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Scientists and engineers have to analyze and query multiple large databases. Analy-

sis over databases created by phasor measurement units can provide insight into the

health of the grid, thereby improving control over operations. Realizing this data-driven

control, however, requires validating, processing and storing massive amounts of PMU

data efficiently, which is not always achieved with modern systems. Furthermore, users

should know formal query languages, such as SQL, and the structure and content of the

database to use these systems. But, scientists do not usually know concepts, such as

query languages, and the content and structure of the databases. Finally, the informa-

tion related to most queries is spread across multiple data sources, where each represents

information in a distinct form. Traditionally, users have to write programming rules to

integrate the data in these data sources into one database with a homogeneous structure.

This, however, takes a great deal of time and effort. Moreover, end-users often do not

have the required programming background and expertise to write and maintain these

rules. To address these challenges, we proposed novel methods to query multiple large

databases easily and efficiently. We also describe a PMU data management system that

supports input from multiple PMU data streams, features an event-detection algorithm,

and provides an efficient method for retrieving archival data. To make database systems

more usable, database systems offer keyword query interfaces where users do not need

to know formal query languages and content and structure of the schema. As keyword

queries are inherently ambiguous, it is challenging for database systems to answer them

precisely. Using extensive empirical studies, we show that users explore and learn to



formulate more precise keyword queries in their course of interaction with the database

system. We propose an effective and efficient online learning algorithm that adapts to the

user learning in the interaction with convergence guarantees. Furthermore, we set forth

a novel approach to learning rules to integrate and query multiple databases progres-

sively using end-user feedback. In our framework, each data source learns to translate

its information to a form compatible with other data sources. We show that our method

delivers effective rules using a modest number of interactions with the end-user.
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Chapter 1: Introduction

There are datasets where the user is intimately familiar with the content and struc-

ture. They are able to construct precise and complex queries to effectively retrieve

their information needs. Recently, power grid operations have been complicated by in-

creased penetration of variable generation, load congestion, demand for quality electric

power, environmental concerns, and threats to cyber-security and physical infrastruc-

ture. Pressure from these issues compel engineers to create tools that leverage modern

communications, signal processing, and analytics to provide operators with insight into

the operational state of power systems. As Horowitz, et al. explained, there are mul-

tiple aspects to achieving the level of knowledge and control necessary to keep one of

the world’s greatest engineering feats stable and operational [1]. To this end, utilities

have been deploying phasor measurement units (PMU)1 across the grid. At a high-level,

PMUs are sensors that measure electrical waveforms at short fixed intervals [2]. A unique

feature of PMUs is that they are equipped with global positioning systems (GPS), allow-

ing multiple PMUs distributed in space to be synchronized across time. With a proper

set of analytics put in place, the mass deployment of PMUs can offer utility operators

a holistic and real-time sense of grid status. In order to effectively query the data pro-

duced by PMUs, one must be intimately familiar with the structure and content of the

database.

However, most users do not know the structure and content of databases and concepts

such as schema or formal query languages sufficiently well to express their information

needs precisely in the form of queries [3, 4, 5]. They may convey their intents in easy-

to-use but inherently ambiguous forms, such as keyword queries, which are open to

numerous interpretations. Thus, it is very challenging for a database management system

(DBMS) to understand and satisfy the intents behind these queries. The fundamental

challenge in the interaction of these users and DBMS is that the users and DBMS

represent intents in different forms.

Furthermore the data relevant to a query or analysis task is usually stored in vari-

1Also known as synchrophasors, we refer to them as PMUs throughout this paper.
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ous data sources, therefore, users often have to integrate information from several data

sources. This is challenging as each data source may represent information in a distinct

form, e.g., each data source may refer to the same entity under a distinct name. Users

have to translate their queries to forms that are understandable by underlying data

sources. This process is traditionally done by writing a set of potentially declarative

rules called mappings, which takes the query or data organized in one form and translate

it to the query and data under another representation [6]. It, however, takes a very

long time, a great deal of manual labor, and constant expert attention to develop and

maintain mappings [6, 7].

1.1 Technical Contributions

The following is a summary of the technical contributions presented in this dissertation.

A backend framework for the efficient management of energy systems

database. In this work, we examine how to improve the query efficiency of expert

users over a real-world PMU database. These users understand how to create precise

queries that are effective for their needs. However, current methods of querying and

visualizing results in real time are quite time consuming. In Chapter 2, we propose

an event-detection system that improves the efficiency of methods currently used by

orders of magnitude. This event-detection algorithm rapidly correlates multiple PMU

data streams, providing details on events occurring within the power system. The event-

detection algorithm feeds into a visualization component, allowing operators to recognize

events as they occur. The indexing and data retrieval mechanism facilitates fast access

to archived PMU data. Using this method, we achieved over 30× speedup for queries

with high selectivity. With the development of these two components, we have developed

a system that allows efficient analysis of multiple time-aligned PMU data streams. Our

findings have been published in various locations [8, 9, 10].

Analyzing the relationship between users and databases. As most users do

not possess the necessary knowledge of the structure or content of the database, they

are not able to use precise queries. In Chapter 3, we propose Charm, an efficient and

effective reinforcement learning algorithm that improves the reward of the user over

time stochastically speaking. We first analyze how users learn when interacting with

a keyword engine using a Yahoo! query log. Then we analyze effective and efficient
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algorithms that perform well with how users learn over time, comparing it to current

popular learning algorithms. Finally, we investigate how to efficiently implement our

algorithm over large schemas consisting of multiple tables that require joins to satisfy

the user. Our findings have been published in various locations [11, 12, 13].

Online entity resolution with users in the loop. Often a user’s information need

is not available in the current data source they are querying. For these instances, the local

data source must have some kind of mapping between its local entities and external ones.

This is traditionally done via offline learning methods or manual creation. However, these

are costly by requiring a lot of time or sufficient training data. In Chapter 4, we propose

a reinforcement learning method to establish this mapping between a local data source

and some external data source online during user interaction. We compare our online

learning algorithm versus a baseline that initially provides some amount of success, but

over time does not improve the user’s satisfaction. Our findings have been published in

various locations [14].

We conclude with Chapter 5 where we present a summary of the achievements and

ideas for future directions.



4

A backend framework for the efficient
management of power system

measurements

Ben McCamish, Rich Meier, Jordan Landford, Robert B Bass, David
Chiu, Eduardo Cotilla-Sanchez

Electric Power Systems Research
https://doi.org/10.1016/j.epsr.2016.05.003
Volume 140, November 2016, Pages 797-805



5

Chapter 2: A backend framework for the efficient management of

energy systems database

2.1 Motivation

With the recent deployment of PMUs on a large scale, their applications are growing.

PMUs provide visibility over the grid at increasing speeds allowing for real-time moni-

toring of grid conditions [15, 16, 17]. PMU placement is optimized to provide accurate

information about the grid while minimizing the number of units required to achieve

observability [18]. Furthermore, this space has seen a significant increase in algorithms

that aid in control and mitigation of grid operational issues. For example, efforts have

emphasized using PMU data to monitor critical power paths [19], identify transmission

line fault locations [20], isolate and mitigate low-frequency zonal oscillations [21], and

predict critical slowing down of the network [22].

Despite increase in PMU use, there is still a lack of verification of the data gener-

ated by PMUs. Many algorithms assume input data streams to be robust, reliable, and

available at all times. However, this is not the case in a real PMU network. Not only

do corrupt data streams cause false positives during normal operation, but they reduce

confidence in data generated during transient events. The standard for PMU measure-

ments (IEEE C37.118.1-2011) provides some testing and error measurement specifica-

tions for these types of situations, but clarification of how a PMU should act is not

stated [23]. Some recent works have made some initial steps in verifying the output

of PMU devices before informing the operation of higher-level power system control al-

gorithms [24, 25, 26]. They have specifically stressed the importance of data integrity

during transient situations. These efforts, however, have not sufficiently solved the event-

detection problem.

A second issue not addressed in many of the works above is a result of the sophis-

ticated nature of sensing and data gathering in today’s PMUs. In the field, each PMU

data stream is collected and coalesced by a device known as a phasor data concentra-

tor (PDC) before being written to large, but slow, non-volatile storage, e.g., hard disks
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or tape. When data streams from many PMUs are combined, it can amount to mas-

sive volumes of data each year (on the order of 100s of TBs). Unfortunately, common

data processing tasks, such as real-time event detection, ad hoc querying, data retrieval

for analysis, and visualization require scanning or randomly accessing large amounts of

PMU data on disk. These tasks can require prohibitive amounts of time. Therefore,

in addition to the identification problem stated above, there is also a significant data

management problem that has thus far gone unaddressed.

In this chapter, we describe a framework for addressing both the inconsistent data

(data-flagging) problem, as well as the back-end mechanisms that manage the massive

PMU data streams. Our goal is to improve near-real-time event and error detection,

data management, and archived data access in a manner that can inform higher level

control operations and visualization for operator decision-making. To this end we have

developed a system architecture capable of interchanging components. This chapter

presents our model of these system components, providing the outcomes expected of this

system.

The remainder of this chapter is organized as follows. The following work will first

depict the system architecture as a whole and how each component works in Section 2.2.

Next, Section 2.3 will describe the details of implementation of these components. The

results from our experiments will be discussed in Section 2.4.

2.2 System Design

We have created a system that contains two primary components, Monitoring and Live

Analysis and Historical Data Management. Within these components we developed two

methods to fulfil these functions, a correlation matrix with a graphical display and a

data management algorithm known as a bitmap index. This system allows for sufficient

validation of the PMU data while providing fast operator query support on the large

database.

Figure 2.1 illustrates the system architecture. Data arriving from a phasor data

concentrator (PDC) is first given to the Monitoring and Live Analysis Subsystem. This

subsystem comprises three main components. The Event Detection engine inputs a set

of known power-systems event signatures and analyzes the PDC stream in a single pass.

To perform this one-pass analysis, we use a correlation matrix, which also provides visual



7

alerts to the operator by depicting various event signatures. Using this correlation ma-

trix, we are able to detect and identify events occurring within the power grid monitored

by the PMUs.

The PDC data is sent to the Historical Data Management System for archiving.

First, data is discretized (binned) to generate a bitmap index (described in detail in the

next subsection). The bitmap, once compressed, allows for efficient response to queries

from the operator. This system architecture allows for the operator to monitor the grid

in real time, including the ability to detect various power system events and data errors.

While monitoring the grid the operator can query the large database of past PMU values

using the Data Management subsystem, allowing for replay of historical events through

the Monitoring and Live Analysis system or simply for further examination.

We believe that the Monitoring and Live Analysis subsystem, coupled with the His-

torical Data Management subsystem, may improve operator decision making. Being

able to monitor the grid and detect events while having the capability to query past

synchrophasor measurements grants the operator this capability.

2.2.1 Historical Data Management System

The Historical Data Management System uses the Bitmap Index method. Within this

component, a different data management method can be utilized as well. Bitmap in-

dices [27], are popular for managing large-scale data sets [28, 29, 30, 31, 32, 33]. A

bitmap B is an m × n matrix where the n columns represent range-bins, and the rows

correspond to the m tuples and records (e.g., PMU measurements). A bit bi,j = 1, if the

ith record falls into the specified value and range of the jth bin, and bi,j = 0, otherwise.

Records Bins

X Y
x1 x2 ... x50 y1 y2 y3

t1 0 1 ... 0 0 0 1
t2 0 0 ... 0 0 1 0
t3 0 0 ... 1 0 0 1
... ... ... ... ... ... ... ...

Table 2.1: An Example Bitmap Index
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Figure 2.1: System Architecture

Consider the bitmap in Table 2.1. Suppose these example data have two attributes,

X and Y , the X-values are known to be integers in the range (0, 50], and that the Y -

values can be any real number. Due to its small cardinality, we can generate a bin xj

for each possible value of X. The values of Y are, however, continuous and unbounded.

We therefore discretize those values, i.e., decide on an appropriate number of bins to

represent Y and select the range of values associated with each bin. In our example, we

chose to use only three bins, y1 = (−∞,−5], y2 = (−5, 5), and y3 = [5,∞).

Suppose we want to retrieve all records from disk where X < 25 and Y = 0. We can

identify the candidate records by computing the following boolean expression,

vR = (x1 ∨ ... ∨ x24) ∧ y2
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The bits with a value of 1 in vR correspond with the set of candidate records on disk,

R = {t | (t[X] < 25) ∧ (−5 < t[Y ] < 5)}

Intuitively, there could be false positives in R, which requires checking, but only the

records ri ∈ R with a corresponding bit vR[i] = 1 must be retrieved from disk and

examined to ensure they meet the selection criteria. All records ri with a corresponding

bit vR[i] = 0 are pruned immediately and do not require retrieval from disk. Because a

well-designed bitmap is sparse and compressible, it can be stored in core memory, which

is orders of magnitude faster than disk.

As such, bitmaps help reduce disk accesses when properly discretized, resulting in a

space-accuracy tradeoff. More precise pruning may have been possible had we split the

attribute Y into even finer-grained bins. However, each additional bin effectively adds

an entire dimension, increasing the bitmap index size, thereby challenging its ability to

fit in core memory.

2.2.2 Monitoring and Live Analysis

The Monitoring and Live Analysis subsystem contains our implementation of an event

detection system. As with the Historical Data Management System, a different event

detection algorithm can be used in the correlation matrix’s place.

A challenge with the increasing deployment of PMUs in power systems is the large

amounts of data from those sensors. So far, pre-processing methodologies to handle

high-cardinality data from PMUs are not widely available, and little progress has been

made to streamline and consolidate these algorithms. Therefore, the two major capa-

bilities necessary to maintain interoperability between raw power system data and our

correlation methodology are described below – namely data playback and data storage.

The one-year data set we assessed includes information from August 2012 to August

2013. It totals 950 GB of positive sequence voltage magnitude (V ) and positive sequence

voltage phase angle (φ). Each measurement is represented by a datetime and its cor-

responding phasor value. These measurements are acquired every 0.0167 seconds (60

Hz). The phase angle φ is a time-varying real number that oscillates within the range

of [−180, 180]. The voltage, on the other hand, is a non-negative real number. Each file
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Figure 2.2: The relative location of and distances between PMU sites in kilometers (not
to scale). Note the location of the Monrovia bus, upper left, which serves as a test case in
our Results section. Bracketed numbers correspond to correlation visuals in the Results
section.

in the set typically holds one to five minutes of data from each of the 20 separate PMU

sites. We opted to consolidate and standardize these files for ease of input into our PDC

engine. Once the data is coalesced, it is fed into our event-detection algorithm described

in Section 2.3.
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2.3 Methodology

2.3.1 Data Input & Correlation

As positive-sequence voltage data is generated in the time domain by our PDC, the data

must be read into the working memory of our correlation algorithm. In an effort to

minimize computational complexity, we developed a custom data structure to quickly

append new data, refer to data already stored, and account for multiple characteristics

such as time, magnitude, phase, and correlation coefficients, for each of the 20 PMUs.

Besides pre-processing PMU data, a key aspect of a decision-making framework is to

accurately identify events during a real contingency situation. In order to achieve this

level of operator support, however, we must be able to distinguish between data errors

and power system events.

We propose a correlation technique that can be used to flag specific data and power

system events.Our algorithm calculates the correlation coefficient between parameters at

different substations. Consider, under normal operating conditions, electrical paramters

measured at one substation will be similar to those measured at an adjacent substation

due to close electrical proximity. As such, the correlation coefficients between parameters

at different substations will be near one. The parameters measured by PMUs include

the magnitudes and phase angles of phase voltage and line current, the magnitudes and

phase angles of voltage and current sequence components, frequency, and rate of change

of frequency (ROCOF).

