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This dissertation studies the microeconomics of forest fire suppression programs. It starts 

with an inquiry into the causes of increasing shares of public land management budgets devoted 

to wildland fire suppression in lieu of hazardous fuel reduction or other pre-fire risk mitigation 

programs. The first two chapters consider competing economic theories for why annual 

appropriations are predominantly devoted to suppression. The first chapter proposes that this 

unbalanced allocation can arise from a cost externality generated by the availability of reserve or 

supplemental funds for suppression. The second chapter proposes an alternative explanation: this 

type of skewed allocation can result from an incident manager’s aversion to risk. Both chapters 

rely on a subgame perfect Nash equilibrium result to characterize the resulting budget allocation.  

The third chapter also solves a subgame perfect Nash equilibrium to investigate the 

properties of the fire budgeting problem at the state government level where fire protection 

programs are funded in part through forest-based taxation. In this chapter, a state tax planner is 

restricted to two forms of taxation currently used to raise revenue for public forest fire protection 

programs: 1) a per-acre fee on forestland, and 2) a tax levied per-unit volume of timber 



 
 

 
 

harvested. The model shows that when revenues for carbon storage can be captured by private 

forestland owners, then per-acre fees are the preferred instrument for raising tax revenues and 

result in a first-best equilibrium outcome. If instead carbon sequestration revenues are not 

captured by forestland owners, tax planners are constrained to a second-best equilibrium and the 

use of harvest taxes instead of the per-acre fee on land. 

The fourth chapter applies a discrete choice econometric model to administrative data 

obtained from state and federal fire management agencies overseeing wildfires in the western 

United States from 2005 to 2014. The model investigates if changes in the availability of reserve 

funding earmarked for suppression had a significant impact on an incident manager’s likelihood 

of adopting a full suppression response to unplanned wildfire. This chapter focuses on a change 

in federal budgeting and policy guidance occurring in fiscal year 2010 to determine if 

socioeconomic and climatic factors had a different effect on manager choices than they did prior 

to this policy change. A key factor measured to influence choices via the cost of risk is the 

distance that a fire burns from residential areas. The model estimates that this factor raised the 

probability of adopting full suppression following the policy change on fires managed in 

Washington but lowered the probability on fires managed in Oregon. The model finds evidence 

that the change in the availability of suppression reserve funds beginning in fiscal year 2010 

negatively influenced the probability of adopting full suppression by a small margin, but the 

effects of this change are indistinguishable from the effects of an update to policy guidance 

released in 2009.   
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GENERAL INTRODUCTION 
 Wildfire suppression programs have become an increasingly visible source of costs for 

public land management agencies in the United States since the mid-1980s as acres, damages, 

and public expenditures on suppression are increasing (Lueck and Yoder, 2013). While climatic 

factors contribute to increasing fire severity (van Mantgem et al., 2013), they are not the only 

driver of these trends. Land management practices and patterns of land use change are critical 

considerations for understanding the patterns of fire behavior and risk in the western United 

States (Pyne et al., 1997). Throughout the 20th century, land management agencies adopted and 

refined a model of centralized command over suppression resource allocation in the United 

States (Lueck and Yoder, 2013, Lueck, 2012). Historically, aggressive suppression programs 

were developed to protect the nation’s timber supply from wildfire damage, but as urban and 

residential land uses have expanded, public suppression programs have also benefited residential 

landowners adjacent to fire-prone forestland. These programs were initially developed in the 

early 20th century in lieu of vegetation management programs. While agencies began to 

experiment with vegetation management through the re-introduction of fire in the mid-1970s to 

mid-1980s (and more recently with the passage of the 2001 Federal Wildland Fire Management 

Policy), the full re-introduction and restoration of fire-dependent forests has been slow to 

develop.  

Despite a now widespread recognition for the need to re-introduce fire on the landscape 

(Pyne et al., 1997), wildfire suppression still dominates federal and state fire management 

activities. Figure 0.1 shows several trends regarding budget shares in the U.S. Forest Service 

(USFS). First, wildfire suppression expenditures (including supplemental appropriations) have 

taken up an increasingly larger share of total USFS budget outlays (from 18.3% in 2005 to 

37.5% (projected) in 2021). Second, the proportion of annual fire management appropriations 
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(“WFM”) devoted to wildfire suppression is consistently around 42%, but when supplemental 

appropriations are included, this share has displayed an annual average increase of 2.1% per year 

since 2005. All wildfire management programs now exceed 50% of annual USFS expenditures. 

The primary concern with rising shares of budgets devoted to suppression is the “fire paradox” 

(Thompson et al., 2013; 2018; Calkin et al., 2015), whereby the exclusion of wildfire from 

western U.S. forests can allow hazardous fuels to accumulate, leading to larger fires and 

exacerbating the need for future suppression effort. A positive feedback loop between 

suppression and large fire risk is preventing land managers and policymakers from getting ahead 

of the problem. 

Figure 0.1 - Suppression Expenditure Shares (USFS, FY2005-FY2021*) 

 
*2021 figures anticipated based on USFS budget proposal, USFS (2020). 
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(GAO, 2015). These resources may not be allocated efficiently due to coordination problems 

across political boundaries and across federal and non-federal agencies (Lueck, 2012; Moynihan, 

2009). As I explore in this dissertation, there is potential for budgetary institutions to vary across 

federal and state fire management programs, and for objectives to differ across managers within 

a fire management organization or across federal, state, and private land managers. Increasing 

coordination across these actors requires a better understanding of the sources for these differing 

objectives and what role funding institutions can have on equilibrium outcomes.  

One important budgetary institution that drives fire suppression decisions is the funding 

mechanism for emergency forest fire suppression operations. Beginning in 1908, the U.S. 

Congress approved off-budget financing for emergency wildfire suppression, giving the U.S. 

Forest Service an effective “blank check” to fight forest fires (O’Toole, 2007). These federal 

expenditures are not subject to regular appropriations rules and are therefore not subject to 

budget caps or sequestrations, nor are these expenditures counted toward estimates of the federal 

deficit despite contributing to an increase in federal interest expenses on the debt. This practice 

continued from 1911 to 1978.  

The practice of off-budget financing for fire suppression was phased out in 1978 at the 

request of the Office of Management and Budget (O’Toole, 2007). From 1978 to 1986, federal 

agencies began experimenting with less aggressive fire suppression policies (particularly within 

the National Parks Service) to avoid exceeding annual budget allotments and to restore fire-

deprived ecosystems. However, two severe fire seasons in 1987 and 1988 led congress to allow 

the Forest Service to borrow funds from non-fire accounts in order to finance their fire 

suppression efforts. In 1990, congress set up a “contingency fund”, which can be utilized with 

presidential approval. This fund created an annually appropriated reserve account that can be 



4 
 

 
 

accessed only when annual appropriations have been exhausted, but its use had phased out by 

2004 (GAO, 2004). A similar set of accounts was formally re-established in fiscal year 2010, 

following the passage of the Federal Land Assistance, Management, and Enhancement 

(FLAME) Act, but were phased out by fiscal year 2018. This approach for funding wildfire 

suppression response at the federal level is unlike the approach taken by state forestry agencies 

such as CALFIRE and the Oregon Department of Forestry, which rely more heavily on tax 

receipts for funding state-level fire management responsibilities. In either case, the capacity to 

engage in off-budget financing beyond annual appropriations and annually funded reserve 

accounts remains intact. In 5 of the 10 years from 2008 to 2017, off-budget supplemental or 

emergency suppression funds were granted to the U.S. Forest Service and the Department of 

Interior agencies beyond annually appropriated funds (Hoover and Lindsay, 2017).  

Aside from the pressures of drier and hotter climates in the American west, there are 

several competing economic theories for why land management agencies continue to rely heavily 

on suppression efforts as a means for reducing fire risk, in lieu of pre-fire risk mitigation efforts 

like hazardous fuel reduction. The first explanation interprets the demand for suppression as a 

direct result of reserve or supplemental funding institutions, which have enabled land 

management agencies to shift a portion of the costs of suppression onto other agencies or the 

general public via off-budget financing or the creation of annual reserve accounts (Donovan and 

Brown, 2005; Donovan et al., 2008; Rossi and Kuusela, 2019). The full costs of suppression are 

not budgeted for by land management agencies and other entities are left to bear the cost. This 

view effectively treats the cost of suppression as a negative externality generated by incident 

managers employed or contracted by land management agencies, not unlike a polluting factory 

which fails to internalize the full social costs of its emissions.  
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 A second explanation borrows from the behavioral economics literature (Maguire and 

Albright, 2005; Wilson et al., 2011; Thompson, 2014). This view recognizes the considerable 

complexity involved in incident management decision-making, and the limited ability for even 

highly-trained professionals to compile, organize, and continually update their understanding of 

costs or risk. Managers must gather and effectively utilize large quantities of information about 

future fire risk and ongoing fire spread. This view is perhaps stated best by Herbert Simon in his 

1947 book “Administrative Behavior”, where Simon outlined a competing theory to rational 

decision-making in his theory of “satisficing” behavior: 

 

“To achieve a completely successful application of a city’s fire protection problem, the 

members of the fire department would need to know in comprehensive detail the probabilities of 

fire in each portion of the city- in fact, in each structure- and the exact effect upon fire losses of 

any change in administrative procedure or re-distribution of the fire-fighting forces.” 

 

Indeed, this acknowledgement of incomplete rationality (exemplified by limits on a fire 

manager’s knowledge during a time-pressured decision environments), is what has led to a 

growing body of research which attempts to find satisfactory solutions (rather than globally 

optimal solutions), to this problem of efficiently allocating suppression resources not just across 

a city or a single landscape (Wei et al., 2019), but across the entire western United States (Wei, 

et al., 2020). Under this behavioral view, the sheer complexity of the suppression resource 

allocation problem is what has prevented managers from making efficient allocation decisions 

and is why operations researchers employ the use of heuristic decision algorithms to approximate 

the best feasible allocation. Additionally, the need for simpler decision heuristics which provide 
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quick information about suppression effectiveness per-unit cost is one method for overcoming 

these sorts of information problems at the operational scale (Stonesifer et al., 2017). The reliance 

on heuristics in both managerial and computational settings represents a departure from the 

rational calculus of “homo economicus.”  

 A third explanation for agencies’ continued reliance on suppression effort abandons the 

commonly cited behavioral interpretation and instead views incident managers as rational 

decision makers under uncertainty (e.g. Gollier, 2001). Wildfire suppression operations involve 

considerable risk and outcomes of suppression strategies are not known with perfect precision. 

Instead of assuming that incident managers do not know about this risk or do not have the tools 

necessary to compile this information, we can assume that managers do know the shape of the 

payoff distribution they face when allocating resources but may be averse to the uncertainty over 

the outcome (Rossi and Kuusela, 2020). A manager’s tolerance for risk is potentially a unique 

characteristic of individual decision-makers which is unobservable and may vary across wildfire 

incident managers (Hand et al., 2017). Furthermore, incident managers may be averse to third-

moment characteristics of the payoff distribution they face, which may serve to exacerbate their 

demand for suppression resources (Rossi and Kuusela, 2020).  

A final economic interpretation relates to the complicated geography of the fire 

management environment. There is often a close proximity of fire-dependent forests to both 

residential areas and commercially managed timberlands. The fragmentation of land tenure over 

forested areas can considerably complicate the wildfire management problem and lead to 

externalities across land ownership boundaries (Lauer et al., 2017; 2019). Historically, land 

management agencies actively suppressed fire to protect valuable timber resources on both 

public and private land (Pyne et al., 1997), a practice which continues to benefit private 
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timberland owners today. However, over the last 30 years, the American west has also seen a 

gradual expansion of residential land uses into forested areas which has complicated the wildfire 

management problem by increasing fire risk and suppression expenditures (Bayham and Yoder, 

2020; Radeloff et al., 2018). In contrast to federal agencies, state agencies provide fire protection 

over areas with considerably greater heterogeneity of land tenure. For example, state agencies 

have fire protection jurisdiction over the “Oregon and California Railroad Revested Lands,” 

which consists of a checkerboard pattern of private and public land. Fire protection programs at 

the state level are funded in part through residential property taxes or forest-based taxation. This 

may place added pressure on agencies to adopt an aggressive suppression response to protect 

private lands from which public revenues are drawn. Further, state land management agencies do 

not have the same institutional capacity in their organization to fund hazardous fuels 

management programs at the same scale as federal agencies are now capable of doing under 

current fire policy. Recent changes in how federal agencies manage unplanned events through 

“let-burn” policies may have the unintended consequence of leading state agencies to fight fire 

more aggressively within their jurisdiction, since fires may spread from federal land into private 

jurisdictions where state land management agencies are primarily responsible for providing fire 

protection services.  

The purpose of this dissertation is to formalize and measure the effects of these competing 

theories of suppression demand through numerical microeconomic models and a data-driven 

econometric application. The following chapters of this dissertation are organized as follows. In 

Chapter 1, a theory of sequential fire management budget allocations is developed in a 

deterministic setting. This chapter considers the effect of budgetary institutions which permit a 

portion of suppression costs to fall on outside agencies. When federal fire management budgets 
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are determined sequentially, this budgeting institution can generate an inefficient allocation of 

funds across suppression and presuppression programs at the national level. Essentially, the cost 

externality increases the share of annual fire management expenditures devoted to suppression. 

In the absence of this cost externality, the sequential budgeting institution poses no problems for 

the efficient allocation within the fire management organization. This chapter also considers the 

possibility for this cost externality to arise from “satisficing” behavior which places an unequal 

weight across competing objectives of the fire management program. 

In chapter 2, I extend on the sequential formulation of the wildfire economics model to 

incorporate the effects of risk on the equilibrium budget allocation at a regional scale. In contrast 

to the institutional setting in chapter 1, this chapter assumes that the full costs of suppression are 

internalized during the suppression decision stage. However, this chapter finds a similar 

inefficiency of budgets arising from a representative incident manager’s aversion to higher order 

characteristics of the net value change distribution. Similar to the result presented in chapter 1, 

risk aversion can drive an increase in the demand for suppression resources and an increase in 

the share of fire management expenditures spent on suppression programs.  

In chapter 3, I focus on fire protection budgeting practices at the state level and consider how 

a portion of these protection expenditures are financed through forest-based taxation. This 

chapter assesses the relative advantages of two alternative taxation schemes that are used in the 

state of Oregon to raise funds for fire protection. This model considers how fire risk is 

endogenously determined by suppression effort afforded from forest-based taxes when a 

representative landowners internalizes and does not internalize the value of carbon storage. A 

key contribution of this chapter is to show that when carbon sequestration revenues can be 
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captured by the landowner, an acre-based land value tax is preferred to a harvest tax as it 

minimizes deadweight loss.  

In Chapter 4, a revealed preference model of incident managers is presented and applied to 

administrative data from federal and state land management agencies to test several hypotheses 

about the effects of socioeconomic factors that drive suppression decisions. The analysis is 

focused on the suppression choices of incident managers in California, Oregon, and Washington 

between fiscal years 2005 and 2014. The discrete choice models recognize that, in addition to 

climatic and weather factors, budgetary institutions and socioeconomic factors may drive a 

manager’s decision to actively suppress an unplanned wildfire (see Donovan, 2005; Lueck and 

Yoder, 2013; Montgomery, 2014; Rossi and Kuusela, 2019; Rossi and Kuusela, 2020). Results 

from the choice models enable inferences about the effects of socioeconomic factors on 

suppression choices and a comparison of the magnitudes of these effects against those of weather 

or climate variables. I find that socioeconomic factors are statistically significant drivers of 

suppression choices; most notably the level of national demand for suppression resources and the 

distance between a fire’s ignition point and nearby residential populations. However, dry 

monthly climatic conditions are measured to be more important factors for explaining choice 

variation across the sample. This chapter finds limited statistical evidence to suggest that an 

update to federal fire policy guidance during Fiscal Year 2009 had a distinguishable effect from 

the introduction of reserve funds in Fiscal Year 2010. If there was a positive impact of the 

reserve funds on the probability of selecting a full suppression strategy, it was outweighed by a 

negative impact from the 2009 policy guidance. This potential for counteracting effects may be 

why the expected probability of choosing full suppression fell by only a small margin after the 
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introduction of the reserve funds. I focus on policy implications and directions for future 

research in the General Conclusions. 
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1.1. Introduction 
 Federal wildland fire expenditures in the United States have been rising alongside an 

increased frequency of large wildfires over the past half-century. Since 1985, the average size of 

wildfires has increased by an annual average of 3.95% per year, while federal suppression 

expenditures have increased by an annual average of 6.7% per year (NIFC, 2017). One 

consequence of this trend has been the shift of spending patterns within federal land management 

agencies toward fire management, and particularly toward wildfire suppression activities (Calkin 

et al., 2015; Hoover and Lindsay, 2017). A majority of annual USDA Forest Service 

expenditures are now devoted to fire management operations of one form or another, and 

suppression expenditures have encompassed over one-half of federal fire management costs in 6 

of 10 years from 2008 to 2017 (see Figure 1.1). Such expenditure trends have raised severe 

concerns among policymakers and federal land managers, since increasing shares of annual 

budgets devoted to wildfire suppression hinder federal agencies’ ability to invest in nonfire-

related land management programs and to effectively mitigate the risk of future damages (Calkin 

et al., 2015; USFS, 2015; Ingalsbee, 2017).  

 The availability of supplemental financing for suppression has been identified as one of 

the key drivers of rising suppression costs and the consequent inefficiencies of federal fire 

management programs (Donovan and Brown, 2005). The inefficiencies arise when spending on 

suppression is determined reactively during the fire season rather than simultaneously alongside 

other fire management budgets, thus neglecting the interdependencies between program 

components (Agee et al., 2000; Hesseln, 2001; Hirsch et al., 2004; Mogghaddas and Craggs, 

2007). Consequently, several studies stress the efficiencies provided by a unified framework in 

which supplementary funding is not available during suppression response (Rideout et al., 2008; 

Wei, 2012; Minas et al., 2015; Heines et al., 2018). However, while such studies are important in 
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prescribing efficient policies, they do not adequately describe the spending decisions made in a 

realistic policy context. In fact, no prior studies in the fire economics literature have 

characterized the expenditure allocation arising within a fragmented (or “sequential”) budgeting 

procedure, thus hindering efforts to understand the incentives behind program spending 

decisions. This becomes especially relevant when the objectives of the decision-makers across 

the fragmented process are not aligned.  

Figure 1.1 - Federal Suppression Budget Share by Agency

 

Source: Hoover and Lindsay (2017) 

 

 Over the past three decades, the U.S. Government Accountability Office has published 

several rounds of recommendations with the goal of encouraging a better alignment of incentives 

within the fire management program and improving overall program efficiency through the 

increased development and use of decision support tools (GAO, 2015). However, despite an 

ample amount of decision-support information provided to incident commanders, the sheer 

complexity of a wildfire event often limits the efficiency gains from these tools (Calkin et al., 
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2013; Thompson, 2014; Dunn et al., 2017). Because of this complexity, incident commanders 

may display impatience and accept suboptimal solutions to their management problem when the 

time needed to search for the best solution is too long (Maguire and Albright, 2005; Wilson et 

al., 2011). This tendency to rely on heuristic solutions represents a form of satisficing and can be 

an important driver of forest management outcomes and wildfire management outcomes in 

particular (Taynor et al., 1990; Wilson et al., 2011; Holmes and Calkin, 2013; Valatin et al., 

2016). This can impact long-term trends in fire management by limiting the time spent using 

decision support models to explore a complex decision space and yield more cost-effective 

suppression strategies and alternatives to conventionally aggressive response tactics (Thompson 

et al., 2017).  

The purpose of this chapter is to analyze the implications of the fragmented budgeting 

process on federal fire program spending decisions when the objectives of decision-makers 

within the process is not aligned (either due to existing supplementary funding institutions or the 

complexity of suppression-stage decision-making).  To that end, we develop a new theoretical 

model of organizational decision-making to determine the demand for fire management effort. 

This theoretical model presents the wildfire management problem within a game-theoretic 

structure whereby a public organization’s presuppression and suppression demand decisions are 

made in sequence. A representative presuppression manager acts as a Stackelberg leader and a 

representative suppression manager as the follower. The advantage of this approach is an ability 

to assess potential deviations from the socially optimal allocation of fire management effort in 

the presence of fragmented budgeting.  

We derive several new insights that contribute to the Cost Plus Net Value Change 

(C+NVC) literature. First, our model results highlight the fact that this fragmentation does not, 
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on its own, generate any deviations from the socially optimal allocation. However, when the 

objective function in the suppression stage of the model is subject to a heuristic weighting 

scheme, fragmentation will generate an allocation that deviates from the socially optimal 

allocation. By “heuristic weighting,” we mean the suppression manager’s tendency to assign 

more importance to the goal of damage mitigation over the goal of suppression cost 

minimization (Calkin et al., 2013). We also show how changes in the heuristic weight can 

potentially lead to an inverse relationship between suppression and presuppression expenditures, 

even when the components of the fire program are technological and strategic complements. Our 

results enable policymakers and analysts to better understand the causes of inefficiencies in fire 

program spending and how changes in the availability of supplemental funding might, or might 

not, improve program efficiency.  

The rest of this chapter is organized as follows. In the next section, we review the 

budgeting procedure for wildfire management in the United States and the standard fire 

economics model. In Section 3, we derive the solutions for the sequential model and compare 

these solutions to those of the standard model. Section 4 provides a numerical application of the 

model to explore its comparative statics and key results. Section 5 discusses the policy 

implications of the model’s results and the potential for further modification of the sequential 

model. Section 6 concludes.  

 

1.2. Review of Federal Wildfire Program Spending 
 Federal land management agencies in the United States seek to efficiently allocate 

funding between two composite components of the national fire program: (1) suppression effort 

(which includes initial attack, extended attack, and efforts to manage unplanned wildfires for 
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resource benefits) and (2) presuppression (which refers to fuels management, wildfire 

preparedness, and fire prevention efforts). In the United States, funding for both suppression and 

presuppression operations are allocated through annually appropriated Wildfire Management 

accounts (WFM). The WFM accounts are distributed to the Forest Service and Department of 

Interior agencies’ respective Offices of Wildland Fire and then distributed to regional landscape 

management programs (GAO, 2015).  The WFM accounts are broken into two subaccounts: (1) 

fire operations (for preparedness and suppression efforts) and (2) other fire operations (intended 

for fuels management and other presuppression needs). 

 Regional distributions of WFM funds for presuppression efforts are based in part on past 

allocations and in part on landscape level budgeting models (GAO, 2015). These models provide 

the Office of Wildland Fire with some information about the expected return on fire management 

investment and generate strategic guidance for land managers as the analysis is prepared as part 

of a landscape’s fire management plan. However, annual budget requests for covering 

suppression needs in the WFM accounts are based on a weighted moving average or prior 

program-wide expenditures (Abt et al., 2008). These suppression forecasts are void of 

information about how changing local conditions or presuppression expenditures can either 

increase or decrease the need for further suppression actions and have underestimated 

suppression expenditures in 8 of the 10 years between 2008 and 2017 (Hoover and Lindsay, 

2017).  

 When appropriations from the fire operations subaccount have been spent, agencies can 

also utilize funding appropriated with the approval of Congress. Agencies are authorized to 

transfer funds from subaccounts (as well as from other non-fire accounts) to finance emergency 

suppression efforts when annual accounts are exhausted and additional appropriations are not 
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granted.1 A new funding rule, passed as part of a recent federal spending bill and which closely 

resembles the proposed Wildfire Disaster Funding Act (WDFA), now requires suppression 

appropriations to be determined based on the Fiscal Year 2015 moving average estimate plus an 

additional amount from a disaster cap adjustment. However, this additional funding request 

which utilizes funding from the disaster cap is also based on criteria independent from the 

determination of presuppression budget needs. Under the new funding rule and the WDFA, 

additional funding requests beyond the initial annual appropriations are available through the 

Disaster Relief Fund and must be approved by Congress. 

 In the event of an unplanned wildfire incident, fire management officers (at the unit, 

regional, or state level) must determine the initial scale and complexity of the incident based on 

established criteria and request additional funding for fires with higher severity or complexity 

than what can be managed with the available budget (NWCG, 2014). This classification of the 

incident’s complexity serves as a guide to agency administrators who contract out suppression 

efforts to a Type 1 or Type 2 incident command team.2 An incident commander then assumes 

control over extended attack efforts after an official transfer of authority is written and a 

complexity report is supplied by the fire management officer (NWCG, 2014; NNIFC, 2018). The 

ICT then attempts to meet the objectives and budgetary constraints of the landscape’s fire 

management team (the agency administrator and fire management officer) but is not required to 

 
1 The FLAME fund has been eliminated for fiscal year 2018. In the absence of the FLAME fund, all supplemental 

appropriations will have to be granted by congress through alternative supplementary accounts available under the 
Wildfire Disaster Funding Act. These funds may be used to finance large fire suppression costs before or after the 
fire operations subaccount has been fully utilized. 

2 The wildfire incidents are designed based on their complexity on a scale from 1 to 5, with incident Type 1 referring 
to the most complex fires. Type 1 and Type 2 ICTs manage and organize hundreds to thousands of different 
resources (Hand et al., 2017).  
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satisfy these constraints by law or through a legally binding contract (NIFC, 2018). Furthermore, 

contracted ICTs face no financial penalty for exceeding these budgetary constraints and may 

recommend that fire management teams develop a new suppression strategy or approved course 

of action. While agency administrators must approve an ICT’s request for additional funding 

during a Type 1 or Type 2 incident, there are few or no limits on the availability of supplemental 

suppression funding when also approved by Congress (Donovan and Brown, 2005; Lueck and 

Yodeer, 2015). An organization structured in this way lowers the effective marginal cost of 

suppression (Lueck, 2012) and introduces a tendency for incident commanders to overweight the 

benefits of damage mitigation relative to the costs of suppression (Calkin et al., 2013). 

Early attempts to characterize the efficiency of fire management organizations date back 

to Sparhawk (1925). In Sparhawk’s model, the optimal investment in precautionary management 

(i.e. pre-suppression) is determined where the marginal reduction in fire-related damages from 

such investment is equal to the marginal costs of the investment. Implicit in this formulation of 

the model is an assumption of dependency between the two components. Larger upfront 

investments are assumed to reduce future expenditures on suppression (at a decreasing rate) as 

the detrimental effects of wildfire are diminished through precautionary behavior. 

A key criticism of Sparhawk’s model is that the restriction imposed by an assumed 

dependency between program components can make Pareto efficient allocations unattainable. 

The economic model presented by Donovan and Rideout (2003) shows that a negative 

dependency between pre-suppression and suppression can produce an allocation that diverges 

from a corrected social planner’s problem where investments in pre-suppression and suppression 

are simultaneously chosen inputs. The corrected model shows that the Pareto efficient allocation 
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of fire management budgets is obtained within a unified program where components of the 

program are related through the production function or joint cost function (Rideout et al., 2008). 

Numerical applications of the unified framework at the landscape scale show significant 

gains in efficiency arising from a simultaneous determination of fuels management and 

investment in suppression capacity (Rideout et al., 2008; Wei 2012; Minas et al., 2015; Heines et 

al. 2018). These applications demonstrate how the complementary nature between suppression 

and pre-suppression investments justifies a unified budgeting framework. In these models, the 

investment in landscape-level fuel treatments enhances the marginal product of suppression by 

reducing the response times for initial attack resources. Minas et al. (2015) compared the results 

of an integrated scheduling model with “coordinated” and “independent” approaches to support 

this conclusion. However, the integrated simulations presented by Minas et al., (2015) assume 

perfect cooperation between fire administrators and the incident command teams (ICT), and the 

resulting pattern of fuel treatment is not sensitive to the ICT’s capacity to exceed the suppression 

budget allotment in response to high severity events. This characterization of the budgeting 

scheme is not consistent with current budgeting practices within public fire management 

organizations in the U.S. which justifies an inquiry about optimal management behavior within a 

fragmented budgeting process with the availability of emergency funding. 

 

1.3. Sequential C+NVC Model 
Given the above observations, we extend the standard C+NVC model to incorporate the 

possibility of a fragmented budgeting process to generate deviations from the socially efficient 

solution. Fragmented budgeting implies a sequential decision process whereby the chronological 

determination of demand for fire management effort follows the timeline in Figure 1.2. The 
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payoffs from the fire management program are captured by a net value change (𝑁𝑉𝐶) function 

(Simard, 1976; Donovan and Rideout, 2003). The 𝑁𝑉𝐶 function describes the level of net 

damages a landscape will experience after a fire event depending on the level of pre-suppression 

(P) and suppression (S) inputs employed to limit these damages. The 𝑁𝑉𝐶 function is typically 

assumed to be strictly decreasing and convex in P and 𝑆. This assumption implies that fire 

management effort can reduce the damaging effects of wildfire but does so at a decreasing rate. 

An agency administrator managing a fire-prone landscape has achieved an optimal allocation of 

suppression and pre-suppression effort when the marginal social costs of each component are 

just equal to their marginal reduction in social damages (Donovan and Rideout, 2003). 

 

Figure 1.2 - Timeline for full determination of presuppression and suppression budgets

 

 

Consider the role of the agency administrators who oversee the management of fire-prone 

landscapes. The agency administrators make a pre-suppression decision prior to the start of the 

fiscal year (see Figure 1.2). This occurs before incident command teams have control over the 

deployment of suppression resources as unplanned wildfires arise throughout the year. This 

chronology reflects the institutional realm where agency administrators must request annual 

funding for fuels management and preparedness programs. In this setting, pre-suppression 

demand is determined retroactively before the full suppression budget (including emergency 

funding) is allocated.  Optimal management thus requires the administrator to anticipate the full 

level of annual suppression funding that will be demanded at the time their request for pre-

suppression funding is made. In game theory terminology, the administrator acts as the 
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Stackelberg leader in this hierarchical game structure and the suppression manager as the 

follower. 

 

1.3.1. Suppression Stage 

In the first part of the backward induction procedure, the incident commander (i.e. the 

follower) chooses a level of suppression effort which minimizes the sum of net damages plus 

some weighted importance of controlling costs for the agency administrator. 

                                                     min 
𝑆≥0

𝜃𝑊𝑆𝑆 + 𝑁𝑉𝐶(𝑃, 𝑆)                                                          (1) 

Here 𝜃 ∈ (0,1] represents the relative importance of controlling cost relative to damages and 𝑊𝑆 

is a constant unit cost of suppression effort.3 This heuristic specification (1) enables an 

interpretation of the demand for suppression as a satisfactory solution, rather than a fully rational 

solution to the first-stage problem. When 𝜃 = 1, the ICT equally weights the competing goals to 

minimize costs and net damages. Notice that as 𝜃 → 0, the ICT places greater importance on the 

goal of mitigating fire damages relative to the competing goal of controlling suppression costs.  

The ICT’s choice of suppression effort is then determined by the necessary condition of 

(1): 

                                               𝜃𝑊𝑆 = −
𝜕𝑁𝑉𝐶(𝑃, 𝑆)

𝜕𝑆
                                                         (2) 

Rearranging condition (2) to solve for 𝑆 yields the incident commander’s best response function: 

𝑆(𝑃, 𝑊𝑆, 𝜃). When the left-hand side of (2) is lower, the net gain from deploying suppression 

 
3 Suppose that 𝜃(𝑡) =

𝑡

1+𝑡
 for some exogenous search time 𝑡 ∈ (0, ∞). In equation (1), this enables the term 𝜃𝑊𝑆𝑆 

to be expressed in terms of search time: 𝜃𝑊𝑆 =
𝑡𝑊𝑆𝑆

1+𝑡
. As 𝑡 → ∞, the relative importance of minimizing costs 

increases at a decreasing rate. When less search time is permitted, the relative importance of minimizing costs 
decreases.  
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effort is larger from the ICT’s perspective (fewer damages with less costs). Less than full 

consideration of the true costs of suppression (𝜃 < 1) raises the incident commander’s demand 

for suppression relative to 𝜃 = 1. In other words, suppression demand is decreasing in 𝜃 (see 

Proposition 1 below).4 

To investigate the sign of the strategic relationship between S and P, we use the Implicit 

Function Theorem to derive the following result from equation (2):  

                                              
𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃
= −

𝜕2𝑁𝑉𝐶(𝑃, 𝑆)
𝜕𝑆𝜕𝑃

𝜕2𝑁𝑉𝐶(𝑃, 𝑆)
𝜕𝑆2

                                                                (3) 

Notice that a minimum solution to the incident commander’s problem is attainable if 

𝜕2𝑁𝑉𝐶(𝑃,𝑆)

𝜕𝑆2 > 0. Hence, the sign of the numerator in (3) will determine the nature of the strategic 

relationship between the pre-suppression and suppression inputs. If the marginal effectiveness of 

suppression input is decreasing in pre-suppression effort (numerator is positive), the two inputs 

are strategic substitutes (expression (3) is negative).5 If the opposite holds, the resources are 

strategic complements. In the next subsection, we show that the necessary and sufficient 

conditions for a global minimum in pre-suppression expenditures imply a complementary 

technological relationship between P and S. This suggests that the inputs are also strategic 

complements (expression (3) is positive). If complementarity holds, increasing applications of 

 
4 To be sure that 𝑆(𝑃, 𝑊𝑆, 𝜃) represents a valid best response in the context of the incident commander’s objective, 

it must be true that 
𝜕2𝑁𝑉𝐶(𝑃,𝑆)

𝜕𝑆2 > 0. This inequality holds under the assumption of a convex fire management 

technology and enables the proof of Proposition 1 (see Appendix A). 

5 Recall that 
𝜕𝑁𝑉𝐶

𝜕𝑆
< 0 and 

𝜕𝑁𝑉𝐶

𝜕𝑃
< 0. These partials mean that 𝑁𝑉𝐶 is decreasing in the inputs. If the cross partial 

derivative is positive, then the marginal effectiveness of input use is decreasing.  
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pre-suppression effort will lead the incident commander to increase subsequent requests for 

suppression resources due to the increasing marginal product of suppression.6  

 

1.3.2. Presuppression Stage 

To understand the optimal management strategy in response to the satisficing incident 

commander, we maintain the assumption of a sequentially rational agency administrator. Under 

this assumption, the administrator accurately anticipates the future suppression strategy 

employed by the incident commander. Substituting the incident commander’s best response 

function into the administrator’s objective yields a restricted C+NVC function (4):  

                             min
𝑃≥0

𝑊𝑃𝑃 + 𝑊𝑆𝑆(𝑃, 𝑊𝑆, 𝜃) + 𝑁𝑉𝐶(𝑃, 𝑆(𝑃, 𝑊𝑆, 𝜃))                                 (4) 

The similarity of (4) to Sparhawk’s restricted model lies in the exogeneity of suppression effort 

and an assumed dependency between 𝑃 and 𝑆. However, in this case, the administrator can 

indirectly influence the level of suppression through knowledge of the incident commander’s 

best response, 𝑆(𝑃, 𝑊𝑆, 𝜃). As we will see in the next paragraph, when 𝜃 < 1, the suppression 

manager’s actions generate a negative externality problem from the perspective of the 

administrator.  

The resulting first-order condition for the restricted model is then: 

                                     𝑊𝑃 +
𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃
[𝑊𝑆 +

𝜕𝑁𝑉𝐶(∙)

𝜕𝑆
] = −

𝜕𝑁𝑉𝐶(∙)

𝜕𝑃
                                (5) 

Which is equivalent to 

             𝑊𝑃 +
𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃
[𝑊𝑆 + 𝜃𝑊𝑆 − 𝜃𝑊𝑆 +

𝜕𝑁𝑉𝐶(∙)

𝜕𝑆
] = −

𝜕𝑁𝑉𝐶(∙)

𝜕𝑃
                     (6) 

 
6 A recent empirical study found that fuel treatments can increase per-acre estimates of suppression costs on large 

fires, indicating that suppression is viewed by managers as safer and easier following presuppression efforts 
(Gonzales-Caban et al., 2017; Southern Fire Exchange, 2018). 
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Under the assumption of sequential rationality, the agency administrator correctly anticipates that 

condition (2) will hold. This allows a simplification of condition (6) to be expressed as: 

                               𝑊𝑃 = −
𝜕𝑁𝑉𝐶(∙)

𝜕𝑃
−

𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃
(1 − 𝜃)𝑊𝑆                                        (7) 

The left-hand side represents the marginal cost of pre-suppression expenditures, whereas the 

right-hand side represents the externality adjusted marginal benefits. The first term in the right-

hand side is the marginal benefit from pre-suppression effort in terms of reduced damages from 

wildfires. The second term on the right-hand side can be interpreted as the marginal external cost 

imposed by the incident command team. Changes in the pre-suppression input can either reduce 

or magnify the externality effect, depending on the sign of the best response function.   

Notice that in general when 𝜃 ≠ 1 the necessary condition in (7) differs from the social 

planner’s necessary condition derived in detail by Donovan and Rideout (2003). In the standard 

C+NVC model, the technological complementarity between the two inputs guarantees the 

existence of a global minimum, in addition to the assumption of diminishing marginal returns to 

both inputs. Hence, we will also assume the presence of such complementarity. This implies that 

the best response of suppression effort is increasing in pre-suppression (so that equation (3) is 

positive). Consequently, our specification of equation (4) departs from Sparhawk’s original 

assumption of a negative relationship between 𝑃 and 𝑆. 

When the ICT places equal weight on the dual objectives to minimize costs and to 

minimize damages, we have (1 − 𝜃) = 0. Such a situation corresponds to the standard C+NVC 

model. In this case, the full costs of suppression are accounted for in the restricted model (4) and 

the resulting first-order condition (7) collapses to condition (8).  

                                                         𝑊𝑃 = −
𝜕𝑁𝑉𝐶(∙)

𝜕𝑃
                                                               (8) 
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The derived demand for pre-suppression is defined implicitly by equation (8) and expressed as a 

function of unit prices: 𝑃∗(𝑊𝑃, 𝑊𝑆).  Using the implied expression for 𝑃∗ to solve for the optimal 

level of suppression yields the incident commander’s derived demand function: 𝑆∗(𝑊𝑃, 𝑊𝑆). 

Since the first order conditions, (2) and (8), are identical in this specification of the model as they 

are in the standard model, the resulting solution in the restricted model will yield an identical 

allocation to that derived in the unrestricted social planner’s problem (derived by Donovan and 

Rideout, 2003). Consequently, the fire program’s sequential C+NVC function will display the 

same properties and cross-partial effects as those derived for the social planner who solves (2) 

and (8) simultaneously for 𝑃∗(𝑊𝑃, 𝑊𝑆) and 𝑆∗(𝑊𝑃, 𝑊𝑆). 

