobile 

phase also consisted of buffer 0.1% formic acid and ammonium formate in negative ion 

mode of ESI or ammonium acetate in the positive ion mode of ESI (Cajka and Fiehn 2016a; 

Hyötyläinen and Orešič 2015; Triebl et al. 2017). Charged surface hybrid (CSH) C18 

column was used because of its higher selectivity with mobile phase containing formic acid 

(Nováková, Vlčková, and Petr 2012). Chromatographic peaks obtained with CSH C18 

were narrow and did not show tailing on account of reduced silanol activity (Škrášková et 

al. 2013). The non-polar metabolite species with shorter aliphatic chains elute before longer 

chains and the metabolites with higher level of unsaturation elute before the analogues 

without unsaturation (Hyötyläinen and Orešič 2015). 

2.4.3 Mass spectrometry 

Liquid chromatography is used to separate different chemical moieties and mass 

spectrometry is used for identifying chemical compound by comparing their spectra, 

retention time and exact mass with that of the compounds in mass spectral libraries. The 

chemical compounds present in natural products, cells and tissues are ionized using 

electrospray ionization before transferring them to the mass analyzer.  

ESI is a soft ionization technique, and it performs analysis of metabolites without 

disturbing chemical nature of the biomolecule before mass analysis. The ESI works on the 

principle of applying high voltage (2-5 kV) on the injection needle. Liquid is sprayed from 

the needle at high voltage in a cone shape. The exit of the needle and orifice inside the 

chamber. The temperature of the chamber is increased, and the environment of the chamber 
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is kept dry with the flow of nitrogen gas. Due to the rise in temperature and dry environment 

the droplets injected from the orifice evaporate which undergo evaporation and explode 

because of the repulsion forces from the same charged ions resulting in “Coulomb fission”. 

This process repetitively leads to formation of single charged molecule/chemical (ion) with 

no solvent. This process of obtaining charged ions from intact metabolites was first 

demonstrated by John Fenn et al. (Banerjee and Mazumdar 2012; Bedair and Sumner 2008; 

El-Aneed, Cohen, and Banoub 2009; Gross 2011; Kind and Fiehn 2013).  

The resulting ions were single charged of the form ([M+H]+ and [M-H]- ). However, there 

might be adduct formation with a common ion Na+ forming a sodium adduct [M+Na]+ or 

a loss of water resulting in [M-H2O-H]- ions. Although these ions have same retention 

time, they have different m/z. The adducts can interfere detection, quantitation, and 

identification of biomolecules. The ions will be later separated by mass spectrometer 

according to the mass-to-charge-ratio. The mass analyzers popularly used are quadrupole 

analyzer, the ion trap analyzer, and time of flight analyzer (Gross 2011). In the thesis, an 

ABSciex QTOF 5600 and a SYNAPT G2 High definition mass spectrometer (Waters 

Corporation), both hybrid quadruple orthogonal acceleration Time-of-flight (ToF) MS 

instruments, were used for untargeted analysis. The instruments are a combination of 

quadrupole and ToF analyzers.   

In this instrument configuration the quadrupole (q) mass analyzer acts as a “mass filter”. 

The quadrupole provides low resolution wherein the separation of ions occurs using four 

charged hyperbolic rods. The ions of a particular m/z range move through these rods using 

superimposed radio frequency (RF) and constant direct current (DC) potentials between 

four parallel rods.  

A Time-of-Flight (ToF) analyzer is a mass analyzer wherein separation of ions is carried 

out by applying voltage to a flight tube. The principle of separation is the time taken by the 

ions to reach the detector. As the voltage applied is the same for all the ions the kinetic 

energy is the same, so the time taken by the ions is proportional to the mass (de Hoffmann 

and Stroobant 2007). In modern ToF instrument the analyzer is enhanced with a reflectron 

(“ion mirror”) that reflects and focus ions of a particular m/z. The ion mirror ensures that 

the ions with same m/z but with different kinetic energies reach detector at same time. This 
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arrangement allows ToF to achieve resolution range greater than 10000 (FWHM) as 

compared to resolution of 1000 (FWHM) for linear ToF (Chernushevich, Loboda, and 

Thomson 2001).  

The schematic of AB Sciex QToF 5600 time-of-flight mass analyzer 

with a reflectron is shown in Figure 2.5. 

 

Figure 2.4 Schematic of the ABSciex 5600 mass spectrometer (Andrews et al. 2011). 

 

The ions from the reflectron enter the detector. The detector transforms the ion count into 

a usable signal. The detector generates the signal proportional to the abundance of the 

incident ions. Metabolite profiling platform was generated using a combination of liquid 

chromatography and mass spectrometry based on Mass-to-charge ratio (m/z), Retention 

time (RT) and Intensity.  

In this thesis, hybrid quadrupole-orthogonal acceleration time of flight mass spectrometry 

systems Sciex 5600 and Synapt G2 hybrid quadrupole-orthogonal acceleration-traveling 

IS source Q0 Q1 Q2

MCP 
detector

Accelerator

Two-stage
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wave (Waters Corp., Milford, MA) were used for studies described in chapter 3, 4, 5 and 

6. The schematic presentation of Synapt G2 instrument is depicted in Figure 2.6.  

 

Figure 2.5 Schematic of the Synapt G2 mass spectrometer 

(http://www.waters.com/waters/). 

 

The hybrid QToF instrument consisted of combination of a quadrupole, a collision chamber 

and a ToF analyzer to obtain accurate mass measurement, fragmentation experiments, and 

high-quality quantitation of metabolites and lipids. Sometimes these mixtures are complex 

and there are many compounds with the same elemental composition. Therefore, additional 

MS/MS or data independent acquisition or ion mobility information is used to make 

accurate annotations.  

MS/MS experiments yield fragment ions. Fragment ion spectra are useful for level 2 

annotation of metabolites using spectral databases. This allows annotation of metabolites 

based on accurate mass and fragment ion spectral similarity (X. Zhu, Chen, and 

Subramanian 2014). GC-MS/MS provides unique fragment fingerprints that are standard 

because the conditions in GC remain constant across all the instruments. However, in LC-
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MS/MS the conditions, such as the type of mass spectrometry instrument, mode of 

ionization, and collision energy applied, cause variations in the fragmentation patterns.  

LC-MS/MS method is used for untargeted metabolomics analysis. LC-MS/MS is usually 

conducted in conjunction with data dependent acquisition mode as the MS/MS 

fragmentation is dependent on intensity of the precursor ions. The mass spectrometry 

instrument carries out MS full-scan followed by MS/MS analysis in the DDA mode. DDA 

mode allows in obtaining both quantitative (obtained from the MS full-scan) and structural 

(obtained the MS/MS spectra) in the same analysis. Simultaneous data processing and 

metabolite identification is the primary advantage of DDA mode. DDA mode suffers from 

a drawback that the molecular features with low intensity will not be selected for 

fragmentation and will not have MS/MS data. The other limitation for MS/MS analysis is 

the amount of time allocated for MS full-scan is reduced in comparison to the acquisition 

time allocated to MS/MS spectra generation. This leads to decrease in signal intensity for 

MS1 features in DDA mode and is associated with the difficulty of detection and 

quantification of molecular features with low intensity (J. Guo and Huan 2020). 

 This led to the development of data independent acquisition technique to increase coverage 

of detected metabolites and decrease the false negative identifications (Tsugawa et al. 

2015; Zhou et al. 2017).  

Data-independent analysis enabled unbiased acquisition of all product ions for the 

precursor ions simultaneously. This allowed in obtaining near-complete coverage of 

metabolites and alleviates the possibility of type II error (Tsugawa et al. 2015; Zhou et al. 

2017). Various kinds of data acquisition techniques have been used previously for high 

resolution mass spectrometry (Andrews et al. 2011; Tsugawa et al. 2015), SWATH 

(sequential window acquisition of all theoretical mass spectra),   All ion fragmentation 

(AIF) (Gallart-Ayala et al. 2013; Naz et al. 2017) and (MSE) (J. M. Castro-Perez et al. 

2010).     

SWATH MS acquires the precursor ions with fixed isolation windows in cyclic fashion to 

cover complete m/z range of precursor ions.  This enables fragmentation of all metabolites 

in the sample and the fragment spectra information is used along with accurate mass, 

isotopic ratio to annotate the metabolites with the help of mass spectral libraries (J. M. 
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Castro-Perez et al. 2010). All ion fragmentation (AIF) utilizes higher energy Collisional 

Dissociation (HCD) fragmentation to fragment all precursor ions without performing mass 

filtering. AIF performs analysis using full scan HRMS at different collision energies (Naz 

et al. 2017). This allows AIF to overcome the limitation of MS/MS mode and perform 

qualitative analysis for low abundance metabolites and results in improvement in mass 

accuracy over MS/MS (Sentandreu et al. 2018).  

The drawback of lower coverage of metabolome for MS/MS is addressed by MSE. MSE is 

a data acquisition technique in mass spectrometry for untargeted analysis of metabolites 

and lipids. In the process of data acquisition energy switches between low and high energy. 

During MSE data acquisition in the first function MS1 Q1, first ring electrodes scans the 

precursors between 50-1200 m/z transfers it to second ring electrodes Q2 with low collision 

energy of 4 eV. The ions are then passed to ToF detector which detects ions with high 

resolution and mass accuracy. In the second function Q1 scans the same mass range 

however, energy in Q2 is switched to high collision energy between 30-65 eV. The high 

collision energy results in fragmentation of all precursor ions without any preselection. The 

primary advantage of MSE analysis is associated with obtaining both information of the 

precursor and product ions in parallel alternating scans simultaneously in one analytical 

run (81,166). MSE analysis was performed for chemical finger printing analysis of extracts 

of hot chili (Yap et al 2021). MSE example data for chemical standards of phytochemicals 

in chili extract are shown in Figure 2.7 (Yap et al. 2021). 
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Figure 2.6 Mass spectra of standard compounds: (A) capsaicin, (B) dihydrocapsaicin, (C) 

nordihydrocapsaicin and (D) nonivamide. Left column: low collision energy (4 V) and 

right column: high collision energy (30 V) (Yap et al. 2021). 

 

The ions are transferred to the time of flight (TOF) analyzer. TOF detects all the ions with 

high resolution and mass accuracy. The first scan function has the spectra for low energy 

in the collision cell whereas the second scan function contains the spectra for high energy 

which consists of fragment information. MSE provides the advantage of analyzing product 

and precursor ions in the same analytical run. These are aligned based on the retention time 

and peak shape (Waters Corporation 2011). The data outputted from MSE comprises of 

accurate mass, retention time, charge state and intensity. The schematic for MSE is shown 

in Figure 2.8. 

A 

B 

C 

D 
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Figure 2.7 A schematic of UPLC-MSE analysis adapted from Plumb et al. (Plumb et al. 

2006) 

 

2.5 Ion mobility spectrometry – Mass Spectrometry (IMS-MS)  
The other mass spectrometry technique frequently used in natural product discovery is ion 

mobility spectrometry (IMS-MS). Ion-mobility spectrometry is orthogonal gas phase 

separation technique for expanding the separation space and peak capacity.  

Principle of ion mobility spectrometry 

The ions move against the flow of the buffer gas because of the force exerted by the electric 

field. The velocity of the ions in this diffusion process is directly proportional to the electric 

field. The proportionality constant has relationship with the collision cross section (CCS) 

of the ion. 
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N number density of buffer gas 

k boltzmann constant 

T absolute temperature 

m mass of buffer gas 

 M mass of the ion 

Omega collision cross section (Kanu et al. 2008) 

 

Calibration of the instrument is performed to reduce the dependence of the collision cross 

section based on the IMS-MS platform and identify the optimal parameters for ion mobility 

separations using single charged polyalanine (0.1 mg/L) in both ESI positive and negative 

ion modes (Paglia et al. 2015). Calibration curve was constructed with normalized collision 

cross section was plotted with corrected drift time (J. Castro-Perez et al. 2011). The 

calibration curve was of the exponential form y = Axb. IMS-MS has applications in isomer, 

isobar and conformer separation, diminishing the chemical noise and clustering 

compounds into their chemical families. Ion mobility separation is carried out in ion 

mobility chamber. The separation of ions is performed based on size, shape, charge, and 

their behavior with buffer gas in the presence of electric field (Kanu et al. 2008; 

Wickramasekara et al. 2013). Ion mobility techniques can be mainly categorized into drift 

time IMS-MS, travelling wave IMS (TWIMS-MS), field asymmetric IMS-MS and trapped 

IMS-MS (Kanu et al. 2008).  

TWIMS-MS 

Separation was based on traveling wave ion mobility conducting mass spectrometry as ion 

mobility helped in separating based on structure and conformation. This technique utilizes 

travelling potential waveform and 6-fold rise in the operational pressure across drift section 

by integrating helium-filled ion entrance region in the TWIMS (Giles, Williams, and 

Campuzano 2011; May and McLean 2015). Synapt G2 HDMS Waters instrument (Figure 

2.6) was used to conduct ion mobility experiments in chapter 3 and another collaborative 
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project which involved determining collision cross section for compounds in chili extracts 

(Yap et al. 2021).  

The instrument comprises of tri-wave section which has three main parts traveling-wave 

(T-wave) ion guide regions including Trap Twave, ion mobility separation (IMS), and 

transfer T-wave region. The trap region accumulates the ions and releases them as packets 

into ion-mobility separation device. The ion mobility separation moves ions from the 

transfer region to orthogonal acceleration (oa) TOF analyzer (Maier et al. 2013). “Tri-

wave” region comprises of a series of stacked ring ion guides (SRIG) that are filled with 

neutral background gas such as nitrogen. The mobility of ions through SRIG is performed 

by travelling wave potential generated by voltage pulses dynamically applied using stack 

of ring electrodes. Different ions interact differently to the travelling wave that forms basis 

of TWIMS separations (May and McLean 2013). The movement of ions in SRIG region 

depends upon the traveling wave height (V), the velocity of the traveling waves (m/s) and 

gas pressure (mbar). The dwell time of the ion in the SRIG is dependent on these factors 

and they are optimized to separate the ions based on the differences in collision cross 

sections.  

The optimal parameters for A and b for the TWIMS platform obtained after calibration for 

the project identifying collision cross section of compounds in ‘Super Hot’ chili fruit 

(Capsicum annuum) after exposure to supplemental LED lights were 246.81 and 0.6628 

(Yap et al. 2021). The traveling wave velocity of 550 m/s and wave height of 40 V were 

used. The pressure of the trap and transfer devices was maintained at 2.5 x 10-2 mbar. The 

helium gas flow for helium cell region was maintained at 180 ml/min to decrease the 

internal energy of the ions and reduce fragmentation. Nitrogen was used as the drift gas 

and flow rate for nitrogen was maintained at 90 mL/min. The mass spectrometry data was 

acquired in the MSE mode with the trap device maintained at low collision energy of 4eV 

and the transfer device at high energy of 40 eV to fragment the precursor ions. The optimal 

parameters were used to perform further IMS measurements.  

To summarize the size, shape, charge and collision cross section with drift gas N2 and the 

travelling wave influence separation of ions (Claire et al. 2014). Ion mobility separation 

helps in identifying metabolites and lipid species in complex biological samples as it 
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provides a quick separation in milliseconds and provides increased peak capacity. The 

research studies in chapter 3 were performed using TWIMS for different structures and 

conformations of isomers of dicaffeoylquinic acids (Figure 2.8).  

 

 

Figure 2.8 a LC-ESI q-IMS-MS/MS analysis of an aqueous extract of Centella asiatica (5 

mg/mL of dry mass resuspended in methanol 70%, 10 ul injection). 2D map visualization 

of drift time versus m/z. The LC system was coupled to a Synapt G2 HDMS (Waters Corp., 

MA, USA) used for detection in negative ion electrospray mode. Nitrogen was used as 

carrier gas for ion mobility experiments. Data acquisition range was m/z 50-1200. The cone 

voltage was 20 V. The T-wave ion mobility cell was operated at 800 m/s and the wave 

amplitude was set at 35 V. Helium and nitrogen IMS carrier were both set at 80 ml/min. 

Each red dot represent a different drift time detected during the chromatographic run. b 

ESI q-IMS-MS/MS analysis of an aqueous extract of C. asiatica (5 mg/mL of dry mass 

resuspended in methanol 70%, 10 ul injection). 3D map visualization of drift time versus 

m/z. The LC system was coupled to a Synapt G2 HDMS (Waters Corp., MA, USA) used 

for detection in negative ion electrospray mode. Nitrogen was used as carrier gas for ion 

mobility experiments. Data acquisition range was m/z 50-1200. The cone voltage was 20 
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V. The T-wave ion mobility cell was operated at 800 m/s and the wave amplitude was set 

at 35 V. Helium and nitrogen IMS carrier were both set at 80 ml/min. DCQA- Di-

caffeoylquinic acid 

 

The spectra comprising of multidimensional format consisting of retention time, m/z, peak 

intensity, drift time obtained for IMS measurements were analyzed using vendor software 

Driftscope 2.1 to plot driftogram. Additional dimension of ion mobility in addition to the 

retention time and m/z that will allow better peak capacity and better analytical results.  

Time Aligned Parellel Fragmentation 

Mass spectral fragmentation technique that enables acquisition of additional structural 

information for the metabolite or lipid ions is by applying high collision energy in both the 

trap T-wave and transfer T-wave regions, which is referred to as time-aligned parallel 

(TAP) fragmentation. In this thesis TAP fragmentation was performed by maintaining both 

trap and transfer at the collision energy of 35eV (Yap et al. 2021). Argon as used as the 

collision gas and was maintained at the pressure of 9.11x10-3 mbar. The quadrupole Q1 

selected the precursor ions with narrow m/z window of 1 Da.  These ions are fragmented 

in the trap. The daughter ions were transferred to the ion mobility chamber where they are 

separated according to their collision cross section. The daughter ions are further 

fragmented in the transfer device to form grand-daughter ions. The daughter and grand-

daughter ions are aligned based on the drift time (J. Castro-Perez et al. 2011).  

 

2.6 Quality Control procedures in metabolomics 
 

Mass spectrometry is a highly sensitive instrument and because of that it is prone to 

variations. The variations can be classified into biological and technical variations. The 

biological variations are seen because of variations in environment or genetic constitution. 

The technical variations can result from changes in state of local environment in the 

instrument. These can arise from contamination of ion source, column poisoning, sample 

degradation. To account for the systematic error, equal aliquots from all the samples are 
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pooled together to form quality control (QC) samples along with commercially available 

internal standards.  

The internal standards are also used in QCs for monitoring the performance of the 

instrument platform and semi quantitative analysis. The choice of standards plays an 

important role in metabolic and lipid profiling, especially in the untargeted setting (H.P. et 

al. 2012). The reference standards provide quality assessments across different 

laboratories. The standards provided by NIST are widely accepted. SRM1950 (Simón-

Manso et al. 2013) was used as the standard commonly used for plasma metabolomics to 

compare results across different laboratories. SRM1950 was used for research studies in 

chapter 5. Although expensive, these standards serve as a mechanism ensure long term 

stability of metabolites in the sample.  

The optimal instrument performance and robustness, precision and accuracy of the 

analytical method was ensured and monitored by injecting QC (D. Broadhurst et al. 2018). 

QC sample injections were performed for conditioning the column before beginning the 

run. The research studies in the thesis were conducted in batches because of limitations of 

availability of instrument and time period elapsed since sample collection (Thonusin et al. 

2017). The batch comprises of samples which are analyzed under same analytical 

conditions (Wehrens et al. 2016). The batch design comprises of blank, QC and sample 

injections.  

Besides injecting in the beginning QCs are also injected after every 10 sample injections 

and at the end to determine analyte reproducibility and stability of the instrument (Dunn et 

al. 2011; Zelena et al. 2009). QC samples help in decreasing the biological variation as 

they are created by combining all the biological samples together in equal volumes (Zelena 

et al. 2009). Performance of the LC-MS platform is analyzed using the coefficient of 

variation (standard deviation / mean) in the intensity measurement for the feature ions in 

the QC samples. The features with the coefficient of variation (CV) greater than across the 

QC samples cannot be included because of lack of confidence in these features (Dunn et 

al. 2011). Similarly, blank sample injections comprising only solvent A without the sample 

were performed at the beginning, between samples and towards the end of analysis to 

evaluate any carryover or contaminations within a batch. The samples were randomized to 
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account for variations from batch effect (De Livera et al. 2015) and decrease carryover. 

Data preprocessing and normalization techniques are used to correct the batch effect and 

alleviate the variations arising from sample preparation and matrix effects (De Livera et al. 

2015).  

 

2.7 Data Preprocessing 
 

There are computational challenges associated with analyses of metabolites and lipids in 

processing the signal obtained from mass spectrometer. Therefore, preprocessing ensures 

precision and accuracy in identification of features. The pre-processing steps involve peak 

detection, retention time correction and normalization based on a feature, QC or protein 

content. Preprocessing tools from vendor such as Progenesis QI (Nonlinear Dynamics) 

MarkerView (Sciex) and MassLynx (Waters) and programming languages like R and 

Python and open source tools such as XCMS and MZmine.  

High resolution peak detection was performed using “continuous wavelet transform” 

(centWave) (Tautenhahn, Bottcher, and Neumann 2008). This algorithm evaluates if the 

peak fits in a filter function. The area of the peak is calculated by integration of the fitted 

function in the peak which is computed based on “region-of-interest” (ROI) algorithm. The 

retention time correction is performed to correct for shift in the peaks because of 

fluctuations in room temperature, temporal changes in compounds, degradation of column 

and other factors that impact separation of compounds (Patti, Tautenhahn, and Siuzdak 

2012). These factors are non-linear and require non-linear retention time alignment 

algorithm. This algorithm searches for patterns in peaks and corrects them based on 

deviations in retention time with local regression model referred as “ordered bijective 

interpolated warping” (OBI-Warp) method (Patti, Tautenhahn, and Siuzdak 2012; Prince 

and Marcotte 2006). This model is preferred since it allows non-linear fitting and outlier 

detection. Once alignment is performed back-filling algorithm “fillpeaks” is used to 

integrate the spectral signal. The spectral signal is normalized for statistical analysis. 
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2.8 Normalization 
 

The data driven normalization performs normalization under the assumption that most of 

metabolites do not change without looking at the identification of these metabolites (B.A. 

et al. 2013). Auto scaling, pareto scaling and log transformation are applied on data before 

performing statistical analysis. This helped in overcoming technical errors. This aided in 

correctly identifying the rank of importance for metabolites and identifying most abundant 

metabolites (van den Berg et al. 2006).  

Log transformation is used to correct for non-equal variance in the dataset, transform 

multiplicative relationships into additive ones and convert skewed distributions into 

symmetric ones to apply normality assumptions. This can be applicable where there is a 

drastic difference in the magnitudes for two features and there is a need to reduce the larger 

quantities more than the smaller ones (van den Berg et al. 2006). Log (x+1) transformation 

is used in case of 0 values in the dataset. This avoids infinity or not defined values in the 

transformed dataset. In some cases, like the volcano plot logarithm function to the base 2 

is used as it allows us to interpret the results in terms of no fold change or twice fold change.  

Scaling is used to minimize the spread of data points. Autoscaling applies standard 

deviation as the scaling factor (van den Berg et al. 2006; Van Meer, Voelker, and Feigenson 

2008). Pareto scaling performs scaling with square root of standard deviation as it allows 

to decrease the large fold changes more than the smaller fold changes. Furthermore, pareto 

scaling provides transformed data with units (van den Berg et al. 2006; Wenk 2005). On 

the other hand, method driven normalization utilizes internal standards and QC samples 

for normalization. Locally estimated scatterplot smoothing (LOESS) algorithm, uses 

polynomial regression model to fit the QCs and obtain the signal drift based on the injection 

order of the QCs. This drift correction is applied all the ion features detected in all the 

samples (Dunn et al. 2012).  In some cases, the data acquisition can span across multiple 

years. It is a challenge to correct for the signal drift in the ion features during intra- and 

inter-batch data acquisition. Support vector regression normalization can be used to 

normalize the ion features if the relative standard deviation (RSDs) is less than 30% for 
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90% of the peaks and reduce undesired intra- and inter-batch variations (Sarafian et al. 

2014). 

 

2.9 Statistical Analysis 
 

Once the spectral features were obtained after data processing and normalization, 

annotation of the features was performed at different levels followed by statistical data 

analysis to derive insights from LC-MS data. 

2.9.1 Metabolites and lipids identifications and characterizations 

There is a need for accurate identifications of metabolites and lipids from untargeted LC-

MS profiling data to gain insight into essential biological information. The process of 

assigning identification or annotation of features with confidence is challenging and time-

intensive because of the chemical diversity of biomolecules as it involves identification of 

few hundred metabolites or lipids from over 20,000 features in some cases (Alcazar 

Magana et al. 2020).  

High level of confidence of annotation of metabolites and lipids is achieved by using 

accurate mass, retention time, and MS/MS fragmentation) and online databases (Kind and 

Fiehn 2013). The Metabolite Standard Initiative (MSI) has defined the minimum reporting 

requirements for metabolite/lipid annotation (Lloyd W. Sumner et al. 2007).  

According to MSI the highest level (level 1) uses matching parameters m/z, retention time, 

isotopic pattern, MS/MS spectrum of an authentic standard utilized as a reference in the 

same condition as the analyte of interest. This match allows to ensure the accurate 

identification of analytes. However, in absence chemical standard if the compound 

identification has been performed using a reference library second level (level 2) of 

annotation referred to as putative annotation. The third level of identification comprises of 

compound classes characterized using spectral similarity or matching chemical properties 

to a known compound class. The last or fourth level of identification refers to the unknown 

compounds wherein there is only confidence about detection a real signal coming from 

analyte (Lloyd W. Sumner et al. 2007). In level 3 and level 4 cases mass spectrometry is 

usually supported by another orthogonal analytical technique such as NMR.  
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Databases 

The mass spectral signal needs to be matched with signals in mass spectral databases. High 

resolution MS helps in achieving resolving power of (10,000-450,000 fullwidth half-height 

maximum, FWHM) with high mass accuracy and high sensitivity (J. Castro-Perez et al. 

2011). Data analysis is performed using spectral alignment, feature extraction followed by 

annotation using metabolic databases. The precursor ions can form clusters, adducts and 

fragments which result in different m/z values but they still have the retention time 

(Mahieu, Genenbacher, and Patti 2016). Clustering algorithm is used to cluster the 

precursor ions with similar retention time and peak shape. The algorithm is applied to all 

the precursor ions to identify metabolites of interest (Kuhl et al. 2012) instead of false 

positives. Clustering can be performed in Progenesis QI or in R with the help of Pearson 

correlation in CAMERA (Collection of Algorithms for MEtabolite pRofile Annotation) 

software package. Databases usually evaluate confidence score in annotation based on the 

deviation in the m/z of the precursor ions (based on the resolution tolerance level of 10 ppm 

is selected), MS/MS fragmentation similarity and isotopic pattern. The Progenesis QI 

software allowed us to annotate metabolites with confidence when the score of the 

annotation was greater than 50. The score greater than 50 was achieved when the similarity 

of isotopic pattern was above 80%, MS/MS score was above 50% and the accurate mass 

deviation from exact mass was less than 10 ppm. The MS/MS fragments were compared 

with databases such as LipidBlast, Human Metabolic Database for lipid annotation in 

Progenesis QI. In future this will be performed autonomously wherein data acquisition will 

be performed simultaneously with automated identification with METLIN database 

(Tautenhahn et al. 2012).   

Statistical methods were applied to the unannotated or annotated metabolomics and 

lipidomics datasets to identify patterns, determine whether there are significant differences 

between the groups under analysis, whether the significantly different features were 

correlated to each other, what models can be used to predict the dependent variables, what 

is the importance of the independent variables in predicting the dependent variable. The 

models used to predict the dependent variables can range from linear classical statistical 

models to machine learning models. 
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2.9.2 Classical statistical methods 

Univariate statistical tools 

Univariate statistical tools are part of classical statistical methods which are used to 

compare whether differences between the groups were significant or not significant. The 

comparison for independent features was performed using t-tests for comparisons across 2 

groups and ANOVA for comparisons across more than two groups (Vinaixa et al. 2012). 

The student t test is used to perform pairwise comparison across two independent groups. 

The null hypothesis states that there is no difference between the means of two groups 

whereas the alternate hypothesis states that there is difference between them. In this thesis 

a significance level of 5% was chosen which means if the probability p-value is less than 

or equal to 5% the null hypothesis is rejected else the null hypothesis is accepted. Student 

t tests are used when the distribution of data is in the normal and the variance across the 

groups is equal. The normality assumption is validated using Shapiro Wilk test (Vinaixa et 

al. 2012). If the groups bore relationship with each other, then the paired test was used. 

Welch t test was used in case the variance across the two groups was not equal. If the 

normality assumption is not satisfied, the non-parametric tests were used. Mann Whitney 

U Test was used for independent groups and Wilcoxon signed rank test was used for paired 

tests when both the groups were sampled from the same individual or the groups bore 

relationship with each other.  

The p-value indicates there is a chance of an event occurring given there is no difference 

between the groups. In other words when a cut-off of 0.05 is selected there is a probability 

of 5% that an incorrect decision is made. If multiple tests are performed this would result 

in a high number of false positives because of chance. Therefore, multiple test correction 

is applied to correct for false positive rates (Vinaixa et al. 2012). Benjamini, Krieger and 

Yekutieli method in Graphpad v8 was used to determine false discovery rate adjusted p-

value to prevent false positives. Analysis of variance (ANOVA) is used to compare the 

differences across multiple groups with normal data distribution (greater than 2) with one 

factor. Kruskal-Wallis is the alternate nonparametric test used to check differences across 

multiple groups and can be used for all other types of data distribution.  

Multivariate statistical approach 
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Multivariate statistical approach also belongs to classical statistical method which utilizes 

all or some of the features concurrently to determine relationship between the features. 

Multivariate statistical approaches can be classified into supervised and unsupervised 

approaches (D. I. Broadhurst and Kell 2006; Gowda et al. 2008). The unsupervised 

methods do not use training and test subsets as they identify similarity patterns across the 

samples without accounting for their corresponding groups. However, the supervised 

analysis the dataset in split into training and test dataset. Supervised analysis utilizes the 

training dataset to identify the relationship between group or scores and predicting the 

group or scores of the test dataset using that relationship (D. I. Broadhurst and Kell 2006).  

Unsupervised methods 

The unsupervised approach is primarily useful for classification of the datasets to identify 

patterns such as whether the treatment group differs from the control or not. The 

unsupervised approaches such as principal component analysis, heatmaps are used in 

untargeted LC-MS metabolomics and lipidomics to look for clusters in the dataset to derive 

insights about whether any or a particular molecular pathway is impacted across the 

different groups.   

Principal component analysis (PCA) 

Principal component analysis reduces the dimensions of the data by transforming the 

correlated variables into orthogonal uncorrelated principal components. These principal 

components are linearly related to each other. PCA maximizes the variance obtained across 

the samples. The scores are assigned to each sample in the scores plot which are calculated 

using linear combination of the original variables. The scores plot in Figure 3.2a in chapter 

3 shows that the variability in the different accessions. The samples belonging to the same 

accessions are clustered together however there was high variability in the samples 

belonging to different accessions. The biplot in Figure 2.10 shows the importance of 11 

marker compounds (loading variables) on variability of accessions of Centella asiatica 

(CA) water extracts.  
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Figure 2.9 Principal component analysis (PCA) was performed using R software. PCA bi-

plot represents importance of 11 marker compounds in CA water extract on variability 

across eight different accessions (CA1 to CA 8). PCA was performed using 5512 m/z 

features (Alcazar Magana et al. 2020). 

 

Heatmaps and dendrogram 

 Heatmap is used visualize the differences across the different groups using gradients of 

colors. The upregulation and downregulation across metabolomics and lipidomics can be 

visualized using contrasting colors in a heatmap. The level of upregulation or 

downregulation is seen with a gradient of colors. The color gradient corresponds to the z-

score that indicates the number of standard deviations of the value from the mean. In 

metabolomics and lipidomics heatmap is used to show relative abundances of m/z features 

or annotated metabolites and lipids across different groups.  

Similarities and differences across metabolites and lipids and the samples in the heatmap 

can be visualized using a dendrogram. Dendrogram uses hierarchical clustering to cluster 

related features or samples into different groups. Clustering is based on a similarity 

measure such as Euclidean distance or Manhattan distance metric on the parameter of 

interest to create a tree. The most similar features were closest to each other and connected 

with a smallest branch whereas the most dissimilar features were farthest from each other 
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and were at the ends of the longest branch. The level of upregulation or downregulation of 

marker compounds in CA extracts are visualized in  heat map in Figure 3.2d (Alcazar 

Magana et al. 2020), and the degree of similarity in the structure of marker compounds and 

CA accessions were visualized using dendrogram on x axis and y axis respectively. Pearson 

correlation was used to identify correlation between total ion chromatograms of CA 

accessions in Figure 3.2c from chapter 3. The Pearson correlation between total ion 

chromatograms of CA 2 and CA 6 is low on account of the two peaks appearing in CA 6 

around 22 mins (Figure 3.2c). These two peaks can correspond to Madecassoside and 

Asiaticoside based on the heatmap in Figure 3.2d from chapter 3. 

Supervised approach 

The supervised approach utilizes the data to supervise and train the model using 

independent variables to accurately make the prediction on the test dataset. The accuracy 

of the model was obtained by comparing the predicted values and existing values of the 

dependent variable. If the dependent variables are categorical this is referred as 

classification and if the dependent variables are continuous this is referred as regression. 

In this thesis Partial least squares method has been used classical statistical supervised 

approach whereas machine learning algorithms such as elastic net, survival curves and 

random forest have been used to make model predictions.  

PLS 

Partial least squares use a linear model to predict the dependent variable based on the 

independent variable when the dependent variables are collinear. PLS utilizes dimension 

reduction which helps in obtaining the variables with higher importance in making accurate 

predictions. The principal components in PLS are linear combination of dependent 

variables (Tobias 1995). PLS regression is a multivariate regression technique that uses the 

reduced principal components to undertake least squares regression to make predictions 

about the dependent variable. Partial least squares discriminant analysis (PLS-DA) is a 

special case of PLS regression the dependent variable is categorical where PLS technique 

maximizes the separation between cluster of observations by rotation of PCA components 

that aids in understanding the importance of variables responsible for separation between 
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different categorical variables. PLS technique is used in biological settings to determine 

whether a clinical technique can accurately determine the diseased condition (Yamamoto 

et al. 2018) or to determine the most important independent variables for predicting the 

dependent variable in chapter 5. 

2.9.3 Machine learning 

Prediction modeling was performed by splitting the dataset into training and test dataset. 

To decrease the bias due to overfitting k-fold cross validation is applied which involves re-

sampling of training dataset k times. Training, and test dataset were created for machine 

learning algorithms. All the observations were randomly sampled 70% into training and 

30% into test dataset (Weng et al. 2017). The total number of observations need to be 

proportionately divided into training and test datasets, to prevent omission of a group 

accidentally in either training or test data which could result in sampling bias 

(train_test_split Vs StratifiedShuffleSplit n.d.). This was achieved using the 

StratifiedShuffleSplit function of sklearn.model_selection module in scikit-learn 0.23.1 

package (Arnold et al. 2011) in chapter 5.  

Cross-validation is performed to reduce overfitting of the training dataset. Overfitted model 

is not able to make accurate predictions on new dataset. This is resolved by using k portions 

of the observations successively to split the training dataset to training and test dataset to 

train the model k times each time on a different dataset and testing them on the final test 

dataset. Cross validation score is obtained using the function cross_val_score on the test 

dataset from sklearn.model_selection module in scikit-learn 0.23.1 package. The score 

obtained is greater for a model with lower overfitting. In addition to cross validation other 

techniques that deal with overfitting of the model are regularization where penalties 

proportional to the weights of learned parameters are added to the evaluation function in 

the process of training, obtain additional observations to train the data or use simpler 

models such as PLS-DA (Géron 2017). 

Elastic net 

Elastic net is a linear regression technique that helps in estimating a relationship between 

a set of dependent and independent variables by performing variable selection 

automatically and shrinking the coefficients of variables to select correlated dependent 
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variable clusters like a fishing net. In case of simple linear regression ordinary least squares 

method (OLS) is used to reduce the sum of the squared error between the actual and the 

predicted value. Elastic net technique is used in case of correlation between the 

independent variables. In case of correlation between the dependent variables the standard 

error of the coefficients is high which render the variables statistically insignificant. This 

problem is addressed by penalizing the OLS by using bias referred to L1 regularization and 

L2 regularization. Elastic net utilizes penalties of both L1 and L2 regularization (Deol 

2019) and was used in chapter 3 of the thesis.  

 

Survival curves 

Kaplan Meier curves also referred to as survival curves are used to evaluate the outcome 

of patient post treatment or clinical intervention after different intervals of time also 

referred to as follow-up. The survival analysis is typically used in clinical trials to 

determine the effect of treatment. The time of survival analysis is referred as survival time 

and is defined as time taken until the occurrence of an event such as death. The survival 

analysis is impacted if subjects refuse to participate or do not provide accurate responses 

or if communication with them is lost, this category of observations are referred as censored 

observations and are handled by Kaplan Meier estimates (Kishore, Goel, and Khanna 

2010). Kaplan-Meier estimate is the product of the probabilities of occurrence of event 

different intervals of time.  Survival analysis also allows to distinguish subjects based on 

statistical difference in their outcomes (Hazra and Gogtay 2017). 