During an event, such as a power system transient or a data error, the measurements

of a particular parameter at two different substations will differ, at least temporarily.

Thus, the correlation coefficients will deviate away from one during the event. For

demonstrative purposes in this chapter, we use the positive-sequence voltages. Consider

a lighting event near substation A, which affects the positive-sequence magnitude at that

substation. The lightning event will also affect the positive-sequence voltage at adjacent

substation B, though with a lower magnitude and a time delay due to the intervening

line reactance. Our correlation algorithm would detect a deviation between the positive-

sequence voltage magnitudes at these two substations, returning a correlation coefficient

less than one during the event.

Our algorithm simultaneously calculates the correlation coefficients between more
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than two substations, and in fact between more than one parameter. As such, we get

upper triangles of size N2 of correlation coefficients, allowing us to monitor the correla-

tion of parameters between a suite of substations. Below, we expand on the correlation

methodology that was developed in order to identify events.

The correlation detection algorithm need not scale with N2 as more PMUs are added

to a balancing area. In our current work, we demonstrate that the algorithm need only

analyze a handful, 4 or 5, of real-time PMU data streams concurrently to reliable detect

local events. We envision the algorithm would be hosted on a PDC which would be

widely distributed throughout a balancing area. Each PDC would host an instance of

the algorithm for detecting events within its immediate vicinity. As such, the algorithm

would not face an N2 issue as more PMUs are added to a balancing area.

We start with a formal definition of the Pearson Correlation index. Given two inde-

pendent input sets of data X and Y of length N (X and Y being either the momentary

magnitude or phase-data values of two PMU site readings), we obtain a correlation

coefficient r between −1 and 1 based on the following equation:

r =
Σ(XY )− ΣXΣY

N√
(Σ(X2)− (ΣX)2

N )× (Σ(Y 2)− (ΣY )2

N )

Two modifications and application-specific improvements were made to this mathe-

matical formula. First, the algorithm was made incremental. In this way, each data point

could be read in from the PDC feeder and immediately incorporated into its correlation

coefficient without the need to directly calculate each summation, average, and standard

deviation repeatedly at each time step. Second, we maintain correlation information over

varying windows of time. We used a queue to keep separate pointers to end positions of

each defined sliding window.

The addition of this multi-window-size feature allows for pairs of PMUs to be cor-

related over different time intervals concurrently. This design allows different events to

be identified based on different sliding window sizes. This capability to correlate over

multiple discrete periods of time is especially useful in determining if suspect correla-

tions are due to data issues, or are in fact real disturbances. In our approach, large

window sizes correspond to 1200, 600, and 60 data points (20 sec, 10 sec, and 1 sec,
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respectively). We use smaller, multi-cycle window lengths (54, 48, 30, 18, 12, and 6 data

points) to assist with identifying the difference between data events and power system

contingencies. Data events are readily detected with those short window lengths, as data

errors cause rapid decorrelation between PMUs. Power system events are detectable us-

ing longer window lengths, depending on the type of event. We hypothesize that fast

events such as lightning strikes are detectable using moderate-length windows (1 to 10

seconds) while detection of slow events, such as inter-area oscillations, would require

longer window lengths. The distinction here is important because, with any large-scale

data set, there is a question of data validity. It is of strategic importance to identify

false data originating from PMU inaccuracies, especially since these devices are used

to inform higher-level applications such as state-space estimation and remedial action

schemas.

2.3.2 Bitmap Engine

Given a user query that selects a subset of records from the PMU data archive, the näıve

approach to respond to the query would be to perform a linear scan of the database, com-

paring each record to the query for selection, and then returning the matching records.

For a real-time application such as power system situational awareness, this operation

would be too expensive because disk I/O operations are slow. Our PMU data manage-

ment system has multiple software components that allow a user to build a bitmap index

over raw data, and to efficiently query records that match specifications.

The Bitmap Creator inputs the raw PMU data and generates a bitmap using the

binning strategy specified below. When new files are added to the database, these

records are appended to the index. Once the bitmap is created, the Compressor will

compress the index using WAH [34]. After compression, the system is ready to receive

queries from the user. These queries will give selection conditions on which values of

particular attributes the user is interested in. The Query Engine then translates the

query into boolean operations over the specified bins in the compressed index. This then

produces a Result Bit Vector vR that contains information on which records need to be

retrieved from disk.

While vR holds the selected record information (all bits with a value of 1), it is the

actual data on disk that must be returned. An intermediate data structure, the File
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Map, was created to facilitate this role. The File Map is an intermediate data structure

that holds metadata on the files and how many tuples 1 they each contain. There are two

values per File Map entry: totalRowCount and filePointer. The totalRowCount contains

the total number of tuples up to and including that particular file. The filePointer holds

a pointer to the corresponding file on disk that contains the next set of tuples. To

retrieve files with this method, the result bit vector is first scanned and a count is kept

for the number of bits that have been read. For each hit, the count is hashed to its

corresponding index in the File Map. This is an upper-bound hash, meaning that the

count value is hashed to the closest totalRowCount value, without being greater than it.

This will give the corresponding file that is desired.

Figure 2.3: File Map Structure

Fig. 2.3 illustrates a small example of a bit vector and where the bits map to the

filemap. Bits one through three are hashed to the first row in the File Map structure.

Bits 4 and 5 are hashed to the second row since these bits represent tuples 4 and 5, which

are stored in fileB. With the upper bound hash, bits 4 and 5 hash to totalRowCount 6,

since they are both greater than 3 but less than or equal to 6. Bits 60, 62, and 63 are

not hashed since they are not hits. Only bits in the bit vector that have value one will

be hashed. This leads to improved performance when there are long stretches of zeroes

in the bit vector.

1An entry (or record) in the database



15

2.3.3 Binning Strategies

We obtained data from 20 PMUs within Bonneville Power Administration’s (BPA) bal-

ancing area from August 2012 to August 2013. At each PMU, a phasor measurement is

sampled every 1/60 sec. Each measurement is represented by a date-time and a phasor,

which is a pair of values: the phase angle φ and the positive voltage magnitude V . The

phasors from the 20 PMUs are combined, resulting in 2 × 20 PMUs = 40 attributes.

The phase angle φ is a time-varying real number that oscillates within the range of

[−180, 180]. The voltage, on the other hand, is a non-negative real number. In order

to define the bitmap ranges, we examined φ and V ’s distributions. We analyzed the

distribution of φ and V over a sample size of 30 days (155, 520, 000 measurements).

To optimize for speed, the design of the bitmap must be informed by the queries

that will be frequently executed. For frequently queried values in bitmap structures, a

crippling factor in response time is the candidacy checks to identify true positives, which

require disk access. Due to imperfect discretization, bins will often contain bits that

indicate more than one value. It is therefore necessary to check whether that bit is an

indication of the correct value. For example, if a bin has the range of five possible values

then that means each bit in that bin is one of five different values. Performing this check,

called a candidacy check, ensures that the tuple contains the desired value for the query.

From discussions with power systems experts at BPA, queries typically comprise a

specific range of dates, voltage V , phase angle φ, or any combination of these attributes.

When generating the bitmap, the binning (discretization) strategy can minimize candi-

date record checks and provide fast query response times. Due to the low cardinality

of the date-time attribute, it was simple to generate bins: 60 bins each for second and

minute, 24 bins for hour, 31 bins for day, etc. with the exception of the year. In this

case we used 11 bins for the year, starting at 2010. Since there were no range bins,

no candidacy checks were necessary when performing queries on the dates. Because φ

and V are real values, we discretize based on their distribution. In order to find the

distributions of both φ and V , the cumulative distribution function (CDF) plots were

constructed. These distributions determined what binning strategies were used.

Fig. 2.4 illustrates the phase angle φ distribution. From this graph we can see that

φ follows a uniform distribution. Because φ is also bounded, we apply an equal-width

binning strategy over φ, meaning the range of each bin is equivalent. We designed the
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bitmap creator in such a way that this range can be assigned by the user before creation

of the bitmap. For our experiments we set this value to 10, results in 36 bins for each

PMU attribute. Fig. 2.5 represents the phase angle values that were assigned to each

bin.

Figure 2.4: Normal Phase Angle CDF

Figure 2.5: Phase Angle Bins

Fig. 2.6 illustrates the distribution for normal operation of a PMU’s voltage magni-

tude. The data set only contains positive-sequence voltage. The majority of the values

occur between [535, 545]. For this attribute, we used a binning strategy that attempts to

minimize candidacy checks for the values that are most likely to be queried. We assume

the majority of queries from the user will pertain to some anomaly, that is values that
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are not apart of normal operations. Therefore, a bin with range [535, 545] is created to

contain the regularly occurring values. Since the range of the bin is quite large, and it

spans the values which occur most frequently, then the majority of tuples that fall into

this category will require candidacy checks. However, our assumption is that queries

will occur for abnormal values. This leads to a specific strategy for binning: There are

ten bins on either side of the central bin which represents the normal operational range.

Each of these outer bins is capable of containing a value with a range of one. Fig. 2.7

represents the binning distribution for voltage magnitude. There is an additional bin for

the value zero, since this is an indication of a data event at a PMU site. This strategy

generates bins of small ranges for values of V that will be queried frequently and very

large bins for those that aren’t.

Currently the PMUs that we are utilizing do not report measurements in per unit.

To avoid adding another layer of computation, the measurements are binned according

to their physical units. These binning strategies are applicable to other PMU networks

with different nominal voltages, or one could decide to adopt the per unit system in the

first layer for a specific implementation of this framework.

In addition to the aforementioned attributes, we also introduced an attribute ∆,

which represents the displacement between phase angles from the previous time-stamp,

i.e., ∆t = |φt − φt−1|. ∆ is a coarse representation of rate of change and can be an

indicator as to whether a power event occurred. Therefore, we bin ∆ with smaller

ranges, reducing the number of candidacy checks. Listed in Table 2.2 are the number of

bins that we used for each attribute. The total is 4,988 bins for each row in the bitmap

index.

Attr. # Bins Attr. # Bins

Year 11 Month 12

Day 31 Hour 24

Min. 60 Sec. 60

mSec. 10 Φ 20× 23

V 20× 36 ∆ 20× 180

Table 2.2: Bins

To demonstrate how well the bitmap can scale and compress the data, 4200000 million
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Figure 2.6: Normal positive-sequence voltage magnitude CDF

Figure 2.7: Voltage Magnitude Binning

tuples of our database have been compressed using WAH with 32-bit words. The original

size of the bitmap index was 2.75 GB. Once compressed, the bitmap index was 8.03216

MB. This means this bitmap index has a compression ratio of 342.37, uncompressed
compressed . Our

query engine model scales more efficiently than other commonly used querying engines.

For this chapter, we used MySQL as a comparison. MySQL does not perform any

compression on its index, therefore it will require more space and when the tuple count

increases, it may not even be able to fit into memory. MySQL also performs significantly

worse on datasets with a very high number of tuples in a single table.

2.4 Results

This section focuses on highlighting some of the preliminary qualitative information ob-

tained by processing and analyzing the PMU data streams via our correlation method-



19

ology as well as quantifying the query times run on the database. This consists of

visualizing the PMU data for a particular case study at the “Monrovia” bus seen in

Fig. 2.2. Two types of queries were run, linear scan and bitmap indexing, which are

compared in Table 2.3.

2.4.1 Visualization Structure

The purpose of this subsection is to introduce the layout of the visualization structure

used in the case study in Sec. 2.4.2. First, each coordinate (square) represents the

correlation coefficient of the two PMUs that make up its coordinates. The color of the

square represents how close the correlation is to 1 or −1, and the sign at the coordinate

represents either positively correlated or inversely correlated PMU pairs. Typically a

magnitude of correlation above 0.4 − 0.5 is considered correlated. Thus any squares

depicting blue shades would be considered de-correlated. This visualization is temporal,

and represents different time window lengths as discussed in Section 2.3.

Next, this visualization incorporates electrical distance into the spatial organization

of each monitored bus. The notion of electrical distance has been proven useful in

multiple power systems applications, but was developed most notably by Cotilla-Sanchez

et al. in for the purpose of multi-objective power network partitioning [35]. In our data

set, adjacent cells within the triangular visualization matrix are referenced to PMU

1, either topologically, or electrically. We anticipate this organization of PMUs will

produce electrically coherent zones. As a result, the visualization will naturally cluster,

thus benefiting ease of analysis and application of advanced techniques such as pattern

recognition.

2.4.2 Monrovia Event Case Study

In order to demonstrate some preliminary identification of data and power system events,

we analyzed a subset of contingencies that were known to have occurred at the Monrovia

Bus. We address PMU data drop and PMU data misread contingencies, as well as a

known lightning event near the Monrovia bus. All data streamed into our visualization

is run at the same rate that the data was collected from the PMUs, 60Hz.
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2.4.2.1 PMU Data Events at Monrovia

PMU data streams must be validated as accurate in order to ensure reliable and effective

decisions are made during grid operation. Invalid data can be introduced in multiple

ways, and so far we have created the ability to detect two specific data events. First, the

PMU may go offline resulting in a constant stream of “zero” data (termed “data drop”)

as seen in Figure 2.8. Second, a PMU data stream may produce unreliable data, which

is characterized by repeatedly producing the same measurement over a discrete window

of time, as shown in Fig. 2.9.

Figure 2.8: A flagged “Data drop” event at the Monrovia bus with 1
10 sec. sliding window

(electrical distance).
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Figure 2.9: A flagged “PMU Misread” event near the Monrovia bus with 1
10 sec. sliding

window (electrical distance).

Both of these data contingencies are flagged by our algorithm using the small window

sizes, as typical data events occur in sub-second time frames. As seen in the images, the

full-column pattern of null data (blacked out column) and the severe de-correlation both

indicate a data event at the Monrovia Bus.

2.4.2.2 Power System Event at Monrovia

The final type of event that our correlation technique is currently able to characterize is

when a power system lightning contingency occurs. Again, for this case study, we focus
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on a known lightning event at the Monrovia bus. For this particular lighting strike, we

run the correlation algorithm over a window size of 10 seconds. The visualized results

can be seen in Figure 2.10. Upon inspecting Figure 2.10 and referring to Figure 2.2,

we see emergence of how electrical distance influences correlation. Since buses south of

Monrovia are along a parallel path they are seen as, up to a certain distance, having

a lower impedance when compared to the ’Cully’ bus directly above. The gradient in

correlation along the upper rows suggests this to be the case.

Figure 2.10: Monrovia lightning event correlation over 10 sec. sliding window (electrical
distance).

2.4.3 Bitmap Queries

We run queries over the database to demonstrate the performance gains from analyzing

and creating a bitmap index over the data. For these experiments, 4 million rows from the

database are queried. The bitmap generated is compressed using a popular compression

scheme known as Word-Aligned Hybrid (WAH) [36]. File Map is used to retrieve the

records from the database once a query has been processed by the bitmap engine. The

bitmap results are compared against the common linear scan that is performed when

searching a database as a basic comparison, and against MySQL, a popular database
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query engine that can store data collected from the PDC. Linear scanning has to scan

every tuple in the database, therefore we know that the number of tuples it returns are

the appropriate number of tuples that should be returned. We used this result to confirm

the returned values from both Bitmap Indexing and MySQL. All query runs are cold

and were each run for 10 times. We report the average time in seconds.