Suppose instead that the ICT placed a greater importance on the goal of minimizing 

damages. It should be clear that when (1 − 𝜃) > 0, condition (7) does not collapse to the 

familiar optimality condition expressed in equation (8). The positive sign of (3) implies that the 

right-hand side of (7) is smaller than the right-hand side of (8) whenever 𝜃 < 1, indicating that 

the marginal product of pre-suppression will be smaller when the ICT fails to fully internalize 

the full costs of suppression. This result implies that the fragmented budgeting structure produces 

an alternative allocation than that of the standard model by generating a larger demand for 

suppression effort, and a lower marginal social benefit from pre-suppression. The divergence of 

these outcomes is illustrated in Figure 1.3.  
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Figure 1.3 - Shifts in the Marginal Value Product of Presuppression effort under varying 

importance of suppression costs

 

As can be seen from Figure 1.3, changes in the parameter 𝜃 have an influence on pre-

suppression expenditures in addition to suppression expenditures. A lower 𝜃 translates to higher 

suppression expenditures, but to lower pre-suppression expenditures. For example, if the value of 

𝜃 has been decreasing, it is possible to observe a divergence in the pre-suppression and 

suppression expenditures as predicted by our model. This happens even when the two inputs are 

assumed to be technological complements. In fact, it is the strategic complementarity that 

generates such a pattern. We formally state this result in the following proposition: 
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Proposition 1: Let the NVC function be of the Cobb-Douglas form and 𝜃 ∈ (0,1]. Then strategic 

complementarity between components can create the following inverse relationship between 

suppression and presuppression whenever 
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
< 1 − 𝛾1: 

𝜕𝑆∗

𝜕𝜃
< 0,

𝜕𝑃∗

𝜕𝜃
> 0 

Alternatively, the following positive relationships hold whenever 
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
> 1 − 𝛾1: 

𝜕𝑆∗

𝜕𝜃
> 0,

𝜕𝑃∗

𝜕𝜃
> 0 

Proof: See Appendix A. 

 

Intuitively, Proposition 1 means that as incident command teams put more emphasis on the net 

value change component of the objective function, we observe a reduction in the pre-suppression 

expenditures and an increase in the suppression expenditures. This pattern is explained by the 

administrator’s attempt to reduce the externality effect arising whenever 𝜃 < 1 by reducing the 

organization’s expenditures on pre-suppression. By doing this, the administrator is effectively 

mitigating the amount of inefficient spending on suppression.  

To be sure that the solution implied by (7) (when 𝜃 ≠ 1) is indeed feasible, the second-

order sufficiency condition requires the following relationship: 

SOSC =
𝜕2𝑁𝑉𝐶(∙)

𝜕𝑃2
+

𝜕2𝑁𝑉𝐶(∙)

𝜕𝑃𝜕𝑆
(

𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃
) +

𝜕𝑆2(𝑃, 𝑊𝑆, 𝜃)

𝜕𝑃2
(1 − 𝜃)𝑊𝑆 > 0                 (9) 

If (9) is indeed positive, then it can be shown that the restricted objective function arising from a 

fragmented budgeting process, such as that expressed in equation (4), will yield a minimum 

solution. However, we can be sure that such a solution (𝑃𝜃<1
∗ ) will not necessarily be Pareto 

optimal since it does not coincide with the solution of a fully informed social planner who seeks 



30 
 

 
 

an optimal budget for the fire program (𝑃𝜃=1
∗ ). Alternatively, if the inequality in equation (9) 

does not hold, then the restricted objective function arising from the fragmented budgeting 

process does not yield a minimum solution.  

 

1.4. A Numerical Representation of the Sequential C+NVC Model 
To investigate the feasibility of a minimum solution in this restricted case, consider the case 

of a Cobb-Douglas fire management technology with a convex functional form given by: 

𝑁𝑉𝐶(𝑃, 𝑆) = 𝛼 − 𝛽𝑃𝛾1𝑆𝛾2 

Where (𝛼, 𝛽) ≫ 0, 𝜃 ∈ (0,1], and 0 < 𝛾𝑖 < 1. The first-stage solution for the incident 

commander’s problem is a best response function:  

                                       (
𝜃𝑊𝑆

𝛽𝛾2𝑃𝛾1
)

1
𝛾2−1

= argmin𝑆{𝜃𝑊𝑆𝑆 + 𝛼 − 𝛽𝑃𝛾1𝑆𝛾2}                                      (10) 

Equation (10) is a special case of the solution implied by equation (2). This function also enables 

a special case of equation (7), the agency administrator’s restricted objective function: 

                                      min
𝑃≥0

𝑊𝑃𝑃 + 𝑊𝑆 (
𝜃𝑊𝑆

𝛽𝛾2𝑃𝛾1
)

1
𝛾2−1

+ 𝛼 − 𝛽𝑃𝛾1 (
𝜃𝑊𝑆

𝛽𝛾2𝑃𝛾1
)

𝛾2
𝛾2−1

                       (11) 

 

As discussed in the previous section, the second order condition (9) has to be satisfied to 

guarantee the existence of a global minimum in (11). We examine the second order condition in 

more detail in Appendix B. In our simulations, we assume that the condition holds.7 

 
7 Parameters used in the simulation reflect allocations at the national scale: 𝑊𝑃 = 500 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, 𝑊𝑆 =
600 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, 𝛼 = 4 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 𝛽 = 2.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛, 𝛾1 = 0.255, 𝛾2 = 0.275. 
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 In Figures 1.4 and 1.5, we show the effect of the parameter 𝜃 on suppression and pre-

suppression expenditures, on the net value change outcome, and on the overall program objective 

C+NVC. The latter is defined as: 

𝑊𝑃𝑃∗(𝑊𝑃, 𝑊𝑆, 𝜃) + 𝑊𝑆𝑆∗(𝑊𝑆, 𝜃) + 𝑁𝑉𝐶(𝑃∗(𝑊𝑃, 𝑊𝑆, 𝜃), 𝑆∗(𝑊𝑆, 𝜃)) 

As to be expected, the C+NVC objective is minimized when 𝜃 = 1. When 𝜃 < 1, the total 

program costs are always higher. The dotted curve in Figure 4 shows the expenditures on 

suppression as a function of 𝜃, and the dashed curve shows the expenditures on pre-suppression. 

As can be seen from Figure 1.4, the most balanced allocation of program expenditures occurs 

where 𝜃 = 1. However, a decreasing 𝜃 translates to increasing suppression expenditures and to 

decreasing presuppression expenditures. There is a point, however, when the pre-suppression 

expenditures become so small that the suppression expenditures collapse as well. Figure 5 shows 

the suppression expenditures as a share of the total fire management expenditures. A greater 

share of the overall fire budget is allocated to suppression when the value of 𝜃 decreases.   

Figure 1.4 - Total Program Costs and Net Damages
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 Unequal weighting of the dual objectives in the ICT’s second stage problem yields 

inefficiencies in the fire program by altering the Pareto optimal budget share on suppression. 

Since agency administrators can indirectly influence the demand for suppression with their 

choice of pre-suppression effort, optimal management requires that they cut back their demand 

for pre-suppression due to the anticipated increase in suppression expenditures whenever 𝜃 < 1. 

Administrators are less willing to invest in pre-suppression effort when contracted incident 

commanders fail to internalize the full costs of suppression effort. Thus, the demand for fire 

management effort in the presence of this externality yields a constrained Pareto allocation of 

fire management budgets and the relative share of overall program expenditures devoted to 

suppression increases.  

Figure 1.5 - Suppression expenditures as a share of total program costs
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It can be shown that the optimal level of pre-suppression effort occurs where the first-

order condition of (11) is satisfied. Figures 1.6 and 1.7 illustrate more detailed properties of the 

sequential solution with the Cobb-Douglas specification. The Cobb-Douglas specification can be 

further explored to characterize the cross-price relationship. If the agency administrator faces a 

restricted objective function, as in (11), but the incident commander considers suppression costs 

to be an acceptable amount less than the true costs, (𝜃 < 1), then the cross-price relationship will 

be negative and the components will display complementarity (as in the Social Planner’s case). 

Figure 1.6 (top) shows this negative cross-price relationship for both the social planner’s 

problem and the Stackelberg case where the agency administrator maintains sequential 

rationality. Both cross-price relationships are negative over all unit costs of suppression but the 

Stackelberg case yields lower pre-suppression effort. An important result of this special case of 

the restricted model is its support for Proposition 1: the optimal level of pre-suppression effort 

increases as the ICT’s perception about the relative importance of mitigating damages decreases 

(
𝜕𝑃∗

𝜕𝜃
> 0). With more equal weighting between the incident commander’s dual objectives, the 

optimal solutions converge towards those of the Pareto optimal outcome derived in the social 

planner’s problem. Figure 1.7 provides an illustration of the strategic relationship between 

components under the sequential game and the social planner’s problem. 
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Figure 1.6 - Demand for P and S under varying Importance of Suppression Costs

 

 

Figure 1.7 - Best Response relationship in the Sequential Game under varying importance of 

minimizing suppression costs
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1.5. Discussion 
This paper has shown that the heuristic weighting of the incident commander’s dual 

objective function can impose a negative externality on agency administrators who seek to find 

the optimal demand for pre-suppression effort. The presence of this externality can negatively 

affect the overall efficiency of a wildfire management program. Possibility for such behavior 

during the suppression stage of the fragmented budgeting process means that incident command 

teams may put more emphasis on the value change (damage) component of the dual objective 

function in the C+NVC problem (Calkin et al. 2013). The tendency to overweight the importance 

of damage mitigation goals relative to cost minimization goals may reflect a type of heuristic 

search problem giving rise to “satisficing” behavior (Simon, 1987; Radner, 1975). Satisficing 

refers to an agent’s acceptance of a near-optimal or sub-optimal solution to a complex 

optimization problem when the added cost of searching for better alternatives outweighs the 

benefits (Simon, 1955; Stigler, 1961). Notice the shift in Figure 1.8 from an initial heuristic 

weight 𝜃0 to a new larger weight 𝜃1. This shift is associated with an improvement in decision 

technology. The introduction of a better decision heuristic can enable the ICT to incorporate 

more costs under any given length of cognitive or computational search time, 𝑡. 
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Figure 1.8 - Importance of Suppression Costs as a Function of Exogenous Search Time

 

The simple static model presented above captures many of the key features of a heuristic 

search problem by abstracting from the complexity of a hyper-dimensional suppression decision 

problem and applying a heuristic weight to the ICT’s dual objective function. The heuristic 

weight is shown to have the potential to generate a deviation from the Pareto efficient outcome 

when ICT’s display impatience for finding the most cost-effective solution. The weighting 

parameter 𝜃 is specified to rise as the ICT’s trial and error process progresses, providing the 

incident commander with a full consideration of suppression costs when 𝜃 = 1. This trial and 

error process can be cut short due to an availability of supplementary funding or the influence of 

public pressures that force incident managers to adapt a swift suppression response and ignore 

the full costs of suppression. Thus, some level of costs greater than the true costs are deemed 

acceptable in the suppression stage of the sequential model and the remaining costs are shifted to 

the agency’s fire manager. 

 An important policy implication arises from this result. Specifically, the availability of 

supplementary suppression funding has the potential to impact an incident commander’s 
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heuristic weighting scheme and consequently increase the propensity to accept a sub-optimal 

solution to the suppression demand problem. Supplementary financing available from the 

Disaster Relief Fund can be released to fire management agencies by Congress when suppression 

expenditures exceed annual budget allotments. Under the WDFA, agencies still retain the 

authority to borrow funds from non-fire accounts or other pre-suppression budgets to finance 

emergency suppression efforts, although the need for this practice may be reduced by the 

availability of additional suppression appropriations (a portion of which are financed through the 

Disaster Relief Fund).   

The resulting optimization problem in the pre-suppression stage represents the first 

characterization of an equilibrium solution to the “restricted” fire management problem that 

preserves an assumption of complementarity between pre-suppression and suppression. Donovan 

and Rideout (2003) correctly note that Sparhawk’s original assumption of negative dependency 

between program components in the restricted fire management problem will necessarily 

generate either no solution or a different minimum solution than in the case where components 

are simultaneously chosen within a unified budgeting structure. However, as we have shown 

here, the assumed dependency between 𝑆 and 𝑃 (imposed by a fragmented budgeting process) 

can produce an identical solution to the social planner’s problem with simultaneously determined 

inputs. This result will hold so long as: 1) the relationship between 𝑃 and 𝑆 is complementary, 

and 2) the ICT aspires to achieve the global minimum of costs and damages rather than some 

satisfactory level. 

 Whether suppression and pre-suppression inputs are complements or substitutes remains 

an active area of research. For example, in a recent study Gonzalez-Caban et al. (2017) were not 

able to distinguish a general relationship between the suppression costs and the acres of fuels 
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treated within the burned area prior to the fire. Hence, in some regions, these two inputs could be 

viewed as complements, whereas in others, as substitutes. Using our model to interpret these 

empirical results, the appearance of substitutability could be explained by variation in 𝜃 (by 

Proposition 1), whereas the complementarity between the inputs could be explained by a fixed 𝜃. 

Controlling for the influence of 𝜃 and testing the hypothesis presented in Proposition 1 remains a 

potential opportunity for future empirical work.  

 Using the sequential model proposed in the present paper, our research focuses on the 

influence of satisficing behavior on the socially efficient fire management outcome in a 

deterministic setting. The sequential model provides some explanation for the observed increase 

of agency budget shares devoted to wildfire suppression, although more work is needed to parse 

out the relative influence of this externality from other characteristics of incident commanders, 

including their risk tolerance, aversion to downside risk exposure, or aversion to ambiguous risks 

(Maguire and Albright 2005; Wilson et al. 2011; Wibbenmeyer et al. 2013; Hand et al., 2017). 

These additional considerations may be necessary for understanding the optimal design of 

contracts to better align the shared objectives of incident commanders and agency administrators.  

An extension of the model to a more dynamic setting could also be warranted if the pre-

suppression expenditures are treated as an investment to build “capital” that acts to lower the 

expected fire damages for multiple subsequent periods. The static model presented in this paper 

can be thought of as the steady state representation where an agency administrator (leader) has 

furthermore learned the type of the incident commander (follower). As a related matter, another 

interesting extension would be to investigate the effects of different forms of uncertainties on the 

program expenditures. For example, if the agency administrator in the pre-suppression stage does 

not know a priori the type of the incident commander that will oversee suppression (e.g. high-
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cost or low-cost), but the incident commander does know their own type, the implications of 

such asymmetric information becomes an interesting consideration in an optimal contract design 

problem. These uncertainties may further distort the sequential allocation from the Pareto 

efficient outcome if contracts have not been designed to control for their associated constraints 

on a socially efficient solution. 

 

1.6. Conclusion 
 To model the effect of a fragmented budgeting sequence, we extended the C+NVC model 

to a game-theoretic framework. The sequential model enables alternative assumptions about the 

fraction of allocated suppression funding honored by a contracted ICT to effect the equilibrium 

outcome at the time their demand for suppression is expressed.  The resulting allocation of 

funding to each component of the federal fire program is characterized by a “Stackelberg” 

solution to the leader-follower game structure. We have shown that such a solution is identical to 

the one derived under the standard C+NVC model when the ICT places equal weight on both the 

𝑁𝑉𝐶 component and the suppression component of their dual objective function. When ICTs fail 

to internalize the full costs of suppression into their suppression strategy, the allocation of 

funding to each component will of the fire program can be expected to deviate from the socially 

efficient allocation derived under the standard (unified) C+NVC budgeting model.  

 With the capacity to utilize supplemental funding and reimburse borrowed accounts, 

there may still be a tendency for incident managers to externalize a portion of total suppression 

costs. However, the burden of additional suppression costs is not left with the fire management 

agency itself, but instead with other emergency management agencies. While annual federal fire 

management appropriations may regain some stability from year-to-year as fire borrowing 

practices are expected to phase out under the new funding rule, the ccapacity to shift the cost of 
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suppression onto other federal agencies is not likely to provide adequate incentives for incident 

managers to consider the full costs of suppression. The continuation of a fragmented budgeting 

structure along with the capacity to utilize the supplementary portion of the Disaster Relief Fund 

should not be expected to shift fire management expenditure shares away from suppression if the 

conditions derived in this chapter hold true.  
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Appendix A: Proof of Proposition 1 
Taking the partial derivative of the ICT’s best response function(eq. 10) with respect to 𝜃 

gives: 

𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝜃
=

𝑆(𝑃, 𝑊𝑆, 𝜃)

𝛾2 − 1
(𝜃−1 − 𝛾1𝑃−1

𝜕𝑃

𝜕𝜃
). 

To determine the sign of the above partial derivative, we need to find an expression for 
𝜕𝑃

𝜕𝜃
. Let 

the first derivative of the  first stage objective function (c.f. eq. 11) be denoted by 𝐺. Using the 

implicit function theorem, we can write the partial derivative of interest as follows: 

𝜕𝑃(𝑊𝑃, 𝑊𝑆, 𝜃)

𝜕𝜃
= −

𝜕𝐺
𝜕𝜃
𝜕𝐺
𝜕𝑃

. 

The denominator is positive by the assumption that the second-order condition holds (see 

Appendix B). It can be shown that: 

𝜕𝐺

𝜕𝜃
= −

𝛾1(𝑊𝑆𝑆 − 𝛾2𝛽𝑃𝛾1𝑆𝛾2)

(𝛾2 − 1)2𝑃𝜃
. 

Using the above expression and 
𝜕𝐺

𝜕𝑃
 from Appendix B, we can now rewrite 

𝜕𝑃

𝜕𝜃
 as: 

𝜕𝑃(𝑊𝑃, 𝑊𝑆, 𝜃)

𝜕𝜃
=

𝑃

𝜃
(

𝑊𝑆𝑆 − 𝛾2𝛽𝑃𝛾1𝑆𝛾2

(𝛾1 + 𝛾2 − 1)(𝑊𝑆𝑆 − 𝛽𝑃𝛾1𝑆𝛾2)
). 

The denominator is positive (see Appendix B). Thus, for 
𝜕𝑃

𝜕𝜃
> 0 to hold, it must be the case that 

𝑊𝑆𝑆 − 𝛾2𝛽𝑃𝛾1𝑆𝛾2 > 0. This condition can be written as: 

𝛾2 <
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
. 
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 Recall that the FOC in the suppression stage is: 

𝜃𝑊𝑆𝑆 − 𝛾2𝛽𝑃𝛾1𝑆𝛾2−1 = 0 

Which is equivalent to:  

𝛾2

𝜃
=

𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
, 

which proves that 
𝜕𝑃

𝜕𝜃
> 0. 

We can now rewrite 
𝜕𝑆

𝜕𝜃
 as:  

𝜕𝑆(𝑃, 𝑊𝑆, 𝜃)

𝜕𝜃
=

𝑆

𝜃
(

𝑊𝑆𝑆 − (1 − 𝛾1)𝛽𝑃𝛾1𝑆𝛾2

(𝛾1 + 𝛾2 − 1)(𝑊𝑆𝑆 − 𝛽𝑃𝛾1𝑆𝛾2)
). 

The denominator is again positive. Hence the numerator determines the sign. This proves 

Proposition 1: when 
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
< 1 − 𝛾1, 

𝜕𝑆∗

𝜕𝜃
< 0,

𝜕𝑃∗

𝜕𝜃
> 0 

And when 
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
> 1 − 𝛾1, 

𝜕𝑆∗

𝜕𝜃
> 0,

𝜕𝑃∗

𝜕𝜃
> 0. 

 Finally, note that the SOSC imposes the following restriction which supports the 

possibility to have 
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
< 1 − 𝛾1, 

0 <
𝑊𝑆𝑆

𝛽𝑃𝛾1𝑆𝛾2
< 1. 
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Appendix B: Second order sufficiency condition 
 To investigate the feasibility of Proposition 1, we must ensure that the second order 

sufficiency condition (SOSC) is satisfied. Applying condition (9) gives: 

𝜕𝐺

𝜕𝑃
=

𝛾1(𝛾1 + 𝛾2 − 1)(𝑊𝑆𝑆 − 𝛽𝑃𝛾1𝑆𝛾2)

(𝛾2 − 1)2𝑃2
> 0. 

For the above condition to hold, we must have 𝛾1 + 𝛾2 − 1 < 0 and 𝑊𝑆𝑆 − 𝛽𝑃𝛾1𝑆𝛾2 < 0. 

 Equation (12) is plotted against 𝜃 in Figure 1.9. The figure shows that the sufficiency 

conditions can be satisfied under certain values of 𝜃 and the parameters of the 𝑁𝑉𝐶 function 

(𝛾1, 𝛾2, 𝛽). Under certain functional forms of the objective function (including Cobb-Douglas as 

shown here), the second-order condition of the agency administrator’s restricted problem is a 

minimum. However, a solution will not necessarily hold in general.  

Figure 1.9 - Second-order condition of the restricted C+NVC problem
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2.1. Introduction 
In seven of the last ten fiscal years, agency-wide suppression expenditures in the U.S. 

Forest Service have exceeded 50% of total fire management expenditures (Hoover and Lindsay, 

2017). This expenditure trend is generally viewed as counterproductive to other land 

management objectives, including fire risk mitigation, as it consumes larger proportions of the 

agency’s appropriated budgets (USFS 2015; Hoover and Lindsay, 2017). Similar, albeit less 

drastic, trends are also observable in other land management agencies (Stephens et al. 2016), 

while the overall trend is expected continue unabated into the near future (USFS, 2015). To 

address this problem, land management agencies have continued their development of risk 

analysis tools to better inform budgeting and resource allocation decisions across land 

management organizations with a common objective (Thompson and Calkin, 2011; Taber et al., 

2013; GAO, 2015; Thompson et al., 2017).  

A risk management framework represents a strong departure from early 20th century 

suppression policies which relied heavily on heuristic “rules of thumb” (Blattenberger et al., 

1984). For example, the 10 A.M. policy of 1935 required the full suppression of a wildfire before 

10 A.M. the day after its discovery without full consideration of costs, risk, or potential benefits 

of allowing it to burn. In stark contrast, a key objective of recent legislation (such as the 2001 

update to the Federal Fire Management Policy and the 2009 FLAME Act) is to utilize risk 

analysis for requesting and allocating scarce budgets across different programs and regions 

within the fire management organization to enable cost-effective suppression response (Jewell 

and Vilsack, 2014). The aim of these policies is to reinforce a goal of cost efficiency and to 

require the use of regional and national scale budgeting and fire risk management (Hann and 

Bunnell, 2001; Fire Executive Council, 2009).  
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However, there is potential for risk attitudes to override the success of such analyses 

(Katuwal et al., 2017; Hand et al., 2015; Thompson, 2014; Calkin et al., 2011), and to perpetuate 

the tendency for larger percentages of public land management expenditures to be allocated 

towards suppression efforts instead of risk reduction activities. Formally defined, risk attitudes 

are a decision-maker’s preference for higher-order characteristics of their payoff distribution, 

which contain more information than just the expected value of net benefits. Using panel data on 

large wildfires managed during the period 2007-2011, Hand et al. (2017) find that differences 

across incident management teams can account for up to 14 percent of observed variation in the 

demand for suppression resources. The authors attribute these differences to alternative levels of 

risk aversion across incident management teams. Hence, risk preferences on the ground may 

continue to have a significant impact on the allocation of resources in the overall fire 

management program. 

The Cost Plus Net Value Change (C+NVC) model forms the standard approach for 

determining the cost-efficient allocation of budgetary resources in a fire management program 

(Rossi and Kuusela, 2019; Rideout et al., 2008; Donovan and Rideout 2003). It extends the 

original Cost Plus Loss model proposed by Sparhawk (1925) by including broader measures of 

benefits and costs from wildfires that go beyond financial damages. Rossi and Kuusela (2019) 

use the C+NVC model to examine how mis-aligned objective functions of incident managers and 

wildfire program administrators can lead to inefficient program outcomes. However, the specific 

role of varying risk attitudes on program efficiency and their effects on budget allocation have 

not been formally examined, despite the wide recognition of their importance. One exception is 

Donovan and Brown (2005) who use the expected utility model to propose an alternative 

incentive structure that achieves more efficient program outcomes. However, they do not assess 
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the impacts of varying risk attitudes on budget allocations or the expected net social benefit of 

the program.  

The purpose of this chapter is to use an expected utility model together with the C+NVC 

framework to examine the effects of organizational risk attitudes on program efficiency and 

budget allocations. Our model characterizes the organization’s demand behavior when 

contracted incident managers display different attitudes towards risk and uncertainty. In this 

paper, we consider two such attitudes. Specifically, we consider an incident manager’s aversion 

to a higher variance of possible payoffs (risk aversion) or their tolerance for greater exposure to 

“catastrophic” losses (downside risk aversion). The latter is intrinsically related to skewed payoff 

distributions which are, as we will argue, a pervasive feature of wildland fire incidents. We show 

that the possibility of catastrophic losses can drive an even bigger wedge between the efficient 

budget allocation and the one where risk attitudes contribute to decision making. 

  In the U.S., federal funding for both suppression and pre-suppression operations are 

initially allocated through annual appropriations, although additional funding for suppression is 

available through emergency accounts or the Federal Emergency Management Agency. Given 

the inherent uncertainties on the severity of fire seasons, the actual spending levels on different 

wildfire program components are not determined simultaneously, but rather sequentially as 

funding from these additional sources are requested throughout a fiscal year. Agencies may 

request the use of these resources when suppression appropriations are at risk of exhaustion and 

can be accessed with approval of Congress. The availability of emergency financing for 

suppression effort has been identified as one of the key drivers of increasing suppression costs 

and the consequent inefficiencies in federal management effort (Donovan and Brown, 2005; 

Rossi and Kuusela, 2019). The inefficiencies arise when spending on suppression is determined 
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reactively during the fire season as a shortrun factor demand problem. It has been shown that the 

sequential structure of the problem does not generate this inefficiency alone, but it can impact the 

resulting expenditure allocation when suppression costs are not internalized by the incident 

manager, but are externalized onto another portion of the agency’s budget, another federal 

agency, or onto the general public through off-budget financing (Rossi and Kuusela, 2019).  

Such a spending structure, where actual expenditures on different program components 

are determined reactively based on the severity of the fire season, is more accurately 

characterized by a two-stage decision problem. In our model, budget allocations are determined 

by a leader-follower (Stackelberg) game, where the leader is the wildland fire program 

administrator who decides pre-suppression expenditures and the follower is the incident 

commander whose services are contracted by the fire program administrator to determine 

suppression demand. The incident commander may exhibit different degrees of risk aversion 

when deciding the level of suppression spending, whereas the program administrator is assumed 

to be risk neutral. The leader in the game chooses and commits to a certain level of pre-

suppression spending given the known response function of the risk averse incident commander. 

The two decisions jointly determine the net value change (NVC); hence the leader can 

strategically influence the follower’s decision with a given input use. The role and purpose of the 

fragmented (sequential) spending decisions in our model is twofold: 1) it describes the 

chronological structure of the full budgeting decision within management agencies, and 2) it 

enables us characterize the qualitative effect of risk averse incident managers on the overall 

spending and on the allocation of spending. 

  We derive analytical results using a constant absolute risk aversion (CARA) functional 

form which shows how risk aversion can lead to increased suppression spending and reduced 
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pre-suppression activities compared to the risk neutral benchmark case. Using a numerical 

simulation model, we also examine the program efficiency outcomes under decreasing absolute 

risk aversion (DARA). We parameterize the model to reflect a representative allocation that is 

typical of annual management decisions made at the landscape or regional level. The model 

assesses the potential for various components of an incident manager’s risk premium to alter 

their choice of suppression demand relative to an incident manager who displays a neutral 

attitude towards risk. These factors are shown to have an influence on the organization’s optimal 

allocation of budgets and the share of overall expenditures devoted to suppression. We also 

compare the numerical results derived from the sequential model to a unified model where a risk 

averse planner can decide both suppression and presuppression expenditures. The impact of risk 

aversion on program outcomes is magnified in the sequential case. 

The rest of the chapter is organized as follows. Section 2 reviews the literature on risk 

attitudes in wildfire incident management. Section 3 presents a two-stage game to capture these 

risk attitudes as additional determinants of demand within a fire management framework. In 

Section 4, we present the comparative statics of a numerical model using a specified functional 

form for the organization’s fire management technology. In the last section, we discuss policy 

implications of the model’s results and directions for further research.  

 

2.2. Risk attitudes in public incident management 
Risk attitudes refer to a decision maker’s preferences over characteristics of a payoff 

distribution when faced with a risky situation. Consider first that a risk neutral decision-maker 

faced with multiple uncertain alternatives will simply select the alternative with the highest 

expected payoff. In contrast, a risk averse decision maker will be satisfied with a lower payoff, 

on average, to obtain a lower variance of potential outcomes. To further illustrate the concept of 
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“second-order stochastic dominance,” Figure 2.1 depicts two payoff distributions, A and B, with 

the same expected value. For a risk averse decision-maker, distribution A will be strictly 

preferred to distribution B, whereas a risk neutral decision maker would be indifferent between 

the two payoff distributions.  

 

Figure 2.1 - Illustration of Second-order stochastic dominance

 

 

Risk aversion has been suggested as a cause of excessive suppression response within fire 

management organizations (Maguire and Albright, 2005; Blattenberger et al., 1984) and the 

tendency can vary locally across incidents or incident managers (Hand et al., 2017). Early 

attempts to assess the presence of risk aversion amongst wildfire managers found no evidence of 

risk aversion in the context of a multi-attribute utility model (Teeter and Dyer, 1986). However, 

more recent work has found stronger evidence of risk aversion. A survey of incident managers, 

who are contracted by land management agencies to administer tactical responses during large 

fire suppression efforts, indicated risk averse behavior (Canton-Thompson, 2006).  
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 The most recent empirical evidence of risk averse incident managers supports the 

expected utility model presented by Hand et al. (2017). The authors derive an expression for the 

optimal suppression demand for a representative risk averse incident manager facing uncertain 

returns from the deployment of suppression resources. The derived demand for suppression 

effort is shown to vary with the parameters of an expected utility function, which implies that the 

incident manager’s risk type can influence the agency’s demand for fire suppression resources. 

In other words, greater risk aversion of a contracted incident management team can lead to larger 

or more frequent requests for additional resources, thereby influencing federal suppression 

expenditures. Empirical evidence of suppression demand behavior amongst incident managers 

supports this theory (Hand et al., 2017).  However, more work is needed to determine if these 

group-level differences are determined by other unobservable characteristics of incident 

management teams besides varying levels of risk aversion.  

 For example, ignoring the higher-order approximations of a decision-maker’s expected 

utility can mask the possibility for a decision-maker to display positive skewness preference 

(Scott and Horvath, 1980). These preferences may also drive choice behavior as it relates to an 

incident manager’s rational demand response when facing a return distribution with large 

downside risk potential. Positive skewness preference represents an alternative risk attitude than 

what has been previously considered in the wildfire management literature. A decision-maker 

that is averse to downside risk will accept some lower payoff, on average, to maintain a payoff 

distribution with lower exposure to left-tailed risks. Given a choice between two risky 

alternatives with the same average payoff and the same variance of payoffs (such as those 

depicted in Figure 2.2), a decision-maker with a low tolerance for downside risk will strictly 

prefer the alternative with a larger skewness (distribution A) to the alternative with a lower 
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skewness (distribution B). This reflects “third-order stochastic dominance” of alternatives 

preferred by a downside-risk averse decision maker (Menezes et al., 1980).  

Empirical evidence of aversion to downside risks has been shown to be a characteristic of 

decision makers in many different settings, specifically those in the agricultural sector (see 

Antle, 1987) and those in the financial sector (see Miller and Leiblein, 1996). However, the 

potential for downside risk aversion to affect the allocation of public budgets for natural disaster 

protection (or specifically wildfire protection) has not been formally addressed in the literature. 

This paper shows that knowledge of higher order approximations of the decision-maker’s 

expected payoff function may help to explain the choice of suppression strategy in low- vs. high 

risk areas as a result of stronger preference for third moment characteristics of the benefit 

distribution. 

Figure 2.2 - Illustration of Third-order stochastic dominance
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2.2.1. Incorporating manager risk attitudes in the sequential model 

The standard theory of wildfire economics characterizes a social planner’s efficient fire 

management outcome as the optimal demand for fire management effort (given exogenous 

prices) which minimizes the sum of total program costs plus net economic damages from fire 

effects or “C+NVC” (Mills and Bratten, 1982; Donovan and Rideout, 2003). Duality results 

apply to this framework such that the model is equivalently stated as a maximization of net fire 

effects benefits less the costs of investments in fire management (Rideout and Omi, 1990). 

Computational extensions of the model are used to solve for a landscape’s optimal demand for 

fire management effort and are used to support land management agencies that seek to request an 

efficient level of annual funding to fulfill fire policy obligations (e.g. Rideout et al., 2014; Calkin 

et al., 2010). 

The above empirical evidence of suppression demand behavior suggests that it is possible 

for incident managers to display a host of rational responses to risk when facing a decision with 

uncertain outcomes and that risk attitudes may vary across incident managers (Hand et al., 2016; 

Blattenberger et al., 1984). Few studies have examined the effect of this risk aversion on the 

share of annual agency expenditures allocated towards suppression effort. This motivates a 

modification of the sequential wildfire economics model to investigate the influence of an 

incident manager’s risk attitudes on the fire program’s overall efficiency and budget allocation.  

 

2.3. Model 
The organization’s optimal demand for fire management effort is found using a 

sequential decision framework, in contrast to the socially efficient solution of the standard 

model. The existence of an equilibrium in this decision framework rests on an assumption of 

sequential rationality where the agency administrator (i.e. the leader) maintains complete 
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information about the demand response of a risk averse incident manager (i.e. the follower) 

during future wildfire events. Similar to Donovan and Brown (2005), the assumption of a risk-

neutral incident manager is relaxed to explore the potential for the risk attitudes of incident 

managers to affect the equilibrium allocation. We further extend on the expected utility 

framework by coupling it with the sequential C+NVC framework presented by Rossi and 

Kuusela (2019) and by including third-order effects of risk. The equilibrium concept for a game 

with this structure is a subgame-perfect Nash equilibrium (SPNE) and is solved using backward 

induction (Varian, 1992). In the backward induction procedure, the solution to the follower’s 

problem represents the outcome for the second stage solution and is then used to find the leader’s 

optimal strategy in the first stage. Table 2.1 provides a list of variables and parameters used in 

the numerical representation of the two-stage game. 
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Table 2.1 - Variables and parameters used in sequential wildfire economics model 

 Endogenous Parameters VaDomainlues 

𝜇 Mean of net value change from fire 

effects 

(−∞, ∞) 

𝜈 Variance of net value change from 

fire effects 

[0, ∞) 

𝜑 Skewness of net value change from 

fire effects 

(−∞, ∞) 

   

 Decision Variables Domain 

𝑃 Pre-suppression effort (leader’s 

strategy) 
[0,∞) 

𝑆 Suppression Effort (follower’s 

strategy) 
[0,∞) 

   

 Exogenous Parameters Domain 

𝑊𝑃 Unit cost of presuppression effort (in 

millions of $) 

0.25 

𝑊𝑆 Unit cost of suppression effort (in 

millions of $) 

0.45 

𝛼 Parameter of the net value change 

function (in millions of $) 

4.50 

𝛽 Factor productivity of management 

effort (in millions of $) 

2.15 

(𝛾1, 𝛾2) Output elasticities of 𝑃 and 𝑆 (0.085,0.055) 

𝑟 Incident manager’s level of risk 

aversion 
𝑟 ∈ [0,1] 

𝑘 Incident manager’s level of downside 

risk aversion 
𝑟2 

𝝎 A vector of parameters describing 

shape of the random variable 𝜃 

𝝎 ∈ ℝ𝒏 

𝜎𝜃 Special case of  𝝎 (st. dev. of 𝜃) 2.65 

   

 Random Variables Distribution 

𝜃 Multiplicative risk parameter 𝜃~𝑁(1, 𝜎𝜃) or 

𝜃~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (ln
1

√𝜎𝜃+1
, √ln (

𝜎𝜃
2

1
+ 1)) 

𝑉 Net value change from fire effects 𝑉~𝑁(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼 , 𝜎𝜃) or 

𝑉~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑎, 𝑏) 
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2.3.1. Suppression and Presuppression inputs 

We start with an assumption of a risk averse incident manager. Incident managers must 

determine the level of suppression effort to employ but face uncertain levels of net value change 

depending on the type and amount of assets at risk of wildfire damage. Wildfires that burn in 

close proximity to the wildland-urban interface, near timber plantations, or over sensitive 

wildlife habitat, may expose the public to a larger probability of highly damaging outcomes. 

When fires burn in these areas, the net value change distribution is likely to display a greater 

exposure to downside risk as shown in Figure 2.3 (left). If instead, wildfires burn over forest 

ecosystems that benefit from wildfire exposure (such as stands of fire dependent tree species) or 

over wildlands farther from human developments, the net value change distribution is less likely 

to expose the public to highly damaging outcomes. In these cases, the net value change 

distribution is more likely to display greater upside risk as in Figure 2.3 (right).  

 

Figure 2.3 - Negative and Positive Skewness
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In the event of an unplanned wildfire, the incident manager is contracted by the district’s 

administrator to oversee the deployment and movement of suppression resources (𝑆) across 

administered lands. Let the term 𝑉 = 𝑉(𝑃, 𝑆, 𝜃) represent the net value change (NVC) on 

unplanned fire effects (i.e. the ecologically beneficial or restorative effects of wildfire less any 

damages to human or environmental assets) where 𝑃 is the level of pre-suppression effort and 𝜃 

is a random variable with a known probability density function 𝑓(∙). The NVC function is 

increasing in the application of both inputs (
𝜕𝑉

𝜕𝑆
> 0,

𝜕𝑉

𝜕𝑃
> 0) but at a decreasing rate 

(
𝜕2𝑉

𝜕𝑆2 < 0,
𝜕2𝑉

𝜕𝑃2 < 0). We assume that the cross-partial derivative is positive (
𝜕2𝑉

𝜕𝑃𝜕𝑆
> 0), meaning 

that the marginal productivity of one input is increasing in the application of the other input. 

Suppression and pre-suppression have many complementary interactions through their joint 

technological capacity to reduce wildfire damages and improve the relative productivity of one 

another (Hirsch et al., 1998; Mogghaddas and Craggs, 2007; Haight and Fried, 2007). For 

example, fuel reduction in the wildland-urban interface (WUI) may create safer environment for 

firefighters to operate and hence render firefighting efforts more productive.8 

For now, we impose limited structure on each incident manager’s Bernoulli utility 

function 𝑢. Specifically, we only assume that it is increasing and concave in 𝑉. Each incident 

manager’s expected utility function is defined as: 

E[𝑢] = ∫ 𝑢(𝑉)𝑓(𝑉)𝑑𝑉
∞

−∞

. 

 
8 The result from Mogghadas and Craggs (2007) suggests that increases in pre-suppression investment (specifically 

a fuel treatment) increased the marginal productivity of subsequent suppression effort through increased 

penetration of fire retardant, a reported improvement in visual contact between incident manager and fire crews, 

safer access to fires during suppression response, and quicker suppression of spot fires. 
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The incident manager’s expected utility function is approximated as a certainty equivalent, 𝐶𝐸, 

given by an additive combination of expected net value change, 𝜇 ≔ E[𝑉], minus a risk 

premium: 𝐶𝐸 = 𝜇 − 𝑅. The risk premium (𝑅) is referred to as the “cost of risk” and is comprised 

of higher order moments of the return distribution weighted by coefficients describing the 

decision-maker’s aversion to such characteristics of the return distribution. Using a well-known 

approximation result (e.g. Chavas, 2004), the risk premium can be written as a function of 

variance (ν) and skewness (𝜑) of the random return distribution. Note that the skewness 

parameter 𝜑 can take positive or negative values depending on the direction of the skew. 