During the study at each follow-up the survival probability decreases based on the number 

of participants experiencing an event until the study is complete. Kaplan Meier analysis 

handles the censored data by assuming the censored subject did not experience the event 

until the end of study.         

Survival analysis also suffers from another drawback. The impact of censored event can 

be large if the number of subjects at risk are small. This effect can be visualized using 95% 

confidence intervals (CI). The confidence intervals become wider with the decrease in 

number of participants. Moreover the 95% CI also increases with time because of rise in 

number of censored subjects (Paemel 2019).  
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Random Forest 

Random forest is a non-linear statistical technique that allows us to use existing features or 

independent variables to make a prediction on the dependent variable. Random forest is 

made of ensemble of decision trees. The decision tree is a non-linear model and it uses a 

target function created using the training set to predict the categories for all sample 

instances. The leaves of the decision tree (gini = 0) in other words no impurity, specify the 

category labels and the branches specify the combinations of the features that result in 

classification. The random forest algorithm carries out voting to identify the optimal 

solution by selecting the prediction of the decision tree that has the highest vote. The 

random forest algorithm utilizes gini importance to compute the importance of each feature 

used in prediction and was utilized in chapter 5.  

Optimization of hyperparameters in machine learning 

Hyperparameters need to be optimized for elastic net and random forest models. The 

hyperparameters can be optimized using grid and random search on the validation dataset 

(D. Chicco 2017). Root mean squared error score is computed in both grid and random 

search to identify the error associated with fitting of the model, the lower the value of 

RMSE the better is the model fit. Grid search will be performed using GridSearchCV from 

Scikit-Learn’s model_selection module. The grid will have all the parameters that will be 

used for optimizing the model for GridSearchCV. The best parameters from grid for the 

test dataset will be determined using grid_search.best_params_. The hyperparameter 

search space is restricted in grid search it can be expanded with RandomizedSearchCV. 

This function will be able to search for optimum hyperparameters from wide range of 

values instead of being restricted to the values in the parameter grid and this function was 

utilized in chapter 5. The number of parameters that the model tests can be varied by 

changing the number of iterations and the number of iterations can be decided based on the 

computing resources available (Géron 2017).  

2.9.4 Evaluation of performance of the predictive models 

AUC-ROC 
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Area under the curve - receiver operating characteristics curve is important in evaluating 

performance of a classification model. ROC represents the probability curve whereas AUC 

denotes the degree of difference or in other words suggests how good the model is good at 

separating the dependent variable (categories). AUC of 1 represents ideal separation 

between the two categories whereas 0 represents that the model is making incorrect 

predictions. AUC of 0.5 indicates that the model cannot separate between the categories 

(Sarang 2018).  

AUC is also widely used in machine learning to evaluate performance of machine learning 

models. However, machine learning models go further beyond than binary classifications. 

Classical AUC-ROC technique was designed for binary classification. In a collaborative 

project (Le et al 2021) AUC-ROC curves were used to identify biomarkers for diagnosis 

of number of diseased coronary arteries in adult patients with coronary artery diseases 

(Figure 2.11). AUC-ROC curves were also used to predict survival of adult patients with 

coronary artery diseases across a follow-up period of 5 years (Figure 2.12) (Le et al. 2021).  

 

Figure 2.10 Diagnosis of number of diseased coronary arteries in adults with diseased 

coronary arteries (≥70% stenosis; n=74), as shown by receiver operating characteristic 

(ROC) curves: A) best single oxylipin model; B) best single oxylipin group model; C) 

smallest oxylipin panel model achieving AUC≥0.90 (Le et al. 2021). 
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Figure 2.11 Prediction of survival during 5-year follow up in adults with diseased coronary 

arteries (≥70% stenosis; n=64), as shown by receiver operating characteristic (ROC) 

curves: A) best single oxylipin model; B) best single oxylipin group model; C) smallest 

oxylipin panel model achieving AUC≥0.90 (Le et al. 2021). 

 

The need for multi-class classification in our case with similar complexity as compared to 

classical AUC was met with multiclass AUC (Till and Hand 2001). This method utilizes 

pairwise comparison to reduce multiclass AUC to binary AUC. This method was used in 

multiclass.roc function for multiclass comparisons in pROC V 1.17.0.1 R package (Turck 

et al. 2011).  This function performed multiclass AUC as defined by (Till and Hand 2001) 

which computed mean of several AUC and could not be plotted. The multiclass.roc 

function was able to handle both uni-variate and multi-variate datasets. However, 

sometimes in clinical studies there is a need to evaluate multiple biomarkers for an assay 

to improve diagnostic accuracy. In case of evaluating biomarkers in plasma for coronary 

artery diseases (Le et al. 2021) there was need to identify panel of multiple biomarkers. 

CombiROC is an opensource graphic interface that utilizes combinatorial analysis to test 

multiple biomarker panels and determine their sensitivity, specificity, and AUC (Mazzara 

et al. 2017). Therefore, CombiROC method was optimized and used in this project to 

identify the combination of biomarkers with required sensitivity, specificity, and AUC 

above the threshold of 0.9.  



41 
 

Confidence interval 

Statistical methods use a confidence interval comprising of range of values for the mean of 

the population instead of using a point estimate. Confidence interval was computed on 

metrics such as AUC-ROC, accuracy, sensitivity and F1-score. Confidence level of 95% 

was used for all the metrics. Confidence intervals are created with percentile and standard 

error method. In the percentile method 2.5th and 97.5th percentiles are calculated to obtain 

95% percentile method. If the distribution is normal then interval ranges to 1.96 standard 

deviations away from the mean. Bootstrapping is defined as resampling with replacement. 

Initially the variable or metric for which the confidence interval needs to be generated is 

specified. This is followed by the process of generating 100 or 1000 replicates to create 

population. This process is followed by computation of summary statistics such as mean. 

This is followed by the final step of computing the confidence interval by percentile or 

standard error method.  This will enable us to have confidence that accuracy of the 

statistical models will be present in the true population of accuracies 95% of the time 

(Chapter 8 Bootstrapping and Confidence Intervals | Statistical Inference via Data Science 

n.d.). The bootstrapping method was utilized to compute evaluation metrics of prediction 

models in chapter 5 of the thesis.  

Evaluation of performance of ML models 

Classification accuracy is defined as a ratio of accurate predictions of the category in test 

dataset to the total number of predictions of categories in test dataset. Accuracy is reduced 

because of two types of errors, type I error or false positives and type II error or false 

negatives. The false positives occur when the prediction denotes the positive category, but 

the dependent variable does not belong to that category. Similarly, false negative occurs 

when a prediction denotes a negative category, but the dependent variable does not belong 

to that category. Recall is defined as the number of right predictions for the positive 

category and precision represents the correct positive category predictions. Since recall and 

precision are both important metrics in classification it is difficult to make a choice between 

higher recall and lower precision or vice versa. Therefore F-measure which is defined as 

harmonic mean between the two is used to penalize the extreme values.  Machine learning 

classifiers are evaluated based on classification accuracy, precision, recall and F1-score.  
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Confusion matrix is used to visualize the classifications made in the test dataset. Confusion 

matrix provides information about whether the test dataset is balanced in terms of number 

of observations. It enables understanding about the kind of errors the classification model 

is making. The confusion matrix compares true and predicted categories in the test dataset. 

The squares on the left diagonal correspond to correct predictions and all the other squares 

correspond to incorrect predictions. The confusion matrix is shown to compare the 

accuracy and misclassifications for machine learning model.  

The machine learning models were combined with network integration to determine the 

bioactive compounds in Centella Asiatica extracts and evaluation metrics were utilized to 

identify the best suited models for prediction of bioactivity in chapter 3.  
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3. Botanical extracts - Fingerprinting and natural product drug 

discovery. 
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3.1 Integration of mass spectral fingerprinting analysis with precursor ion (MS1) 

quantification for the characterization of botanical extracts: application to extracts 

of Centella asiatica (L.) Urban 
 

3.1.1 Abstract 

The metabolites synthesized in plant (also referred to as phytochemicals) possess biological 

activity that provides numerous potential health benefits. However, there are challenges 

associated with reproducibility of laboratory studies and clinical trials and identification of 

new metabolites as the present classical way of bioassay-guided fractionation, requires 

extensive purification until the isolation of a pure compound which may result in the 

rediscovery of already known bioactives and is also extremely time consuming. A 

quadrupole time-of-flight analyzer in conjunction with an optimized HPLC separation was 

used for in-depth untargeted fingerprinting for characterization of plant extracts and post-

acquisition precursor ion quantification for determining levels of distinct phytochemicals 

for product integrity studies.  

3.1.2 Introduction 

There are more than 60,000 secondary metabolites in plants (Iason, Dicke, and Hartley 

2012). These are referred as phytochemicals. They are involved in communication, 

signaling, defense or primary metabolic pathway regulation. There is a huge structural 

diversity on account of adaptations or functions performed due to evolution (Hartmann 

1996). 

Medicines are derived primarily from phytochemicals in large proportion of developing 

countries (Hartmann 1996). Phytochemicals are used by 80% of indigenous populations 

(Mahady 2001). Their popularity is increasing in the Western countries (R. van Breemen 

2015; Mollaoǧlu and Aciyurt 2013; Neiberg et al. 2011). Owing to the variations in the 

bioactive compounds ingestion of different doses has varying effects on the health of the 

patient (Dietz et al. 2017). In addition to medicines these are also used as botanical 

supplements to improve health. There is a huge supply of botanical medicines and 

supplements owing to the expanding demand. But there is an uncertainty regarding the 
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quality and safety of the products because of the increasing cases of toxicity with botanical 

supplements (Dietz et al. 2017). 

Botanical supplements consist of plant metabolites or phytochemicals. There is a 

significant variation in the phytochemical profiles across batches because of differences in 

geography, plant materials, genetics, ontogenetic stage and post-harvest processing 

methods (Alqahtani et al. 2015; Bruni and Sacchetti 2009).  The phytochemical 

composition has an impact on biological and pharmacological activity of botanical extracts 

that affects reproducibility of clinical trials. The botanical supplements comprise of 

botanical extracts which suffer from variability owing to the variation in the methods of 

extraction (Howard 2008). Extractions with use of chemicals and heat may lead to 

phytochemical degradation (Magana et al. 2015). The variation of composition and levels 

of phytochemicals in botanical supplements may impact the bioactivity of the extracts.  

US Food and Drug Administration (FDA) treats the botanical extracts without claim for 

drug efficacy as food. Therefore, strict regulations of safety are not applied (R. van 

Breemen 2015). The increase in the efforts to make the characterization of unregulated 

over-the-counter botanical extract better, there has been advancement in the strategies to 

ensure authentication and consistency of plant derived supplements (R. B. Van Breemen, 

Fong, and Farnsworth 2008; R. van Breemen 2015; Fong et al. 2006).   

There has been a shift in the trend of analyzing phytochemical preparations from thin layer 

chromatography or liquid chromatography coupled with UV spectrophotometric or 

fluorometric detection to high performance liquid chromatography coupled with mass 

spectrometry. This shift has happened because of high-resolution power and accurate mass 

measurements provided by mass spectrometry platforms along with collision-induced 

dissociation techniques for analyzing the chemical structures and quantification of 

phytochemicals in botanical extracts. The combination of high-resolution mass 

spectrometry and tandem mass spectrometry will create chemical fingerprint for the diverse 

phytochemicals used in botanical products.  

Phytochemicals in the medicinal plant, Centella asiatica (C. asiatica) belonging to 

Apiaceae family were used as a proof-of-concept for chemical fingerprinting with the high-

resolution mass spectrometry-based workflow along with annotation using phytochemical 
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databases. The workflow for phytochemical analysis was developed that utilized 

untargeted fingerprinting of aqueous extract from C. asiatica for accurate quantification of 

8 caffeoylquinic acids, 7 flavonoids, 5 hydroxycinnamic acids and 4 pentacyclic 

triterpenoids. The analytical measures such as limit of detection, limit of quantification, 

dynamic range and reproducibility were determined for the quantification method. This 

allowed fingerprinting of aqueous extracts of C. asiatica from different accessions.  

3.1.3 Experimental 

Chemicals  

LC-MS grade methanol and water were purchased from EMD Millipore. Formic acid ACS 

reagent was from Fisher Chemicals. The following certified standard compounds were 

used: 5-O-caffeoylquinic acid (1), epigallocatechin (2), catechin (3), dihydrocaffeic acid 

(4), 4-O-caffeoylquinic acid (5), 3-O-caffeoylquinic acid (6), caffeic acid (7), epicatechin 

(8), 1,5-dicaffeoylquinic acid (9), 1,3-dicaffeoylquinic acid (10), rutin (11), dihydroferulic 

acid (12), 3,4-dicaffeoylquinic acid (13), 3,5-dicaffeoylquinic acid (14), ferulic acid (15), 

4,5-dicaffeoylquinic acid (16), naringin (17), isoferulic acid (18), quercetin (19), 

madecassoside (20), asiaticoside (21), kaempferol (22), madecassic acid (23) and asiatic 

acid (24). Compounds 2,3,6,12,15 and 18 were from Sigma Aldrich; 1,11,17,19 were from 

TCI America; 13 and 16 were from ChromaDex (Irvine, CA) and the rest of the compounds 

were from Toronto Research Chemicals. 

Caffeoylquinic acids are prone to degradation or isomerization under certain conditions of 

pH, light exposure, and temperature (Dawidowicz and Typek 2011, 2015; Xue et al. 2016). 

To protect compounds from degradation, all standards and samples were prepared in 

methanolic solutions complemented with 0.1 % v/v formic acid and kept in the dark at -20 

˚C until analysis.  

Plant materials and preparation of aqueous extracts of Centella asiatica  

The identity of plant material was confirmed by the Department of Neurology, Oregon 

Health & Science University (Soumyanath et al. 2012). The preparation of the C. asiatica 

water extracts were reported previously (BOITEAU and RATSIMAMANGA 1956; 

Dawidowicz and Typek 2011, 2015; Gohil, Patel, and Gajjar 2010; Gray et al. 2014; Long, 

Stander, and Van Wyk 2012; Ramesh et al. 2014; Soumyanath et al. 2012; Xue et al. 2016). 

In brief, dried C. asiatica extracts were prepared by refluxing aerial parts of the plant (80 
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g per 1 liter of water) for 1.5 hours followed by cooling for 30 minutes and filtering the 

solution to remove plant debris. For all subsequent work the aqueous extracts were freeze-

dried and stored at -80 ˚C.  

For quantification of the individual compounds, a stock solution was prepared as follows. 

Ten mg of each freeze-dried extract powder was resuspended in 10 mL of aqueous 

methanol (70 % v/v with 0.1% v/v of formic acid) by sonication (30 min, 25 ̊ C) and filtered 

with 0.22-μm PVDF Whatman filters before analysis. This procedure was used to prepare 

extracts from eight different accessions of the plant materials labeled from CA1 to CA8. 

Aliquots from each sample were mixed to generate a quality control sample (QC) used for 

evaluating LC-MS/MS platform performance. 

Fingerprinting of Centella asiatica extracts by untargeted data-dependent analysis 

For the untargeted chemical profiling analyses, high-performance liquid chromatography 

(HPLC) high resolution mass spectrometry (HRMS) in the data-dependent acquisition 

(DDA) mode was conducting using a Shimadzu Nexera UPLC system connected to an AB 

SCIEX TripleTOF® 5600 mass spectrometer equipped with a TurboSpray electrospray 

ionization source. All analyses were conducted using electrospray ionization in the 

negative ionization mode (ESI-). Chromatographic separation was achieved using an 

Inertsil Phenyl-3 column (4.6 x 150 mm). The injection volume was 10 μL and three 

technical replicates were carried out. A gradient with two mobile phases (A, water 

containing 0.1 % v/v formic acid; B, methanol containing 0.1 % v/v formic acid) was used 

with a flow rate of 0.4 mL min-1 in a 30 min run as follows: an initial one minute at 5% B, 

followed by 5 to 30% B from 1 to 10 minutes, then 30 to 100% B from 10 to 20 minutes, 

hold at 100% B from 20 to 25 minutes, and then return to 5% B from 25 to 30 minutes.  

For annotating compounds in CA extract pooled CA sample were used (QC sample). Data-

dependent MS/MS acquisitions in high sensitivity mode and in both ionization, modes was 

conducted for this purpose. For detecting negative ions, the mass spectrometer was 

operated using the following parameters: spray voltage -4,200 V; source temperature 550 

°C; period cycle time 950 ms; accumulation time 100 ms; m/z scan range 100–1200, 

collision energy 35V with collision energy spread (CES) of 15 V. To expand the coverage 

of metabolites in the untargeted approach, a QC sample was also analyzed using the 
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positive ion electrospray mode (ESI+) and the instrument settings were as follows: spray 

voltage 4,500 V; source temperature 550 °C; period cycle time 950 ms; accumulation time 

100 ms; m/z scan range 100–1200, collision energy 35V with a CES of 15 V. The mass 

spectrometer was equipped with a calibrant delivery system. Mass calibration was 

automatically performed after every fifth LC run.  

Method development for quantification of selected phytochemicals in extracts 

Targeted quantitative analysis was conducted for twenty-four compounds (Figure A.F.3.4) 

using same chromatographic conditions as mentioned for untargeted analysis. The mass 

spectrometric analysis was conducted in the negative ion mode (ESI-) with the following 

operating conditions: 

spray voltage -4,200 V; source temperature 550 °C; period cycle time 950 ms; 

accumulation time 100 ms; m/z scan range 100–1200 (as described above). 

External calibration was performed for 24 authentic compounds by computing area under 

the calibration curve of the precursor ion (MS1-based). The calibrations were performed 

with increasing concentrations of all compounds, 0.0, 0.005, 0.01, 0.05, 0.10, 0.50, 1.00, 5 

and 10 mg/L, prepared in 70 % v/v methanol with 0.1 % v/v of formic acid. This approach 

was used for characterization of CAW extract as well as quantification of DCQA’s and 

generation of MS/MS spectral data as input to create the GNPS network in part 2. SCIEX 

MultiQuantTM V3.0.2 analysis software was used for quantitative analysis, to calculate the 

peak areas under the curve for precursor ions. 

Accuracy and recovery experiments 

The accuracy of the MS1 method was validated by testing with three standard mixtures of 

known concentrations (low, 0.05 mg/L; medium, 0.50 mg/L; and high, 5.00 mg/L). 

Standard addition of authentic standards was carried out followed by recovery experiments 

for CA extracts using precursor ions wherein the quality control samples (QCs) were spiked 

at two different concentration levels (0.25 ng and 5 ng on-column for each compound) with 

standards for 24 compounds. In addition to that 1 mL of standard mix containing 0.0, 0.05 

or 1.0 mg/L of each authentic compound was added to 1.0 mL of the pooled sample (200 

mg dried CAW powder/L). 

Application of precursor ion [MS1] quantification method for plant extracts 
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MS1 precursor ion quantification using the same chromatographic runs for untargeted 

analysis for characterization of plant extracts and product integrity studies. 

Data processing and annotation of plant metabolites 

The workflow shown in Figure A.F.3.1 was applied to gather putative annotations with a 

high degree of confidence. Apart from the typical parameters of exact mass, MS/MS 

spectra and isotopic pattern which are utilized to obtain level 2 annotations (Lloyd W. 

Sumner et al. 2007; Viant et al. 2017) manual curations were also performed that involved  

1) Evaluation of the metabolite structures based on their suitability of the ionization mode 

in which a compound was detected (i. e., basic sites in a molecule that can be protonated 

in ESI+ or labile protons for ESI-), 2) Retention time for annotated features was 

interrogated to determine whether it matched with polarity of the molecule to avoid noise 

arising from compounds originating from in-source fragmentation, and 3) Selection of 

compounds that were previously reported in plants (listed in Table 3.1) because isolation 

for NMR analysis was out of the scope for this study.  

The raw data processing was performed using Progenesis QITM software with MetlinTM 

plugin V1.0.6499.51447 (NonLinear Dynamics, United Kingdom). Peak picking and 

tentative metabolite identifications with a specified level of confidence was conducted on 

raw mass spectral dataset. The annotations were performed by searching of mass spectral 

data against Metlin (Guijas et al. 2018), Human Metabolome Database (HMDB) (Wishart 

et al. 2018) an in-house compound library consisting of IROA standards (IROA 

Technology, Bolton, MA) and other commercially available standards (650 total). In 

addition to these libraries KNApSAcK (Afendi et al. 2012), PlantMAT (Qiu et al. 2016) 

and Chemical Entities of Biological Interest (ChEBI)  (Hastings et al. 2016)  online 

libraries were used for phytochemical annotations. The criteria used for putative 

annotations was score > 50 using the Progenesis QI workflow. Score greater than 50 

represents isotopic pattern similarity above 80 %, MS/MS spectral data similarity > 50% 

and the deviation of the accurate mass from the exact mass lower than 5 ppm (Lloyd W 

Sumner et al. 2007). Twenty-two annotated features having high peak intensity in extracted 

ion chromatogram in positive ionization mode (Figure AS2) whereas twenty-four 

annotated high intensity mass spectral features in negative ion mode (Figure AS2). 

Chemical similarity network and clustering  
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The chemical space network based on the compounds annotated with high confidence was 

built. In these networks, nodes represent compounds and edges exemplify similarity 

relationships based on 2D chemical structures. The Tanimoto algorithm was used for 

calculating measures of similarity. The derived Tanimoto coefficient represents an 

associative coefficient with a value ranging from 0-1, numerically expressing the structural 

similarity between a two-dimensional binary comparison (0 being no similarity and 1 being 

complete similarity) (Bero et al. 2018; Todeschini et al. 2012). The algorithm utilizes the 

simplified molecular input line-entry system (SMILES) as a fingerprint for the molecules 

being compared. The fingerprints for molecules A and B are then put into the Tanimoto 

algorithm: T(A,B) = A∩B / A∪B, often referred to as intersection over union. A Tanimoto 

coefficient greater than 0.68 indicates that the compounds being compared are structurally 

similar and statistically significant at the 95% confidence interval (Kim, Bolton, and Bryant 

2012). A Cytoscape network was created using the Tanimoto coefficients for assigned 

compounds detected in an aqueous extract of C. asiatica.  

 

3.1.4 Results and discussion 

Untargeted fingerprinting analysis of CA extracts 

Phenyl-bonded phase was used for chromatographic separation of phytochemicals in the 

botanical samples because the phenyl groups directly bonded to the silica surface will have 

- interactions with phenolic scaffolds in many secondary metabolites. The method 

utilized 30 minutes for each chromatographic run. Liquid chromatographic separation led 

to suitable resolution and peak capacity that was combined with DDA acquisitions for 

chemical fingerprinting. Quantification was conducted using the precursor ion peak are 

(MS1) with sufficient reproducibility by minimizing peak suppression and matrix effects. 

Figure 3.1 shows a typical total ion chromatogram (TIC) for a C. asiatica water extract and 

the most intense molecular features fragmented in the DDA experiment acquired in 

negative ion mode. From over 20,000 m/z-features detected, 117 compounds were 

annotated after applying the workflow outlined in Figure AS1. To our knowledge, this 

analysis includes 87 compounds that were reported in plants but detected for the first time 

in C. asiatica extracts (Azerad 2016; Brinkhaus et al. 2000; Chandrika and Prasad Kumara 
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2015; Devkota et al. 2010; Fong et al. 2006; Gohil, Patel, and Gajjar 2010; Gray et al. 

2018; James and Dubery 2009; Long, Stander, and Van Wyk 2012; Mustafa et al. 2010; 

Oyedeji and Afolayan 2005; Ramesh et al. 2014; Sangwan et al. 2013; Yoshida et al. 2005).  

 

 

Figure 3.1 Examples of typical data obtained by untargeted analysis of a pooled Centella 

asiatica (CA) water extract using the data dependent acquisition mode a Total ion 

chromatogram (ESI−) (10 μL injection, 1 mg/L). b Distribution map of precursor ions 

submitted to collision induced dissociation along the elution period. The y-axis provides 

m/z information for the precursor ion; the x-axis represents the elution times for each 

precursor ion. Each one of the 5512 dots contain a fragmentation spectrum. The intensity 

of the blue color represents the ion abundance of the precursor ion. TIC, total ion 

chromatogram; DDA, data dependent acquisition. 

 

MS/MS spectra of newly detected compounds in CA are provided in Figure AS7. Some of 

the most abundant compounds include six di-caffeoylquinic acid isomers, quinic acid, 

mono-caffeoylquinic acids, and several glycosides, such as asiaticoside, madecassoside 

and quercetin 3-O-glucoside. It is noteworthy that the current chromatographic separation 
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conditions resolved DCA isomers (Table AS1, Figure AS5). Analytical parameters namely 

m/z, retention time, detected adducts and molecular formulas for annotated compounds are 

shown in detail in Table S1. When compounds were detected in both ion modes, the one 

with highest signal to noise ratio (signal/noise) was included. A summary of annotated 

compounds is shown in Table 3.1, including five hydroxycinnamic acids, nine mono- and 

di-caffeoylquinic acids, twelve terpenoids, thirteen flavonoids, eleven glucosides among 

many other phytochemicals. 

Table 3.1 Summary of detected compounds in C. asiatica extracts (pooled sample) by 

extensive querying and comparison with spectral and compound libraries (Metlin, 

KNApSAcK, HMDB, PantMAT, ChEBI and our in-house library) using Progenesis QITM 

and applying the workflow shown in Figure AS1. Compounds are labeled with their 

respective PubChem CID. Additional parameters are shown in Table AT3.1. Category was 

assigned according to structural similarity using Tanimoto algorithm, and they may 

correspond to more than one compound class. Compounds confirmed using authentic 

standards are shown in italics, all other compounds correspond to level 2 annotations. 

Eighty-seven compounds that were detected for the first time in C. asiatica extracts are 

denoted with a *. 

 

Hydroxycinnamic acids CID Phenolic compounds CID 

Caffeic acid 689043 
3-Hydroxy-2-oxo-3-phenylpropanoic 
acid 

71581094 

Iso Ferulic acid* 736186 1-Caffeoyl-5-feruloylquinic acid* 121225501 

Dihydrocaffeic acid* 348154 3,4-Dihydroxybenzaldehyde* 8768 

Dihydroferulic acid* 14340 
3,5-Dihydroxy-2-methylphenyl beta-
D-glucopyranoside* 

46184089 

Ferulic acid 445858 3-Hydroxycoumarin 13650 

Dicaffeoylquinic Acids   4-Hydroxybenzaldehyde* 126 

1,3-Dicaffeoylquinic acid 6474640 5-Methoxysalicylic acid* 75787 

1,4-Dicaffeoylquinic acid* 12358846 
8-Acetoxy-4'-methoxypinoresinol 4-
glucoside* 

73830447 

1,5-Dicaffeoylquinic acid 5281769 Aesculin* 5281417 

3,4-Dicaffeoylquinic acid 5281780 Catechin 9064 

3,5-Dicaffeoylquinic acid 6474310 Coumarin 323 

4,5-Dicaffeoylquinic acid 6474309 Epicatechin 72276 

Monocaffeoylquinic Acids   Epigallocatechin* 72277 

3-O-Caffeoylquinic acid 1794427 Folinic acid* 6006 
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4-O-Caffeoylquinic acid 9798666 Ginkgoic acid* 5281858 

5-O-Caffeoylquinic acid 5280633 Kuwanon Y* 14334307 

Terpenoids CID Kynurenic acid* 3845 

26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-
tetrahydroxyergosta-5,24-dien-26-oate* 

131752817 
N1,N5,N10,N14-Tetra-trans-p-
coumaroylspermine* 

9810941 

Asiatic acid 119034 Phlorin* 476785 

Asiaticoside 24721205 Tropic acid* 10726 

Dysolenticin B* 56601655 Xanthurenic acid* 5699 

Gentiopicroside* 88708 Amino acid derivatives CID 

Madecassic Acid 73412 2-Pyrrolidone-5-carboxylic acid 499 

Madecassoside 91885295 
1-beta-D-Glucopyranosyl-L-
tryptophan* 

11772967 

Sambacin* 131752486 2,6-Piperidinedicarboxylic acid* 557515 

Swertiamarin* 442435 4-Guanidinobutanoic acid* 25200642 

Tsangane L 3-glucoside* 73981648 5-Methoxy-L-tryptophan* 151018 

b-Chlorogenin 3-[4'-(2'-glucosyl-3'-
xylosylglucosyl)galactoside] 

74193143 
6-Amino-9H-purine-9-propanoic 
acid* 

255450 

Shanzhiside* 11948668 6-Oxo-2-piperidinecarboxylic acid* 3014237 

Purine Derivatives CID L-Arginine* 28782 

2'-O-Methyladenosine* 102213 
N-(1-Deoxy-1-
fructosyl)phenylalanine* 

101039148 

Adenine* 190 N-Acetyl-L-glutamic acid* 70914 

Adenosine* 60961 Niacin (Nicotinic acid)* 938 

cAMP* 6076 Pantothenic Acid 6613 

5'-Deoxy-5'-(methylsulfinyl)adenosine* 165114 Succinyl-L-proline* 194156 

Succinoadenosine* 126969142 Vincosamide* 10163855 

Guanosine* 6802 Organic Acids CID 

Others CID Citric acid* 19782904 

Cytosine* 597 L-Ribulose* 644111 

Longicamphenylone* 91747202 Malate* 20130941 

Longifolenaldehyde* 565584 Succinate* 1110 

Uric acid* 1175 Glucoside derivatives CID 

6-Docosenamide* 44584605 Stachyose* 439531 

Deoxyfructosazine* 73452 Carlosic acid methyl ester* 122391261 

Ginsenoyne K* 15736266 Daucic acid* 5316316 

Fatty acid derivatives CID Digalacturonate* 439694 

Caprylic Acid* 379 Dihydroactinidiolide* 27209 

Palmitic acid* 985 Furaneol 4-(6-malonylglucoside)* 131750900 

Tetradecanedioic acid* 13185 Isovalerylglucuronide* 137383 

16-Hydroxypalmitic acid* 10466 Linustatin* 119301 

Traumatic Acid* 5283028 Purgic acid B* 16091605 

12-Oxodihydrophytodienoic acid* 5716902 Flavonoids CID 
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Nomilinic acid 17-glucoside* 444212 
3,5-Dihydroxyphenyl 1-O-(6-O-
galloyl-β-D-glucopyranoside) 

131752603 

Choline derivatives CID 
6-C-α-L-arabinosyl-8-C-β-L-
arabinosylapigenin 

122391238 

Betaine* 247 Apimaysin* 101920411 

Choline* 305 Astragalin 5282102 

Choline O-Sulfate* 486 Kaempferol 5280863 

Phosphocholine 1014 Mangiferin* 5281647 

Amino sugar derivatives CID Naringin 442428 

Enicoflavine* 5281564 Pelargonidin 3-O-glucoside* 443648 

Muramic acid* 433580 Quercetin 5280343 

N-Acetyl-D-glucosamine* 899 Quercetin 3-(6'-acetylglucoside)* 44259187 

Soyacerebroside I* 131751281 Quercetin 3-O-glucoside* 5280804 

D-1-[(3-Carboxypropyl)amino]-1-
deoxyfructose* 

131752417 Rutin 5280805 

    Glabraoside A* 102393599 

 
Principal component analysis (PCA) was used to obtain the similarities and differences in 

metabolite composition across eight available CA accessions (Figure 3.2) using the same 

m/z features containing MS/MS spectral information (presented in Figure 3.2b). PCA 

showed significant differences across the CA accessions. The PCA scores plot allowed 

visualization of different clusters for CA preparations. The PCA loading plots show the 

constituents with more variability among the C. asiatica accessions. Some of the marker 

compounds in C. asiatica are highlighted in Figure 3.2b. Di-caffeoylquinic acids and 

triterpenes are among compounds that showed high variation between the different 

accessions.  

For additional contrasting of CA accessions, we also used as tools a correlation matrix and 

a heatmap based on area under the curve for extracted ion peaks. The correlation matrix 

aids in evaluating similarities and dissimilarities of extracts based on the correlation score 

(Figure 3.2c). Higher correlation scores (between 0.75 and 1) are indicated by red, scores 

between 0.74 and 0.51 are indicated by white and scores between 0.5 and 0.25 are 

represented by purple and lower correlation scores (less than 0.25) are represented by blue. 

The Pearson correlation value calculated between CA6 sample and CA2 sample is 0.27 

which indicates that there is a little linear relationship between CA2 and CA6. The Pearson 

correlation value calculated between CA2 and CA1 samples is 0.48 which also indicates 
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fairly less amount of linear relationship between CA2 and CA1 samples. The Pearson 

correlation between CA6 and CA4 samples is 0.87 which indicates that these two samples 

are linearly related indicating similarities in metabolite contents for CA4 and CA6 extracts.  

The heatmap with hierarchical clustering (Figure 3.2d) visualizes the precursor ion peak 

area for 14 compounds evaluated in the CA extracts. Peak areas were averaged across three 

replicates. The dendrogram on the y-axis indicates the degree of similarity or differences 

between the CA compound levels in the CA accessions, e.g. CA3 and CA8 are closer in 

the clustering tree and C6 is separated. 
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Figure 3.2 Analysis of similarities and dissimilarities of Centella asiatica (CA) water 

extracts. (A) Scores plot, each set of dots (technical triplicates) represents a CA extract 

from eight different accessions (CA1–CA 8). (B) Loadings plot indicating 11 selected 

compounds with higher concentration across quantified phytochemicals. Di-caffeoylquinic 

acids and triterpenes change across accessions. Principal component analysis (PCA) was 

performed using 5512 m/z features that provided MS/MS information (negative ion mode) 

and were consistently found in all CA extracts. (C) Correlation matrix between different 

C. asiatica accessions based on 5512 m/z features as the PCA. (D) Heatmap visualizing 

area under the curve for the chromatographic peaks of the compounds. The area under the 

curve has been averaged across three replicates. The colors in the heatmap indicate the z-
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score which was calculated by subtracting the mean of the peak areas for a metabolite 

across different samples and dividing it by the standard deviation of the metabolite across 

all the samples. The red color indicates positive zscore, the white color indicates zero z-

score, whereas the blue color indicates negative z-score. Higher intensity of the color in 

the scale indicates a higher magnitude of the z-score. The dendrogram on the x-axis 

indicates the degree of similarity between the metabolites, the closer the metabolites the 

higher the level of similarity in them and the metabolites have been clustered using 

hierarchical clustering. Similarly, the dendrogram on the y-axis indicates the degree of 

similarity between the different samples (different CA accessions), the closer the samples 

the higher the level of similarity in them and they have been clustered using hierarchical 

clustering (Ward, Euclidean distance). PCA was performed using MetaboAnalyst V4.0. 

Structural similarity network 

Figure 3.3 shows a 2D structural similarity network of 117 assigned compounds found 

consistently in the aqueous extract of all eight CA accessions, that was created using the 

Tanimoto similarity score (Todeschini et al. 2012).  
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Figure 3.3 Cytoscape network for 117 assigned compounds in Centella asiatica described 

in Table 3.1. Cytoscape network for 117 assigned compounds in Centella asiatica described 

in Table 3.1. The clustering relationship is based on the molecular input line-entry system 

(SMILES) as a fingerprint for the molecules being compared (Tanimoto coefficient). A 

Tanimoto coefficient greater than or equal to 0.68 indicates that the compounds being 

compared are structurally similar and statistically significant at the 95% confidence 

interval. In this Cytoscape network, compounds are indicated by circular terminal nodes 

and labelled with their respective PubChem ID. Identified compounds, i.e. compounds for 

which authentic standards were available (Level 1 annotations), are indicated by a square 

node. Tanimoto scores greater than or equal to 0.68 are represented by triangular branch 

nodes, while scores less than 0.68 are depicted by diamond shaped branch nodes.  

 

Compounds were arranged in 14 interconnected clusters that are structurally similar at the 

boundary nodes at the 95% confidence level. Compounds fall into the following clusters: 

fourteen amino acid derivatives, five amino sugar derivatives, four choline derivatives, six 

di-caffeoylquinic acids, seven fatty acid derivatives, 13 flavonoids, nine glucoside 
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derivatives, five hydroxycinnamic acids, three mono-caffeoylquinic acids, four organic 

acids, 21 phenolic compounds, seven purine derivatives, 12 terpenoids, and seven others 

compounds. It is noteworthy that classification was established according to structural 

similarity (Tanimoto algorithm), consequently some compounds may belong to more than 

one compound class. 

The enzymatic machinery required to produce secondary metabolites in most plants is 

largely uncharacterized (Moghe and Last 2015). The lack of intermediate secondary 

metabolites along the metabolic pathways makes this characterization more complex. The 

detection of secondary metabolites never reported in plant extracts, in conjunction with a 

Cytoscape network clustered according to the structural similarity (Tanimoto algorithm), 

can potentially help with the characterization of new metabolic pathways by searching for 

potential enzymes responsible for the interconversion of metabolites clustering together. 

While C. asiatica is most known as a rich source of pentacyclic triterpenoids (Brinkhaus 

et al. 2000; Long, Stander, and Van Wyk 2012), relatively high percentages of 

caffeoylquinic acids and flavonoids have also been identified (Brinkhaus et al. 2000; 

Devkota et al. 2010). These secondary metabolites, specifically phenylpropanoid 

derivatives, have been associated with C. asiatica’s anti-inflammatory, antioxidant, or 

other biological activities (Korkina LG 2007; Wink 2013).  