ID Selection Criteria Linear Scan
(sec)

MySQL
(sec)

Bitmap
(sec)

Records
Retrieved

1 Find all records where
PMU1 has a magnitude
Voltage Magnitude of 533.

25.859666 22.469 0.379387 160

2 Find all records that oc-
curred on exactly June 24,
2013 at 21:05 hours.

25.350993 0.353 0.854952 3600

3 Find all records that oc-
curred on exactly June 24,
2013 at 21:06 hours.

28.001001 0.396 0.922941 3600

4 Find all records that oc-
curred on exactly June 24,
2013 at 21:07 hours.

26.133607 0.225 0.785588 3600

5 Find all records that oc-
curred on exactly June 24,
2013 at 21:06 hours with
PMU having a Voltage
Magnitude of 533.

28.019449 0.046 0.001772 0

6 Find all records in 2012. 26.720291 23.714 0.0000601 0

Table 2.3: Query Performance

Table 2.3 shows time results from six queries that were run independently. A run

consists of submitted a query to the appropriate engine, processing the query, and seeing

results displayed. When comparing MySQL and bitmap speeds, one should consider the

language that was used as it will affect the performance. MySQL is implemented in C

while our bitmap indexing was implemented in Java, which is in general slower. The

SQL queries were performed with caching disabled, since we are interested in measuring

the exact query execution time and not simply the data-fetch time. Query ID 1 is an

example of a query where the user wishes to find when a specific PMU had a voltage

magnitude of 533. An example of when this might happen is when the Correlation



24

Visualization indicates that there is an event occurring when that PMU has a voltage

magnitude of 533. The exact same query to the bitmap engine provides a 68× and 60×
speed up on retrieval for linear scanning and MySQL respectively. Query IDs 2 through 4

demonstrate examples of requests for records at specific dates. These demonstrate that

performing multiple queries with small adjustments does not require much additional

time. Query IDs 5 and 6 shows queries for records that do not exist in the data set.

Since the bitmap engine was able to examine the bit vector results without ever going to

disk to see whether the desired records are in the database, the speedup is many orders

of magnitude greater than that of linear scanning. The bitmap query ID 5 takes slightly

more time than ID 6 because ID 5 has to perform bitwise ANDs between each column,

while ID 6 is simply checking a single column. There is very little time difference between

the linear scan in ID 5 and 6.

MySQL outperforms bitmap indexing for a couple of reasons when searching for a

specific date. For our database we used the DATETIME data column type in MySQL.

This data type has a back end that builds a B+-Tree [37] index over it for efficient query

processing. We can see whenever a query is submitted to search for a specific value of a

PMU, even with a date specified, that bitmap indexing outperforms MySQL.

The linear scan times are so similar because no matter the query given, it is necessary

to scan the entire data set to ensure accuracy. Bitmap index query times can vary and

primarily depend on how many columns need to be compared and how many records

need to be pulled from disk. In fact the majority of the time spent for the bitmap index

queries is simply retrieving the records from disk, making I/O the limiting factor.
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Chapter 3: A Game-theoretic Approach to Data Interaction

3.1 Motivation

Most users do not know the structure and content of databases and concepts such as

schema or formal query languages sufficiently well to express their information needs

precisely in the form of queries [3, 4, 5]. They may convey their intents in easy-to-use

but inherently ambiguous forms, such as keyword queries, which are open to numerous

interpretations. Thus, it is very challenging for a database management system (DBMS)

to understand and satisfy the intents behind these queries. The fundamental challenge

in the interaction of these users and DBMS is that the users and DBMS represent intents

in different forms.

Many users may explore a database to find answers for various intents over a rather

long period of time. For these users, database querying is an inherently interactive

and continuing process. As both the user and DBMS have the same goal of the user

receiving her desired information, the user and DBMS would like to gradually improve

their understandings of each other and reach a common language of representing intents

over the course of various queries and interactions. The user may learn more about the

structure and content of the database and how to express intents as she submits queries

and observes the returned results. Also, the DBMS may learn more about how the

user expresses her intents by leveraging user feedback on the returned results. The user

feedback may include clicking on the relevant answers [38], the amount of time the user

spends on reading the results [39], user’s eye movements [40], or the signals sent in touch-

based devises [41]. Ideally, the user and DBMS should establish as quickly as possible

this common representation of intents in which the DBMS accurately understands all or

most user’s queries.

Researchers have developed systems that leverage user feedback to help the DBMS

understand the intent behind ill-specified and vague queries more precisely [42, 43]. These

systems, however, generally assume that a user does not modify her method of expressing

intents throughout her interaction with the DBMS. For example, they maintain that the
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user picks queries to express an intent according to a fixed probability distribution. It is

known that the learning methods that are useful in a static setting do not deliver desired

outcomes in a setting where all agents may modify their strategies [44, 45]. Hence, one

may not be able to use current techniques to help the DBMS understand the users’

information need over a long-term interaction.

To the best of our knowledge, the affect of user learning on database interaction has

been generally ignored. In this chapter, we propose a novel framework that formalizes

the interaction between the user and the DBMS as a game with identical interest between

two active and potentially rational agents: the user and DBMS. The common goal of

the user and DBMS is to reach a mutual understanding on expressing information needs

in the form of keyword queries. In each interaction, the user and DBMS receive certain

payoff according to how relevant the returned results are relevant to the intent behind the

submitted query. The user receives her payoff by consuming the relevant information and

the DBMS becomes aware of its payoff by observing the user’s feedback on the returned

results. We believe that such a game-theoretic framework naturally models the long-

term interaction between the user and DBMS. We explore the user learning mechanisms

and propose algorithms for DBMS to improve its understanding of intents behind the

user queries effectively and efficiently over large databases. In particular, we make the

following contributions:

• We model the long term interaction between the user and DBMS using keyword

queries as a particular type of game called a signaling game [46] in Section 3.2.

• Using extensive empirical studies over a real-world interaction log, we show that

users modify the way they express their information need over their course of

interactions in Section 3.3. We also show that this adaptation is often modeled by

a well-known reinforcement learning algorithm [47] in experimental game theory.

• Current systems generally assume that a user does not learn or modify her method

of expressing intents throughout her interaction with the DBMS. However, the

learning methods that are useful in static settings do not deliver desired outcomes

in the dynamic ones [48]. We propose a method of answering user queries in

a natural and interactive setting in Section 3.4 and prove that it improves the

effectiveness of answering queries stochastically speaking, and converges almost
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surely. We show that our results hold for both the cases where the user adapts her

strategy using an appropriate learning algorithm and the case where she follows a

fixed strategy.

• In Section 3.5, we define and analyze the eventual stable states of the game in

the long-term interaction of the user and DBMS. We also show that the game has

both stable states in which the user and DBMS establish an accurate common

understanding and the ones where they do not achieve such an understanding.

• We describe our data interaction system that provides an efficient implementation

of our reinforcement learning method on large relational databases in Section 3.6.

In particular, we first propose an algorithm that implements our learning method

called Reservoir. Then, using certain mild assumptions and the ideas of sampling

over relational operators, we propose another algorithm called Poisson-Olken that

implements our reinforcement learning scheme and considerably improves the effi-

ciency of Reservoir.

• We report the results of our extensive empirical studies on measuring the effec-

tiveness of our reinforcement learning method and the efficiency of our algorithms

using real-world and large interaction workloads, queries, and databases in Sec-

tion 3.7. Our results indicate that our proposed reinforcement learning method is

more effective than the start-of-the-art algorithm for long-term interactions. They

also show that Poisson-Olken can process queries over large databases faster than

the Reservoir algorithm.

3.2 A Game-theoretic Framework

Users and DBMSs typically achieve a common understanding gradually and using a

querying and feedback paradigm. After submitting each query, the user may revise her

strategy of expressing intents based on the returned result. If the returned answers satisfy

her intent to a large extent, she may keep using the same query to articulate her intent.

Otherwise, she may revise her strategy and choose another query to express her intent

in the hope that the new query will provide her with more relevant answers. We will

describe this behavior of users in Section 3.3 in more detail. The user may also inform
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the database system about the degree by which the returned answers satisfy the intent

behind the query using explicit or implicit feedback, e.g., click-through information [39].

The DBMS may update its interpretation of the query according to the user’s feedback.

Intuitively, one may model this interaction as a game between two agents with iden-

tical interests in which the agents communicate via sharing queries, results, and feedback

on the results. In each interaction, both agents will receive some reward according to the

degree by which the returned result for a query matches its intent. The user receives her

rewards in the form of answers relevant to her intent and the DBMS receives its reward

through getting positive feedback on the returned results. The final goal of both agents

is to maximize the amount of reward they receive during the course of their interaction.

Next, we describe the components and structure of this interaction game for relational

databases. Figure 3.1 depicts a high level diagram of how an interaction loop takes place.

Returns 
Results

Submits 
Query1.

2.

Updates 
Strategy

3.

Gives 
Feedback

Updates 
Strategy

4.

5.

Figure 3.1: High Level Diagram of Framework

Basic Definitions: We fix two disjoint arbitrarily large but finite sets of attributes

and relation symbols. Every relation symbol R is associated with a set of attribute

symbols denoted as sort(R). Let dom be an arbitrarily large but finite set of constants,

e.g., strings. An instance IR of relation symbol R with n = |sort(R)| is a (finite) subset

of domn. A schema S is a set of relation symbols. A database (instance) of S is a
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mapping over S that associates with each relation symbol R in S an instance of IR. In

this chapter, we assume that dom is a set of strings.

3.2.1 Intent

An intent represents an information need sought after by the user. Current keyword

query interfaces over relational databases generally assume that each intent is a query

in a sufficiently expressive query language in the domain of interest, e.g., Select-Project-

Join subset of SQL [4, 3]. Our framework and results are orthogonal to the language

that precisely describes the users’ intents. Table 3.1 illustrates a database with schema

Univ(Name, Abbreviation, State, Type, Ranking) that contains information about uni-

versity rankings. A user may want to find the ranking of university MSU in Michigan,

which is precisely represented by the intent e2 in Table 3.2a, which using the Datalog

syntax [49] is: ans(z) ← Univ(x, ‘MSU ’, ‘MI’, y, z).

3.2.2 Query

Users’ articulations of their intents are queries. Many users do not know the formal

query language, e.g., SQL, that precisely describes their intents. Thus, they may prefer

to articulate their intents in languages that are easy-to-use and relatively less complex,

however more ambiguous, such as keyword query language [3, 4]. In the proposed game-

theoretic frameworks for database interaction, we assume that the user expresses her

intents as keyword queries. More formally, we fix an arbitrarily large but finite set of

terms, i.e., keywords, T . A keyword query (query for short) is a nonempty (finite) set

of terms in T . Consider the database instance in Table 3.1. Table 3.2 depicts a set of

intents and queries over this database. Suppose the user wants to find the ranking of

Michigan State University in Michigan, i.e. the intent e2. Because the user does not

know any formal database query language and may not be sufficiently familiar with the

content of the data, she may express intent e2 using q2 : ‘MSU’.

Some users may know a formal database query language that is sufficiently expressive

to represent their intents. Nevertheless, because they may not know precisely the content

and schema of the database, their submitted queries may not always be the same as their

intents [42, 50]. For example, a user may know how to write a SQL query. But, since
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she may not know the state abbreviation MI, she may articulate intent e2 as ans(t) ←
Univ(x, ‘MSU ’, y, z, t), which is different from e2. We plan to extend our framework

for these scenarios in future work. But, in this chapter, we assume that users articulate

their intents as keyword queries.

3.2.3 User Strategy

The user strategy indicates the likelihood by which the user submits query q given that

her intent is e. In practice, a user has finitely many intents and submits finitely many

queries in a finite period of time. Hence, we assume that the sets of the user’s intents

and queries are finite. However, we do not know how this is exactly modeled and stored

in the user’s mind. This is outside the scope of this work. One can view this as instead a

stochastic mapping between intents and queries. We index each user’s intent and query

by 1 ≤ i ≤ m and 1 ≤ j ≤ n, respectively. A user strategy, denoted as U , is a m × n
row-stochastic matrix from her intents to her queries. We discuss the details of this

stochastic mapping in Section 3.4. The matrix on the top of Table 3.3a depicts a user

strategy using intents and queries in Table 3.2. According to this strategy, the user

submits query q2 to express intents e1, e2, and e3.

Table 3.1: A database instance of relation Univ

Name Abbreviation State Type Rank
Missouri State University MSU MO public 20
Mississippi State University MSU MS public 22
Murray State University MSU KY public 14
Michigan State University MSU MI public 18

3.2.4 DBMS Strategy

The DBMS interprets queries to find the intents behind them. It usually interprets

queries by mapping them to a set of SQL statements with a limit on the number of

joins [4, 51, 52]. Since the final goal of users is to see the result of applying the interpre-

tation(s) of their query on the underlying database, the DBMS runs its interpretation(s)

over the database and returns its results. Moreover, since the user may not know SQL,

suggesting possible SQL queries may not be useful. A DBMS may not know exactly



32

Table 3.2: Intents and Queries

(a) Intents

Intent# Intent
e1 ans(z)← Univ(x, ‘MSU ’, ‘MS’, y, z)
e2 ans(z)← Univ(x, ‘MSU ’, ‘MI’, y, z)
e3 ans(z)← Univ(x, ‘MSU ’, ‘MO’, y, z)

(b) Queries

Query# Query
q1 ‘MSU MI’
q2 ‘MSU’

Table 3.3: Two strategy profiles over the intents and queries in Table 3.2. User and
DBMS strategies at the left and right, respectively.

(a) A strategy profile

q1 q2

e1 0 1

e2 0 1

e3 0 1

e1 e2 e3

q1 0 1 0

q2 0 1 0

(b) Another strategy profile

q1 q2

e1 0 1

e2 1 0

e3 0 1

e1 e2 e3

q1 0 1 0

q2 0.5 0 0.5

the language that can express all users’ intents. Current usable query interfaces, in-

cluding keyword query systems, select a query language for the interpreted intents that

is sufficiently complex to express many users’ intents and is simple enough so that the

interpretation and running of its outcome(s) are done efficiently [4]. As an example con-

sider current keyword query interfaces over relational databases [4]. Given constant v in

database I and keyword w in keyword query q, let match(v, w) be a function that is true

if w appears in v and false otherwise. A majority of keyword query interfaces interpret

keyword queries as Select-Project-Join queries that have below certain number of joins

and whose where clauses contain only conjunctions of match functions [51, 52]. Using

a larger set of SQL, e.g., the ones with more joins, makes it inefficient to perform the

interpretation and run its outcomes. Given schema S, the interpretation language of the

DBMS, denoted as L, is a set of SQL with a limit on joins over S. We precisely define L

for our implementation of DBMS strategy in Section 3.6. To interpret a keyword query,

the DBMS searches L for the SQL queries that represent the intent behind the query as

accurately as possible.
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Because users may be overwhelmed by the results of many interpretations, keyword-

query interfaces use a deterministic real-valued scoring function to rank their interpreta-

tions and deliver only the results of top-k ones to the user [4]. It is known that such a de-

terministic approach may significantly limit the accuracy of interpreting queries in long-

term interactions in which the information system utilizes user’s feedback [53, 54, 55].

Because the DBMS shows only the result of interpretation(s) with the highest score(s)

to the user, it receives feedback only on a small set of interpretations. Thus, its learning

remains largely biased toward the initial set of highly ranked interpretations. For exam-

ple, it may never learn that the intent behind a query is satisfied by an interpretation

with a relatively low score according to the current scoring function.

To better leverage users feedback during the interaction, the DBMS must show the

results of and get feedback on a sufficiently diverse set of interpretations [53, 54, 55].