More specifically, the third order Taylor approximation of the expected utility function 

around the mean is: 

E[𝑢] ≈ 𝑢(𝜇) +
𝑢′′(𝜇)

2!
𝜈 +

𝑢′′′(𝜇)

3!
𝜑. 

Moreover, the risk premium can be defined as using the following equation: 

E[𝑢] = 𝑢(𝜇 − 𝑅). 

The above condition means that the incident commander is indifferent between the expected 

utility and the sure payoff, where the latter is defined as the utility from the expected NVC net of 

the risk premium. Taking the second order Taylor approximation of the right-hand side around 

the mean (𝑅 = 0) gives: 

E[𝑢] ≈ 𝑢(𝜇) − 𝑢′(𝜇)𝑅. 

Combining the above results yields a local approximation of the risk premium around 𝜇: 

𝑅 ≈
1

2

𝑢′′(𝜇)

𝑢′(𝜇)
𝜈 −

1

6

𝑢′′′(𝜇)

𝑢′(𝜇)
𝜑. 

where 𝑟 = −
𝑢′′(𝜇)

𝑢′(𝜇)
> 0 and 𝑘 =

𝑢′′′(𝜇)

𝑢′(𝜇)
> 0. 
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The term 𝑟 measures the Arrow-Pratt coefficient of absolute risk aversion and will be 

positive under either an assumption of constant absolute risk aversion (CARA) or decreasing 

absolute risk aversion (DARA). Notice that the risk premium is increasing with a larger variance 

of net value change but is decreasing as the return distribution displays larger positive skewness. 

The latter is explained by the fact that larger positive skewness decreases exposure to downside 

risk by limiting the likelihood of observing fires with damages well below the most likely level. 

The coefficient of precaution, 𝑘, captures an incident manager’s tolerance for managing fires 

with higher potential for “catastrophic” losses (that is, fires with damaging outcomes several 

standard deviations below the mean outcome). It can be shown that DARA preferences exhibit 

downside risk aversion (Liu and Meyer, 2012). This implies that the coefficient 𝑘 is positive 

under an assumption of DARA and that distributions with a larger right-tail skewness are more 

desirable than distributions with smaller right-tails or distributions with negative (left-tailed) 

skewness. This is shown to influence demand behavior in an extension of the numerical example 

presented in Section 5. The same result also holds with an alternative assumption of CARA as 

we will show next. 

In what follows, we maintain an assumption of CARA preferences to derive analytical 

results. Under the assumption that fire management effort influences the mean, variance, and 

skewness of net value change from fire effects, we can characterize the incident manager’s 

choice of suppression effort in the second stage of the sequential game. Thus, we denote the 

mean as: 𝜇 = E[𝑉(𝑃, 𝑆, 𝜃)], the variance as: 𝜈 = var(𝑉(𝑃, 𝑆, 𝜃)), and the skewness as: 𝜑 =

skew(𝑉(𝑃, 𝑆, 𝜃)). In this stage, the incident manager solves for a level of suppression demand 

such that they maximize their certainty equivalent minus investment costs given a constant unit 

cost of suppression effort (𝑊𝑆).  
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max
𝑆≥0

{𝜇 −
𝑟

2
𝜈 +

𝑘

6
𝜑 − 𝑊𝑆𝑆}. 

(1) 

Under the assumption of a CARA utility function, we have 𝑘 = 𝑟2.9 This implies that downside 

risk aversion is a quadratic function of the incident manager’s level of risk aversion. We focus on 

interior solutions (𝑆 > 0) given by the root of the first-order necessary condition from (1): 

𝜕𝜇

𝜕𝑆
−

𝑟

2
(

𝜕𝜈

𝜕𝑆
) +

𝑟2

6
(

𝜕𝜑

𝜕𝑆
) − 𝑊𝑆 = 0. 

(2) 

A maximum of (1) also requires the following sufficiency condition to be satisfied: 

𝜕2𝜇

𝜕𝑆2
−

𝑟

2
(

𝜕2𝜈

𝜕𝑆2
) +

𝑟2

6
(

𝜕2𝜑

𝜕𝑆2
) < 0. 

(3) 

Where condition (3) holds, the incident manager’s best response function, 𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎), is 

defined implicitly by equation (2) and gives the incident manager’s choice of suppression 

demand for any prior choice of 𝑃, the unit costs of suppression, and their level of risk aversion 

(𝑟). The term 𝝎 reflects any collection of parameters in the distribution function 𝑓(∙) that 

describe its shape. When 𝑟 = 0 (indicating a risk neutral incident manager), equation (2) 

collapses to one of the usual first-order conditions found in the standard C+NVC model.10 The 

 
9 This can be derived using:  

𝑢′′(𝑥)

𝑢′(𝑥)
= 𝑟 

Take the total derivative: 
𝑢′′′

𝑢′
𝑑𝑥 −

𝑢′′(𝑥)

𝑢′(𝑥)2
𝑢′′(𝑥)𝑑𝑥 = 𝑑𝑟 

A small change in 𝑥 gives: 
𝑢′′′

𝑢′
− 𝑟2 = 0 

10 This also happens whenever 𝑟 = 3𝜈/𝜑 which implies that 𝑅 = 0. 
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incident manager will thus choose a level of suppression effort such that the expected marginal 

value is equal to the unit cost of suppression effort. It is shown by Rossi and Kuusela (2019) that 

such a solution to the sequential model with a rational and risk neutral incident manager will be 

identical to the solution derived by the standard C+NVC model. 

With accurate anticipation of the incident manager’s best response, the administrator 

takes it into account when deciding the level of the pre-suppression effort. The first-stage 

problem can be written as  

max 
𝑃≥0

E[𝑉(𝑃, 𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎), 𝜃) − 𝑊𝑃𝑃 − 𝑊𝑆𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎)]. 

(4) 

Notice that an assumption of a risk-neutral administrator is maintained and is a typical 

assumption for public fire management problems (Rideout et al., 2008). As summarized by 

Blattenberger (1984), the assumption of risk neutrality reflects the agencies’ long term objective 

and their capacity to manage a diverse set of fire-affected assets that are spread across a wide 

group of citizens (Arrow and Lind, 1970; Samuelson, 1964). This assumption adheres to the 

mutuality principle (Hun Seog, 2010), suggesting that the greater number of individuals 

protected with independent risk, the variance of the portfolio of stakeholders tends towards 

zero.11 To achieve the best possible outcome, the agency administrator solves the first-order 

condition (5) for the optimal level of pre-suppression demand, 𝑃∗(𝑊𝑃, 𝑊𝑆, 𝑟, 𝝎): 

𝜕𝑉(∙)

𝜕𝑃
+

𝜕𝑉(∙)

𝜕𝑆
(

𝜕𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎)

𝜕𝑃
) − 𝑊𝑃 − 𝑊𝑆 (

𝜕𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎)

𝜕𝑃
) = 0. 

 
11 It would be possible to model a risk averse administrator. However, there is no evidence that such behavior exists. 

By assuming risk averse incident commanders and a risk neutral administrator, we are able to derive efficiency 

implications stemming from empirically reported risk attitudes.     
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(5) 

Embedding this solution in the incident manager’s best response function yields the suppression 

demand function, 𝑆∗(𝑊𝑃 , 𝑊𝑆, 𝑟, 𝝎). The pair of demand functions represent a SPNE to the two-

stage game. 

 The following proposition collects the main analytical findings from the above model: 

 

Proposition 1:  

a)  Assume that the net value change from fire management effort is asymmetrically 

distributed so that the sample skewness is nonzero. When suppression effort decreases 

the variance (
𝜕𝜈

𝜕𝑆
< 0) and increases the skewness (

𝜕𝜑

𝜕𝑆
> 0), we have: 

𝜕𝑆

𝜕𝑟
> 0. 

However, when suppression effort decreases the skewness (
𝜕𝜑

𝜕𝑆
< 0) the sign of  

𝜕𝑆

𝜕𝑟
  will 

depend primarily on the relative magnitude of the partials 
𝜕𝜈

𝜕𝑆
 and 

𝜕𝜑

𝜕𝑆
.  

b) Given 
𝜕2𝑉

𝜕𝑃𝜕𝑆
> 0, suppression is increasing in pre-suppression (implying strategic 

complementarity) when the following conditions hold: 
𝜕2𝜈

𝜕𝑆𝜕𝑃
< 0 and 

𝜕2𝜑

𝜕𝑆𝜕𝑃
> 0. 

c) The effect of higher risk aversion on pre-suppression is ambiguous:  

𝜕𝑃

𝜕𝑟
⋛ 0. 

Proof: See Appendix A. 

 

Intuitively, the first assumption of Proposition 1 (
𝜕𝜑

𝜕𝑆
> 0) suggests that when forest fires 

occur in areas with high-valued assets at risk (such as in the WUI) there is potential for 
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suppression effort to increase the skewness of the return distribution (by limiting large downside 

risk and hence making the skewness less negative). In such cases, net value change is likely 

negative so we allow the value of the partial effect (
𝜕𝜑

𝜕𝑆
) to be positive. In these cases, greater 

risk aversion raises the demand for suppression (
𝜕𝑆

𝜕𝑟
> 0) and this effect is enhanced by the 

presence of a skewed NVC distribution in comparison to a symmetric NVC distribution.  

Alternatively, if forest fires burn over areas that benefit from fire (such as certain forest 

cover types in fire-dependent ecosystems) the net value change from fire effects is positive. 

Thus, there is less potential for full suppression effort to decrease the potential for large 

downside risk. In these cases, less aggressive suppression strategies like “point-protection” or 

“wildfire monitoring” are likely to be more efficient choices as they reduce the variance of 

potential outcomes. Suppression response will thus have less impact on the skewness of the 

return distribution and may even decrease the skewness of net value change by limiting upside 

risk potential (so we can alternatively allow for (
𝜕𝜑

𝜕𝑆
) < 0). In this case, we can expect the 

magnitude of the partial effect (
𝜕𝜈

𝜕𝑆
) to actually exceed that of (

𝜕𝜑

𝜕𝑆
), yielding a negative 

relationship: 
𝜕𝑆

𝜕𝑟
< 0.  In these cases where fire effects are beneficial and skewness decreases with 

suppression effort, greater levels of risk aversion can actually decrease the level of suppression 

effort employed.  

Part b) in Proposition 1 describes how incident commander’s best response function 

varies in the level of pre-suppression. When pre-suppression increases the marginal productivity 

of suppression input for lowering the variance of net benefits (
𝜕2𝜈

𝜕𝑆𝜕𝑃
< 0) and when pre-

suppression increases the marginal productivity of suppression input for raising the skewness 
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(i.e. less negative skew) of net benefits (
𝜕2𝜑

𝜕𝑆𝜕𝑃
> 0), then suppression is increasing in pre-

suppression. When this hold, it can be said that the suppression and pre-suppression inputs are 

strategic complements. 

According to part c) in Proposition 1, the effect of increasing risk aversion on pre-

suppression is ambiguous. Given the presence of strategic interaction, it is possible that higher 

risk aversion leads to higher suppression but lower pre-suppression. In effect, with complete 

information about the incident manager’s best response, the administrator can still indirectly 

influence the overall costs of the program by strategically cutting back on the demand for pre-

suppression. This induces the incident commander to use a lower level of suppression effort than 

in the case where no strategic action is taken by the administrator.  

The above results are derived using the assumption of sequential decision making. As a 

useful benchmark for assessing the significance of the strategic dimension of the expenditure 

allocation decision, we also investigate the properties of a unified budgeting problem where the 

program administrator decides both input expenditures and so faces no opportunity for strategic 

behavior. However, we allow for the planner in the unified model to exhibit risk aversion in 

order to facilitate comparison to the result derived in Proposition 1. The following proposition 

summarizes the main result with respect to the effect of risk aversion on expenditures in a unified 

model. 

   

Proposition 2:  

Assume that the payoff is symmetrically distributed around the mean so that 𝜑𝑆 = 0 and 

additionally that 𝜈𝑃 < 0, 𝜈𝑆 < 0, 𝜈𝑆𝑆 > 0, 𝜈𝑃𝑃 > 0, 𝑎𝑛𝑑 𝜈𝑃𝑆 < 0. If risk aversion were to enter 
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the unified budgeting problem (where 𝑃 and 𝑆 are chosen simultaneously), then increasing levels 

of risk aversion will always raise the demand for both 𝑃 and 𝑆. 

Proof: See Appendix B. 

 

The assumptions with respect to positive second partial derivatives of the variance function 

reflect diminishing marginal productivity of an input in reducing the variance of the NVC, and 

the assumption of negative cross partial derivative reflects improved effectiveness of one input in 

decreasing the variance given a greater application of the other input. The latter assumption was 

also required for the strategic complementarity to hold in Proposition 1b. In contrast to the 

sequential model where strategic interaction plays a role, Proposition 2 shows that in the unified 

model both input uses are likely increasing in risk aversion (given that the assumptions hold). In 

the sequential model, the response in presuppression can go either way, given the leader’s ability 

to strategically reign in the suppression spending by committing to a lower presuppression 

investments. We next define a numerical version of the model to further explore the sign of these 

responses under standard functional form assumptions, and to compare the expenditure 

allocation form the sequential model and the unified model. 

 

2.3.2.  Numerical application 

We will use a general Cobb-Douglas technology to parameterize the NVC function. Let 𝜃 

be a multiplicative risk parameter to introduce the exact form of the random return distribution. 

This enables the NVC to be expressed as a random variable of the form:  

𝑉 = 𝜃(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼).        (6) 

In equation (6), 𝛼 represents the level of net value change attainable if managers were to exert no 

effort (𝑃∗ = 0, 𝑆∗ = 0). If fires burn without any management effort, there will still be some 
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damages to structures and watersheds and also some gains to fire-dependent areas in terms of 

risk reduction or restoration. When the expected value of 𝜃 is one, the expected net value change 

from fire effects are expressed as:  

𝜇 = 𝛽𝑃𝛾1𝑆𝛾2 − 𝛼.      (7) 

Now, the variance can be written as: 

𝜈 = (𝜎𝜃
2 − 1)(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)2,    (8) 

and skewness as: 

𝜑 = (𝜎𝜃
3 − 3𝜎𝜃

2 + 2)(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3.   (9) 

See Appendix C for a full derivation of equations (8) and (9). The parameter 𝜎𝜃 reflects the 

standard deviation of the multiplicative risk parameter. Larger values of  𝜎𝜃 reflect a larger 

variance of net value change.  

With the newly derived expressions for the mean (7), variance (8), and skewness of net 

value change (9), a specific functional form for the incident manager’s first-order condition in 

equation (2) can be obtained and the resulting optimal solution follows from an application of a 

univariate root-finding algorithm such as bisection (Miranda and Fackler, 2002).  

When conditions (2) and (3) are satisfied, the best response function is correctly 

anticipated by the agency administrator under the assumption of sequential rationality. Hence, 

the administrator’s first stage problem is shown by a specific case of (4), as shown by the 

objective function in equation (10): 

max  
𝑃≥0

E[𝜃(𝛽𝑃𝛾1[𝑆(𝑃, 𝑊𝑆, 𝑟, 𝑘, 𝜎𝜃)]𝛾2 − 𝛼) − 𝑊𝑃𝑃 − 𝑊𝑆𝑆(𝑃, 𝑊𝑆, 𝑟, 𝑘, 𝜎𝜃)]. 

(10) 

Numerical solutions to the first stage problem (10) exist when the sufficient condition for a 

maximum is satisfied. These sufficient conditions are investigated and the solutions to (10) are 
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found in the following section using a sequential-quadratic programming algorithm in MATLAB 

(Venkataraman, 2009).  

 

2.3.3. Comparative statics and numerical simulation 

The solution to the second-stage problem is the best response function determined by the 

condition (2), which varies according to the parameters (𝑟, 𝑘) as well as the unit cost of 

suppression (𝑊𝑆) and a given level of pre-suppression (𝑃). As shown by the best response curve 

in Figure 2.4.1, the two components of the fire program can display strategic complementarity. 

As pre-suppression effort increases, the incident manager increases their use of suppression, but 

at a decreasing rate. This result reflects the increased marginal productivity of suppression that is 

associated with rising applications of pre-suppression effort. Notice also in Figure 2.4.1 that 

there is a positive shift of the best-response function associated with rising levels of an incident 

manager’s risk aversion. With CARA utility, this also indicates that suppression effort increases 

when the incident manager’s tolerance for downside risks is lower.   
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Figure 2.4.1 - Incident Manager Best Response Function

 

 

Figure 2.4.2 - Fraction of Fire Program Expenditures Devoted to Suppression
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 Figure 2.4.2 shows that suppression’s share of the organization’s overall expenditures 

increase as risk aversion and aversion to downside risks increases. The result of a positive slope 

of the suppression expenditure share curve over ranges of 𝑟 holds in either of two cases 

presented in part c of Proposition 1 (
𝜕𝑃

𝜕𝑟
≷ 0).  This illustrates how a greater proportion of fire 

program funding is allocated towards suppression as the incident manager displays greater risk 

aversion and a lower tolerance to downside risk. The increase in suppression’s expenditure share 

over increasing 𝑟 thus occurs both when 𝑃 is decreasing in 𝑟 (Figure 2.5.1) and when 𝑃 is also 

increasing in 𝑟 but at a slower rate than 𝑆 (Figure 2.5.2). In both cases, the effect of increasing 

risk aversion has a smaller impact on the demand for presuppression relative to the unified case, 

where the level of risk aversion reflects that of the representative decision-maker for the fire 

management organization (Figure 2.5.3). In the unified model, greater levels of risk aversion 

have the effect of increasing presuppression by a larger amount than in the sequential model 

where the administrator displays a strategic response to increases in the incident manager’s level 

of risk aversion.  
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Figure 2.5.1 - Fire management effort over incident manager risk aversion (𝝈𝜽 = 𝟐. 𝟔𝟓)

 

 

Figure 2.5.2 - Fire management effort over incident manager risk aversion (𝝈𝜽 = 𝟐. 𝟗𝟐𝟓)
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Figure 2.5.3 - Fire management effort over organization's risk aversion (unified problem) 

 

Notice that when the incident commander’s risk aversion is increasing, suppression effort 

is increasing slower in Figure 2.5.1 than in Figures 3.5.2. One explanation for this difference 

between figures 2.5.1 and 2.5.2 is that presuppression use is decreasing in risk aversion, hence in 

effect slowing down the increase in suppression expenditures (strategic effect). In Figure 2.5.3 

the increase in suppression expenditures is faster than in Figures 3.5.1 and 3.5.2 since the 

presuppression expenditures also increase rapidly in the unified case when risk aversion 

increases.  Under the given price ratio, we can also see that the share of effort in suppression is 

rising in the level of risk aversion at a faster rate in the sequential budgeting problem (Figures 

2.5.1 and 2.5.2) when compared to the unified budgeting problem (Figure 2.5.3). Finally, notice 

that as the risk aversion parameter becomes smaller, the effort levels in all figures converge to 

the risk neutral case (the point where the curves intersect the y-axis). The expenditure allocation 

in the risk neutral case of Figure 2.5.3 corresponds to the socially efficient solution, as defined 

by a risk neutral social planner in a unified model. 
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 The next subsection will use these derived demand functions to calculate the additive 

components of the objective function in the first stage of the sequential game under different 

draws of the random variable 𝜃 using alternative assumptions about the symmetry of its 

distribution. This allows for a comparison of net return distributions to assess risk-return 

tradeoffs and program effectiveness when incident managers display non-neutral attitudes 

towards risk.  

 

2.3.4. Numerical simulation 
Given a constant variance of the multiplicative risk term (𝜃), 100,000 draws of random 

returns were generated and assessed under differing levels of the parameters describing the risk 

attitudes of incident commanders under both CARA and DARA utility functions.12 Assessing the 

distribution of overall social returns from a fire program with a risk averse incident manager 

facing normally distributed returns yields a risk-return tradeoff similar to the one shown in 

Figure 2.6 (top). It is apparent in Figure 2.6 (top) that the effect of a risk averse incident manager 

yields lower overall returns, on average, but yields more certain returns. When the second-stage 

decision-maker in the organization seeks to avoid a wide variance of negative outcomes, they 

can increase their use of suppression effort to create more certainty. The strategic response of the 

administrator in the first stage is to anticipate this aversion to uncertainty and cut back on the use 

of pre-suppression effort. The overall effect of an incident manager’s risk aversion is a lower net 

social returns, on average.  

  

 
12 Simulations with DARA utility are conducted using 𝑢(𝑉) = ln 𝑉, implying that the incident manager’s certainty 

equivalent is: 𝜇 −
1

2𝜇
𝜈 +

1

3𝜇2 𝜑 − 𝑊𝑆𝑆. 
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Figure 2.6 - Distribution of Net Returns in Sequential Fire Mgmt. Game (CARA)
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With an assumption of non-symmetrically distributed returns (which may follow, for 

example, a log-normal distribution) and a constant level of risk aversion, the influence of 

skewness will affect the incident manager’s risk premium and the resulting allocation of fire 

management effort. Figure 2.6 (bottom) displays a case where an incident manager’s risk 

aversion can also characterize aversion to third moment characteristics of the return distribution. 

Such aversion to downside risks can shift the net return distribution such that, on average, social 

returns generated by the fire management organization are lower but the skewness of returns is 

greater (i.e. less negative skew).  

Figure 2.7 (top) shows the suppression and presuppression expenditures separately as a 

function of the risk aversion parameter, using the same distributional form as in Figure 2.6 (top). 

The responses in the two expenditure classes are qualitatively similar to Figure 2.5.1, with 

suppression funding increasing while presuppression spending slightly decreasing. Figure 2.7 

(bottom) shows how the expected net value change is increasing in the risk aversion parameter 

while the overall expected total program returns are decreasing due to increased proportions of 

spending devoted to suppression. The same pattern holds for cases of log-normally distributed 

net value change and when output productivities are equalized (not shown). 

  



80 
 

 
 

Figure 2.7 - Costs and Benefits with Normally Distributed Net Value Change

 

 

 



81 
 

 
 

Similar effects can be shown for the case of DARA utility (Figures 2.8 (top) and 2.8 

(bottom)). Since risk aversion is not a constant parameter with DARA, we vary the level of the 

parameter 𝛽 instead. Parameter 𝛽 impacts the joint marginal productivity of presuppression and 

suppression efforts (see Eq. 3.6). In Figure 2.8 (top), the marginal productivity is lower (𝛽 = 2), 

whereas in Figure 2.8 (bottom), it is higher (𝛽 = 3.75). With higher marginal productivity, the 

skewness of the net return distribution increases. An increase in the parameter 𝛽 raises the 

expected net returns, lowers the variance of possible outcomes through risk aversion, and 

increases the skewness of the net return distribution through increases in the right-tailed 

skewness of 𝑉. Hence, improvements in the total productivity of fire management effort yields 

better outcomes in the sense that the left-tail (catastrophic) risks are reduced in likelihood.  
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Figure 2.8 - Distribution of Net Returns in Sequential Fire Management Game (DARA) 
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2.3.5. Discussion and Conclusion 
Deviations of fire management allocations from the socially efficient allocation are often 

interpreted as a result of some form of decision bias or “satisficing” behavior (Taynor et al., 

1990; Maguire and Albright, 2005; Wilson et al., 2011; Wibbenmeyer et al., 2013; Holmes and 

Calkin, 2013; Thompson et al., 2017). Satisficing refers to any decision-maker’s acceptance of a 

suboptimal solution to their own decision problem when the computational or cognitive search 

cost required to find a globally optimal solution is too great given the time available to make a 

decision. Whereas a satisficing decision-maker may not know all of the parameters of the 

function that characterize their cost function or their cost of risk, a risk averse individual acts as 

if they know these parameters and requests suppression resources with this knowledge to 

maximize risk adjusted net benefits. The sequential model with uncertainty and risk averse 

incident managers is shown here to generate a similar shift in a fire program’s expenditure shares 

as in the case where incident managers simply displace the costs or satisfice (Rossi and Kuusela, 

2019). This result suggests that observed increases in suppression’s share of fire management 

budgets can be interpreted to arise from either a rational response to uncertainty or from a 

display of bounded rationality whereby some acceptable level of suppression costs above the true 

level is admissible in a complex, time-pressured decision environment. One or more non-neutral 

attitudes towards risk in the second stage decision problem of the sequential model can impact 

suppression’s expenditure allocation by raising the demand for suppression and indirectly 

influencing the administrator’s choice of pre-suppression effort. This theoretical result suggests 

that further empirical modeling is needed to determine if manager-level differences in 

suppression demand are due to different types of risk attitudes, and to measure the impact of risk 

attitudes on observed budget allocations. Knowledge of this information may be useful for 

informing future budgeting or contracting decisions. 
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The potential implications of fragmented budgeting in the microeconomic model arise 

through the strategic interaction in the decision structure by introducing a leader and a follower 

with different objectives. The sequential equilibrium in this paper is used to show that risk 

aversion can potentially have an opposite effect on suppression expenditures and presuppression 

expenditures in the fire program, in contrast to a unified fire budgeting program where the 

representative decision-maker of the organization is either risk neutral (the benchmark case) or 

risk averse. Because of strategic interaction in the fragmented budgeting outcome, pre-

suppression effort can actually be decreasing in higher levels of risk aversion while suppression 

effort increases. Since we do not know much about the risk preferences of administrators and it 

is convention to formulate public fire budgeting problems using a risk neutral planner (Rideout et 

al., 2008), our view is that a risk neutral first stage and a risk-averse second stage depicts the 

current institutional structure of wildfire program budgeting and reflects recent empirical 

literature. The sequential structure of the model thus provides a useful theory for explaining why 

pre-suppression budgets may be stagnant or falling as suppression budgets are rising.  

 To simplify the analysis, our model assumes two homogenous inputs. In reality, both 

inputs would be better modeled as multidimensional vectors that represent a rich set of 

alternatives that managers in fire organizations have access to (such as hand crews, strike team 

leaders, bull dozers, fire engines, and air tankers). There are three alternative strategies to a “full 

suppression” response, including strategies that seek to “confine” a fire to a defined area, 

strategies that engage in “point protection” of homes or other values at risk, and strategies that 

only “monitor” the behavior of a burning wildfire. Our model suggests that incident managers 

are more likely to engage in aggressive suppression strategies like “full suppression” when fires 

occur in close proximity to values at risk (e.g. WUI) where the effect of more aggressive 
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strategies increases the skewness of the benefit distribution (or equivalently decreases the 

skewness of the NVC distribution). At greater distances from these areas, our model suggests 

that more aggressive suppression choices limit the upside potential for wildfires to generate 

resource benefits. Our model predicts that in such cases, “wildfire monitoring” strategies are 

more likely adopted by the representative downside risk averse incident manager. Testing this 

hypothesis with statistical methods seems to be an important direction for future research. 

One important extension of the sequential model which is not presented here may be the 

effect of uncertainty over critical parameter values in the second-stage problem. This extension 

would relax the assumption of complete information in the sequential game and allow the 

administrator in the first stage to maintain or develop some expectation about the incident 

manager’s risk attitudes.  This extension would lead naturally to a related discussion about 

optimal mechanism design. In cases where uncertainty over characteristics of the incident 

manager are constraining the fire program from attaining a socially efficient allocation of fire 

management effort, an optimally designed contract can be implemented between the 

administrator and the incident manager to ensure compliance with the overall program objective 

to maximize expected net social returns. 

The microeconomic framework presented in this paper represents a type of natural 

disaster management problem where budgeting for program components is fragmented. While 

the framework is potentially generalizable, precaution should be taken when applying the 

sequential wildfire economics model to other disaster management settings. Specifically, the 

model may not be generalizable to a circumstance where fragmented budgeting does not persist 

across precautionary and reactionary disaster management efforts. Fragmented budgeting can 

create efficiency problems by treating public budgets as common pool resources (Von Hagen, 
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2007; Raudla, 2014), but they may not be present in all fiscal policy settings. Other agencies may 

also have different procedures for budgeting (they may not contract out any portion of their 

discretionary appropriations to incident management nor may they have access to emergency 

funding sources when initial appropriations are exhausted). It is also possible that other 

contracted incident managers display less risk aversion or are tied to a contract that dictates a 

longer-term management perspective. In these cases, it is less likely that the objectives of the 

public agency and the contracted incident manager diverge from one another. These special 

circumstances (and maybe others) would be important considerations before any attempt is made 

to generalize the microeconomic model presented in this paper.    

The sequential model can, however, provide several important explanations for current 

patterns of observed fire management behavior. The model suggests that when fires occur near 

high-valued developments or across fire-sensitive ecosystems, rational incident management 

under uncertainty entails a full suppression strategy and a greater demand for suppression effort. 

The consequence is lower overall returns as agency demand for pre-suppression effort falls to 

accommodate the larger expenditures on suppression. Alternatively, fires burning farther from 

high-valued developments or across fire-dependent ecosystems can induce an alternative type of 

suppression response. In these cases, rational incident management under uncertainty may 

involve allowing fires to burn to achieve resource benefits. In both cases, management choices 

can be driven by the risk averse attitudes of incident managers. It is this aversion to risk that can 

cause incident managers to demand greater suppression effort when downside exposure is 

relatively larger (payoffs skewed left) and reduce suppression effort when upside exposure is 

relatively larger (payoffs are skewed right). 
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The sequential framework also provides several insights for the design of fire 

management policy and an explanation for the tendency for suppression to encompass greater 

proportions of land management budgets. Specifically, the sequential model suggests that when 

incident managers and land management agencies do not face incentives to budget for pre-

suppression and suppression simultaneously, then the resulting allocation of fire management 

effort will be inefficient, on average, when one or more managers in the organization are averse 

to risk. This stresses an important role for cooperation between agency administrators and 

incident managers in the decision-making process of the fire management organization if risk is 

of no concern and the goal is to maximize expected net social value of the program over time. 

Currently, the agency objectives are already stressing the importance of further increasing 

cooperation so that incident management is more aligned with overall agency goals (Jewell and 

Vilsack, 2014). While our modeling results provide useful theoretical support for such planning 

activities, the actual determination of the socially efficient mix of presuppression and 

suppression expenditures is an empirical question and beyond the scope of the current paper. 

Our results suggest that if fragmented budgeting persists and the risk attitudes of 

managers are not identical across different stages of the budgeting decision, then the “longrun” 

social optimum will not be attainable. When risk attitudes are not aligned, then the objectives of 

a public fire management agency tasked with a “long-run” policy objective are likely to diverge 

from those of a contracted incident manager displaying risk aversion during the “short run” 

management of an unplanned fire event. This short-run structure of the second stage problem is 

driven by the property that pre-suppression effort is held fixed (since annual budgets are pre-

determined) while suppression effort is allowed to vary when additional reserve funding is 

released throughout the fiscal year. Enabling the use of reserve funding from the Federal 
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Emergency Management Agency, or by appropriating additional reserve funds as part of the 

recently passed Consolidated Appropriations Act (H.R. 1625), is unlikely to re-align these 

objectives and may cause them to deviate further if risk attitudes are not aligned across stages of 

the budgeting decision. 
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Appendix A: Proof of Proposition 1 
Part a) 

The total derivative of the first-order condition (2) (while holding the level of pre-suppression 

constant), yields: 

𝜕𝑆

𝜕𝑟
[
𝜕2𝜇

𝜕𝑆2
−

𝑟

2
(

𝜕2𝜈
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) +
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6
(
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1
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(
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𝜕𝑆
) +

𝑟

3
(

𝜕𝜑

𝜕𝑆
) = 0. 

(A.1) 

Rearranging yields the partial effect of interest: 

𝜕𝑆
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 . 

(A.2) 

The denominator of (A.2) is a positive multiple of the second-order partial of incident manager’s 

objective and is negative by assumption of a maximum of (1). The sign of 
𝜕𝑆

𝜕𝑟
 thus depends on the 

relative magnitude of the partial effects in the numerator of (A.2). We have assumed that 
𝜕𝜈

𝜕𝑆
< 0, 

thus (A.2) is unambiguously positive whenever (
𝜕𝜑

𝜕𝑆
) > 0. However, when (
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) < 0,the sign of  
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 will still be positive whenever 2𝑟 (
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)| but will be negative if 2𝑟 (

𝜕𝜑

𝜕𝑆
) < |3 (
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𝜕𝑆
)|. 

 

Part b) 

The effect of pre-suppression on suppression response is determined by 
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The denominator is negative by the assumption that the second order condition holds. Hence, if 

the numerator is positive, then the sign of the effect is positive. 

 

Part c) 

The pre-suppression stage first order condition is  

𝜕𝜇

𝜕𝑃
+

𝜕𝜇

𝜕𝑆
(

𝜕𝑆

𝜕𝑃
) − 𝑊𝑃 − 𝑊𝑆 (

𝜕𝑆

𝜕𝑃
) = 0, 

where 𝜇 = 𝐸[𝑉(𝑃, 𝑆, 𝜃)] and 𝑆 = 𝑆(𝑃, 𝑊𝑆, 𝑟, 𝝎). 

The effect of risk aversion parameter on pre-suppression can then be determined by the 

expression: 
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(A.4) 

The denominator is the second-order condition of the first-stage problem, which is negative by 

assumption. Hence when the numerator is positive, the effect of risk aversion on pre-suppression 

is positive. Suppose that we allow 2𝑟 (
𝜕𝜑

𝜕𝑆
) > |3 (

𝜕𝜈

𝜕𝑆
)| so that 

𝜕𝑆

𝜕𝑟
> 0 and we let (

𝜕𝑆

𝜕𝑃
) > 0 to 

reflect complementarity. Then the numerator of (A.4) will be positive when either: 
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(A.7) 

When the numerator is negative, as is true whenever any of the conditions (A.5) to (A.7) are 

violated, then the partial effect 
𝜕𝑃

𝜕𝑟
 is negative. ∎  
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Appendix B: Proof of Proposition 2 
Assume a symmetric distribution around the mean value (i.e. no skewness). The unified problem 

can then be written as 

                                                               max
𝑃,𝑆

{𝜇 −
𝜌

2
𝜈 − 𝑊𝑃𝑃 − 𝑊𝑆𝑆}.                                          (𝐵. 1) 

We will use subscripts to denote partial derivatives (but 𝑊𝑃 and 𝑊𝑆 are still constant unit prices). 

The F.O.C. for the unified problem are: 

                                                       𝜇𝑃 −
𝜌

2
𝜈𝑃 − 𝑊𝑃 = 0                                                            

                                                           𝜇𝑆 −
𝜌

2
𝜈𝑆 − 𝑊𝑆 = 0.                                                   (𝐵. 2) 

Notice that in each condition, since we assume both 𝜈𝑃 < 0 and 𝜈𝑆 < 0, increasing levels of 

overall risk aversion in the organization, 𝜌, will lower the effective marginal cost of fire 

management effort. By totally differentiating (B.2) w.r.t 𝜌, we arrive at the following 

comparative statics: 
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1
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𝜌
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𝜌
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                                       𝑆𝜌
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1
2 𝜈𝑃𝑃 (𝜇𝑆𝑃 −

𝜌
2 𝜈𝑆𝑃) −

1
2 𝜈𝑆𝑆 (𝜇𝑃𝑃 −

𝜌
2 𝜈𝑃𝑃)

(𝜇𝑃𝑃 −
𝜌
2 𝜈𝑃𝑃) (𝜇𝑆𝑆 −

𝜌
2 𝜈𝑆𝑆) − [𝜇𝑃𝑆 −

𝜌
2 𝜈𝑃𝑆]

2                              (𝐵. 3)  

 

The denominators in (B.3) must be positive since we assume the presence of an interior solution. 

Hence, both input responses will be positive if 𝜈𝑆𝑆 > 0, 𝜈𝑃𝑃 > 0, 𝜈𝑃𝑆 < 0 and  𝜇𝑃𝑃 < 0, 𝜇𝑆𝑆 <

0, 𝜇𝑃𝑆 > 0. The latter set of assumptions pertains to the NVC function. The first set of 
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assumptions states that both pre-suppression and suppression decrease the variance at a 

decreasing rate and that the two efforts are jointly productive in decreasing the variance. 
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Appendix C: Show expressions for higher order moments of the net return distribution 
Part a) 

The variance of net value change is as expressed in equation (8). With a fire management 

technology of the Cobb-Douglas form and a multiplicative risk parameter with mean 1, we can 

find an expression for the second central moment of the return distribution. We seek the variance 

of 𝑉(𝑃, 𝑆, 𝜃) 

𝜈 = var(𝜃(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)) 

Note that the production relation 𝛽𝑃𝛾1𝑆𝛾2 − 𝛼 is deterministic while the random variable 𝜃 is the 

multiplicative risk parameter with mean 𝜇𝜃 = 1 and unspecified variance 𝜎𝜃
2. Using a well-

known property of the variance operator, we can rewrite the above as: 

𝜈 = var(𝜃)(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)2 

Or:  

𝜈 = {E[θ2] − (𝐸[𝜃])2}(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)2 

Notice that (𝐸[𝜃])2 = 1 and that the second central moment of 𝜃 is E[θ2] = 𝜎𝜃
2. Therefore, the 

variance of net returns is a deterministic function of the standard deviation of 𝜃: 

𝜈 = (𝜎𝜃
2 − 1)(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)2 

Which is equation (8).  
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Part b) 

The skewness of net value change is as expressed in equation (9). With a fire management 

technology of the Cobb-Douglas form and a multiplicative risk parameter with mean 1, we can 

find an expression for the third central moment of the return distribution. As derived, the 

skewness of 𝑉(𝑃, 𝑆, 𝜃) is defined as: 

𝜑 = skew(𝜃(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)) 

Separating out the deterministic production relationship gives: 

𝜑 = skew(𝜃)(𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3 

Or: 

𝜑 = E[(𝜃 − 𝜇𝜃)3](𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3 

Factor and simplify: 

𝜑 = E[(𝜃 − 𝜇𝜃)(𝜃 − 𝜇𝜃)(𝜃 − 𝜇𝜃)](𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3 

𝜑 = {E[𝜃3] − 3E[𝜃2] + 3E[𝜃] − 1} (𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3 

Note that the first central moment of 𝜃 is E[𝜃] = 1. The second central moment of 𝜃 is E[θ2] =

𝜎𝜃
2. The third central moment of 𝜃 is E[𝜃3] = 𝜎𝜃

3. Therefore, the skewness of net returns is a 

deterministic function of the standard deviation of 𝜃 and the skewness of 𝜃: 

𝜑 = {𝜎𝜃
3 − 3𝜎𝜃

2 + 2} (𝛽𝑃𝛾1𝑆𝛾2 − 𝛼)3 

Which is equation (9). Notice that with a symmetric distribution of the random parameter 𝜃 

centered around a mean of 1, we have both 𝜎𝜃
3 = 0 and 𝜎𝜃

2 = 2/3, so that 𝜑 = 0. This case can 

be true for a normal density function 𝑓(𝜃).  
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3.1. Introduction 
Forests in the Pacific Northwest are highly productive both as sources of timber supply 

and for their potential to capture and store carbon (Kline et al., 2016; Diaz et al., 2018). Some of 

the most productive areas are privately owned, either by industry or family owners. Emerging 

markets for carbon offset credits are one mechanism that landowners in this region can utilize to 

receive compensation for carbon storage (Kline et al., 2009; Latta et al., 2016). For example, 

landowners in Oregon are currently eligible to sell offset credits as part of California’s regional 

cap-and-trade program. Several projects have recently been approved, such as Green Diamond’s 

carbon offset project which covers 600,000 acres across southern Oregon.13 Offset projects in the 

state are currently underway in Clatsop, Multnomah, Jefferson, and Klamath counties (Burtaw et 

al., 2019). 