Accurate quantification of phytochemicals in extracts using precursor ion (MS1) 

quantification 

The quantification of phytochemicals was performed with a suitable chromatographic 

separation in conjunction with HPLC-MS/MS DDA acquisition for screening of 

compounds, combined with the use of molecular ion extraction for quantification of 

selected compounds in the same chromatographic run. From over 20,000 recorded m/z 

features, 5512 and 6906 most prominent m/z features acquired in negative (Figure 3.1) and 

positive ion mode, respectively, were fragmented in the DDA experiment. This untargeted 

approach provides a spectral library for thousands of potential compounds that can be 

mined in future applications. From the 117 assigned compounds (Table 3.1), 24 

phytochemicals were selected as a proof of concept for quantification, including three 

mono-caffeoylquinic acids, five di-caffeoylquinic acids, seven flavonoids, five 

hydroxycinnamic acid derivatives and four triterpenes (structures shown in Figure. AS4).  
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Method validation for selected compounds 

For accuracy, precision, repeatability, linearity, limit of detection (LOD), limit of 

quantification (LOQ) and range, the proposed method followed the typical validation 

procedure in accordance with the ICH Harmonized Tripartite Guideline (ICH 2012).  

Figure AS5 shows LC-MS extracted ion chromatograms (XIC) obtained from authentic 

standards of these 24 compounds. Analytical parameters, namely [M-H]- m/z, retention 

time, accuracy for three different concentration levels, LOD, LOQ and inter-day coefficient 

of variation (RSD) were established for 24 phytochemicals using precursor ion extraction 

(Table 3.2). The analytical accuracy for three known concentration samples at the low (0.05 

ppm), medium (0.50 ppm) and high (5.0 ppm) calibration curve intervals ranged from 87-

125% (Table 3.2). The RSD was measured for a solution of 1 mg/L and ranged from 6.8 

to 24% for 9 repetitions measured in a span of 6 months (Table 3.2). 

 

Table 3.2 Analytical parameters for authentic standards. Exact m/z used for XIC, retention 

times, detection and quantification limits, % of accuracy for three concentrations, and % 

of relative standard deviation for 24 selected compounds. Compounds are sorted by 

retention time. 

Compound [M-H]- a Rtb 

(min) 

LODc 

(μg/L) 

LOQd 

(μg/L) 

Low QCe 

0.05 mg/L 

Medium QCe 

0.5 mg/L 

High QCe 

5 mg/L 

%RSDf 

5-O-Caffeoylquinic acid 353.0867 11.85 0.078 0.260 109 108 93 13.11 

Epigallocatechin 305.0656 13.48 0.146 0.485 101 104 99 21.70 

Catechin 289.0707 14.48 0.018 0.060 123 106 98 11.54 

Dihydrocaffeic acid 181.0495 14.85 0.005 0.015 109 117 93 11.18 

4-O-Caffeoylquinic acid 353.0867 15.08 0.040 0.134 125 116 93 12.13 

3-O-Caffeoylquinic acid 353.0867 15.30 0.040 0.134 122 116 97 17.33 

Caffeic acid 179.0339 15.83 0.319 1.064 111 110 99 11.71 

Epicatechin 289.0707 16.80 0.013 0.045 107 100 98 12.52 

1,5-Dicaffeoylquinic acid 515.1184 17.49 0.061 0.202 110 104 97 15.32 

1,3-Dicaffeoylquinic acid 515.1184 17.49 0.061 0.202 110 104 97 15.32 

Rutin 609.145 18.96 0.016 0.052 107 102 100 11.65 

Dihydroferulic acid 195.0652 19.02 0.027 0.089 123 104 96 8.98 

3,4-Dicaffeoylquinic acid  515.1184 19.11 0.169 0.562 105 99 100 15.30 

3,5-Dicaffeoylquinic acid 515.1184 19.45 0.166 0.552 106 100 102 15.25 

Ferulic acid 193.0495 19.55 0.001 0.004 111 105 93 6.79 

4,5-Dicaffeoylquinic acid 515.1184 19.92 0.108 0.358 101 99 102 12.09 

Naringin 579.1708 20.07 0.025 0.083 97 100 88 10.66 

Iso Ferulic acid 193.0495 20.42 0.001 0.003 94 102 103 16.39 

Quercetin 301.0342 21.10 0.068 0.227 111 100 97 12.15 
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Madecassoside 973.5003 21.47 0.008 0.025 110 97 87 16.94 

Asiaticoside 957.5054 21.97 0.001 0.004 102 99 98 18.87 

Kaempferol 285.0390 22.01 0.028 0.092 112 103 97 10.46 

Madecassic Acid 503.3367 23.74 0.009 0.031 97 100 97 11.41 

Asiatic acid 487.3418 24.41 0.005 0.015 96 95 92 12.61 
 

 

aExact mass, negative Ionization. Mass error detected <5 ppm 

bRetention time 
cCalibration detection limit evaluated as S/N ratio 3:1 
dCalibration quantification limit evaluated as S/N ratio 10:1 
eQuality control sample 
f%RSD Measured for 1 mg/L. 9 measurements along 6 months span 
 

The high-resolution accurate mass data led to comprehensive fingerprinting for botanical 

extracts for further interrogation post acquisition to obtain accurate quantification of 

phytochemicals by extracting the precursor ions and using the area under the peak for 

quantification [M1 quantification] in the same analytical run. Quantified compounds 

showed good linearity over three orders of magnitude (0.005 to 5.0 mg/L, r>0.990, Table 

AF3.2).  

Matrix effect is a common drawback frequently observed in analytical procedures 

analyzing complex natural product mixture sample. The matrix effects were evaluated in 

the CA extracts, by pooling CA extract samples and spiking with the 24 available 

standards. A total ion chromatogram obtained for a CA extract and the same sample after 

standard addition is shown in Figure AS6. For plant extracts, recoveries of individual 

compounds ranged from 71 to 144% and 91 to 132% for 0.25 and 5.0 ng on-column, 

respectively (Table 3.3), confirming the feasibility of the proposed procedure for 

quantitative analysis of CA extracts.  

 
Table 3.3 Recovery experiment. Recovery percentage and mean concentration of 

individual quantified compounds measured in a pooled CA sample (100 mg/L) using 

precursor ions with respective standard deviations obtained without standard addition and 

after addition of a mixture of 24 standards in two different concentration levels (0.25 and 

5 ng of each standard on-column). All measurements are given in nanograms. 

Compound QC (ng on 

column) 

QC +0.25 ng 

standards 

% 

Recovery 

QC +5 nga 

standards 

% 

Recovery 
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5-O-Caffeoylquinic acid 1.02±0.01 1.28±0.01 102 6.53±.46 110 

Epigallocatechin <LOQa 0.18±0.02 71 4.55±0.20 91 

Catechin <LOQ 0.33±0.09 134 5.88±0.32 117 

Dihydrocaffeic acid <LOQ 0.28±0.01 113 5.34±0.27 107 

4-O-Caffeoylquinic acid 0.88±0.02 1.17±0.03 115 6.31±0.09 109 

3-O-Caffeoylquinic acid 2.45±0.03 2.79±0.09 133 7.68±0.10 105 

Caffeic acid 0.67±0.07 0.97±0.03 123 6.06±0.43 108 

Epicatechin <LOQ 0.30±0.06 119 5.57±0.14 111 

1,5-Dicaffeoylquinic acid 0.38±0.01 0.68±0.06 121 5.91±0.28 110 

1,3-Dicaffeoylquinic acid 0.38±0.01 0.68±0.06 121 5.91±0.28 110 

Rutin 0.04±0.01 0.31±0.02 106 5.44±0.35 108 

Dihydroferulic acid <LOQ 0.25±0.01 101 5.71±0.17 114 

3,4-Dicaffeoylquinic acid 3.23±0.02 3.57±0.02 136 8.86±0.17 113 

3,5-Dicaffeoylquinic acid 3.78±0.02 4.14±0.03 144 8.94±0.50 103 

Ferulic acid 0.11±0.01 0.40±0.04 118 5.59±0.11 109 

4,5-Dicaffeoylquinic acid 3.93±0.01 4.16±0.05 92 9.16±0.10 105 

Naringin <LOQ 0.29±0.03 117 5.86±0.84 117 

Iso Ferulic acid 0.18±0.01 0.52±0.04 135 6.35±0.21 123 

Quercetin 0.29±0.22 0.56±0.17 109 5.94±0.38 113 

Madecassoside 25.5±0.95 25.77±0.07 108 31.6±2.20 110 

Asiaticoside 10.74±0.12 11.0±0.16 114 16.1±0.55 108 

Kaempferol 0.31±0.02 0.62±0.01 121 5.79±0.49 109 

Madecassic Acid 1.35±0.01 1.65±0.03 120 7.58±0.24 124 

Asiatic acid 0.62±0.02 0.97±0.28 138 7.25±0.53 132 

aCalibration quantification limit evaluated as S/N ratio 10:1 

 

A range of three orders of magnitude is typical for TOF analyzers, which is one of the 

disadvantages when we compare with triple quadrupole analyzers which usually feature a 

linear dynamic range that extends over six orders of magnitude. Nevertheless, the high 

resolution allows us to obtain the fingerprint and untargeted characterization in the same 

analytical run, saving instrument time, solvents and avoiding sample degradation. 

For the developed quantification method, the combination of an optimized separation 

method with a high-resolution q-TOF mass spectrometer allowed the detection and 

quantification of phytochemicals in plant extracts at sub-parts per billion levels (except 

caffeic acid; LOQ 1.06 µg/L) with minimum sample processing. Modern Q-TOF mass 

spectrometers possess sensitivities typically associated with MS/MS-based selected 

reaction monitoring (SRM) methods. Reported values for 15 phenolic acids and 17 

flavonoids (range from 3.4 to 228 µg/L) (Yilmaz et al. 2018) acquired using SRM in a 



63 
 

triple quadrupole mass spectrometer are comparable with our limit of detection. In 

addition, contemporary q-TOF instruments offer mass resolving power typically ≥25,000 

(FWHM) at m/z 195. These q-ToF platforms obtain highly accurate mass measurement 

with high resolution for precursor ions and fragment ions. The high-quality data provided 

structural characterization and quantification of phytochemicals in complex mixtures with 

high confidence.  

Quantification of phytochemicals in CA extracts from different sources 

In previous studies, comparison of secondary metabolite production of C. asiatica was 

limited to four triterpenoids (asiatic acid, madecassic acid and their glycosides asiaticoside 

and madecassoside) (Das and Mallick 1991; Devkota et al. 2010; Madhusudhan, Neeraja, 

and Devi 2014; Müller et al. 2013; Randriamampionona et al. 2007; J. Singh et al. 2015; 

Yuan et al. 2015). Some other compounds (flavonoids and caffeoyl esters) were analyzed 

by LC-MS (Gray et al. 2014) and HPLC-DAD (Alqahtani et al. 2015; Devkota et al. 2010; 

Inamdar et al. 1996; S. Singh et al. 2014). A comparative study of nutrient content and 

yield performance of C. asiatica at different harvesting periods was reported. The study 

focused on yield measured by dry weight of leaves and some nutrients were compared 

(P,K, S, Ca, Mg, Zn, Cu, Fe, Mn and N) (Ramesh et al. 2014). 

Our study shows that CA extracts were particularly rich in mono-caffeoylquinic acids 

(CQA), such as 3-,4- and 5-CQA, and di-caffeoylquinic acids (DCQA), such as 1,3; 1,5; 

3,4; 3,5 and 4,5-DCQA, as well as some triterpenoids such asiaticoside, madecassoside and 

their aglycones (Table 3.3, Figure 3.4 and 3.5). CA extracts also contained several 

flavonoids and hydroxycinnamic acid derivatives. Figure 3.4 shows extracted ion 

chromatograms for 18 selected compounds quantified in CA water extract using area under 

the curve of the precursor ion acquired in DDA mode. 
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Figure 3.4 Extracted ion chromatograms (XICs) of 18 compounds that were used for 

precursor ion (MS1) quantification. Individual analytical parameters are shown in Table 

3.2. XICs were obtained using the data-dependent acquisition (DDA) (ESI−) mode 

obtained for a pooled Centella asiatica (CA) sample. 
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Figure 3.5 Analysis of eight different C. asiatica accessions (water extract) by precursor 

ion (MS1) quantification (SE from triplicates). Results are presented as mg/g of dry extract. 

A principal component analysis from the same analytical runs are shown in Figure 3.2. 
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Under the HPLC conditions used, 1,5 and 1,3-DCQA co-elute since they are cis-trans 

isomers (structures shown in Figure AS4). For all other compounds quantified in this study, 

the combination of suitable separation conditions with extraction of ion chromatograms at 

individual m/z values (Figure AS5, Table 3.2) enabled detection limits in the low 

nanomolar to picomolar range for 24 phytochemicals using precursor ions (Tables 3.2 and 

AS2). The optimized analytical procedure minimized interferences by improving the 

chromatographic separation of isomers with similar fragmentation patterns and thereby 

also optimized detection limits. 

In this study eight different accessions of C. asiatica were quantified using precursor ion 

(MS1) quantification. We detected differences in concentration close to twenty-fold change 

for some compounds across the analyzed accessions. For instance, if we compare samples 

CA6/CA1, asiaticoside fold change was 19.9, asiatic acid 9.1, and madecassoside 1.5. In 

the case of di-caffeoylquinic acids, the ratio of CA5/CA1 for 4,5-dicaffeoylquinic was 

eleven-fold change. Mono-caffeoylquinic acids presented less variation across the 

accessions. For 5-O-caffeoylquinic acid, the highest difference was CA2/CA1 with a 2.7-

fold change (Figure 3.5). This emphasizes the importance of establishing rigorous 

analytical procedures for botanical extracts and supplements to ensure product integrity 

and batch to batch reproducibility. 

To conclude, the combination of suitable separation conditions with mass spectral data 

acquired with high resolving power using DDA acquisition enables the extraction of high-

resolution accurate mass precursor ions with exact m/z values presenting deviations smaller 

than 5 ppm that in turn allows accurate quantification of phytochemicals with limits of 

quantification at 1.06 µg/L or lower. The described method was validated for the 

quantification of a) seven flavonoids, b) three structural isomers of caffeoylquinic acids, c) 

five di-caffeoylquinic acids, d) five caffeic acids derivatives and e) four terpenoids. The 

phytochemical composition of metabolites across different CA accessions was substantial, 

demonstrating that standardization and detailed characterization of plant extracts are 

prerequisites for reliable and reproducible studies aiming to determine the biological 

activity of CA and botanical extracts in general.  

Overall, the first part of the study underscored the need for methods to efficiently analyze 

highly complex plant extracts to support the standardization of botanicals destined for 
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preclinical studies, clinical trials, and commercial products. The second part dealt with 

identification of neuroprotective bioactive in Centella Asiatica water (CAW) extract. 
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3.2 High-throughput screening for plant bioactives using computational methods 

and LC-MS spectral networks. Application to Centella asiatica extracts. 
 

3.2.1 Abstract 

On the other hand, rapid screening of botanical extracts for novel natural products was 

performed using fractionation approach in conjunction with flow-injection mass 

spectrometry for obtaining chemical fingerprints of each fraction allowing the correlation 

of the relative abundance of molecular features representing individual phytochemicals 

with reads out of bioassays. A proof of concept study was conducted using Centella 

asiatica (C. asiatica), an Ayurvedic herb which has been associated with improving mental 

health and cognitive function for natural product discovery studies. In addition to that, 

subfractions of C. asiatica were exposed to human neuroblastoma MC65 cells to evaluate 

protective benefit derived from these subfractions against amyloid β-cytotoxicity. The % 

viability score of the subfractions was used in conjunction with molecular features obtained 

from mass spectrometry in computational models ElasticNet, PLS-DA and random forest 

to derive relationship of peak intensity of molecular features and % viability. The 

correlation of mass spectral features with MC65 protection and their presence in different 

sub-fractions were also visualized using GNPS molecular networking. All the models 

unequivocally identified di-caffeoylquinic acids to provide the highest MC65 protection 

which was also validated by classic reductionistic approach. 

3.2.2 Introduction 

The challenge of working with natural products in botanical extracts is finding the potential 

bioactives against specific diseases, in the traditional way ⎯bioassay-guided 

fractionation⎯ and in such a huge diversity is a tedious and time-consuming task (Nothias 

et al. 2018; Weller 2012). Bioassay-guided fractionation leads to separation of certain 

metabolites based on physicochemical properties ⎯such as polarity and assessing the 

bioactivity in a step-by-step fashion. There is also a possibility that after sequential steps 

of purification and assaying for finding the bioactive (Abbas-Mohammadi et al. 2018; 

Nothias et al. 2018; Shine et al. 2020; Stagliano et al. 2010; Weller 2012), a compound 

identified has already been discovered. There are risks associated with traditional 
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exhaustive fractionation up until the isolation of pure compound as this could lead to 

compound degradation and loss of synergies among compounds (Atanasov et al. 2015).  

Aqueous extracts of C. asiatica are known to make improvements in memory and mental 

health (Brinkhaus et al. 2000; G.K., Muralidhara, and M.S. Bharath 2011; Gray et al. 2018; 

Kapoor 2018).  Use of C. asiatica preparations in complementary medicine has been 

associated with improvement of memory in cognitive decline owing to aging and 

Alzheimer’s disease (Gray et al. 2018; Kumar, Dogra, and Prakash 2009; Soumyanath et 

al. 2012). The objective of this study was to expedite bioactive identification that inhibit 

amyloid β-cytotoxicity primarily responsible for Alzheimer’s disease in extracts from C. 

asiatica (Gray et al. 2014) utilizing orthogonal analytical techniques assisted by 

bioinformatics and statistical tools. In this effort, it is imperative to support reliable 

dereplications tools to optimize resources and prevent the rediscovering of known 

bioactives. One of the solutions identified to ease these concerns, was Global Natural 

Product Social Molecular Networking (GNPS) platform (Aron et al. 2019; Mingxun Wang 

et al. 2016) that can assist in the dereplication and annotation of specialized metabolites. 

GNPS is an online open-access mass spectrometry repository that aims the organization 

and sharing of spectral data and annotations. Moreover, GNPS provides access to online 

dereplication prioritization (Lang et al. 2008) and automated molecular networking 

analysis (Sidebottom et al. 2013; J. Y. Yang et al. 2013). 

In addition to GNPS, computational approaches, Partial-least-square- Selectivity ratio 

(PLS-SR), ElasticNet (EN) were used to determine top bioactive candidates (Abbas-

Mohammadi et al. 2018; Stagliano et al. 2010). Partial least squares (PLS) utilizes the 

spectral information to predict bioactive metabolites in complex natural product (Ali et al. 

2013).  The selectivity ratio enabled identification of bioactivity compounds by 

determining the correlation between molecular features identified and bioactivity levels in 

natural products (Kellogg et al. 2016). Elastic net was selected as it allowed accurate 

computation of the contribution of each bioactive phytochemical towards the total 

bioactivity of the fraction without limiting the number of phytochemicals being used for 

the prediction (Kirkpatrick et al. 2017).  



71 
 

3.2.3 Methods 

Associating chemical diversity of C.Asiatica with % viability from MC65 bioassay 

Centella Asiatica water extract was prepared using procedure discussed in part 1. For 

natural product discovery liquid:liquid extraction was performed followed by LH-20 

column chromatography with methanol. The chemical diversity of compounds was 

generated by fractionation of DCM (7.8 g) and n-butanol (15.9 g) fraction of the aqueous 

extract on a Sephadex LH-20 column (Figure 3.6). Methanol was utilized to obtain 21 

subfractions of CAW extract generated by solvent:solvent partitioning on the LH-20 

column. 

 
Figure 3.6 Fractionation scheme. 21 subfractions of CAW extract generated by 

solvent:solvent partitioning and LH-20 column chromatography. We analyzed each 

subfraction by flow-injection TOF positive ion mode and correlated the features found with 

cytoprotective activity in MC65 neuroblastoma cells exposed to Aβ toxicity. 
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MC65 cells were used because of the ability to conditionally express the C-terminal 

fragment of amyloid precursor protein (APP CTF) (Sopher et al. 1996). In absence of 

tetracycline the cells generate endogenous Aβ that results in cell death within 3 days. There 

has been evidence that links Aβ aggregates and resulting cytotoxicity with oxidative stress 

(Woltjer et al. 2007). The maintenance of MC65 cells was performed in MEMEα 

supplemented with 10% FBS (Gibco-BRL, Carlsbad, CA) and 1 μg/mL tetracycline 

(Sigma-Aldrich, St. Louis, MO) using the procedure described in (Woltjer et al. 2003, 

2007). Confluent cells were treated with trypsin followed by washing in PBS. The cells 

were later resuspended in OptiMEM without phenol red (Gibco/BRL, Carlsbad, CA). The 

cells from suspension were then plated at 25,000 cells/well in 48-well plates. GKW was 

used as a medium for growing these cells in without the presence of tetracycline. 

Measurement of cell viability was performed at 2.75 days with CellTiter 96 Aqueous Non-

Radioactive Cell Proliferation Assay (Promega Corporation, Madison, WI). For statistical 

significance and repeatability, the experiments were performed in triplicate wells for each 

of the CAW sub-fractions and repeated 1-2 times (Soumyanath et al. 2012). 

Natural product discovery using loop-injection-MS 

Loop-injection (LI-MS) combined with high resolution accurate mass spectrometry (LC-

TOF) was conducted using a Shimadzu Nexera UHPLC system connected to an AB SCIEX 

TripleTOF® 5600 (Concord, Ontario, Canada) mass spectrometer equipped with a Turbo 

V ionization source operated in positive and negative electrospray ion mode. Flow infusion 

(or flow injection) electrospray mass spectrometry was used for high throughput studies. 

As the sample analysis time is reduced to less than 5 min in absence of chromatography 

analysis of 1000 samples within a week became feasible. Retention time alignment is 

omitted. Prerequisite for the efficient application of FI-MS approaches is access to at least 

high-resolution mass spectrometry equipment. Ultrahigh resolution mass spectrometry 

platforms in conjunction with flow infusion approaches was used to achieve high 

throughput metabolomic analysis (Emmett and Lichti 2017; J. Han et al. 2008; Wood 2021; 

Y. Zhu et al. 2021), however it also had some drawbacks, in particular the difference in 

ionization efficiencies of analytes results in ion suppression for ions with low ionization 

(Draper et al. 2013). Chromatographic techniques allow better separation of the isobaric 

metabolites based on the difference in polarities (Want et al. 2013).    
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For negative ion mode acquisition, the following parameter settings were used to operate 

the mass spectrometer: spray voltage -4,200 V; source temperature 550 °C and a period 

cycle time of 150 ms was used. For ESI+ acquisitions, the instrument settings were the 

same as used in the negative ion mode except that the spray voltage was set to 4,500 V. 

The mass spectrometer was equipped with a calibrant delivery system. Mass calibration 

was automatically performed after every two hours. Mass spectrometry data was acquired 

in MS/MS or data dependent acquisition mode.  

Statistical modeling to predict neuroprotective bioactivity 

ElasticNet and PLS-DA approaches were applied to identify active specialized metabolites 

from the molecular features obtained from mass spectrometric analysis of aqueous extract 

of Centella asiatica. The 21 fractions were tested for their neuroprotective effect in the 

MC65 cell culture model of Aβ toxicity, which uses % cell viability as a measure of cell 

protection. 

Elastic Net penalized logistic regression multivariate analysis was performed to determine 

the phytochemicals responsible for neuroprotective effect. The linear_model package from 

scikit-learn library v 0.24.2 was used to fit a regression model across 85 molecular features 

obtained from 21 fractions and CAW crude extract based on certain bound on the value of 

coefficients. Elastic net offered the advantage of shrinking of the some of the parameters 

to zero offering variable selection during the model fitting step. The penalization factor for 

elastic net was chosen using 10000 iterations and 5-fold cross-validation. The highest 

lambda from minimum standard error was selected for each iteration and median of the 

10000 lambda values was computed to determine the final penalization factor. 

The molecular features identified as leads are queried by their exact mass in online 

databases such as Human Metabolome Database (HMDB) (http://www.hmdb.ca/) and the 

Metlin database (https://metlin.scripps.edu) with exact mass in the range of 5 ppm. The 

annotations for molecular features were validated by comparing MS/MS fragment within 

range of 100 ppm with the online databases. PLS-DA was performed using ropls 

Bioconductor package (Thevenot 2017) to identify the significant contributors to 

neuroprotective activity. MCQs and DCQs were determined to have permutation test p-

value < 0.05. The selectivity ratio was computed using getSelectivityRatio from 

mdatools package v 0.11.5 (Kucheryavskiy 2020) in R to identify discriminating m/z 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metabolome
http://www.hmdb.ca/
https://metlin.scripps.edu/
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molecular features.  The selectivity ratios for the molecular features were plotted using 

Excel. 

Molecular Networking 

The MS/MS spectral data was used to create the GNPS network. MS/MS data have been 

deposited to the GNPS repository (http://gnps.ucsd.edu). The Centella fractions’ chemical 

diversity and associated % viability was used to create molecular networks using the online 

workflow described for Global Natural Products Social molecular networking. MSCluster 

was used to cluster the identical MS/MS spectra into single spectrum. The precursor and 

fragment ions the spectra were compared to the spectral libraries with 0.1 Da for the 

precursor ions and 0.5 Da for fragment ions.  The cosine score was used to compare 

similarities and differences of spectra with spectral libraries. The cosine score of 0.7 was 

used as a threshold for spectral match with libraries and the threshold for minimum 

matching peaks for annotating the spectral peaks was set at 6. The network was later 

imported and visualized using Cytoscape version 3.7. 

3.2.4 Results and Discussion 

The correlation of HRMS profiles of 21 CA subfractions with neuroprotective activity was 

obtained from the MC65 protection assay. Each subfraction was analyzed using flow-

injection MS positive and negative ion mode and the correlation between cytoprotective 

activity of each subfraction in MC65 neuroblastoma cells that conditionally express Aβ 

precursor protein was determined. This allowed validation of relative concentration of 

previously identified CQAs was in positive correlation with neuroprotective activity 

(Figure 3.7).  
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Figure 3.7 Creating phytochemical diversity to detect correlations of individual 

phytochemicals with biological activity. a. Left - Flow injection-TOF positive ion mode 

analysis of 21 CA subfractions. After data processing, over 1500 molecular features were 

aligned according to their molecular masses. Right - % Cell viability as an index of 

protection against Aβ toxicity. Bars represent % viability ± standard error of CAW extract 

and all subfractions of the CAW extract tested in MC65 cells in the presence of Aβ.  b. 

Correlation of % cell viability with the concentration of diCQAs (sum of isomers) ([M-H]-

, m/z 515.12) present in the 21 CA subfractions (each blue dots represents a subfraction). 
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% viability ± standard error assay of CA and all subfraction without tetracycline in MC65 

cells (n = 12-16). 

 

Computational approaches 

The mass spectral feature, m/z 353.0874 and m/z 515.1191 were identified as bioactive 

phytochemicals responsible for neuroprotective effect using multivariate regression Elastic 

net model (Table 3.4). 

 

Table 3.4 Selectivity ratio and elastic net hits for the experiment flow injection-TOF 

acquisition ion correlated with MC65 bioactivity assay. 

Compound SR 

Variable Imp in 

ElasticNet model Annotation  

Ion 

mode 

1.38_303.0502m/z 2.89  Quercetin POS 

1.62_257.0554m/z 1.88  N/A  NEG 

1.41_353.0874m/z 1.78 1.58 MCQs NEG 

1.79_516.1262n 1.66 2.44 DCQA's NEG 

1.78_163.0385m/z 1.58 0.8 Hydroxycoumarin POS 

1.55_461.0720m/z 1.57  Myricetin 3-glucoside NEG 

1.41_179.0351m/z 1.57  Caffeic Acid NEG 

1.50_539.1153m/z 1.55  N/A  POS 

1.41_537.1012m/z 1.54   N/A NEG 

1.45_605.0894m/z 1.53 0.73 Bisdihydroquercetin NEG 

1.52_513.1034m/z 1.52 0.69 N/A NEG 

1.66_477.0674m/z 1.52 

0.66 Quercetin 7-

glucuronide NEG 

 

 

Furthermore, the selectivity ratio plot of molecular features obtained from CAW extract 

using the PLS-DA model is shown in Figure 3.8. 
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Figure 3.8 PLS selectivity ratio. Di-caffeoylquinic acids selectivity ratio was 1.79, and it 

was in their top 5-hit list of correlated compounds. 

The m/z features with selectivity ratio greater than 1, indicating that 50% of original 

variance is explained by the molecular features that can be translated into potential leads 

for neuroprotective activity. The m/z 353.0874 [M-H]- had PLS selectivity ratio 1.78 and 

m/z 515.1191 [M-H]-had PLS selectivity ratio 1.67 (Figure 3.8). By using our in-house 

Oregon Natural Products (ONAP) MS library containing 331 plant NPs, the m/z 353.0874 

ion was assigned to mono-caffeoylquinic acid(s) and the m/z 515.1191 ion to di-

caffeoylquinic acid(s) and verified their identities by LC-MS/MS comparison with 

authentic standards. In an earlier study using a classic reductionistic approach, we 

identified several mono- and di-caffeoylquinic acids as neuroprotective principles of 

Centella asiatica. This example shows the power of the overall approach outlined. 

Analysis of clusters in the molecular network 

The chemical diversity of CAW fractions’ was mapped by creating molecular networks 

using the online workflow described for Global Natural Products Social molecular 

networking (Mingxun Wang et al. 2016). MS/MS spectra obtained from CAW crude 

extract and 21 fractions using high-resolution 5600 Sciex LC-QToF mass spectrometer in 

di-caffeoylquinic acids
mono-caffeoylquinic acids
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the data-dependent acquisition mode were converted into mzXML format, networked with 

the Spectral Networking algorithm, and the resulting molecular networks viewed in 

Cytoscape (Excoffier et al. 2017) (Figure 3.9A). Bioactivity information was overlaid on 

the GNPS molecular network using Cytoscape. The abundance of molecular features was 

represented in a pie chart with sub-fractions and their associated bioactivity level 

occupying larger area for higher abundance. To map the MC65 bioassay results onto the 

nodes, each bioactivity level measured as % cell viability ranging from 38% (no protection 

against Aβ) to 100% (full protection) to 117% (cell viability > 100% is considered as cell 

proliferation) was assigned a specific color tag (21 in total), and this color tag was applied 

to all nodes in the molecular network (Figure 3.9B). By using our in-house database 

(Alcazar Magana et al. 2020), we were able to quickly find the corresponding network 

cluster representing the di-caffeoylquinic acids (Figure 3.9C). The color mapping of the 

nodes representing an m/z value with the ‘pie slices’ representing the proportion of the 

chromatographic fractions having a specific activity level (37-117%) allows visualization 

of bioactive compounds and their distribution across fractions. As expected, di-

caffeoylquinic acids were primarily distributed over fractions with bioactivity levels in the 

range 103-117% (Figure 3.9D). We also identified the triterpene glycosides, 

madecassoside and asiaticoside, however, they were found in fractions having a lower 

bioactivity level as well (Figure 3.9E). 
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Figure 3.9 A) Generation of a massive molecular network from LC-TOF MS/MS analysis 

of 21 chromatographic fractions of aerial parts of Centella asiatica. (B, C) Bioactivity 

mapping shows that di-caffeoylquinic acids were found in fractions providing complete 

protection against Aβ toxicity (D), whereas triterpene glycosides (cluster E) were found in 

fractions providing partial protection (bioactivity level, 75%). GNPS constructs the 

molecular networks by aligning MS/MS spectra of the parent ions. The edges are 

constructed between nodes based on cosine score, which represents the similarity of the 

two nodes with each other. The nodes with the cosine score of zero are completely 

unrelated whereas the ones that have the cosine score of 1 are identical. We chose a cut-

off value of 0.70 for identifying similar nodes. The spectral matching was performed using 

MS2 fragmentation information. 
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This study demonstrated that computational models could be used to associate bioactivity 

to specialized metabolites in crude chromatographic fractions. This study also provided 

visualizations of association of bioactivity with the gradient of concentration in plant 

extract fractions without intensive purification. The integration of the ElasticNet approach 

and PLS selectivity ratio with the Global Natural Products Social Molecular Networking 

allowed in narrowing down the number of potential bioactive leads. In the case of Centella 

asiatica extracts, computational approaches successfully identified bioactives such as Di-

caffeoylquinic acids using LC-MS/MS comparison with in-house library of natural 

products.  
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4.1 Abstract 
 

Rationale: Biobanks of patient tissues have emerged as essential resources in biomedical 

research. Optimal cutting temperature (OCT) blends have shown to provide stability to the 

embedded tissue and is compatible with spectroscopic methods, such as infrared (IR) and 

Raman spectroscopy. Data derived from omics-methods are only useful if tissue damage 

caused by storage in OCT is minimal and well understood. In this context, we investigated 

the suitability of OCT storage for heart tissue destined for LC-MS/MS lipidomic studies. 

Methods: To determine the compatibility of OCT storage with LC-MS/MS lipidomics 

studies. The lipid profiles of Macaque heart tissue snap-frozen in liquid nitrogen or stored 

in OCT were evaluated.  

Results: We have evaluated a lipid extraction protocol suitable for OCT-embedded tissue 

that is compatible with LC-MS/MS. We annotated and evaluated the profiles of 306 lipid 

species from tissues stored in OCT or liquid nitrogen. For most of the lipid species (95.4%), 

the profiles were independent of the storage conditions. However, 4.6% of the lipid species; 

mainly plasmalogens, were affected by the storage method.   

Conclusion: This study shows that OCT storage is compatible with LC-MS/MS lipidomics 

of heart tissue, facilitating the use of biobanked tissue samples for future studies.  
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4.2 Introduction 

 

Tissue evaluation by biopsy is a cornerstone of pathology and is the foundation of disease 

diagnosis (Ziv, Durack, and Solomon 2016). Traditional methods of tissue processing 

include the use of formaldehyde, embedding in paraffin, prior to staining, so that the tissue 

can be sectioned for microscopic examination (Dietel et al. 2013). Flash freezing 

techniques are workarounds to avoid interfering noise from chemical fixatives, such as 

formaldehyde, in the spectroscopic signal (Jurowski et al. 2017).  

Optimal cutting temperature compound (OCT), a blend of glycols and resins, is used as 

one of the primary cryopreservation methods by tissue biorepositories. OCT is used 

primarily for stabilizing tissue samples, preventing them from drying out, and allowing 

long-term preservation of the tissue samples, while allowing it to be sectioned easily. OCT 

storage also allows preservation of structural integrity of the tissue with the polymers, 

polyvinyl alcohol and polyethylene glycol, providing the supporting matrix (W. Zhang et 

al. 2015). However, the polymers in OCT cause ion suppression in mass spectrometry (MS) 

(Schwartz, Reyzer, and Caprioli 2003). MS-based techniques are frequently used for 

measuring lipids that potentially can serve as biomarkers associated with diseased tissues. 

However, the utilization of OCT-biobanked samples for LC-MS/MS lipidomics has been 

hindered because the potential effects of OCT storage on measuring profiles of lipid species 

in tissue samples have not been systematically studied so far.   

Here, we report on a protocol for removal of OCT from OCT-embedded tissues that makes 

it possible to analyze lipids in OCT-embedded tissues using LC-ESI-MS/MS, allowing 

identification and quantification of lipid species in OCT-embedded heart tissues. 

 

 

4.3 Experimental 
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4.3.1 Materials and reagents 

SPLASH® LIPIDOMIX® Mass Spec Standard (Avanti Polar Lipids, Inc.) was added to 

mark the elution windows of 14 major lipid classes and is composed of the following 

deuterium-labeled lipid species: PC 15:0-18:1(d7), PE 15:0-18:1(d7), PS 15:0-18:1(d7), 

PG 15:0-18:1(d7), PI 15:0-18:1(d7), PA 15:0-18:1(d7), LPC 18:1(d7), LPE 18:1(d7), MG 

18:1(d7), DG 15:0-18:1(d7), TG 15:0-18:1(d7)-15:0, SM 18:1(d9), Cholesterol-d7, and 

cholesterol ester 18:1(d7). HPLC-MS grade methanol, chloroform, acetonitrile, 

isopropanol, and water were purchased from EMD Millipore. Formic acid ACS reagent 

was purchased from Fisher Chemicals. 

  

4.3.2 Sample collection and storage 

After epicardial fat was removed, transmural left ventricular samples were procured from 

two different macaques H6 and H10 from the Oregon National Primate Research Center 

with no underlying heart conditions. H6 (fetal macaque FMH6) was a male at G131 

(necropsy 06/09/2014) and H10 (FMH10) was female at G134 (necropsy 08/14/2014).  

One group (LN) was snap frozen in liquid nitrogen and the other group (OCT) was 

embedded in a cryomold with OCT (optimal cutting temperature) compound, then frozen 

on an isopropanol/dry ice slurry before storing it at -80oC. The OCT-embedded tissue was 

stored for four years prior to LC-MS/MS analysis. The tissues were obtained based on the 

guidelines from the institutional review board.  