Of course, the DBMS should ensure that this set of interpretations is relatively relevant

to the query, otherwise the user may become discouraged and give up querying. This

dilemma is called the exploitation versus exploration trade-off. A DBMS that only ex-

ploits, returns top-ranked interpretations according to its scoring function. Hence, the

DBMS may adopt a stochastic strategy to both exploit and explore: it randomly selects

and shows the results of intents such that the ones with higher scores are chosen with

larger probabilities [53, 54, 55]. The main dilemma here is to balance exploiting the

information known so far to deliver accurate results in the short run and exploring new

actions that have not been tried before to gain more knowledge and eventually learn

a more accurate model in the long run. If an online learning method focuses on the

former, it might not improve its model significantly over time. In this approach, users

are mostly shown results of interpretations that are relevant to their intents according

to the current knowledge of the DBMS and provide feedback on a relatively diverse set

of interpretations. More formally, given Q is a set of all keyword queries, the DBMS

strategy D is a stochastic mapping from Q to L. To the best of our knowledge, to search

L efficiently, current keyword query interfaces limit their search per query to a finite

subset of L [4, 51, 52]. In this chapter, we follow a similar approach and assume that

D maps each query to only a finite subset of L. The matrix on the right of Table 3.3a

depicts a DBMS strategy for the intents and queries in Table 3.2. Based on this strat-

egy, the DBMS uses a exploitative strategy and always interprets query q2 as e2. The

matrix on the bottom of Table 3.3b depicts another DBMS strategy for the same set of
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intents and queries. In this example, DBMS uses a randomized strategy and does both

exploitation and exploration. For instance, it explores e1 and e2 to answer q2 with equal

probabilities, but it always returns e2 in the response to q1.

3.2.5 Interaction & Adaptation

The data interaction game is a repeated game with identical interest between two players,

the user and the DBMS. At each round of the game, i.e., a single interaction, the user

selects an intent according to the prior probability distribution π. She then picks the

query q according to her strategy and submits it to the DBMS. The DBMS observes q

and interprets q based on its strategy, and returns the results of the interpretation(s) on

the underlying database to the user. The user provides some feedback on the returned

tuples and informs the DBMS how relevant the tuples are to her intent. In this chapter,

we assume that the user informs the DBMS if some tuples satisfy the intent via some

signal, e.g., selecting the tuple, in some interactions. The feedback signals may be noisy,

e.g., a user may click on a tuple by mistake. Researchers have proposed models to

accurately detect the informative signals [53]. Dealing with the issue of noisy signals is

out of the scope of this work.

The goal of both the user and the DBMS is to have as many satisfying tuples as

possible in the returned tuples. Hence, both the user and the DBMS receive some payoff,

i.e., reward, according to the degree by which the returned tuples match the intent. This

payoff is measured based on the user feedback and using standard effectiveness metrics

[56]. One example of such metrics is precision at k, p@k, which is the fraction of relevant

tuples in the top-k returned tuples. At the end of each round, both the user and the

DBMS receive a payoff equal to the value of the selected effectiveness metric for the

returned result. We denote the payoff received by the players at each round of the game,

i.e., a single interaction, for returning interpretation e` for intent ei as r(ei, e`). This

payoff is computed using the user’s feedback on the result of interpretation e` over the

underlying database.

Next, we compute the expected payoff of the players. Since DBMS strategy D maps

each query to a finite set of interpretations, and the set of submitted queries by a user,

or a population of users, is finite, the set of interpretations for all queries submitted by a

user, denoted as Ls, is finite. Hence, we show the DBMS strategy for a user as an n× o
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row-stochastic matrix from the set of the user’s queries to the set of interpretations Ls.

We index each interpretation in Ls by 1 ≤ ` ≤ o. Each pair of the user and the DBMS

strategy, (U,D), is a strategy profile. The expected payoff for both players with strategy

profile (U,D) is as follows.

ur(U,D) =
m∑
i=1

πi

n∑
j=1

Uij

o∑
`=1

Dj` r(ei, e`), (3.1)

The expected payoff reflects the degree by which the user and DBMS have reached a

common language for communication. This value is high for the case in which the user

knows which queries to pick to articulate her intents and the DBMS returns the results

that satisfy the intents behind the user’s queries. Hence, this function reflects the success

of the communication and interaction. For example, given that all intents have equal

prior probabilities, intuitively, the strategy profile in Table 3.3b shows a larger degree of

mutual understanding between the players than the one in Table 3.3a. This is reflected

in their values of expected payoff as the expected payoffs of the former and latter are
2
3 and 1

3 , respectively. We note that the DBMS may not know the set of users’ queries

beforehand and does not compute the expected payoff directly. Instead, it uses query

answering algorithms that leverage user feedback, such that the expected payoff improves

over the course of several interactions as we will show in Section 3.4.

None of the players know the other player’s strategy during the interaction. Given

the information available to each player, they may modify its strategy at the end of each

round (interaction). For example, the DBMS may reduce the probability of returning

certain interpretations that have not received any positive feedback from the user in the

previous rounds of the game. Let the user and DBMS strategy at round t ∈ N of the

game be U(t) and D(t), respectively. In round t ∈ N of the game, the user and DBMS

have access to the information about their past interactions. The user has access to her

sequence of intents, queries, and results, the DBMS knows the sequence of queries and

results, and both players have access to the sequence of payoffs (not expected payoffs)

up to round t − 1. It depends on the degree of rationality and abilities of the user

and the DBMS how to leverage these pieces of information to improve the expected

payoff of the game. For example, it may not be reasonable to assume that the user

adopts a mechanism that requires instant access to the detailed information about her
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Table 3.4: Summary of the notations used in the model.

Notation Definition

ei A user’s intent

qj A query submitted by the user

πi The prior probability that the user
queries for ei

r(ei, e`) The reward when the user looks for ei
and the DBMS returns e`

U The user strategy

Uij The probability that user submits qj for
intent ei

D The DBMS strategy

Dj` The probability that DBMS intent e` for
query qj

(U,D) A strategy profile

ur(U,D) The expected payoff of the strategy pro-
file (U,D) computed using reward met-
ric r based on Equation 1

past interactions as it is not clear whether users can memorize this information for a

long-term interaction.

Definition 3.2.1. Let (eu(t− 1)), (q(t− 1)), (ed(t− 1)), (r(t− 1))) be the sequences of

intents, queries, interpretations, and payoffs up time t, respectively. The data interaction

game is the tuple

(U(t), D(t), π, (eu(t− 1)), (q(t− 1)), (ed(t− 1)), (r(t− 1))) (3.2)

Table 3.4 contains the notation and concept definitions introduced in this section for

future reference.

3.3 User Learning Mechanism

Several models have proposed modeling agent and human learning in strategic games

[57, 58, 59]. These models differ mainly on the assumptions they make on the level of

rationality of the agent. For example, in belief learning, the agent first predicts the next
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action of the other agents using a predictive model over their previous actions. It then

acts based on the predicted set of actions. As another example, roughly speaking, in

no-regret learning: the agent uses the full history of the game to compute the action that

if it had been performed in the past, it would have delivered the best payoff. The agent

will then choose this action in the next round of the game.

Among these methods, reinforcement learning assumes a more reasonable degree of

rationality from normal users as, generally speaking, the agent chooses its action based

on its accumulated success in the game [57, 58]. Also, it is well established that humans

show reinforcement behavior in learning [60, 61]. Many lab studies with human subjects

conclude that one can model human learning using reinforcement learning models [60, 61].

The exact reinforcement learning method used by a person, however, may vary based

on her capabilities and the task at hand. More specifically, these methods differ mainly

based on how the actual reward is used to compute the accumulated past success, the

expectation of the agent from the payoff of a successful action, the portion of the history

in the game the agent uses to compute the accumulated reward, and whether the agent

shows some forgetting behavior [58]. We have selected six well-known reinforcement

learning algorithms that have been used to model human learning in games and each

represents a design decision in the aforementioned aspects [47, 62]. We have performed

an empirical study of a real-world interaction log to find the reinforcement learning

method(s) that best explain the mechanism by which users adapt their strategies during

interaction with a DBMS.

3.3.1 Reinforcement Learning Methods

To provide a comprehensive comparison, we evaluate six reinforcement learning methods

used to model human learning in experimental game theory or Human-Computer Inter-

action (HCI) [47, 62]. Win-Keep/Lose-Randomize keeps a query with non-zero reward in

past interactions for an intent. If such a query does not exist, it picks a query randomly.

Latest-Reward reinforces the probability of using a query to express an intent based on

the most recent reward of the query to convey the intent. Bush and Mosteller’s and

Cross’s model increases (decreases) the probability of using a query based its past suc-

cesses (failures) of expressing an intent. A query is successful if it delivers a reward more

than a given threshold, e.g., zero. Roth and Erev’s model uses the aggregated reward
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from past interactions to compute the probability by which a query is used. Roth and

Erev’s modified model is similar to Roth and Erev’s model, with an additional param-

eter that determines to what extent the user forgets the reward received for a query in

past interactions. For the following definitions, reward is measured based on the user

feedback and using standard effectiveness metrics [56]. The details of algorithms are as

follows.

3.3.1.1 Win-Keep/Lose-Randomize

This method uses only the most recent interaction for an intent to determine the queries

used to express the intent in the future [63]. Thus, it uses a very small portion of the

interaction history to choose the next action. Assume that the user conveys an intent e

by a query q. If the reward of using q is above a specified threshold τ , the user will use q

to express e in the future. Otherwise, the user randomly picks another query uniformly

at random to express e. The threshold τ is the least amount of the received reward for

an action which the agent expects to have in order to consider the action successful.

3.3.1.2 Bush and Mosteller’s Model:

Bush and Mosteller’s model assumes that if the agent considers an action successful, the

agent will reinforce that action by a fixed value. This reinforcement value is independent

of the amount of received reward for the action [64]. If a user receives reward r for using

q(t) at time t to express intent ei, the model updates the probabilities of using queries

in the user strategy as follows.

Uij(t+ 1) =

Uij(t) + αBM · (1− Uij(t)) qj = q(t) ∧ r ≥ 0

Uij(t)− βBM · Uij(t) qj = q(t) ∧ r < 0
(3.3)

Uij(t+ 1) =

Uij(t)− αBM · Uij(t) qj 6= q(t) ∧ r ≥ 0

Uij(t) + βBM · (1− Uij(t) qj 6= q(t) ∧ r < 0
(3.4)

αBM ∈ [0, 1] and βBM ∈ [0, 1] are parameters of the model. Since effectiveness metrics

in interaction are always greater than zero, βBM is never used in our experiments. Using
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only the formulas containing αBM , the probability of using a strategy increases when

the correct result is returned to the user. However, when an incorrect result is returned,

the probability of employing that strategy is explicitly decreased. This increase and

decrease of probability is directly proportional to the strategies’ current probability and

the parameter αBM .

3.3.1.3 Cross’s Model:

Cross’s model modifies the user’s strategy similar to Bush and Mosteller’s model [65],

but uses the amount of the received reward to update the user strategy. The computed

probability of using a query for an intent is a linear function of its past reward for the

intent. Given a user receives reward r for using q(t) at time t to express intent ei, we

have:

Uij(t+ 1) =

Uij(t) +R(r) · (1− Uij(t)) qj = q(t)

Uij(t)−R(r) · Uij(t) qj 6= q(t)
(3.5)

R(r) = αC · r + βC (3.6)

Parameters αC ∈ [0, 1] and βC ∈ [0, 1] are used to compute the adjusted reward R(r)

based on the value of actual reward r.

3.3.1.4 Roth and Erev’s Model:

Roth and Erev’s model computes the probabilities of using a query to express an intent

based on the total accumulated reward of the query to express that intent over all

previous interactions [47]. Hence, it uses the full history of the game and the value of

reward to pick the future actions. It reinforces the probabilities directly from the reward

value r that is received when the user uses query q(t). Sij(t) in matrix S(t) maintains the

accumulated reward of using query qj to express intent ei over the course of interaction

up to round (time) t.

Sij(t+ 1) =

Sij(t) + r qj = q(t)

Sij(t) qj 6= q(t)
(3.7)
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Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(3.8)

Each query not used in a successful interaction will be implicitly penalized as when

the probability of a query increases, all others will decrease to keep U row-stochastic. It

does this by normalizing the probabilities.

3.3.1.5 Roth and Erev’s Modified Model:

Roth and Erev’s modified model is similar to the original Roth and Erev’s model, but it

has an additional parameter that determines to what extent the user takes in to account

the outcomes of her past interactions with the system [66]. It is reasonable to assume

that the user may forget the results of her much earlier interactions with the system.

This is accounted for by the forget parameter σ ∈ [0, 1]. Matrix S(t) has the same role

it has for the Roth and Erev’s model.

Sij(t+ 1) = (1− σ) · Sij(t) + E(j, R(r)) (3.9)

E(j, R(r)) =

R(r) · (1− ε) qj = q(t)

R(r) · (ε) qj 6= q(t)
(3.10)

R(r) = r − rmin (3.11)

Uij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(3.12)

In the aforementioned formulas, ε ∈ [0, 1] is a parameter that weights the reward

that the user receives, n is the maximum number of possible queries for a given intent ei,

and rmin is the minimum expected reward that the user wants to receive. The intuition

behind this parameter is that the user often assumes some minimum amount of reward

is guaranteed when she queries the database. The model uses this minimum amount to

discount the received reward. We set rmin to 0 in our analysis, representing that there
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is no expected reward in an interaction.

3.3.1.6 Latest-Reward:

The Latest-Reward method extends win-keep/lose-randomize by using the rewards of

the performed actions in computing the probabilities of using them in future. That is,

it reinforces a query for an intent based on the latest reward the user has observed from

using the query when querying for the intent. All other queries have an equal probability

to be chosen for a given intent. Let a user receive reward r ∈ [0, 1] by entering query

qj to express intent ei. The Latest-Reward method sets the probability of using qj to

convey ei in the user strategy, Uij , to r and distributes the remaining probability mass

1− r evenly among other entries related to intent ei, in Uik, where k 6= j.

3.3.2 Empirical Analysis

3.3.2.1 Interaction Logs

We use an anonymized Yahoo! interaction log for our empirical study, which consists

of queries submitted to a Yahoo! search engine in July 2010 [67]. Each record in

the log consists of a time stamp, user cookie id, submitted query, the top 10 results

displayed to the user, and the positions of the user clicks on the returned answers.

Generally speaking, typical users of Yahoo! are normal users who may not know advanced

concepts, such as formal query language and schema, and use keyword queries to find

their desired information. Yahoo! may generally use a combination of structured and

unstructured datasets to satisfy users’ intents. Nevertheless, as normal users are not

aware of the existence of schema and mainly rely on the content of the returned answers

to (re)formulate their queries, we expect that the users’ learning mechanisms over this

dataset closely resemble their learning mechanisms over structured data. We have used

three different contiguous subsamples of this log whose information is shown in Table 3.5.

The duration of each subsample is the time between the time-stamp of the first and last

interaction records. Because we would like to specifically look at the users that exhibit

some learning throughout their interaction, we have collected only the interactions in

which a user submits at least two different queries to express the same intent. The
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records of the 8H-interaction sample appear at the beginning of the the 43H-interaction

sample, which themselves appear at the beginning of the 101H-interaction sample.

3.3.2.2 Intent and Reward

Accompanying the interaction log is a set of relevance judgment scores for each query

and result pair. Each relevance judgment score is a value between 0 and 4 and shows

the degree of relevance of the result to the query, with 0 meaning not relevant at all and

4 meaning the most relevant result. We define the intent behind each query as the set

of results with non-zero relevance scores. We use the standard ranking quality metric

Normalized Discounted Cumulative Gain (NDCG) for the returned results of a query as

the reward in each interaction as it models different levels of relevance [56]. The value

of NDCG is between 0 and 1 and it is 1 for the most effective list.

Table 3.5: Subsamples of Yahoo! interaction log

Duration #Interactions #Users #Queries #Intents

˜101H 195468 79516 13976 4829

˜43H 12323 4056 341 151

˜8H 622 272 111 62

3.3.2.3 Parameter Estimation

Some models, e.g., Cross’s model, have some parameters that need to be trained. We

have used a set of 5,000 records that appear in the interaction log immediately before

the first subsample of Table 3.5 and found the optimal values for those parameters using

grid search and the sum of squared errors.