There is growing interest in enrolling more forests in the Pacific Northwest into a carbon 

offset credit program (Latta et al. 2016). Landowners can enroll their land into an offset program 

through “Improved Forest Management” actions which can entail a commitment to increase 

forest rotation ages beyond the length they would have planned in the absence of an offset 

program (CARB, 2011; ORS, 2020). In return, landowners are eligible to sell offset credits to 

regulated entities in a regional offset auction, such as the California-Quebec joint auction 

administered by the California Air Resources Board.  

However, these same forests are also subject to a risk of wildfire disturbances which may 

lead to unintentional releases of carbon and losses in carbon storage (Law and Waring, 2015). 

From 1980 to 2019, approximately 17% of total burned area across Oregon and Washington has 

affected private forestland, compared to 28% in 2020 alone (Campbell Global, 2020). The Labor 

 
13 https://www.greendiamond.com/recreation/oregon-lands/ 
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Day Fires of 2020 impacted over one million acres of forestland in Western Oregon, of which 

about 40% was estimated to be private timberland. Such disturbances and the increasing risk of 

disturbances may also jeopardize the effectiveness of carbon offset programs that demand longer 

rotations (Kuusela and Lintunen, 2020).  

To mitigate wildfire risk exposure, both federal and state forestry agencies manage 

wildfire ignitions and spread patterns at the landscape scale through annual investments in 

wildfire suppression programs and projects that remove hazardous fuels (Crowley et al., 2009; 

Lueck and Yoder, 2015). Both suppression and pre-fire hazardous fuels management undertaken 

by public agencies have been modeled as inputs which serve to reduce parcel-level burn 

probability (Rideout et al., 2008). Also, fuels management activities undertaken by private 

landowners at the stand level act as a fire prevention measure that can decrease the frequency of 

disturbances experienced by the stand and the neighboring stands (Amacher et al., 2005; 

Konoshima et al., 2008). Research has also found that increases in suppression program budgets 

can significantly reduce parcel-level fire frequency by improving initial attack response and the 

successful containment of large fires (Lee et al., 2013). Higher initial attack success rates can 

lower parcel-level burn probability estimates via reductions in crew response times (Rideout et 

al., 2016; Reimer et al., 2019).14 Therefore, effective risk mitigation efforts on private lands 

encompass both public suppression investments and private or public fuels management, both of 

which serve to decrease the frequency of disturbances experienced by an acre of private 

forestland.  

 
14 Maintaining an “initial attack success” rate above 98 percent is a stated federal policy objective (USFS, 2007). In 
fiscal year 2018, 97 percent of forest fires on U.S. Forest Service land were contained before reaching 300 acres in 
size (USFS, 2019). Initial attack success is also a stated policy objective of state forestry agencies. In 2017, the 
Oregon Department of Forestry extinguished 94 percent of wildfires before they reached 10 acres in size (ODF, 
2017). 
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Federal land management programs actively fund both suppression and hazardous fuels 

management programs on federal lands (Gebert et al., 2008). However, at the state level, the 

main focus of wildfire management programs has traditionally been the suppression and 

containment of fires on private forestlands (ODF, 2021). For example, the Oregon Department of 

Forestry (ODF) is responsible for suppressing wildfires on private lands in Oregon. Its 

expenditures on fire suppression activities are financed in part through forest taxes which include 

both unit taxes on harvest volume and acre-based assessments. Additional appropriations come 

from Oregon’s General Fund. In the 2021-2023 biennial budget, $191 million was appropriated 

toward the agency’s fire protection program, 47.6 percent of which was allocated from the state’s 

General Fund and 9.7 percent of which was provided through federal funding (ODF, 2021). The 

remaining 42.3 percent of the biennial allocation was raised through forest-based taxes, including 

emergency sources provided by the Oregon Forest Land Protection Fund and Landowner 

Assessed Fees (ODF, 2021). Given this funding structure, the risk of devastating wildfires on 

private lands depends partly on the level of taxes collected from private landowners since the tax 

receipts are used to fund fire preparedness and initial- and extended-attack suppression response. 

However, it is not well understood how such tax schemes that fund risk mitigation programs 

should be designed especially when potential carbon policies would at the same time incentivize 

longer rotations. 

The purpose of our research is to analyze the optimal design of a state-level tax program 

that funds risk mitigation activities on private lands when the carbon stored in forests and wood 

products has value. Following the literature on the design of forest tax policy, we use a stand 

level model of an even-aged forest to investigate the effects of taxation (e.g. Koskela and 

Ollikainen, 2003; Amacher et al., 2009, Ch. 5). We restrict our attention to two tax instruments 
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utilized in Oregon: 1) a unit tax on harvest (yield tax), and 2) an annual acre-based assessment. 

In our model, the social planner (a state agency) is modeled as a Stackelberg leader that commits 

to a time-invariant tax policy when deciding both tax rates and annual expenditures on risk 

mitigation.15 In the second stage of the model, a private forestland owner responds with their 

choice of the optimal harvest rotation age. Following Koskela and Ollikainen (2003), we assume 

the existence of a steady-state, and so transitional dynamics of the optimal policy rule are 

ignored. A quantitative assessment of the optimal tax policy is conducted using a parameterized 

timber yield function for Western Oregon Douglas-fir (Pseudotsuga menziesii) and a production 

function that describes the transformation of risk mitigation expenditures into reductions in the 

fire arrival rate.  

Prior research on stand-level carbon and timber management under disturbance risk has 

used the framework of a representative timberland owner to understand the interactions between 

fire risk management and carbon sequestration capacity (Daigneault et al., 2010). Daigneault et 

al. (2010) use a numerical dynamic programming model to show that the introduction of a 

carbon market can induce more frequent management of hazardous fuels on the forest stand in 

order to better secure older growth carbon revenues. By combining the optimal rotation models 

analyzed by Reed (1984) and van Kooten et al. (1995), Ekholm (2020) examines the impact 

wildfire risk on rotation choice when forest carbon has value. This leads to a model of multiple-

use stand management subject to fire risk which is similar to the models analyzed by Englin et al. 

(2000) and which is based on the Faustmann approach to forest valuation (Samuelson 1976). 

 
15 The two-stage game-theoretic framework of the forest taxation problem in this paper further avoids “time 
inconsistency” problems that may be associated with a discretionary tax policy developed using optimal control 
theory (Kydland and Prescott, 1977). 
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In our study, we also use the optimal rotation framework presented by Ekholm (2020). 

However, we add the additional complication that the fire arrival rate is dependent on public 

investment in suppression and this investment is explicitly financed through forest taxation. This 

linkage between forest taxation and public investment in suppression occurs through an 

intertemporal public budget constraint but has not yet been considered in the forest taxation 

literature. In contrast to the model presented by Crowley et al. (2009), we model the planner’s 

suppression expenditures as having an influence on the arrival rate of an acre of forestland rather 

than on the stand’s salvage possibilities. This allows us to capture the effects of a reduction in 

spread probability that accompanies an annually active suppression program. 

The impacts of different tax instruments on management choices have been studied in 

several papers using the optimal rotation framework (e.g. Klemperer, 1976; Chang, 1982; 1983; 

Amacher et al., 1991). The findings from these studies have made a general distinction between 

two categories of taxes: distortionary and neutral taxes. Neutral taxes (e.g. acre-based 

assessments) have no impact on the optimal decision made by the private landowner, whereas 

distortionary taxes (e.g. yield taxes) cause landowners to change management choices compared 

to the no-tax scenario. While knowing the responses in management choices, such as the rotation 

age, induced by taxes is useful, state agencies still need to know what instruments are best on 

efficiency grounds and what level of taxes should be set. Some of the important determinants of 

this problem are whether the government faces binding revenue constraints and whether the 

private landowners generate public goods valued by society (Amacher et al., 2009, Ch. 5).16 In 

the absence of externalities, a government seeking to raise revenue from forest taxes should only 

 
16 Taxation schemes are said to be “first-best” if they are used align the decisions of the landowners with the 
socially optimal decisions. Additionally, if neutral taxes can be used to satisfy potential revenue constraints, the 
scheme is first-best. If neutral taxes are not available and distortionary taxes must be levied to meet an exogenous 
public revenue constraint, the tax scheme is said to be “second-best.” 
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use neutral taxes as suggested by the Ramsey rule (Gamponia and Mendelsohn, 1987). However, 

when externalities are present together with revenue constraints, the government may need to 

also resort to the use of distortionary taxes (Koskela and Ollikainen, 2003).  

Despite these well-established results on optimal forest taxation, there has been few 

attempts in the literature to understand the properties of first- and second-best taxation schemes 

on landowner management decisions and forestland values when disturbance risk is present. One 

exception is the work of Alvarez and Koskela (2007) who examine the effects of yield taxes and 

lump-sum taxation schemes on rotation length when landowners are risk neutral or risk averse in 

the presence of stochastic forest values. They find that these taxes raise the optimal harvesting 

threshold, leading to longer rotations, regardless of risk preferences. However, their research has 

left unaddressed the influence of a planner’s provision of risk reduction and its impact on a 

private landowner’s disturbance risk. Our results demonstrate that the presence of endogenous 

risk in the optimal forest tax problem has implications for the choice of the tax instrument. 

Namely, an endogenous fire risk can alter the optimal second-best tax policy depending on 

whether the benefits of carbon sequestration are internalized by private landowners or not.  

We find that acre-based assessments are still neutral from the perspective of the 

landowner. However, when receipts from acre-based assessments are raised for the purpose of 

funding risk mitigation, they will indirectly influence rotation lengths. We also show that the 

landowner’s inability to internalize the social benefits of carbon sequestration can lead the 

planner to instead prescribe harvest taxes in lieu of the acre-based assessment. However, the 

capacity for the harvest tax to serve as a corrective (Pigouvian) instrument is limited by its small 

impact on net stumpage value. When fire risk is present, but carbon sequestration benefits are 

internalized by the landowner, the acre-based assessment remains the preferred instrument and 
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harvest taxes should be set to zero from a purely efficiency perspective. The optimal size of these 

taxes is sensitive to the carbon price, carbon storage parameters, and on the effectiveness of the 

planner’s expenditures on risk mitigation in terms of its ability to reduce the frequency of fire 

disturbances experienced by a private landowner.    

The remainder of this paper is organized as follows. In the next section, we develop a two-

stage model where in the second stage, a landowner subject to wildfire risk and carbon values 

chooses the optimal rotation age. In the first stage, the planner optimizes the social welfare by 

choosing the levels of the tax instruments subject to a budget constraint that determines the feasible 

level of expenditures on risk reduction activities. Section 3 defines the model parameters used for 

the quantitative analysis of the model. Section 4 presents the results and Section 5 provides a 

discussion and conclusions.  

 

3.2. Model 

3.2.1. Landowner’s problem 

A representative landowner manages an even-aged stand of trees. The per-unit volume 

stumpage value is the delivered log price (𝑝) net of harvesting costs (𝑐ℎ) and the per-unit volume 

harvest tax (𝜏). The function 𝐹(𝑇) defines the volume of merchantable timber available for harvest 

at any given age 𝑇. The timber yield function takes the standard sigmoid shape.17 The net revenue 

from harvest at age 𝑇 is defined as: 

                                                  𝑅(𝑇) = (𝑝 − 𝑐ℎ − 𝜏)𝐹(𝑇).                                         (1) 

The real discount rate is defined as 𝑟 and the stand establishment cost by 𝑐0. 

 
17 The yield function is assumed to have the standard sigmoid shape with 𝐹′(𝑇) > 0, 𝐹′′(𝑇) > 0 before an 
inflection point, and 𝐹′(𝑇) > 0, 𝐹′′(𝑇) < 0 after an inflection point. 
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The stand is subject to a wildfire risk. The average annual arrival rate is denoted by 𝜆. 

Following Reed (1984), the fire arrival is modeled using a homogenous Poisson process. We 

furthermore assume that the average arrival rate is a strictly decreasing function of the annual level 

of investment in risk mitigation, 𝜆′(𝑦) < 0, (Reed, 1989). Mitigation effort, 𝑦, is broadly defined 

as investment into fire preparedness, “initial attack” or “extended attack” wildfire suppression 

response which serves to reduce fire spread rates. Let the random variable 𝑋 denote the time 

between each forest growth cycle, either due to a clearcut harvest or a wildfire disturbance. The 

probability of a fire disturbance occurring before the harvest age is defined as Pr[𝑋 < 𝑇] = 1 −

𝑒−𝑇𝜆(𝑦), while the probability of the stand reaching the rotation age before a disturbance occurs is 

Pr[𝑋 = 𝑇] = 𝑒−𝑇𝜆(𝑦). To simplify the model, we assume that there is no salvage harvesting.18 

We follow the approach taken by van Kooten et al. (1995) to define the payments for 

carbon released and stored during the rotation. Let 𝑝𝑐 denote the price of carbon, 𝑘 be the carbon 

dioxide sequestered per unit volume of timber, and 𝜂 represent the portion of the stand’s carbon 

content released during a fire.19 When a fire occurs before the chosen harvest age, 𝑇, the net future 

revenue is given by: 

𝑌1 = 𝑒𝑟𝑋𝑝𝑐𝑘 ∫ 𝐹′(𝑥)𝑒−𝑟𝑥𝑑𝑥

𝑋

0

− 𝑝𝑐𝑘𝜂𝐹(𝑋) − 𝑐0𝑒𝑟𝑋. 

(2) 

The first term in (2) represents the compounded carbon payments up to age 𝑋. The third term, 

𝑝𝑐𝑘𝜂𝐹(𝑋), represents the cost of carbon released from a fire disturbance. The term 𝑐0𝑒𝑟𝑋 gives 

 
18 Salvage harvesting can be incorporated as in Reed (1984) by decreasing the cost of a destructive event. Including 
the possibility of salvage harvesting will not qualitatively change our results.  
19 Below-ground carbon can be retained in soil following a fire disturbance and some above-ground carbon may be 
retained following a low- to mid-severity fire.  
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the compounded cost of stand establishment. When the harvest age arrives before a fire destroys 

the standing timber stock, the net future revenues are given by: 

𝑌2 = 𝑅(𝑇) + 𝑒𝑟𝑇𝑝𝑐𝑘 ∫ 𝐹′(𝑡)𝑒−𝑟𝑡𝑑𝑡

𝑇

0

− 𝑝𝑐𝑘(1 − 𝜃)𝐹(𝑇) − 𝑐0𝑒𝑟𝑇 .       

(3) 

At the clearcut age, a fraction 𝜃 of the carbon content on the stand is sequestered in long-lived 

wood products.20 The rest of the carbon is released at the time of the clearcut.  

To summarize the random payoffs, we have: 

𝑌 = {
𝑌1           𝑖𝑓 𝑋 < 𝑇
𝑌2           𝑖𝑓 𝑋 = 𝑇

 

As shown by Reed (1984), a risk neutral landowner’s objective function can be written as:  

                                                          𝑉(𝑇) =
E[𝑒−𝑟𝑋𝑌]

E[1 − 𝑒−𝑟𝑋]
−

𝜔

𝑟
.                                                  (4) 

The last term with parameter 𝜔 represents the present value of annual per-acre tax expenses. For 

a given choice of 𝑇, Eq. (4) gives the expected value of the bare land conditional on the set of 

parameters that are exogenous from the perspective of the landowner, 𝛀 =

(𝑝, 𝑐ℎ, 𝑝𝑐, 𝑦, 𝜏, 𝜔, 𝑐0, 𝐶, 𝑘, 𝜃, 𝜂). A risk neutral landowner’s objective is to maximize the 

expression in (4) by choosing the optimal rotation age.21 The first order condition of the 

objective function (4) defines the optimal rotation age as a function of exogenous parameters 

𝑇∗(𝛀). The second order condition for the maximum is assumed to hold.  

 
20 Long-lived wood products are those which do not decay before long-term use in construction, such as framing 
lumber, plywood, or structural wood panels manufactured from softwood timber. 
21 Using the expressions in (2) and (3) and the Poisson process probabilities, the full expression for the objective 
function in (4), is derived in Appendix A.  
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Most of the comparative statics of the optimal solution are in general well known (e.g. 

Chang, 1982; Amacher et al., 2009). For example, a higher harvest tax will lengthen the rotation 

(
𝜕𝑇∗

𝜕𝜏
> 0) but acre-based site value taxes are neutral, (

𝜕𝑇∗

𝜕𝜔
= 0).  Higher timber prices will 

shorten the rotation age (
𝜕𝑇∗

𝜕𝑝
< 0) while higher establishment costs will lengthen it (

𝜕𝑇∗

𝜕𝑐0
> 0). 

Risk raises the risk-adjusted discount rate (Reed, 1984; Insley and Lei, 2007), and so lowers the 

rotation age.  Greater investment in fire protection (𝑦) will raise the rotation age (
𝜕𝑇∗

𝜕𝑦
> 0) since 

by assumption, risk is also reduced (see Reed, 1989). A larger fraction of carbon stored in wood 

products will shorten the rotation age (
𝜕𝑇∗

𝜕𝜃
< 0) (van Kooten et al., 1995). A larger carbon price 

(𝑝𝑐) and a larger quantity of carbon sequestered per unit of merchantable volume (𝑘) will raise 

the landowner’s rotation age (
𝜕𝑇∗

𝜕𝑝𝑐
> 0;

𝜕𝑇∗

𝜕𝑘
< 0), whereas a greater percentage of carbon released 

from a fire will shorten the rotation age (
𝜕𝑇∗

𝜕𝜂
< 0). 

 

3.2.2. Planner’s problem 

The planner uses either a harvest tax or an area-based assessment to fund risk mitigation 

expenditures (or both). For a given rotation age 𝑇, the planner’s intertemporal budget constraint 

can be written as: 

                                   
(𝑟 + 𝜆(𝑦))𝑒−(𝑟+𝜆(𝑦))𝑇𝜏𝐹(𝑇)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇)
+

𝜔

𝑟
=

𝑦

𝑟
+ 𝐺.                  (5) 

The first term on the left-hand side of (5) represents the present value of expected harvest tax 

receipts (see Appendix B). It is an expected value since the arrival of a fire event during any 

rotation also means that there are no harvest tax receipts from that rotation. Additionally, it is worth 

pointing out that larger harvest volumes, and hence longer rotations, translate to greater tax 
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receipts. The second term on the left-hand side is the present value of area-based assessments. The 

right hand side expresses all expenditures, including the present value of annual per acre risk 

mitigation expenditures (𝑦/𝑟) plus the present value of all other annual per-acre revenue 

requirements minus per-acre risk mitigation funding from non-forest tax sources (𝐺).22 The sum 

of these expected present value revenues (left-hand side of equation (5)) must equal the present 

value of annual expenditures (right-hand side of equation (5)).  

 The planner chooses the values of (𝜔, 𝜏, 𝑦) with knowledge of the landowner’s optimal 

response function 𝑇∗(𝛀). In other words, the planner acts as a Stackelberg leader. We assume that 

the planner’s objective function is aligned with the landowner’s objective but with the addition of 

the budget constraint. In its general form, the planner’s problem can be written as: 

max
𝜏≥0,𝜔≥0,𝑦≥0

𝑉(𝑇∗(𝛀))    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑞. (5). 

Additionally, the expected bare land value must be non-negative. Otherwise, forest ownership 

would be abandoned.  

Given the parameter values, the solutions to the planner’s problem provide information 

on the equilibrium productivity of the stand. One such measure is the expected long run timber 

supply under stochastic production, as defined by Reed (1984), which is given by: 

E[𝐹]

E[𝑋]
=

𝜆𝐹(𝑇∗(𝛀))

(1 − 𝑒−𝜆𝑇∗(𝛀))
. 

(6) 

Similarly, we can define the expected long run carbon uptake under stochastic production as 

E[𝐵]

E[𝑋]
=

𝜆𝑘 (𝐹(𝑇∗(𝛀)) + 𝜆 ∫ 𝑒−𝜆𝑥𝑑𝑥
𝑇∗(𝛀)

0
+ 𝐹′(𝑇∗(𝛀))𝑒−𝜆𝑇∗(𝛀))

(1 − 𝑒−𝜆𝑇∗(𝛀))
. 

 
22 See Appendix C. 
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(7) 

These measures of stand productivity can be solved under different combinations of the 

exogenous parameters 𝛀 to determine the effects of different parameters on timber and carbon 

productivity.  

Characterization of the solution to the planner’s problem is analytically difficult and hence 

we resort to examining numerical solutions. However, it is still worthwhile to examine and 

compare in detail three potential policy scenarios: one where only acre-based taxes are available 

to the planner, one where only yield taxes are available to the planner, and the case where both 

taxes are available. 

 

3.2.2.1. Case1: Acre-based assessment 

Suppose that only an area-based assessment is levied and there is no harvest tax (𝜔 ≥

0, 𝜏 = 0). The constraint (5) then defines the area assessment as a function of risk mitigation 

expenditures: 

𝜔 = 𝑦 + 𝑟𝐺. 

Using this relationship and the landowner’s response function 𝑇∗, the planner’s problem becomes: 

max
𝑦≥0

{
𝑟 + 𝜆(𝑦)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

{𝑒−(𝑟+𝜆(𝑦))𝑇∗
[(𝑝 − 𝑐ℎ)𝐹(𝑇∗) + 𝑝𝑐𝑘𝜃𝐹(𝑇∗)] − 𝑐0

+ 𝑟𝑝𝑐𝑘 [𝜆(𝑦) (∫ 𝑒−𝜆(𝑦)𝑥 (∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧
𝑥

0

) 𝑑𝑥
𝑇∗

0

+ ∫ (1 − 𝜂)𝑒−(𝑟+𝜆(𝑦))𝑥𝐹(𝑥)𝑑𝑥
𝑇∗

0

)

+ 𝑒−𝜆(𝑦)𝑇∗
∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧

𝑇∗

0

]} −
𝑦 + 𝑟𝐺

𝑟
}.             (8) 
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The planner’s solution to problem (8) is the per-acre expenditures on fire risk mitigation: 

𝑦∗(𝑝𝑐, 𝑇∗(𝛀)). An application of the implicit function theorem on the solution gives an expression 

for the total effect of carbon prices on the planner’s choice of the acre-based assessment: 

𝑑𝜔∗

𝑑𝑝𝑐
=  

𝜕𝜔∗

𝜕𝑦∗
[(

𝜕𝑦∗

𝜕𝑝𝑐
) + (

𝜕𝑦∗

𝜕𝑇∗
) (

𝜕𝑇∗

𝜕𝑝𝑐
)]. 

(9) 

The  first term in equation (9) is the direct effect on the planner’s tax policy from a change in the 

carbon price: 
𝜕𝜔∗

𝜕𝑦∗
(

𝜕𝑦∗

𝜕𝑝𝑐
). The second term in (9) is the indirect effect, arising from the planner’s 

reaction to the landowner’s best response to the price change: 
𝜕𝜔∗

𝜕𝑦∗ (
𝜕𝑦∗

𝜕𝑇∗) (
𝜕𝑇∗

𝜕𝑝𝑐
). The acre-based 

assessment required to finance the optimal expenditures defined by the solution to (8) is: 𝜔∗ =

𝑦∗(𝑝𝑐, 𝑇∗(𝛀)) + 𝑟𝐺. Therefore, 
𝜕𝜔∗

𝜕𝑦∗ = 1. However, since we do not know the signs of 
𝜕𝑦∗

𝜕𝑝𝑐
 or 

𝜕𝑦∗

𝜕𝑇∗, 

the sign of equation (9) is ambiguous. For plausible values of the model parameters, we expect to 

see the landowner’s rotation age induce greater mitigation effort (
𝜕𝑦∗

𝜕𝑇∗ > 0), since a longer rotation 

age enhances the value of land at risk of disturbance. Likewise, we expect 
𝜕𝑦∗

𝜕𝑝𝑐
> 0, so that the total 

effect will be positive. A positive relationship (
𝑑𝜔∗

𝑑𝑝𝑐
> 0) would suggest that an increase in carbon 

price would require the planner to raise acre-based assessments in order to finance greater 

expenditures on fire risk mitigation. Notice that when carbon sequestration benefits are not 

internalized by the landowner, then the indirect effect is 0. 

 

3.2.2.2. Case 2: Harvest tax 

Suppose now that only a harvest tax is levied and there is no area-based assessment (𝜔 =

0, 𝜏 ≥ 0). The constraint (5) then implicitly defines the harvest tax as a function of risk mitigation 
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expenditures: 𝜏∗ = 𝜏 (𝑦∗(𝑝𝑐, 𝑇∗(𝛀))). Using this constraint, equations (4) and (7), and the 

landowner’s response function 𝑇∗(𝛀), the planner’s problem becomes: 

max
𝑦≥0

{
𝑟 + 𝜆(𝑦)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

{𝑒−(𝑟+𝜆(𝑦))𝑇∗
[(𝑝 − 𝜏(𝑦) − 𝑐ℎ)𝐹(𝑇∗) + 𝑝𝑐𝑘𝜃𝐹(𝑇∗)] − 𝑐0

+ 𝑟𝑝𝑐𝑘 [𝜆(𝑦) (∫ 𝑒−𝜆(𝑦)𝑥 (∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧
𝑥

0

) 𝑑𝑥
𝑇∗

0

+ ∫ (1 − 𝜂)𝑒−(𝑟+𝜆(𝑦))𝑥𝐹(𝑥)𝑑𝑥
𝑇∗

0

)

+ 𝑒−𝜆(𝑦)𝑇∗
∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧

𝑇∗

0

]}}.       (10) 

Again, the planner’s policy rule is written as 𝑦∗(𝑝𝑐, 𝑇∗(𝛀)) and we seek to investigate the effects 

of carbon price on this policy. An application of the implicit function theorem on the solution gives 

an expression for the total effect of carbon prices on the planner’s choice of the acre-based 

assessment: 

𝑑𝜏∗

𝑑𝑝𝑐
=  

𝜕𝜏∗

𝜕𝑦∗
[(

𝜕𝑦∗

𝜕𝑝𝑐
) + (

𝜕𝑦∗

𝜕𝑇∗
) (

𝜕𝑇∗

𝜕𝑝𝑐
)]. 

(11) 

The direct effect 
𝜕𝜏∗

𝜕𝑦∗ (
𝜕𝑦∗

𝜕𝑝𝑐
) may be positive or negative, particularly since 𝜏 may be increasing or 

decreasing over different domains of 𝑦 (see Appendix B). The sign of the indirect effect is then 

also ambiguous:  
𝜕𝜏∗

𝜕𝑦∗
(

𝜕𝑦∗

𝜕𝑇∗
) (

𝜕𝑇∗

𝜕𝑝𝑐
) ⋚ 0. This tells us that the planner’s choice of the harvest tax may 

be larger or smaller with an increase in carbon prices. Hence if carbon prices increase annual 

expenditures, then the planner may increase or decrease harvest tax rates (
𝑑𝜏∗

𝑑𝑝𝑐
⋛ 0). Again, note 

that when carbon sequestration benefits are not internalized by the landowner, then the indirect 

effect is 0. 
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3.2.2.3. Case 3: Both tax instruments 

With both tax instruments available (𝜔 ≥ 0, 𝜏 ≥ 0), the planner’s problem can be solved 

using constrained optimization. The Lagrangian function for this problem is: 

𝐿(𝑦, 𝜔, 𝜏, Λ) =
𝑟 + 𝜆(𝑦)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

{𝑒−(𝑟+𝜆(𝑦))𝑇∗
[(𝑝 − 𝜏 − 𝑐ℎ)𝐹(𝑇∗) + 𝑝𝑐𝑘𝜃𝐹(𝑇∗)] − 𝑐0

+ 𝑟𝑝𝑐𝑘 [𝜆(𝑦) (∫ 𝑒−𝜆(𝑦)𝑥 (∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧
𝑥

0

) 𝑑𝑥
𝑇∗

0

+ ∫ (1 − 𝜂)𝑒−(𝑟+𝜆(𝑦))𝑥𝐹(𝑥)𝑑𝑥
𝑇∗

0

)

+ 𝑒−𝜆(𝑦)𝑇∗
∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧

𝑇∗

0

]} −
𝜔

𝑟
− Λ [𝐺 +

𝑦 − 𝜔

𝑟
− 𝜏 (

(𝑟 + 𝜆(𝑦))𝑒−(𝑟+𝜆(𝑦))𝐹(𝑇∗)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

)]        (12) 

With the following first-order conditions: 

𝜕𝐿

𝜕𝑦∗
=

𝜕𝐿

𝜕𝜔∗
=

𝜕𝐿

𝜕𝜏∗
=

𝜕𝐿

𝜕Λ∗
= 0. 

(13) 

In equation (12), variable Λ is the Lagrange multiplier associated with the constraint from 

equation (7). At the solution, Λ∗ gives the shadow price of an increase in tax revenues. Note that 

Λ∗ = 1 since the neutral area-based tax is available (Koskela and Ollikainen, 2003).23 The 

planner’s solution is a time-invariant commitment to a tax and spending program: (𝑦∗, 𝜔∗, 𝜏∗).  

 

3.3. Numerical Analysis  
This section outlines the chosen parameters, functional forms, and the computational 

approach used to solve a specific case of the two-stage model. We focus on parameters specific to 

the management of forestlands in Oregon’s western Cascade region. All parameters and functional 

forms used in the numerical exercise are displayed in Table 3.1.  

  

 
23 Additionally, non-negativity constraints should be included in the Lagrangian equation (10), but they have been 
excluded here to simplify the notation. 
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Table 3.1 - Parameters and Functional Forms used for Numerical Analysis 

 Exogenous Parameters Values 
𝑘 Tons of CO2 sequestered per MBF of timber volume 10.53 

𝜂 Fraction of stand’s carbon pool released during fire 𝜂 ∈ {0.22,1.00} 

𝜃 Fraction of carbon stored long-term in wood products 𝜃 ∈ {0.02,0.42} 

𝑎 First parameter of the timber yield equation 101.4019 

𝑏 Second parameter of the timber yield equation 0.0247 

𝑐 Third parameter of the timber yield equation 3.0 

𝛽 Factor productivity of fire suppression 0.005 

𝜌 Output elasticity of fire suppression  0.21 

𝑝 Douglas-fir sawlog delivered price ($/MBF) 796 

𝑐ℎ Cost of clearcut harvest, including hauling ($/MBF) 400 

𝑐0 Stand establishment costs ($/ac.) 210 

𝑟 Real discount rate 0.04 

𝐺 Planner’s budget constraint ($) −0.17/𝑟 

𝑝𝑐 Carbon credit price ($/ton) [0,30] 
   

 Planner’s Policy Instruments Domain 

𝑦 Annual expenditures on fire suppression ($/ac./year) [0,∞) 

𝜏 Unit tax on harvest ($/MBF) [0,∞) 

𝜔 Area-based tax used to fund fire suppression ($/ac./year) [0,∞) 

   

 Landowner’s Decision Variable Domain 

𝑇 Harvest rotation age or “period of production” (years) [0,∞) 

   

 Technological Relationships Range 

𝐹(𝑇) = 𝑎(1 − 𝑒−𝑏𝑇)
𝑐
 Timber yield (MBF/ac.) [0,∞) 

𝐵(𝑇) = 𝑘 ∫ 𝐹′(𝑡)𝑑𝑡

𝑇

0

. 
Carbon Sequestration (tons CO2/ac.) [0,∞) 

𝜆(𝑦) = 𝛽𝑦−𝜌
 Wildfire Arrival Rate  [0.001,0.03] 

   

 

3.3.1. Economic parameters 

We use price and cost information for delivered Douglas-fir logs, logging and hauling 

costs, and stand establishment costs reported by Diaz et al. (2018). The delivered log price is 

$796/MBF, the cost of harvesting and transportation $400/MBF, and the establishment cost is 

$200/acre. To represent the value of a ton of carbon, we choose a range of values that are aligned 

with the recent carbon offset credit prices sold in the California-Quebec joint auction. These values 
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range from $10 to $20 per ton of CO2 equivalent.24 We set the annual real discount rate to equal 

4 percent. 

In Oregon, a Forest Products Harvest Tax or “FPHT” (ORS 321.005-321.152) is levied as 

a unit tax on timber harvests and has been recently set at a rate of $4.13 per thousand board feet 

(MBF).25 Around 18 percent of the FPHT receipts are used to finance wildfire risk reduction 

programs in the state through the Oregon Forestland Protection Fund (OFLPF)26. The other 82 

percent of FPHT receipts are used to fund research, forestry education, and the administration of 

the Oregon Forest Practices Act. Approximately $12 million is raised annually from the FPHT 

(ODF, 2013), so an annual average of $9.84 million is raised from harvest taxes to fund non-fire 

suppression related public works. Area-based land taxes called “Fire Patrol Assessments” (ORS 

477.880 and ORS 477.295) are also used to fund initial attack fire suppression efforts and the 

OFLPF. The Fire Patrol Assessments are to be assessed as the maximum of either $0.6565 per acre 

of a taxable lot per year (Elwood et al., 2006) or a fixed amount of $18.75 per year for taxable lots 

smaller than 28.65 acres (Cook and Becker, 2017; Elwood et al., 2006). However, this rate depends 

on the fire protection district in which the forest parcel is assessed (Cook and Becker, 2017).27 Of 

these tax assessments, 100 percent of the tax receipts from Fire Patrol Assessments are allocated 

towards fire protection and suppression services. Additionally, an average of $3.61 per acre in 

property taxes are levied on forestlands in western Oregon (Elwood et al., 2006). Including the 

Forest Patrol Assessments, this gives an expected annual per-acre land tax rate of $4.31. 

 
24 https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program  
25 https://www.oregon.gov/DOR/programs/property/Pages/timber-rates-current.aspx 
26 https://www.oregon.gov/dor/programs/property/Pages/timber-tax.aspx  
27 An additional $0.05 per acre is charged for fire suppression services in Western Oregon (Cook and Becker, 2017). 

https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program
https://www.oregon.gov/DOR/programs/property/Pages/timber-rates-current.aspx
https://www.oregon.gov/dor/programs/property/Pages/timber-tax.aspx
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All other suppression expenditures on 16 million acres28 protected by the state of Oregon 

are funded from three other sources besides forest-based taxes: 1) the state’s General Fund, 2) a 

suppression cost insurance policy, and 3) federal grants from the Federal Emergency Management 

Agency (FEMA). From 2006 to 2015, Oregon’s General Tax Fund after insurance claims has 

covered an annual average of $4.28 million of state suppression expenditures (this excludes 

contributions from “base layer” funding from Forest Patrol Assessments and Forest Urban 

Interface Lands Assessments). Insurance claims collected through the state’s suppression cost 

insurance policy with Lloyd’s of London have covered an average of $5.0 million annually while 

premiums have averaged $1.35 million annually (Cook and Becker, 2017). Grants to suppress fires 

from FEMA have averaged $8.4 million annually over this same period (Cook and Becker, 2017). 

In total, fire suppression costs funded through non-forest tax sources (including insurance 

premiums) have been an average of $0.79 per acre per year. Given that $0.62 per acre per year is 

raised from harvest taxes to fund non-suppression related public works, the revenues raised from 

harvest taxes are less than suppression expenditures from non-forest tax sources, so we use a 

revenue requirement of -$0.17 per acre (the present value of this annual cost at a discount rate of 

4 percent is: 𝐺 = −4.3).  

 

3.3.2. Ecological parameters 

A sigmoid-shaped “von Bertalanfy” yield function 𝐹(𝑇)  is used to express the volume of 

merchantable Douglas-fir timber on per acre on a high-quality site in Western Oregon (Hashida 

and Lewis, 2019; Hudiburg et al., 2009). Coefficients provided by Hashida and Lewis (2019) 

provide the growth and yield parameters for a representative stand presented in Table 1. With these 

 
28 https://www.oregon.gov/ODF/Documents/AboutODF/ODFAgencyBrochure.pdf  

https://www.oregon.gov/ODF/Documents/AboutODF/ODFAgencyBrochure.pdf
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parameters (𝑎, 𝑏, 𝑐), the rotation age which maximizes volume (i.e. the “biological rotation age”) 

occurs at age 77, where the mean annual increment (MAI) and the current annual increments (CAI) 

are equivalent. Following van Kooten et al. (1995), the total carbon sequestered by the forest from 

its establishment up to age 𝑇 (given in tons per acre) is given by a scaled integration of the CAI 

curve (see Table 1). This form of the sequestration function allows carbon sequestration revenues 

to accumulate on the stand at a decreasing rate.  

The arrival rate of a stand-replacing fire on the Douglas-fir dominated forests of the 

Western Cascades region is one in every 200+ years (𝜆 < 0.005), while low- to mixed-severity 

fire occurs between once in every 35 years (𝜆 = 0.0286) and once in every 200 years (𝜆 = 0.005), 

(Wolf et al., 2015). This maximum fire return interval for a stand-replacing fire gives an upper 

bound which we can use for the factor productivity of suppression (𝛽 = 0.005). 

Approximately 223 tons of carbon per acre are stored by age 100 in the Western Cascades 

region under minimal disturbance conditions (Hudiburg et al., 2009). Given the yield parameters 

(𝑎, 𝑏, 𝑐), suggesting that about 2.87 tons of carbon are stored per unit of timber volume at age 100, 

requiring a parameter of  𝑘 = 10.53 in the carbon benefits function.29 We assume that between 2 

percent (Harmon et al, 1996) and 42.1 percent (Diaz et al., 2018) of standing carbon is stored long-

term in manufactured wood products. We also assume that 100 percent of stand-level carbon pools 

are released from fire under a “full destruction” scenario. However, we also test partial destruction 

by assuming that 22 percent of stand-level carbon pools are released from fire (based on 

expectations from mixed-severity fire data; see Law and Waring, 2015). 

 

 
29 Since carbon is priced in terms of its carbon dioxide equivalent mass (CARB, 2012), we set 𝑘 = 2.87 ∗ 3.67 in the 
amenity benefits function, where 3.67 represents the mass of carbon dioxide equivalent per ton of carbon. 
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3.3.3. Model Calibration 

To investigate the impact of wildfire suppression effectiveness, a relatively flexible 

production relationship is specified for the fire arrival rate (see Table 1). The parameter 𝜌 is the 

output elasticity of suppression. Every percentage increase in suppression expenditures will reduce 

the arrival rate by 𝜌 percent. As this effectiveness of suppression expenditures increases, the 

parameter 𝜌 increases and the fire arrival rate falls at a faster rate for any incremental increase in 

suppression. If 𝜌 < 1, the suppression technology displays decreasing returns to scale. If 𝜌 > 1, 

the suppression technology displays increasing returns to scale. Note that this specification of the 

arrival function assumes that fire occurrence is independent of the age of the forest. This derives 

from the assumption of a homogeneous Poisson process for the fire arrival, which means that fire 

arrival risk does not increase or decrease as the stand matures.  