 

4.3.3 OCT removal and lipid extraction 

Macaque heart tissues snap frozen in OCT or liquid nitrogen (LN), were obtained from 

Oregon Health & Science University. Samples were processed as previously reported 

(Loken and Demetrick 2005; W. Zhang et al. 2015) with some modifications. In brief, the 

tissues were washed with aqueous ethanol (70% v/v) two times followed by water to 

remove OCT from the tissue. After removal of OCT, 20 milligrams of tissue were placed 

with 300 µL of water:methanol 1:1 solvent mixture and 5 µL of SPLASH® 

LIPIDOMIX® in a 2 mL reinforced tube with ceramic beads (2.8 mm) along with 0.2 

mg/mL of butylated hydroxytoluene (BHT) to prevent lipid oxidation (Rubbosi et al. 
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1994; Watson et al. 1997). The tubes were placed in a bead beater homogenizer 

(PrecellysTM 24, Bertin Technologies, USA) and tissues were homogenized using six 

repeated cycles (20 s, 6000 rpm with 30 s of ice cooldown in between). The homogenate 

was mixed with 500 µL chilled chloroform (containing 0.02% of BHT), vortexed and 

mixed with 300 µL of chilled water. This homogenate mixture was centrifuged at 10,000 

g (4◦C, 10 min). Centrifugation separated the suspension into three phases. The top phase 

was comprised of mainly of polar compounds, the bottom phase contained most of the 

non-polar metabolites (used for lipidomics) and the protein pellet was formed in the 

interphase (Snyder et al. 2013). After SpeedVac drying, lipid extracts were created by 

re-suspending the residue in 200 µL of acetonitrile:isopropanol mixture (50 % v/v) and 

stored at -20 oC until analysis. 

 

4.3.4 UPLC-MS/MS analysis 

Lipidomic analysis was conducted in the data-dependent acquisition (DDA) mode using 

an AB SCIEX TripleTOF® 5600 mass spectrometer (AB SCIEX, Concord, Canada) 

coupled to Shimadzu Nexera UHPLC system. Data was acquired in the positive and 

negative electrospray ionization mode. The autosampler was maintained at 6 oC. Lipids 

were separated using an Acquity CSH C18 (2.1 x 150 mm, 1.7 µm) column (Waters Co.) 

A linear gradient with two mobile phases was used as previously reported by Cajka et al. 

(Cajka and Fiehn 2016b) with some modifications. Briefly, for acquiring data in the 

positive ion mode, phase A (60:40 (v/v) acetonitrile/water containing 10 mM ammonium 

formate and 0.1% formic acid (FA)) and B (90:10 (v/v) isopropanol/acetonitrile 

containing 10 mM ammonium formate and 0.1% formic acid) were used. The elution 

gradient was as follows: 0 min, 15% B; 2 min, 30% B; 2.5 min, 48% B; 11 min, 80% B; 

11.5 min, 100% B; 12 min, 100% B; and 12-15 min, 15% B. The flow rate was maintained 

at 0.6 mL/min. 

Electrospray voltage was set at 5500 V; and the source temperature was set at 550 ◦C. 

Period cycle time of 700 ms; accumulation time of 100 ms; m/z scan range of 100–1700; 

and collision energy of 35 V with collision energy spread (CES) of 15 V were used. Mass 

calibration was automatically performed after every fifth LC run.  
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For the negative ion mode, the same gradient and instrument parameters were used but 

with the following changes: Mobile phase A and B used 10 mM ammonium acetate 

without formic acid and electrospray voltage was set to -4500 V. 

Three replicates were injected for each of the tissue sample. The injection order was 

randomized for all samples with QCs and blanks injected after every five analytical runs. 

The mass spectral data was normalized by tissue weight after OCT removal (Rohrbach et 

al. 2020).  The DDA data were processed with Progenesis QITM software (NonLinear 

Dynamics, United Kingdom). For facilitating the comparative and differential evaluation 

of the datasets, we used “all compound normalization” in Progenesis QI, which includes 

alignment of spectral data and collapse to single compound ions, the later based on 

deconvolution of [M-H]-, [M+FA-H]-, [M-H2O-H]-, and [M+Na-2H]- adducts in the 

negative ion mode and [M+H]+, [M+Na]+, [M+2Na-H]+, and [M+CH3OH+H]+ in the 

positive ion mode. The aligned and deconvoluted molecular features were matched against 

lipid databases (HMDB, METLIN, and LipidBlast) for obtaining annotations for distinct 

lipid species. If the Progenesis score was 50 or higher, the lipid species annotation was 

considered a solid level 2 annotation and used for statistical analysis. A score higher than 

50 is typically reached when isotope pattern similarity is greater than 80%, MS/MS match 

is > 50% and accurate mass is 10 ppm or better (Housley et al. 2018; Magana et al. 2020). 

An annotation was included in the resulting dataset if the coefficient of variation for 

abundance for the ions was lesser than or equal to 25%. If a molecular feature was detected 

in positive and negative ion mode, the one with greater signal-to-noise ratio was chosen. 

Relative levels of the lipid species were obtained by computing their peak areas (Magana 

et al. 2020).    

 

4.3.5 Statistical analysis 

Annotated lipid species were compared among OCT-embedded heart tissue samples and 

liquid nitrogen (LN) flash frozen tissues using univariate and multivariate statistical 

methods. The normality assumption of the lipid species distribution across the replicates 

was validated with Shapiro-Wilk normality test. The profiles of lipid species across the 

OCT and LN groups were compared using Welch unpaired t-test for normal distribution.  
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Hierarchical clustering analysis (HCA) bottom-up approach was used to analyze whether 

the effect of storage condition or the biological variations was more profound on the lipid 

profile of the primate heart tissues. Multivariate principal component analysis (PCA) 

analysis was conducted on 306 lipid species (Table S4.1) to find trends in their levels 

across biological specimens and storage conditions and identify the outliers.  

False discovery rate (FDR) was used to adjust p-values to account for ‘by chance’ 

assignment of features to be significant in the population. FDR has been widely used in 

lipidomics studies for multiple hypothesis testing to alleviate type I errors (false 

positives). FDR was computed using the Benjamini and Hochberg method (Benjamini 

and Hochberg 1995)  as the number of features was greater than the number of samples 

(D. I. Broadhurst and Kell 2006). The scarcity of the animal model and the associated 

small sample size made us address the issue of limited statistical power by selecting FDR 

at 10% significance level for identification of truly significant features. The p.adjust 

function from R package stats version 3.6.2 ({R Core Team} 2020) was used with “fdr” 

argument for adjusting p-values of 306 lipids obtained from H6 and H10 tissues stored in 

OCT and LN storage conditions for evaluating the impact of OCT storage. 

 

4.4 Results and Discussion 

4.4.1 Results 

Methanolic extracts of heart tissue samples after removal of OCT with ethanol were 

analyzed by UPLC-high resolution MS/MS with the objective to evaluate the impact of 

OCT storage on the levels of lipid species that are typically detected in heart tissue samples. 

We annotated 224 molecular species in ESI- data and 132 in the ESI+ data. Thirty-five 

annotated lipids were recorded in both ionization modes, in such case, annotations with 

less CV on quality control (QCs) samples were kept. Of the 321 molecular species, 306 

were lipids, that were used for statistical comparison to determine to what extent OCT 

storage affects the detection and quantification of lipid species.  The annotated lipid species 

are described in detail in Supplementary table S4.1.  

We used univariate statistical analysis to evaluate the effect of storage conditions for lipid 

species belonging to following lipid classes: lyso-phospholipids (LysoPL), 
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phosphatidylcholines (PC), phosphatidylethanolamines (PE), plasmalogens, 

sphingomyelins (SM), diacylglycerols (DG) and triacylglcerols (TG). Using Welch’s t-test 

we determined that levels of saturated PCs, saturated PEs and SMs were not significantly 

different across OCT and LN storage conditions. Specifically, the lipid classes, PC and 

lysoPC, for the two storage conditions did not statistically differ from each other (p-values 

= 0.61 and 0.66, respectively).  The ratio of PC and lysoPC across the two different storage 

conditions was not statistically significant (p-value = 0.73) across the different storage 

conditions. The lipid class PE and SM also did not account for statistical differences (p-

values of 0.71 and 0.13) between the two storage conditions. The lipid class DG and ratio 

of levels of polyunsaturated (more than two double bonds) DG to di-unsaturated DG also 

did not exhibit statistical differences (p-values 0.63 and 0.93) across the two storage 

conditions.  

The plasmalogen lipid class (plasmenyl phosphatidylcholine (pPC), plasmenyl 

phosphatidylethanolamine (pPE) and plasmenyl lyso phosphatidylcholine (pLPC)) 

composed of unsaturated and saturated plasmalogens, were not statistically different (p-

values = 0.42 and 0.94) between the two storage conditions. However, the ratio of 

unsaturated plasmalogens to the saturated plasmalogens displayed statistically significant 

differences (p-value=0.074) between OCT and LN storage conditions based on Welch’s t-

test. Of the significantly different lipid species the majority (29%) belonged to 

plasmalogens. The 5% FDR threshold seemed too stringent because none of the lipid 

species would have been recognized as showing significant differences owing to OCT 

storage, therefore 10% FDR threshold was selected to obtain a more robust evaluation of 

observed disparate lipid species dependent on storage conditions.  

 Overall, fourteen (out of 306) lipid species, all belonging to unsaturated phospholipids and 

unsaturated (PC and PE) plasmalogens, with a statistically significant (meeting 10% FDR 

threshold) decrease in levels associated with OCT storage.  

The dendrogram, heatmap and PCA (Figure 4.1) multivariate analysis was performed on 

the lipid profiles of heart tissues stored in LN or embedded in OCT and flash frozen. 

Euclidean distance measure across 306 lipids was used to generate the dendrogram. The 

30 most dissimilar lipids are represented in a heatmap.  The PCA scores plot revealed two 
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clusters for the two groups, H6 and H10, without any overlap between their 95% 

confidence interval. 

 

Figure 4.1 Evaluation of storage conditions based on 306 lipid species detected in 

methanolic extracts of Macaque heart tissues H6 and H10 (biological samples). Heart tissue 

was embedded in OCT, frozen on an isopropanol/dry ice slurry and stored at -80oC or 

directly flash-frozen in liquid nitrogen (LN). When lipids were detected in both positive 

and negative ion modes, the one with lesser variation in the quality control sample was 

kept. a) Hierarchical clustering dendrogram constructed using Euclidean distances and 

Ward algorithm. b) Heat map of the 30 most dissimilar lipid species from 306 lipid species 

obtained from Macaque heart tissues stored in OCT or liquid nitrogen. The color scale 

represents z-score of the annotated lipid species with red representing positive z-scores 

(higher peak areas) and blue representing negative z-scores (lower peak areas). c) Principal 

component analysis scores plot obtained from lipid species of heart tissues H6 and H10 

(biological samples) stored in OCT and liquid nitrogen showed clustering of the biological 

specimens H6 and H10 using 306 lipids into two distinct groups.   

 

4.4.2 Discussion 

The goal of this study was to evaluate whether there were differences in lipid profiles of 

heart tissues stored by embedding in OCT, frozen on an isopropanol/dry ice slurry and 
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stored at -80oC or directly flash-frozen in liquid nitrogen (LN). OCT was removed prior to 

LC-MS/MS analysis by rinsing with ethanol (Loken and Demetrick 2005; W. Zhang et al. 

2015). 

Initially, we used multivariate analysis methods to explore which variable (biological 

background or storage condition) is predominant. The dendrogram, heatmap and PCA 

(Figure 4.1) were used to assess the effect of OCT storage on lipid profile of heart tissues. 

HCA (dendrogram) and heatmap showed distinct separation based on the biological 

samples H10 and H6 suggesting that impact of the biological samples is important rather 

than the effect of storage condition.     

PCA scores plot revealed that variability observed due to the LC-MS analysis was minimal. 

Although there were few differences in the lipid profiles caused by the storage conditions, 

the variations caused by differences in biological specimens were more significant. 

Multivariate statistical analysis of tissues stored under OCT and liquid nitrogen suggest 

that OCT-embedded tissues could be used for LC-MS analysis after removing OCT from 

the tissue with ethanol and water.  

Previously, Rohrbach et al. (Rohrbach et al. 2020) validated a procedure to analyze 

sphingolipid alterations in OCT embedded human tissues. Our findings agree with 

Rohrbach’s results, but importantly, it offers greater coverage of lipid classes. The lipid 

species comparison using volcano plot (Figure BS1) across OCT and liquid nitrogen 

indicated that less than 5% of the lipids were significantly different at 10% FDR threshold.  

The effect of OCT storage on the lipid profile of heart tissues was quantified using 

correlation and Forest plots (Figure 4.2).  The correlation analysis reveals that the lipid 

species levels showed a strong linear correlation and minimal deviation from the line of 

best fit indicating that storage conditions has little or no effects on the detected levels. 

Coefficient of determination R2 was greater than 99% across the two storage conditions for 

both biological replicates H6 and H10, demonstrating reproducibility of the analytical 

method.  Our analysis also showed that the two storage conditions had similar effect on 

majority of the lipid species as the slope of the lipid species profile for the two storage 

conditions for H6 and H10 was 0.99 and 0.92 across the replicates (Shah et al. 2015). The 

forest plot demonstrates the differences between major classes of lipids obtained from heart 
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tissues stored under OCT and liquid nitrogen storage conditions. The percentage difference 

across the lipid classes also revealed that some lipid species showed increased ion signals 

(negative difference percentage) or decreased ion signals (positive difference percentage) 

because of OCT storage.  The significant differences associated with OCT storage were 

only linked to decreased ion signals for lipids.  
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Figure 4.2 Untargeted lipidomic analysis a) Pearson correlation was computed across 306 

lipid species annotated in ESI positive and ESI negative ion mode between OCT storage 

and liquid nitrogen storage (Table BS1) for H6 heart tissues, b) Pearson correlation was 

computed across 306 lipid species annotated in ESI positive and ESI negative ion mode 

between OCT storage and liquid nitrogen storage (Table BS1) for H10 heart tissues, c) Plot 

displaying percentage difference between LN and OCT storage conditions for 268 lipid 
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species belonging to the following lipid classes: carnitines, ceramides, fatty acids (FA), 

lyso-phospholipids, phosphatidylcholines (PC), phosphatidylethanolamines (PE), 

phosphatidylserine, plasmalogens, sphingomyelins (SM) and neutral lipids 

(monoacylglycerols (MG), diacylglycerols (DG) and triacylglycerols (TG)). The 

percentage difference between OCT and LN storage conditions are displayed on x-axis and 

the lipid classes are displayed on y-axis. The individual lipids (Level 2 annotations) 

indicated as red circles showed significant differences across LN and OCT storage 

condition (FDR corrected p-value ≤ 0.1), whereas ones in blue indicate no significant 

differences (FDR corrected p-value > 0.1). 

 

Understanding the chemical response of diverse lipids species in different storage 

conditions, such as OCT and LN, is essential for clinical studies. Our method covers major 

lipid classes relevant to cardiac metabolism. The long-chain acylcarnitines and free fatty 

acids are associated with energy production in the heart tissue (Chokshi et al. 2012).  

Upregulation in the levels of TG in heart tissue suggests impairment in the cardiovascular 

function owing to reduced fusion in mitochondria and dysregulation of autophagy (Eum et 

al. 2020; Zhao et al. 2014).  Elevation in the levels of DGs and ceramides in heart tissue 

has been reported in cardiomyopathy (Chokshi et al. 2012), along with a decrease in 

contractility of the heart (Braz JC, Gregory K, Pathak A 2004; Drosatos et al. 2011). The 

deregulation of polyunsaturated DG has also been associated with ischemia in the heart 

tissue (Gysembergh et al. 2000). OCT storage did not have significant effect on lipid 

species levels belonging to carnitines, fatty acids, TG and DG (Table S1). Alterations of 

sphingomyelin (SM) levels in the serum have been associated with atherosclerosis, 

ischemia and myocardial reperfusion injury after ischemia (Hannun and Obeid 2018; 

Reforgiato et al. 2016; Wong et al. 2000). Dysregulation of PE in heart tissue is associated 

with reduced contractility (Vecchini et al. 2000) and ischemia (Post, Bijvelt, and Verkleij 

1995). The lysophospholipids in plasma are linked with atherosclerosis and ischemia 

(Abdel-Latif et al. 2015). Elevation of lysoPCs in heart tissues has been observed in 

tachycardia and arrhythmias resulting in sudden cardiac death (Giffin et al. 1988; Lou et 

al. 2020; Rigoni et al. 2007; Sedlis et al. 1983). The elevation in the ratio of PC to LPC in 
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the serum has been linked to arterial stiffness (Paapstel et al. 2018) and alterations in the 

level of plasmalogens (PC(P)s, PE(P)s and LysoPC(P)s) in plasma are associated with 

coronary artery disease  (Meikle et al. 2011).  

Comparison of SMs, PEs, lysophospholipids, PC to LPC ratio, unsaturated and saturated 

plasmalogens levels revealed no significant impact of OCT storage., which in turn 

suggests, the suitability of OCT storage for biobanking of heart tissue samples for future 

studies. However, OCT storage did affect the ratio of unsaturated plasmalogens to saturated 

plasmalogens. Plasmalogens have a vinyl ether bond at the sn-1 position and 

polyunsaturated fatty acids at the sn-2 position. The hydrogen atoms adjacent to the 

position of the vinyl ether bond are weakly bound, making this class of lipids susceptible 

to oxidation (Bourdillon et al. 2014). OCT storage over long periods might expose heart 

tissues to oxidative degradation, resulting in changes in the levels of plasmalogens across 

OCT and liquid nitrogen storage conditions (Clark 1986; Southard et al. 1991).  

Taken together, the lipidomic analysis indicated that after a typical extraction (Folch Jordi, 

Lees M, and Stanley G H Sloane 1957) the storage with OCT did not majorly impact the 

lipid profile in macaque hearts. Thus, we conclude, that the described procedure can be 

utilized for profiling the major lipid classes (except for unsaturated plasmalogens) of OCT-

biobanked heart tissue samples.  

    

4.5 Conclusion 
 

The results of our study suggest that the described protocol allows determining lipid species 

profiles of OCT-embedded tissues by ESI LC-MS/MS. Caution needs to be taken when 

evaluating plasmalogens in OCT-embedded tissue, likely due to sensitivity of 

plasmalogens to oxidation This study demonstrated the effective analysis of Macaque heart 

tissue stored in OCT, while not using precious human specimens.  From a clinical 

perspective, this is valuable information because OCT storage does not alter lipidomic 

signatures. Therefore, the ability to have tissue stored in OCT and available for metabolic 

assessment using analytical methods, such as mass spectrometry, makes it easier to access 
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a wider pool of cardiac tissue.  This applies to tissues that are stored in biobanks and 

biorepositories. 
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5.1 Abstract 
 

An integrated analytical method was developed to determine if a doxycycline (DOX)-

dependent gene expression knockdown system is a viable strategy in the context of 

metabolomic studies of breast cancer cells for studying the biological effects of targeted 

gene silencing. The frequently employed triple negative breast cancer cell lines, MDA-

MB-231 and HS578T, with and without DOX-inducible scrambled RNA constructs were 

used to determine impact of doxycycline.  

Polar metabolites typically associated with tricarboxylic acid and lipid contents of these 

cells were assessed. Comparative metabolomic analysis was conducted on the cells, using 

combination of NMR and, hydrophilic interaction chromatography (HILIC) method in 

conjunction with high resolution tandem mass spectrometry (HRMS/MS). Comparative 

lipidomic analysis was conducted using reversed phase ultra-performance lipid 

chromatography (RPLC) coupled with a high-resolution mass spectrometry to 

comprehensively access the impact of the DOX-inducible gene silencing strategy. 

Metabolite differences between cells with doxycycline treatment and control cells were 

mapped to central carbon, one carbon, and methionine and glutathione metabolic pathways. 

Lipid classes that were significantly affected (FDR ≤ 0.05) between doxycycline treatment 

and control groups mainly comprised of phosphatidylcholines, phosphatidylethanolamines 

and plasmalogens. Overall, the differences in comparative metabolomics and lipidomics 

suggested that DOX-based gene expression knockdown strategies unexpectedly affected 

metabolic pathways in the breast cancer cell lines tested under the conditions applied.  

5.2 Introduction 
 

Gene silencing strategies are popular experimental tools to study biological mechanisms in 

cell cultures and animal models. One of the popular gene silencing techniques is the usage 

of short hairpin RNA (shRNA) expression vectors. This mechanism uses single lentivirus 

vector system, for knockdown of the target gene by RNA interference (Achenbach, 

Brunner, and Heermeier 2003). RNA-interference controlled by drugs enables conditional 
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endogenous gene expression, but this method has such drawbacks as ineffective 

knockdown, potential irreversibility and complex design involving multiple vectors. 

The doxycycline induced knockdown of a target gene with a single lentivirus was found to 

provide specific gene knockdown, effective control of gene expression, and was found to 

be fully reversible (Aagaard et al. 2007; Matsukura 2003; Szulc et al. 2006).   Doxycycline 

is a member of the tetracycline family and has been used as an antibiotic for decades and 

more recently against a variety of inflammatory diseases (Krakauer and Buckley 2003). 

Inhibition of apoptosis (Li et al. 2014), alterations of energy metabolism (Weinhouse et al. 

1956), membrane fluidity (Eiriksson et al. 2018) and epigenetic modifications (Rubinek et 

al. 2012) have been associated with breast cancer cells. Rapid cell growth of cancer cells 

results in an increased demand for cell membrane components. Phosphatidylcholines (PCs) 

are required for biosynthesis of cell membranes. Due to the fact that polyunsaturated PCs 

are more likely to be oxidized which may potentially cause cell damage and death, higher 

levels of saturated PC and lower levels of polyunsaturated PC in cancer cells are favored 

in cell membranes  (S. Guo et al. 2014; Hilvo et al. 2011). Sphingomyelins (SMs) and 

phosphatidylethanolamines (PE) have been linked with apoptosis through caspase 

activation and specific PE-binding that helps in identification of apoptotic cells 

respectively (Ségui et al. 2006; X. Wang et al. 2004). The plasmalogens are responsible for 

inhibiting epithelial-mesenchymal transformation (EMT) that is responsible for imparting 

membrane fluidity to the breast cancer cells.  

Epigenetic silencing of the tumor suppressor E-cadherin gene, responsible for inhibiting 

EMT, from DNA methylation of 5’CpG regions results in increase in proliferation and 

metastases of cancer cells (Widschwendter and Jones 2002). Doxycycline has been known 

to target E-cadherin gene that leads to the arrest of breast cancer cell migration (Zhong et 

al. 2017).  The migratory breast cancer cells also require energy metabolism which is linked 

with increase in lactate production and utilization of glutamate in the mitochondria (Peiris-

Pagès et al. 2016).  Doxycycline has been  known to adversely impact cellular proliferation 

and mitochondrial function in cancer cells (Saikali and Singh 2003; Su et al. 2013) which, 

in turn, decreases tumor cell survival (L. Zhang et al. 2017).  
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MDA-MB-231 and HS578T were studied widely (Chavez, Garimella, and Lipkowitz 

2010) and were chosen since they were triple negative breast cancer cell lines, cell lines 

that were devoid of the estrogen receptors (ER2), progesterone receptors (PR), and were 

devoid of amplified production of human epidermal growth factor 2 (HER2). MDA-MB-

231 and HS578T are convenient in vitro models for studying mechanism associated with 

aggressive cancer cell phenotypes that undergo metastasis with high propensity. In addition 

to metastasis, MDA-MB-231 breast cancer cell line also exhibit lack of differentiation.  

This study aimed at assessing whether doxycycline based knockdown strategy along with 

scrambled RNA constructs as they did not have the potential to induce specific gene 

knockdown.  impacted the metabolic pathways associated with proliferation and 

mitochondrial function using the metabolomics approach. We observed differences in 

metabolite and lipid levels caused by the response of these model cells to doxycycline 

treatment compared to untreated cells.  

 

5.3 Materials & Methods 
 

5.3.1 Chemicals 

Polar metabolite standards were purchased from IROA Technologies. The SPLASH® 

LIPIDOMIX® Mass Spec Standard was used as the internal standards mixture. The 

SPLASH® LIPIDOMIX® Mass Spec Standard comprised of (Lyso PC (19:0), PC 

(17:0/17:0), PE (17:0/17:0), PG (17:0/17:0), TG (17:0/17:0/17:0), Tridecanoic acid (FA 

13:0), Pentadecanoic acid (FA 15:0), Heptadecanoic acid (FA 17:0) lipids and was 

purchased from Avanti Lipids. HPLC-MS grade methanol, chloroform, acetonitrile, 

isopropanol and water were purchased from EMD Millipore. Formic acid ACS reagent was 

purchased from Fisher Chemicals. 

5.3.2 Metabolite Extraction for LC-MS/MS and 1H NMR 

Samples were initially washed with PBS to maintain structural integrity of the cells. The 

cells were homogenized in methanol by rigorous shaking with ceramic beads. The 

homogenizer was operated at 5000x g with a pulse of 20 s for 2 mins.  Metabolites, lipids 

and proteins were extracted from the cells using methanol, water and chloroform in the 
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ratio 6:6:5.4 (Snyder et al. 2013). The extract was centrifuged at 10000x g for 10 mins at 

4oC which separated the extract into 3 phases, namely polar, non-polar and protein. The 

top layer of liquid extract comprising the polar fraction contained predominately polar 

metabolites, while the bottom layer contained the non-polar metabolites, mainly lipids. The 

polar layer was aspirated and separated from other two phases. This was followed by 

aspiration of non-polar phase all the while ensuring that the protein pellet was left 

undisturbed.  The polar phase was divided into two fractions; 90% was reserved for NMR 

analysis and 10% was used for the MS analysis.  Fractions were dried in a centrifugal 

evaporator.  

The NMR-destined dried polar fraction was reconstituted in 1mM PBS and NMR standard 

comprising of sodium trimethylsilylpropanesulfonate (DSS) and deuterated water (D2O). 

The MS-destined polar fraction was reconstituted with 10 mM ammonium acetate in 95/5 

acetonitrile/water. For extraction of lipids the method by Bligh and Dyer (Bligh and Dyer 

1959) was followed. The lipid portion was reconstituted using the extraction solvent 

comprising of isopropanol and acetonitrile (10% v/v acetonitrile) and 0.02% of butylated 

hydroxytoluene (BHT) and 1μg/ml IS mixture.  The lyophilized protein pellets from all 

cell samples were stored at -80 oC  prior to protein quantification by Bradford assay.  

5.3.3 Protein Estimation  

Protein pellets were dissolved in 400 µl of 0.1 % Rapigest solution in 50 mM ammonium 

bicarbonate and protein concentration was determined by Bradford assay. To dissolve 

completely, it was vortexed and heated up to 65 oC for one hour. After getting transparent 

homogeneous solution 10 µl aliquots were taken and diluted 50 times in 50 mM ammonium 

bicarbonate. 

20 ul of 50 times diluted protein solution were transferred to one well of 96-well plate. 20 

ul of BSA standard solutions having protein concentrations from 0 to 0.2 µg/µg were used 

instead of the sample for calibration curve. Then, 180 µl of Quick StartTM Bradford 1x Dye 

Reagent were added to every well, the plate was gently mixed on the autoshaker for 5 

minutes, and absorbance at 450 nm was measured. For each Sample/BSA standard three 

wells were assigned, analysis was performed in triplicate and the measurements were 

averaged.  
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5.3.4 HILIC LC-MS Method Optimization 

Metabolites are commonly represented by a few isomers in human cells. This elevates the 

importance of chromatographic separation for identification and quantification of these 

metabolites. Optimization of chromatographic separation would also help in minimizing 

ion suppression. The mechanism of separation in HILIC chromatography involves 

hydrophilic partitioning of polar metabolites in stationary polar phase. The analytes are 

retained using dipole-dipole interactions, hydrogen bonding and ion exchange with the 

stationary phase in the column. Therefore, the mobile phase gradient was optimized to 

prevent non-polar metabolite elution in dead volume and peak tailing. The column was 

tested with 3 different gradients, 80%, 90% and 95% of acetonitrile. At least 5% water was 

maintained in the mixture during the process of gradient selection to improve the life of 

the column  (Snyder et al. 2013). The gradient with 90% B was selected to obtain sharp 

peaks of metabolites without losing any metabolite information. Once the HILIC method 

was optimized, a library was created from authentic standards for the HILIC-MS method 

that helped in metabolite assignments based on matching, retention time and mass spectral 

data with the curated spectral information.            

 

5.3.5 HILIC LC-MS analysis  

Polar metabolites were separated by a hydrophilic interaction liquid chromatographic 

(HILIC) method using SeQuant® ZIC®-HILIC (3.5 µm, 200 Å) 150 x 1 mm column with 

a constant flow rate of 0.1 ml/min. Mobile phase A was composed of 5% acetonitrile 

solution with 10 mM ammonium acetate and mobile phase B comprised of 95% acetonitrile 

solution with 10 mM ammonium acetate (Snyder et al. 2013). The injection volume was 1 

μL and it comprised of metabolites extracted from approximately 5000 cells per injection.  

The concentration gradient was set at initially at one minute at 90% B, followed by 5 to 

30% B from 1 to 18 minutes, then 30% to 90% B from 18 to 20 minutes, then gradient was 

held at 90% B from 20 to 30 minutes. The mass spectrometry analysis was performed on 

AB SCIEX TripleTOF 5600 mass spectrometer which is a quadrupole time-of-flight mass 

spectrometer. This instrument was operated in information dependent acquisition with high 

sensitivity using an acquisition time of 0.2 s and a full scan range of 50–1000 Da.  The 

instrument was operated with electrospray ionization source in positive (ESI+) and 
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negative (ESI-) ion modes. The mass spectrometer was operated using the following 

parameter settings: spray voltage 4500 V (positive mode) -4000 V (negative mode); source 

temperature 500 °C, period cycle time 950 ms, accumulation time 100 ms, m/z scan range 

between 100 and 1200 Da, collision energy 35 V with collision energy spread (CES) of 15 

V. Each MS/MS scan had an accumulation time of 0.20 s and a range of 40–1000 Da. 

5.3.6 RPLC-MS analysis 

Lipid profiling was conducted using HSS T3 column 150Å, 1.8 μm, and 2.1mm × 100mm 

(Waters, Milford, MA, USA) on an Acquity UPLC (Waters, Milford, MA, USA). The 

column temperature was maintained at 55°C, auto-sampler was held at 6°C. The mobile 

phase for lipidomics in ESI+ mode comprised of solvent A consisting of aqueous solution 

of acetonitrile (60% acetonitrile %v/v) along with 10 mM ammonium formate and 0.1% 

formic acid acting as a buffer and solvent B consisting of mixture of acetonitrile and 

isopropanol (10% acetonitrile %v/v) and 10 mM ammonium formate and 0.1% formic acid. 

The flow rate was maintained at 0.4mL/min.  Concentration of solvent B was set at 15% 

initially and it was modulated according to the following gradient: 

0-0.3 min 15 % (B); 0.3–2.2 min 30 % (B); 2.2–9 min 50 % (B); 9–9.30 min 80 % (B); 

9.30–11.8 min 100 % (B); 11.8–16 min 15 % (B). This gradient was used for both ESI+ 

and ESI- modes. 

UPLC setup is connected to a Synapt G2 HDMS mass spectrometer (Waters, Manchester, 

U.K.). The mass spectrometer was operated using the capillary voltage and cone voltage 

of ± 2.5 KV and ± 35 V, respectively, for positive and negative ion modes respectively. 

Mass spectrometry analysis was performed using ESI+ mode with a source temperature of 

100 °C, a spray voltage of 4500 V, period cycle time of 274 ms, accumulation time of 250 

ms, m/z scan range between 80 and 1500 and collision energy of 45 V with CES of 10 V. 

Certain lipids such as fatty acids cannot be detected using ESI+ so the Synapt G2 

instrument was also operated in ESI- mode. The mobile phase for lipidomics in ESI- mode 

comprised of solvent A consisting of aqueous solution of acetonitrile (60% acetonitrile 

%v/v) along with 10 mM ammonium acetate acting as a buffer and solvent B consisting of 

mixture of acetonitrile and isopropanol (10% acetonitrile %v/v) and 10 mM ammonium 

acetate. The ESI- mode was operated with a source temperature of 100 °C, spray voltage 
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of 2500 V, period cycle time of 274 ms, accumulation time of 100 ms, m/z scan range 

between 80 and 1500 and collision energy of 35 V with CES of 10 V. Mass spectrometry 

analysis for both ESI+ and ESI- modes was performed in data-independent and multi-

parallel collision-induced dissociation MSE acquisition mode, the precursor ion data was 

collected using a low collision energy setting of 5 eV, while for the fragment ion data 

collection the collision energy ramped from 15eV to 55 eV applied in the trap region of the 

Tri-Wave device. Argon gas was used for the collision-induced dissociation.    

5.3.7 NMR 

NMR data was collected on OSU’s 800 MHz NMR spectrometer equipped with a triple 

resonance cryogenic probe. 

 

5.3.8 Experimental Design 

The experiment comprised triplicates of parental cells of doxycycline treatment (cells with 

DOX-based RNA construct) and control groups (cells with RNA construct without 

doxycycline) for both MD-MBA 231 and HS578T cell lines. The LC-MS experimental 

design comprised of two sample injections for each of these biological replicates. In 

addition to the sample injections, quality control (QC), created by pooling together 20 μL 

of each extract was also injected to account for deviations in data acquisition. The sample 

injections were randomized, and blanks and QC injections after every five sample 

injections to check for the performance of the method. NMR injections were carried out 

only for the polar extract of the biological replicates for both the cell lines.  

LC-MS and NMR data were collected in three biological replicates of doxycycline 

treatment (cells with DOX-based RNA construct) and control groups (cells with RNA 

construct without doxycycline) for both MD-MBA 231 and HS578T cell lines. The LC-

MS experimental design comprised of two sample injections for each of these biological 

replicates. In addition to the sample injections, quality control (QC), created by pooling 

together 20 μL of each extract was also injected to account for deviations in data 

acquisition. The sample and qc injections were randomized, and blanks and QC injections 

after every five sample injections to check for the performance of the method. NMR 

injections were carried out only for the polar extract of the biological replicates for both 

the cell lines.  
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5.3.9 Data Analysis 

Peakview software was used to process UPLC-MS data for metabolomics and MassLynx 

software (version 2.2; Waters, Milford, MA, USA) was used to acquire and process UPLC-

MS data for lipidomics. Extracted ion chromatograms were generated using MS data in 

these programs. The retention times obtained from these extracted ion chromatograms were 

compared with retention times of standards from the library.  

The retention times of samples deviated within a window of two minutes with the 

standards. So automatic feature alignment could not be used. Therefore, Multiquant 

(version 3.0.2) was used for integration of peak areas of metabolites manually. IROA 

metabolite standards library, along with Human metabolic database (HMDB) and Metlin 

database was used for feature identification. Progenesis QITM software with MetlinTM 

plugin (version 1.0.6499.51447; NonLinear Dynamics, United Kingdom) was used to align 

reversed phase chromatographic peaks, to perform feature detection with peak picking 

function, features were then matched with lipid databases for lipid identifications and 

compare the lipid levels between doxycycline treatment and control using intensity of 

fragments of lipids. The Progenesis used Human Metabolic Database and LipidBlast 

databases for lipid annotation. Lipid annotations with confidence were made for lipids that 

obtained score ≥ 50. The score ≥ 50 represented similarity of isotope pattern greater than 

90%, MS/MS score higher than 50% and less than 5 ppm mass deviation from accurate 

mass.  The product ions were annotated based on their elemental composition compared to 

the m/z values obtained with an accuracy of 10 ppm.  The small polar metabolites were 

identified and quantified with NMR using the Chenomx (version 8.42; Chenomx, 

Edmonton, AB, Canada) software suite. Peak areas of analytes obtained using mass 

spectrometry and concentrations obtained using NMR were normalized by protein 

concentration to account for variation of metabolite and lipid levels across biological 

replicates.  

The Welch’s t-test with false discovery rate correction and unsupervised multivariate 

statistical methods were used to compare metabolites and lipids obtained from HRMS and 

NMR techniques across scr + and scr – cells. MetaboAnalyst (version 4.0) and RStudio 

(version 1.1) were utilized for data processing and analysis. Metabolites which were found 

to be differential by either MS or NMR method (>1.5 fold change, FDR<0.05) were 
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imported into Pathway analysis and Enrichment analysis tools provided by MetaboAnalyst 

5.0 website.  

5.4 Results 
Metabolite assignments were performed by comparing the retention time, exact mass, 

isotope similarity, MS/MS fragmentation to the in-house library which resulted in 166 

metabolite assignments in the ESI+ mode and 153 metabolite assignments in the ESI- mode 

(Table CS1 and A.T6.2). There were 254 metabolite assignments in both ESI+ and ESI- 

mode in mass spectrometry which were substantially higher than the number of metabolites 

identified using NMR (29). These metabolites and their levels were imported into Pathway 

analysis module of MetaboAnalyst 5.0 website to find out what metabolic pathways were 

affected by doxycycline. Minor metabolic pathways mentioned above were classified into 

four major metabolic pathways, namely central carbon, one carbon, methionine and 

glutathione metabolism. Tricarboxylic acid cycle (Figure CS1 a), glutamate and glutamine 

metabolism (Figure CS1 b), alanine-aspartate and glutamate metabolism (Figure CS1 c) 

can be classified under central carbon metabolism. The central carbon metabolism had 

significant hits (false discovery rate corrected p value ≤ 0.05) (Table CS3) in comparison 

with expected and total hits.  Similarly, purine and pyrimidine metabolism, can be 

combined into one carbon metabolism (Clare et al. 2019; Suh, Choi, and Friso 2016) had 

significant hits FDR adjusted p value ≤ 0.05) (Table CS3) across MDA-MB-231 cells. 