3.3.2.4 Training and Testing

We train and test a single user strategy over each subsample and model, which represents

the strategy of the user population in each subsample. The user strategy in each model

is initialized with a uniform distribution, so that all queries are equally likely to be used

for an intent. After estimating parameters, we train the user strategy using each model



43

over 90% of the total number of records in each selected subsample in the order by which

the records appear in the interaction log. We use the value of NDCG as reward for the

models that use rewards to update the user strategy after each interaction. We then

test the accuracy of the prediction of using a query to express an intent for each model

over the remaining 10% of each subsample using the user strategy computed at the end

of the training phase. Each intent is conveyed using only a single query in the testing

portions of our subsamples. Hence, no learning is done in the testing phase and we do

not update the user strategies. We report the mean squared errors over all intents in the

testing phase for each subsample and model in Table 3.6. A lower mean squared error

implies that the model more accurately represents the users’ learning method. We have

excluded the Latest Reward results from the figure as they are an order of magnitude

worse than the others.

Table 3.6: Accuracies of learning over the subsamples of Table 3.5

Methods
Duration

101H 43H 8H

Bush and Mosteller’s 0.0672 0.1880 0.2434

Cross’s 0.0686 0.1908 0.2472

Roth and Erev’s 0.0666 0.1827 0.2522

Roth and Erev’s Modified 0.0666 0.1827 0.2522

Win-Keep/Lose-Randomize 0.0713 0.1876 0.2364

3.3.2.5 Results

Win-Keep/Lose-Randomize performs slightly more accurately than other methods for

the 8H-interaction subsample. It indicates that in short-term or beginning of their in-

teractions, users may not have enough interactions to leverage a more complex learning

scheme and use a rather simple mechanism to update their strategies. Both Roth and

Erev’s methods use the accumulated reward values to adjust the user strategy gradu-

ally. Hence, they cannot precisely model user learning over a rather short interaction

and are less accurate than relatively more aggressive learning models such as Bush and

Mosteller’s and Cross’s over this subsample. Both Roth and Erevs deliver the same re-

sult and outperform other methods in the 43-H and 101-H subsamples. Win-Keep/Lose-
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Randomize is the least accurate method over these subsamples. Since larger subsamples

provide more training data, the predication accuracy of all models improves as the in-

teraction subsamples becomes larger. The learned value for the forget parameter in the

Roth and Erev’s modified model is very small and close to zero in our experiments,

therefore, it generally acts like the Roth and Erev’s model.

These results indicate that when we observe users as a collective group, they tend

to exhibit reinforcement learning behavior and remember their past interactions. Pre-

sumably there is a way for users to communicate to some degree how they have learned

individually to the entire group. Commonly this is done through search suggestions. A

keyword search engine, such as Yahoo!, will suggest possible searches for the user based

on its previous interactions with other users searching for similar results. Thus, using

such features, the users are able to learn collectively using some reinforcement learning

model. The following subsection analyzes how the user learns at the individual level.

Long-term communications between users and DBMS may include multiple sessions.

Since Yahoo! query workload contains the time stamps and user ids of each interaction,

we have been able to extract the starting and ending times of each session. Our results

indicate that as long as the user and DBMS communicate over sufficiently many of

interactions, e.g., about 10k for Yahoo! query workload, the users follow Roth and

Erev’s model of learning. Given that the communication of the user and DBMS involve

sufficiently many interactions, we have not observed any difference in the mechanism by

which users learn based on the numbers of sessions in the user and DBMS communication.

3.3.3 Analyzing Individual Users

Data management and information retrieval systems usually consider a population of

users as a single user when building a model for users’ behavior. We have followed the

same approach in this section so far and our analyses indicate that a population of users

learn during their medium and long term interactions with the data system in a way that

accurately measured by the Roth and Erev’s model. However, it is not completely clear

how a population of users will learn from its experience as distinct users do not normally

share their experiences of trying and exploring possible queries for an intent. One way for

the users to share their experiences could be via the query suggestion or auto-completion

mechanisms provided in the Yahoo! search interface. As Yahoo! learns more about the
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right query that satisfies users who seeks a certain intent, it will suggest this query to

other users who look for the same or similar intents. Thus, users may benefit from

the exploration done by other users in their past interactions and submit an accurate

query. The more users successfully use the suggested queries, the more these queries are

reinforced in the query-suggestion tool, which in turn causes more users to submit them.

Thus, individual users share and reinforce the result of their past experiences indirectly.

Another hypothesis to explain the learning mechanism of a group of users is that most

individual users actually learn according to the Roth and Erev’s learning algorithm. To

test this hypothesis, we have empirically evaluated the learning mechanism of individual

users. We have taken users that entered at least 200 queries while entering at least two

queries for a single intent over the entire query log. The users need to use at least two

queries for an intent to exhibit some kind of learning behavior. Each user’s log includes

and entire month of interactions. These logs were then used to train and test our models

using the same methods used to evaluate the learning behavior of a population. We train

over 90% and test on 10% of the query log of each user.

We compare Roth and Erev’s, Cross’s, Bush and Mosteller’s, Win-Keep/ Lose-

Randomize, and Reward Based models. We notice that Roth and Erev is the strategy

that has the least squared error for the majority of the users as seen in Table 3.7. This

indicates that the users, on an individual level, are best modeled by Roth and Erev

over a relatively long term period of one month. These results align with our previous

results indicating that users as a group exhibit intelligent behavior and consider previous

rewards over a long period of time.

Table 3.7: How many individual user’s strategies are best modeled

# Users Roth and Erev’s 31

# Users Cross’s 2

# Users Bush and Mosteller’s 8

#Users Win-Keep 0

#Users Reward Based 0

We compare the average Mean Squared Error for of each of the scores across all

users in Table 3.8. We notice that Roth and Erev has the lowest average, which is to be

expected since it represented the majority of the users. However, Cross’s model has a

lower average than Bush and Mosteller’s model even though Bush and Mosteller’s model
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best fits more users then Cross’s. This happens when Cross’s actually has a lower score

compared to Bush and Mosteller’s model alone, but is still higher when compared to Roth

and Erev’s model. We also note that Reward Based and Win-Keep/Lose-Randomize

perform quite poorly and have large averages compared to the other models. This is

because they are quite inaccurate for representing a user’s strategy over a long period of

time, of which all these strategies are over an entire month.

Table 3.8: Average Mean Squared Error Across the Users

Roth and Erev Cross Bush and Mosteller Win-Keep Reward Based

0.034496 0.03531 0.036374 0.043065 0.16031

3.3.4 Conclusion

Our analysis indicates that users show a substantially intelligent behavior when adopting

and modifying their strategies over medium and long-term interactions. They leverage

their past interactions and their outcomes, i.e., have an effective long-term memory.

While this behavior is captured to some degree by all of the reinforcement learning

models, it is most accurately modeled using Roth and Erev’s model. Roth and Erev’s

model is also more intuitive and easier to analyze than other models. It has also been

widely used to model user learning when in games [68, 69, 70, 71, 72, 73, 74]. Hence, in

the rest of the chapter, we set the user learning method to this model.

3.4 Learning Algorithm for DBMS

Current systems generally assume that a user does not learn and/or modify her method of

expressing intents throughout her interaction with the DBMS. However, it is known that

the learning methods that are useful in static settings do not deliver desired outcomes in

the dynamic ones [48]. Moreover, if the players do not use the right learning algorithms

in games with identical interests, the game and its payoff may not converge to any desired

states [75]. Thus, choosing the correct learning mechanism for the DBMS is crucial to

improve the payoff and converge to a desired state. The following algorithmic questions

are of interest:
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i. How can a DBMS learn or adapt to a user’s strategy?

ii. Mathematically, is a given learning algorithm effective?

iii. What would be the asymptotic behavior of a given learning algorithm?

Here, we address the first and the second questions above. Dealing with the third

question is far beyond the scope and space of this work. A summary of the notations

introduced in Section 3.2 and used in this section can be found in Table 3.4. In this

section, we provide a learning algorithm for the DBMS that can learn when the user

has static or dynamic behavior. We also prove that the payoff over time converges

stochastically speaking when the DBMS uses our algorithm.

3.4.1 DBMS Reinforcement Learning

We adopt Roth and Erev’s learning method for adaptation of the DBMS strategy, with

a slight modification. The original Roth and Erev method considers only a single action

space. In our work, this would translate to having only a single query. Instead we

extend this such that each query has its own action space or set of possible intents. The

adaptation happens over discrete time t = 0, 1, 2, 3, . . . instances where t denotes the

tth interaction of the user and the DBMS. We refer to t simply as the iteration of the

learning rule. For simplicity of notation, we refer to intent ei and result s` as intent i

and `, respectively, in the rest of the chapter. Hence, we may rewrite the expected payoff

for both user and DBMS as:

ur(U,D) =

m∑
i=1

πi

n∑
j=1

Uij

o∑
`=1

Dj`ri`,

where r : [m]× [o]→ R+ is the effectiveness measure between the intent i and the result,

i.e., decoded intent `. With this, the reinforcement learning mechanism for the DBMS

adaptation is as follows.

a. Let R(0) > 0 be an n× o initial reward matrix whose entries are strictly positive.

b. Let D(0) be the initial DBMS strategy with Dj`(0) =
Rj`(0)∑o
`=1 Rj`(0)

> 0 for all j ∈ [n]

and ` ∈ [o].
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c. For iterations t = 1, 2, . . ., do

i. If the user’s query at time t is q(t), DBMS returns a result E(t) ∈ E with

probability:

P (E(t) = i′ | q(t)) = Dq(t)i′(t).

ii. User gives a reward rii′ given that i is the intent of the user at time t. Note that

the reward depends both on the intent i at time t and the result i′. Then, set

Rj`(t+ 1) =

{
Rj`(t) + ri` if j = q(t) and ` = i′

Rj`(t) otherwise
. (3.13)

iii. Update the DBMS strategy by

Dji(t+ 1) =
Rji(t+ 1)∑o
`=1Rj`(t+ 1)

, (3.14)

for all j ∈ [n] and i ∈ [o].

In the algorithm above, R(t) is simply the reward matrix at time t. One may use an

available offline scoring function, e.g., [42, 51], to compute the initial reward R(0) which

possibly leads to an intuitive and relatively effective initial point for the learning process

[54].

3.4.2 Analysis of the Learning Rule

We show in Section 3.3 that users modify their strategies in data interactions. Neverthe-

less, ideally, one would like to use a learning mechanism for the DBMS that accurately

discovers the intents behind users’ queries whether or not the users modify their strate-

gies, as it is not certain that all users will always modify their strategies. Also, in some

relevant applications, the user’s learning is happening in a much slower time-scale com-

pared to the learning of the DBMS. So, one can assume that the user’s strategy is fixed

compared to the time-scale of the DBMS adaptation. Therefore, first, we consider the

case that the user is not adapting her strategy, i.e., she has a fixed strategy during

the interaction. Then, we consider the case that the user’s strategy is adapting to the
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DBMS’s strategy but perhaps at a slower rate in Section 3.4.3. Introductory material

for some of the concepts utilized in the following subsections may be found at [76, 77].

We provide an analysis of the reinforcement mechanism provided above and will show

that, statistically speaking, the adaptation rule leads to improvement of the interaction

effectiveness.

3.4.2.1 Basic Interaction Mode

We first investigate the simple case where the DBMS returns only one result in each

interaction. In other words, we assume that the cardinality of the list k is 1. For the

analysis of the learning mechanism in Section 3.4.2 and for simplification, we denote

u(t) := ur(U,D(t)), (3.15)

for an effectiveness measure r as ur is defined in (3.1). In this section, we assume that

the user provides a binary feedback of relevance and non-relevance on the returned result

to simplify our model. We eliminate this assumption in Section 3.4.2.2.

We recall that a random process {X(t)} is a submartingale [78] if it is absolutely

integrable (i.e. E(|X(t)|) <∞ for all t) and

E(X(t+ 1) | Ft) ≥ X(t),

where Ft is the history or σ-algebra generated by X1, . . . , Xt
1. In other words, a process

{X(t)} is a sub-martingale if the expected value of X(t+1) given the history X(t), X(t−
1), . . . , X(0), is not strictly less than the value of X(t). Note that submartingales are

nothing but the stochastic counterparts of monotonically increasing sequences. As in the

case of bounded (from above) monotonically increasing sequences, submartingales pose

the same property, i.e. any submartingale {X(t)} with E(|X(t)|) < B for some B ∈ R+

and all t ≥ 0 is convergent almost surely, i.e. limt→∞X(t) exists almost surely.

The main result in this section is that the sequence of the utilities {u(t)} (which is

indeed a stochastic process as {D(t)} is a stochastic process) defined by (3.15) is a sub-

martignale when the reinforcement learning rule in Section 3.4.1 is utilized. As a result

1In this case, simply we have E(X(t+ 1) | Ft) = E(X(t+ 1) | X(t), . . . , X(1)).
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the proposed reinforcement learning rule stochastically improves the efficiency of com-

munication between the DBMS and the user. To show this, we discuss an intermediate

result. For simplicity of notation, we fix the time t and we use superscript + to denote

variables at time (t+ 1) and drop the dependencies at time t for variables depending on

time t.

Lemma 3.4.1. For any ` ∈ [m] and j ∈ [n] (and any time t ≥ 0), we have

E(D+
j` | Ft)−Dj` =

Dj`∑m
`′=1Rj`′ + 1

(
π`U`j − uj(U,D)

)
,

where

uj(U,D) =
m∑

`′=1

π`′U`′jDj`′ ,

is the average efficiency of signal j on conveying messages.

Proof. Fix ` ∈ [m] and j ∈ [n]. Let A be the event that at the t’th iteration, we reinforce

a pair (j, `′) for some `′ ∈ [m]. Then on the complement Ac of A, D+
j`(ω) = Dj`(ω). Let

A1 ⊆ A be the subset of A such that the pair (j, `) is reinforced and A2 = A \A1 be the

event that some other pair (j, `′) is reinforced for `′ 6= `. We note that

D+
j` =

Rj` + 1∑m
`′=1Rj`′ + 1

1A1 +
Rj`∑m

`′=1Rj`′ + 1
1A2 +Dj`1Ac .

Therefore, we have

E(D+
j` | Ft) = π`U`jDj`

Rj` + 1∑m
`′=1Rj`′ + 1

+
∑
`′ 6=j

π`′U`′jDj`
Rj`∑m

`′′=1Rj`′′ + 1
+ (1− p)Qj`,

where p = P (A2 | F). Note that D`j =
Rj`∑m

`′=1 Rj`′
and hence,

E(D+
j` | Ft)−Dj` =

1∑m
`′=1Rj`′ + 1

π`U`jDj`

∑
`′ 6=`

Qj`′ −
∑
`′ 6=`

π`′U`′jDj`′Dj`

 .

Replacing
∑

`′ 6=`Dj`′ = 1−Dj` and adding or subtracting π`U`jDj`Dj` in the term inside
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the parenthesis in the above equality, we get

E(D+
j` | F)−Dj` =

Dj`∑m
`′=1Rj`′ + 1

(
π`P`j − uj(U,D)

)
.

Using Lemma 3.4.1, we show that the process {u(t)} is a sub-martingale.

Theorem 3.4.2. Let {u(t)} be the sequence given by (3.15). Then, {u(t)} is a sub-

martingale sequence.