Given current tax rates, the revenue constraint, and typical rotation lengths for working 

timberlands in the study region (𝑇𝑜), we calibrate the first stage model (case 1) to solve for the 

unknown value of the output elasticity. This calibration is conducted for two alternative climate 

scenarios: 1) a frequent, low-severity fire regime (𝛽 = 0.0286, 𝜂 = 0.22), and 2) a low-frequency, 

high-severity fire regime (𝛽 = 0.005, 𝜂 = 1.0).This entails a root-finding problem to equate the 

planner’s solution with observed site values (assuming no participation in carbon offset markets): 

0 = 𝑉𝑠(𝑇𝑜; 𝛽, 𝜂) − 𝑉𝑠(𝑇(𝑦∗(𝜌; 𝛽, 𝜂)))  

(12) 

Under the frequent, low-severity regime, if we assume that the arrival rate of high severity fire is 

one event every 200 years (𝜆 = 0.005) and the typical rotation age of plantation forests managed 

solely for timber in this region is between 35 and 40 years, we solve for an implied elasticity of 

𝜌 = 0.61 if 𝑇 = 35 and 𝜌 = 0.48 if 𝑇 = 40. If instead we assume that a high severity event occurs 
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more frequently at a rate of once in every 100 years (𝜆 = 0.01), the implied output elasticity for 

these rotation lengths is 𝜌 = 0.18 if 𝑇 = 35 and 𝜌 = 0.14 if 𝑇 = 40. The calibration exercise 

shows that assuming a more frequent fire regime (i.e. a larger 𝜆), would imply less effectiveness 

of suppression investment under current management conditions.  

 Under the less-frequent, high-severity fire regime, if we assume that the arrival rate of high 

severity fire is one event every 333.3 years (𝜆 = 0.0030) and the typical rotation age of planation 

forests managed solely for timber in this region is between 35 and 40 years, we solve for an implied 

elasticity of 𝜌 = 0.31 if 𝑇 = 35 and 𝜌 = 0.27 if 𝑇 = 40. If instead we assume that a high severity 

event occurs more frequently at a rate of once in every 250 years (𝜆 = 0.0040), the implied output 

elasticity for these rotation lengths is 𝜌 = 0.14 if 𝑇 = 35 and 𝜌 = 0.11 if 𝑇 = 40.  

 

3.3.4. Computational methods 

An exact numerical form of the landowner’s problem and the planner’s problem with a 

single tax instrument (cases 1 and 2) can be solved using standard unconstrained nonlinear 

programming techniques in MATLAB, such as a Nelder-Mead (NM) algorithm (Miranda and 

Fackler, 2002). The NM algorithm is a derivative free method, and so iterations of the algorithm 

only require a specification of the objective function to be maximized. Each iteration of the NM 

algorithm gives a candidate solution �̃�∗, which requires a numerical integration of the carbon 

benefits function in order to approximate the expected net revenues until the algorithm converges 

on the final solution 𝑇∗. For each iteration, a Newton-Cotes quadrature approximation of the 

carbon benefits function is calculated using routines from the “COMPECON” toolbox (Miranda 

and Fackler, 2002). This computation enables a new evaluation of the objective function for each 

combination of 𝑝𝑐 and 𝜆 on the interval [0,50] × [0.001,0.03]. A check for proper convergence 
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of the algorithm is conducted for each combination of 𝑝𝑐 and 𝜆 to ensure the existence of a 

maximum solution.  

The planner’s first-stage solution with both tax instruments (case 3) is a constrained 

optimization problem and so can be solved using a sequential quadratic programming (SQP) 

algorithm (Venkataraman, 2009). The landowner’s best response function defines the relationship 

between 𝑇∗ and the planner’s tax policy, therefore the budget constraint is a nonlinear function of 

𝜏, 𝜔, and 𝑦. Each iteration of the SQP algorithm entails an approximation of the best response 

function, which can be obtained using the NM algorithm. Similarly, the harvest tax rate implied 

by equation (5) requires an additional fixed-point iteration using the approximated Best Response 

function. A bisection algorithm (Miranda and Fackler, 2002) is used to approximate this tax rate 

for each iteration of the SQP algorithm. A numerical check of the second-order conditions is 

conducted after each solution found using the SQP algorithm under exogenous combinations of 𝑝𝑐 

and 𝑇∗(𝑝𝑐, 𝜆). The resulting data under both the single tax and mixed-tax scenarios is plotted in 

the following section to understand the sensitivity of the sequential equilibrium solution to changes 

in the various components of the planners’ tax and suppression expenditure policy.  

Solutions to the landowner’s problem can be verified by checking the result against 

solutions from standard benchmark land value models. For example, setting 𝜆 = 0,  and 𝑝𝑐 = 0 

will yield the standard Faustmann solution, which would occur if no carbon markets or disturbance 

risk were present. Setting 𝜆 = 0 but allowing 𝑝𝑐 > 0 will yield the solution presented by van 

Kooten et al. (1995). Setting 𝜆 > 0 but 𝑝𝑐 = 0 will yield the Reed (1984) solution. Finally, setting 

both 𝜆 > 0 and 𝑝𝑐 > 0 will yield a solution identical to the one reported by Englin et al. (2000) or 

Ekholm (2020). Solutions to the planner’s problem (case 3) can be verified by setting 𝐺 = 0, 𝑝𝑐 =

0, and 𝜆 = 0, to yield a case where no tax is first-best optimal in a deterministic setting with no 
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external environmental amenity values (𝑦∗ = 0, 𝜏∗ = 0, 𝜔∗ = 0), as shown by Hellsten (1988). 

Setting 𝐺 > 0, 𝑝𝑐 = 0, and 𝜆 = 0 in the planner’s problem (case 3) yields a solution where only a 

neutral tax is second-best optimal for meeting the revenue target in the deterministic setting with 

no amenities (𝑦∗ = 0, 𝜏∗ = 0, 𝜔∗ > 0), as reported by Koskela and Ollikainen (2003). Solutions 

to the planner’s problem in a deterministic setting (case 3) can be further verified by setting 

allowing carbon sequestration to be a pure public good and by setting 𝐺 = 0, 𝑝𝑐 > 0, and 𝜆 = 0 to 

show that a distortionary (Pigouvian) tax instrument is optimal when environmental amenities are 

not internalized by the landowner (𝑦∗ = 0, 𝜏∗ > 0, 𝜔∗ = 0), as also reported by Koskela and 

Ollikainen (2003). 

 

3.4. Results 
Solutions to the model and the three different cases are called Stackelberg equilibrium 

solutions. These policy outcomes are subgame perfect equilibria. Alternative taxation schemes 

will shift the expected marginal value of delaying harvest, and so will have differing impacts on 

both timber and carbon productivity. We examine these effects in Table 3.2, which shows the 

Stackelberg equilibrium when both taxes are available to the planner (Case 3) under the baseline 

set of parameters (𝜃 = 0.42, 𝜂 = 1.0, 𝛽 = 0.005) and when the full benefits of carbon 

sequestration are either internalized or not internalized by the landowner. We see in Table 3.2 

that when carbon benefits are internalized, a higher carbon price raises the optimal tax rates and 

the associated annual suppression expenditures per acre. This suggests that either the indirect 

effects in equations (9) and (11) are positive, or that the positive direct effects of a higher carbon 

price dominate any potentially negative indirect effects from a higher carbon price. As a point of 

comparison, the Faustmann solution (no risk, no carbon benefits) is 36.4 years for the baseline 

set of parameters given in Table 3.1. 
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Table 3.2 - Solutions to Case 3 under Endogenous Fire Risk (with and without carbon 

payments) 

Carbon Value Acre-based 

tax (𝝎∗) 

Unit tax 
(𝝉∗) 

Suppression 

Expenditures 

(𝒚∗) 

Arrival 

rate (𝝀∗) 

Rotation 

age (𝑻∗) 

Social bare 

land value 
(𝑽𝒔

∗) 

Landowner’s  

bare land 

value (𝑽∗) 

𝒑𝒄 = $𝟎/ton 

(no value of 

carbon storage) 

$1.8/ac./yr. $0.0/MBF $1.2/ac./yr. 0.0043 34.5 yrs. $1,980/ac. $1,980/ac. 

𝒑𝒄 = $𝟐𝟎/ton  

(not 

internalized) 

$0.0/ac./yr. $12.3/MBF $2.3/ac./yr. 0.0040 34.7 yrs. $3,319/ac. $1,973/ac. 

𝒑𝒄 = $𝟐𝟎/ton 

(internalized) 

$3.1/ac./yr. $0.0/MBF $2.5/ac./yr. 0.0039 45.2 yrs. $3,499/ac. $3,499/ac. 

𝒑𝒄 = $𝟑𝟎/ton  

(not 

internalized) 

$0.0/ac./yr. $14.5/MBF $2.8/ac./yr. 0.0038 34.8 yrs.  $3,993/ac. $1,967/ac. 

𝒑𝒄 = $𝟑𝟎/ton 

(internalized) 

$3.9/ac./yr. $0.0/MBF $3.3/ac./yr. 0.0037 51.5 yrs. $4,397/ac. $4,397/ac. 

𝒑𝒄 = $𝟓𝟎/ton 

(not 

internalized) 

$0.0/ac./yr. $18.9/MBF $3.9/ac./yr. 0.0036 34.9 yrs. $5,348/ac. $1,951/ac. 

𝒑𝒄 = $𝟓𝟎/ton 

(internalized) 

$5.8/ac./yr. $0.0/MBF $5.2/ac./yr. 0.0034 67.5 yrs. $6,449/ac. $6,449/ac. 

 

We also see from Table 3.2, that when there is no social value from forest carbon storage, the 

private and social land values are the same ($1,980/ac.) and the stand is rotated every 34.5 years. 

When sequestration has value to society but its benefits are not accounted for by the landowner, 

the harvest tax acts as a Pigouvian instrument and generates a larger land value from society’s 

perspective than what can be achieved with an acre-based land tax or a mix of both harvest taxes 

and the acre-based land tax. At a carbon price of $20/ton, the planner sets a harvest tax rate equal 

to $12.3/MBF, which enables annual suppression expenditures of $2.3 per acre and an arrival 
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rate of one event every 250 years (𝜆∗ = 0.0040). This policy generates a response from the 

landowner to harvest once every 34.7 years and a land value of $1,973 per acre.  

However, with the harvest tax policy, the equilibrium rotation age is no longer able to 

accommodate society’s value for carbon stored in forests, so the social value of the bare land is 

larger than the private value by $1,346 per acre. This result reflects the ineffectiveness of harvest 

taxes when used as a Pigouvian instrument. A harvest tax increase from $5/MBF to $15/MBF 

reflects only a $10 reduction in net stumpage value. We see in Table 3.2 that a higher carbon 

price will raise the planner’s choice of the harvest tax rate, increase annual per acre suppression 

expenditures, and lengthen the landowner’s rotation age, albeit by only a small margin since the 

landowner does not consider the value of carbon in their rotation decision and the planner’s 

budget constraint is binding. The distortionary effect from the harvest tax is not large enough to 

offset the reduction in the rotation age from the landowner’s inability to account for the benefits 

of carbon sequestration. Given a higher carbon price, the harvest tax policy will also increase the 

difference between private and social bare land values as the larger harvest tax lowers the net 

stumpage price.  

In the case where carbon is internalized by the landowner, the planner’s solution maximizes 

the land value when area-based land taxes are positive, but harvest taxes are set to zero (see 

Table 3.2). Under any given carbon price, the social bare land value is larger when carbon is 

internalized, reflecting society’s loss from not having an effective Pigouvian instrument available 

to incentivize the socially optimal delay of the harvest age. In other words, the landowner’s 

private management of carbon sequestration yields a longer rotation age (and higher land value) 

than what the planner can achieve with a distortionary tax if the landowner does not manage for 

carbon. This loss from society’s perspective, in the case where carbon sequestration benefits are 
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not privately internalized, is larger under a higher carbon price; there is a $180 difference in 𝑉𝑠
∗ 

when 𝑝𝑐 = $20/ton and a $1101 difference in 𝑉𝑠
∗ when 𝑝𝑐 = $50/ton. In Table 2, we see that the 

private and social value of bare land coincide when the external benefits of carbon sequestration 

are accounted for by the landowner. For a carbon price of $20/ton, the annual assessment is $3.1 

per acre. This enables annual suppression expenditures of $2.5 per acre, which will yield an 

arrival rate of one event every 256 years (𝜆∗ = 0.0039), a rotation length of 45.2 years, and a site 

value of $3,499 per acre. Also notice that a larger internalized value of carbon sequestration 

increases the stand’s rotation age. An increase in the carbon price from $20/ton to $30/ton will 

lengthen the landowner’s rotation age from 45.2 years to 51.5 years. An increase from $30/ton to 

$50/ton will lengthen the landowner’s rotation age from 51.5 years to 67.5 years.  

The above results (Case 3) carry over to the scenarios where only one of the two tax 

instruments are available (Cases 1 and 2) since in those scenarios the planner’s policy exhibits 

corner solutions. Whether the planner uses an acre-based tax or a harvest tax depends on the 

landowner’s capacity to internalize the social value of carbon sequestration. When the landowner 

does not consider the social value of carbon sequestration, Case 3 is identical to the single tax 

solution of Case 2 (i.e. harvest tax only). When the landowner does consider the social value of 

sequestration (for example, via participation in an offset market), then Case 3 is identical to the 

single-tax solution of Case 1 (i.e. acre-based land tax only). 

 

3.4.1. Equilibrium timber and carbon productivity 

 To compare the impacts of the planner’s tax and expenditure policy on equilibrium forest 

productivity, we show how expected long run timber supply (equation (6)) and expected long run 

carbon uptake (equation (7)) may change under different carbon prices when carbon benefits are 
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not internalized (Figure 3.1), and when they are (Figure 3.2). These result shows that harvest 

taxes impact the rotation age through two separate channels, generating a larger overall impact 

on the stand’s timber productivity when carbon benefits are internalized. First, there is a 

distortionary effect of higher harvest tax rates via a reduction in the fire arrival rate. Second, 

there is an additional distortionary effect of a harvest tax through its reduction in net stumpage 

value, which further lengthens the rotation age and increases the expected long run average 

timber supply and carbon uptake.  

Figure 3.1 compares the expected long run timber supply and the expected long run 

carbon uptake of the forest growing stock under the two single tax solutions (Cases 1 and 2). 

Under Cases 1 and 2, the expected long run timber supply is lower under the planner’s tax policy 

when carbon prices are higher. Under case 2, timber supply can increase under carbon prices 

higher than $43/ton (Figure 3.1, left). However, these changes in timber supply are small since 

the carbon price is not accounted for by the landowner and the harvest tax is ineffective at 

creating the desired Pigouvian response. There is also a monotonically decreasing relationship 

between expected long run timber supply and the carbon price under for Case 1 because the per-

acre land tax is neutral from the perspective of the landowner. Therefore, when carbon prices are 

higher, expected timber yield (equation (6)) increases at a slower rate than the expected time 

between disturbances. Figure 3.1 (right) shows the long run equilibrium carbon productivity of 

the forest stand under various carbon prices. For both Cases 1 and 2, a higher carbon price 

increases the planner’s optimal tax rate, thereby raising suppression expenditures and 

lengthening the rotation age such that the expected carbon uptake (equation (7)) increases at a 

slower rate than the expected time between disturbances.  



130 
 

 
 

However, we again note only a small change in the expected long run carbon uptake 

when the social benefits of sequestration are not internalized. This is because reductions in the 

arrival rate via investment in risk reduction are not effective Pigouvian instruments since a 

removal of all risk would limit the rotation length to the Faustmann solution (no risk, no carbon), 

leaving the full social benefits of carbon still unaccounted for by the landowner. The reason for 

this low sensitivity of the rotation age to change sin the harvest tax rate is due to the 

simultaneous effect of the stumpage price (net of the harvest tax) on both the expected marginal 

benefit of delaying harvest and the expected marginal cost of delaying harvest. When harvest 

taxes increase, the expected marginal benefit of delaying harvest falls as future harvest revenues 

become less attractive, but the expected marginal cost of delaying harvest also falls since the 

landowner can harvest cannot re-invest as much in immediate harvest revenues at the risk-free 

rate of return. The net effect of a larger harvest tax is a slightly longer rotation age and is 

identical to the price effect which has been well established as smaller in magnitude than the real 

interest rate effect (see Samuelson, 1976 or Amacher et al., 2009).  
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Figure 3.1 - Equilibrium Long-run Productivity with External Benefits of Carbon 

Sequestration 

  

Figure caption: Expected long run (LR) timber supply (left) and expected long run carbon 

uptake (right) increase when taxes are raised to fund reductions in the fire arrival rate. The 

stand productivity is larger when a harvest tax is used in lieu of a per-acre assessment.  

 

The solutions are also plotted in Figure 3.2 for different carbon prices when the social 

value of carbon sequestration is internalized by the landowner. We see in Figure 3.2 that long run 

equilibrium productivity is much more responsive to the carbon price when sequestration 

benefits are accounted for by the landowner. When carbon prices are low, the average stand 

productivity (equations (6) and (7)) is larger under the planner’s tax policy relative to the no-tax 

scenario (red curve) with a fixed arrival rate of one event every 200 years. However, the long run 

timber supply (equation (6)) is larger under a no-tax scenario at higher carbon prices since higher 

carbon prices and lower risk both work to prolong the time between harvests. We also see that 

expected annual timber productivity (Figure 3.2, left) and carbon productivity (Figure 3.2, right) 

are greater with a harvest tax (Case 2) relative to the per-acre land tax (Case 1) across all carbon 

prices. In both cases, a higher carbon price raises the optimal tax rate and the associated annual 

suppression expenditures per acre, leading to greater average annual productivity. This again 
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suggests that the positive direct effects in equations (9) and (11) dominate any potentially 

negative indirect effects.  

Figure 3.2 - Equilibrium Long-run Productivity with Internalized Benefits of Carbon 

Sequestration 

 

Figure caption: Expected long run (LR) timber supply (left) and expected long run carbon 

uptake (right) increase when taxes are raised to fund reductions in the fire arrival rate. The 

stand productivity is larger when a harvest tax is used in lieu of a per-acre assessment.  

 

3.4.2. Endogenous vs. exogenous risk with a carbon externality  

When taxes are raised for the purpose of funding reductions in wildfire risk, then risk is 

endogenously determined in the planner’s problem. This determination of risk in the second 

stage model naturally has an impact on the Stackelberg equilibrium rotation length. It is useful to 

compare the model solutions from such an endogenous risk case to the case where risk is 

exogenous from the planner’s perspective (i.e. risk level is not responsive to suppression 

expenditures). Like discussed above, when both tax instruments are available to the planner and 

the socially optimal level of carbon sequestration is not internalized by the landowner, the 

optimal policy instead consists of a harvest tax only (𝜔∗ = 0, 𝜏∗ > 0). In Figure 3.3, where the 

landowner does not consider the social value of carbon sequestration and risk is exogenously 

determined by a fixed level of suppression expenditures (𝜆(𝑔𝑜 = 0.79)), increases in the carbon 
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price will not affect the rotation length (dashed line). However, when risk is endogenously 

determined by harvest tax receipts (𝜆(𝑦∗ + 𝑔𝑜)), the optimal tax rate increases with higher 

carbon prices, so the resulting reduction in the fire arrival rate lengthens the rotation age. The 

increase in the rotation age from the planner’s management of risk is small since the higher 

carbon price does not have any influence in the second stage problem. Additionally, the effect of 

harvest taxes on rotation age is small, especially when the log price is relatively large.   

Figure 3.3 - Rotation Length under Exogenous and Endogenous Risk (Carbon Sequestration 

Benefits Not Internalized, ω*=0,τ*>0)  

 

Figure caption: Responsiveness of the Stackelberg equilibrium rotation age (𝑇∗) to higher 

carbon prices (𝑝𝑐) under the suppression level attainable without forest taxation (𝑔𝑜, dashed 

line) and the suppression level attainable with forest taxation (𝑦∗ + 𝑔𝑜, solid line). 
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3.4.3. Endogenous vs. exogenous risk with internalized value of carbon sequestration 

 When both tax instruments are available to the planner and the socially optimal level of 

carbon sequestration is internalized by the landowner (Case 3), the optimal policy consists of a 

single tax instrument (𝜔∗ > 0, 𝜏∗ = 0). Notice that, in Figure 3.4, when fire risk is exogenous 

(dashed line) and annual per-acre suppression expenditures are fixed at a level obtained without 

forest taxation, (𝑔𝑜 = 0.79), the per-acre land tax remains neutral and the only source of an 

increasing rotation length is a higher carbon price. However, when fire risk reduction is 

endogenous and afforded by acre-based land tax receipts (solid line), arrival risk falls such that 

the landowner will further increase their rotation length. When fire risk is endogenous, the 

Stackelberg equilibrium solution is more responsive to increases in the carbon price than in the 

case where the risk is exogenous.  

Figure 3.4 - Rotation Length under Exogenous and Endogenous Risk (Carbon Sequestration 

Amenities Internalized, ω*>0,τ*=0) 

  

Figure caption: Responsiveness of the Stackelberg equilibrium rotation age (𝑇∗) to higher 

carbon prices (𝑝𝑐) under the suppression level attainable without forest taxation (𝑔𝑜, dashed 

line) and the suppression level attainable with forest taxation (𝑦∗ + 𝑔𝑜, solid line). 
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3.4.4. Sensitivity to carbon storage parameters under endogenous risk 

We examine the sensitivity of the above results with respect to two model parameters of 

interest: 1) the portion of the stand’s carbon released after a fire (𝜂), and 2) the share of carbon 

stored in long-lived wood products (𝜃). These parameters are controversial and difficult to 

estimate; so, their sensitivity on equilibrium forest management outcomes is of interest. We 

focus on a range of values in Figure 4 that have been suggested by others (Diaz et al., 2018; Law 

and Waring, 2015; Harmon et al., 1996) and that is consistent with a shift in carbon prices from 

$1.0 per ton to $30.0 per ton. In Figure 3.5 (left), the social value of carbon is internalized so we 

see the subgame-perfect equilibrium effect of endogenous risk and a larger acre-based land tax 

on the landowner’s rotation age. Higher carbon prices require a larger acre-based land tax to 

afford further reduction in the landowner’s fire risk. Higher carbon prices will therefore raise the 

equilibrium rotation age.  

When the social benefits of carbon sequestration are not internalized by the private 

landowner (as in Figure 3.5, right), the planner’s harvest tax policy has a positive impact on the 

landowner’s rotation length, but the effect is not as large since carbon prices do not matter from 

the landowner’s perspective. Since the carbon storage parameters impact the net current value of 

sequestration, and prices have a limited impact on rotation length when carbon benefits are not 

privately internalized (see Table 3.2), the shifts in Figure 3.5 (right) are negligible. In both cases 

(Figure 3.5 left and right) we see that a larger proportion of carbon retained (1 − 𝜂) following a 

fire will increase the rotation age (as it lowers the cost of a disturbance event). However, the 

solution is relatively more sensitive to changes in the percentage of carbon stored long-term in 

wood products (𝜃), since long-term storage has a positive impact on the benefit of harvest.  Note 

that whether or not carbon storage is internalized by the landowner, the equilibrium rotation age 

is shorter when more carbon is stored long-term in wood products. This is because greater long-
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term storage decreases the cost of harvesting, so that there is a larger net current value of timber 

harvest 𝑌2. It is well known that a lower harvest cost will shorten the optimal time between 

harvests since its effect is comparable to that of a higher stumpage price (Amacher et al., 2009, 

Ch. 2).  

Figure 3.5 - Distortionary Effect of Forest Taxes under Endogenous Risk

  

Figure caption: Subgame perfect equilibrium strategies (Case 3) given shifts of the carbon 

storage parameters (𝜂, 𝜃) with carbon sequestration benefits internalized (left) and with external 

carbon sequestration benefits (right). Higher carbon prices (𝑝𝑐) raise the planner’s tax rate 

(𝜔∗or 𝜏∗), generating the landowner’s best response 𝑇∗. 

 

3.5. Discussion and conclusion 
The main contribution of our research was to formally model and analyze the joint 

determination of optimal forest taxes and investments in risk reduction activities when carbon 

benefits are either internalized by the landowner or not. Our numerical analysis showed that 

when carbon benefits are internalized by the landowner, the planner’s optimal tax policy adheres 

to the Ramsey rule and only uses the area-based tax, thus minimizing distortionary effects on the 

rotation age. This finding is aligned with the result from Koskela and Ollikainen (2003). 

However, we generalize their findings by showing that when the frequency of fires experienced 

by a landowner is endogenously determined by the present value of tax receipts and carbon 
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benefits are privately internalized, land taxes levied on a per-acre basis are first-best optimal, 

even in the presence of an exogenous revenue target. This is because tax receipts are raised to 

fund public expenditures on risk mitigation, which raises a landowner’s tax liability but also 

directly benefits the private landowner via a reduction in their risk-adjusted discount rate. We 

also found that when managing for carbon benefits is not internalized by landowners, the use of a 

yield tax is preferred to a mix of two tax instruments. However, our results suggest that the yield 

tax is not an effective Pigouvian instrument and the resulting equilibrium is second-best optimal. 

As a result, when the planner is constrained to using a yield tax instead of alternative incentives 

to lengthen the optimal rotation age, the planner is unable to achieve as high of a land value for 

the society as what can be achieved if the benefits of carbon sequestration are privately 

internalized by the landowner.  

More general policy conclusions relate to the tradeoffs between carbon offset markets 

and forest-based taxes as an instrument for producing environmental amenities. A planner 

seeking a Pigouvian effect on the forest rotation age in carbon-productive, fire-prone regions 

(such as those in western Oregon) can do so either through an increase in the carbon price or 

through an increase in the harvest tax rate (such as the FPHT). However, if carbon prices cannot 

be internalized by landowners via a carbon offset market, our model finds that the capacity for 

the FPHT to achieve the socially optimal outcome is limited. State forest planning agencies do 

not currently regulate the availability of carbon credits, and so have no ability to affect the 

prevailing price of carbon offsets. Therefore, the FPHT rate is an alternative but imperfect 

mechanism for producing a higher level of carbon sequestration since it affords risk reduction 

and lengthens a landowner’s the rotation age. The FPHT mechanism is not effective at achieving 

the Pigouvian solution since there is only a small distortionary effect of a higher tax rate on the 
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landowner’s rotation age. However, a simultaneous increase in the carbon offset prices can 

reinforce a longer rotation age. Therefore, agency planners may need to consider the effect of 

high carbon credit prices resulting from the scarcity of tradable permits in carbon offset markets.  

This paper also shows that the optimal tax rates depend on the effectiveness of risk 

mitigation expenditures in terms of their ability to reduce the frequency of fire disturbances. To 

reduce our uncertainty about the possible values of this parameter, we conducted a simple model 

calibration exercise to approximate the output elasticity of risk mitigation implied by current 

management conditions under two alternative climate scenarios: 1) a high-frequency, low-

severity fire regime, and 2) a low-frequency, high severity fire regime. We find that under the 

frequent fire regime, a 10 percent increase in annual risk mitigation expenditures reduces fire 

frequency between 1.4 and 6.1 percent. Under the low-frequency regime, a 10 percent increase in 

annual risk mitigation expenditures reduces fire frequency between 1.1 and 3.1 percent. These 

parameters suggest decreasing returns to scale from the planner’s investment in risk mitigation, 

indicating that there is diminishing marginal productivity of risk mitigation effort. However, we 

restrict our interpretation of this elasticity to the management conditions specific to Douglas-fir 

stands subject to wildfire risk in western Oregon where the state’s primary mechanism for 

reducing risk is an aggressive wildfire suppression response. Further research may be needed to 

develop more general estimates of the output elasticity of risk mitigation at regional or national 

scales. This parameter may find broader applications for use in public budgeting models or other 

numerical analyses of endogenous forest fire risk. 

The optimization model in this paper makes several simplifications compared to the real-

world policy environment. First, assumptions can be relaxed about the nature of the fire arrival 

rate. Future modeling efforts may consider the possibility for the fire arrival rate to increase on 
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the forest stand over time. Second, assumptions can be relaxed to incorporate the possibility for 

private landowners to explicitly undertake risk mitigation decisions by managing hazardous fuel 

loads and altering the fire arrival rate of their stand. Third, assumptions should be relaxed about 

the possibility of salvage harvest. Salvage possibilities are likely to raise land values since a 

larger expected salvageable portion of the timber stand will lengthen the rotation age (Reed, 

1984; Amacher et al., 2005). Fourth, we have assumed risk neutral decision-making of both the 

landowner and the planner. Risk aversion of a landowner can lead to more frequent turnover of 

forestland (Alvarex and Koskela, 2007). In cases where the planner administering fire 

suppression is risk averse, there may be additional public spending on risk mitigation beyond the 

socially optimal level (Rossi and Kuusela, 2020).  

Fifth, with the planner’s credible commitment to a tax policy, discretionary changes in 

the tax policy cannot be anticipated by the landowner or internalized into the landowner’s 

valuation problem. The potential for time-varying changes in tax and suppression policy to be 

internalized into the landowner’s decision calculus may render time-varying policy rules 

ineffective at achieving revenue targets or socially optimal Pigouvian responses. Sixth, we have 

omitted several information problems that may constrain the planner’s decision about optimal tax 

policy. Specifically, we have omitted the possibility for high-risk and low-risk landowners and 

for this information to be knowledge exclusive to only the landowner. Admitting these 

information constraints into the first-stage optimization problem may transform the sequential 

equilibrium outcome. Specifically, incentive-compatibility and policy participation constraints 

may induce landowners to reveal their risk type and for the planner to differentiate tax and 

suppression or fuel reduction policy across landowners of different risks. Finally, we have 

assumed land use change as exogenous and so we have ignored the potentially distortionary 
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effects of land value taxes as they relate to a landowner’s decision to sell land off to a non-forest 

use. The effects of forest taxes on land use change (particularly in this setting where disturbance 

risk is present and carbon sequestration has value) represents an important area for further 

research. 

 

Appendix A: Formulation of the Forestland Value Equation  
This appendix gives the numerical expression for the landowner’s objective function in equation 

(4). Since stand destruction is a random variable, the effective discount factor is random. Reed 

(1984) and Englin et al. (2000) show that the expected bare land value is written as: 

𝑉(𝑇) =
E[𝑒−𝑟𝑋𝑌(𝑋, 𝑇)]

1 − E[𝑒−𝑟𝑋]
−

𝜔

𝑟
 

Recalling that the probability density function for a Poisson distributed random variable 𝑋 is 

𝑓(𝑥) = 𝜆(𝑦)𝑒−𝜆(𝑦)𝑥, the denominator simplifies to: 

1 − E[𝑒−𝑟𝑋] = 1 − ∫ 𝑒−𝑟𝑥𝑓(𝑥)𝑑𝑥
∞

0

=
𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇)

𝑟 + 𝜆(𝑦)
 

The numerator can be written as follows: 

E[𝑒−𝑟𝑋𝑌] = ∫ 𝑒−𝑟𝑥𝑌(𝑥, 𝑇)𝑓(𝑥)𝑑𝑥
∞

0

= ∫  𝑒−𝑟𝑥𝑌1(𝑥, 𝑇)
𝑇

0

𝑓(𝑥)𝑑𝑥 + 𝑒−𝑟𝑇𝑌2(𝑇) Pr(𝑋 = 𝑇) 

Recall: Pr(𝑋 = 𝑇) = 𝑒−𝜆(𝑦)𝑇. So the numerator is written as: 
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E[𝑒−𝑟𝑋𝑌] = ∫ 𝑒−𝑟𝑥 (𝑒𝑟𝑥𝑝𝑐𝑘 ∫ 𝐹′(𝑧)𝑒−𝑟𝑧𝑑𝑧

𝑥

0

− 𝑝𝑐𝑘𝜂𝐹(𝑥) − 𝑐0𝑒𝑟𝑥) 𝜆(𝑦)𝑒−𝜆(𝑦)𝑥𝑑𝑥
𝑇

0

+ 𝑒−𝑟𝑇 [(𝑝 − 𝜏 − 𝑐ℎ)𝐹(𝑇) + 𝑒𝑟𝑇𝑝𝑐𝑘 ∫ 𝐹′(𝑡)𝑒−𝑟𝑡𝑑𝑡

𝑇

0

− 𝑝𝑐𝑘(1 − 𝜃)𝐹(𝑇)

− 𝑐0𝑒𝑟𝑇] 𝑒−𝜆(𝑦)𝑇 

Applying integration by parts: 

E[𝑒−𝑟𝑋𝑌] = ∫ 𝑒−𝑟𝑥 [𝑝𝑐𝑘𝑒𝑟𝑥 (𝑒−𝑟(𝑥)𝐹(𝑥) + 𝑟 ∫ 𝐹(𝑧)𝑒−𝑟𝑧𝑑𝑧
𝑥

0

) − 𝑝𝑐𝑘𝜂𝐹(𝑥)
𝑇

0

− 𝑐0𝑒𝑟𝑥] 𝜆(𝑦)𝑒−𝜆(𝑦)𝑥𝑑𝑥

+ 𝑒−(𝑟+𝜆(𝑦))𝑇 [(𝑝 − 𝜏 − 𝑐ℎ)𝐹(𝑇) − 𝑐0𝑒𝑟𝑇 − 𝑝𝑐𝑘(1 − 𝜃)𝐹(𝑇)

+ 𝑝𝑐𝑘𝑒𝑟𝑇 (𝑒−𝑟𝑇𝐹(𝑇) + 𝑟 ∫ 𝑒−𝑟𝑡𝐹(𝑡)𝑑𝑡
𝑇

0

)] 

We therefore have a full expression for the landowner’s objective function in equation (4): 

𝑉(𝑇) =
𝑟 + 𝜆(𝑦)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇)
{𝑒−(𝑟+𝜆(𝑦))𝑇[(𝑝 − 𝜏 − 𝑐ℎ)𝐹(𝑇) + 𝑝𝑐𝑘𝜃𝐹(𝑇)] − 𝑐0

+ 𝑟𝑝𝑐𝑘 [𝜆(𝑦) (∫ 𝑒−𝜆(𝑦)𝑥 (∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧
𝑥

0

) 𝑑𝑥
𝑇

0

+ ∫ (1 − 𝜂)𝑒−(𝑟+𝜆(𝑦))𝑥𝐹(𝑥)𝑑𝑥
𝑇

0

) + 𝑒−𝜆(𝑦)𝑇 ∫ 𝑒−𝑟𝑧𝐹(𝑧)𝑑𝑧
𝑇

0

]} −
𝜔

𝑟
. 
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Appendix B: Formulation of the Expected Longrun Harvest Tax Rate 
Find the tax rate required to finance a given annual suppression costs: 𝜏 = 𝜏(𝑦, 𝜆(𝑦), 𝑇∗). Following Reed 

(1984), the long-run expected present value of harvest tax receipts is: 

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
. 

(B.1) 

The denominator of (B.1) is as in Appendix A. Recall: 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 and Pr(𝑋 = 𝑇) = 𝑒−𝜆𝑇. Then the 

denominator of (B.1) can be written as: 

1 − E[𝑒−𝑟𝑋] = 1 − ∫ 𝑒−𝑟𝑥𝑓(𝑥)𝑑𝑥
∞

0

=
𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇)

𝑟 + 𝜆(𝑦)
 

(B.2) 

The numerator of (B.1) is: 

E[𝜏𝐹(𝑋)] = 𝜏𝐹(𝑇) Pr(𝑋 = 𝑇) = 𝜏𝐹(𝑇)𝑒−(𝑟+𝜆(𝑦))𝑇 . 

(B.3) 

Re-writing (B.1) using the expressions in (B.2) and (B.3), we have: 

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
=

(𝑟 + 𝜆(𝑦))𝑒−(𝑟+𝜆(𝑦))𝑇∗
𝜏𝐹(𝑇∗)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

. 

Therefore the present value of forest tax revenues in equation (5) is: 

(𝑟 + 𝜆(𝑦))𝑒−(𝑟+𝜆(𝑦))𝑇∗
𝜏𝐹(𝑇∗)

𝑟(1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗
)

+
𝜔

𝑟
. 

So, we can rearrange the planner’s budget constraint from equation (5) to find the tax rate needed to raise 

enough funds to cover annual investment in fire risk mitigation: 𝜏 = 𝜏(𝑦, 𝜆(𝑦), 𝑇∗(𝑦)). 

𝜏(𝑦, 𝜆(𝑦), 𝑇∗(𝑦)) = (
(𝑟 + 𝜆(𝑦))𝑒−(𝑟+𝜆(𝑦))𝑇∗

𝐹(𝑇∗(𝑦))

1 − 𝑒−(𝑟+𝜆(𝑦))𝑇∗(𝑦)
)

−1

(𝑦 − 𝜔 + 𝑟𝐺). 
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Appendix C: Formulation of the Planner’s Budget Constraint 
The budget constraint for fire suppression expenditures is: 

𝛾1

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+ 𝛾2

𝜔

𝑟
=

𝑦 − 𝑔𝑜

𝑟
 

(C.1) 

The parameter 𝑔 denotes the exogenous funds allocated to fire prevention (i.e. funds raised from 

a non-forest tax base such as a state’s general tax fund). The parameters 𝛾1 and 𝛾2 give the 

fractions of each forest tax raised for the purposes of fire suppression. These parameters make it 

explicit how much forest tax revenue is flowing to other sources outside of fire suppression or 

the non-forest sector. An additional constraint expresses how much money is needed from the 

forest sector to fund exogenous public expenses �̅�: 

�̅� = (1 − 𝛾1)
E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+ (1 − 𝛾2)

𝜔

𝑟
 

(C.2) 

Factor out the terms in the 2nd constraint (C.2) and re-arrange: 

𝛾1

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+ 𝛾2

𝜔

𝑟
=

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+

𝜔

𝑟
− �̅� 

Notice the left-hand side is the same as constrain (C.1), so we can write: 

E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+

𝜔

𝑟
− �̅� =

𝑦

𝑟
−

𝑔
𝑜

𝑟
. 

Define �̅� =
�̅�−𝑔𝑜

𝑟
. This gives the relevant budget constraint presented in equation (5). 
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E[𝑒−𝑟𝑋𝜏𝐹(𝑋)]

1 − E[𝑒−𝑟𝑋]
+

𝜔

𝑟
=

𝑦

𝑟
+ �̅�. 

Therefore, �̅� represents the [exogenous] present value of the sum of all other annual revenue 

requirements (other expenditures) minus suppression funding collected from other sources. If tax 

revenues are needed to fund non-forest related public expenditures, then  �̅� goes up. If more 

funding is collected for suppression (e.g. from the General tax fund), then �̅� goes down.  
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4.1. Introduction  
Wildfire suppression expenditures have become an increasingly visible source of costs 

for public land management agencies in the United States since the mid-1980s as burned 

acreage, damages, and public expenditures on suppression are increasing (Lueck and Yoder, 

2013). While climatic factors and daily changes in weather patterns contribute to increasing fire 

severity (van Mantgem et al., 2013), they are not the sole driver of these trends. Socioeconomic 

factors and institutional factors can also impact the decisions made by wildfire incident managers 

including their increasing reliance on an aggressive suppression response (Schultz et al., 2019; 

Thompson, 2014). The primary concern with a continued pattern of aggressive suppression 

response is the formation of a “fire paradox” (Thompson et al., 2013; 2018; Calkin et al., 2015), 

whereby the exclusion of wildfire from western U.S. forests can allow hazardous fuels to 

accumulate, leading to larger fires and exacerbating the need for future suppression effort.  