Although glutathione (Figure CS1 d) and methionine metabolism did not have significant 

hits due to lack of standards in the IROA library, they showed a high impact (> 0.1).  Fifty-

three metabolites (Table CS4) belonging to these pathways were selected because of their 

reproducibility across both NMR and MS platforms and the statistical significance of these 

metabolites on the major biological pathways (Table CS3). 32 of these metabolites were 

selected using ESI positive ion mode whereas 21 metabolites were selected in ESI negative 

ion mode. Spectra information for 15 metabolites was available in both positive and 

negative modes. NMR was used to quantitatively determine concentration levels of 17 

metabolites of which 9 were found using MS. 
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5.4.1 Comparative Metabolomics Analysis in MDA-MB-231 cells and HS578T cells 

The results of comparison of 53 metabolites between doxycycline treatment (scr+) and 

control cells (scr-) in MDA-MB-231 cell line are listed in Table CS4. These results were 

analyzed to validate if the metabolic profile of doxycycline interferes with metabolic 

pathways involved in the breast cancer cells. Twelve metabolites were selected in the 

central carbon metabolism, eight metabolites from one carbon metabolism, eight 

metabolites from methionine metabolism and three metabolites from glutathione 

metabolism. The fold changes for the metabolites across central carbon, one carbon, 

methionine, glutathione metabolism was quantified using mass spectrometry and NMR 

between scr+ and scr- cells of the MDA-MB-231 cell line. False discovery rate (FDR) was 

obtained for statistical comparison of the metabolite levels across scr+ and scr- cells using 

Metaboanalyst 4.0 website. The metabolomics results comprising the fold change of 

metabolites between scr+ and scr- cells and their statistical significance (FDR) in each of 

the four metabolic pathways are shown using bar plots (Figure 5.1). Bar plots showed that 

the doxycycline treatment interfered with the oncometabolites in MDA-MB-231 cells 

(Table AT6.4) in the central carbon metabolism (Figure 5.1a), one carbon (Figure 5.2b), 

methionine (Figure 5.2c), glutathione metabolism (Figure 5.2d). Glutamate, glycine, 

choline, taurine, 5'-MethylThioAdenosine (5'MTA), NAD+ were upregulated 

significantly, whereas aspartate was downregulated significantly between scr+ and scr- 

cells of MDA-MB-231 cell line. 
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Figure 5.1 Bar plot with standard errors visualizing fold change for metabolite levels across 

super-pathways for the comparison of scr+ versus scr- MDA-MB-231 cells along with their 

statistical significance and corresponding acquisition method (NMR or MS) (a) Central 

carbon metabolism (b) One carbon metabolism (c) Methionine metabolism (d) Glutathione 

metabolism. 

                                                                                                                                         

Comparative metabolomics was also performed on HS578T cells to validate whether 

doxycycline only impacted one type of cells or whether the effect of doxycycline was more 

profound, and whether it impacted multiple cell lines. NMR was used to detect and quantify 

fifteen metabolites and the fold changes across the doxycycline treatment (scr+) and 

control (scr-) cells of HS578T cell line. The statistically significant metabolites were 

obtained using false discovery rate adjusted t-test in Metaboanalyst 4.0 website. The fold 

changes and statistical significance are depicted in bar plot in Figure 5.2a and are listed in 

Table CS5. Lactate was significantly downregulated in scr+ cells as compared to scr- cells. 

Although not statistically significant individually, the depletion of energy metabolism 



108 
 

intermediates group that consisted of NAD+, pyruvate, glutamate and glycine was also 

observed to be statistically significant (p-value = 0.05) and with lactate the energy 

metabolism was statistically significant (p-value = 0.002) with substantial evidence across 

scr+ and scr- cells.  Principal component analysis (PCA) (Figure 5.2b) was applied using 

these fifteen metabolites to identify the variation in the HS578T cells because of 

doxycycline treatment. PCA results showed clear separation between the scr+ (doxycycline 

treatment) and scr- cells (control).   

 

Figure 5.2 NMR Metabolomics to study the effect of doxycycline on HS578T cell line. (a) 

Bar plot with standard errors to visualize fold changes across polar metabolites identified 

in scr+ and scr- cells along with their statistical significance. (b) Score plot for principal 

component analysis of polar metabolites across three biological replicates of scr+ and scr- 

cells. 

  

5.4.2 Comparative Lipidomics Analysis in MDA-MB-231 and HS578T cells 

The classes of lipids that were involved in cancer proliferation, membrane fluidity, 

mitochondrial impairment, cell signalling and apoptosis were selected. Therefore, 32 

different lipids (Table CS6) for MDA-MB-231 cells and (Table CS7) for HS578T cells 



109 
 

were selected from phosphatidylcholines (PC), phosphatidylethanolamine (PE), 

plasmalogens, SM (sphingomyelins) and cardiolipins (CL) lipid classes from a list of 69 

annotated lipids in case of MDA-MB-231 cells (Table CS8) and amongst the list of 78 

annotated lipids in case of HS578T cells (Table CS9) using RPLC-MS in both ESI+ and 

ESI- modes. The selected lipids had different number of carbons and a varying level of 

unsaturation. 

Thirty two different lipids (Table CS6) for MDA-MB-231 cells and (Table CS7) for 

HS578T cells were selected from phosphatidylcholines (PC), phosphatidylethanolamine 

(PE), plasmalogens, SM (sphingomyelins) and cardiolipins (CL) lipid classes from a list 

of 69 annotated lipids in case of MDA-MB-231 cells (Table CS8) and from the list of 78 

annotated lipids in case of HS578T cells (Table CS9) using RPLC-MS in both ESI+ and 

ESI- modes as these lipids were associated with cancer proliferation, membrane fluidity, 

mitochondrial impairment, cell signalling and apoptosis. These lipids selected had different 

number of carbons and a varying level of unsaturation.  

The volcano plots in Figure 5.3a and Figure 5.4a shows the lipidomic profile for 

doxycycline treatment for MDA-MB-231 and HS578T cells respectively. Most of the 

lipids considered, were significantly upregulated in cells that received the doxycycline 

treatment (Figure 5.4a) in MDA-MB-231 cells. However, there was no clear trend observed 

for lipids in HS578T cells but most of lipids considered were significantly dysregulated 

(Figure 5.4a). The lipids in both MDA-MB-231 and HS578T cells clustered into two 

distinct groups for the 32 selected lipids between the doxycycline treatment with scrambled 

RNA construct (scr+) and scrambled RNA construct without doxycycline (scr-) as seen in 

PCA plot in Figure 5.3b and Figure 5.4b respectively. 
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Figure 5.3 Results of comparative lipidomics between scr+ (scr_p) and scr- (scr_m) of 

MDA-MB-231 cell line. (a) Volcano plot comparing the differences in the lipid profile 

caused due to doxycycline treatment in MDA-MB-231 cells. The adjusted p-value and fold 

change were obtained using false discovery rate (FDR) and the mean ratio of lipid levels 

respectively across scr+ and scr- cells. The lipids with adjusted p-value ≤ 0.05 (statistically 

significant) are represented in red whereas the lipids with adjusted p-value > 0.05 are 

represented in blue. Lipids are represented as LipidFamily(NC:NB)_p, where lipid family 

specifies which lipid family does the lipid of interest belong to, NC represents  number of 

carbons and NB denotes the number of unsaturated bonds. ‘_p’ represents ESI positive 

mode of data acquisition or ‘_n’ mode shows ESI negative mode of data acquisition. The 

significant lipids (p-value ≤0.05) are denoted by *. (b) Score plot for principal component 

analysis of lipids across 3 biological replicates of scr+ and scr- cells for all lipids detected. 
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Figure 5.4 Results of comparative lipidomics between scr+ (scr_p) and scr- (scr_m) of 

HS578T cell-line. (a) Volcano plot comparing the differences in the lipid profile caused 

due to doxycycline treatment in HS578T cells. The adjusted p-value and fold change were 

obtained using false discovery rate (FDR) and the mean ratio of lipid levels respectively 

across scr+ and scr- cells. The lipids with adjusted p-value ≤ 0.05 (statistically significant) 

are represented in red whereas the lipids with adjusted p-value > 0.05 are represented in 

blue. Lipids are represented as LipidFamily(NC:NB)_p, where lipid family specifies which 

lipid family does the lipid of interest belong to, NC represents  number of carbons and NB 

denotes the number of unsaturated bonds. ‘_p’ represents ESI positive mode of data 

acquisition or ‘_n’ mode shows ESI negative mode of data acquisition. The significant 

lipids (p-value ≤ 0.05) are denoted by *. (b) Score plot for principal component analysis of 

lipids across 3 biological replicates of scr+ and scr- cells for all lipids detected. 

 

Significantly higher levels of unsaturated PEs, PE (37.2), PE (37.5) and PE (37.6) were 

observed in the scr+ cells of MDA-MB-231 cell line (Figure 5.3a). However, the HS578T 

cell line showed both upregulation and downregulation trends in unsaturated PEs as PE 

(36:2) was upregulated while PE (40:2) and PE (40:3) were downregulated significantly in 
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the scr+ cells (Figure 5.4a). Similarly unsaturated PCs, PC (30:2), PC (34:3), PC (36:2), 

PC (36:4), PC (38:3), PC (38:5) and PC (40:4) were also upregulated significantly in the 

scr+ cells of the MDA-MB-231 cell line (Figure 5.4a). The HS578T cell line did not exhibit 

a clear downregulation or upregulation trend in unsaturated PCs as there was significant 

increase in the levels of PC (32.3) and PC (34.1) and a significant decrease in the levels of 

PC (32:1), PC (32:2), PC (36:0), PC (36:1) and PC (36:5) in the scr+ cells (Figure 5.4a). 

Unsaturated sphingomyelin, SM (d34:1) was significantly downregulated in the scr+ cells 

of HS578T cell line (Figure 5.4a).  

Significant upregulation of plasmalogens PC (P-38:3), PC (P-40:2), PE (P-38:5) and PE 

(P-40:3) were observed in the scr+ cells of the MDA-MB-231 cell line (Figure 5.3a). 

However, the HS578T cell line exhibited significantly higher levels of PE (P-36:60) and 

significantly lower levels of PE (P-36:0) (Figure 5.4a). There was a significant decrease in 

CL(i-71:2) and on the other hand, CL(i-51:0) showed significant increase (Figure 5.3a) in 

scr + vs scr – cells in MDA-MB-231 cell line.   

5.5 Discussion 
 

5.5.1 Correlation between metabolite levels detected using NMR and HILIC-MS 

Both analytical techniques, NMR and LC-MS have their own set of advantages and 

disadvantages (Nagrath et al. 2011). The combination of NMR and LC-MS/MS methods 

resulted in an expanded number of metabolites detected due to the complementarity of the 

two methods (Figure 5.5a). The metabolites found in both NMR and LC-MS were alanine, 

aspartate, choline, glutamate, isoleucine, lactate, phenylalanine, succinate, taurine, 

threonine, tyrosine, and valine. The metabolites were classified into three groups based on 

their coefficient of variation which was calculated using lm function in R v4.0.1 in R Studio 

Version 1.2.5033. The metabolites with coefficient of determination (R2) greater than or 

equal to 0.7 were classified into the high correlation group. The high correlation group was 

composed of glutamate, phenylalanine, tyrosine, and taurine. Glutamate had the highest 

coefficient of determination of 0.95 (Figure 5.5b).  

Tyrosine and taurine had coefficient of determination of 0.83 and 0.8 respectively followed 

by phenylalanine with coefficient of determination of 0.73. The R2 value for correlation for 
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tyrosine is comparable with R2 value reported previously (Nagana Gowda et al. 2018).  The 

metabolites that had the R2 value between 0.4 and 0.7 were classified into the medium 

correlation group. The medium correlation group encompasses alanine, aspartate, choline, 

threonine, and valine. The correlation values for threonine, alanine, choline, and aspartate 

are 0.69, 0.66, 0.52 and 0.47 respectively. The metabolites that had correlation between 0.3 

and 0.4 were classified into the low correlation group. R2 values for isoleucine and lactate 

were 0.37 and 0.33 respectively and they showed low correlation with of NMR with LC-

MS. Glutamine was classified into poor correlation group. The possible explanation for 

poor correlation in glutamine is cyclization (Nagana Gowda et al. 2018). The other possible 

explanation for lower coefficient of determination for the polar metabolites in this study as 

compared to the previously reported correlations (Nagana Gowda et al. 2018) is the lower 

sample size and lower concentration in this study.  

 

Figure 5.5 Correlation between NMR and LC-MS for polar metabolites detected across 

scr+ and scr- MDA-MB-231 cells (a) Venn diagram representation of metabolites observed 

using NMR & LC-MS in ESI+ and ESI– (b) Correlation between glutamate levels in NMR 

and LC-MS. 
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5.5.2 Effects of Doxycycline on Metabolites in MDA-MB-231 cells and HS578T cells 
 

Glutamate, glutathione, glycine and serine metabolism and Warburg effect have been 

previously reported to be significantly affected in MCF-7 breast cancer cell line (Semreen 

et al. 2019) . The central carbon metabolism was found to be significantly affected (Figure 

5.1a). Mitochondrial function is linked to metabolic pathways including glycolysis, 

pentose phosphate pathway, tri-carboxylic acid (TCA) cycle and glutaminolysis. These 

metabolic pathways grouped together form the central carbon super pathway which is 

known to be affected in the cancer cells (C. Yang et al. 2008). Aspartate is synthesized 

from oxaloacetate, which is a part of TCA cycle. Aspartate is also one of metabolites 

involved in biosynthesis of nucleic acids. The levels of aspartate are lower in the cancer 

cells because of increased requirement of de novo synthesis of nucleic acids and aspartate-

malate shuttle for mitochondrial respiration in the breast cancer cells  (Cheng et al. 2018; 

Xie et al. 2015). The significant decrease (p-value = 0.03) in levels of aspartate between 

control and doxycycline treatment groups suggests that mechanism of proliferation or 

mitochondrial function is possibly impacted by doxycycline.  

The glutamate levels were significantly upregulated in the scr+ cells as they were more 

than two times the level in the scr- cells. The glutamate is synthesized from glutamine and 

is converted to alpha-ketoglutarate that enters the TCA cycle. The depletion of glutamine 

and significant upregulation in glutamate (p-value = 0.02) which could be seen in both 

NMR and LC-MS suggests that energy metabolism is negatively impacted by doxycycline. 

The decline in energy production from doxycycline treatment suggests a decrease in the 

proliferation of the cancer cells. (Uifălean et al. 2016) . The cells proliferating rapidly 

require glycine because the demand for glycine is much more than rate at which it is 

synthesized in the rapidly proliferating cells (Braun et al. 2012). The significant 

upregulation of glycine (FDR = 0.02) in scr+ cells suggest a decrease in their proliferation 

rate. The significant upregulation of glutamate and glycine and downregulation of aspartate 

between scr+ and scr- suggests deregulation of central carbon metabolism (Figure 5.1a). 

Glutamate, glycine and glutathione are intermediates of glutathione metabolism (Locasale 

2013) and were upregulated in scr+ cells in case of MDA-MB-231 cell line (Figure 5.1d). 

Upregulation of glutamate (FDR = 0.02) and glycine (FDR = 0.02) was statistically 
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significant. The transsulfuration pathway produces glutathione utilizing glutamate and 

glycine, plays an important role in establishing redox balance by removing reactive oxygen 

species (ROS) and regulating protein function by S-glutathionylation (Locasale 2013) 

(Xiong et al. 2011). Glutathione metabolism is associated with maintenance of redox 

balance. Glutathione metabolism scavenges reactive oxygen species (ROS), therefore 

deregulation of glutathione metabolism could suggest deregulation of inhibition of 

apoptosis in the scr+ cells (Acharya et al. 2010). 

In addition to glycine, choline and taurine levels were also upregulated in scr+ in 

comparison with scr- cells of the MDA-MB-231 cell-line. This suggests deregulation of 

the one carbon metabolism, which is responsible for metabolic integration of one-carbon 

units from amino acid inputs towards cellular and nuclear biosynthesis, substrates for 

epigenetic gene silencing and signal transduction (Locasale 2013). Upregulation of glycine 

can adversely impact the proliferation of the cancer cells by preventing calcium signaling 

(Rose, Cattley, et al. 1999; Rose, Madren, et al. 1999). The upregulation of taurine 

metabolism also suggests downregulation of nucleotide metabolism (Mehrmohamadi et al. 

2014) in scr+ cells which also suggests the proliferation of cancer cells could be negatively 

impacted because of decrease in de-novo synthesis of nucleotides. Choline provides one 

carbon units to betaine which is involved in the formation of methionine and deregulation 

of choline affects both one carbon and methionine metabolism. Choline levels have also 

been negatively correlated with breast cancer which could indicate that upregulation of 

choline could negatively impact the scr+ cells (Xu et al. 2008).  

The methionine pathway seems to be deregulated since there are discriminating differences 

in the levels of NAD, choline, glycine and 5'-methylthioadenosine between scr + and scr – 

cells (Figure 5.1c). The methionine pathway responds to alterations in TCA pathway with 

epigenetic modifications in mitochondrial DNA associated with DNA methylation. TCA 

pathway regulates the mitochondrial DNA (mtDNA) depletion. DNA methylation is also 

impacted in response to mtDNA depletion resulting in epigenetic modifications in gene 

expression for methionine metabolism (Lozoya et al. 2018). The dysregulation in the 

steady state levels of 5'-methylthioadenosine and choline across scr+ and scr- cells 

indicated alteration in the methionine salvage pathway in MDA-MB-231 cells (Albers 



116 
 

2009; Lozoya et al. 2018). NAD+ helps in rescuing methionine salvage pathway and averts 

changes in DNA methylation (Lozoya et al. 2018). The  NAD+ is also linked with purine 

nucleotide synthesis and other signaling pathways (Chiarugi et al. 2012). Nucleotide 

biosynthesis is essential for proliferation of tumor cells and upregulation of NAD+ levels 

in scr+ cells suggests that the doxycycline treatment will have an effect on DNA 

methylation and proliferation of scr+ cells.  

The cancer cells have higher levels of lactate as they obtain energy majorly through aerobic 

glycolysis or Warburg effect (Weinhouse et al. 1956). The significant downregulation of 

lactate (p-value = 0.04) in scr+ cells of HS578T cell line (Figure 5.2a) suggests inhibition 

of glycolysis. In addition to glycolytic intermediate lactate, other energy metabolism 

intermediates, NAD+, pyruvate, glutamate and glycine, were also downregulated. Their 

downregulation was statistically significant as a group of energy metabolism intermediates, 

that suggested energy production in the scr+ cells was affected. 

Decrease in energy production in the cancer cells also suggest a decrease in the 

proliferation and migratory potential. Therefore, doxycycline is linked with deregulation 

of energy metabolism of HS578T cells. Although the effect of doxycycline is not the same 

in MDA-MB-231 and HS578T cells doxycycline has significant impact on one or more 

super-pathways in these cells. Different cell lines also exhibited different sensitivity to 

doxycycline (Zhong et al. 2017). Difference in metabolite levels in both triple negative cell 

lines led us to believe that dysregulation of metabolites in scr + cells in the aggressive triple 

negative cancer cell line could be attributed to doxycycline.  

5.5.3 Effects of Doxycycline on Lipids in MDA-MB-231 and HS578T cells 

As may be seen from PCA plots presented on Figure 5.4b and 6.5b, the lipidomic profiles 

are different for MDA-MB-231 and HS578T cells. Levels of unsaturated phospholipids are 

higher in scr+ as compared with scr- cells (Figure 5.3) from MDA-MB-231 cell line. 

Phospholipids such as PC, SM, PE are an important component of cellular membranes  in 

presence of doxycycline the polyunsaturated phospholipids, PC (36:4), PC (38:5), PC 

(40.4), PE (37:5), PE (37:6), PE (40:7) PE (42:5) and PE (46:5) and  appear to be 

significantly upregulated in scr+ cells of MDA-MB-231 breast cancer cell line. 

Plasmalogens have been associated with membrane fluidity (Eiriksson et al. 2018) and CL 
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has been associated with mitochondrial function (Dória et al. 2013; Hardy et al. 2003). 

Breast cancer cells have lower levels of polyunsaturated phospholipids (Cífková et al. 

2015) as polyunsaturated phospholipids are more likely to be oxidized that has potential to 

cause cell damage. As a result cancer cells favor higher levels of saturated phospholipids 

in cell membranes and lower levels of polyunsaturated phospholipids in cancer cells (Hilvo 

et al. 2011). The results indicate upregulation of unsaturated phospholipids indicating 

increased susceptibility of scr+ cells of MDA-MB-231 breast cancer cell line to cellular 

damage and apoptosis. 

Significantly higher levels of PC (32:1) and PC (32:2) were observed (bar plot Figure 5.4a) 

in doxycycline treated cells of HS578T cell line. These lipid species are involved in de-

novo fatty acid synthesis used in cellular membrane synthesis. Their upregulation of these 

lipid species is associated with the decreased survival of triple negative breast cancer cells 

with statistical significance (Hilvo et al. 2011). PCs can be converted to SMs 

(Sphingomyelins). The possible mechanism associated with the higher levels of PCs is 

apoptosis in the scr+ cells as significantly lower SM levels have been found for SM (34:1) 

in scr+ HS578T cells which has been previously linked with inhibition of apoptosis 

(Cífková et al. 2015); (Ségui et al. 2006). However, downregulation of SMs association 

with inhibition of apoptosis could not be confirmed due to the lack of sphingomyelin 

annotations. Differences in the lipidomic profile of these lipids in the tumor cells suggests 

that the doxycycline treatment induced apoptosis in the triple negative breast cancer cells.  

The migratory potential of the breast cancer cells through epithelial to mesenchymal 

transition EMT is also associated with decrease in phosphatidylcholine- and 

phosphatidylethanolamine plasmalogens. However, there was a significant increase in the 

levels of PC (P-38:3), PC(P-40:2), PE(P-38:5) and PE(P-40:3) in the MDA-MB-231 cell 

line. The other plasmalogens in MDA-MB-231 also showed upregulation trend in the scr+ 

cells. The vinyl ether bond in plasmalogens decreases the fluidity of the membranes that 

decreases the migratory potential of breast cancer cells (Eiriksson et al. 2018). Although 

majority of plasmalogens in the HS578T cell line did not exhibit upregulation or 

downregulation trend, PC (P-34:1) and PE (P-36:0) were significantly deregulated between 

scr+ and scr- cells in HS578T cell line. Clinical studies using plasmalogen based cancer 
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biomarkers (Smith et al. 2008) would result in erroneous result in identifying lipid 

signatures associated with cancer cells (Cífková et al. 2015) because of deregulation of 

plasmalogen lipid biomarkers. This would lead to ineffective drugs as it would falsely 

estimate higher efficacy for drug of interest.  

Migration of metastatic cancer cells is also regulated by cardiolipins which are associated 

with activity of proteins in the inner membrane of mitochondria (A. J. Chicco and Sparagna 

2007; Dória et al. 2013).  The downregulation of CL(i-71:2) and upregulation of CL(i-

51:0) seen in Figure 5.4a in doxycycline treated MDA-MB-231 cells points at two different 

effects of doxycycline on cardiolipins with different lengths and saturation levels. Decrease 

in the cardiolipin levels has been associated with change in mitochondrial function leading 

to apoptosis in breast cancer cells (Hardy et al. 2003). This suggests that doxycycline 

treatment seems to alter saturated and unsaturated cardiolipins in a different way or that 

doxycycline treatment impacts shorter chain cardiolipins differently as compared to the 

longer chains. The downregulation of cardiolipins could not be fully linked with apoptosis 

in breast cancer cells because of lack of cardiolipin annotations found in these cells.  

 

5.6 Conclusion 
There were significant differences in 53 metabolites detected and quantified in MDA-MB-

231 cell line associated with central carbon, one carbon, methionine, glutathione 

metabolism. Similar trends were also observed in HS578T cell line. These effects were 

attributed to Warburg effect caused by doxycycline treatment. The oncogenesis in the 

cancer cells is impacted in the breast cancer cells because of deregulation of the 

intermediates in these metabolic pathways. Similarly, comparable differences were 

observed between doxycycline treatment and control in both MDA-MB-231 and HS578T 

cells in the lipid species, PCs, PEs, plasmalogens and SMs. The alterations of the lipidomic 

profile suggested that the biosynthesis of cellular membranes, migration potential and 

inhibition of apoptosis in the breast cancer cells were deregulated. The metabolomics and 

lipidomics results allowed us to conclude that some of the important characteristics of 

breast cancer cells such as elevated migratory potential, potential of rapid cell division and 

energy production are restricted in cancer cells because of doxycycline treatment. Use of 

doxycycline in chemotherapies also suggests the role of doxycycline to inhibiting the 
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metastasis of breast cancer cells. Therefore, caution must be exercised when using this 

system, because the doxycycline itself can have significant effects on cell metabolism. The 

results also outline the mechanisms by which doxycycline inhibits invasion of cancer cells 

utilizing the metabolomics approach. 
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6. Summary, Conclusion and Perspectives 
 

This chapter describes the summary of the insights obtained by conducting 

computationally assisted metabolomics. Metabolomics can be conducted using wide range 

of hyphenated techniques that comprise of LC-IR, GC-MS, GC-UV, GC-FID, LC-MS and 

LC-NMR. GC works well with volatile compounds, and it can be annotated well with 

online databases but suffers from the drawback of lesser coverage of metabolites. The 

mass spectrometry instrument is not easily available because it is very expensive. In these 

situations, other detector such as UV/visible or flame ionization detector (FID) can be 

used with GC. However, these instruments do not offer wide coverage of metabolites and 

their sensitivity performance is lower in terms of detection limit (Bai et al. 2018).  LC-

NMR is less sensitive as compared to mass spectrometry but provides more structural 

information than mass spectrometry. LC-IR is slower as compared to mass spectrometry 

and is less sensitive however the instrument is less expensive in comparison to mass 

spectrometry instrument. The strengths of LC-MS include wide metabolome coverage, 

quantitative measurements, detection limit in the picomole range. These analytical 

techniques are complementary to each other with each one having their own strengths and 

limitations. 

This thesis was focused on method development in both aspects of metabolomics, 

untargeted LC-MS/MS analysis, and computational tools, that when combined enhanced 

in statistical analysis, functional interpretation, and data visualization for deriving insights 

in the biology of cells and tissues, as well as the characterization of botanical extracts.  

Chapter 3 describes the development of an anlytical strategy that combins LC-MS 

metabolomics with computational tools to advance the characterization of the 

phytochemical composition of plant material and faciliate the discovery of bioactive 

compounds in complexes matrices. As such, this porject played a key role in understanding 

bioactivity of a botanical extract and potential health benefits.  The robustness of the LC-

MS metabolomics methods enables testing of product integrity and consistency to improve 

reproducibility of laboratory and preclinical studies and. most importantly, clinical trials. 

The primary focus of this study was to develop an efficient method for obtaining chemical 
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fingerprints of botanical extracts and perform quantitative measurement of marker 

compounds commonly associated with health benefits that can be used to determine 

product integrity of botanical extracts.  

Centella asiatica (C. asiatica), an Ayurvedic herb with potential applications in enhancing 

mental health and cognitive function (Soumyanath et al. 2012), was used as a case study. 

C. asiatica water extract was prepared by refluxing aerial parts of the plant followed by 

filtering. The extracts were suspended in aqueous methanol and separation was performed 

using HPLC with Phenyl-3 column utilizing - interactions. The HPLC analysis was 

coupled with HRMS using quadrupole time-of-flight analyzer in data dependent 

acquisition (DDA) mode. This enabled the characterization of the extracts and the putative 

identification of 117 compounds. 2D structural similarity network was created using these 

compounds with the Tanimoto similarity score that displayed clusters which are 

structurally similar at the boundary nodes at the 95% confidence level. Precursor ions 

(MS1) in conjunction with authentic standards and external calibration curves were used 

for the quantification of selected marker compounds. In this study it was demonstrated that 

chemical fingerprinting of botanical extracts can be performed using combination of liquid 

chromatography, high resolution mass spectrometry in the DDA mode with less than 5 

ppm deviation in m/z values for precursor ions (Alcazar Magana et al. 2020). This 

technique is robust and will result in accurate quantification of phytochemicals with very 

low limits of quantification (1.06 µg/L). This analysis revealed diverse metabolite 

composition in different C. asiatica accessions. This provided evidence to warrant the need 

for standardization and chemical detailed characterization of plant extracts for reliability 

and reproducibility in studies looking to determine biological activity of CA and botanical 

extracts. In addition to that characterization is also required to demonstrate reliability in 

efficacy and safety of botanical extracts in laboratory studies and clinical trials conducting 

studies on their health benefits.  

Another aspect of this project was the development and implementation  of computational 

approaches to identify medicinal activity of the plant. The potential health benefits that 

plant materials offer are due to the  metabolites produced in the plants. The usual way to 

search for these metabolites is to use bioassay-guided fractionation that requires multiple 

steps of purification that takes a long time. This study aimed at reducing the time needed 
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for discovery of these bioactive metabolites using simple fractionation approaches in 

conjunction with bioassays, flow injection mass spectrometry and computational tools. 

This linking the medicinal activity (bioactivity) of each fraction with the chemical 

composition of each fraction. Centella asiatica water (CAW) extract was used as a case 

study. Correlation score between neuroprotective bioactivity of CAW extract and the 

subfractions for human neuroblastoma MC65 cells against amyloid β-cytotoxicity 

(Copenhaver et al. 2011) and relative abundance of metabolites identified in CAW extract 

and the subfractions. Computational approaches were evaluated to predict metabolites 

contributing towards neuroprotective bioactivity. ElasticNet and PLS-DA selectivity ratio 

were used to predict the neuroprotective bioactivity of the molecular (mass spectral) 

features.  

Additionally, Global Natural Product Social Molecular Networking (GNPS) platform 

(Mingxun Wang et al. 2016) was utilized for the purposes of dereplication to facilitate 

annotation of plant metabolites and the annotation of bioactivity to metabolites. GNPS 

generates molecular networks based on spectral similarity (MS/MS spectral similarity), to 

derive insights about the structure of metabolites, hitherto unknown compounds, and to 

suggest undiscovered metabolic mechanisms in plants, etc. In this study, the GNPS 

platform was leveraged to visualize correlation of molecular features to neuroprotective 

bioactivity of MC65 assay and the corresponding peak areas in the subfractions. This 

approach identified di-caffeoylquinic acids as molecular features from Centella asiatica 

which provided the highest protection against amyloid β-cytotoxicity. Results obtained 

from the computational approach were validated with a traditional reductionistic approach 

of finding the neuroprotective activity of di-caffeoylquinic acids (Gray et al. 2014). 

The fourth chapter deals with assessing the impact of storage of tissues in OCT. This 

project establishes protocol to utilize tissues stored in OCT, since the biobanks usually 

store tissues in OCT as it provides stability to the embedded tissue and does not affect 

infrared (IR) and Raman spectroscopic methods. The study evaluated the compatibility of 

tissue storage in OCT by conducting LC-MS/MS lipidomic studies to compare lipid profile 

across OCT storage and storage by snap freezing in liquid nitrogen with Macaque heart 

tissue (Vaswani et al. 2021). The lipid extraction protocol was designed for OCT-
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embedded tissue and was tested for compatibility. The lipid profile was obtained using LC-

MS/MS analysis. The 306 annotated lipids were compared across both OCT and LN 

storage conditions. The comparison confirmed the hypothesis that 95.4% lipid species did 

not have an effect of storage condition. However, 4.6% of the lipid species mainly 

plasmalogens, were affected by the OCT storage method and their levels decreased in 

storage under OCT. The results of this study described standard operating procedure (SOP) 

to be followed in determining lipid species profiles of OCT-embedded tissues by ESI LC-

MS/MS. However, caution needs to be taken when evaluating plasmalogens in OCT-

embedded tissue, likely due to sensitivity of plasmalogens to oxidation. Therefore, the 

ability to have tissue stored in OCT and available for metabolic assessment using analytical 

methods, such as mass spectrometry, makes it easier to access a wider pool of cardiac 

tissue.   

The fifth chapter outlines studies designed to determine if a doxycycline (DOX)-

dependent gene expression knockdown system is a viable strategy in the context of 

metabolomic studies of breast cancer cells for studying the biological effects of targeted 

gene silencing. This study involved two widely used breast cancer cell lines, triple 

negative MDA-MB-231 and HS578T. Untargeted mass spectrometry metabolomics and 

lipidomics was used to determine metabolite and lipid differences in presence and absence 

of DOX. The metabolomics was conducted using hydrophilic liquid chromatography 

coupled with mass spectrometry (HILIC-MS) in data dependent acquisition mode. Since 

molecular pathways involved in energy metabolism comprise of polar metabolites NMR 

was also used along with HILIC-MS for metabolomics. HILIC chromatographic method 

was optimized to alleviate the problems of ion suppression and peak tailing. The 

lipidomics was conducted using reversed phase liquid chromatography couple with mass 

spectrometry in MSE mode. The metabolomics allowed us to identify the effect of 

doxycycline on major metabolic pathways such as central carbon, one carbon, methionine 

and glutathione metabolism. The doxycycline effect was also apparent in deregulation of 

lipid metabolism belonging to phosphatidylcholines (PC), phosphatidylethanolamine 

(PE), plasmalogens, SM (sphingomyelins) associated with cancer proliferation, 

membrane fluidity, cell signalling and apoptosis. The lipid species of varying number of 

carbons and a varying level of unsaturation were used to assess this effect. Doxycycline 



124 
 

was found to affect energy metabolism in both cells. Doxycycline was also found to 

interfere with inhibition of apoptosis and impact methylation of DNA in promoter of 

tumor suppressor genes such as E cadherin and increase the PC and PE plasmalogen level 

that led to the arrest of the migration in MDA-MB-231 breast cancer cells. Therefore, this 

study would caution researchers from using doxycycline-basedgene silencing strategies in 

case that metabolomics and lipidomics analysis are the predominant experimental 

strategies to assess the effects of gene silencing.   

To conclude, this thesis describes mass spectrometry methods in conjunction with 

computational tools to advance vastly different application areas, ranging from identifying   

disease mechanisms to biomarker discovery, and the characterization of botanicals 

including their bioactive compounds.  Mass spectrometry has emerged as a primary 

measurement technology in “omics” (Girolamo et al. 2013)because it can detect a wide 

range of metabolites and lipid species even at low nano and pico-molar concentrations. 

The coverage of metabolites can be improved by combining mass spectrometry with gas 

phase separation techniques, such as ion mobility spectrometry platforms, to expand the 

analytical separation space and to distinguish isomers.   Mass spectrometry methods are 

considered comprehensive methods as they have number of advantages such as high 

sensitivity, reproducibility, and wide coverage of compound detection.   The biggest area 

of research using mass spectrometry is omics studies. Omics studies involving mass 

spectrometry generate big datasets. Analysis of these datasets is advanced by 

computational tools, such as complex machine learning and deep learning algorithms to 

predict disease onset or progression or in drug discovery. However, because of the projects 

described in this thesis involved smaller sized datasets, classical linear regression, and 

machine learning algorithms with lower tendency of overfitting were used.  

The integration of mass spectrometry and computational tools has advance natural product 

research.  Spectral databases integrating MS/MS spectra and ion mobility spectra could 

lead to rapid and more efficient dereplication of natural product mixtures. Moreover, 

integrating platforms like GNPS, that are working automated pipelines, will advance the 

integration of mass spectral data with secondary information, e.g. bioactivity, to facility 

the integration of information from different technologies. Additional computational tools 
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could be integrated into such platforms to determine relationship of metabolites with each 

other structurally and functionally and generate reports about these networks to enable 

more efficient discovery of natural products in the future.  

Beyond the scope of this thesis, mass spectrometry methods have contributed to 

advancements in the food and agricultural sciences. Metabolomics has been used to 

improve agricultural practices aimed to improve the quantity and quality of agricultural 

produce. Mass spectrometry-based analyses are capable of determining optimal growth 

conditions, including, for example, how LED light impacts plant growth (Yap et al. 2021). 

High resolution mass spectrometry also finds application in identifying adulterants in food 

(Witjaksono and Alva 2019).  Wine industry utilizes mass spectrometry in assessing the 

quality of wine specimens (Arapitsas et al. 2020).  

The metabolomics and lipidomics field will also greatly aid in assisting traditional 

genomics and transcriptomics in personalized medicine and surgeries. Technological 

advances in instrumentation such as mass spec pen (Brown, Pirro, and Graham Cooks 

2018) can be leveraged in minimal invasive surgeries to accurately identify cancer tissue 

in real time.  
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Appendices 
 

Appendix A 
 

Supplemental Material for Chapter 3. 

 

Figure AS1 : Untargeted workflow approach. This workflow yielded 24 identified (L1 

annotation) and 93 tentatively assigned (L2) compounds (117 in total). Compound 

description is detailed in Table AS1. 

 

 

 

Figure AS2: Untargeted analysis of C. asiatica water extract (positive ion mode). Twenty-

two annotated features were selected for extracted ion chromatograms. Additional 
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information namely retention time, m/z, molecular formula and detected adducts is shown 

on Table AS1.  

 

 

 

 

Figure AS3: Untargeted analysis of C. asiatica water extract (negative ion mode). 24 

annotated features with higher intensity were selected for extracted ion chromatograms. 
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Additional information namely retention time, m/z, molecular formula and detected 

adducts is shown in Table AS1. 