Proof. Let u+ := u(t + 1), u := u(t), uj := uj(U(t), D(t)) and also define R̃j :=∑m
`′=1Rj`′ + 1. Then, using the linearity of conditional expectation and Lemma 3.4.4,

we have:

E(u+ | Ft)− u =

m∑
i=1

n∑
j=1

πiUij

(
E(D+

ji | Ft)−Dji

)
=

m∑
i=1

n∑
j=1

πi
UijDji∑m

`′=1Rj`′ + 1

(
πiUij − uj

)
=

n∑
j=1

1

R̃j

(
m∑
i=1

Dji(πiUij)
2 − (uj)2

)
. (3.16)

Note that D is a row-stochastic matrix and hence,
∑m

i=1Dji = 1. Therefore, by the

Jensen’s inequality [78], we have:

m∑
i=1

Dji(πiUij)
2 ≥

m∑
i=1

(DjiπiUij)
2 = (uj)2.

Replacing this in the right-hand-side of (3.16), we conclude that E(u+ | Ft)−u ≥ 0 and

hence, the sequence {u(t)} is a submartingale.

The result above implies that the effectiveness of the DBMS learning algorithm,

stochastically speaking, increases as time progresses when the learning rule in Section 3.4

is utilized. This is indeed a desirable property for any learning scheme for DBMS adapta-

tion. An immediate consequence of Theorem 3.4.2 is that the efficiency sequence {u(t)}
is convergent almost surely.
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Corollary 3.4.3. The sequence {u(t)} given by (3.15) converges almost surely.

Proof. Note that 0 ≤ u(t) ≤ mn (indeed, a simple application of Hölder’s inequality

give the bound u(t) ≤ 1) and hence, {u(t)} is a bounded submartingale. Therefore,

by the Martingale Convergence Theorem [78], it follows that limt→∞ u(t) exists almost

surely.

3.4.2.2 Arbitrary Effectiveness Metric

Generally, relevance of an answer to an input query is a matter of degree and different

relevant answers may satisfy the intent behind the query to different levels. We extend

the results of Section 3.4.2.1 for the case where the relevance of an answer to the input

query is not simply binary, i.e., relevant and non-relevant. More importantly, this holds

for an arbitrary reward or effectiveness measure r. This is rather a very strong result

as the algorithm is robust to the choice of the reward mechanism. We first show an

intermediate result.

Lemma 3.4.4. For any ` ∈ [m] and j ∈ [n], we have

E(D+
j` | Ft)−Dj` = Dj` ·

m∑
i=1

πiUij

(
ri`

R̄j + ril
−

o∑
`′=1

Dj`′
ri`′

R̄j + ri`′

)
,

where R̄j =
∑o

`′=1Rj`′ .

Proof. Fix ` ∈ [m] and j ∈ [n]. Let A be the event that at the tth iteration, we reinforce

a pair (j, `′) for some `′ ∈ [m]. Then on the complement Ac of A, D+
j`(ω) = Dj`(ω). Let

Ai,`′ ⊆ A be the subset of A such that the intent of the user is i and the pair (j, `′) is

reinforced. Note that the collection of sets {Ai,`′} for i, `′ ∈ [m], are pairwise mutually

exclusive and their union constitute the set A.

We note that

D+
j` =

m∑
i=1

Rj` + ril
R̄j + ri`

1Ai,`
+

o∑
`′=1
`′ 6=`

Rj`

R̄j + ri`′
1Ai,`′


+Dj`1Ac .
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Therefore, we have

E(D+
j` | Ft) =

m∑
i=1

πiUijDj`
Rj` + ri`
R̄j + ri`

+

m∑
i=1

πiUij

∑
`6=`′

Dj`′
Rj`

R̄j + ri`′
+ (1− p)Dj`,

where p = P(A | F). Note that Dj` =
Rji

R̄j
and hence,

E(D+
j` | Ft)−Dj` =

m∑
i=1

πiUijDj`
ri`R̄j −Rj`

R̄j(R̄j + ri`)
−

m∑
i=1

πiUij

∑
` 6=`′

Dj`′
Rj`ri`′

R̄j(R̄j + ri`′)
.

Replacing
Rjl

R̄j
with Dj` and rearranging the terms in the expression above, we get the

result.

To show the main result, we use the following result in martingale theory.

Theorem 3.4.5. [79] A random process {X(t)} converges almost surely if X(t) is

bounded, i.e., E(|X(t)|) < B for some B ∈ R+ and all t ≥ 0 and

E(X(t+ 1)|Ft) ≥ X(t)− β(t) (3.17)

where β(t) ≥ 0 is a summable sequence almost surely, i.e.,
∑

t β(t) < ∞ with probabil-

ity 1.

Using Lemma 3.4.4 and the result above, we show that up to a summable disturbance,

the proposed learning mechanism is stochastically improving.

Theorem 3.4.6. Let {u(t)} be the sequence given by (3.15). Then,

E(u(t+ 1 | Ft) ≥ E(u(t) | Ft)− β(t),

for some non-negative random process {β(t)} that is summable (i.e.
∑∞

t=0 β(t) < ∞
almost surely). Hence, {u(t)} converges almost surely.

Proof. Let u+ := u(t+ 1), u := u(t),

uj := uj(U(t), D(t)) =
m∑
i=1

o∑
`=1

πiUijDj`ri`(t),
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and also define R̄j :=
∑m

`′=1Rj`′ . Note that uj is the efficiency of the jth signal or query.

Using the linearity of conditional expectation and Lemma 3.4.4, we have:

E(u+ | Ft)− u =

m∑
i=1

n∑
j=1

πiUij

o∑
`=1

ri`′
(
E(D+

j` | Ft)−Dj`

)
(3.18)

=

m∑
i=1

n∑
j=1

o∑
`=1

πiUijDj`ri`

(
m∑

i′=1

π′iUi′j

(
ri′`

R̄j + ri′`
−

o∑
`′=1

Dj`′
ri′`′

R̄j + ri′`′

))
.

(3.19)

Now, let yj` =
∑m

i=1 πiUijri` and zj` =
∑m

i=1 πiUij
ri`

R̄j+ri`
. Then, we get from the expres-

sion above that

E(u+ | Ft)− u =
n∑

j=1

(
o∑

`=1

Dj`yi`zj` −
o∑

`=1

Dj`yj`

o∑
`′=1

Dj`′zj`′

)
. (3.20)

Now, we express the equation above as

E(u+ | Ft)− u = Vt + Ṽt (3.21)

where

Vt =
n∑

j=1

1

R̄j

 o∑
`=1

Dj`y
2
j` −

(
o∑

l=1

Dj`yj`

)2
 ,

and

Ṽt =

n∑
j=1

(
o∑

`=1

Dj`yj`

o∑
`′=1

Dj`′ z̃j`′ −
m∑
`=1

Dj`yj`z̃j`

)
. (3.22)

Further, z̃j` =
∑

i=1 πiUij
r2i`

R̄j(R̄j+ri`)
.

We claim that Vt ≥ 0 for each t and {Ṽt} is a summable sequence almost surely.

Then, from (3.21) and Theorem 3.4.5, we get that {ut} converges almost surely and it

completes the proof. Next, we validate our claims.

We first show that Vt ≥ 0, ∀t. Note that D is a row-stochastic matrix and hence,
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∑o
`=1Dj` = 1. Therefore, by the Jensen’s inequality [78], we have:

o∑
`=1

Dj`(yj`)
2 ≥

o∑
`=1

(Dj`yj`)
2.

Hence, V ≥ 0.

We next claim that {Ṽt} is a summable sequence with probability one. Equa-

tion (3.22) implies

Vt ≤
o∑

j=1

o2n

R̄2
j

. (3.23)

since yj` ≤ 1, z̃j` ≤ R̄−2
j for each j ∈ [n], ` ∈ [m] and D is a row-stochastic matrix.

To prove the claim, it suffices to show that for each j ∈ [m], the sequence { 1
R2

j (t)
} is

summable. Note that for each j ∈ [m] and for each t, we have R̄j(t + 1) = R̄j(t) + εt

where εt ≥ ε > 0 with probability pt ≥ p > 0. Therefore, using the Borel-Cantelli Lemma

for adapted processes [78] we have { 1
R2

j (t)
} is summable which concludes the proof.

The result above implies that the effectiveness of the DBMS, stochastically speaking,

increases as time progresses when using the learning rule in Section 3.4. Not only that,

but this property is true for cases where the feedback is not simply a 0/1 value, e.g., the

selected answer may be partially relevant to the desired intent. This is indeed a desirable

property for any DBMS learning scheme.

3.4.2.3 k-List Learning

We now investigate the variation where the DBMS returns k candidate answers to the

user for each query. As in the previous case, the DBMS strategy D(t) is going to evolve

as a function of time/query t. As in the previous cases, at time t, user will have an intent

ei with probability πi independent of the prior intents of the user. Then, the user will

use a query qj with probability Uij to convey her intent. The database shows a list L(t)

of k tuples i1, i2, . . . , ik with probability

Dji1(t)Dji2(t) · · ·Djik .

This corresponds to showing k independent samples of the tuples with the distribution
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(Dj1(t), . . . , Djm(t)). We refer to such a list as a k-list generated by D(t). Once the k-list

is generated, if the original intent belongs to the list, i.e. i ∈ L(t), the database reinforces

(j, i)th entry of D(t) by letting

Dji(t) =
Rji(t) + 1∑
i′ Rji′(t) + 1

,

where R(t) is the reward matrix up-to time t. We refer to this adaptation rule as k-list

learning rule. In this section, we show the effectiveness of this reinforcement learning

rule for an arbitrary k ≥ 1.

To investigate the efficiency of this algorithm, let us define the new efficiency metric:

v(U,D) =

m∑
i=1

n∑
j=1

πiUij(1− (1−Dji)
k),

where U,D are the strategies of the user and the database, respectively. For the remain-

der of this section, we simplify the notation of (1 − Dji)
k to be a single variable of Z.

Before continuing our discussion, let us elaborate more on this efficiency metric. Note

that Z is the probability that the intent i is not present in a k-list L generated by U

when query j is received by the database. Therefore, Z is the probability if i ∈ L given

query j, and hence, πiUijZ is the probability that a user with intent i, uses query j, and

the database, successfully decode the message and shows i in the k-list generated by D.

Therefore, v(U,D) is nothing but the efficiency of the pair U,D when utilizing k-lists.

Similar to u(U,D), let

vj(U,D) =
m∑
i=1

πiUijZ,

to be the efficiency of query j for communication. Also, to reduce notational complexity,

let Rj(t) :=
∑m

i=1Rji(t).

Using these definitions, we have the following result.

Lemma 3.4.7. Let {D(t)} be a sequence generated using the k-list learning rule. Then,
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for any t ≥ 1, we have:

E(D+
ji | Ft)−Dji =

1

Rj + 1
(πiUijZ

− vj(U,D)Dji)

Proof. Let us have a close look on the update of Dji(t). Consider the event E ∈ Ft that

some entry in the jth row of D(t) get reinforced and let A ⊆ E be the event that jith

entry get reinforced and let p = U(E | Ft). Note that,

p =

m∑
i=1

πiUijZ = vj(U,D).

Note that on Ec, we have Dji(t + 1) = Dji(t). On A, Dji(t + 1) =
Rji(t)+1
Rj(t)+1 and on

B = E \A, we have Dji(t+ 1) =
Rji(t)

Rj(t)+1 . Also,

U(A | Ft) = πiUijZ,

and

U(B | Ft) =
∑
i′ 6=i

πi′Ui′j(1− (1−Dji′)
k).

Using these, we have:

E(D+
ji | Ft)−Djif =

∑
i′ 6=i

πi′Ui′j(1− (1−Dji′)
k)

Rji

Rj + 1
+ πiUijZ

Rji + 1

Rj + 1
+ (1− p)Dji −Dji

=

m∑
i′=1

πi′Ui′j(1− (1−Dji′)
k)

Rji

Rj + 1
+ πiUijZ

1

Rj + 1
− vj(U,D)Dji.

Therefore,

E(D+
ji | Ft)−Dji = vj(U,D)(

Rji

Rj + 1
−Dji) + πiUijZ)

1

Rj + 1
. (3.24)
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Note that

Rji

Rj + 1
−Dji =

Rji

Rj + 1
− Rji

Rj
= − Rji

Rj(Rj + 1)
= − Dji

Rj + 1
.

Replacing the above equation in (3.24), we get:

E(D+
ji | Ft)−Dji =

1

Rj + 1
(πiUijZ −vj(U,D)Dji) .

Using Lemma 3.4.7, we can prove the efficiency of the k-list learning rule.

Theorem 3.4.8. Let {D(t)} be the sequence generated using the k-list learning rule.

Then, the sequence {u(U,D(t))} is a sub-martingale, i.e. the efficiency of the k-learning

rule (stochastically) improves as a function of time t. In particular,

lim
t→∞

u(U,D(t))

exists almost surely.

Proof. We have:

E(u+ − u | Fk)

=
m∑
i=1

n∑
j=1

πiUijE(D+
ji −Dji | Fk)

=

m∑
i=1

n∑
j=1

πiUij
1

Rj + 1
(πiUijZ

−vj(U,D)Dji)

=

m∑
i=1

n∑
j=1

1

Rj + 1

(
(πiUij)

2Z

−πiUijDjivj(U,D))
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Hence, using the Jensen’s inequality, we get that

E(u+(U,D)− u | Fk) ≥
n∑

j=1

1

Rj + 1
×

m∑
i=1

(πiUijDjivj(U,D)− πiUijDjivj(U,D)) = 0.

This result shows that, stochastically speaking, the efficiency of the k-list learning

rule improves as function of iteration.

3.4.3 User and DBMS Adaptations

We also consider the case that the user also adapts to the DBMS’s strategy. At the first

glance, it may seem that if the DBMS adapts using a reasonable learning mechanism,

the user’s adaptation can only result in a more effective interaction as both players have

identical interests. Nevertheless, it is known from the research in algorithmic game theory

that in certain two-player games with identical interest in which both players adapt their

strategies to improve their payoff, well-known learning methods do not converge to any

(desired) stable state and cycle among several unstable states [75, 45]. Here, we focus on

the identity similarity measure, i.e. we assume that m = o and the user gives a boolean

feedback:

ri` =

{
1 if i = `,

0 otherwise
.

In this case, we assume that the user adapts to the DBMS strategy at time steps 0 <

t1 < · · · < tk < · · · and in those time-steps the DBMS is not adapting as there is no

reason to assume the synchronicity between the user and the DBMS. The reinforcement

learning mechanism for the user is as follows:

a. Let S(0) > 0 be an m× n reward matrix whose entries are strictly positive.

b. Let U(0) be the initial user’s strategy with

Uij(0) =
Sij(0)∑n

j′=1 Sij′(0)
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for all i ∈ [m] and j ∈ [n] and let U(tk) = U(tk − 1) = · · · = U(tk−1 + 1) for all k.

c. For all k ≥ 1, do the following:

i. The user picks a random intent t ∈ [m] with probability πi (independent of the

earlier choices of intent) and subsequently selects a query j ∈ [n] with probability

P (q(tk) = j | i(tk) = i) = Uij(tk).

ii. The DBMS uses the current strategy D(tk) and interpret the query by the intent

i′(t) = i′ with probability

P (i′(tk) = i′ | q(tk) = j) = Dji′(tk).

iii. User gives a reward 1 if i = i′ and otherwise, gives no rewards, i.e.

S+
ij =

{
Sij(tk) + 1 if j = q(tk) and i(tk) = i′(tk)

Sij(tk) otherwise

where S+
ij = Sij(tk + 1).

iv. Update the user’s strategy by

Uij(tk + 1) =
Sij(tk + 1)∑n

j′=1 Sij′(tk + 1)
, (3.25)

for all i ∈ [m] and j ∈ [n].

In the above scheme S(t) is the reward matrix at time t for the user.