Annual growth in fire size has averaged 30% per year since 1980, while federal 

expenditures on fire suppression in 2020 totaled $2.27 billion and encompassed 68.8% of annual 

fire management expenditures in the U.S. Forest Service (36.3% of its total budget). A less 

aggressive suppression response and the management of unplanned wildfires for resource 

benefits (referred to as “wildfire use”)30 is anticipated to bring down suppression costs over time 

by reducing fire size and severity (North et al., 2012; Ingalsbee and Raja, 2015). Despite a now 

widespread recognition for the need to re-introduce fire on western landscapes via prescribed fire 

and wildfire use (WFLC, 2009; 2014; FMB, 2019), suppression strategies still dominate both 

federal and state agencies’ approach to wildfire emergency response (North et al., 2015). From 

1998 to 2008, an annual average of 0.42% of wildfires were managed as “fire-use” events, but 

 
30 https://www.fws.gov/fire/what_we_do/wildland_fire_use.shtml  

https://www.fws.gov/fire/what_we_do/wildland_fire_use.shtml
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reporting of this percentage was halted in 2009 after an alternative definition of “fire use” 

acreage burned was adopted by federal agencies (Stephens et al., 2016).31 Figure 4.1 shows the 

annual percentage of daily reports filed by incident managers in the SIT-209 system in 

California, Oregon, and Washington from 2005 to 2014. Most of these forms (90.8%) report a 

“full suppression” strategy as the chosen response. The remaining forms report a less aggressive 

response to fire management, which may include a strategy of “confining” a wildfire to defined 

area, “point protection” of values at risk, or a “monitoring” strategy which entails limited 

suppression effort and a willingness to let a fire run its course.   

Figure 4.1 - Annual Suppression Strategies reported in ICS-209 Forms (California, Oregon, 

and Washington, FY2005-FY2014) 

 

 

 
31 https://www.nifc.gov/fireInfo/fireInfo_stats_fireUse.html  

https://www.nifc.gov/fireInfo/fireInfo_stats_fireUse.html


154 
 

 
 

Each of these response strategies to wildfire entail a different use of suppression 

resources and thus a different management cost. Confinement strategies attempt to restrict a fire 

to a defined area by using a combination of natural and constructed barriers which are 

anticipated to limit fire spread (USFS, 2013). Point or zone protection strategies seek to limit fire 

spread in a residential community, over an individual structure, a communication site, or a 

highly-valued resource area or cultural site (USFS, 2013). As such, point protection is primarily 

a defensive strategy; seeking to defend resources from damage rather than attempt to extinguish 

an ongoing blaze. Monitoring specifically entails the process of “observing, collecting, and 

recording of fire-related data… for the purpose of determining if management objectives are 

being met” (USFS, 2013). A monitoring response does not seek to actively extinguish a fire or 

limit its spread in any way. In stark contrast to these three strategies, a full suppression strategy 

entails an attempt to “put the fire out” as efficiently and effectively as possible (USFS, 2013). 

While the fire management literature has not formally addressed the relationship between full 

suppression strategies as recorded in the SIT-209 forms and suppression expenditures or resource 

demand, the adoption of full suppression strategies typically entails greater expenditures and a 

greater number of resources committed to the incident. For example, a dataset consisting of 139 

fires across Oregon and Washington from 2012 to 2013 indicates that monitoring strategies cost 

an average of $25,778 per fire; point protection strategies cost $218,247 per fire; confinement 

strategies cost $1.76 million per fire; while full suppression strategies cost $5.24 million per fire 

(NWCC, 2013; 2014). 

Some papers have attempted to measure the effects of socioeconomic and institutional 

factors on the demand for suppression resources (e.g. Hand et al., 2017) or on suppression costs 

(e.g. Donovan et al., 2011; Liang et al., 2008), but none have analyzed the joint significance of 
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such effects on observed variations in manager choices regarding suppression response. To 

address this gap in the literature, this paper provides an econometric analysis of individual 

suppression decisions to measure the relative influence that socioeconomic and institutional 

factors have on the probability of choosing a “full suppression” strategy. We especially are 

interested in whether socioeconomic factors have a greater or lesser influence on observed 

suppression choices before or after a major change in the budgetary institution governing the use 

of suppression tactics and the allocation of suppression funding. Administrative data is obtained 

and compiled to track the daily suppression strategies adopted by publicly-contracted and 

agency-employed incident managers fighting wildfires for state and federal land management 

agencies in the western U.S. from July of 2005 to November of 2013. Estimated parameters of a 

binary choice model are used to recover an estimate of the relative marginal effects of 

socioeconomic and institutional factors that drive suppression decisions and to determine if these 

factors have a greater or lesser impact on suppression choices following a change in fire 

management legislation. 

One key piece of fire management legislation passed during this period was the Federal 

Land Assistance, Management and Enhancement (FLAME) Act of 2009. This legislation 

encouraged federal land managers to more actively adopt strategies which allow unplanned 

wildfire events to burn when spread conditions are safe. This was echoed in the February 2009 

Guidance for Implementation of the Federal Wildland Fire Management Policy (WFLC, 2009b). 

This guidance enabled incident managers for the first time to update the strategy applied to an 

ongoing wildfire which was initially managed under a full suppression strategy. Following a 

recommendation from the GAO (GAO, 2004), the act also provided an additional set of reserve 

funds available for fighting wildfires when annual appropriations were depleted. These funds 
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were available upon request to both federal and state incident managers from FY2010 to FY2017 

with the approval of the Secretary of the Interior or the Department of Agriculture. In fiscal year 

2017, FLAME funds were not subject to discretionary spending caps, and the Forest Service 

eventually requested emergency funding for the FLAME accounts beyond that year’s 

appropriations. The Forest Service also retained the authority to request re-imbursement for 

FLAME funds that are used to repay funds borrowed from non-fire accounts. This means that the 

Flame Act reserve funds enabled agencies to retain the ability to draw from non-fire accounts to 

finance suppression efforts, replenish those accounts with FLAME reserve funds, then request 

that Congress re-imburse the borrowed FLAME funds (Hoover and Lindsay, 2017). To prevent 

this practice, the Consolidated Appropriations Act of 2018 has set up a similar set of reserve 

accounts, but it has increased the size of these accounts by more than 1000 percent. Reserve 

appropriations and off-budget financing has been replaced by an increase in budget authority, 

without regard to a shift in manager incentives to lower suppression costs. This raises questions 

about whether these past revisions in legislation which have introduced reserve funding have 

actually achieved a containment of suppression program costs.  

The contribution of our research is to measure the effects of the FLAME Act’s 

implementation on suppression choices amongst state and federal land management agencies. 

The FLAME Act of 2009 and the accompanying 2009 policy guidance (WFLC, 2009b) 

encouraged greater adoption of wildfire-use strategies on federal lands while at the same time set 

up a reserve account for emergency suppression funding. The net effects of this policy change on 

suppression choices has not been examined using observational data. One exception is Young et 

al. (2020) who use incident-level data and found that the 2009 fire policy guidance (WFLC 

2009b) served to decrease the number of fires managed solely under a full suppression strategy 
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by an estimated 27% to 73%, but found limited effects of the policy on the duration and size of 

fires across four major regions of the U.S. (Western U.S., Inland Empire, Southwest, and the 

Rocky Mountains). This paper estimates linear and nonlinear probability models to measure the 

effects of the 2009 fire policy guidance and the FLAME Act’s implementation across state and 

federally managed wildfire incidents in the western U.S., and across varying distances from 

residential values at risk. Our estimates of the average partial effect of socioeconomic factors are 

allowed to differ before and after the FLAME Act and are compared across the pooled nonlinear 

probability models and linear probability models which account for unobserved characteristics of 

incident managers. We generally find consistency of these results across model specifications 

and show that while the FLAME Act had the effect of decreasing the overall probability of 

adopting a full suppression response, but this effect is indistinguishable from the effects of the 

2009 policy guidance. Further, its effects on adoption differed across state and federally 

managed incidents and serve to either diminish or enhance the effects of some socioeconomic 

factors that influence suppression decisions (especially the incident’s distance from residential 

values-at-risk). While the FLAME Act successfully achieved its goal of increasing the adoption 

of fire use strategies for federally managed incidents, it had the opposite effect on incidents 

managed by state agencies. Additionally, the nonlinear probability models find that the 

probability of adopting an aggressive suppression response decreases for incidents occurring at 

larger distances from residential values-at-risk but is larger following the implementation of the 

FLAME Act. Overall, we find evidence that socioeconomic factors are statistically significant 

drivers of wildfire suppression response, but that climatic factors like humidity have a much 

larger effect on choices.  
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The remainder of this paper is organized as follows. First, we discuss the literature on the 

influence of socioeconomic and institutional factors on the suppression decisions of wildfire 

management agencies, including the influence that FLAME Act reserve funds may have had on 

suppression choices. Second, we present a theory of discrete choice which allows us to identify 

factors exogenous to manager suppression decisions. Third we present and estimate a suite of 

binary choice models to measure the influence of these exogenous factors on observed 

suppression decisions and conduct a Chow test of structural change across pre- and post-FLAME 

Act periods (Chow, 1960). We then discuss results and policy implications before identifying 

directions for further research.  

 

4.1.1. Review of socioeconomic and institutional factors affecting suppression decisions 

 Empirical evidence has found that factors unique to an incident manager contracted or 

employed to oversee a wildfire event can significantly impact the demand for suppression 

resources. These differences are attributed to differences in risk attitudes (Hand et al., 2017). 

Specifically, these risk attitudes may refer to differences in manager risk aversion or differences 

in downside risk aversion (Rossi and Kuusela, 2020). Downside risk aversion refers to a 

manager’s preference for right-skewed payoff distributions, assuming all other moments of any 

two payoff distributions are held constant. Rossi and Kuusela (2020) show that when suppression 

effort increases the skewness of the payoff distribution (as is typical during incidents close to 

human populations or valuable residential development), we should expect to see greater demand 

for suppression effort. However, when suppression lowers the skewness of the payoff 

distribution (which is more common when fires burn farther from residential development), 

suppression demand falls. Additional empirical evidence on a sample of fires in the western U.S. 

from 2003 to 2010 found that proximity of fires to high-valued residential developments can 
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significantly influence the demand for firefighting resources (Bayham and Yoder, 2020). 

Therefore, we should expect to see incident managers adopt a more aggressive suppression 

strategy when fires are closer to the wildland-urban interface where there is a high value of assets 

at risk and adopt less aggressive strategies when fires burn farther from these areas. 

 Studies have also suggested that the complexity of a wildfire incident (characterized by 

competing management objectives, time-pressured decision environments, high fire severity, 

irregular topography, fragmentation of land tenure, and value-at-risk) can impact a manager’s 

choice of suppression strategy (Maguire and Albright, 2005; Holmes and Calkin, 2013). This 

complexity can lead to an increased likelihood of shorter fire durations (due to an adoption of 

more aggressive suppression response; Thompson, 2013). These types of incidents are managed 

by “high complexity” incident management teams (Type 1 or Type 2 teams). Cullen et al. (2020) 

present the results of a probability model estimated using daily time series data and find that 

incident complexity can be a significant factor used for predicting suppression demand. In their 

model, total resource demand is defined as a dichotomous variable, found by splitting the 

national preparedness level into “high preparedness” (levels 4 and 5) and “low preparedness” 

(levels 1, 2, and 3). Predictions of the demand for suppression resources at the national scale find 

that the number of Type 2 incidents increase the probability of high resource demand by 0.04 to 

0.5 probability points while the number of Type 1 incidents increase the probability of high 

demand by 0.63 to 0.67 probability points (Cullen et al., 2020). These effects are much larger for 

models of resource demand in the Pacific Northwest states of Oregon and Washington (0.125 to 

0.137 for the number of Type 2 incidents and 0.102 to 0.136 probability points for the number of 

Type 1 incidents). Other studies have investigated the behavioral aspects of highly complex 

incidents, suggesting that decision biases or satisficing behavior may be prevalent during 
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complex and time-pressured decision environments (Wilson et al., 2011; Wibbenmeyer et al., 

2013; Hand et al., 2015; Rossi and Kuusela, 2019; Wibbenmeyer et al., 2019). These biases can 

lead to a larger demand for suppression effort in an attempt to meet management objectives.   

“Budgetary institutions” are the rules, norms, and legal precedents that govern the 

allocation of scarce public budgets (Von Hagen, 2007; Raudla, 201). The fire management 

literature has identified two forms of institutional rules which are hypothesized to influence 

manager suppression choices: 1) “let-burn” policies which vary across state and federal 

jurisdictions and which relate to the cause of a wildfire ignition (Young et al., 2020), and 2) 

reserve funding mechanisms for wildfire suppression (Ingalsbee, 2010).  

With regard to let-burn policies, an important goal of the National Cohesive Wildfire 

Management Strategy (WFLC, 2009a) was to re-enforce the possibility for land management 

agencies to effectively engage in strategies that allow wildfires to burn in order to capture 

benefits to fire-dependent natural resources (North et al., 2015). This policy was reinforced 

through the guidance and implementation of the 2009 FLAME Act (WFLC, 2009b). Prior to the 

development of this policy, agencies had little authority to adopt strategies that allowed wildfires 

to burn in order to capture benefits to natural resources. While it is more feasible for federal land 

management agencies to adopt “let-burn” strategies, state and local land management agencies 

face intense pressure to aggressively suppress wildfire. This is due primarily to statutory 

constraints at the state level, driven primarily by the fact that state agencies rely heavily on 

revenue from resource extraction and recreation. Additionally, state agencies manage more 

fragmented land holdings, which are often intermixed with areas of private lands, rendering a 

less aggressive suppression strategy infeasible. For example, in Oregon, all wildfires are to be 

kept to the smallest possible size and full suppression strategies are always to be adopted by 
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incident managers (ODF, 2017). Despite these differences across federal and state agencies, it is 

also possible that federal agencies have not adequately taken advantage of this flexibility in 

wildfire policy (North et al., 2015; Thompson et al., 2017), rendering no true difference in the 

probability of adopting an aggressive suppression response across federal and state agencies 

before and after the implementation of the FLAME Act.  

A related budgetary institution that may influence suppression choices is the inter-agency 

rule regarding the management of human-caused ignitions under a “let-burn” strategy. Federal 

policy guidance stipulates that “initial action on human-caused wildfires will be to suppress the 

fire at the lowest cost with the fewest negative consequences with respect to firefighter and 

public safety” (WFLC, 2009b). Research has shown that the daily percentage of human-caused 

ignitions can be an important predictor of the demand for suppression resources and the national 

wildfire preparedness level, although the magnitude of the effect of human caused ignitions is 

uncertain (Cullen et al., 2020). “Saturated” linear probability models and logistic regression 

models (which use an unrestricted set of covariates) estimated using national data find a positive 

effect of human-caused ignitions on the preparedness level, while “information-rich” linear 

models (which use a restricted set of covariates) estimated using data from the Pacific Northwest 

and “information rich” logistic regression models estimated using national data find a negative 

effect of human-caused ignitions on the preparedness level (Cullen et al., 2020).  

Another important institutional factor driving suppression decisions is the budgeting 

practices which direct fire management funding (Donovan and Brown, 2005; Donovan et al., 

2008; Rossi and Kuusela, 2019).  Budgeting institutions define the rules over how public 

programs are funded and create norms about the use of these funds within a public agency (Von 

Hagen, 2007; Raudla, 2014). A primary example of such a mechanism was the annually 
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appropriated reserve accounts set up under the Federal Land Assistance, Management, and 

Enhancement (FLAME) Act of 2009. This legislation set up an additional account at the U.S. 

Treasury to be filled annually and used for wildfire suppression only under an emergency 

declaration. These declarations were only to be made on fires exceeding 300 acres or when 

annual appropriations were expected to be depleted over the next 30 days (Hoover and Lindsay, 

2017). The FLAME Act reserve funds were intended to diminish the need for agencies to borrow 

from non-fire accounts and for requesting off-budget funding (Hoover and Lindsay, 2017). The 

funds were annually budgeted for and allocated to federal land management agencies from Fiscal 

Year 2010 to Fiscal Year 2017 (see Figure 4.2). These accounts were distinguished from non-

appropriated supplementary funds allocated for fire suppression “as needed” throughout the 

fiscal year. During the period when FLAME funds were annually appropriated, agencies could 

access supplementary off-budget funding only after depleting annual Wildfire Management 

(WFM) appropriations plus annual FLAME reserve appropriations. This extra step required for 

accessing additional suppression funds was intended to encourage fiscal discipline with regard to 

wildfire suppression expenditures (Hoover and Lindsay, 2017).  
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Figure 4.2 - Annual FLAME Fund Appropriations to the U.S. Forest Service (USFS) and 

U.S. Department of the Interior (DOI), FY2010-FY2017.

 

 

However, in 4 of 8 years from 2010 to 2017, the FLAME funds were completely 

exhausted, rendering the need for additional off-budget financing. One stipulation on the use of 

the FLAME funds that may have contributed to this tendency to exhaust the FLAME funds is the 

regulatory rule regarding the termination of authority over the use of the FLAME funds (43 U.S. 

Code § 1748a). This rule requires the secretary of the overseeing agency to terminate the 

FLAME fund following three consecutive years without the agency’s withdrawal from the fund 

(or Congress’s appropriations into the fund). This may lead to a perverse incentive for fire 

managers to more frequently respond to wildfire with aggressive suppression tactics to avoid the 

removal of FLAME accounts in later years where wildfire activity is especially severe.  

In addition to this perverse incentive, economic models of suppression demand have 

demonstrated how the availability of additional funding above initial annual appropriations 

essentially serves to lower the effective marginal cost of suppression effort (Donovan and 
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Brown, 2005; Rossi and Kuusela, 2019), leading to an increased demand for suppression and a 

larger proportion of annual expenditures devoted to suppression programs in lieu of pre-

suppression programs (Rossi and Kuusela, 2019). The availability of reserve funds may be used 

to refill non-fire appropriated accounts that have been tapped to fund wildfire suppression, 

leading to an overall increase in suppression expenditures and a disruption in the funding 

available for non-fire related land management programs (Ingalsbee, 2010). This arises from the 

treatment of suppression reserve funds as a common pool resource, leading to depletion of the 

reserve funding pool as the effective marginal cost of funds to each user is diminished (Raudla, 

2014). 

The FLAME funds have been unfilled each year beginning in Fiscal Year 2018. However, 

the extent to which these funds were useful in implementing a more or less judicious use of 

annual WFM appropriations has been unaddressed in the fire management literature. Expenditure 

data available from the National Interagency Fire Center32 and resource demand data obtained 

from the Resource Ordering and Status System33 (ROSS) suggest that both suppression 

expenditures and the demand for some suppression resources increased in the years following the 

creation of the FLAME reserve accounts (see Table 4.1). We note a larger demand in higher cost 

suppression resources like air resources and ground crews during the post-FLAME years, 

although we see almost no change in average daily demand for bull dozers and a decline in 

average daily demand for fire engines. The availability of the FLAME funds or similar reserve 

funds may have an impact on suppression activity by measures of costs or resource demand, but 

whether the availability of these funds encouraged more frequent or less frequent “full 

 
32 https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf  
33 Air Resources are defined as all Large Airtankers, Smaller Aircraft, Type 1, Type 2 and Type 3 Helicopters. Ground 
Crews include all Type 1, Type 2, and Type 2 Initial Attack Crews or other crews utilized for low complexity 
incidents.  

https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf
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suppression” responses is not clear. No study, to date, has empirically estimated the impact of 

access to FLAME funds on suppression decisions or distinguished the effects of the FLAME Act 

from the 2009 fire policy guidance. This paper addresses this gap in the literature and provides 

additional evidence on the effects of other institutional and socioeconomic factors on suppression 

decisions in the western United States. 

 

Table 4.1 – U.S. Suppression Expenditures and Resource demand in western U.S. across pre- 

and post-FLAME Act years 

 Pre-FLAME years 

(FY2002-FY2009) 

Post-FLAME years 

(FY2010-FY2017) 

Average Annual U.S. 

Federal Agency 

Suppression Expenditures* 

USFS: $984.8 million 

DOI: $347.5 million 

USFS: $1.42 billion 

DOI: $379.8 million 

Average Daily Demand for 

Suppression Resources in 

the U.S.** 

Air Resources: 42.2 

Bull Dozers: 22.9 

Fire Engines: 24.7 

Ground Crews: 36.9 

Air Resources: 52.3 

Bull Dozers: 22.7 

Fire Engines: 11.6 

Ground Crews: 40.2 

Percentage of ICS-209 

reports recording a “full 

suppression” strategy in 

OR, WA, and CA*** 

 

91.5% 

 

89.5% 

*Includes all annual appropriates + FLAME Act reserve funds + additional supplementary 

appropriations. Figures exclude state agency suppression expenditures. Source: NIFC. 

**Data for year 2006 is not available, so pre-FLAME data reflects resource demand from 

January 2007 to September of 2009. 

***Sample data only available from June 2005 to December 2013. 

 

 

 

4.2. Random utility model 

We start with the continuous effort 𝑠𝑗𝑡 demanded by an incident manager 𝑗 observed at date 

𝑡. Managers seek to maximize their utility 𝑈𝑗𝑡(∙) while meeting a budget constraint by selecting 

the optimal effort level 𝑠𝑗𝑡
∗ . The following expression (3.1) characterizes an incident manager’s 

indirect utility following this demand for suppression:  
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𝑉𝑗𝑡
∗(𝐰𝑗𝑡, 𝐱𝑗𝑡, 𝜃𝑗𝑡) = maximize

𝑠𝑗𝑡∈[0,∞) 
{𝑈𝑗𝑡(𝑠𝑗𝑡; 𝐰𝑗𝑡 , 𝐱𝑗𝑡) 𝑠. 𝑡. 𝐶𝑗𝑡(𝑠𝑗𝑡; 𝐰𝑗𝑡, 𝐱𝑗𝑡) ≤ (1 + 𝜃𝑗𝑡)�̅�𝑗𝑡} 

(3.1) 

In equation (3.1), 𝐶𝑗𝑡(𝑠𝑗𝑡; 𝐰𝑗𝑡 , 𝐱𝑗𝑡) is the cost of adopting suppression strategy 𝑠𝑗𝑡 . The arguments  

𝐰𝑗𝑡 refer to exogenous climate or weather factors and the arguments 𝐱𝑗𝑡 refer to exogenous 

socioeconomic factors which effect the costs of suppression and a manger’s utility. We define 

𝜃𝑗𝑡 ∈ [0, ∞) as the proportion of each day’s available appropriations which are also available 

through a reserve funding mechanism. When 𝜃𝑗𝑡 = 0, all suppression expenditures are covered 

by available appropriations (�̅�𝑗𝑡), but when 𝜃𝑗𝑡 > 0, reserve funding of the amount 𝜃𝑗𝑡�̅� is also 

available and the total suppression cost becomes: �̅�𝑗𝑡 + 𝜃𝑗𝑡�̅�𝑗𝑡. The envelope condition (
𝜕𝑉𝑗𝑡

∗

𝜕𝜃𝑗𝑡
) for 

this constrained utility maximization problem provides a direct interpretation of the parameter 𝜃 

in eq. (3.1). When 𝜃𝑗𝑡  increases, a manager’s demand for suppression will increase if the budget 

constraint is binding. If the constraint is non-binding, an increase in the proportion of funding 

available through a reserve mechanism will not raise the demand for suppression.  

We can now define a threshold effort level �̅� over which managers will adopt a “full 

suppression” response. When 𝑠𝑗𝑡
∗ > 𝑠𝑗𝑡

𝑜 , then we would observe managers choose a full 

suppression strategy. Then, an incident manger’s utility from the threshold level effort is: 

𝑉𝑗𝑡
𝑜 (𝑠𝑗𝑡

𝑜 (𝐰𝑗𝑡, 𝐱𝑗𝑡 , 𝜃𝑗𝑡)) + 휀𝑗𝑡
𝑜 , where 휀𝑗𝑡

𝑜  is a random error term which captures unobserved factors 

contributing to a manger’s utility. If instead 𝑠𝑗𝑡
∗ ≤ 𝑠𝑗𝑡

𝑜 , we would observe manager 𝑗 select a 

“monitor (MN)” strategy, “point-protection (PP)” strategy, or a “confine (CF)” strategy 

(indicating a less-than fully aggressive suppression response since the managers utility from a 

full suppression response would not exceed the utility from lower suppression demand, 𝑉𝑗𝑡
∗ ≤

𝑉𝑗𝑡
𝑜). Then we can write the observed suppression choice as: 
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�̃�𝑗𝑡 = {
1                                   𝑖𝑓 FS 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛: 𝑉𝑗𝑡

∗ > 𝑉𝑗𝑡
𝑜 

0              𝑖𝑓 MN, PP, 𝑜𝑟 CF 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛: 𝑉𝑗𝑡
∗ ≤ 𝑉𝑗𝑡

𝑜 

Therefore, a probability model which isolates exogenous factors is given by: 

Pr(�̃�𝑗𝑡 = 1|𝐰𝑗𝑡, 𝐱𝑗𝑡 , 𝜃𝑗𝑡) = Pr(𝑉𝑗𝑡
∗ > 𝑉𝑗𝑡

𝑜) 

= Pr (𝑉𝑗𝑡
⋆ (𝑠𝑗𝑡

∗ (𝐰𝑗𝑡, 𝐱𝑗𝑡 , 𝜃𝑗𝑡)) + 휀𝑗𝑡
∗ > 𝑉𝑗𝑡

𝑜 (𝑠𝑗𝑡
𝑜 (𝐰𝑗𝑡, 𝐱𝑗𝑡 , 𝜃𝑗𝑡)) + 휀𝑖𝑗𝑡

0 ) 

= Pr (휀𝑗𝑡
0 − 휀𝑗𝑡

∗ < 𝑉𝑗𝑡
⋆ (𝑠𝑗𝑡

∗ (𝐰𝑗𝑡, 𝐱𝑗𝑡 , 𝜃𝑗𝑡)) − 𝑉𝑗𝑡
𝑜 (𝑠𝑗𝑡

𝑜 (𝐰𝑗𝑡, 𝐱𝑗𝑡, 𝜃𝑗𝑡))) 

(3.2) 

With this specification, we note that the FLAME Act’s implementation and the 2009 fire policy 

guidance may have served to increase the threshold level of suppression effort (𝑠𝑗𝑡
𝑜 ) required 

before a manager sees the utility in adopting a full suppression response. This would decrease the 

probability of a manager adopting full suppression. On the other hand, it may also be that the 

increase in the size of the reserve suppression budget raised the marginal utility of suppression, 

thereby leading to more frequent adoption of a full suppression response. From this specification, 

it is not clear a priori which of these two effects dominates. We therefore require an empirical 

estimation of the choice probability equation to draw inference about the magnitude and 

direction of this effect from the policy change. 

 

4.2.1. Specifications of the probability equation 

A benchmark econometric analysis of binary choice data on suppression strategies can 

begin with a pooled linear probability model (LPM), which is valid for conducting classical 

inference of average partial effects (Cameron and Trivedi, 2005, Ch. 14). We denote each report 

filed with the subscript 𝑖 and estimate the probability of adopting a full suppression response. 

The LPM is given in equation (3.3).  
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Pr[�̃�𝑖 = 1|𝐱𝑖, 𝐰𝑖 , 𝜃𝑖] = 𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑖 +

𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 + 𝛼
6
𝑂𝑅𝑖 + 𝛼7𝑊𝐴𝑖 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 ∗

𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾6𝑂𝑅𝑖 ∗

𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾7𝑊𝐴𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝐰𝑖
′𝛃 + 휀𝑖. 

 (3.3) 

This paper is primarily interested in the variable 𝑓𝑙𝑎𝑚𝑒𝑖, which is a dummy variable 

indicating if the ICS-209 report was filed in the pre-FALME period (FY2005-FY2009) or the 

post-FLAME period (FY2010-FY2014). This variable is interacted with each of the 

socioeconomic, weather and climate covariates to determine if these factors had a greater or 

lesser effect on suppression probability following the FLAME Act’s implementation. These 

other variable definitions and summary statistics are provided in Table A.1. We assume 

independence in the LPM between the unobserved factors contributing to the suppression 

decision and the observed factors (such as ability, experience managing fires, risk tolerance, the 

contracting or employing agency, or the manager’s dispatch location): E[휀𝑖|𝐱𝑖, 𝐰𝑖]. We can 

interpret the 𝛾𝑘 individually as the partial effects of covariates in the post-FLAME Act years on 

the probability of choosing a “full suppression” response. Since the availability of FLAME 

reserve funds does not span the entire dataframe, the coefficients 𝛾𝑘 enable a joint hypothesis test 

which can be used to determine the effect of the budget intervention on the partial effects. Under 

the null hypothesis of a Chow test for structural change across time, the joint effects of the  𝛾𝑘  

are zero, indicating that the FLAME Act had no significant effect on the probability of adopting 

a suppression strategy.  

𝐻0: 𝛾1 = 𝛾2 = ⋯ = 𝛾7 = 0 

𝐻𝐴: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛾𝑘 ≠ 0 
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(H.1) 

The test statistic for (H.1) is distributed F with (𝑁-2(𝑘+1)) and (𝑘+1) degrees of freedom. A 

rejection of the null hypothesis in test (H.1) would indicate that the policy changes created by the 

FLAME Act altered the effects that socioeconomic factors and climatic factors had on 

suppression decisions in the western United States.  

Support for other alternative hypotheses can be found by subjecting the coefficients 𝛼𝑗  to 

individual or joint hypotheses which, under the null, assume the population coefficients 𝛼𝑗 are 

either individually or jointly no different from zero. A rejection of these null hypotheses provide 

evidence that socioeconomic and institutional factors impact the suppression decision. From a 

series of joint hypotheses, we can determine if socioeconomic factors matter jointly in 

determining suppression decisions. Separately, we can test the joint significance of coefficients 

relating weather and climate variables to suppression decisions. These tests may help to 

determine if socioeconomic factors or climate and weather factors were more important drivers 

of suppression decisions over the course of the sample period.  

While valid for conducting inference of average marginal effects, the LPM (3.3) has several 

drawbacks, including heteroskedasticity and predicted probabilities which fall outside the [0,1] 

range. However, the estimated average partial effects from the linear probability model estimated 

using Ordinary Least Squares are consistent, and so provide a solid benchmark for comparing 

partial effects from alternative nonlinear models. Two commonly used nonlinear specifications 

include the probit model and the logit model. The probit model is: 

Pr[�̃�𝑖 = 1|𝐱𝑖, 𝐰𝑖, 𝜃𝑖] = Φ(𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑖 +

𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 + 𝛼6𝑂𝑅𝑖 + 𝛼7𝑊𝐴𝑖 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 ∗
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𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 +

𝛾6𝑂𝑅𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾7𝑊𝐴𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝐰𝑖
′𝛃), 

(3.4) 

where Φ(𝑧) is the standard normal cumulative density function (CDF). The logit model is: 

Pr[𝑠𝑖 = 1|𝐱𝑖, 𝐰𝑖, 𝜃𝑖] = Λ(𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑖 +

𝛼5𝑂𝑅𝑖 + 𝛼6𝑊𝐴𝑖 + 𝛼7ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 ∗

𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 +

𝛾6𝑂𝑅𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾7𝑊𝐴𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝐰𝑖
′𝛃). 

(3.5) 

Where Λ(𝑧) is the CDF of a logistic distribution.  

 Since the dependent variable is highly skewed (90.8 percent of the 𝑠𝑖 take on the value of 

1), estimated marginal effects may not have the greatest impact at a probability of 0.5 as they 

would under a symmetric probability distribution. The true probability distribution may not be 

symmetric since the probability of choosing suppression is very large in our sample, rendering 

the assumption of a symmetric probability distribution inappropriate (Chen et al., 1999). Data 

with this structure can impact the estimates of marginal effects since the greatest partial effect 

may not occur at the mean of the covariates (Nagler, 1994). We can apply a “Skewed Probit” 

model to conduct a simple hypothesis test which determines if this skewness is affecting the 

inferences drawn from the estimated coefficients (Niekerk and Rue, 2020; Chen et al., 1999). 

The skewed probit model is: 

Pr[�̃�𝑖 = 1|𝐱𝑖, 𝐰𝑖, 𝜃𝑖] = Ψ(𝛿, 𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 +

𝛼4ℎ𝑢𝑚𝑎𝑛𝑖 + 𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 + 𝛼6𝑂𝑅𝑖 + 𝛼7𝑊𝐴𝑖 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 +
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𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 ∗

𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾6𝑂𝑅𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾7𝑊𝐴𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝐰𝑖
′𝛃). 

(3.6) 

Where Ψ(𝛿, 𝑧) is the CDF of a half-normal distribution and 𝛿 is a shape parameter providing a 

measure of the degree of skewness. If 𝛿 = 0, the model collapses back to the standard Probit 

model in equation (3.3) (Chen et al., 1999; Lee and Sinha, 2019). If 𝛿 ≠ 0, marginal effects are 

well-approximated by a complementary log-log model, which also has an asymmetric link 

function (Chen et al., 1999). This model is: 

Pr[�̃�𝑖 = 1|𝐱𝑖, 𝐰𝑖]

= Π(𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑖

+ 𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 + 𝛼6𝑂𝑅𝑖 + 𝛼7𝑊𝐴𝑖 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖

+ 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖

+ 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾6𝑂𝑅𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝛾7𝑊𝐴𝑖 ∗ 𝑓𝑙𝑎𝑚𝑒𝑖 + 𝐰𝑖
′𝛃) 

(3.7) 

The complementary log-log model has a link function of Π(𝑧) = 1 − exp(− exp(𝑧)). The 

nonlinear models (3.4), (3.5), (3.6), and (3.7) are estimated using the maximum-likelihood 

method. 

The overall effect of the FLAME Act on suppression probability is also uncertain and can 

be inferred from observational data based on the difference in predicted probabilities (Long and 

Freese, 2014) across the pre-FLAME period (Pr(𝑠𝑖 = 1|𝑓𝑙𝑎𝑚𝑒𝑖 = 0)) and the post-FLAME 

period (Pr(𝑠𝑖 = 1|𝑓𝑙𝑎𝑚𝑒𝑖 = 1)). On the one hand, the FLAME Act encouraged less aggressive 

suppression strategies on federal lands and created an additional barrier before agencies could 

access additional reserve funds. On the other hand, the FLAME Act reserve funds increased the 
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size of available suppression appropriations through the creation of the reserve accounts, thereby 

relaxing existing budget constraints and raising the demand for suppression and encouraging 

more frequent adoption of a full suppression response. Whether or not this policy change served 

to increase or decrease the probability of adopting a full suppression response is investigated 

using an unpaired two-sample t-test with equal variances (H.2): 

𝐻0: ∆= 0, 

𝐻1: ∆≠ 0,  

𝐻2: ∆> 0,  

𝐻3: ∆< 0. 

(H.2) 

Here, the coefficient ∆= Pr(𝑠𝑖 = 1|𝑓𝑙𝑎𝑚𝑒𝑖 = 1) − Pr(𝑠𝑖 = 1|𝑓𝑙𝑎𝑚𝑒𝑖 = 0). The test statistic for 

(H.2) is distributed t with (N−2) degrees of freedom. If the assumption of a normal distribution 

of probabilities across each period is not satisfied, a non-parametric two-sample Wilcoxon rank-

sum test can be conducted, which does not rely on the assumption of a normal distribution in the 

pre- or post-policy probabilities or an assumption of equal variances of probabilities across 

periods. A rejection of the null hypothesis in test (H.2) in favor of either of the one-sided 

alternatives would suggest that the true probability of adopting a full suppression response was 

significantly larger (𝐻2) or smaller (𝐻3) following the budget intervention in fiscal year 2010. If 

there is evidence that the true difference in probabilities is positive, it would suggest that the 

Flame Act policy intervention had a positive impact on the probability of adopting a full 

suppression response. This would support the theory that the FLAME Act reserve funds led to a 

greater probability of engaging in full suppression strategies in lieu of confinement, point 

protection, or monitoring strategies. However, it may also support the idea that efforts to engage 
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in “let-burn” policies as laid out in the guidance for implementation of the Flame Act and were 

ineffective at achieving this goal. If instead there is evidence that the true difference in 

probabilities is negative, we would conclude that measures taken to encourage less aggressive 

suppression response following the FLAME Act were effective at decreasing the probability of 

adopting a full suppression strategy.  

Finally, we can estimate a specification which can accommodate unobserved manager 

heterogeneity in the choice model specification. The pooled probability models (3.3-3.7) do not 

account for the influence of characteristics specific to incident manager, which are unobserved in 

a sample of ICS-209 reports containing manager suppression choices. We can apply a linear 

panel data specification to estimate the average partial effects on suppression probability of the 

various factors that drive manager choice behavior (Cameron and Trivedi, 2005): 

�̃�𝑗𝑡 = 𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑗𝑡 + 𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 + 𝛼6𝑂𝑅𝑗𝑡

+ 𝛼7𝑊𝐴𝑗𝑡 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡

+ 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾6𝑂𝑅𝑗𝑡

∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾7𝑊𝐴𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝐰𝑗𝑡
′ 𝛃 + 𝑢𝑗 + 휀𝑗𝑡 

(3.8) 

In equation (3.8), 휀𝑗𝑡 is a random disturbance term with a mean of zero while 𝑢𝑗  represents the 

unobserved factors specific to an incident manger. These characteristics are assumed to be 

constant and unique to an incident manager (justifying the application of a fixed effects (FE) 

estimator) or are instead assumed to be randomly distributed across the population of incident 

managers (justifying the use of a random effects (RE) estimator), (Wooldridge, 2020). As with 

the pooled model specification, estimation of equation (3.8) with panel data enables a Chow test 

for structural change (H.1). 
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 To accommodate a similar test to (H.2) which controls for manager-level heterogeneity in 

the panel data structure, we can apply an FE logit model. However, there is a well-known 

incidental parameters problem associated with the FE logit estimator, leading to inconsistency of 

the estimated parameters (Greene, 2018). This issue prohibits the application of a fixed-effects or 

“within” transformation of model variables, since the manager-level unobservable are not 

removed when estimating a nonlinear model. However, we can instead apply the Correlated 

Random Effects (CRE) logit model, which uses the Mundlak (1978) transformations of the 

model variables to approximate the FE logit estimators M(Greene, 2018). The CRE logit model 

is written as: 

Pr[�̃�𝑖 = 1|𝐱𝑗𝑡 , 𝐰𝑗𝑡]

=  Λ(𝛼0 + 𝛼1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 + 𝛼2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 + 𝛼3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 + 𝛼4ℎ𝑢𝑚𝑎𝑛𝑗𝑡

+ 𝛼5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 + 𝛼6𝑂𝑅𝑗𝑡 + 𝛼7𝑊𝐴𝑗𝑡 + 𝛾0𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾1 ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡

+ 𝛾2𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾3𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾4ℎ𝑢𝑚𝑎𝑛𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡

+ 𝛾5ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾6𝑂𝑅𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝛾7𝑊𝐴𝑗𝑡 ∗ 𝑓𝑙𝑎𝑚𝑒𝑗𝑡 + 𝐰𝑗𝑡
′ 𝛃 + �̅�𝑗𝛅𝟏

+ �̅�𝑗𝛅𝟐 + 𝑢𝑗) 

(3.9) 

Here, the variables represented by the matrices in �̅�𝑗 and �̅�𝑗 are the group means of the 

socioeconomic factors and weather or climate factors, respectively. Equation (3.9) is estimated 

using maximum-likelihood with an adaptive Gauss-Hermite quadrature integration method 

(Naylor and Smith, 1982). 
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4.3. Data 
The dataset used for estimation of the pooled models (3.3-3.7) consists of 16,065 reports 

filed by incident managers overseeing fires in Oregon, Washington, and California from June of 

2005 to December of 2013. Around 70 percent of the reports were filed in California, 20 percent 

in Oregon, and the remaining 10 percent were filed in Washington. Suppression strategies are 

chosen by incident managers and these choices are recorded through publicly available ICS-209 

incident management forms. The data shows that 90.1 percent of managers in the sample never 

choose an alternative to a “full suppression” strategy across any of the reports they filed over this 

period. Each ICS-209 form contains information about the daily weather information 

(𝑡𝑒𝑚𝑝𝑖, 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 , 𝑟𝑒𝑙ℎ𝑢𝑚𝑖) on the date of the chosen suppression strategy. Many reports 

have missing information on this daily weather (see Table A.1). When considered in a model 

with other missing data (𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖), the estimation sample drops considerably to where perfect 

prediction is determined by some variables within the remaining observations. As discussed 

below, a larger estimation sample can be obtained by using monthly climate data available from 

the PRISM Climate Group (PRISM, 2020). 