 

 
 
 

Figure AS4: Chemical structures of compounds for which authentic standards were 

available and which were selected as marker compounds for quantification. Three mono-

caffeoylquinic acids (green), five di-caffeoylquinic acids (magenta), seven flavonoids 

(purple), five hydroxycinnamic acid derivatives (black) and four triterpenes (blue). 
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Figure AS5: Extracted ion chromatograms obtained for the calibration solution containing 

24 compounds (1 mg/L each). Negative ion mode extracted m/z values are indicated in the 

Figure. Individual analytical parameters are shown in Table 3.2. 

 
 

Figure AS6: Standard addition experiment. 1.0 mL of standard mix containing 1.0 mg/L 

of each compound was added to 1.0 mL of the pooled CA sample (200 mg/L). Total ion 

chromatogram (TIC) obtained for C. asiatica water extract (solid line, 10 µl injection) and 

same sample after standard addition (dotted line) 
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Figure AS7: MS/MS spectra of compounds in C. asiatica extracts (pooled CA sample) that 

were assigned tentatively (L2 annotations) by extensive querying and comparison with 

spectral libraries (including METLIN, our in-house library, ChEBI, and the Human 

Metabolite Database (HMDB)) using Progenesis QITM and applying the workflow shown 

in Figure S1. Red lines were matches against the databases. Eighty-seven compounds that 

were detected in C. asiatica aqueous extracts and tentatively assigned but have not been 

reported for C. asiatica as of to date are denoted with an * in Table 3.1. The number shown 

in the spectra matches the entry number # in Table AS1. MS/MS scores are indicated in [ 

] and were obtained using Progenesis QI. GNPS identifiers are provided in {}. 

1,4-Dicaffeoylquinic acid, CID: 12358846, in-

house library; [68.8]; CCMSLIB00005467925 

 

12-Oxodihydrophytodienoic acid, CID: 

5716902, ChEBI; [31.0]; 

CCMSLIB00005467924 

 

 

 

16-hydroxypalmitic acid, CID: 10466, 

ChEBI; [86.2]; {CCMSLIB00005467727} 

1-beta-D-Glucopyranosyl-L-tryptophan, CID: 

11772967, ChEBI; [62.4]; 

{CCMSLIB00005467655} 

#2 

#4 
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#5 #6 
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1-Caffeoyl-5-feruloylquinic acid, CID: 

121225501, ChEBI; [49.6]; 

{CCMSLIB00005467656} 

 

 

2,6-Piperidinedicarboxylic acid, CID: 557515, 

METLIN; [53.1]; {CCMSLIB00005467657} 

 

 

26-(2-Glucosyl-6-acetylglucosyl]-1,3,11,22-

tetrahydroxyergosta-5,24-dien-26-oate, CID: 

131752817, HMDB; [43.5]; 

{CCMSLIB00005467797} 

 

2'-O-Methyladenosine, CID: 102213, 

METLIN; [56.2]; {CCMSLIB00005467658} 

 

3,4-Dihydroxybenzaldehyde, CID: 8768, 

ChEBI; [63.5]; {CCMSLIB00005467663} 

3,5-Dihydroxy-2-methylphenyl beta-D-

glucopyranoside, CID: 46184089, ChEBI; 

[59.1]; {CCMSLIB00005467664} 

#7 
#8 

#9 
#10 
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4-Guanidinobutanoic acid, CID: 25200642, 

METLIN; [79.4]; {CCMSLIB00005467667} 

 

 

4-Hydroxybenzaldehyde, CID: 126, METLIN; 

[78.8]; {CCMSLIB00005467733} 
 

 

5'-Deoxy-5'-(methylsulfinyl)adenosine, CID: 

165114, METLIN; [62.9]; 

{CCMSLIB00005467668} 

 

5-Methoxy-L-tryptophan, CID: 151018, 

ChEBI; [58.5]; {CCMSLIB00005467669} 

 

#14 
#16 

#21 
#22 

#24 
#25 
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5-Methoxysalicylic acid, CID: 75787, 

KNApSAcK 

; [69.2]; {CCMSLIB00005467734} 

 

 

6-Amino-9H-purine-9-propanoic acid, CID: 

255450, METLIN; [48.8]; 

{CCMSLIB00005467673} 

 

 

6-Docosenamide, CID: 44584605, ChEBI; 

[98.7]; {CCMSLIB00005467675} 

 

 

 

6-Oxo-2-piperidinecarboxylic acid, CID: 

3014237, ChEBI; [89.9]; 

{CCMSLIB00005467676} 
 

 

8-Acetoxy-4'-methoxypinoresinol 4-

glucoside, CID: 73830447, HMDB; [52.9]; 

{CCMSLIB00005467677} 
 

Adenine, CID: 190, METLIN; [88.6]; 

{CCMSLIB00005467678} 

 

#26 

#28 

#30 
#31 
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Adenosine, CID: 60961, in-house library; 

[91.6]; {CCMSLIB00005467736} 

 

Aesculin, CID: 5281417, METLIN; [69.3]; 

{CCMSLIB00005467679} 

 

 

 

Apimaysin, CID: 101920411, HMDB; 

[45.4]; {CCMSLIB00005467737} 

 

Betaine, CID: 247, METLIN; [66.5]; 

{CCMSLIB00005467650} 

#32 
#33 

#34 #35 
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cAMP, CID: 6076, METLIN; [59.7]; 

{CCMSLIB00005467743} 

 

Caprylic acid, matched with in-house library, 

CID: 379, HMDB; [90.2]; 

{CCMSLIB00005467744} 
 

 

Carlosic acid methyl ester, CID: 

122391261, ChEBI; [70.8]; 

{CCMSLIB00005467745} 
 

Choline, CID: 305, METLIN; [75.6]; 

{CCMSLIB00005467680} 

 

#36 

#43 #44 

#41 

#45 

#47 
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Choline O-Sulfate, CID: 486, ChEBI; 

[95.1]; {CCMSLIB00005467681} 
 

 

Citric acid, matched with  in-house library, CID: 

19782904, METLIN; [69.5]; 

{CCMSLIB00005467746} 
 

 

 

Cytosine, CID: 597, METLIN; [92.3]; 

{CCMSLIB00005467683} 

 

D-1-[(3-Carboxypropyl)amino]-1-deoxyfructose, 

CID: 131752417, HMDB; [53.6]; 

{CCMSLIB00005467684} 

 

#48 

#51 

#52 

#49 



171 
 

Daucic acid, CID: 5316316, HMDB; 

[47.7]; {CCMSLIB00005467747} 

 

Deoxyfructosazine, CID: 73452, HMDB; [60.4] 
; {CCMSLIB00005467697} 

 

 

Digalacturonate, CID: 439694, METLIN; 

[40.6]; {CCMSLIB00005467748} 
 

 

 

Dihydroactinidiolide, CID: 27209, METLIN; 

[67.2]; {CCMSLIB00005467698} 

 

Dihydrocaffeic acid, CID: 348154, ChEBI; 

[65.1] 

Dihydroferulic acid, matched with in-house 

library, CID: 14340; [55] 

#53 #54 

#55 
#56 
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Dysolenticin B, CID: 56601655, ChEBI; 

[40.4]; {CCMSLIB00005467699} 
 

 

Enicoflavine, CID: 5281564, ChEBI; [71.7]; 

{CCMSLIB00005467749} 

 

 

 

Epigallocatechin, CID: 72277, in-house 

library; [80.5] 

 

 

 

Folinic acid, CID: 6006, in-house library; 

[50.1]; {CCMSLIB00005467700} 

 

#57 
#58 

#59 
#60 

#62 
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Furaneol 4-(6-malonylglucoside), CID: 

131750900, HMDB; [44.1]; ; 

{CCMSLIB00005467750} 
 

 

 

Gentiopicroside, CID: 88708, ChEBI; [34.4]; 

{CCMSLIB00005467701} 

 

 

Ginkgoic acid, CID: 5281858, METLIN; 

[71]; {CCMSLIB00005467751} 

 

Ginsenoyne K, CID: 15736266, HMDB; [73.3]; 

{CCMSLIB00005467702} 

 

#65 

#66 

#64 

#67 #68 
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Glabraoside A, CID: 102393599, ChEBI; 

[36.3]; {CCMSLIB00005467752} 

 

Guanosine, CID: 6802, METLIN; [86.8]; 

{CCMSLIB00005467753} 
 

 
Isoferulic acid, matched with in-house 

library, CID: 736186, HMDB; [53.6] 

 

 

Isovalerylglucuronide, CID: 137383, HMDB; 

[38.5]; {CCMSLIB00005467703} 

 

Kuwanon Y, CID: 14334307, HMDB; 

[86.2]; {CCMSLIB00005467704} 

 

 

Kynurenic acid, CID: 3845, METLIN; [86]; 

{CCMSLIB00005467705} 

 

#69 

#71 
#72 

#70 

#74 #75 
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L-Arginine, CID: 28782, METLIN; [74.8]; 

{CCMSLIB00005467706} 

 

 

Linustatin, CID: 119301, METLIN; [59.8]; 

{CCMSLIB00005467707} 

 
Longicamphenylone, CID: 91747202, 

METLIN; [51.4]; {CCMSLIB00005467708} 

 

Longifolenaldehyde, CID: 565584, 

METLIN; [50.9]; {CCMSLIB00005467709} 

 
L-Ribulose, CID: 644111, HMDB; [71.7]; 

{CCMSLIB00005467754} 
 

 

Malate, CID: 20130941, in-house library; 

[95.1]; {CCMSLIB00005467755} 

 

#76 

#78 #79 

#77 

#80 
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Mangiferin, CID: 5281647, METLIN; [58.2]; 

{CCMSLIB00005467756} 

 

 

Muramic acid, CID: 433580, ChEBI; [90.7]; 

{CCMSLIB00005467710} 

 
N-(1-Deoxy-1-fructosyl)phenylalanine, CID: 

101039148, HMDB; [52.3]; 

{CCMSLIB00005467711} 
 

  

N1,N5,N10,N14-Tetra-trans-p-

coumaroylspermine, CID: 9810941, 

METLIN; [48.9]; {CCMSLIB00005467712} 

#83 

#84 

#86 

#87 

#85 
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N-Acetyl-D-glucosamine, CID: 899, in-house 

library; [58.8]; {CCMSLIB00005467713} 
 

 

N-Acetyl-L-glutamic acid, CID: 70914, 

METLIN; [65]; {CCMSLIB00005467714} 
 

 
 

Niacin (Nicotinic acid), CID: 938, METLIN; 

[88.8]; {CCMSLIB00005467776} 

 

 

Nomilinic acid 17-glucoside, CID: 444212, 

HMDB; [45.5]; {CCMSLIB00005467716} 

 

#88 #89 

#91 #92 



178 
 

Palmitic acid, matched with in-house library, 

CID: 985, HMDB; [26.3] 

 

Pelargonidin 3-O-glucoside, CID: 443648, 

METLIN; [54.8]; {CCMSLIB00005467757} 

 
Phlorin, CID: 476785, METLIN; [37.3]; 

{CCMSLIB00005467718} 

 

Purgic acid B, CID: 16091605, KNApSAcK; 

[33.4]; {CCMSLIB00005467775} 

 
 

 

Quercetin 3-(6'-acetylglucoside), CID: 

44259187, METLIN; [59.7]; 

{CCMSLIB00005467759} 

Quercetin 3-O-glucoside, CID: 5280804, 

METLIN; [62.5]; {CCMSLIB00005467759} 

#93 #95 

#96 #98 
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Sambacin, CID: 131752486, HMDB; [34.1]; 

{CCMSLIB00005467720} 

 

Shanzhiside, CID: 11948668, ChEBI; [81.3] 

 

Soyacerebroside, CID: 131751281, HMDB; 

[37.7]; {CCMSLIB00005467760} 

 

Stachyose, CID: 439531, METLIN; [68.6]; 

{CCMSLIB00005467721} 

 
 

 

 

 

Succinoadenosine, CID: 126969142, 

METLIN; [57.0]; {CCMSLIB00005467722} 

#100 

#103 

#104 

#101 

#105 #106 
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Succinate, matched with in-house library, CID: 

1110, HMDB; [55.0]; 

{CCMSLIB00005467761} 

 

 

Succinyl-L-proline, CID: 194156, ChEBI; 

[67.6]; {CCMSLIB00005467723} 

 

Swertiamarin, CID: 442435, ChEBI; [91.9]; 

{CCMSLIB00005467762} 

 
Tetradecanedioic acid, CID: 13185, METLIN; 

[71.7]; {CCMSLIB00005467764} 

 

Traumatic Acid, CID: 5283028, METLIN; 

[77.4]; {CCMSLIB00005467765} 

 
  

#107 

#109 #110 

#108 

#111 #112 
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Tropic acid, CID: 10726, METLIN; [69.0]; 

{CCMSLIB00005467769} 

 

Tsangane L 3-glucoside, CID: 73981648, 

HMDB; [41.6]; {CCMSLIB00005467770} 

 
Uric acid, CID: 1175, METLIN; [56.4]; 

{CCMSLIB00005467724} 
 

 

Vincosamide, CID: 10163855, ChEBI; 

[79.9]; {CCMSLIB00005467725} 
 

 
 

Xanthurenic acid, CID: 5699, METLIN; 

[76.6]; {CCMSLIB00005467726} 

 

 

#113 

#115 #116 

#114 

#117 
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Figure AS8: MS/MS spectra for compounds present in CA water extracts that were 

identified using authentic standards (L1 annotations). MS/MS score is indicated in [ ]. 

 

5-O-Caffeoylquinic acid; [81.8] 

 

3-O-Caffeoylquinic acid; [87.9] 

 

4-O-Caffeoylquinic acid; [79.9] 

 

1,5-Dicaffeoylquinic acid; [92.8]
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1,3-Dicaffeoylquinic acid; [85.7]

 

3,4-Dicaffeoylquinic acid; [91.9]

 

3,5-Dicaffeoylquinic acid; [93.2] 

 

4,5-Dicaffeoylquinic acid; [91.2]

 

Quercetin; [76.1] 

 

Kaempferol; [92.6] 
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Caffeic acid; [98.2] 

 

 

 

Ferulic acid; [48.4] 

 

Rutin; [45.4]

 

Madecassoside; [97.7] 
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Asiaticoside; [86.7] 

 

Madecassic Acid; [47.3]

 

 

 

Asiatic acid; [54.7] 

 

 

 

Table AS1 Additional parameters for 117 identified or tentatively identified compounds 

detected in Centella asiatica aqueous extracts using positive and negative ion mode. 

Compounds confirmed using authentic standards are shown in bold. For tentatively 

assigned compounds (L2 annotations) the MS/MS spectral matches that supported the 

annotation are compiled in Figure AS7. 

#a Accepted Description m/z 
RT 

(min) 

Detected 

Adducts 

Δ 

ppm 

Neutral 

Formulab 

PubChem

CID 

1 1,3-Dicaffeoylquinic acidc 515.1184 17.49 [M-H]- 2.3 C25H24O12 6474640 
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2 1,4-Dicaffeoylquinic acid 515.1184 19.71 [M-H]- 2.3 C25H24O12 12358846 

3 1,5-Dicaffeoylquinic acid 515.1184 17.49 [M-H]- 2.3 C25H24O12 5281769 

4 12-Oxodihydrophytodienoic 

acid 
317.2090 25.11 

[M+H-H2O]+, 

[M+Na]+ 
1.6 

C18H30O3 5716902 

5 16-hydroxypalmitic acid 271.2271 24.81 [M-H]- 3.1 C16H32O3 10466 

6 1-beta-D-Glucopyranosyl-L-

tryptophan 
367.1501 12.29 

[M+H]+, 

[M+Na]+ 
1.1 

C17H22N2O7 11772967 

7 1-Caffeoyl-5-feruloylquinic 

acid 
553.1296 19.16 [M+Na]+ 

3.3 
C26H26O12 121225501 

8 2,6-Piperidinedicarboxylic acid 174.0754 5.94 [M+H]+ 2.3 C7H11NO4 557515 

9 26-(2-Glucosyl-6-

acetylglucosyl]-1,3,11,22-

tetrahydroxyergosta-5,24-dien-

26-oate 

863.4065 23.57 [M+Na-2H]- 

1.8 

C42H66O17 131752817 

10 
2'-O-Methyladenosine 282.1195 13.45 

[M+H]+, 

[M+Na]+ 
0.4 

C11H15N5O4 102213 

11 2-Pyrrolidone-5-carboxylic acid 130.0491 7.54 [M+H]+ 3.8 C5H7NO3 499 

12 3 Hydroxycoumarin 163.0380 15.27 [M+H]+ 4.2 C9H6O3 13650 

13 
3,4-Dicaffeoylquinic acid  515.1189 19.11 

[M-H]-,  

[M+Na-2H]- 
1.3 

C25H24O12 5281780 

14 3,4-Dihydroxybenzaldehyde 139.0382 14.29 [M+H]+ 3.5 C7H6O3 8768 

15 
3,5-Dicaffeoylquinic acid  515.1189 19.45 

[M-H]-,  

[M+Na-2H]- 
1.3 

C25H24O12 6474310 

16 3,5-Dihydroxy-2-methylphenyl 

beta-D-glucopyranoside 
325.0896 9.73 [M+Na]+ 

1.3 
C13H18O8 46184089 

17 3,5-Dihydroxyphenyl 1-O-(6-

O-galloyl-beta-D-

glucopyranoside) 

463.0845 13.58 
[M+H-H2O]+, 

[M+Na]+ 

0.1 
C19H20O12 131752603 

18 3-Hydroxy-2-oxo-3-

phenylpropanoic acid 
163.0375 19.95 [M+H-H2O]+ 

4.6 
C9H8O4 71581094 

19 3-O-Caffeoylquinic acid 353.0872 15.28 [M-H]- 1.9 C16H18O9 1794427 

20 4,5-Dicaffeoylquinic acid  515.1184 19.91 [M-H]- 2.3 C25H24O12 6474309 

21 4-Guanidinobutanoic acid 146.0915 5.45 [M+H]+ 4.3 C5H11N3O2 25200642 

22 4-Hydroxybenzaldehyde 121.0297 17.04 [M-H]- 1.0 C7H6O2 126 

23 
4-O-Caffeoylquinic acid 353.0874 11.86 

[M-H]-, [M+Na-

2H]- 
1.4 

C16H18O10 9798666 

24 5'-Deoxy-5'-

(methylsulfinyl)adenosine 
314.0917 11.71 

[M+H]+, 

[M+Na]+ 
0.7 C11H15N5O4

S 
165114 

25 5-Methoxy-L-tryptophan 217.0970 14.58 [M+H-H2O]+ 2.6 C12H14N2O3 151018 

26 5-Methoxysalicylic acid 167.0351 17.38 [M-H]- 0.3 C8H8O4 75787 

27 
5-O-Caffeoylquinic acid 353.0874 11.86 

[M-H]-,  

[M+Na-2H]- 
1.4 

C16H18O9 5280633 

28 6-Amino-9H-purine-9-

propanoic acid 
208.0837 9.09 [M+H]+ 

5.2 
C8H9N5O2 255450 

29 6-C-(alpha-L-arabinosyl)-8-C-

(beta-L-arabinosyl)apigenin 
557.1259 17.40 [M+Na]+ 

0.8 
C25H26O13 122391238 

30 
6-Docosenamide 360.3234 26.15 

[M+H]+, 

[M+Na]+ 
0.1 

C22H43NO 44584605 

31 6-Oxo-2-piperidinecarboxylic 

acid 
126.0541 12.80 [M+H-H2O]+ 

1.1 
C6H9NO3 3014237 
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32 8-Acetoxy-4'-

methoxypinoresinol 4-

glucoside 

593.2188 19.59 [M+H]+ 
6.4 

C29H36O13 73830447 

33 Adenine 136.0612 7.80 [M+H]+ 2.2 C5H5N5 190 

34 
Adenosine 312.0945 9.09 

[M-H]-,  

[M+FA-H]- 
0.8 

C10H13N5O4 60961 

35 
Aesculin 363.0688 14.37 

[M+H]+, 

[M+Na]+ 
1.0 

C15H16O9 5281417 

36 Apimaysin 541.1355 4.67 [M-H2O-H]- 1.0 C27H28O13 101920411 

37 Asiatic acid 487.3421 21.91 [M-H]- 1.8 C30H48O5 119034 

38 Asiaticoside 957.5101 20.50 [M-H]- 3.8 C48H78O19 24721205 

39 Astragalin 447.0916 20.07 [M-H]- 3.9 C21H20O11 5282102 

40 b-Chlorogenin 3-[4'-(2'-

glucosyl-3'-

xylosylglucosyl)galactoside] 

1049.521

7 
21.01 [M-H]- 

4.0 
C50H82O23 74193143 

41 Betaine 118.0853 4.00 [M+H]+ 5.7 C5H11NO2 247 

42 Caffeic acid 179.0350 15.86 [M-H]- 0.3 C9H8O4 689043 

43 
cAMP 328.0448 7.85 [M-H]- 

1.6 C10H12N5O6

P 
6076 

44 Caprylic acid 125.0977 21.76 [M-H2O-H]- 5.4 C8H16O2 379 

45 Carlosic acid methyl ester 223.0615 17.32 [M-H2O-H]- 2.1 C11H14O6 122391261 

46 Catechin 289.0710 14.48 [M-H]- 2.9 C15H14O6 9064 

47 Choline 104.1066 6.46 [M+H]+ 1.0 C5H13NO 305 

48 Choline O-Sulfate 184.0627 6.73 [M+H]+ 4.5 C5H13NO4S 486 

49 Citric acid 191.0193 5.82 [M-H]- 2.6 C6H8O7 19782904 

50 Coumarin 147.0432 18.38 [M+H]+ 3.9 C9H6O2 323 

51 Cytosine 112.0498 5.18 [M+H]+ 4.1 C4H5N3O 597 

52 D-1-[(3-

Carboxypropyl)amino]-1-

deoxyfructose 

266.1233 4.85 [M+H]+ 
0.6 

C10H19NO7 131752417 

53 
Daucic acid 203.0189 6.08 

[M-H]-,  

[M+Na-2H]- 
4.4 

C7H8O7 5316316 

54 Deoxyfructosazine 305.1343 5.34 [M+H]+ 0.8 C12H20N2O7 73452 

55 Digalacturonate 369.0673 4.51 [M-H]- 0.6 C12H18O13 439694 

56 
Dihydroactinidiolide 181.1219 23.39 

[M+H]+, 

[M+Na]+ 
0.7 

C11H16O2 27209 

57 Dihydrocaffeic acid  181.0501 17.72 [M-H]- 3.3 C9H10O4 348154 

58 Dihydroferulic acid 195.0665 19.02 [M-H]- 0.7 C10H12O4 14340 

59 
Dysolenticin B 451.3197 23.72 

[M+H-H2O]+, 

[M+H]+ 
1.5 

C30H42O3 56601655 

60 Enicoflavine 210.0771 17.99 [M-H]- 0.7 C10H13NO4 5281564 

61 Epicatechin 289.0715 16.80 [M-H]- 1.2 C15H14O6 72276 

62 Epigallocatechin 305.0666 13.48 [M-H]- 0.5 C15H14O7 72277 

63 Ferulic acid 193.0500 19.54 [M-H]- 3.7 C10H10O4 445858 

64 Folinic acid 474.1733 17.01 [M+H]+ 0.9 C20H23N7O7 6006 

65 Furaneol 4-(6-

malonylglucoside) 
397.0745 12.70 [M+Na-2H]- 

2.7 
C15H20O11 131750900 

66 Gentiopicroside 379.0999 18.91 [M+Na]+ 0.5 C16H20O9 88708 
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67 Ginkgoic acid 345.2435 26.26 [M-H]- 0.2 C22H34O3 5281858 

68 Ginsenoyne K 299.1613 24.98 [M+Na]+ 0.8 C17H24O3 15736266 

69 
Glabraoside A  597.1607 22.37 

[M-H]-,  

[M+Na-2H]- 
1.2 

C30H30O13 102393599 

70 Guanosine 282.0841 7.83 [M-H]- 1.3 C10H13N5O5 6802 

71 Isoferulic acid 193.0497 20.52 [M-H]- 5.2 C10H10O4 736186 

72 Isovalerylglucuronide 301.0896 10.01 [M+Na]+ 1.5 C11H18O8 137383 

73 Kaempferol 285.0404 21.96 [M-H]- 0.5 C15H10O6 5280863 

74 Kuwanon Y 605.1794 7.24 [M+Na]+ 2.4 C34H30O9 14334307 

75 Kynurenic acid 190.0491 17.62 [M+H]+ 2.6 C10H7NO3 3845 

76 L-Arginine 175.1184 4.34 [M+H]+ 1.5 C6H14N4O2 28782 

77 Linustatin 410.1663 8.22 [M+H]+ 2.2 C16H27NO11 119301 

78 
Longicamphenylone 207.1742 24.81 

[M+H-H2O]+, 

[M+H]+, 

[M+Na]+ 

0.7 
C14H22O 91747202 

79 Longifolenaldehyde 221.1897 23.87 [M+H]+ 0.0 C15H24O 565584 

80 
L-Ribulose 149.0451 5.19 

[M-H]-,  

[M+FA-H]- 
3.5 

C5H10O5 644111 

81 Madecassic Acid 503.3367 23.79 [M-H]- 2.3 C30H48O6 73412 

82 Madecassoside 973.5017 21.35 [M-H]- 0.3 C48H78O20 91885295 

83 
Malate 133.0143 5.32 

[M-H2O-H]-,  

[M-H]- 
0.2 

C4H6O5 20130941 

84 Mangiferin 421.0759 16.80 [M-H]- 4.3 C19H18O11 5281647 

85 
Muramic acid 234.0967 4.65 

[M+H-H2O]+, 

[M+H]+ 
0.9 

C9H17NO7 433580 

86 
N-(1-Deoxy-1-

fructosyl)phenylalanine 
328.1393 10.27 

[M+H-H2O]+, 

[M+H]+, 

[M+Na]+ 

1.5 
C15H21NO7 101039148 

87 N1,N5,N10,N14-Tetra-trans-p-

coumaroylspermine 
809.3504 23.17 

[M+H]+, 

[M+Na]+ 

1.8 
C46H50N4O8 9810941 

88 N-Acetyl-D-glucosamine 222.0961 5.14 [M+H]+ 3.8 C8H15NO6 899 

89 
N-Acetyl-L-glutamic acid 212.0525 7.54 

[M+H-H2O]+, 

[M+H]+, 

[M+Na]+ 

1.0 
C7H11NO5 70914 

90 Naringin 579.1710 20.12 [M-H]- 1.7 C27H32O14 442428 

91 Niacin (Nicotinic acid) 124.0383 5.32 [M+H]+ 5.9 C6H5NO2 938 

92 Nomilinic acid 17-glucoside 695.2913 20.15 [M+H-H2O]+ 1.6 C34H48O16 444212 

93 Palmitic acid 255.2323 25.44 [M-H]- 2.8 C16H32O2 985 

94 
Pantothenic Acid 220.1176 10.51 

[M+H]+, 

[M+Na]+ 
0.3 

C9H17NO5 6613 

95 Pelargonidin 3-O-glucoside 431.0967 22.47 [M-H]- 4.0 C21H20O10 443648 

96 
Phlorin 311.0739 14.27 

[M+H]+, 

[M+Na]+ 
1.2 

C12H16O8 476785 

97 Phosphocholine 184.0727 5.27 [M+H]+ 1.9 C5H14NO4P 1014 

98 
Purgic acid B,(-)-Purgic acid B 

1179.567

5 
22.81 [M-H]- 

2.0 
C52H92O29 16091605 

99 Quercetin 301.0349 21.10 [M-H]- 1.8 C15H10O7 5280343 

100 Quercetin 3-(6'-

acetylglucoside) 
505.0996 20.30 [M-H]- 

1.5 
C23H22O13 44259187 
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101 Quercetin 3-O-glucoside 463.0884 18.77 [M-H]- 0.3 C21H20O12 5280804 

102 Rutin 609.1465 18.88 [M-H]- 0.5 C27H30O16 5280805 

103 Sambacin 563.2089 19.43 [M+Na]+ 1.4 C26H36O12 131752486 

104 shanzhiside 391.1215 14.13 [M-H]- 8.1 C16H24O11 11948668 

105 
Soyacerebroside I 758.5428 26.17 

[M-H]-,  

[M+FA-H]- 
0.9 

C40H75NO9 131751281 

106 Stachyose 689.2104 4.58 [M+Na]+ 0.7 C24H42O21 439531 

107 Succinate 117.0195 7.39 [M-H]- 0.8 C4H6O4 1110 

108 Succinoadenosine 384.1156 11.33 [M+H]+ 2.3 C14H17N5O8 126969142 

109 Succinyl-L-proline 238.0706 7.31 [M+Na]+ 7.3 C9H13NO5 194156 

110 Swertiamarin 395.0978 17.90 [M+Na-2H]- 3.8 C16H22O10 442435 

111 
Tetradecanedioic acid 279.1623 23.65 

[M-H]-,  

[M+Na-2H]- 
8.3 

C14H26O4 13185 

112 Traumatic Acid 227.1285 22.67 [M-H]- 2.0 C12H20O4 5283028 

113 Tropic acid 165.0551 17.88 [M-H]- 4.2 C9H10O3 10726 

114 Tsangane L 3-glucoside 395.2039 22.28 [M+Na-2H]- 3.9 C19H34O7 73981648 

115 Uric acid 169.0344 5.66 [M+H]+ 5.6 C5H4N4O3 1175 

116 Vincosamide 499.2067 20.70 [M+H]+ 1.0 C26H30N2O8 10163855 

117 Xanthurenic acid 206.0439 14.77 [M+H]+ 2.9 C10H7NO4 5699 

a Matched with Table A.T3.7 
b Neutral formula obtained for annotated compounds 
c Bold - Compounds confirmed using authentic standards 

 

Table AS2: Linear regression functions calculated for 24 precursor ions. Calibration curves 

where stablished in negative ion mode with correlation factor r > 0.990. Calibration curves 

were prepared from mixed standard solutions containing 0.0, 0.005, 0.01, 0.05, 0.10, 0.50, 

1.00, 5.0 and 10.0 mg/L. Compounds are sorted by retention time. 

 

Compound [M-H]- (exact mass), XIC Regression function r 

5-O-Caffeoylquinic acid 353.0875 
Aa=(4.082 Cb + 

0.0502)*10^6 
0.9999 

Epigallocatechin 305.0666 A=(2.745 C - 0.0063)*10^6 0.9999 

Catechin 289.0710 A=(3.514 C + 0.0954)*10^6 0.9990 

Dihydrocaffeic acid 181.0511 A=(2.661 C + 0.0249)*10^6 0.9998 

4-O-Caffeoylquinic acid 353.0872 A=(3.312 C + 0.0331)*10^6 0.9998 

3-O-Caffeoylquinic acid 353.0869 A=(4.072 C + 0.0682)*10^6 0.9994 

Caffeic acid 179.0349 A=(4.516 C + 0.0664)*10^6 0.9996 

Epicatechin 289.0715 A=(3.524 C + 0.0731)*10^6 0.9994 

1,5-Dicaffeoylquinic acid 515.1189 A=(9.217 C + 0.0927)*10^6 0.9999 

1,3-Dicaffeoylquinic acid 515.1189 A=(9.217 C + 0.0927)*10^6 0.9999 
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Rutin 609.1452 A=(5.673 C + 0.0103)*10^6 0.9999 

Dihydroferulic acid 195.0665 A=(3.234 C + 0.0581)*10^6 0.9984 

3,4-Dicaffeoylquinic acid 515.1190 A=(3.451 C + 0.0377)*10^6 1.0000 

3,5-Dicaffeoylquinic acid 515.1190 A=(3.045 C + 0.0300)*10^6 1.0000 

Ferulic acid 193.0510 A=(1.551 C + 0.0241)*10^6 0.9992 

4,5-Dicaffeoylquinic acid 515.1192 A=(5.546 C + 0.0570)*10^6 0.9999 

Naringin 579.1718 A=(4.730 C + 0.0510)*10^6 0.9999 

Iso Ferulic acid 193.0510 A=(0.417 C + 0.0032)*10^6 0.9999 

Quercetin 301.0340 A=(7.879 C + 0.2305)*10^6 0.9975 

Madecassoside 973.5018 A=(0.647 C + 0.0401)*10^6 0.9997 

Asiaticoside 957.5087 A=(0.506 C + 0.0107)*10^6 0.9996 

Kaempferol 285.0404 A=(12.150 C + 0.3562)*10^6 0.9916 

Madecassic Acid 503.3370 A=(1.232 C + 0.3609)*10^6 0.9895 

Asiatic acid 487.3428 A=(1.937 C + 0.1587)*10^6 0.9866 

 aA: peak area for the quantifier  
bc: concentration, mg l–1. 

 

 

Appendix B 
 

Supplemental Material for Chapter 4. 

 

Figure BS1: Volcano plot comparing the differences in the lipid profile across 306 lipids 

in heart tissues due to the storage conditions of OCT and liquid nitrogen. The adjusted p-

value and fold change were obtained using false discovery rate (FDR) and the mean ratio 

of lipid levels respectively across OCT and liquid nitrogen storage conditions. 14 lipids 

with FDR ≤ 0.1 (statistically significant) are represented in red of which only PE(42:2) had 

FDR ≤ 0.05 whereas the lipids with FDR > 0.1 are represented in blue. The two storage 
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conditions accounted for 4.6% less than 5%) significant differences in the lipidomic profile 

comprising of 306 lipids found in the heart tissues. 

 

 

Table BS1: Summary of fold change, p-value, false discovery rate adjusted p-value for 306 

lipid species identified across heart tissue samples for OCT and liquid nitrogen storage 

conditions using reversed phase LC-MS/MS in both ESI+ (_p) and ESI- (_n) mode. 