Next, we provide an analysis of the reinforcement mechanism provided above and will

show that, statistically speaking, our proposed adaptation rule for DBMS, even when

the user adapts, leads to improvement of the effectiveness of the interaction. With a

slight abuse of notation, let

u(t) := ur(U,D(t)) = ur(U(t), D(t)), (3.26)

for an effectiveness measure r as ur is defined in (3.1).
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Lemma 3.4.9. Let t = tk for some k ∈ N. Then, for any i ∈ [m] and j ∈ [n], we have

E(U+
ij | Ft)− Uij =

πiUij∑n
`=1 Si` + 1

(Dji − ui(t)) (3.27)

where

ui(t) =

n∑
j=1

Uij(t)Dji(t).

Proof. Fix i ∈ [m], j ∈ [n] and k ∈ N. Let B be the event that at the tk’th iteration,

user reinforces a pair (i, `) for some ` ∈ [n]. Then, on the complement Bc of B, P+
ij (ω) =

Pij(ω). Let B1 ⊆ B be the subset of B such that the pair (i, j) is reinforced and

B2 = B \B1 be the event that some other pair (i, `) is reinforced for ` 6= i.

We note that

U+
ij =

Sij + 1∑n
`=1 Si` + 1

1B1 +
Sij∑n

`=1 Si` + 1
1B2 + Uij1Bc .

Therefore, we have

E(U+
ij | Fkt) = πiUijDji

Sij + 1∑n
`=1 Si` + 1

+
∑
6̀=j

πiUi`D`i
Sij∑n

`′=1 Si`′ + 1
+ (1− p)Uij ,

where p = U(B | Fkt) =
∑

` πiUijDji. Note that Uij =
Sij∑n
`=1 Si`

and hence,

E(U+
ij | Ft)− Uij =

1∑n
`′=1 Si`′ + 1

(
πiUijDji − πiUij

∑
`

Ui`D`i

)
.

which can be rewritten as in (3.27).

Using Lemma 3.4.9, we show that the process {u(t)} is a sub-martingale.
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Theorem 3.4.10. Let t = tk for some k ∈ N. Then, we have

E(u(t+ 1) | Ft)− u(t) ≥ 0 (3.28)

where u(t) is given by (3.26).

Proof. Fix t = tk for some k ∈ N. Let u+ := u(t+ 1), u := u(t), ui := ui(U(t), D(t)) and

also define S̃i :=
∑m

`′=1 Si`′ + 1. Then, using the linearity of conditional expectation and

Lemma 3.4.4, we have:

E(u+ | Ft)− u =

m∑
i=1

n∑
j=1

πiDji

(
E(U+

ij | Ft)− Uij

)
=

m∑
i=1

n∑
j=1

πiDji
πiUij∑m

`′=1 Sj`′ + 1

(
Dji − ui

)

=
m∑
i=1

π2
i

S̃i

 n∑
j=1

Uij(Dji)
2 − (ui)2

 . (3.29)

Note that U is a row-stochastic matrix and hence,
∑m

i=1 Uij = 1. Therefore, by the

Jensen’s inequality [78], we have:

n∑
j=1

Uij(Dji)
2 ≥

 n∑
j=1

DjiUij

2

= (ui)2.

Replacing this in the right-hand-side of (3.29), we conclude that E(u+ | Ft)−u ≥ 0 and

hence, the sequence {u(t)} is a submartingale.

Corollary 3.4.11. The sequence {u(t)} given by (3.15) converges almost surely.

Proof. Note from Theorem 3.4.6 and 3.4.10 that the sequence {u(t)} satisfies all the

conditions of Theorem 3.4.5. Hence, proven.

Researchers have also analyzed the effectiveness of a 2-player signaling game in which

both players use Roth and Erev’s model for learning [71]. However, they assume that

both players learn at the same time-scale. Our result in this section holds for the case
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where users and DBMS learn at different time-scales, which may arguably be the domi-

nant case in our setting as generally users may learn on a much slower time-scale com-

pared to the DBMS.

In this section we proposed a reinforcement learning algorithm that is an adaptation

of the Roth and Erev model. We showed that the payoff function of our model converges

almost surely when the DBMS uses our modified Roth and Erev algorithm. This holds

when the user learns using a Roth and Erev model and when the user does not learn.

The authors in [71] have also analyzed the effectiveness of a 2-player signaling game

in which both players use Roth and Erev’s model for learning. However, they assume

that both players learn at the same time-scale. Our results in this section holds for the

case where users and DBMS learn on a different time scale, which may arguably be the

dominant case in our setting as generally users may learn in a much slower time scale

compared to the DBMS.

3.5 Equilibria of the Game

An important question in analyzing a game is whether it has any eventual stable state,

i.e., equilibrium, in which none of the agents have any reason and motivation to update

their strategies. Intuitively, one stable state in our game could be the one in which the

user and DBMS establish a perfect common understanding, e.g., users get perfectly accu-

rate answers for all their queries. Nevertheless, it is not clear whether such a state is the

only equilibrium of the game. In this section, we formally define the stable states of the

game and investigate their degrees of stability and desirability. An interesting research

direction is to connect the dynamic analyses of the learning rule in the previous section

and the static analysis of the game in this section to understand to which equilibria the

game converges if both agents use our proposed learning rule. Due to the hardness of

this problem, we leave this subject as an interesting future problem.

3.5.1 Fixed User Strategy

In some settings, the strategy of a user may change at a much slower time scale than

that of the DBMS. In these cases, it is reasonable to assume that the user’s strategy is

fixed. Hence, the game will reach a desirable state where the DBMS adapts a strategy
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that maximizes the expected payoff. Let a strategy profile be a pair of user and DBMS

strategies.

Definition 3.5.1. Given a strategy profile (U,D), D is a best response to U w.r.t.

effectiveness measure r if we have ur(U,D) ≥ ur(U,D
′) for all the database strategies

D′.

A DBMS strategy D is a strict best response to U if the inequality in Definition 3.5.1

becomes strict for all D′ 6= D.

Example 3.5.2. Consider the database instance about universities that is shown in

Table 3.1 and the intents, queries, and the strategy profiles in Tables 3.2a, 3.2b, 3.3a,

and 3.3b, respectively. Given a uniform prior over the intents, the DBMS strategy is a

best response to the user strategy w.r.t precision and p@k in both strategy profiles 3.3a

and 3.3b.

Definition 3.5.3. Given a strategy profile (U,D), an intent ei, and a query qj, the

payoff of ei using qj is

ur(ei, qj) =

o∑
`=1

Dj,`r(ei, s`).

Definition 3.5.4. The pool of intents for query qj in user strategy U is the set of intents

ei such that Ui,j > 0.

We denote the pool of intents of qj as PL(qj). Our definition of pool of intent resembles

the notion of pool of state in signaling games [46, 80]. Each result s` such that Dj,` > 0

may be returned in response to query qj . We call the set of these results the reply to

query qj .

Definition 3.5.5. A best reply to query qj w.r.t. effectiveness measure r is a reply that

maximizes
∑

ei∈PL(qj) πiUi,j ur(ei, qj).

The following characterizes the best response to a strategy.

Lemma 3.5.6. Given a strategy profile (U,D), D is a best response to U w.r.t. effec-

tiveness measure r if and only if D maps every query to one of its best replies.
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Proof. If each query is assigned to its best reply in D, no improvement in the expected

payoff is possible, thus D is a best response for U . Let D be a best response for U such

that some query q is not mapped to its best reply in D. Let rmax be a best reply for

q. We create a DBMS strategy D′ 6= D such that all queries q′ 6= q in D′ have the same

reply as they have in D and the reply of q is rmax. Clearly, D′ has higher payoff than D

for U . Thus, D is not a best response.

The following corollary results directly from Lemma 3.5.6.

Corollary 3.5.7. Given a strategy profile (U,D), D is a strict best response to U w.r.t.

effectiveness measure r if and only if every query has one and only one best reply and D

maps each query to its best reply.

Given an intent e over database instance I, some effectiveness measures, such as

precision, take their maximum for other results in addition to e(I). For example, given

intent e, the precision of every non-empty result s ⊂ e(I) is equal to the precision of

e(I) for e. Hence, there is more than one best reply for an intent w.r.t. precision. Thus,

according to Corollary 3.5.7, there is not any strict best response w.r.t. precision.

3.5.2 Nash Equilibrium

In this section and Section 3.5.3, we analyze the equilibria of the game where both user

and DBMS may modify their strategies. A Nash equilibrium for a game is a strategy

profile where the DBMS and user will not do better by unilaterally deviating from their

strategies.

Definition 3.5.8. A strategy profile (U,D) is a Nash equilibrium w.r.t. a satisfaction

function r if ur(U,D) ≥ ur(U ′, D) for all user strategy U ′ and ur(U,D) ≥ ur(U,D
′) for

all database strategy D′.

Example 3.5.9. Consider again the database about universities that is shown in Ta-

ble 3.1 and the intents, queries, and the strategy profiles in Tables 3.2a, 3.2b, 3.3a, and

3.3b, respectively. Both strategy profiles 3.3a and 3.3b are Nash equilibria w.r.t preci-

sion and p@k. User and DBMS cannot unilaterally change their strategies and receive

a better payoff. If one modifies the strategy of the database in strategy profile 3.3b and
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replaces the probability of executing and returning e1 and e3 given query q2 to ε and 1−ε,
0 ≤ ε ≤ 1, the resulting strategy profiles are all Nash equilibria.

Intuitively, the concept of Nash equilibrium captures the fact that users may explore

different ways of articulating and interpreting intents, but they may not be able to look

ahead beyond the payoff of a single interaction when adapting their strategies. Some

users may be willing to lose some payoff in the short-term to gain more payoff in the

long run, therefore, an interesting direction is to define and analyze less myopic equilibria

for the game [81].

If the interaction between user and DBMS reaches a Nash equilibrium, the user does

not have a strong incentive to change her strategy. As a result the strategy of the DBMS

and the expected payoff of the game will likely remain unchanged. Hence, in a Nash

equilibrium the strategies of user and DBMS are likely to be stable. Also, the payoff at

a Nash equilibrium reflects a potential eventual payoff for the user and DBMS in their

interaction. Query qj is a best query for intent ei if qj ∈ arg maxqk ur(ei, qk).

The following lemma characterizes the Nash equilibrium of the game.

Lemma 3.5.10. A strategy profile (U,D) is a Nash equilibrium w.r.t. effectiveness

measure r if and only if

1. for every query q, q is a best query for every intent e ∈ PL(q), and

2. D is a best response to U .

Proof. Assume that (U,D) is a Nash equilibrium. Also, assume qj is not a best query

for ei ∈ PL(qj). Let qj′ be a best query for ei. We first consider the case where

ur(ei, qj′) > 0. We build strategy U ′ where U ′k,` = Uk,` for all entries (k, `) 6= (i, j) and

(k, `) 6= (i, j′), U ′i,j = 0, and U ′i,j′ = Ui,j . We have U ′ 6= U and ur(U,D) < ur(U
′, D).

Hence, (U,D) is not a Nash equilibrium. Thus, we have Ui,j = 0 and the first condition

of the theorem holds. Now, consider the case where ur(ei, qj′) = 0. In this case, we will

also have ur(ei, qj) = 0, which makes qj a best query for ei. We prove the necessity of

the second condition of the theorem similarly. This concludes the proof for the necessity

part of the theorem. Now, assume that both conditions of the theorem hold for strategies

U and D. We can prove that it is not possible to have strategies U ′′ and D′′ such that

ur(U,D) < ur(U
′′, D) or ur(U,D) < ur(U,D

′′) using a similar method.
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3.5.3 Strict Nash Equilibrium

A strict Nash equilibrium is a strategy profile in which the DBMS and user will do worse

by unilaterally changing their equilibrium strategy.

Definition 3.5.11. A strategy profile (U,D) is a strict Nash equilibrium w.r.t. effec-

tiveness measure r if we have ur(U,D) > ur(U,D
′) for all DBMS strategies D′ 6= D and

ur(U,D) > ur(U
′, D) for all user strategies U ′ 6= U .

Table 3.9: Queries and Intents

(a) Intents

Intent# Intent

e3 ans(z)← Univ(x, ‘MSU ’, ‘MO’, y, z)
e4 ans(z)← Univ(x, ‘MSU ’, y, ‘public’, z)
e5 ans(z)← Univ(x, ‘MSU ’, ‘KY ’, y, z)

(b) Queries

Query# Query

q2 ‘MSU’
q3 ‘KY’

Table 3.10: Strict best strategy profile

q2 q3

e3 1 0

e4 1 0

e5 0 1

e3 e4 e5

q2 1 0 0

q3 0 0 1

Example 3.5.12. Consider the intents, queries, strategy profile, and database instance

in Tables 3.9a, 3.9b, 3.10, and 3.1. The strategy profile is a strict Nash equilibrium w.r.t

precision. However, the strategy profile in Example 3.5.9 is not a strict Nash equilibrium

as one may modify the value of ε without changing the payoff of the players.

Next, we investigate the characteristics of strategies in a strict Nash equilibria profile.

Recall that a strategy is pure if it has only 1 or 0 values. A user strategy is onto if there

is not any query qj such that Ui,j = 0 for all intend i. A DBMS strategy is one-to-one if
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it does not map two queries to the same result. In other words, there is not any result

s` such that Dj` > 0 and Dj′` > 0 where j 6= j′.

Theorem 3.5.13. If (U,D) is a strict Nash equilibrium w.r.t. satisfaction function r,

we have

• U is pure and onto.

• D is pure and one-to-one.

Proof. Let us assume that there is an intent ei and a query qj such that 0 < Ui,j < 1.

Since U is row stochastic, there is a query qj′ where 0 < Ui,j′ < 1. Let ur(Ui,j , D)

=
∑o

`=1Dj,`r(ei, s`). If ur(Ui,j , D) = ur(Ui,j′ , D), we can create a new user strategy U ′

where U ′i,j = 1 and U ′i,j′ = 0 and the values of other entries in U ′ is the same as U . Note

that the payoff of (U ,D) and (U ′,D) are equal and hence, (U ,D) is not a strict Nash

equilibrium.

If ur(Ui,j , D) 6= ur(Ui,j′ , D), without loss of generality one can assume that ur(Ui,j , D)

> ur(Ui,j′ , D). We construct a new user strategy U ′′ whose values for all entries except

(i, j) and (i, j′) are equal to U and U ′′i,j = 1, U ′′i,j′ = 0. Because ur(U,D) < ur(U
′′, D),

(U ,D) is not a strict Nash equilibrium. Hence, U must be a pure strategy. Similarly, it

can be shown that D should be a pure strategy.

If U is not onto, there is a query qj that is not mapped to any intent in U . Hence,

one may change the value in row j of D without changing the payoff of (U,D).

Assume that D is not one-to-one. Hence, there are queries qi and qj and a result s`

such that Di,` = Dj,` = 1. Because (U,D) is a strict Nash, U is pure and we have either

Ui,` = 1 or Uj,` = 1. Assume that Ui,` = 1. We can construct strategy U ′ that have the

same values as U for all entries except for (i, `) and (j, `) and U ′i,` = 0, U ′j,` = 1. Since

the payoffs of (U,D) and (U ′, D) are equal, (U,D) is not a strict Nash equilibrium.

Theorem 3.5.13 extends the Theorem 1 in [80] for our model. In some settings, the user

may know and use fewer queries than intents, i.e., m > n. Because the DBMS strategy

in a strict Nash equilibrium is one-to-one, the DBMS strategy does not map some of the

tuples to any query. Hence, the DBMS will never return some results in a strict Nash

equilibrium no matter what query is submitted. Interestingly, as Example 3.5.2 suggests

some of these results may be the results that perfectly satisfy some user’s intents. That
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is, given intent ei over database instance I, the DBMS may never return ei(I) in a

strict Nash equilibrium. Using a proof similar to the one of Lemma 3.5.10, we have the

following properties of strict Nash equilibria of a game. A strategy profile (U,D) is a

strict Nash equilibrium w.r.t. effectiveness measure r if and only if:

• Every intent e has a unique best query and the user strategy maps e to its best query,

i.e., e ∈ PL(qi).