The ICS-209 forms have been geo-referenced to each incident’s ignition point using the 

spatial Fire Occurrence Data (FOD) for the United States (Short, 2018). This allows each report 

filed by an incident manager to be linked to surrounding environmental or geographic 

characteristics of the decision environment that are not already recorded in the ICS-209 forms 

(such as the value of surrounding residential properties and the distance of each fire’s ignition 

point to the nearest zone designated as “wildland-urban interface”). Figure 4.3 shows a map of 

all 1,231 fire ignition locations across California, Oregon, and Washington from June 2005 to 



176 
 

 
 

December 2013. Table A.1 provides a description of each variable in the merged cross-sectional 

dataset, its source, and its summary statistics.34 

The data is cleaned and organized in four steps as follows.35 First, the incident 

management data from each suppression incident across all U.S. states is cleaned and prepared 

for linkage with other dataframes. The incident management dataframe contains information 

about the chosen suppression strategy (𝑠𝑖), the date (𝑡) which the report was filed, the day’s 

weather information (𝑡𝑒𝑚𝑝𝑖, 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖, 𝑟𝑒𝑙ℎ𝑢𝑚𝑖), the location of the incident’s ignition (if 

known), and the cause of the fire incident, if known (ℎ𝑢𝑚𝑎𝑛𝑖). Second, the distances from each 

fire’s ignition point are recorded and linked to the latitude and longitude coordinates listed in 

each ICS-209 report and a spatial data layer indicating zones of the “wildland-urban interface” 

(WUI) are also obtained (Radeloff et al., 2017; Martinuzzi et al., 2015). Distances from each 

ignition point (in thousands of meters) to the nearest WUI zone are calculated and then merged 

with the estimation dataframe (𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖). Third, a time series dataset providing information 

about the National Preparedness Level is obtained from the National Interagency Fire Center 

(NIFC) and linked to each of the reports listed in the estimation dataframe based on the date of 

the filed report (𝑃𝐿𝑖
ℎ). Finally, the ignition locations and dates are exported into a series of files 

that are used to obtain monthly climate data from the PRISM climate group (PRISM, 2020). The 

downloaded climate data files are then merged with the estimation dataset, providing information 

on average temperature (𝑚𝑡𝑒𝑚𝑝𝑖), precipitation (𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑖), minimum vapor pressure deficit 

 
34 A panel dataset can be aggregated using the daily decisions of managers in the dataset. An empirical application 
using this aggregated panel data is presented in Appendix B and the summary data used for these models is 
presented in Table B.1. 
35 See supplementary material for the Stata script used for cleaning and linking datasets. Data and script files are 
available from the author upon request.  



177 
 

 
 

(𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖), and maximum vapor pressure deficit (𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖) in the month when the fire’s 

ignition occurs.  

In the pre-FLAME time period, 8.2% of ICS-209 forms reported a fire-use strategy, while 

10.5% of forms reported a strategy other than full suppression in the post-FLAME time period. 

Around 72% of all reports were managed by federal agencies, and the remaining 29% by state 

agencies (this percentage is fell to around 70% in the post-FLAME time period). We also note 

that 31% of reports filed during the sample period occurred on days of high national 

preparedness. In both the pre- and post-FLAME periods, 31% of reports were managed during 

days with a high national preparedness level. Overall, 57% of reports were managed by Type 1 

or Type 2 incident management teams, but this percentage fell from 62% in the pre-FLAME 

period to 47% in the post-FLAME period. Ignitions known to be human-caused at the time of the 

filed report consisted of 13% of all reports filed, and this percentage was approximately equal 

across the pre- and post-FLAME periods. Consistent with the results presented by Cullen et al. 

(2020), our dataset finds a strong and statistically significant correlation between the national 

preparedness level (ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖) and human-caused ignitions (ℎ𝑢𝑚𝑎𝑛𝑖) (𝜒𝑑𝑓=1
2 = 105.92∗∗∗). 

Similarly, we find a strong and statistically significant correlation between incident complexity 

(𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖) and the preparedness level (𝜒𝑑𝑓=1
2 = 494.50∗∗∗). Therefore, omission of either 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 or 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑖 in a model seeking to estimate the effect of ℎ𝑢𝑚𝑎𝑛𝑖 can lead to 

finite-sample bias or inconsistency of the estimated parameters. We include all 3 covariates in 

each specification of the probability equation (3.2) alongside the other socioeconomic factors 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 and ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖. 
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Figure 4.3 -Map of Wildfire Ignition Points in California, Oregon and Washington (June 

2005-December 2013)  
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4.3.1. Manager-level panel data 

Using the date of the filed ICS-209 report as the time variable (𝑡) and a unique identifier 

for each incident commander managing the fire event (𝑗) can enable the panel data structure 

needed to estimate equation (3.8). The resulting unbalanced panel data enables the estimation of 

a suite of models that allows for unobserved variation unique to each incident commander to be 

controlled for in a regression model of suppression strategy choices. While an unbalanced panel 

dataset can be constructed from the pooled data in order to control for unobserved heterogeneity 

of each incident manager, caution should be used with before use of this aggregated information. 

The unbalanced panel can be constructed based on daily time-varying information (𝑡) and cross-

sectional information (𝑗). However, there are many instances in the dataset where a manager files 

more than one report on a single day (sometimes updating the chosen suppression strategy for 

that day or the daily weather variables). In these cases, a judgement must be made about which 

report to drop if daily-varying time information is needed to fit the manager-day panel data 

structure. Additionally, there is considerable judgement on behalf of the analyst about the correct 

link between reports filed by the same incident commander in cases where the incident 

commander does not consistently report their full name on each ICS-209 form. Managers often 

oversee more than one fire incident, sometimes in different regions and sometimes implementing 

different suppression strategies. However, their name is often not reported consistently across 

these incident reports. For these reasons, the set of reports included in the panel dataset 

(Appendix B) are a subset of the reports available in the pooled dataset (Appendix A).  

An attempt was made to overcome these issues to construct an unbalanced panel dataset 

with 1,658 days and 2,478 different incident commanders. Managers in the sample frame file 

4.7 reports on average, but some managers file as many as 126 reports. The data used to estimate 

panel data choice models are summarized in Appendix B, Table B.1. Some incident commanders 
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only file reports over a few of these days, while others may file several hundred reports across 

these days. In either case, there is considerable propensity for managers to “drop out” of the 

sample, and “drop back in.”  The propensity to “drop in and out” of the sample is likely a 

characteristic that is unique to an incident manager but unobserved (such as their experience, 

ability, risk tolerance, career choices, or reservation wage). This assumption supports the use of a 

fixed-effects estimator on the unbalanced panel since it allows for unobserved manager-specific 

factors to be correlated with the observable covariates, without sacrificing the efficiency of the 

remaining estimated parameters. If the reason for dropping in and out of the sample is unique to 

each incident manager and related to the included covariates in equations (3.3-3.9), it would 

prohibit the use of a random effects estimator with this data, since the random effects estimator 

assumes that 𝑐𝑜𝑣(𝑢𝑗 , 𝐱𝑗𝑡) = 0 (Wooldridge, 2020). It is unlikely for manager-specific 

unobservable characteristics to be unrelated with time-varying factors of interest that are 

included in the model (e.g. 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 , 𝑓𝑒𝑑𝑒𝑟𝑒𝑎𝑙𝑗𝑡). This is because federally-employed incident 

managers work under a different wage rate than non-federally contracted managers and 

managers of high complexity fire crews have different skills or managerial experience. 

Therefore, we expect a fixed effects estimator to provide a more consistent estimation of average 

partial effects, since these manager-specific unobserved factors are removed under the fixed 

effects transformation. However, a Hausmann test may indicate if there is a sufficient deviation 

between the fixed- and random-effects coefficients, rendering statistical support for the fixed-

effects specification if the null hypothesis of the test is rejected. To account for correlation of 

estimated residuals across managers, inferences made with the coefficients can be conducted 

using standard errors clustered at the manager level. However, inference should be made with 
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caution as considerable within-group correlation remains from persistence in choices (managers 

are likely to continue to adopt the strategy the selected on the previous day).  

 

4.4. Results 
The use of daily weather control variables (𝑡𝑒𝑚𝑝𝑖, 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖, 𝑟𝑒𝑙ℎ𝑢𝑚𝑖) in addition to 

the monthly climate controls (𝑚𝑡𝑒𝑚𝑝𝑖, 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑖, 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖, 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖) in the specification 

of equation (3.2) is problematic due to missing data and a reduction in the estimation sample. A 

restricted model which includes only the monthly climate variables yields a larger estimation set 

(N=15,577), compared to an unrestricted model where daily weather variables are also included 

(N=11,662). As with the pooled data models, the panel models are estimated with missing 

observations (N=8,251) due primarily to missing weather information in the ICS-209 forms. 

Panel data choice models estimated without the daily weather controls provides a larger 

estimation set (N=11,610).  

We summarize the preferred model for each of the specifications in Table 4.2 

(unrestricted pooled data model, restricted pooled data model, unrestricted linear panel data 

model, and restricted linear panel data model). We refer to these models when interpreting our 

results but refer readers to Appendices A and B for further model comparisons and hypothesis 

tests used to narrow our focus on the set of models presented in Table 4.2. 
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Table 4.2 – Estimated Marginal Effects from Binary Choice Models+++ 

 Pooled Data Models Panel Data Model 

Dep. Variable: 𝑠𝑖 𝑠𝑖 𝑠𝑗𝑡 𝑠𝑗𝑡 

Coefficient Logit 

(unrestricted) 

Complementary 

log-log 

(restricted) 

CRE Logit 

(unrestricted) 

CRE Logit 

(restricted) 

Intercept - - - - 
 

ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡 -0.41*** 
(0.06) 

-0.01 
(0.06) 

0.11 
(0.15) 

0.24* 
(0.10) 

ln 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡 0.03** 
(0.01) 

0.02* 
(0.01) 

0.03** 
(0.01) 

0.01 
(0.01) 

ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡 0.03* 
(0.01) 

0.02 
(0.01) 

0.00 
(0.02) 

-0.03* 
(0.01) 

ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡 0.14*** 
(0.02) 

0.01 
(0.02) 

0.11** 
(0.04) 

-0.02 
(0.03) 

ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡 0.03* 
(0.01) 

- 0.01 
(0.01) 

- 

ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 0.01 
(0.00) 

- 0.00 
(0.02) 

- 

ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 0.02** 
(0.01) 

- 0.00 
(0.01) 

- 

ln 𝑒𝑙𝑒𝑣𝑗𝑡 -0.24*** 
(0.02) 

-0.18*** 
(0.01) 

-0.09*** 
(0.03) 

-0.06** 
(0.02) 

ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 -0.04*** 
(0.01) 

-0.03*** 
(<0.01) 

-0.03** 
(0.01) 

-0.01 
(0.01) 

ℎ𝑢𝑚𝑎𝑛𝑗𝑡 0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 -0.08*** 
(0.02) 

-0.06*** 
(0.01) 

-0.07*** 
(0.02) 

-0.08*** 
(0.02) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 0.10*** 
(0.01) 

0.08*** 
(0.01) 

0.06*** 
(0.01) 

0.04*** 
(0.01) 

𝑂𝑅𝑗𝑡 0.01 
(0.01) 

0.03*** 
(0.01) 

-0.02 
(0.02) 

-0.02 
(0.01) 

𝑊𝐴𝑗𝑡 -0.03** 
(0.01) 

-0.05*** 
(0.01) 

0.00 
(0.01) 

-0.03 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 0.35*** 
(0.02) 

1.29*** 
(0.28) 

-0.85 
(0.63) 

0.35*** 
(<0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡  -0.17 
(0.10) 

-0.59*** 
(0.09) 

-0.54* 
(0.21) 

-0.58*** 
(0.17) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡  0.02 0.02* -0.02 0.00 
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(0.01) (0.01) (0.02) (0.01) 
𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡 0.05** 

(0.02) 
0.06*** 
(0.01) 

0.08** 
(0.03) 

0.07*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡  0.12** 
(0.04) 

0.26*** 
(0.03) 

0.15** 
(0.05) 

0.21*** 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡  -0.12*** 
(0.03) 

- -0.02 
(0.02) 

- 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 0.01 
(0.01) 

- 0.00 
(0.01) 

- 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 -0.03** 
(0.01) 

- 0.01 
(0.01) 

- 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑒𝑙𝑒𝑣𝑗𝑡  0.15*** 
(0.02) 

0.10*** 
(0.02) 

-0.06 
(0.04) 

0.06* 
(0.03) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 0.04*** 
(0.01) 

0.02*** 
(0.01) 

0.01 
(0.01) 

-0.01 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑢𝑚𝑎𝑛𝑗𝑡  -0.03 
(0.02) 

-0.06** 
(0.01) 

0.05*** 
(0.02) 

0.04* 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.01 
(0.01) 

0.01 
(0.01) 

0.03* 
(0.01) 

0.04** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 0.06 
(0.05) 

0.02 
(0.02) 

0.02 
(0.04) 

-0.01 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 -0.15*** 
(0.02) 

-0.09*** 
(0.01) 

-0.08*** 
(0.02) 

-0.04** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑂𝑅𝑗𝑡 -0.05** 
(0.02) 

-0.08*** 
(0.01) 

-0.02 
(0.02) 

-0.04 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑊𝐴𝑗𝑡 0.05*** 
(0.01) 

0.06*** 
(0.01) 

0.02 
(0.03) 

0.03 
(0.02) 

Chow test for structural 

change across time (H.1) 
𝜒15

2 = 
299.74*** 

𝜒12
2 = 

385.67*** 
𝜒2(12) = 
52.94*** 

𝜒12
2 = 

90.64*** 
Unpaired two-sample t-test 

of total effect of 

policy change (H.2) 

∆̂=-0.02 
𝑡∗(11660) = 

-5.82*** 

∆̂=-0.02 
𝑡∗(15575) = 

-10.36*** 

∆̂=-0.03 
𝑡∗(8249) = 
-15.17*** 

∆̂=-0.04 
𝑡∗(11608) = 

-19.88*** 
Two-sample Wilcoxon 

Rank-sum test (H.2) 
𝑧∗ = 

35.14*** 

𝑧∗ = 
30.55*** 

𝑧∗ = 
13.94*** 

𝑧∗ = 

18.99*** 

Log-Lik. LL(32)= 
-1831.05 

LL(26)= 
-2892.68 

LL(64)= 
-683.78 

LL(52)= 
-1110.85 

Obs. 11,662 15,577 8,251 11,610 
*p<0.05; **p<0.01; ***p<0.001 

+++ Marginal effects for continuous covariates are calculated as Average Partial Effects (APE): 

𝑁−1 ∑ 𝑔(�̂�0 + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)�̂�𝑗𝑖 . Marginal effects for the 𝑗𝑡ℎ binary covariate represent the 

average difference in probabilities from a change in the binary indicator: 𝑁−1 ∑ {𝐺(�̂�0 +𝑖

�̂�𝑗(𝑥𝑗 = 1) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�) − 𝐺(�̂�0 + �̂�𝑗(𝑥𝑗 = 0) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)}. 



184 
 

 
 

 

4.4.1. Pooled data model results 

 The estimated skewed probit model (3.5) finds no evidence of an asymmetric probability 

distribution when the daily weather controls are included (𝛿 = 0) but finds evidence of an 

asymmetric probability distribution when they are omitted (𝛿 = 2.36). Therefore, the estimated 

average partial effects displayed in Table 4.2 are best estimated by a probit or logit model if the 

unrestricted specification is preferred but are better approximated by a complementary log-log 

model if the restricted specification is preferred. In either case, the average marginal effects of 

the LPM (presented in Appendix A, Tables A.2 and A.3) are similar to the partial effects 

obtained using the nonlinear probability models.  

A test of the joint significance of interactions with the 𝑓𝑙𝑎𝑚𝑒𝑖 variable (hypothesis (H.1)) 

provides evidence to support the alternative hypothesis (𝐻𝐴) of a structural break after the 

implementation of the Flame Act in fiscal year 2010. That is, we find evidence to support the 

existence of a change in the slope parameters describing the data-generating process across pre- 

and post-FLAME Act time periods. We also reject the null hypothesis of (H.2) using predicted 

probabilities from both the unrestricted logit model, and again from the restricted complementary 

log-log model. From these tests, we conclude that there is evidence that the FLAME Act’s 

implementation, beginning in 2010, had a negative impact on the expected probability that a 

manager selected a full suppression response.  

We conduct a simple placebo test on both the restricted and unrestricted models and find 

that after re-defining the post-policy period as FY2009 to FY2014, we still find an effect of the 
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intervention on the expected choice probability (reject the null of hypothesis (H.2)).36 However, 

we do find evidence to reject the null hypothesis of (H.1) under this definition of the post-policy 

time period,37 indicating that there was a structural change following the 2009 policy guidance. 

The placebo policy intervention had a similar effect on the probability of adopting full 

suppression as did the FLAME Act intervention. This seems to disagree with the results 

presented by Young et al. (2020), who also assume the existence of a policy intervention 

following the release of the February 2009 fire policy guidance and find limited to no effect of 

the 2009 policy guidance on fire size or duration. However, Young et al (2020) do not conduct a 

placebo test to determine if the implementation of the FLAME Act had a similar impact on fire 

management outcomes about a year after the 2009 policy guidance was released. Changing the 

assumed timing of the structural break to the post-FLAME Act period (FY2010 to FY2014) 

provides a more complete picture of the effect of the combined fire policy intervention during 

occurring during the 2009-2010 period. While the 2009 fire policy guidance and the FLAME 

Act had a significant impact on the expected probability of choosing a full suppression response, 

rendering identification of the FLAME Act’s effect inconclusive, these two policies altered the 

suppression environment such that socioeconomic factors and weather factors played different 

roles after their implementation. 

For example, we learn from the 𝑓𝑙𝑎𝑚𝑒𝑖 interaction terms about the nature of this 

structural change in the FY2010 to FY2014 time period. For example, the estimated unrestricted 

regression model estimates that a 10 percent increase in an incident’s distance from the WUI will 

 
36 Application of the restricted complementary log-log model yields a test statistic of 𝑧∗=45.52***, while the 
unrestricted logit model estimates a 𝑧∗=47.52***. These results indicate a rejection of the null hypothesis of (H.2). 
Both of these tests suggest that the expected difference in suppression probabilities before and after the 2009 
policy guidance was statistically distinguishable from 0. 
 
37The estimated test statistic for (H.1) under the placebo definition of the policy intervention is:  𝜒12

2 = 305.40∗∗∗.  
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decrease the probability of suppression by 0.3 probability points, on average. This supports the 

hypothesis that incident managers are less likely to suppress fires burning at greater distances 

from high-valued assets in the WUI, but are more likely to engage in full suppression on fires 

burning closer to residential values at risk, and so may be averse to downside risks (Rossi and 

Kuusela, 2020). However, following the passage of Flame Act, this effect is reduced: a 10 

percent increase in an incident’s distance from the WUI will decrease the probability of 

suppression by 0.1 probability points. With the budget interventions introduced by the Flame 

Act, managers were still less willing to suppress fires when they burn farther from the WUI, 

however the availability of the reserve funds may have reduced their willingness to do so. In 

other words, larger distances from the WUI were not as meaningful in lowering the probability 

of adopting full suppression as they were in the pre-FLAME period. 

These effects are evident in Figure 4.4, which uses the predictions from the estimated 

restricted model in Table 4.2 to show the relationship between the predicted probability of 

adopting a full suppression response and the incident’s distance from the WUI for each of the 

three states included in the sample. Notably, states were affected differently by the Flame Act. 

Relative to California, Oregon experienced a greater probability of adopting full suppression 

prior to the policy change but experienced a lower probability of adopting full suppression after 

the policy change. We also see in Figure 4.4 that California was relatively sensitive to a change 

in distance from the WUI during the pre-FLAME years, meaning that greater percentage 

increases in distance had a larger effect on the probability of adopting a full suppression 

response. However, this sensitivity fell dramatically at larger distances following the 

implementation of the FLAME Act.  
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Figure 4.4 - Effects of an Incident’s Distance to the WUI on the probability of adopting a Full 

Suppression response before and after the implementation of the Flame Act 

 

This estimated relationship is further broken up into federally- and non-federally 

managed incidents (as illustrated in Figure 4.4 by the difference between panels A and B vs. 

panels C and D) and across the pre- and post-Flame Act time periods (panels A and C vs. panels 

B and D). Overall we estimate that relative to state-managed incidents, the probability of 

adopting a full suppression response on federally managed incidents is 0.08 probability points 

lower, on average. This effect of federally managed incidents was no lower following the 

implementation of the FLAME Act.  This result illustrates the difference in approaches to fire 

management policy across federal and state land management agencies, but suggests the FLAME 

Act was ineffective at encouraging fewer full suppression responses.  
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However, the model estimates that both federal and non-federal agencies were less 

sensitive to changes in an incident’s distance from the WUI following the change in policy. This 

influenced some states’ capacity to let fires burn when incidents occurred at greater distances 

from the WUI. Specifically, we estimate that following the policy change, Washington 

experienced a relatively lower probability of a manager adopting a full suppression response 

when incidents occurred relatively closer to the WUI (within about 7,389 meters for state 

managed incidents and within 3,004 meters for federally managed incidents), but they 

experienced a relatively higher probability of adopting a full suppression response when 

incidents occurred farther from the WUI (at distances greater than 7,389 meters for state 

managed incidents and at distances greater than 3,004 meters for federally managed incidents). 

In contrast, incident managers in Oregon were less likely to adopt a full suppression response on 

both state and federally managed incidents following the policy change. On average, the FLAME 

Act had no effect on the probability of choosing a full suppression response (H.2), but we see 

that this total effect from the policy varies across states and over an incident’s distance from the 

WUI. The policy was most effective at lowering the probability of a manager adopting a full 

suppression response when incidents burn in and around the WUI, but the policy may have 

encouraged greater reliance of full suppression strategies at distances farther from the WUI in 

some regions.  

  We find evidence that under our definition of incident complexity, a higher complexity 

can lead to an increase in full suppression adoption. Incidents classified as Type 1 or Type 2 

incident complexity (which are managed by Type 1 or 2 incident managers) increase the 

probability of adopting a full suppression approach by an estimated 0.05 probability points. 
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However, the FLAME Act had no effect on incident complexity’s capacity to increase the 

probability of adopting a full suppression response.  

We also find some evidence that other institutional factors are important determinants for 

explaining suppression choices. The pooled data models estimate that a manager’s knowledge 

that an incident is human-caused will increase the probability that managers choose to adopt a 

full suppression strategy by 0.04 probability points, on average (as estimated by both the 

restricted and unrestricted models). The unrestricted logit model finds no evidence that the 

FLAME Act had any effect on a human-caused fire’s capacity to induce more frequent adoption 

of a full suppression response. However, the restricted model estimates that following the 

FLAME Act, human-caused ignitions had no effect on a manager’s likelihood to choose a full 

suppression strategy.  

However, we find strong effects of the national preparedness level in both the pre- and 

post-Flame time periods. The models estimate that the probability of selecting a full suppression 

strategy increases during times of high-resource demand as measured by the national 

preparedness level (after controlling for climate and weather factors that may correlate strongly 

with preparedness level). The restricted complementary log-log model (Table 4.2) finds that if 

the national preparedness level is 4 or 5 (indicating high preparedness and strong demand for 

suppression resources), the probability of adopting a full suppression response increases by 0.10 

points. However, following the FLAME Act, this effect falls to 0.02 points. The unrestricted 

logit model (Table 4.2) estimates a similar effect (an increase of 0.10 points in the pre-Flame 

period and a much smaller effect of 0.02 points in the post-Flame period). This result suggests 

that the Flame Act may have been able to smooth-out resource demand across jurisdictions 

through improved allocation and resource sharing, as individual managers became less likely to 
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adopt a full suppression response following the FLAME Act when resources were in high 

demand elsewhere in the country.  

 Monthly climate data was also an important determinant of the probability of selecting a 

full suppression strategy over the sample period. A 10 percent increase in the monthly minimum 

vapor pressure deficit, increased suppression probability by between 0.3 points, on average, 

while a 10 percent increase in the monthly maximum vapor pressure deficit increased 

suppression probability by between 1.4 points. However, following the FLAME Act a 10 percent 

increase in monthly maximum vapor pressure deficit increased suppression probability by 2.6 

points. This supports the intuitive claim that the probability of adopting full suppression was 

larger under drier conditions. The unrestricted logit model (Table 4.2) estimates that a 10 percent 

increase in monthly temperature decreased suppression probability by 4.1 points, on average. 

The restricted logit model (Table 4.2) estimates a slightly larger effect of 3.7 points. Both models 

estimate that this effect increased to 5.9 probability points following the FLAME Act’s 

implementation, although this post-policy effect is only significant under the restricted model 

specification. The overall negative effect of monthly temperature may be explained by an 

incident manager’s increased willingness to let fires burn to avoid heat-exhaustion or injury to 

firefighters under high-temperature conditions, and instead focus more on full suppression when 

conditions ae cooler. The pooled models in Table 4.2 estimate that a 10 percent increase in 

monthly precipitation increased suppression probability by 0.3 probability points (unrestricted 

model) or 0.2 probability points (restricted model). This further supports the idea that managers 

had a tendency to focus on suppression when conditions were more favorable (wetter) and focus 

on other management operations like evacuations when precipitation conditions were less 

conducive (drier) for carrying out aggressive suppression operations.  
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The unrestricted logit model includes daily weather controls (𝑑𝑡𝑒𝑚𝑝𝑖, 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖,

𝑟𝑒𝑙ℎ𝑢𝑚𝑖). The model estimates that daily temperature and the relative humidity measure taken 

during the time of the filed reports increased the probability of suppression in the pre-FLAME 

period, but decreased the probability of suppression in the post-FLAME period. Additionally, we 

find joint significance of the daily weather controls, indicating that when considered together, 

daily temperature, windspeed, and the day’s relative humidity measure can significantly impact a 

manager’s suppression decision.  

 

4.4.2. Panel data model results 

 We reject the null hypothesis of a Breusch-Pagan Lagrange Multiplier test, indicating that 

individual-level random effects are significant under the assumption of a linear specification for 

equation (3.2).  Therefore, the RE estimator provides a significant improvement over OLS in 

terms of its ability to control for manager-specific factors. However, based on the Hausman test, 

the estimated coefficients of the FE specification are statistically different from those of the RE 

specification. This agrees with the rejection of the null hypothesis from a test of the joint 

significance of Mundlak terms included as part of the CRE logit estimator (in both the restricted 

and unrestricted specifications). Therefore, we conclude that the FE estimator is preferred for 

analyzing magnitude of average partial effects of model variables, although we caution against 

using the FE estimator to draw statistical inference since the model suffers from 

heteroskedasticity. In what follows, we use the partial effects calculated using the CRE logit 

estimator (presented in Table 4.2).  

The CRE logit estimator finds strong evidence of a structural break following the 

FLAME Act, but there is also an estimated difference of a structural break under the placebo 
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intervention period (FY2009 to FY2014).38 This rejection of the null hypothesis in (H.1) agrees 

with the results from the pooled models. However, the nonlinear panel data model rejects the 

null hypothesis in (H.2) and finds evidence to support alternative hypothesis 𝐻3, under both the 

initial treatment period (FY2010-FY2014) and the placebo treatment period (FY2009-

FY2014).39 This suggests that either the FLAME Act served to decrease the probability of 

adopting a full suppression response, or that the 2009 policy guidance was effective at 

encouraging let-burn strategies and this outweighed any positive effects introduced by the 

accessibility of reserve funds available under the FLAME Act beginning in FY2010.  

The unrestricted CRE logit estimator finds that a 10 percent increase in a fire’s distance 

from the WUI decreases the probability of choosing suppression by 0.3 probability points, on 

average. The restricted CRE logit estimator estimates that this effect is a reduction of 0.1 

probability points but is significant at only the 6 percent level. This effect is slightly smaller than 

what was estimated from the pooled data models. In contrast to the pooled models, the CRE logit 

estimator finds limited evidence that the Flame Act intervention increased or decreased the effect 

of a fire’s distance from the WUI. The panel models find that there is an increase in the size of 

the average effect of distance from the WUI in lowering the frequency of adoption of “let-burn” 

strategies occurring on state-managed incidents, although this effect is very small. However, 

there was a decrease in the capacity for distance from the WUI to lower the probability of 

adoption full suppression on federally managed fires following the Flame Act’s implementation. 

The unrestricted model finds an estimated marginal effect of adopting full suppression that was 2 

 
38 Using the restricted CRE logit model, the estimated test statistic for (H.1) under the placebo definition of the 
policy intervention is:  𝜒12

2 = 74.75∗∗∗. 
39 Using the restricted CRE logit model, the estimated test statistic for the two-sample Wilcoxon rank sum test 
(H.2) under the placebo definition of the policy intervention is:  𝑧∗ = 34.45∗∗∗. Using the unrestricted model, the 
test statistic is: 𝑧∗ = 27.02∗∗∗. 
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percentage points lower for federally managed incidents relative to state managed incidents, on 

average, but following the FLAME Act this difference vanished. This can be seen in Table 4.3, 

where the average marginal effects of ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡  as estimated by the unrestricted CRE logit 

model are listed for state- and federally-managed incidents in the pre- and post-FLAME periods. 

The policy change was effective at reducing the probability of full suppression on state-managed 

fires at increasing distances from the WUI but raised the probability of full suppression at larger 

distances from the WUI on federally-managed fires. These effects are very small in magnitude, 

potentially reflecting the counteracting effects of the 2009 policy guidance.  

Table 4.3 - Average marginal effects of the natural logarithm of an incident’s distance to the 

WUI on state and federally managed incidents in the pre- and post-FLAME Act time periods 

Unrestricted Model 

(N=8,251) 

Pre-FLAME years 

(FY2005-FY2009) 

Post-FLAME years 

(FY2010-FY2014) 

State-managed incidents -0.00 

(<0.01) 

-0.01** 

(<0.01) 

Federally-managed incidents -0.02** 

(<0.01) 

-0.01** 

(<0.01) 

 
*p<0.05; **p<0.01; ***p<0.001 

As with the pooled data models, we also find evidence from the CRE logit estimator that 

other socioeconomic and institutional factors were important determinants for explaining 

variation in suppression choices. The estimated panel data models find that a manager’s 

knowledge of an incident being human-caused (ℎ𝑢𝑚𝑎𝑛𝑗𝑡) did not significantly affect the 

probability that managers choose to adopt a full suppression strategy before the policy 

intervention, but it raised the probability of adopting full suppression by 4 to 5 percentage points 

following the intervention. The CRE logit estimator provides evidence that the national 

preparedness level (ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡) had a large positive and statistically significant impact on 

suppression choices in the pre-FLAME period, but the FLAME Act significantly lowered this 
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effect. Individual managers were more likely to adopt a full suppression response during days 

with high resource demand prior to the FY2010 policy intervention, but this effect diminished to 

zero after the implementation of the FLAME Act. The magnitude and size of the effects of the 

national preparedness level are similar and consistent across the preferred pooled and panel data 

models. We also estimate that the probability of adopting full suppression is 4 percentage points 

higher, on average, for highly complex incidents (𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡) only during the post-FLAME Act 

period. This disagrees with the estimates from the pooled models which find a positive effect of 

incident complexity in the pre-FLAME period, but no effect of incident complexity in the post-

FLAME period.   

With regard to climate and weather factors in the panel data models, we estimate a 

similar magnitude and significance of the on the effects of drier conditions on the probability of 

choosing a suppression strategy in the post-FLAME period. The CRE logit specification using 

the manager-level panel finds a larger effect of the month’s maximum vapor pressure deficit: a 

10 percent increase in the monthly maximum vapor pressure deficit increases the probability of 

choosing suppression by 2.6 probability points, on average, in the post-FLAME time period 

(relative to a null effect in the pre-FLAME period). This result supports the claim that drier 

monthly conditions can significantly impact suppression choices, and that the percentage change 

in suppression probability from this effect is greater than that of social or institutional factors.  

 

4.5. Discussion and conclusion 
The estimated probability models in this paper find inconclusive evidence on the effects 

of the FLAME Act on the probability that managers choose to engage in full suppression of 

unplanned wildfires. While we find evidence that the FLAME Act implemented in Fiscal Year 
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2010 led to a reduction in the expected probability that an incident manager selects a full 

suppression response, we cannot distinguish this effect form the effect of an update to policy 

guidance released one year prior. The FLAME Act’s implementation in Fiscal Year 2010 

coincides with release of federal guidance of or wildfire policy during Fiscal Year 2009. 

Therefore, we may have detected a reduction in suppression probability due to the release of this 

guidance and this may have outweighed any positive impacts on suppression probability 

introduced by the accessibility of reserve funds available under the FLAME Act beginning in 

FY2010. The potential for counteracting effects may be why the reduction in suppression 

probability fell by only a small margin after fiscal year 2010. For this reason, evidence on the 

effects of reserve funding remains inconclusive. However, there is potential to expand the dataset 

and use a similar estimation framework to determine the effects of similar reserve funding 

mechanisms (such as those proposed under the Wildfire Disaster Funding Act) but which are not 

accompanied by an update to federal fire policy guidance.  

However, we do find critical differences in this predicted probability across federal and 

non-federally managed wildfire incidents. The FLAME Act and the 2009 policy guidance 

encouraged federal land management agencies to embrace the restoration of fire regimes at the 

landscape scale via “let-burn” strategies like “point protection”, “confinement”, and 

“monitoring” of an ongoing fire when weather and climate conditions were appropriate. 

However, these same policies were not adopted by state forestry agencies. State fire protection 

programs such as those funded by the Oregon Department of Forestry and the California 

Department of Forestry and Fire Protection still overwhelmingly support an aggressive 

suppression response, and the FLAME Act did not successfully encourage adoption of “let-burn” 

strategies at the state level. The FLAME Act actually served to decrease the effects on a greater 
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distance to human populations on the probability that federally managed incidents were managed 

under a full suppression response, but had the opposite effect on state-managed incidents.  

Our results show that the FLAME Act did achieve its objective of decreasing the 

probability of full suppression, although this effect is indistinguishable from the effects of the 

2009 fire policy guidance which was released around the same time. However, these effects were 

estimated to differ across states and distances of fires from the surrounding residential 

population. Other papers have found empirical evidence that a fire’s proximity to residential 

values at risk can significantly impact suppression demand (Bayham and Yoder, 2020), but the 

estimated models in this paper are the first to show how this impact can differ across state and 

federally managed fires and under alternative budgetary institutions. Federally managed 

incidents across all three western states in our sample were less likely to be managed under a full 

suppression strategy following the FLAME Act’s implementation. However, we estimate that 

this effect varied for fires managed closer to the wildland-urban interface. In Washington, fires 

were more likely to be managed under a full suppression strategy following the FLAME Act’s 

implementation when fires burned close to the wildland-urban interface. However, they were 

more likely to be managed under full suppression following the FLAME Act’s implementation 

when they burned farther from the wildland-urban interface. This perhaps reflects the effects of a 

change in the reserve funding mechanism, which may have encouraged less prudent use of 

annual suppression allocations on fires which were less threatening to surrounding populations. 

Only in Oregon did we estimate that the FLAME Act’s implementation decreased the likelihood 

of full suppression adoption across all distances from the wildland-urban interface.   

Our results also support those of Cullen et al. (2020) in that we find incident complexity to be 

a significant predictive factor affecting suppression choices under the probability models 
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estimated using pooled data. While Cullen et al. (2020) find that Type 1 and Type 2 incidents are 

important factors for predicting the national preparedness level, we find that they can also be 

important predictors of the choice to implement a full suppression strategy. Our results also 

support the findings reported by Bayham and Yoder (2020) in that we estimate a positive and 

statistically significant impact of a high national preparedness level on an individual a manager’s 

likelihood of adopting a full suppression response. This finding suggests that resource 

constraints, as measured by high national demand, can significantly impact suppression choices 

at the incident level. Specifically, we estimate that high national demand for suppression 

resources had the effect of raising an individual manager’s likelihood of adopting a full 

suppression response, but that the FLAME Act intervention significantly reduced this probability 

such that, on average, the national preparedness level had no effect on choices following the 

intervention. This result on the effects of the national preparedness level is robust across all of 

the preferred specifications of the choice probability equation.  

More importantly, we find strong and statistically significant effects of the monthly 

maximum vapor pressure deficit, indicating that drier conditions lead managers to more 

frequently adopt a full suppression response. We also find that landscape topography can be a 

key predictor of suppression response. Fires burning at high elevations are less likely to be 

managed under full suppression. These effects match our intuition about the effects of dryness 

and topography on suppression choices, but we find that these factors have a greater impact on 

suppression choices than many of our socioeconomic variables including the fire’s distance to 

the wildland-urban interface.  

Our statistical results do contain some important caveats that limit the interpretation of 

hypothesis (H.1), which finds evidence of a structural break in the marginal effects of 
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socioeconomic, weather, and climatic factors following the implementation of the FLAME Act. 

It is important to distinguish between a manager’s adoption of a full suppression strategy and 

their demand for suppression resources. While we may be tempted to conflate the adoption of a 

full suppression strategy with a greater demand for suppression resources, the estimated models 

in this paper do not suggest that more frequent adoption of a full suppression response 

necessarily implies a greater demand for suppression resources or larger expenditures on 

suppression effects. It may be that following the introduction of FLAME Act reserve funds, let-

burn strategies became less resource-intensive despite the more frequent adoption of a full 

suppression response in some regions. While total suppression expenditures and the demand for 

air resources and ground crews may have increased following the availability of the FLAME 

reserve funds, the effect of the FLAME Act intervention on these variables is beyond the scope 

of this paper. This paper finds that these increases are coupled with a corresponding tendency to 

engage in full suppression responses to unplanned fire events, but we cannot draw inference on 

the effects of the FLAME Act reserve funds on resource demand or suppression expenditures. 

This question is left for future research. 