Compound p-value FDR FC log2FC log10p 

10-HETE_n 0.52 0.78 1.29 0.36 0.11 

11,12-Epoxyeicosatrienoic 

acid_n 0.10 0.45 1.30 0.38 0.35 

13E-Docosenamide_p 0.85 0.94 0.95 -0.08 0.03 

13-Hexadecenoic acid_n 0.23 0.59 1.66 0.73 0.23 

13-HODE_n 0.10 0.46 5.02 2.33 0.34 

14-methyl palmitic acid_n 0.16 0.55 1.12 0.16 0.26 

PE(42:2)_n

PE(34:1)_p
PE(40:1)_n

PE(P-40:4)_n

PC(P-36:4)_p PS(42:4)iso3_n
PC(36:1)_p

PC(P-36:2)_pPE(38:6)_n
PE(40:7)_n

PE(P-40:6)iso1_p

PE(35:1)_p
PE(40:3)_n

SM(d42:2)iso1_n
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15,16-Dihydroxyoctadecanoic 

acid_n 0.03 0.28 0.82 -0.28 0.56 

19-HETE_n 0.12 0.48 5.38 2.43 0.32 

20-HETE ethanolamide_p 0.07 0.37 0.64 -0.63 0.43 

2-hydroxydocosanoic acid_n 0.05 0.30 0.67 -0.59 0.52 

3-O-Sulfogalactosylceramide 

(d36:1)_p 0.04 0.30 1.83 0.87 0.52 

3-O-Sulfogalactosylceramide 

(d42:1)_p 0.03 0.27 1.78 0.83 0.57 

3-O-Sulfogalactosylceramide 

(d42:2)_p 0.05 0.31 2.07 1.05 0.51 

4,8,12,15,19-Docosapentaenoic 

acid_n 0.28 0.63 1.77 0.83 0.20 

C16 Sphinganine_p 0.15 0.54 0.83 -0.27 0.27 

CE(17:0)_n 0.47 0.75 1.12 0.17 0.13 

Cer(d32:0)_p 0.46 0.74 0.47 -1.09 0.13 

Cer(d36:1)_p 0.69 0.89 0.93 -0.10 0.05 

Cer(d38:0)_p 0.79 0.93 0.96 -0.07 0.03 

Cer(d38:1)_n 0.94 0.98 1.01 0.01 0.01 

Cer(d40:0)iso1_n 0.55 0.80 0.88 -0.18 0.09 

Cer(d40:2)iso2_n 0.82 0.93 1.03 0.05 0.03 

Cer(d41:1)_n 0.31 0.66 1.07 0.10 0.18 

Cer(d44:1)_n 0.75 0.92 1.06 0.09 0.03 

Ceramide (d34:1)iso1_n 0.60 0.84 0.95 -0.08 0.07 

Ceramide (d34:1)iso2_n 0.85 0.94 0.98 -0.03 0.03 

Ceramide (d36:1)iso1_n 0.50 0.77 0.91 -0.13 0.11 

Ceramide (d36:1)iso2_n 0.82 0.93 0.98 -0.03 0.03 

Ceramide (d40:1)_n 0.32 0.66 1.09 0.12 0.18 

Ceramide (d42:1)_n 0.75 0.92 0.94 -0.09 0.03 

Coenzyme Q10_p 0.93 0.97 0.99 -0.01 0.01 

Coenzyme Q9_p 0.39 0.71 0.88 -0.19 0.15 

Dehydrophytosphingosine_p 0.26 0.61 1.16 0.22 0.21 

DG(40:8)_n 0.54 0.80 1.32 0.40 0.10 
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DG(38:5)iso1_n 0.47 0.75 1.34 0.43 0.13 

DG(33:2)_n 0.26 0.61 2.18 1.13 0.21 

DG(36:2)iso1_p 0.67 0.88 1.06 0.09 0.06 

DG(36:2)iso2_p 0.92 0.97 0.95 -0.07 0.01 

DG(36:4)_p 0.81 0.93 1.09 0.13 0.03 

DG(37:5)_n 0.41 0.72 1.62 0.70 0.14 

DG(38:4)iso1_p 0.99 1.00 1.00 0.00 0.00 

DG(38:4)iso2_p 0.86 0.95 1.03 0.04 0.02 

DG(38:4)iso3_p 0.06 0.33 1.07 0.10 0.49 

DG(38:5)iso2_p 0.70 0.90 1.12 0.16 0.05 

Docosahexaenoic acid_n 0.36 0.68 1.51 0.59 0.17 

Galabiosylceramide (d36:1)_n 0.80 0.93 0.98 -0.02 0.03 

Glucosylceramide (d43:1)_n 0.01 0.14 0.84 -0.25 0.86 

GPSer(40:5)_n 0.42 0.73 0.96 -0.07 0.14 

Hexadecadienoic acid_n 0.26 0.62 1.70 0.77 0.21 

Lactosylceramide (d34:1)_n 0.52 0.78 0.85 -0.23 0.11 

Linoleyl carnitine_n 0.19 0.57 0.32 -1.64 0.24 

LysoPA(16:0)_p 0.66 0.88 1.14 0.19 0.06 

LysoPA(18:0)_p 0.65 0.87 1.06 0.09 0.06 

LysoPC(15:0)_n 0.42 0.73 1.21 0.28 0.14 

LysoPC(16:0)iso1_p 0.22 0.59 1.11 0.15 0.23 

LysoPC(16:0)iso2_p 0.20 0.57 0.77 -0.37 0.24 

LysoPC(17:0)iso1_n 0.50 0.77 1.15 0.21 0.11 

LysoPC(17:0)iso2_n 0.17 0.56 0.87 -0.21 0.26 

LysoPC(18:0)iso1_p 0.56 0.81 1.09 0.12 0.09 

LysoPC(18:0)iso2_p 0.76 0.92 0.97 -0.05 0.03 

LysoPC(18:2)_p 0.19 0.57 1.46 0.55 0.24 

LysoPC(20:4)_p 0.27 0.62 1.24 0.31 0.21 

LysoPC(22:6)_p 0.58 0.83 0.91 -0.14 0.08 

LysoPC(P-16:0)_p 0.43 0.73 1.26 0.33 0.14 

LysoPC(P-18:0)_p 0.42 0.73 1.23 0.30 0.14 
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LysoPC(P-18:1)_p 0.34 0.67 1.37 0.46 0.17 

LysoPE(16:0)iso1_n 0.98 1.00 1.00 0.01 0.00 

LysoPE(16:0)iso2_n 0.58 0.83 0.92 -0.12 0.08 

LysoPE(18:0)iso1_n 0.45 0.74 1.21 0.28 0.13 

LysoPE(18:0)iso2_n 0.85 0.94 1.05 0.07 0.03 

LysoPE(18:0)iso3_p 0.77 0.92 0.94 -0.08 0.03 

LysoPE(18:0)iso4_p 0.90 0.97 1.03 0.04 0.01 

LysoPE(18:1)_p 0.19 0.57 1.38 0.46 0.24 

LysoPE(18:1)iso1_n 0.77 0.92 1.08 0.11 0.03 

LysoPE(18:1)iso2_n 0.22 0.59 0.81 -0.30 0.23 

LysoPE(18:2)iso1_n 0.31 0.65 1.29 0.37 0.19 

LysoPE(18:2)iso2_n 0.77 0.92 1.09 0.12 0.03 

LysoPE(20:0)_n 0.65 0.87 1.04 0.06 0.06 

LysoPE(20:3)_p 0.28 0.63 1.25 0.32 0.20 

LysoPE(20:4)_n 0.24 0.61 1.42 0.50 0.21 

LysoPE(20:5)_n 0.17 0.57 1.27 0.35 0.25 

LysoPE(22:0)iso1_n 0.19 0.57 0.89 -0.18 0.24 

LysoPE(22:0)iso2_n 0.60 0.84 0.96 -0.06 0.08 

LysoPE(22:1)iso1_n 0.37 0.70 1.11 0.15 0.16 

LysoPE(22:1)iso2_n 0.55 0.81 1.16 0.22 0.09 

LysoPE(22:2)_n 0.23 0.59 1.33 0.42 0.23 

LysoPE(22:5)_n 0.25 0.61 0.88 -0.18 0.21 

LysoPE(22:6)_n 0.30 0.64 1.25 0.32 0.19 

Methyltestosterone_n 0.08 0.41 1.23 0.30 0.39 

MG(13:0)_n 0.15 0.54 1.17 0.22 0.27 

MG(15:0)_n 0.06 0.33 1.17 0.23 0.49 

MG(16:0)_n 0.84 0.94 0.98 -0.03 0.03 

MG(18:0)_n 0.67 0.88 1.03 0.05 0.06 

MG(i-17:0)iso1_n 0.47 0.75 1.05 0.07 0.13 

MG(i-17:0)iso2_n 0.21 0.57 0.95 -0.08 0.24 

N-hexadecanoylsphinganine-1-

phosphocholine_p 0.02 0.19 0.87 -0.20 0.71 
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N-Stearoyl GABA_p 0.78 0.93 1.15 0.20 0.03 

Octadecanamideiso1_p 0.65 0.87 0.47 -1.09 0.06 

Octadecanamideiso2_p 0.40 0.72 1.23 0.30 0.14 

Oleoylcarnitine_p 0.76 0.92 1.09 0.12 0.03 

PA(34:1)_p 0.84 0.94 1.04 0.06 0.03 

PA(36:2)_n 0.09 0.41 0.88 -0.19 0.38 

PA(36:3)_p 0.32 0.66 1.34 0.42 0.18 

PA(38:4)_n 0.14 0.53 0.87 -0.20 0.28 

PA(40:2)_n 0.62 0.86 0.76 -0.39 0.07 

PA(44:10)_n 0.29 0.64 0.85 -0.24 0.19 

PA(48:1)_p 0.99 1.00 1.00 0.00 0.00 

Palmitic amide_p 0.10 0.45 6.83 2.77 0.35 

Palmitoleoyl Ethanolamide_p 0.32 0.66 1.83 0.88 0.18 

Palmitoylcarnitine_p 0.95 0.98 1.02 0.03 0.01 

PC(30:0)_p 0.29 0.63 0.82 -0.29 0.20 

PC(31:0)_p 0.12 0.48 0.80 -0.33 0.32 

PC(32:0)_p 0.05 0.30 0.85 -0.23 0.52 

PC(34:1)_p 0.12 0.48 0.79 -0.34 0.32 

PC(34:2)iso1_n 0.16 0.54 4.19 2.07 0.27 

PC(34:2)iso2_p 0.90 0.97 0.99 -0.02 0.02 

PC(34:3)_p 0.34 0.67 0.92 -0.12 0.17 

PC(36:1)_p 0.00 0.07 0.71 -0.49 1.17 

PC(36:2)_p 0.11 0.46 0.95 -0.08 0.34 

PC(36:3)_p 0.02 0.20 0.86 -0.22 0.70 

PC(36:4)iso1_p 0.26 0.61 0.91 -0.13 0.21 

PC(36:4)iso2_p 0.70 0.90 0.94 -0.09 0.05 

PC(36:5)_p 0.54 0.80 0.87 -0.21 0.10 

PC(38:2)_n 0.22 0.59 0.87 -0.21 0.23 

PC(38:6)_p 0.19 0.57 0.88 -0.18 0.24 

PC(40:5)_n 0.21 0.57 0.77 -0.38 0.24 

PC(44:9)_n 0.02 0.19 0.85 -0.23 0.71 
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PC(DiMe(20,8))_n 1.00 1.00 1.00 0.00 0.00 

PC(o-44:4)_p 0.72 0.91 0.95 -0.07 0.04 

PC(P-30:0)_p 0.39 0.71 0.91 -0.13 0.15 

PC(P-34:1)_p 0.78 0.93 0.95 -0.07 0.03 

PC(P-34:2)iso1_p 0.39 0.71 0.92 -0.12 0.15 

PC(P-34:2)iso2_n 0.20 0.57 1.08 0.12 0.24 

PC(P-36:2)_p 0.00 0.07 0.87 -0.20 1.17 

PC(P-36:3)_n 0.59 0.84 0.95 -0.07 0.08 

PC(P-36:4)iso1_n 0.77 0.92 0.98 -0.02 0.03 

PC(P-36:4)iso2_n 0.19 0.57 0.87 -0.21 0.24 

PC(P-36:4)iso3_p 0.00 0.07 0.86 -0.21 1.17 

PC(P-36:5)_n 0.06 0.33 0.83 -0.27 0.49 

PC(P-38:4)_n 0.15 0.54 0.88 -0.19 0.27 

PC(P-38:5)_p 0.03 0.24 0.87 -0.19 0.61 

PC(P-38:6)_p 0.16 0.55 0.90 -0.15 0.26 

PC(P-42:6)_n 0.30 0.64 0.78 -0.36 0.19 

PE(33:2)_n 0.20 0.57 1.17 0.23 0.24 

PE(34:1)_p 0.00 0.06 0.88 -0.19 1.25 

PE(34:2)iso1_n 0.06 0.33 0.90 -0.16 0.49 

PE(34:2)iso2_p 0.82 0.93 1.06 0.09 0.03 

PE(35:0)_p 0.36 0.68 0.89 -0.16 0.17 

PE(35:1)_p 0.00 0.08 0.76 -0.40 1.10 

PE(36:0)_n 0.02 0.21 0.88 -0.18 0.67 

PE(36:1)_p 0.68 0.88 1.05 0.07 0.06 

PE(36:2)iso1_n 0.02 0.23 0.88 -0.18 0.64 

PE(36:2)iso2_n 0.21 0.57 0.96 -0.07 0.24 

PE(36:2)iso3_n 0.02 0.23 0.91 -0.14 0.64 

PE(36:3)_n 0.01 0.13 0.90 -0.14 0.88 

PE(36:4)_p 0.81 0.93 1.02 0.03 0.03 

PE(36:4)iso1_n 0.13 0.51 0.77 -0.37 0.29 

PE(36:4)iso2_n 0.02 0.21 0.89 -0.17 0.69 
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PE(36:5)_n 0.20 0.57 0.97 -0.05 0.24 

PE(37:2)_n 0.18 0.57 0.82 -0.28 0.24 

PE(38:0)_n 0.04 0.30 0.90 -0.16 0.52 

PE(38:1)iso1_n 0.62 0.86 0.96 -0.05 0.07 

PE(38:1)iso2_n 0.23 0.59 0.87 -0.20 0.23 

PE(38:2)iso1_n 0.82 0.93 1.01 0.02 0.03 

PE(38:2)iso2_n 0.47 0.75 0.92 -0.11 0.13 

PE(38:3)iso1_n 0.87 0.95 1.02 0.03 0.02 

PE(38:3)iso2_n 0.20 0.57 0.91 -0.13 0.24 

PE(38:4)iso1_n 0.05 0.33 0.83 -0.27 0.49 

PE(38:4)iso2_n 0.76 0.92 0.98 -0.03 0.03 

PE(38:4)iso3_n 0.26 0.61 0.84 -0.24 0.21 

PE(38:5)iso1_n 0.01 0.11 0.88 -0.18 0.98 

PE(38:5)iso2_n 0.45 0.74 1.09 0.13 0.13 

PE(38:6)_n 0.00 0.07 0.86 -0.21 1.17 

PE(40:1)_n 0.00 0.06 0.84 -0.24 1.25 

PE(40:2)iso1_n 0.06 0.33 0.90 -0.15 0.49 

PE(40:2)iso2_n 0.04 0.30 0.87 -0.19 0.52 

PE(40:2)iso3_n 0.21 0.57 0.85 -0.23 0.24 

PE(40:3)_n 0.00 0.08 0.91 -0.13 1.10 

PE(40:4)iso1_n 0.10 0.46 0.90 -0.15 0.34 

PE(40:4)iso2_n 0.45 0.74 0.91 -0.13 0.13 

PE(40:5)iso1_n 0.80 0.93 0.95 -0.07 0.03 

PE(40:5)iso2_n 0.43 0.73 0.92 -0.12 0.14 

PE(40:6)iso1_p 0.14 0.52 0.93 -0.11 0.29 

PE(40:6)iso2_n 0.06 0.33 0.94 -0.09 0.48 

PE(40:6)iso3_n 0.01 0.19 0.89 -0.17 0.71 

PE(40:7)_n 0.00 0.07 0.78 -0.36 1.17 

PE(42:2)_n 0.00 0.04 0.89 -0.17 1.35 

PE(42:3)_n 0.01 0.11 0.83 -0.26 0.98 

PE(42:4)_n 0.09 0.44 0.88 -0.19 0.36 
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PE(42:5)_n 0.03 0.27 0.86 -0.22 0.57 

PE(42:8)_n 0.78 0.93 0.90 -0.16 0.03 

PE(44:2)_n 0.79 0.93 0.90 -0.16 0.03 

PE(44:5)_n 0.33 0.66 0.85 -0.23 0.18 

PE(44:6)_n 0.40 0.72 0.92 -0.13 0.14 

PE(48:2)_p 0.98 1.00 1.00 0.00 0.00 

PE(DiMe(20,8))_n 0.76 0.92 1.10 0.14 0.03 

PE(P-16:0e)_n 0.27 0.62 0.89 -0.16 0.21 

PE(P-32:0)_p 0.49 0.76 1.08 0.11 0.12 

PE(P-34:1)_n 0.49 0.77 0.95 -0.07 0.12 

PE(P-34:2)_n 0.56 0.81 0.92 -0.12 0.09 

PE(P-34:3)_n 0.40 0.72 0.91 -0.14 0.14 

PE(P-36:0)_n 0.17 0.56 0.88 -0.18 0.26 

PE(P-36:2)iso1_n 0.39 0.71 0.93 -0.11 0.15 

PE(P-36:2)iso2_n 0.16 0.55 0.94 -0.09 0.26 

PE(P-36:3)iso1_n 0.41 0.72 0.87 -0.20 0.14 

PE(P-36:3)iso2_n 0.92 0.97 0.98 -0.03 0.01 

PE(P-36:4)_n 0.15 0.54 0.92 -0.12 0.27 

PE(P-36:5)_n 0.13 0.51 0.90 -0.15 0.30 

PE(P-38:0)_p 0.02 0.19 0.83 -0.27 0.71 

PE(P-38:1)iso1_n 0.36 0.68 0.84 -0.26 0.17 

PE(P-38:1)iso2_n 0.07 0.37 0.75 -0.42 0.43 

PE(P-38:2)iso1_n 0.95 0.98 1.00 0.00 0.01 

PE(P-38:2)iso2_n 0.06 0.33 0.88 -0.19 0.49 

PE(P-38:3)_n 0.09 0.41 0.92 -0.12 0.38 

PE(P-38:4)_n 0.01 0.12 0.92 -0.12 0.91 

PE(P-38:5)_n 0.04 0.30 0.93 -0.10 0.52 

PE(P-38:6)_n 0.34 0.67 0.94 -0.10 0.17 

PE(P-40:2)_n 0.01 0.13 0.93 -0.10 0.88 

PE(P-40:4)_n 0.00 0.06 0.90 -0.15 1.25 

PE(P-40:5)_n 0.35 0.67 0.97 -0.04 0.17 
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PE(P-40:6)iso1_p 0.00 0.07 0.88 -0.18 1.17 

PE(P-40:6)iso2_p 0.64 0.87 0.97 -0.05 0.06 

PE(P-40:6)iso3_p 0.98 1.00 1.00 0.00 0.00 

PE(P-40:7)_n 0.30 0.64 1.15 0.20 0.19 

PE-NMe(38:2)_n 0.25 0.61 0.94 -0.09 0.21 

PE-NMe(38:3)_n 0.32 0.66 0.89 -0.16 0.18 

PE-NMe(38:4)_n 0.89 0.96 0.97 -0.05 0.02 

PE-NMe(42:5)_n 0.87 0.95 0.97 -0.04 0.02 

PE-NMe2(36:2)_n 0.58 0.83 0.95 -0.08 0.08 

PE-NMe2(40:5)_p 0.60 0.84 0.90 -0.15 0.07 

PE-NMe2(42:8)_n 0.80 0.93 1.09 0.13 0.03 

Pentadecanoic acid_n 0.53 0.79 1.05 0.07 0.10 

Pentadecanoylcarnitine_n 0.12 0.49 0.51 -0.98 0.31 

PG(34:1)_n 0.02 0.19 0.91 -0.14 0.71 

PG(34:2)_n 0.42 0.73 0.83 -0.27 0.14 

PG(34:3)iso1_n 0.74 0.92 0.88 -0.18 0.03 

PG(34:3)iso2_n 0.06 0.33 0.85 -0.24 0.49 

PG(36:4)_n 0.87 0.95 0.95 -0.07 0.02 

PG(38:4)_p 0.34 0.67 1.13 0.18 0.17 

PI(36:3)_n 0.91 0.97 1.02 0.02 0.01 

PI(38:4)_n 0.94 0.98 0.98 -0.03 0.01 

PI(40:4)_n 0.35 0.67 1.06 0.08 0.17 

PI(40:6)_n 0.64 0.87 1.03 0.04 0.06 

PIP(34:1)_p 0.21 0.58 1.24 0.31 0.24 

PIP(38:2)_p 0.44 0.73 1.13 0.18 0.13 

PS(28:0)iso1_p 0.63 0.86 0.97 -0.05 0.07 

PS(28:0)iso2_p 0.89 0.96 0.88 -0.18 0.02 

PS(28:0)iso3_p 0.05 0.33 13.44 3.75 0.49 

PS(28:0)iso4_p 0.93 0.97 0.94 -0.09 0.01 

PS(29:0)_p 0.30 0.65 1.15 0.20 0.19 

PS(30:0)_p 0.89 0.96 1.01 0.02 0.02 
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PS(32:3)_p 0.38 0.71 1.33 0.41 0.15 

PS(35:1)_n 0.91 0.97 0.97 -0.04 0.01 

PS(36:0)_n 0.64 0.87 1.03 0.04 0.06 

PS(36:2)_p 0.42 0.73 0.84 -0.25 0.14 

PS(36:3)_n 0.49 0.77 0.90 -0.15 0.12 

PS(37:0)_n 0.52 0.78 1.03 0.04 0.11 

PS(38:0)_n 0.15 0.54 0.90 -0.15 0.27 

PS(38:1)_n 0.72 0.91 1.04 0.06 0.04 

PS(38:2)_n 0.04 0.30 0.80 -0.32 0.53 

PS(38:3)_p 0.51 0.78 1.03 0.04 0.11 

PS(38:5)iso1_n 0.25 0.61 0.89 -0.17 0.21 

PS(38:5)iso2_n 0.75 0.92 1.03 0.05 0.03 

PS(39:0)_n 0.75 0.92 0.97 -0.05 0.03 

PS(40:1)_n 0.05 0.30 0.95 -0.08 0.52 

PS(40:3)_n 0.01 0.14 0.87 -0.20 0.86 

PS(40:6)_n 0.51 0.78 0.96 -0.06 0.11 

PS(42:1)_n 0.11 0.47 0.91 -0.13 0.32 

PS(42:2)_n 0.40 0.72 0.91 -0.14 0.14 

PS(42:3)_n 0.32 0.66 0.92 -0.12 0.18 

PS(42:4)iso1_n 0.27 0.62 0.92 -0.12 0.21 

PS(42:4)iso2_n 0.05 0.30 0.84 -0.26 0.52 

PS(42:4)iso3_n 0.00 0.07 0.90 -0.15 1.17 

PS(42:5)iso1_n 0.28 0.63 0.87 -0.20 0.20 

PS(42:5)iso2_n 0.69 0.89 0.94 -0.10 0.05 

PS(42:5)iso3_n 0.06 0.33 0.86 -0.22 0.49 

PS(44:2)_n 0.02 0.21 0.93 -0.10 0.69 

PS(44:3)_n 0.56 0.81 0.92 -0.11 0.09 

PS(44:4)iso1_n 0.67 0.88 0.94 -0.09 0.06 

PS(44:4)iso2_n 0.29 0.64 0.90 -0.15 0.19 

PS(44:5)_n 0.27 0.62 0.93 -0.11 0.21 

PS(44:6)_n 0.25 0.61 0.93 -0.11 0.21 
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PS(46:1)_n 0.66 0.87 0.85 -0.24 0.06 

PS(DiMe(24,8))_n 0.82 0.93 0.98 -0.03 0.03 

SM(d34:1)_p 0.13 0.51 0.89 -0.16 0.29 

SM(d36:1)_p 0.04 0.30 0.87 -0.19 0.52 

SM(d38:1)_p 0.25 0.61 0.90 -0.15 0.21 

SM(d40:1)_p 0.03 0.27 0.86 -0.21 0.57 

SM(d40:2)_p 0.12 0.49 0.86 -0.22 0.31 

SM(d41:1)_p 0.19 0.57 0.89 -0.16 0.24 

SM(d42:1)_p 0.46 0.74 0.88 -0.19 0.13 

SM(d42:2)iso1_n 0.00 0.08 0.89 -0.17 1.10 

SM(d42:2)iso2_n 0.82 0.93 1.02 0.03 0.03 

SM(d44:2)iso1_n 0.26 0.62 0.89 -0.16 0.21 

SM(d44:2)iso2_n 0.44 0.73 0.91 -0.14 0.13 

Stearic Acid ethyl ester_n 0.98 1.00 1.00 0.00 0.00 

Tetracosanoic acid_n 0.50 0.77 0.91 -0.14 0.11 

TG(52:4)_n 0.96 0.99 1.00 -0.01 0.01 

TG(i-47:0)_p 0.21 0.57 0.83 -0.27 0.24 

TG(i-48:0)_p 0.33 0.67 1.20 0.26 0.17 

Trihexosylceramide (d34:1)_p 0.16 0.55 1.36 0.44 0.26 

Trihexosylceramide (d42:1)_n 0.77 0.92 1.07 0.09 0.03 

Trihexosylceramide (d42:2)_n 0.93 0.97 1.02 0.03 0.01 

Trihexosylceramide (d43:1)_n 0.65 0.87 1.09 0.12 0.06 

Undecanedioic acid_n 0.10 0.46 0.54 -0.90 0.34 

Vaccenyl carnitine_p 0.03 0.24 2.56 1.35 0.61 

 

Abbreviation index 

PC: phosphatidylcholines 

PE: phosphatidylethanolamines  

SM: sphingomyelins  

MG: monoacylglycerols 

DG: diacylglycerols  

TG: triacylglycerols 
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PC(P), PE(P), LysoPC/PE(P): plasmalogens 

 

 

Appendix C 
 

Supplemental Material for Chapter 5. 

 

Figure CS1: Metabolic pathways identified by pathway analysis using KEGG identifiers 

based on 254 metabolites detected in MDA-MB-231 cells using Metaboanalyst v5.0. a. 

Tricarboxylic acid cycle b. glutamine-glutamate pathway c. alanine-aspartate-glutamate 

metabolic pathway d. glutathione metabolic pathway. 

 

 

Table CS1: Metabolite name, theoretical mass, observed mass, Δ ppm and retention time 

(RT) in minutes for 166 metabolites identified using ESI positive ion [M+H]+ in MDA-

MB 231 cell extracts. 

Metabolite 
Theoretical 

mass 

Observed 

mass 
Δ ppm 

RT 

(Min)  
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NAD 663.10912 663.1091 0.060322 9.47 

Glutamine 146.06914 146.0691 0.273843 8.75 

Inosine 5'-Phosphate 
348.0471 348.0471 0.114927 9.95 

Taurine 125.01467 125.0146 0.319962 7.78 

Inosine 268.08077 268.0807 0.149209 1.9 

Isoleucine 131.09463 131.0946 0.305123 8.1 

Glutamic Acid 147.05316 147.0531 0.27201 9.49 

Beta-Alanine 89.04768 89.04764 0.449198 8.11 

Dihydroorotate 
158.03276 158.0327 0.253112 2.2 

Alanine 89.04768 89.04764 0.449198 8.11 

Proline 115.06333 115.0633 0.347635 6.89 

Thymine 126.04293 126.0429 0.317352 1.11 

Carnosine 226.10659 226.1066 0.176908 11.09 

Nicotinamide 122.04801 122.048 0.32774 1.35 

Phenylalanine 165.07898 165.0789 0.242308 4.52 

Uracil 112.02728 112.0272 0.357056 2.23 

Aspartate 133.03751 133.0375 0.300667 9.99 

Creatine 131.06948 131.0694 0.305182 8.1 

Guanosine 283.09167 283.0916 0.141297 5.15 

Lysine 146.10553 146.1055 0.273775 15.94 

Tyrosine 181.07389 181.0739 0.220904 6.7 

Asparagine 132.05349 132.0535 0.302908 8.1 

Valine 117.07898 117.0789 0.34165 6.11 

Guanine 151.04941 151.0494 0.264814 5.15 

Deoxyadenosine Monophosphate 

331.06817 331.0681 0.120821 8.27 

Nicotinamide Mononucleotide 

334.05661 334.0566 0.11974 9.62 

Thiourea 76.00952 76.00948 0.52625 1.1 

Cys-Gly 178.04122 178.0412 0.224667 28.83 

Guanidinoacetate 
117.05383 117.0538 0.341723 6.11 

Creatinine 113.05891 113.0589 0.353798 1.21 

Aconitate 174.01644 174.0164 0.229863 28.82 

3-Dehydroshikimate 

172.03717 172.0371 0.232508 28.82 

Leucine 131.09463 131.0946 0.305123 8.1 

Betaine 117.07898 117.0789 0.34165 6.11 

Tryptophan 204.08988 204.0898 0.195992 7.25 
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5-Oxo-D-Proline 
129.04259 129.0426 0.309975 9.49 

Methylguandine 
73.064 73.06396 0.547465 4.64 

Caffeine 194.08038 194.0803 0.2061 1.13 

Methyladenosine 
281.11241 281.1124 0.142292 1.1 

4-Hydroxyproline 

131.05824 131.0582 0.305208 8.1 

Urocanate 138.04293 138.0429 0.289765 6.27 

5-Oxo-L-Proline 
129.04259 129.0426 0.309975 9.49 

Lysine 146.10553 146.1055 0.273775 15.94 

Cytidine 5'-Diphosphocholine 

489.11459 489.1146 0.08178 10.63 

Phosphonoacetate 
139.98746 139.9874 0.28574 28.97 

Arginine 174.11168 174.1116 0.229738 15.36 

4-Hydroxy-L-Proline 
131.05824 131.0582 0.305208 8.1 

Xanthosine 284.07569 284.0757 0.140808 6.83 

Thyrotropin Releasing Hormone 

362.17025 362.1702 0.110445 1.14 

2'-Deoxyguanosine 5'-Monophosphate 

347.06309 347.0631 0.115253 9.43 

Nicotinamide Hypoxanthine Dinucleotide 

665.1004 665.1004 0.060141 9.47 

Adenosine 5'-Monophosphate 

347.06309 347.0631 0.115253 9.43 

Sodium D-Gluconate 
178.04774 178.0477 0.224659 28.83 

Deoxycarnitine 
145.11028 145.1102 0.275652 10.18 

Mevalolactone 130.063 130.063 0.307543 1.18 

Uridine 5'-Diphosphoglucose 

566.05503 566.055 0.070665 9.69 

Thiamine 265.11231 265.1123 0.150879 8.88 



205 
 

2'-Deoxyguanosine 5'-Diphosphate 

427.02941 427.0294 0.09367 10.47 

5-Methylcytosine 

125.05891 125.0589 0.319849 1.18 

Cytidine 2',3'-Cyclic Monophosphate 

305.04129 305.0413 0.13113 7.5 

Guanosine 5'-Diphosphoglucose 

443.02432 443.0243 0.090288 11.46 

A-D-Galactose 1-Phosphate Dipotassium Salt 

Pentahydrate 

260.02971 260.0297 0.153829 10.82 

Mannose 6-Phosphate 
260.02972 260.0297 0.153829 10.82 

Carnitine 161.10519 161.1052 0.248285 8.94 

Thymidine 5'-Monophosphate 

322.05661 322.0566 0.124202 10.38 

Adenosine-5'-Diphosphoglucose 

427.02942 427.0294 0.09367 10.48 

Octopamine 153.07897 153.0789 0.261303 8.11 

Uridine 5'-Diphosphogalactose 

566.05503 566.055 0.070665 9.69 

5-Aminolevulinic Acid 

131.05824 131.0582 0.305208 8.1 

2'-Deoxyuridine 5'-Monophosphate 

308.04096 308.0409 0.129853 7.7 

Xanthosine 5'-Monophosphate 

364.04202 364.042 0.109877 10.56 

Flavin Adenine Dinucleotide 
785.15714 785.1571 0.050945 8.21 

Methylnicotinamide 
137.07094 137.0709 0.29182 6.91 
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 5-Aminoimidazole-4-Carboxamide-1-?-D-

Ribofuranosyl 5'-Monophosphate 

338.06275 338.0627 0.118321 8.52 

Uridine 5'-Diphospho-N-Acetylgalactosamine 

607.08154 607.0815 0.065889 9.37 

(5'-Adenosyl)-L-Homocysteine 
384.12159 384.1216 0.104134 8.27 

Adenine Hydrochloride 
135.0545 135.0545 0.296177 1.89 

Phosphocreatine 
211.03581 211.0358 0.189541 10.67 

Uridine 5'-Diphosphoglucuronic Acid 

580.0343 580.0343 0.068961 9.03 

Guanosine 5'-Monophosphate 

363.058 363.058 0.110175 10.46 

N-Acetyl-Alanine 
131.05824 131.0582 0.305208 8.1 

4-Guanidino-Butanoate 
145.08513 145.0851 0.2757 10.18 

Methyl Beta-D-Galactoside 
194.07904 194.079 0.206102 2.19 

CMP 323.05186 323.0518 0.123819 10.36 

6-Hydroxynicotinate 

139.02694 139.0269 0.287714 6.8 

Inosine 5'-Monophosphate 

348.0471 348.0471 0.114927 9.95 

Pantothenic Acid 
219.11067 219.1106 0.182556 4.79 

DTMP 322.05661 322.0566 0.124202 10.37 

3-Ureidopropionic Acid 

132.05349 132.0535 0.302908 8.1 

Norleucine 131.09463 131.0946 0.305123 8.1 

Adenosine 267.09676 267.0967 0.149758 1.9 

Raffinose 594.22187 594.2218 0.067315 19.89 

4-Hydroxy-D-Proline 
131.05824 131.0582 0.305208 8.09 
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Choline 104.10754 104.1075 0.384218 6.51 

4-Aminobutanoic Acid 

103.06333 103.0633 0.388111 9.26 

Formyl-Methionyl 
177.04597 177.0459 0.22593 28.82 

Alanine 89.04768 89.04764 0.449198 8.11 

Histidine 155.06948 155.0694 0.257949 16.56 

Creatine Phosphate Dibasic Tetrahydrate 

211.03581 211.0358 0.189541 9.04 

Adenosine 5'-Diphosphoribose 

559.07168 559.0716 0.071547 9.31 

Trigonelline 137.04768 137.0476 0.291869 6.91 

Sn-Glycerol-3-Phosphocholine 

258.11011 258.1101 0.154973 9.66 

N-Acetyl-Serine 
147.05316 147.0531 0.27201 9.49 

Uridine 5'-Diphosphate 
404.0022 404.0022 0.099009 9.36 

Alpha-Glucose 1-Phosphate 
260.02972 260.0297 0.153829 10.82 

Glucosamine 6-Sulfate 
259.03619 259.0362 0.154419 9.55 

Tyramine 137.08406 137.084 0.291792 6.91 

Cortisol 362.20933 362.2093 0.110433 1.13 

Melatonin 232.12118 232.1211 0.172324 1.1 

3-Hydroxybenzyl Alcohol 

124.05243 124.0524 0.322444 26.33 

Lumichrome 242.08038 242.0803 0.165234 1.22 

Glycocholate 465.30904 465.309 0.085964 2.33 

3-Amino-5-Hydroxybenzoic Acid 

153.0426 153.0426 0.261365 8.11 

Guaiacol 124.05243 124.0524 0.322444 26.33 

Methyl Vanillate 
182.05791 182.0579 0.21971 6.67 

3-(4-Hydroxyphenyl)Pyruvate 

180.04226 180.0422 0.22217 5.1 

Cortisol 21-Acetate 
404.21989 404.2199 0.098956 1.11 
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3(2-Hydroxyphenyl)Propanoate 

166.063 166.063 0.240872 4.6 

Dihydroxymandelic Acid 
184.03718 184.0371 0.217347 7.1 

Dethiobiotin 214.13174 214.1317 0.186801 1.2 

Azelaic Acid 188.10486 188.1048 0.212647 6.11 

3Alpha,11Beta,17Alpha,21-Tretrahydroxy-5Alpha-

Pregnan-20-One 

366.24062 366.2406 0.109218 1.13 

Biotin 244.08817 244.0881 0.163875 2.2 

Mercaptopyruvate 
119.98812 119.9881 0.333366 28.82 

Lithium Potassium Acetyl Phosphate 

139.9875 139.9875 0.28574 8.91 

Dehydroascorbate 
174.01644 174.0164 0.229863 28.82 

Sucrose 342.11622 342.1162 0.116919 8.55 

Mannitol 182.07904 182.079 0.219685 6.68 

Melibiose 342.11622 342.1162 0.116919 8.55 

Maltose 342.11622 342.1162 0.116919 8.55 

Gulonic Acid 178.04774 178.0477 0.224659 28.83 

Cellobiose 342.11622 342.1162 0.116919 8.55 

Palatinose 342.11621 342.1162 0.116919 8.55 

Vitamin D2 396.33922 396.3392 0.100924 1.08 

4-Coumarate 164.04735 164.0473 0.243832 6.73 

Cholesteryl Acetate 
428.36543 428.3654 0.093378 1.09 

Petroselinic Acid 
282.25588 282.2558 0.141715 1.14 

1,2-Dipalmitoyl-Sn-Glycerol 

568.50668 568.5066 0.07036 1.03 

Deoxycholic Acid 
392.29266 392.2926 0.101965 1.1 

3Alpha-Hydroxy-5-Beta-Cholanate 

376.29775 376.2977 0.106299 1.08 

Protoporphyrin 
562.25801 562.258 0.071142 1.08 

Menaquinone 444.30283 444.3028 0.090029 1.13 
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Estradiol-17Alpha 
272.17763 272.1776 0.146963 1.3 

Myristic Acid 228.20893 228.2089 0.175278 1.13 

17A,21-Dihydroxy-4-Pregnene-3,20-Dione 

346.21441 346.2144 0.115535 1.12 

Sodium Taurolithocholate 

483.30185 483.3018 0.082764 1.13 

Sphinganine 301.29808 301.298 0.132759 1.41 

Erucic Acid 338.31848 338.3184 0.118232 1.09 

Deoxycholic Acid 
392.29266 392.2926 0.101965 1.1 

Leukotriene B4 336.23006 336.23 0.118966 1.1 

Cholestra-5,7-Dien-3Beta-Ol 
384.33922 384.3392 0.104075 1.11 

Bis(2-Ethylhexyl)Phthalate 

390.27701 390.277 0.102491 1.06 

Cholic Acid 408.28758 408.2875 0.09797 1.1 

Phylloquinone 450.34978 450.3497 0.08882 1.12 

Diethyl-2-Methyl-3-Oxosuccinate 

202.08413 202.0841 0.197937 1.08 

Sodium Phenylpyruvate 

164.04735 164.0473 0.243832 6.72 

Oleate 282.25588 282.2558 0.141715 1.14 

Stearate 284.27153 284.2715 0.140711 1.08 

Beta-Carotene 536.4382 536.4382 0.074566 1.12 

25-Hydroxycholesterol 

402.34978 402.3497 0.099416 1.11 

Nervonic Acid 366.34978 366.3497 0.109185 1.14 

Deoxycorticosterone 
372.23006 372.23 0.10746 1.17 

Oleoyl-Rac-Glycerol 
356.29266 356.2926 0.112267 1.11 

Tocopherol 430.38108 430.381 0.092941 1.09 

Cortisone 360.19368 360.1936 0.111051 1.15 

Corticosterone 346.21441 346.2144 0.115535 1.12 
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Table CS2: Metabolite name, theoretical mass, observed mass, Δ ppm and retention time 

(RT) in minutes for 153 metabolites identified using ESI negative ion [M-H]+ in MDA-

MB 231 cell extracts. 

Metabolite 
Theoretical 

mass 

Experimental 

mass 
ppm 

RT 

(min) 

NAD 663.10912 663.10916 0.0603219 10.02 

Glutamine 146.06914 146.06918 0.27384292 9 

Inosine 5'-Phosphate 348.0471 348.04714 0.11492697 10.53 

Citrate 192.02701 192.02705 0.20830403 14.26 

Threonine 119.05824 119.05828 0.33597003 8.31 

N-Acetylneuraminate 309.10598 309.10602 0.12940546 8.58 

Aspartate 133.03751 133.03755 0.30066708 11.13 

Serine 105.04259 105.04263 0.38079792 9.36 

Taurine 125.01467 125.01471 0.31996245 7.9 

Nicotinate 123.03203 123.03207 0.32511859 1.83 

Inosine 268.08077 268.08081 0.14920876 3.23 

4-Aminobutanoate 103.06333 103.06337 0.38811088 9.99 

Isoleucine 131.09463 131.09467 0.3051231 4.98 

Pyrazole 67.02962 67.02966 0.59675111 19.54 

Glutamic Acid 147.05316 147.0532 0.27201048 10.01 

Beta-Alanine 89.04768 89.04772 0.44919755 8.23 

Sarcosine 89.04768 89.04772 0.44919755 8.23 

Gluconic Acid 196.0583 196.05834 0.20402095 8.8 

Adenine 135.0545 135.05454 0.29617673 1.88 

Thymidine 242.09027 242.09031 0.16522762 1.21 

Alanine 89.04768 89.04772 0.44919755 8.23 

Tryptophan 204.08988 204.08992 0.19599208 5.15 

Uridine-5-Monophosphate 
324.03587 324.03591 0.12344312 10.33 

Proline 115.06333 115.06337 0.34763465 6.83 

Uridine 244.06954 244.06958 0.16388772 2.22 

Carnosine 226.10659 226.10663 0.17690771 11.63 

Shikimate 174.05283 174.05287 0.22981528 7.3 

Succinate 118.02661 118.02665 0.33890662 10.25 

Phenylalanine 165.07898 165.07902 0.24230826 4.26 

Malate 134.02153 134.02157 0.29845951 11.15 

Aspartate 133.03751 133.03755 0.30066708 10.52 

2'-Deoxycytidine 5-Monophosphate 
307.05694 307.05698 0.130269 9.13 

Hypoxanthine 136.03851 136.03855 0.29403439 2.15 

3,4-Dihydroxy-1-Phenylalanine 
197.06881 197.06885 0.20297479 11.16 
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Guanosine 283.09167 283.09171 0.14129699 5.14 

Malate 134.02153 134.02157 0.29845951 11.16 

Lysine 146.10553 146.10557 0.27377472 15.71 

Tyrosine 181.07389 181.07393 0.22090429 6.68 

Valine 117.07898 117.07902 0.34164971 6.16 

Homoserine 119.05824 119.05828 0.33597003 8.31 

Folic Acid 441.13968 441.13972 0.09067423 10.42 

A-Galactose 1-Phosphate Dipotassium Salt 

Pentahydrate 

260.02971 260.02975 0.15382858 11.38 

Mannose 6-Phosphate 260.02972 260.02976 0.15382857 11.38 

O-Acetyl-L-Serine 147.05316 147.0532 0.27201048 10.01 

Thymidine 5'-Monophosphate 
322.05661 322.05665 0.12420177 11.43 

Fructose 6-Phosphate 260.02972 260.02976 0.15382857 11.38 

Nitro-Tyrosine 226.05897 226.05901 0.17694498 9.12 

Uridine 5'-Diphosphogalactose 
566.05503 566.05507 0.07066451 10.37 

5-Aminolevulinic Acid 131.05824 131.05828 0.30520782 8.25 

2'-Deoxyuridine 5'-Monophosphate 
308.04096 308.041 0.12985286 9.13 

Xanthosine 5'-Monophosphate 
364.04202 364.04206 0.10987743 11.27 

Flavin Adenine Dinucleotide 
785.15714 785.15718 0.05094522 8.56 

Orotic Acid 174.02767 174.02771 0.22984851 7.14 

 5-Aminoimidazole-4-Carboxamide-1-

Ribofuranosyl 5'-Monophosphate 

338.06275 338.06279 0.11832123 10.97 

Uridine 5'-Diphospho-N-

Acetylgalactosamine 
607.08154 607.08158 0.06588901 10.01 

S-(5'-Adenosyl)-Homocysteine 
384.12159 384.12163 0.10413369 8.29 

Uridine 5'-Diphospho-N-

Acetylglucosamine 
607.08158 607.08162 0.065889 10.01 

Uridine 5'-Diphosphoglucuronic Acid 

580.0343 580.03434 0.06896144 11.08 

Thiamine Monophosphate 
344.07081 344.07085 0.11625514 10.35 

Guanosine 5'-Monophosphate 
363.058 363.05804 0.11017523 11.07 

CMP 323.05186 323.0519 0.12381913 10.38 

Guanosine 5'-Diphospho-D-Mannose 
605.07716 605.0772 0.06610727 11.11 

N-Acetyl-Dl-Glutamic Acid 189.06372 189.06376 0.21156888 9.63 



212 
 

2,4-Dihydroxypteridine 164.03343 164.03347 0.24385273 1.19 

Inosine 5'-Monophosphate 
348.0471 348.04714 0.11492697 10.53 

Pantothenic Acid 219.11067 219.11071 0.18255615 4 

2-Amino-2-Methyl-Propanoate 
103.06333 103.06337 0.38811088 9.99 

DTMP 322.05661 322.05665 0.12420177 11.43 

Norleucine 131.09463 131.09467 0.3051231 4.67 

Adenosine 267.09676 267.0968 0.14975846 1.87 

Saccharic Acid 210.03757 210.03761 0.19044212 9.14 

4-Imidazoleacetic Acid 126.04293 126.04297 0.31735219 9.34 

Methionine Sulfoximine 180.05687 180.05691 0.22215203 8.79 

4-Hydroxy-Proline 131.05824 131.05828 0.30520782 8.25 

4-Aminobutanoic Acid 103.06333 103.06337 0.38811088 10 

Allothreonine 119.05824 119.05828 0.33597003 8.31 

Adenosine 5'-Diphosphoribose 
559.07168 559.07172 0.07154718 9.95 

2'-Deoxycytidine 5'-Diphosphate 
387.02327 387.02331 0.10335296 11.07 

Ribose 5-Phosphate 230.01916 230.0192 0.17389856 10.69 

Alpha-Glucose 1-Phosphate 
260.02972 260.02976 0.15382857 11.38 

Glucosamine 6-Sulfate 259.03619 259.03623 0.15441858 10.29 

Cortisol 362.20933 362.20937 0.11043338 1.09 

3-Hydroxybenzaldehyde 122.03678 122.03682 0.32777004 1.85 

Maleic Acid 116.01096 116.011 0.34479501 1.33 

3-Hydroxybenzyl Alcohol 124.05243 124.05247 0.32244431 1.88 

Mandelic Acid 152.04734 152.04738 0.26307596 4.16 

Benzoate 122.03678 122.03682 0.32777004 1.85 

Lumichrome 242.08038 242.08042 0.16523437 1.19 

Oxaloacetate 132.00588 132.00592 0.3030168 8.3 

2,3-Dihydroxybenzoate 154.02661 154.02665 0.25969539 4.28 

Thiopurine S-Methylester 166.03132 166.03136 0.2409184 1.14 

10-Hydroxydecanoate 188.14125 188.14129 0.21260622 1.38 

Ethylmalonic Acid 132.04226 132.0423 0.30293332 1.21 

Fumarate 116.01096 116.011 0.34479501 11.11 

4-Hydroxybenzaldehyde 122.03678 122.03682 0.32777004 1.85 

3(2-Hydroxyphenyl)Propanoate 

166.063 166.06304 0.24087244 4.11 

3-Methoxytyramine 167.09464 167.09468 0.2393853 4.06 

Pterine 163.04941 163.04945 0.24532441 1.19 

Indole-3-Pyruvic Acid 203.05824 203.05828 0.19698782 6.66 

Anthranilate 137.04768 137.04772 0.29186922 2.15 
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2-Methylmaleate 130.02661 130.02665 0.30762934 1.39 

Mono-Methyl Glutarate 146.05791 146.05795 0.27386398 9.02 

2-Methylglutaric Acid 146.05791 146.05795 0.27386398 9.02 

Adipic Acid 146.05791 146.05795 0.27386398 9.02 

Homovanillate 182.05791 182.05795 0.21971031 5.83 

Salicylamide 137.04768 137.04772 0.29186922 2.15 

3-Hydroxybenzoate 138.0317 138.03174 0.2897885 2.19 

3Alpha,11Beta,17Alpha,21-Tretrahydroxy-

5Alpha-Pregnan-20-One 

366.24062 366.24066 0.10921781 1.14 

Indole-3-Acetaldehyde 159.06841 159.06845 0.25146413 2.18 

3-Hydroxyphenylacetate 152.04735 152.04739 0.26307594 4.3 

Salicylic Acid 138.0317 138.03174 0.2897885 2.19 

3(4-Hydroxyphenyl)Lactate 
182.05791 182.05795 0.21971031 5.83 

Biotin 244.08817 244.08821 0.16387521 2.18 

Dehydroascorbate 174.01644 174.01648 0.22986334 7.14 

Sorbose 180.06339 180.06343 0.22214399 8.79 

Xylitol 152.06848 152.06852 0.26303939 4.19 

Ribitol 152.06848 152.06852 0.26303939 4.19 

Myo-Inositol 180.06339 180.06343 0.22214399 8.79 

Mannose 180.06339 180.06343 0.22214399 8.79 

Galactose 180.06339 180.06343 0.22214399 8.79 

Glucose 180.06339 180.06343 0.22214399 8.79 

Allose 180.06339 180.06343 0.22214399 8.79 

Mannitol 182.07904 182.07908 0.21968481 5.82 

Melibiose 342.11622 342.11626 0.11691933 7.93 

Maltose 342.11622 342.11626 0.11691933 7.93 

Cellobiose 342.11622 342.11626 0.11691933 7.93 

Arabitol 152.06848 152.06852 0.26303939 4.3 

Palatinose 342.11621 342.11625 0.11691934 7.93 

4-Coumarate 164.04735 164.04739 0.24383204 1.19 

Nonanoate 158.13068 158.13072 0.25295534 1.24 

Chenodeoxycholate 392.29266 392.2927 0.10196469 1.1 

Caprylic Acid 144.11503 144.11507 0.27755606 1.26 

Petroselinic Acid 282.25588 282.25592 0.14171538 1.16 

Deoxycholic Acid 392.29266 392.2927 0.10196469 1.1 

3Alpha-Hydroxy-5-Beta-Cholanate 
376.29775 376.29779 0.1062988 1.1 

Menaquinone 444.30283 444.30287 0.09002869 1.16 

Elaidic Acid 282.25588 282.25592 0.14171538 1.15 

Myristic Acid 228.20893 228.20897 0.17527798 1.19 

Palmitoleic Acid 254.22458 254.22462 0.1573412 1.16 

Palmitate 256.24023 256.24027 0.15610351 1.17 
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Triiodothyronine 650.79007 650.79011 0.06146375 1.33 

Lauric Acid 200.17763 200.17767 0.19982253 1.2 

Arachidic Acid 312.30283 312.30287 0.12808081 1.13 

Deoxycholic Acid 392.29266 392.2927 0.10196469 1.1 

Linoleate 280.24023 280.24027 0.14273468 1.16 

Bis(2-Ethylhexyl)Phthalate 
390.27701 390.27705 0.1024913 1.1 

Retinoate 300.20893 300.20897 0.13324054 27.93 

Cholic Acid 408.28758 408.28762 0.09797016 1.35 

Phylloquinone 450.34978 450.34982 0.08881985 1.18 

Docosahexaenoic Acid 328.24023 328.24027 0.12186197 28.34 

Sodium Phenylpyruvate 164.04735 164.04739 0.24383204 1.2 

Oleate 282.25588 282.25592 0.14171538 1.16 

Decanoate 172.14633 172.14637 0.23236046 28.05 

 

Table CS3: List of metabolic pathways impacted by hits (metabolites identified in the 

pathways) and the significance (p-value of hits), along with total compounds present in the 

metabolic pathway and false discovery rate (FDR) for the hits adjusted for total number of 

compounds present in the metabolic pathway for metabolites identified using ESI positive 

ion [M+H]+ and ESI negative ion mode [M-H]- in MDA-MB 231 cell extracts. Number of 

metabolite annotations used for this analysis were 254 and the metabolic pathways listed 

are grouped into four super metabolic pathways namely central carbon metabolism, one 

carbon metabolism, methionine metabolism and glutathione metabolism. 

Pathway Total Expected Hits p-value FDR Impact 

Purine metabolism 65 8.30 23 1.4E-06 7.5E-05 0.40 

Aminoacyl-tRNA biosynthesis 48 6.13 19 1.8E-06 7.5E-05 0.17 

Arginine biosynthesis 14 1.79 9 8.6E-06 2.4E-04 0.48 

Alanine, aspartate and glutamate metabolism 28 3.58 12 6.4E-05 1.4E-03 0.76 

Pantothenate and CoA biosynthesis 19 2.43 8 1.3E-03 2.2E-02 0.26 

Citrate cycle (TCA cycle) 20 2.55 8 2.0E-03 2.7E-02 0.35 

Pyrimidine metabolism 39 4.98 12 2.3E-03 2.7E-02 0.32 

D-Glutamine and D-glutamate metabolism 6 0.77 4 3.1E-03 3.3E-02 0.50 

Valine, leucine and isoleucine biosynthesis 8 1.02 4 1.2E-02 1.1E-01 0.00 

Amino sugar and nucleotide sugar metabolism 37 4.73 10 1.4E-02 1.2E-01 0.25 

Arginine and proline metabolism 38 4.85 10 1.7E-02 1.3E-01 0.45 

Glycine, serine and threonine metabolism 33 4.22 9 1.9E-02 1.3E-01 0.63 

Lysine degradation 25 3.19 7 3.2E-02 2.0E-01 0.29 

Nicotinate and nicotinamide metabolism 15 1.92 5 3.3E-02 2.0E-01 0.46 
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beta-Alanine metabolism 21 2.68 6 4.2E-02 2.1E-01 0.56 

Glyoxylate and dicarboxylate metabolism 32 4.09 8 4.2E-02 2.1E-01 0.20 

Histidine metabolism 16 2.04 5 4.3E-02 2.1E-01 0.43 

Glutathione metabolism 28 3.58 7 5.6E-02 2.6E-01 0.20 

Starch and sucrose metabolism 18 2.30 5 6.9E-02 2.8E-01 0.41 

Ascorbate and aldarate metabolism 8 1.02 3 7.1E-02 2.8E-01 0.50 

Taurine and hypotaurine metabolism 8 1.02 3 7.1E-02 2.8E-01 0.71 

Phenylalanine, tyrosine and tryptophan biosynthesis 4 0.51 2 8.2E-02 3.1E-01 1.00 

Vitamin B6 metabolism 9 1.15 3 9.6E-02 3.5E-01 0.57 

Butanoate metabolism 15 1.92 4 1.1E-01 4.0E-01 0.03 

Galactose metabolism 27 3.45 6 1.2E-01 4.0E-01 0.13 

Nitrogen metabolism 6 0.77 2 1.7E-01 5.6E-01 0.00 

Neomycin, kanamycin and gentamicin biosynthesis 2 0.26 1 2.4E-01 7.4E-01 0.00 

Pyruvate metabolism 22 2.81 4 3.1E-01 9.2E-01 0.03 

Phenylalanine metabolism 10 1.28 2 3.7E-01 1.0E+00 0.36 

Riboflavin metabolism 4 0.51 1 4.2E-01 1.0E+00 0.00 

Glycolysis / Gluconeogenesis 26 3.32 4 4.3E-01 1.0E+00 0.11 

Fructose and mannose metabolism 20 2.55 3 4.8E-01 1.0E+00 0.19 

Phosphonate and phosphinate metabolism 6 0.77 1 5.6E-01 1.0E+00 0.00 

Thiamine metabolism 7 0.89 1 6.2E-01 1.0E+00 0.00 

Cysteine and methionine metabolism 33 4.22 4 6.3E-01 1.0E+00 0.15 

Tyrosine metabolism 42 5.37 5 6.4E-01 1.0E+00 0.20 

Pentose and glucuronate interconversions 18 2.30 2 6.9E-01 1.0E+00 0.13 

Biosynthesis of unsaturated fatty acids 36 4.60 4 6.9E-01 1.0E+00 0.00 

Glycerophospholipid metabolism 36 4.60 4 6.9E-01 1.0E+00 0.07 

Ubiquinone and other terpenoid-quinone 

biosynthesis 9 1.15 1 7.1E-01 1.0E+00 0.00 

Fatty acid biosynthesis 47 6.00 5 7.4E-01 1.0E+00 0.01 

Biotin metabolism 10 1.28 1 7.5E-01 1.0E+00 0.00 

Porphyrin and chlorophyll metabolism 30 3.83 3 7.6E-01 1.0E+00 0.03 

Inositol phosphate metabolism 30 3.83 3 7.6E-01 1.0E+00 0.13 

Sphingolipid metabolism 21 2.68 2 7.7E-01 1.0E+00 0.01 

Valine, leucine and isoleucine degradation 40 5.11 4 7.7E-01 1.0E+00 0.02 

Pentose phosphate pathway 22 2.81 2 7.9E-01 1.0E+00 0.22 

Propanoate metabolism 23 2.94 2 8.1E-01 1.0E+00 0.00 

Mannose type O-glycan biosynthesis 17 2.17 1 9.0E-01 1.0E+00 0.00 

Tryptophan metabolism 41 5.24 3 9.1E-01 1.0E+00 0.15 

Selenocompound metabolism 20 2.55 1 9.4E-01 1.0E+00 0.00 

Fatty acid degradation 39 4.98 2 9.7E-01 1.0E+00 0.12 

Phosphatidylinositol signaling system 28 3.58 1 9.8E-01 1.0E+00 0.04 

Primary bile acid biosynthesis 46 5.88 2 9.9E-01 1.0E+00 0.02 

Fatty acid elongation 39 4.98 1 1.0E+00 1.0E+00 0.00 
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Table CS4: Fold Change (FC), standard error (StdError), false discovery rate (FDR), 

coefficient of determination (R2), retention time (RT) in minutes, m/z for 54 metabolites 

identified using ESI positive ion [M+H]+ and ESI negative ion mode [M-H]- in MDA-MB 

231 cell extracts. Number of metabolite annotations in mass spectrometry were 254, 

substantially high but the number of metabolites identified using NMR were only 29, 

therefore a subset of 54 metabolites were selected from HILIC-MS in ESI positive mode, 

negative mode and NMR to identify the impact of doxycycline on four super metabolic 

pathways namely central carbon metabolism, one carbon metabolism, methionine 

metabolism and glutathione metabolism. 

 

Metabolite FoldChange StdError FDR R2 RT [M+H]+ [M-H]- 

5'-

MethylThioAdenosine_n
1 2.08 0.29 0.04  1.47  

296.08

2 

Acetylcarnitine_p2 1.42 0.17 0.16  7.61 204.123   

Adenine_p 1.40 0.33 0.76  2.01 136.062   

Adenosine_p 1.24 0.31 0.95  1.9 268.105   

ADP-Ribose_p 0.87 0.23 0.86  9.55 560.080   

Alanine_n 1.62 0.19 0.15  0.66 8.65  88.040 

Arginine_p 0.26 0.10 0.06  15.98 175.119   

Asparagine_p 0.43 0.12 0.13  9.66 133.061   

Aspartate_nmr3 0.45 0.05 0.03 0.47 NA    

Beta-Alanine_nmr 1.75 0.40 0.23  NA    

Betaine_p 1.39 0.11 0.38  6.51 118.087   

CAMP_p 0.67 0.11 0.15  9.52    

Choline_p 1.75 0.11 0.02 0.52 6.51 105.115   

Citrate_n 1.43 0.45 0.19  14.26  

191.01

9 

CMP_p 1.92 0.46 0.38  10.13 324.060   

Creatine phosphate_nmr 1.63 0.12 0.01  NA    

Creatine_p 1.62 0.08 0.06  8.58 132.077   

Creatinine_p 0.62 0.23 0.61  1.21 114.067   

Deoxycarnitine_p 2.42 0.36 0.02  10.14 146.117   

Fumarate_n 0.82 0.22 0.75  11.11  

115.00

3 

Fumarate_nmr 1.19 0.10 0.19  NA    
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Glutamate_n 2.16 0.23 0.02 0.95 10.01  

146.04

5 

Glutamine_p 0.32 0.17 0.13 - 8.75 147.077   

Glutathione_nmr 1.12 0.04 0.34  NA    

Glutathione_p 1.01 0.13 0.42  9.68 308.091   

Glycine_nmr 1.38 0.11 0.02  NA    

Histidine_p 1.18 0.06 0.76  16.56 156.077   

Homoserine_n 1.79 0.21 0.13  8.31  

118.05

0 

Hypotaurine_p 1.12 0.18 0.76  9.34 110.028   

Hypoxanthine_n 0.03 0.01 0.13  2.15  

135.03

1 

Inosine 5'-Phosphate_n 0.69 0.10 0.29  10.53  

347.03

9 

Inosine_n 0.73 0.11 0.38  3.23  

267.07

3 

Isoleucine_p 1.03 0.10 0.39 0.37 8.1 132.102   

Lactate_n 0.19 0.38 0.38 

0.31
3 4.57  89.024 

Leucine_nmr 1.06 0.06 0.61  8.1    

Lysine_n 1.45 0.19 0.33  15.71  

145.09

8 

Malate_n 0.85 0.24 0.76  11.15  

133.01

4 

Methionine_p 1.06 0.08 0.38  6.34 150.059   

Myo-Inositol_nmr 1.28 0.07 0.19  NA    

NAD_n 1.84 0.16 0.02  10.02  

662.10

1 

NADP+_p 0.91 0.21 0.86  9.47 744.080   

Phenylalanine_n 1.76 0.22 0.14 0.73 4.26  

164.07

1 

Proline_p 1.53 0.12 0.23  6.89  

116.07

1 

Propionylcarnitine_p 1.40 0.15 0.16  6.72 218.138   

Pyruvate_nmr 1.05 0.15 0.80  NA    

S-Adenosylmethionine_p 0.64 0.10 0.17  13.79 399.140   

Sarcosine_p 1.37 0.09 0.38  9.68 90.055   

Serine_p 0.39 0.11 0.07  9.36 106.049   

Succinate_NMR 0.61 0.10 0.09  NA    

Taurine_p 1.57 0.08 0.02 0.8 7.78 126.022   

Threonine_p 1.12 0.12 0.75 0.69 9.34 120.066   

Tryptophan_p 0.82 0.15 0.38  7.25 205.098   

Tyrosine_p 0.96 0.11 0.38 0.83 6.7 182.082   

Valine_p 1.40 0.11 0.38 0.63 6.11 118.087   

 
1ESI negative, 2 ESI positive, 3 NMR 
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Table CS5: Fold Change (FC), standard error (StdError), false discovery rate (FDR) for 

metabolites identified in HS578T cell extracts using NMR.  

Metabolite FC StdError FDR 

Alanine 0.87 0.14 0.30 

Creatine phosphate 0.50 0.05 0.03 

Glutamate 0.67 0.14 0.12 

Glycine 0.78 0.23 0.31 

Isoleucine 0.76 0.14 0.12 

Lactate 0.28 0.12 0.04 

Lysine 0.91 0.14 0.30 

Methionine 0.94 0.23 0.76 

NAD+ 0.80 0.20 0.31 

Propylene glycol 0.96 0.38 0.89 

Pyruvate 0.63 0.08 0.30 

Threonine 0.66 0.15 0.11 

Tyrosine 1.37 0.34 0.41 

Valine 0.94 0.15 0.68 

myo-Inositol 0.42 0.08 0.03 

sn-Glycero-3-phosphocholine 0.97 0.08 0.80 

  

Table CS6: Fold Change (FC), standard error (StdError), false discovery rate (FDR), 

retention time (RT) in minutes, m/z for 32 lipids in MDA-MB 231 cell extracts using ESI 

positive ion [M+H]+ and ESI negative ion mode [M-H]-. 

Lipid FC StdError FDR RT [M+H]+ [M-H]- 

CL(51:0)_n 2.99 0.39 2.4E-03 7.98  1191.74 

CL(71:2)_p 0.32 0.02 2.9E-02 7.82 1412.04   

PC(30:2)_n 1.65 0.07 6.9E-04 8.13  746.49 

PC(34:3)_n 1.60 0.11 1.5E-02 8.18  736.53 

PC(36:1)_p 1.35 0.17 2.9E-01 8.21 752.59   

PC(36:2)_n 1.25 0.07 3.3E-02 8.88  806.57 

PC(36:4)_n 1.80 0.12 2.4E-03 8.34  762.54 

PC(38:3)_n 1.33 0.07 1.1E-02 9.24  792.59 

PC(38:5)_n 1.31 0.09 3.3E-02 8.2  828.55 

PC(40:4)_n 1.48 0.00 2.4E-03 9  858.60 

PC(40:5)_n 1.19 0.01 1.5E-01 8.74  856.58 

PC(42:7)_n 0.63 0.01 6.3E-02 8.58  880.59 

PC(42:9)_n 1.15 0.10 5.4E-01 7.92  876.55 
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PE(34:1)_p 1.21 0.07 1.7E-01 8.63 718.53   

PE(37:2)_n 1.23 0.07 3.3E-02 8.33  778.54 

PE(37:5)_n 1.30 0.08 2.9E-02 7.75  750.51 

PE(37:6)_n 1.30 0.08 2.9E-02 7.33  748.49 

PE(38:3)_p 1.17 0.06 2.6E-01 8.92 770.57   

PE(38:7)_n 1.22 0.07 5.7E-02 7.84  760.49 

PE(40:7)_n 1.29 0.07 2.0E-02 8.38  788.52 

PE(42:5)_p 1.33 0.07 3.3E-02 8.58 786.58   

PE(46:3)_p 0.96 0.04 8.0E-01 10.38 846.68   

PE(46:5)_p 1.13 0.06 4.2E-01 9.57 842.65   

PC(P-36:5)_p 1.40 0.11 6.6E-02 9.26 750.55   

PC(P-38:3)_n 1.36 0.10 4.2E-02 9.24  778.57 

PC(P-40:2)_n 1.49 0.07 2.4E-03 9.92  846.64 

PE(P-36:3)_p 1.20 0.06 2.1E-01 8.16 690.52   

PE(P-38:5)_p 1.42 0.10 4.0E-02 9.26 750.55   

PE(P-40:3)_p 1.43 0.07 1.4E-02 8.88 746.59   

PE(P-40:6)_p 1.32 0.24 2.8E-01 7.19 740.53   

PE(P-42:2)_n 1.50 0.12 5.3E-02 9.72  832.62 

SM(d42:1)_p 0.84 0.08 6.9E-01 9.58 793.66   

 

Table CS7: Fold Change (FC), standard error (StdError), false discovery rate (FDR), 

retention time (RT) in minutes, m/z for 32 lipids in HS578T cell extracts using ESI positive 

ion [M+H]+ and ESI negative ion mode [M-H]-. 

 

Lipid FC StdError FDR RT [M+H]+ [M-H]- 

PC(30:1)_p 0.93 0.03 2.9E-01 5.63 726.51   

PC(32:1)_n 0.83 0.02 5.8E-03 7.19  730.54 

PC(32:2)_n 0.79 0.04 3.9E-02 6.55  728.52 

PC(32:3)_n 1.30 0.04 2.8E-03 9.75  726.5 

PC(34:1)_n 1.12 0.03 5.2E-02 6.76  804.58 

PC(35:1)_n 1.04 0.02 2.9E-01 6.76  818.59 

PC(36:0)_p 0.83 0.02 2.3E-03 7.39 812.62   

PC(36:1)_p 0.67 0.02 8.0E-04 7.03 810.6   

PC(36:2)_n 1.10 0.03 1.1E-01 6.93  830.59 

PC(36:3)_n 1.01 0.05 8.6E-01 6.45  828.57 

PC(36:4)_n 1.05 0.03 3.0E-01 7.51  826.56 

PC(36:5)_n 0.85 0.03 2.2E-02 6.69  760.53 

PC(38:2)_n 1.14 0.04 5.1E-02 7.7  858.62 

PC(38:3)_p 0.65 0.02 2.9E-05 6.84 834.6   
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PC(38:4)_p 0.91 0.02 5.1E-02 6.18 832.58   

PC(40:1)_p 0.89 0.05 2.9E-01 9.35 844.68   

PE(34:1)_n 0.97 0.03 4.7E-01 6.82  716.52 

PE(36:1)_n 0.92 0.02 1.0E-01 6.87  766.54 

PE(36:2)_n 1.43 0.03 2.9E-05 7.06  724.53 

PE(38:1)_n 0.95 0.02 2.9E-01 6.9  792.56 

PE(38:2)_n 0.93 0.04 1.4E-01 7.68  770.57 

PE(40:2)_p 0.86 0.02 5.5E-03 7.48 800.62   

PE(40:3)_n 0.89 0.02 5.3E-02 7.75  778.58 

PC(P-34:1)_p 1.12 0.02 5.2E-02 7.48 744.59   

PE(P-34:1)_n 1.04 0.03 2.9E-01 6.85  724.53 

PE(P-36:0)_n 1.41 0.04 1.8E-04 7.76  752.56 

PE(P-36:1)_n 1.15 0.03 3.5E-02 7.93  728.56 

PE(P-38:4)_p 0.89 0.04 2.0E-01 7.43 752.56   

PE(P-38:5)_n 1.09 0.03 3.5E-01 6.79  748.53 

PE(P-40:2)_p 0.86 0.03 5.5E-02 8.75 784.62   

PE(P-40:6)_n 0.95 0.03 2.9E-01 6.63  774.55 

SM(d34:1)_p 0.83 0.02 1.8E-03 6.03 703.57   

 

Table CS8: Lipid name, m/z and retention time (RT) in minutes for 69 lipids identified 

using ESI positive ion [M+H]+ and ESI negative ion [M-H] – mode in MDA-MB 231 cell 

extracts.   

 

Lipid RT (min) [M+H]+ [M-H]- 

3-O-Sulfogalactosylceramide (d36:1)_n 8.04  852.55 

3-O-Sulfogalactosylceramide (d38:1)_n 8.88  816.57 

3-O-Sulfogalactosylceramide (d42:1)_n 9.75  872.63 

Cerebroside B_p 8.23 692.54   

CL(51:0)_n 7.98  1191.74 

CL(71:2)_p 7.82 1412.04   

DG(38:2n6)_p 0.60 599.54   

DG(40:5)_n 10.28  669.55 

DG(42:6)_p 12.17 714.61   

Lactosylceramide (d36:1)_n 9.36  870.63 

N-Palmitoylsphingosine_p 10.86 555.54   

PA(36:2)_n 7.82  721.48 

PC(30:2)_n 8.13  746.49 

PC(34:3)_n 8.18  736.53 

PC(34:4)_n 7.94  774.51 
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PC(36:1)_p 8.21 752.59   

PC(36:2)_n 8.88  806.57 

PC(36:4)_n 8.34  762.54 

PC(38:3)_n 9.24  792.59 

PC(38:5)_n 8.20  828.55 

PC(38:7)_n 8.09  824.52 

PC(40:4)_n 9.00  858.60 

PC(40:5)_n 8.74  856.58 

PC(40:8)_n 8.09  850.54 

PC(42:6)_n 9.44  860.62 

PC(42:7)_n 8.58  880.59 

PC(42:9)_n 7.92  876.55 

PE(30:0)_n 8.14  708.48 

PE(34:0)_n 7.62  740.53 

PE(34:1)_n 8.73  762.53 

PE(35:5)_n 7.09  722.48 

PE(36:2)_p 8.70 744.55   

PE(37:2)_n 8.33  778.54 

PE(37:4)_n 8.11  774.51 

PE(37:4)_n 8.08  734.51 

PE(37:4)_n 8.00  734.51 

PE(37:4)_p 9.26 736.53   

PE(37:5)_n 7.75  750.51 

PE(37:6)_n 7.33  748.49 

PE(38:7)_n 7.84  760.49 

PE(40:3)_n 8.70  818.57 

PE(40:4)_p 9.25 778.57   

PE(40:6)_n 8.16  812.52 

PE(40:7)_n 8.38  788.52 

PE(42:10)_n 7.97  810.51 

PE(42:5)_p 8.58 786.58   

PE(42:6)_n 8.70  840.56 

PE(42:7)_n 8.25  816.55 

PE(44:11)_n 8.02  836.52 

PE(44:12)_n 7.85  834.51 

PE(44:6)_p 8.82 812.60   

PE(44:7)_p 8.35 810.58   

PE(46:3)_p 10.38 846.68   

PE(46:5)_n 9.59  858.64 

PE(46:6)_p 9.33 840.63   

PC(O-34:2)_n 8.73  764.56 

PC(o-44:6)_n 9.91  856.67 

PC(P-36:5)_p 9.26 764.56   
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PC(P-38:3)_n 9.24  816.59 

PC(P-40:2)_n 9.92  846.64 

PE(P-36:3)_p 8.16 690.52   

PE(P-40:3)_p 8.88 746.59   

PE(P-40:6)_p 7.19 740.53   

PE(P-42:2)_n 9.72  832.62 

PG(36:1)_p 8.46 794.60   

PS(32:4)_n 5.91  772.44 

PS(36:0)_n 8.34  812.54 

PS(38:0)_p 8.87 820.60   

SM(d42:1)_p 9.58 793.66   

Tetradecanoylcarnitine_p 6.06 394.29   

TG(53:7)_p 11.73 827.69   

TG(59:9)_p 12.10 907.75   

 

Table CS9: Lipid name, m/z and retention time (RT) in minutes for 78 lipids identified 

using ESI positive ion [M+H]+ and ESI negative ion [M-H] – mode in HS578T cell 

extracts. 

 

Metabolite RT (min) [M+H]+ [M-H]- 

Cer(d40:0)_p 8.91 624.63   

Ceramide (d34:1)_p 6.23 520.51   

Ceramide (d34:1)_p 6.22 538.52   

Ceramide (d42:2)_p 9.09 648.63   

Cerebroside B_p 7.00 1478.12   

DG(36:1)_p 8.87 623.56   

DG(36:1n5)_p 8.88 605.55   

DG(36:2)_p 7.07 603.54   

DG(38:3)_p 6.27 629.55   

DG(38:4)_p 8.30 667.53   

DG(i-36:0)_p 9.38 647.56   

DG(i-40:0)_p 9.91 663.63   

Glucosylceramide (d34:1)_p 6.23 700.57   

Glucosylceramide (d40:1)_p 8.26 784.66   

Glucosylceramide (d42:1)_p 8.86 812.70   

Glucosylceramide (d42:2)_p 8.24 810.68   

GPCho(32:1)_p 6.32 1464.10   

GPEtn(34:1)_p 7.00 718.54   

GPEtn(38:5)_p 6.44 766.54   
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GPEtn(40:5)_p 7.10 794.57   

LysoPC(18:1)_p 2.85 544.34   

LysoSM(d18:0)_p 1.09 449.35   

MG(16:0)_p 3.46 313.27   

MG(18:0)_p 9.40 359.32   

MG(18:0)_p 4.07 381.30   

MG(18:0)_p 8.82 341.31   

MG(18:0)_p 4.07 739.61   

N-[3-hydroxytetracos-15-enoyl]sphingosine-1-phosphocholine_p 7.67 811.66   

N-myristoylsphingosine-1-phosphocholine_p 5.38 697.53   

PC(14:1(9Z)/16:0)_p 5.63 726.51   

PC(30:1)_p 5.67 704.52   

PC(32:1)_n 7.19  730.54 

PC(32:2)_n 6.55  728.52 

PC(32:3)_n 9.75  726.50 

PC(34:1)_n 6.76  804.58 

PC(35:1)_n 6.76  818.59 

PC(36:0)_p 7.39 812.62   

PC(36:1)_p 7.03 810.60   

PC(36:2)_n 6.93  830.59 

PC(36:3)_n 6.45  828.57 

PC(36:4)_n 7.51  826.56 

PC(36:5)_n 6.69  760.53 

PC(38:2)_n 7.70  858.62 

PC(38:3)_p 6.84 834.60   

PC(38:4)_p 6.18 832.58   

PC(40:1)_p 9.35 844.68   

PC(o-34:0)_p 8.37 770.60   

PC(P-34:1)_p 7.48 744.59   

PE(34:1)_n 6.82  716.52 

PE(35:0)_n 6.71  778.56 

PE(36:1)_n 6.87  766.54 

PE(36:2)_n 7.06  724.53 

PE(38:1)_n 8.19  772.59 

PE(38:2)_n 7.68  770.57 

PE(38:3)_n 7.05  750.54 

PE(40:2)_p 7.48 800.62   

PE(40:3)_n 7.75  778.58 

PE(40:5)_n_i1 7.05   774.54 

PE(40:5)_n_i2 6.78   774.55 

PE(P-34:1)_n 6.85  724.53 

PE(P-36:0)_n 7.76  752.56 

PE(P-36:1)_n 7.93  728.56 
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PE(P-38:5)_n 6.79  748.53 

PE(P-38:6)_n 6.12  746.51 

PE(P-40:2)_p 8.75 784.62   

PE(P-40:6)_n 6.63  774.55 

PE-NMe(35:3)_p 5.98 764.52   

PE-NMe(36:3)_n 6.90  736.53 

PI(36:0)_p 6.49 889.58   

PS(36:1)_n 6.28  810.53 

PS(36:2)_p 6.27 788.54   

PS(37:0)_n 6.12  826.56 

PS(38:3)_p 6.49 814.56   

PS(40:5)_n 6.67   858.53 

SM(d34:1)_p 6.03 703.57   

sphinganine_p 3.95 284.30   

TG(64:12)_p 3.46 515.40   

TG(i-37:0)_p 8.21 653.57   

Trihexosylceramide (d42:1)_p 8.32 1136.80   
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