To the extent that future research finds a greater demand for suppression resources 

alongside the adoption of a full suppression response, our model suggests that budgetary 

institutions can be a key factor that explains an increasing reliance in some regions on 

suppression effort relative to pre-fire risk mitigation or preparedness. Despite the increase in 

annual suppression appropriations under the new funding structure, the practice of off-budget 

financing for emergency suppression funding remains intact today (USFS, 2016). The 

development of a separate pool of funding, like the FLAME Act accounts or the new accounts 

set up under the Consolidated Appropriations Act, does not address the overutilization of 
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suppression resources and may complicate fire management for some state agencies. The reason 

for this may be the incentive structure imposed by enabling incident managers and their 

overseeing agency to engage in fire suppression without full regard to the costs of their actions. 

The new funding structure may exacerbate the problem by creating new accounts earmarked 

specifically for suppression, while other land management appropriations are held constant. 

Essentially, the off-budget financing of emergency fire suppression effort and the availability of 

reserve funds serves to lower the effective marginal cost of suppression, thereby raising an 

incident manager’s demand for suppression effort (Donovan and Brown, 2005; Lueck, 2012; 

Rossi and Kuusela, 2019). 

One potential source of bias from the suite of models presented in this paper arises from 

measurement error. In all models, we defined the distance from where the suppression choice is 

implemented to the nearest WUI zone as the Euclidean distance between the fire’s ignition point 

(where latitude and longitude information is available) and the nearest WUI zone. Fires often 

burn for weeks or months, spanning several thousand acres. Therefore, it is possible for this 

distance metric to be an inadequate proxy variable for the proximity between a WUI zone and 

the location where the manager’s suppression strategy is implemented. Furthermore, the 

Euclidean distance between these two points does not capture the effect of any natural fire breaks 

that would render a close distance from the fire less threatening to residential values-at-risk (such 

as rivers or other non-burnable terrain).  

Another source of measurement error relates to the assumption that values-at-risk of wildfire 

damage are solely residential. Our measure of value-at-risk is the distance of each incident’s 

ignition to the nearest wildland-urban interface zone, as defined by a 2010 measurement of 

housing density (Radeloff et al., 2017). Typically, managers weigh the importance of residential 
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values at risk against that of other ecosystem services, including sensitive wildlife habitat, timber 

resources, and watershed quality. Additional research may seek to estimate the probability 

models presented in this paper but instead redefine several of the model variables to better reflect 

the tradeoffs faced by incident managers.  
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Appendix A: Tables and Figures (Pooled Choice Data) 
TABLE A.1 - DESCRIPTIVE STATISTICS FOR POOLED INCIDENT REPORT DATA 

Variable Description Source Mean 

(St. Dev.) 

Min Max N 

𝑠𝑖 =1 if Full Suppression 

strategy, =0 otherwise 

ICS-209 0.9085 

(0.2883) 

0 1 16,065 

𝑤𝑖𝑛𝑑𝑖 Reported windspeed (mph) ICS-209 10.1764 

(19.4083) 

0 1525 13,011 

𝑑𝑡𝑒𝑚𝑝𝑖 Reported temperature 

(degrees F) 

ICS-209 75.9956 

(18.9782) 

0 

 

405.5 13,462 

𝑟𝑒𝑙ℎ𝑢𝑚𝑖 Reported relative humidity ICS-209 31.1110 

(19.6836) 

0 721 12,372 

𝑒𝑙𝑒𝑣𝑖  Elevation at ignition point 

(thousand ft.) 

PRISM 3.6354 

(1.9130) 

0 9.6520 16,065 

𝑚𝑡𝑒𝑚𝑝𝑖 Avg. temperature in month 

of ignition (degrees F) 

PRISM 66.5566 

(8.6518) 

20.0 90.0 16,065 

𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑖 Precipitation in month of 

ignition (inches) 

PRISM 0.5336 

(1.4719) 

0 56.0 16,065 

𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖 Minimum recorded vapor 

pressure deficit in month of 

ignition (hPa) 

PRISM 5.4651 

(2.9738) 

0.1 20.32 16,065 

𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖 Maximum recorded vapor 

pressure deficit in month of 

ignition (hPa) 

PRISM 30.6122 

(10.3509) 

1.23 68.34 16,065 

𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 Distance from ignition point 

to nearest wildland-urban 

interface zone (thousand 

meters) 

SILVIS 5.7044 

(6.1191) 

0 47.74 15,577 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 =1 if Type 1 or Type 2 

incident complexity, 

=0 otherwise 

ICS-209 0.5697 

(0.4951) 

0 1 16,065 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖  =1 if suppression response 

by federal agency, =0 

otherwise 

ICS-209 0.7173 

(0.4503) 

0 1 16,065 

𝑓𝑙𝑎𝑚𝑒𝑖 =1 if report filed during or 

after FY2010 when FLAME 

reserve funds were available, 

=0 otherwise 

ICS-209 0.3417 

(0.4743) 

0 1 16,065 

𝐹𝑌𝑖 Fiscal Year during which the 

incident occurred.  

ICS-209 2009 

(2.5059) 

2005 2014 16,065 

ℎ𝑢𝑚𝑎𝑛𝑖  =1 if ignition caused by 

human, =0 if by lightning or 

unknown cause 

ICS-209 0.1297 

(0.3360) 

0 1 16,065 

𝑃𝐿𝑖 National Wildfire 

Preparedness Level on day 

of reported ICS-209 form 

NIFC 2.5850 

(1.4045) 

1 5 16,065 



202 
 

 
 

(=1 for low preparedness, =5 

for high preparedness) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖  =1 if National Wildfire 

Preparedness Level on day 

of reported ICS-209 form is 

4 or 5, =0 otherwise 

NIFC 0.3106 

(0.4628) 

0 1 16,065 

𝐶𝐴𝑖  =1 if incident occurs in 

California, =0 otherwise 

ICS-209 0.6817 

(0.4658) 

0 1 16,065 

𝑂𝑅𝑖 =1 if incident occurs in 

Oregon, =0 otherwise 

ICS-209 0.1867 

(0.3897) 

0 1 16,065 

𝑊𝐴𝑖  =1 if incident occurs in 

Washington, =0 otherwise 

ICS-209 0.1012 

(0.3015) 

0 1 16,065 
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TABLE A.2 – Estimated Marginal Effects from Unrestricted Binary Choice Models with 

Pooled Incident Report Data+++ 

Dep. Variable: 𝒔𝒊 𝒔𝒊 𝒔𝒊 𝒔𝒊 

Coefficient  LPM 

(robust s.e.) 

Probit Logit Complementary 

Log-Log 

Intercept 1.04*** 
(0.25) 

- - - 

ln 𝑚𝑡𝑒𝑚𝑝𝑖 -0.11 
(0.07) 

-0.34*** 
(0.07) 

-0.41*** 
(0.06) 

-0.20** 
(0.07) 

ln 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑖 0.05** 
(0.01) 

0.02* 
(0.01) 

0.03** 
(0.01) 

0.01 
(0.01) 

ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖 0.03*** 
(0.01) 

0.03* 
(0.01) 

0.03* 
(0.01) 

0.03* 
(0.01) 

ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖  0.07*** 
(0.01) 

0.10*** 
(0.02) 

0.14*** 
(0.02) 

0.05* 
(0.02) 

ln 𝑑𝑡𝑒𝑚𝑝𝑖 0.02 
(0.02) 

0.03* 
(0.01) 

0.03* 
(0.01) 

0.03* 
(0.01) 

ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 0.00 
(<0.01) 

0.01 
(<0.01) 

0.01 
(0.00) 

0.01 
(<0.01) 

ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑖 0.02** 
(0.01) 

0.02*** 
(0.01) 

0.02** 
(0.01) 

0.02** 
(0.01) 

ln 𝑒𝑙𝑒𝑣𝑖 -0.11*** 
(0.01) 

-0.21*** 
(0.02) 

-0.24*** 
(0.02) 

-0.17*** 
(0.01) 

ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 -0.04*** 
(<0.01) 

-0.04*** 
(<0.01) 

-0.04*** 
(0.01) 

-0.04*** 
(<0.01) 

ℎ𝑢𝑚𝑎𝑛𝑖 0.06*** 
(0.01) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.02** 
(0.01) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.05*** 
(0.01) 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 -0.01* 
(<0.01) 

-0.06*** 
(0.01) 

-0.08*** 
(0.02) 

-0.04*** 
(0.01) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 0.06*** 
(<0.01) 

0.09*** 
(0.01) 

0.10*** 
(0.01) 

0.08*** 
(0.01) 

𝑂𝑅𝑖 0.06*** 
(0.01) 

0.02 
(0.01) 

0.01 
(0.01) 

0.02** 
(0.01) 

𝑊𝐴𝑖  -0.03** 
(0.01) 

-0.03** 
(0.01) 

-0.03** 
(0.01) 

-0.04** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 2.70*** 
(0.46) 

0.36*** 
(<0.01) 

0.35*** 
(0.02) 

0.36*** 
(<0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑡𝑒𝑚𝑝𝑖  -0.84*** 
(0.15) 

-0.30** 
(0.10) 

-0.17 
(0.10) 

-0.32** 
(0.11) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑝𝑟𝑒𝑐𝑖𝑝𝑖 0.01 
(0.02) 

0.02* 
(0.01) 

0.02 
(0.01) 

0.04*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖 0.08*** 
(0.02) 

0.05** 
(0.02) 

0.05** 
(0.02) 

0.05** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖  0.34*** 
(0.04) 

0.16*** 
(0.04) 

0.12** 
(0.04) 

0.20*** 
(0.03) 
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𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑑𝑡𝑒𝑚𝑝𝑖  -0.10* 
(0.05) 

-0.08** 
(0.03) 

-0.12*** 
(0.03) 

-0.17*** 
(0.03) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 0.03** 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

0.02* 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑖 -0.03* 
(0.01) 

-0.03* 
(0.01) 

-0.03** 
(0.01) 

-0.05*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑒𝑙𝑒𝑣𝑖  0.02 
(0.02) 

0.12*** 
(0.02) 

0.15*** 
(0.02) 

0.09*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖  0.03*** 
(0.01) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ℎ𝑢𝑚𝑎𝑛𝑖  -0.02 
(0.01) 

-0.03 
(0.02) 

-0.03 
(0.03) 

-0.03 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖  0.02* 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 -0.04*** 
(0.01) 

0.03 
(0.03) 

0.06 
(0.05) 

0.00 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 -0.04*** 
(0.01) 

-0.13*** 
(0.02) 

-0.15*** 
(0.03) 

-0.10*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑂𝑅𝑖 -0.12*** 
(0.02) 

-0.06*** 
(0.01) 

-0.05** 
(0.01) 

-0.07*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑊𝐴𝑖 0.11*** 
(0.02) 

0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.07*** 
(0.01) 

Skewness coefficient from 

skewed probit model (𝛿) 

- -0.03 
(0.05) 

- - 

Chow test for structural 

change across time (H.1) 
F∗(15,11630) = 

19.95∗∗∗  
𝜒15

2 = 
305.49∗∗∗ 

𝜒15
2 = 

299.74∗∗∗ 
𝜒15

2 = 
319.16∗∗∗ 

Unpaired two-sample t-test of 

total effect of 

policy change (H.2) 

- 
 

∆̂= −0.02 

𝑡∗(11660) = 
-5.71*** 

∆̂= −0.02 

𝑡∗(11660) = 
-5.82*** 

∆̂= −0.02 

𝑡∗(11660) = 
-6.72*** 

Two-sample Wilcoxon Rank-

sum test (H.2) 
- 𝑧∗ = 

32.11*** 
𝑧∗ = 

35.14*** 
𝑧∗ = 

26.62*** 

𝑅2 0.173 - - - 

𝑅𝑎
2 0.170 - - - 

Pseudo 𝑅2 - 0.39 0.39 0.37 

Log-Lik. - LL(32)= 
-1853.18 

LL(32)= 
-1831.05 

LL(32)= 
-1889.02 

AIC - 3770.36 3726.09 3877.28 

Wald F∗(31,11630)= 
36.54*** 

- - - 

N 11,662 11,662 11,662 11,662 

*p<0.05; **p<0.01; ***p<0.001 

+++ To avoid missing data, variables with zero or negative values were transformed as: 

ln(𝑥𝑗 + 1). Heteroskedasticity-robust F-statistics are used with the LPM. Probit and Logit model 

coefficients on the 𝑗𝑡ℎ continuous covariate represents Average Partial Effects (APE): 

𝑁−1 ∑ 𝑔(�̂�0 + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)�̂�𝑗𝑖 . Coefficients for the 𝑗𝑡ℎ binary covariate represent the 
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average difference in probabilities from a change in the binary indicator: 𝑁−1 ∑ {𝐺(�̂�0 +𝑖

�̂�𝑗(𝑥𝑗𝑖 = 1) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�) − 𝐺(�̂�0 + �̂�𝑗(𝑥𝑗𝑖 = 0) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)}. 
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TABLE A.3 – Estimated Marginal Effects from Restricted Binary Choice Models with 

Pooled Incident Report Data (daily weather control variables omitted)+++ 

Dep. Variable: 𝒔𝒊 𝒔𝒊 𝒔𝒊 𝒔𝒊 

Coefficient  LPM 

(robust s.e.) 

Probit Logit Complement

ary Log-Log 

Intercept 0.30 
(0.21) 

- - - 

ln 𝑚𝑡𝑒𝑚𝑝𝑖 0.13* 
(0.06) 

-0.18** 
(0.06) 

-0.28*** 
(0.06) 

-0.01 
(0.06) 

ln 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑖 0.06*** 
(0.01) 

0.03** 
(0.01) 

0.03*** 
(0.01) 

0.02* 
(0.01) 

ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖 0.02** 
(0.01) 

0.03** 
(0.01) 

0.04*** 
(0.01) 

0.02 
(0.01) 

ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖  0.05*** 
(0.01) 

0.07*** 
(0.02) 

0.11*** 
(0.02) 

0.01 
(0.02) 

ln 𝑑𝑡𝑒𝑚𝑝𝑖 - 
 

- - - 

ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 - 
 

- - - 

ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑖 - 
 

- - - 

ln 𝑒𝑙𝑒𝑣𝑖 -0.12*** 
(0.01) 

-0.24*** 
(0.01) 

-0.27*** 
(0.01) 

-0.18*** 
(0.01) 

ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖 -0.03*** 
(<0.01) 

-0.03*** 
(<0.01) 

-0.03*** 
(<0.01) 

-0.03*** 
(<0.01) 

ℎ𝑢𝑚𝑎𝑛𝑖 0.06*** 
(<0.01) 

0.06*** 
(0.01) 

0.06*** 
(0.01) 

0.05*** 
(0.01) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖 0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.05*** 
(0.01) 

0.05*** 
(0.01) 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 -0.02*** 
(<0.01) 

-0.09*** 
(0.01) 

-0.11*** 
(0.02) 

-0.06*** 
(0.01) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 0.06 
(<0.01) 

0.09*** 
(0.01) 

0.09*** 
(0.01) 

0.08*** 
(0.01) 

𝑂𝑅𝑖 0.08*** 
(0.01) 

0.02** 
(0.01) 

0.01 
(0.01) 

0.03*** 
(0.01) 

𝑊𝐴𝑖  -0.02* 
(0.01) 

-0.04*** 
(0.01) 

-0.04*** 
(0.01) 

-0.05*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 2.79*** 
(0.43) 

0.36*** 
(0.28) 

0.32** 
(0.11) 

0.36*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑡𝑒𝑚𝑝𝑖  -0.98*** 
(0.13) 

-0.43*** 
(0.08) 

-0.33*** 
(0.08) 

-0.59*** 
(0.09) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑝𝑟𝑒𝑐𝑖𝑝𝑖 -0.02 
(0.02) 

0.01 
(0.01) 

0.01 
(0.01) 

0.02* 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑖 0.08*** 
(0.02) 

0.04** 
(0.01) 

0.03* 
(0.01) 

0.06*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑖  0.36*** 
(0.04) 

0.20*** 
(0.03) 

0.16*** 
(0.03) 

0.26*** 
(0.03) 
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𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑑𝑡𝑒𝑚𝑝𝑖  - 
 

- - - 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 - 
 

- - - 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑖 - 
 

- - - 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑒𝑙𝑒𝑣𝑖  -0.01 
(0.01) 

0.14*** 
(0.02) 

0.16*** 
(0.02) 

0.10*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑖  0.02** 
(<0.01) 

0.02*** 
(0.01) 

0.02** 
(0.01) 

0.02*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ℎ𝑢𝑚𝑎𝑛𝑖  -0.03** 
(0.01) 

-0.06** 
(0.02) 

-0.06* 
(0.03) 

-0.06*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖  0.02 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑖 -0.03*** 
(0.01) 

0.07* 
(0.03) 

0.12* 
(0.05) 

0.02 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑖 -0.03*** 
(0.01) 

-0.11*** 
(0.02) 

-0.12*** 
(0.02) 

-0.09*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑂𝑅𝑖 -0.14*** 
(0.01) 

-0.08*** 
(0.02) 

-0.07*** 
(0.01) 

-0.08*** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑖 ∗ 𝑊𝐴𝑖 0.07*** 
(0.02) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.06*** 
(0.01) 

Skewness coefficient from 

skewed probit model (𝛿) 

- 2.35*** 
(0.48) 

- - 

Chow test for structural 

change across time (H.1) 

F∗(13,15551) = 
26.62∗∗∗  

𝜒12
2 = 

370.21∗∗∗ 
𝜒12

2 = 
418.87∗∗∗ 

𝜒12
2 = 

385.67∗∗∗ 

Unpaired two-sample t-test 

of total effect of 

policy change (H.2) 

- ∆̂= −0.02 

𝑡∗(11660) = 
-9.05*** 

∆̂= −0.02 

𝑡∗(11660) = 
-9.17*** 

∆̂= −0.02 

𝑡∗(15575) = 
-10.36*** 

Two-sample Wilcoxon 

Rank-sum test (H.2) 

- 𝑧∗ = 
35.32*** 

𝑧∗ = 
37.78*** 

𝑧∗ = 
30.55*** 

𝑅2 0.189 - - - 

𝑅𝑎
2 0.187 - - - 

Pseudo 𝑅2 - 0.37 0.38 0.36 

Log-Lik. - LL(26)= 
-2835.13 

LL(26)= 
-2805.68 

LL(26)= 
-2892.68 

AIC - 5727.79 5663.36 5837.35 

Wald F∗(25,15551)= 
73.94*** 

- - - 

N 15,577 15,577 15,577 15,577 

*p<0.05; **p<0.01; ***p<0.001 

+++ To avoid missing data, variables with zero or negative values were transformed as: 

ln(𝑥𝑗 + 1). Heteroskedasticity-robust F-statistics are used with the LPM. Probit and Logit model 

coefficients on the 𝑗𝑡ℎ continuous covariate represents Average Partial Effects (APE): 

𝑁−1 ∑ 𝑔(�̂�0 + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)�̂�𝑗𝑖 . Coefficients for the 𝑗𝑡ℎ binary covariate represent the 
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average difference in probabilities from a change in the binary indicator: 𝑁−1 ∑ {𝐺(�̂�0 +𝑖

�̂�𝑗(𝑥𝑗𝑖 = 1) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�) − 𝐺(�̂�0 + �̂�𝑗(𝑥𝑗𝑖 = 0) + 𝐱𝑖
′�̂� + 𝐳𝒊′�̂� + 𝐰𝑖

′�̂�)}. 
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Appendix B: Tables and Figures (Manager-level Panel Data) 
TABLE B.1 – DESCRIPTIVE STATISTICS FOR MANAGER-LEVEL PANEL OF 

INCIDENT REPORT DATA 

Variable Description Source Mean 

(St. 

Dev.) 

Min Max N 

𝑠𝑗𝑡 =1 if Full Suppression strategy, 

=0 otherwise 

ICS-209 0.89 

(0.3) 

0.0 1.0 11,792 

𝑤𝑖𝑛𝑑𝑗𝑡 Reported windspeed (mph) ICS-209 10.1 

(14.9) 

0.0 1025 9,211 

𝑡𝑒𝑚𝑝𝑗𝑡 Reported temperature (degrees 

F) 

ICS-209 76.3 

(18.0) 

0.0 406 9,523 

𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 Reported relative humidity ICS-209 30.5 

(18.5) 

0.0 177 8,742 

𝑒𝑙𝑒𝑣𝑗𝑡 Elevation at ignition point 

(thousand ft.) 

PRISM 3.71 

(1.9) 

-0.1 9.7 11,792 

𝑚𝑡𝑒𝑚𝑝𝑗𝑡 Avg. temperature in month of 

ignition (degrees F) 

PRISM 65.9 

(8.9) 

20.0 90.0 11,792 

𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡 Precipitation in month of 

ignition (inches) 

PRISM 0.6 

(1.6) 

0.0 56.0 11,792 

𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡 Minimum recorded vapor 

pressure deficit in month of 

ignition (hPa) 

PRISM 5.3 

(2.9) 

0.1 20.3 11,792 

𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡 Maximum recorded vapor 

pressure deficit in month of 

ignition (hPa) 

PRISM 30.0 

(10.5) 

1.2 68.3 11,792 

𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 Distance from ignition point to 

nearest wildland-urban 

interface zone (thousand 

meters) 

SILVIS 6.1 

(6.3) 

0.0 47.7 11,361 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 =1 if Type 1 or Type 2 incident 

complexity, 

=0 otherwise 

ICS-209 0.5 

(0.5) 

0.0 1.0 11,792 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 =1 if suppression response by 

federal agency, =0 otherwise 

ICS-209 0.7 

(0.4) 

0.0 1.0 11,792 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 =1 if report filed during or 

after FY2010 when FLAME 

reserve funds were available, 

=0 otherwise 

ICS-209 0.3550 

(0.4785) 

0 1 11,792 

ℎ𝑢𝑚𝑎𝑛𝑗𝑡 =1 if ignition caused by 

human, =0 if by lightning or 

unknown cause 

ICS-209 0.1 

(0.3) 

0.0 1.0 11,792 

𝑃𝐿𝑡 National Wildfire 

Preparedness Level on day of 

reported ICS-209 form (=1 for 

NIFC 2.5 

(1.4) 

1.0 5.0 11,792 
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low preparedness, =5 for high 

preparedness) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 =1 if National Wildfire 

Preparedness Level on day of 

reported ICS-209 form is 4 or 

5, =0 otherwise 

NIFC 0.3 

(0.5) 

0.0 1.0 11,792 

𝐶𝐴𝑗𝑡 =1 if incident occurs in 

Oregon, =0 otherwise 

ICS-209  0.6 

  (0.5) 

0.0 1.0 11,792 

𝑂𝑅𝑗𝑡 =1 if incident occurs in 

Oregon, =0 otherwise 

ICS-209  0.3 

  (0.4) 

0.0 1.0 11,792 

𝑊𝐴𝑗𝑡 =1 if incident occurs in 

Washington, =0 otherwise 

ICS-209 0.1 

(0.3) 

0.0 1.0 11,792 
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TABLE B.2 – Unrestricted Binary Choice Model Results with Panel Data  

Dep. Variable: 𝒔𝒋𝒕 𝒔𝒋𝒕 𝒔𝒋𝒕 𝒔𝒋𝒕 

Coefficient  Pooled OLS 

(robust s.e.) 

FE 

(clustered s.e.) 

RE 

(clustered 

s.e.) 

CRE Logit+++ 

Intercept 1.19*** 
(0.33) 

1.89** 
(0.69) 

1.60** 
(0.56) 

- 

ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡 -0.19 
(0.10) 

-0.36 
(0.21) 

-0.28 
(0.18) 

0.11 
(0.15) 

ln 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡 0.04** 
(0.01) 

0.09* 
(0.04) 

0.08* 
(0.03) 

0.03** 
(0.01) 

ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡 0.04*** 
(0.01) 

0.04 
(0.02) 

0.03 
(0.02) 

0.00 
(0.02) 

ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡 0.11*** 
(0.02) 

0.16* 
(0.07) 

0.14* 
(0.06) 

0.11** 
(0.04) 

ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡 0.04 
(0.03) 

0.03** 
(0.01) 

0.03** 
(0.01) 

0.01 
(0.01) 

ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 0.01 
(0.01) 

-0.01 
(0.01) 

0.00 
(0.01) 

0.00 
(0.02) 

ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 0.03** 
(0.01) 

0.00 
(0.01) 

0.00 
(0.01) 

0.00 
(0.01) 

ln 𝑒𝑙𝑒𝑣𝑗𝑡 -0.14*** 
(0.01) 

-0.09* 
(0.04) 

-0.09** 
(0.03) 

-0.09*** 
(0.03) 

ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 -0.04*** 
(<0.01) 

-0.01 
(0.01) 

-0.02* 
(0.01) 

-0.03** 
(0.01) 

ℎ𝑢𝑚𝑎𝑛𝑗𝑡 0.08*** 
(0.01) 

0.01 
(0.02) 

0.02 
(0.01) 

0.01 
(0.01) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.04*** 
(0.01) 

0.06 
(0.04) 

0.03 
(0.02) 

0.01 
(0.01) 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 -0.01** 
(0.01) 

-0.04 
(0.05) 

-0.03 
(0.03) 

-0.07*** 
(0.02) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 0.08*** 
(0.01) 

0.00 
(0.01) 

0.01 
(0.01) 

0.06*** 
(0.01) 

𝑂𝑅𝑗𝑡 0.09*** 
(0.01) 

-0.10 
(0.08) 

-0.03 
(0.04) 

-0.02 
(0.02) 

𝑊𝐴𝑗𝑡 -0.03* 
(0.01) 

-0.12 
(0.08) 

-0.06 
(0.03) 

0.00 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 2.74*** 
(0.59) 

0.63 
(1.60) 

1.11 
(1.27) 

-0.85 
(0.63) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡  -0.86*** 
(0.19) 

-0.33 
(0.49) 

-0.45 
(0.39) 

-0.54* 
(0.21) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡 0.03 
(0.02) 

-0.06 
(0.06) 

-0.05 
(0.05) 

-0.02 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡  0.10*** 
(0.02) 

0.02 
(0.07) 

0.03 
(0.06) 

0.08** 
(0.03) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡 0.36*** 
(0.05) 

0.24 
(0.16) 

0.27* 
(0.13) 

0.15** 
(0.05) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡  -0.12* -0.05* -0.06** -0.02 
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(0.06) (0.02) (0.02) (0.02) 
𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 0.03** 

(0.01) 
0.01 

(0.01) 
0.02 

(0.01) 
0.00 

(0.01) 
𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 -0.03 

(0.02) 
0.01 

(0.01) 
0.00 

(0.01) 
0.01 

(0.01) 
𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑒𝑙𝑒𝑣𝑗𝑡 -0.03 

(0.02) 
0.04 

(0.07) 
0.01 

(0.06) 
-0.06 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 0.04*** 
(0.01) 

0.00 
(0.02) 

0.00 
(0.02) 

0.01 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑢𝑚𝑎𝑛𝑗𝑡 -0.02 
(0.01) 

-0.01 
(0.02) 

0.00 
(0.02) 

0.05*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.04** 
(0.01) 

0.02 
(0.04) 

0.01 
(0.03) 

0.03* 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 -0.05*** 
(0.01) 

-0.02 
(0.03) 

-0.02 
(0.03) 

0.02 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 -0.06*** 
(0.01) 

0.02 
(0.03) 

0.01 
(0.03) 

-0.08*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑂𝑅𝑗𝑡 -0.12*** 
(0.02) 

-0.17* 
(0.07) 

-0.15* 
(0.06) 

-0.02 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑊𝐴𝑗𝑡  0.14*** 
(0.02) 

0.09 
(0.05) 

0.08* 
(0.04) 

0.02 
(0.03) 

Chow test for  

structural change (H.1) 
F∗(15,8219) = 

16.87***  
F∗(15,1904) = 

2.10** 
𝜒2(15)= 
44.05*** 

𝜒2(12) = 
52.94*** 

Unpaired two-sample t-test  

of total effect of  

policy change (H.2) 

- - - ∆̂= −0.03 

𝑡∗(8249) = 
-15.17*** 

Two-sample Wilcoxon  

rank-sum test (H.2) 
- - - 𝑧∗ = 

13.94*** 

𝑅2 (within) - 0.152 0.142 - 

𝑅2 (between) - 0.091 0.128 - 
𝑅2 (overall) 0.202 0.099 0.139 - 

𝑅𝑎
2 0.199 - - - 

Wald F∗(31,8219)= 
37.10*** 

F∗(31,1904)= 
2.14*** 

𝜒2(31)= 
122.27*** 

𝜒2(59) = 
123.50*** 

Log. Lik. - - - LL(64)= 
-683.78 

N 8,251 8,251 8,251 8,251 
Joint test of Mundlak terms - - - 𝜒2(28) = 

55.01** 
Hausman Test - - 𝜒2(31)= 

328.95*** 
- 

Breusch-Pagan  

LM Test 
- - 𝜒2(1)= 

17,198*** 
- 

*p<0.05; **p<0.01; ***p<0.001;  
+++ Coefficients for the 𝑘𝑡ℎ binary covariate represent the average difference in probabilities from a 

change in the binary indicator.



213 
 

 
 

TABLE B.3 – Restricted Binary Choice Model Results with Panel Data (daily weather 

controls omitted) 
Dep. Variable: 𝒔𝒋𝒕 𝒔𝒋𝒕 𝒔𝒋𝒕 𝒔𝒋𝒕 

Coefficient  Pooled OLS 

(robust s.e.) 

FE 

(clustered s.e.) 

RE 

(clustered s.e.) 

CRE Logit+++ 

Intercept 0.50 
(0.26) 

0.78 
(0.66) 

0.80 
(0.52) 

- 
 

ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡  0.08 
(0.07) 

0.02 
(0.20) 

0.02 
(0.16) 

0.24* 
(0.10) 

ln 𝑚𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡  0.06*** 
(0.01) 

0.04 
(0.03) 

0.03 
(0.03) 

0.01 
(0.01) 

ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡 0.03** 
(0.01) 

0.01 
(0.02) 

0.02 
(0.02) 

-0.03* 
(0.01) 

ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡 0.07*** 
(0.02) 

0.05 
(0.06) 

0.05 
(0.05) 

-0.02 
(0.03) 

ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡  - 
 

- - - 

ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 - 
 

- - - 

ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 - 
 

- - - 

ln 𝑒𝑙𝑒𝑣𝑗𝑡 -0.15*** 
(0.01) 

-0.05 
(0.03) 

-0.06** 
(0.02) 

-0.06** 
(0.02) 

ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 -0.04*** 
(<0.01) 

-0.02* 
(0.01) 

-0.02** 
(0.01) 

-0.01 
(0.01) 

ℎ𝑢𝑚𝑎𝑛𝑗𝑡 0.09*** 
(0.01) 

0.04 
(0.02) 

0.04* 
(0.02) 

0.01 
(0.01) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.03*** 
(0.01) 

0.06 
(0.03) 

0.02 
(0.02) 

0.01 
(0.01) 

𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 -0.02*** 
(<0.01) 

-0.06 
(0.05) 

-0.04 
(0.03) 

-0.08*** 
(0.02) 

ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡 0.08*** 
(0.01) 

0.01 
(0.01) 

0.02 
(0.01) 

0.04*** 
(0.01) 

𝑂𝑅𝑗𝑡 0.11*** 
(0.01) 

-0.09 
(0.07) 

-0.02 
(0.04) 

-0.02 
(0.01) 

𝑊𝐴𝑗𝑡  -0.03* 
(0.01) 

-0.14 
(0.08) 

-0.07* 
(0.04) 

-0.03 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 2.91*** 
(0.51) 

2.91** 
(1.08) 

2.63** 
(0.91) 

0.35*** 
(<0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑡𝑒𝑚𝑝𝑗𝑡  -1.05*** 
(0.15) 

-1.03** 
(0.34) 

-0.95*** 
(0.28) 

-0.58*** 
(0.17) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑝𝑟𝑒𝑐𝑖𝑝𝑗𝑡  0.00 
(0.02) 

-0.01 
(0.04) 

-0.01 
(0.04) 

0.00 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑖𝑛𝑣𝑝𝑑𝑗𝑡  0.09*** 
(0.02) 

0.06 
(0.06) 

0.05 
(0.05) 

0.07*** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑚𝑚𝑎𝑥𝑣𝑝𝑑𝑗𝑡  0.40*** 
(0.05) 

0.40** 
(0.12) 

0.38*** 
(0.10) 

0.21*** 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑑𝑡𝑒𝑚𝑝𝑗𝑡  - - - - 
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𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑗𝑡 - 

 
- - - 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑟𝑒𝑙ℎ𝑢𝑚𝑗𝑡 - 
 

- - - 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑒𝑙𝑒𝑣𝑗𝑡 -0.01 
(0.02) 

-0.04 
(0.06) 

-0.04 
(0.05) 

0.06* 
(0.03) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ln 𝑤𝑢𝑖𝑑𝑖𝑠𝑡𝑗𝑡 0.01* 
(0.01) 

0.01 
(0.02) 

0.01 
(0.01) 

-0.01 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑢𝑚𝑎𝑛𝑗𝑡 -0.04** 
(0.01) 

0.01 
(0.03) 

0.00 
(0.03) 

0.04* 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑗𝑡 0.04*** 
(0.01) 

0.01 
(0.04) 

0.01 
(0.03) 

0.04** 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑓𝑒𝑑𝑒𝑟𝑎𝑙𝑗𝑡 -0.03*** 
(0.01) 

-0.02 
(0.04) 

-0.02 
(0.03) 

-0.01 
(0.04) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ ℎ𝑖𝑔ℎ𝑝𝑟𝑒𝑝𝑡  -0.04*** 
(0.01) 

0.02 
(0.03) 

0.01 
(0.02) 

-0.04** 
(0.01) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑂𝑅𝑗𝑡 -0.13*** 
(0.02) 

-0.18** 
(0.06) 

-0.16*** 
(0.05) 

-0.04 
(0.02) 

𝑓𝑙𝑎𝑚𝑒𝑗𝑡 ∗ 𝑊𝐴𝑗𝑡 0.10*** 
(0.02) 

0.06 
(0.05) 

0.06 
(0.04) 

0.03 
(0.02) 

Chow test for  

structural change (H.1) 
F∗(12,11584) = 

25.63∗∗∗  
F∗(12,2452) = 

3.42*** 
𝜒12

2 = 
53.18*** 

𝜒12
2 = 

90.64*** 
Unpaired two-sample t-test  

of total effect of  

policy change (H.2) 

- - - ∆̂= −0.04 

𝑡∗(11608) = 
-19.88*** 

Two-sample Wilcoxon  

rank-sum test (H.2) 
- - - 𝑧∗ = 

18.99*** 

𝑅2 (within) - 0.137 0.130 - 
𝑅2 (between) - 0.125 0.163 - 
𝑅2 (overall) 0.211 0.114 0.157 - 

𝑅𝑎
2 0.209 - - - 

Wald F∗(25,11584)= 
74.67*** 

F∗(25,2452)= 
3.17*** 

𝜒2(25)= 
152.41*** 

𝜒2(47)= 
282.20*** 

Log. Lik. - - - LL(52)= 
-1110.85 

N 11,610 11,610 11,610 11,610 

Joint test of Mundlak terms - - - 𝜒2(22)= 
16.28*** 

Hausman Test - - 𝜒2(25)= 
248.99** 

- 

Breusch-Pagan  

LM Test 
- - 𝜒2(1)= 

31,982*** 
- 

*p<0.05; **p<0.01; ***p<0.001;  

+++ Coefficients for the 𝑘𝑡ℎ binary covariate represent the average difference in probabilities from a 

change in the binary indicator.  
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GENERAL CONCLUSION 

Chapters 1 and 2 of this dissertation have presented alternative microeconomic 

frameworks which provide testable hypotheses and which can explain the observed patterns of 

larger expenditure shares on fire suppression. In Chapter 4, I tested several of these hypotheses 

through a discrete choice econometric model of incident managers’ decisions. My results test 

two of the alternative hypotheses derived in first two chapters: 1) reserve mechanisms which 

lower the effective marginal cost of suppression may increase the adoption of full suppression 

strategies (potentially increasing the demand for suppression resources and suppression costs), 

but this may not outweigh the effects of policy guidance which encouraged more frequent 

adoption of “let-burn” strategies, and 2) fire events occurring farther from residential 

developments are less likely to be fully suppressed; reflecting a preference for avoiding a 

truncation of right-tailed distributions of net value change over fires that burn far from human 

populations. Further research on the degree of risk aversion and its measurement may be needed 

to properly design a corrective contractual mechanism between local land management agency 

administrators and contracted incident commanders (a call for research on contract design for 

suppression service providers is also discussed by Donovan et al., 2008, and may be a natural 

extension to the game-theoretic models presented in this dissertation). Budgetary institutions and 

risk attitudes of both public and private land managers will become especially important factors 

for determining the success of fire risk mitigation programs and incentive compatible 

mechanisms. Overall, this line of research is useful for agencies seeking to improve fire 

management outcomes via more efficient designs of federal or state contracts granted for 

suppression services.  
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Another important direction for further research relates to the dynamics of the fire 

management expenditure shares considered in Chapters 1 and 2. The dynamics of a multiple-

input system with prevention or pre-suppression efforts has not been formalized in the forest 

economics literature, despite similar specifications of dynamic models which detail the evolution 

of budgets allocated across preventative and reactionary management programs for other forest 

disturbance agents like the emerald ash borer in the Rocky Mountain region (Berry et al., 2017). 

The chapters in this dissertation carefully considered the tradeoffs between pre-suppression and 

suppression programs and the socioeconomic factors which drive the allocation at the regional 

and national levels. There remains a gap in this line of research regarding the time path of 

optimal pre-suppression budgets in response to current allocations. This dissertation has also left 

open the question of unstable equilibrium outcomes: under what conditions will the fire 

management system not evolve towards a stable state, such that suppression costs and damages 

never stabilize but continue to grow unabated? Optimal control theory and stochastic dynamic 

programming methods will be essential for further formulation of the suppression allocation 

problem, and the propensity for the fire management system to evolve differently over time 

under alternative allocations of annual budgets and under alternative fire regimes. 

In Chapter 3 of this dissertation, I showed how the optimal design of forest-based taxes 

can shift with more widespread adoption of carbon offset markets. Specifically, I have shown 

that when carbon markets are adopted by the representative timberland owner subject to a 

disturbance risk, the state planner’s optimal taxation strategy is to rely solely on the use of a per-

acre fee on land holdings rather than a tax per-unit volume of harvested timber. In contrast, when 

the representative timberland owner does not participate in a carbon offset market, state tax 

planners are constrained to a second-best equilibrium via the application of per-unit volume 
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taxes on harvest in lieu of the acre-based land tax. In both cases, we considered how the state 

planner’s provision of wildfire protection can impact the risk-adjusted discount rate applied by 

private timberland owners. When fire protection expenditures increase, the fire arrival rate 

decreases such that landowners apply a lower risk-adjusted discount rate to their land’s future 

cash flows. This has the effect of lengthening rotation ages and increasing land values. 

Importantly, it permits a second-best equilibrium outcome when carbon offset markets are 

unavailable since the corrective (Pigouvian) harvest tax is unable to generate sufficient revenue 

to compensate landowners via fire protection for the drop in net stumpage values that accompany 

the harvest tax. We have used a representative agent framework to arrive at these results, so 

additional research may seek to investigate how optimal taxation may change with limited 

adoption across a group of timberland owners. Further research may also investigate how 

alternative tax instrument might perorm in this setting here carbon sequestration has value and 

disturbance risk is present (such as ad valorem harvest taxes or timber taxes). Furthermore, we 

have left open the question about unknown risk attitudes, which can place additional constraints 

on the planner’s optimal taxation problem.  
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