• D is the strict best response to U .

3.5.4 Number of Equilibria

A natural question is how many (strict) Nash equilibria exist in a game. Theorem 3.5.13

guarantees that both user and DBMS strategies in a strict Nash equilibrium are pure.

Thus, given that the sets of intents and queries are finite, there are finitely many strict

Nash equilibria in the game. We note that each set of results is always finite. However,

we will show that if the sets of intents and queries in a game are finite, the game has

infinite Nash equilibria.

Lemma 3.5.14. If a game has a non-strict Nash equilibrium, then there is are infinitely

many Nash equilibria.

Proof. The result follows from the fact that the payoff function (3.1) is a bilinear form

of U and D, i.e. it is a linear of D when U is fixed and a linear function of U , when D is

fixed. If for D 6= D′, (U,D) and (U,D′) are Nash-equilibria, then ur(U,D) = ur(U,D
′).

Therefore ur(U,αD + (1− α)D′) = ur(U,D) for any α ∈ R. In particular, for α ∈ [0, 1],

if D,D′ are stochastic matrices, αD + (1− α)D′ will be a stochastic matrix and hence,

(U,αD+(1−α)D′) is a Nash equilibrium as well. Similarly, if (U ′, D) and (U,D) are Nash

equilibria for U 6= U ′, then ur(αU + (1− α)U ′, D) = ur(U,D) and (αU + (1− α)U ′, D)

is a Nash-equilibrium for any α ∈ [0, 1].

Theorem 3.5.15. Given a game with finitely many intents and queries, if the game has

a non-strict Nash equilibrium, it has an infinite number of Nash equilibria.

Proof. Every finite game has always a mixed Nash equilibrium [82]. According to

Theorem 3.5.13, a mixed Nash is not a strict Nash equilibrium. Therefore, using

Lemma 3.5.14, the game will have infinitely many Nash equilibria.
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3.5.5 Efficiency

In this section we discuss the efficiency of different equilibria. We refer to the value of

the utility (payoff) in Formula (3.1) at a strategy profile to the efficiency of the strategy.

Therefore, the most efficient strategy profile is naturally the one that maximizes (3.1).

We refer to an equilibria with maximum efficiency as an efficient equilibrium.

Thus far we have discussed two types of equilibria, Nash and strict Nash, that once

reached it is unlikely that either player will deviate from its current strategy. In some

cases it may be possible to enter a state of equilibria where neither player has any

incentive to deviate, but that equilibria may not be an efficient equilibrium.

The strategy profile in Table 3.3b provides the highest payoff for the user and DBMS

given the intents and queries in Tables 3.2a and 3.2b over the database in Table 3.1.

However, some Nash equilibria may not provide high payoffs. For instance, Table 3.3a

depicts another strategy profile for the set of intents and queries in Tables 3.2a and 3.2b

over the database in Table 3.1. In this strategy profile, the user has little knowledge

about the database content and expresses all of her intents using a single query q2,

which asks for the ranking of universities whose abbreviations are MSU. Given query

q2, the DBMS always returns the ranking of Michigan State University. Obviously, the

DBMS always returns the non-relevant answers for the intents of finding the rankings of

Mississippi State University and Missouri State University. If all intents have equal prior

probabilities, this strategy profile is a Nash equilibrium. For example, the user will not

get a higher payoff by increasing their knowledge about the database and using query q1

to express intent e2. Clearly, the payoff of this strategy profile is less than the strategy

profile in Table 3.3b. Nevertheless, the user and the DBMS do not have any incentive

to leave this undesirable stable state once reached and will likely stay in this state.

Definition 3.5.16. A strategy profile (U ,D) is optimal w.r.t. an effectiveness measure

r if we have ur(U,D) ≥ u(U ′, D′) for all DBMS strategies D′ and U ′

The games discussed in this thesis are games of identical interest, i.e. the payoff of the

user and the DBMS are the same. If a strategy profile (U,D) is optimal, then none of

the two players (i.e. the user and the DBMS) has a unilateral incentive to deviate. Thus,

the strategy profile is an equilibrium and an efficient one. Moreover, since the game is

cooperative, the players have mutual interests and a shared payoff. Thus, an efficient
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equilibrium must be an optimal strategy profile otherwise both players can collaborate

and increase their shared payoff. Hence, we have the following result.

Proposition 3.5.17. A strategy profile (U,D) is optimal if and only if it is an efficient

equilibrium.

Similar to the analysis on efficiency of a Nash equilibria, there are strict Nash equilib-

ria that are less efficient than others. Strict Nash equilibria strategy profiles are unlikely

to deviate from the current strategy profile, since any unilateral deviation will result in a

lower payoff. From this we can say that strict Nash equilibria are also more stable than

Nash equilibria since unilateral deviation will always have a lower payoff.

Table 3.11: Strategy Profile 1

(a) User strategy

q1 q2

e1 0 1

e2 1 0

e3 1 0

(b) Database strategy

e1 e2 e3

q1 0 0 1

q2 1 0 0

Table 3.12: Strategy Profile 2

(a) User Strategy

q1 q2

e1 0 1

e2 0 1

e3 1 0

(b) Database Strategy

e1 e2 e3

q1 0 0 1

q2 0 1 0

As an example of a strict Nash equilibrium that is not efficient, consider both strategy

profiles illustrated in Tables 3.11 and 3.12. Note that the intents. queries, and results in

this example are different from the ones in the previous examples. For this illustration,

we set the rewards to r(e1, s1) = 1, r(e2, s2) = 2, r(e2, s3) = 0.1, and r(e3, s3) = 3 where

all other rewards are 0. Using our payoff function in Equation 3.1 we can calculate the

total payoff for the strategy profile in Table 3.11 as u(U,D) = 4.1. This strategy profile

is a strict Nash since any unilateral deviation by either player will result in a strictly

worse payoff. Consider the strategy profile in Table 3.12 with payoff u(U,D) = 5. This
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payoff is higher than the payoff the strategy profile in Table 3.11 receives. It is also not

likely for the strategy profile with less payoff to change either strategy to the ones in the

strategy profile with higher payoff as both are strict Nash.

3.5.6 Conclusion

When analyzing the current state of the game, we can determine whether the user and

the DBMS are currently in a Nash or strict Nash equilibria. However, in practice this is

impossible. As external observers we might be able to view the state of the database’s

strategy, but we cannot know for sure the state of the user strategy. Nonetheless, this

analysis provides some interesting insights into the model.

If one could determine whether the user and DBMS were in a Nash equilibria, then

one would know that the next adaptation to the strategy by the reinforcement learning

algorithm would lead to no additional reward. However, continued adaptation and re-

inforcement despite not receiving additional reward might lead to more reward in the

future. This insight is key to understanding that even though the database and user

may not immediately be improving their current state, some actions might improve

their future state. When considering the strict Nash equilibria, this insight is even more

relevant, as any deviation from the current strategy actually leads to a decrease in over-

all reward, further negating any incentive to deviate. Thus, there is possible work to

be done in ensuring that the deviations leading to a lower reward are not completely

ignored. However, determining whether continuing this deviation will lead to a better

overall reward is quite difficult. If this were possible, then there would be no need to

learn and the agents could simply immediately adopt the strategies that have the higher

reward. Instead, perhaps one approach could be that when a Nash equilibrium state is

detected, future deviations leading to equal or less reward might not be discounted as

much.

Another interesting observation from this analysis is that not all Nash equilibria are

equal. There may be varying degrees of reward for different strategy profiles in a Nash

equilibrium. The same is true for strict Nash equilibria. Consider again that one was

able to determine whether the user and the DBMS are in a Nash equilibrium. This might

trigger some kind of response that deviations leading to the same or less reward should

not be ignored so that the interaction does not stagnate and they could converge to a
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possibly better reward in the future. However, the user and the DBMS may be in the

best Nash and those deviations should be ignore or discounted.

3.6 Efficient Query Answering over Relational Databases

An efficient implementation of the algorithm proposed in Section 3.4 over large relational

databases poses two challenges. First, since the set of possible interpretations and their

results for a given query is enormous, one has to find efficient ways of maintaining users’

reinforcements and updating DBMS strategy. Second, keyword and other usable query

interfaces over databases normally return the top-k tuples according to some scoring

functions [51, 4]. Due to a series of seminal works by database researchers [83], there are

efficient algorithms to find such a list of answers. Nevertheless, our reinforcement learn-

ing algorithm uses a randomized semantic for answering algorithms in which candidate

tuples are associated a probability for each query that reflects the likelihood by which it

satisfies the intent behind the query. The tuples must be returned randomly according

to their associated probabilities. Using (weighted) sampling to answer SQL queries with

aggregation functions approximately and efficiently is an active research area [84, 5].

However, there has not been any attempt on using a randomized strategy to answer so-

called point queries over relational data and achieve a balanced exploitation-exploration

trade-off efficiently.

3.6.1 Maintaining DBMS Strategy

3.6.1.1 Keyword Query Interface

We use the current architecture of keyword query interfaces over relational databases

that directly use schema information to interpret the input keyword query [4]. A notable

example of such systems is IR-Style [51]. As it is mentioned in Section 3.2.4, given a

keyword query, these systems translate the input query to a Select-Project-Join query

whose where clause contains function match. The results of these interpretations are

computed, scored according to some ranking function, and are returned to the user. We

provide an overview of the basic concepts of such a system. We refer the reader to the

following citations for more explanation [51, 4] .
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3.6.1.2 Tuple-set:

Given keyword query q, a tuple-set is a set of tuples in a base relation that contain some

terms in q. After receiving q, the query interface uses an inverted index to compute a set

of tuple-sets. For instance, consider a database of products with relations Product(pid,

name), Customer(cid, name), and ProductCustomer(pid, cid) where pid and cid are

numeric strings. Given query iMac John, the query interface returns a tuple-set from

Product and a tuple-set from Customer that match at least one term in the query. The

query interface may also use a scoring function, e.g., traditional TF-IDF text matching

score, to measure how exactly each tuple in a tuple-set matches some terms in q.

3.6.1.3 Candidate Network:

A candidate network is a join expression that connects the tuple-sets via primary key-

foreign key relationships. A candidate network joins the tuples in different tuple-sets

and produces joint tuples that contain the terms in the input keyword query. One may

consider the candidate network as a join tree expression whose leafs are tuple-sets. For

instance, one candidate network for the aforementioned database of products is Product

./ ProductCustomer ./ Customer. To connect tuple-sets via primary key-foreign key

links, a candidate network may include base relations whose tuples may not contain any

term in the query, e.g., ProductCustomer in the preceding example. Given a set of tuple-

sets, the query interface uses the schema of the database and progressively generates

candidate networks that can join the tuple-sets. For efficiency considerations, keyword

query interfaces limit the number of relations in a candidate network to be lower than a

given threshold. For each candidate network, the query interface runs a SQL query and

return its results to the users.There are algorithms to reduce the running time of this

stage, e.g., run only the SQL queries guaranteed to produce top-k tuples [51]. Keyword

query interfaces normally compute the score of joint tuples by summing up the scores

of their constructing tuples multiplied by the inverse of the number of relations in the

candidate network to penalize long joins. We use the same scoring scheme. We also

consider each (joint) tuple to be candidate answer to the query if it contains at least one

term in the query.
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3.6.1.4 Managing Reinforcements

The aforementioned keyword query interface implements a basic DBMS strategy of map-

ping queries to results but it does not leverage users’ feedback and adopts a deterministic

strategy without any exploration. A naive way to record users’ reinforcement is to main-

tain a mapping from queries to tuples and directly record the reinforcements applied

to each pair of query and tuple. In this method, the DBMS has to maintain the list

of all submitted queries and returned tuples. Because many returned tuples are the

joint tuples produced by candidate networks, it will take an enormous amount of space

and is inefficient to update. Hence, instead of recording reinforcements directly for each

pair of query and tuple, we construct some features for queries and tuples and maintain

the reinforcement in the constructed feature space. More precisely, we construct and

maintain a set of n-gram features for each attribute value in the base relations and each

input query. N-grams are contiguous sequences of terms in a text and are widely used

in text analytics and retrieval [56]. In our implementation, we use up to 3-gram features

to model the challenges in managing a large set of features. Each feature in every at-

tribute value in the database has its associated attribute and relation names to reflect

the structure of the data. We maintain a reinforcement mapping from query features

to tuple features. After a tuple gets reinforced by the user for an input query, our sys-

tem increases the reinforcement value for the Cartesian product of the features in the

query and the ones in the reinforced tuple. According to our experiments in Section 3.7,

this reinforcement mapping can be efficiently maintained in the main memory by only a

modest space overhead.

Given an input query q, our system computes the score of each tuple t in every tuple-

set using the reinforcement mapping: it finds the n-gram features in t and q and sums up

their reinforcement values recorded in the reinforcement mapping. Our system may use

a weighted combination of this reinforcement score and traditional text matching score,

e.g., TF-IDF score, to compute the final score. One may also weight each tuple feature

proportional to its inverse frequency in the database similar to some traditional relevance

feedback models [56]. We mainly focus on developing an efficient implementation of query

answering based on reinforcement learning over relational databases and leave using more

advanced scoring methods for future work. The scores of joint tuples are computed as

it is explained in Section 3.6.1.1. We will explain in Section 3.6.2, how we convert these
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scores to probabilities and return tuples. Using features to compute and record user

feedback has also the advantage of using the reinforcement of a pair of query and tuple

to compute the relevance score of other tuples for other queries that share some features.

Hence, reinforcement for one query can be used to return more relevant answers to other

queries.

3.6.2 Efficient Exploitation and Exploration

We propose the following two algorithms to generate a weighted random sample of size

k over all candidate tuples for a query.

3.6.2.1 Reservoir

To provide a random sample, one may calculate the total scores of all candidate answers

to compute their sampling probabilities. Because this value is not known beforehand, one

may use weighted reservoir sampling [85] to deliver a random sample without knowing

the total score of candidate answers in a single scan of the data as follows.

Algorithm 1 Reservoir

W ← 0
Initialize reservoir array A[k]to kdummy tuples.
for all candidate network CN do

for all t ∈ CN do
if A has dummy values then

insert k copies of t into A
else

W ← W + Sc(t)
for all i = 1 ∈ k do

insert t into A[i] with probability Sc(t)
W

Reservoir, illustrated in Algorithm 1, generates the list of answers only after comput-

ing the results of all candidate networks, therefore, users have to wait for a long time to

see any result. It also computes the results of all candidate networks by performing their

joins fully, which may be inefficient. We propose the following optimizations to improve

its efficiency and reduce the users’ waiting time.
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3.6.2.2 Poisson-Olken

The Poisson-Olken algorithm uses Poisson sampling to output progressively the selected

tuples as it processes each candidate network. It selects the tuple t with probability Sc(t)
M ,

where M is an upper bound to the total scores of all candidate answers. To compute M ,

we use the following heuristic. Given candidate network CN , we get the upper bound

for the total score of all tuples generated from

CN : MCN =
1

n
(
∑

TS∈CN

Scmax(TS))
1

2
ΠTS∈CN |TS|

in which Scmax(TS) is the maximum query score of tuples in the tuple-set TS and |TS|
is the size of each tuple-set. The term 1

n(
∑

TS∈CN Scmax(TS)) is an upper bound to the

scores of tuples generated by CN . Since each tuple generated by CN must contain one

tuple from each tuple-set in CN , the maximum number of tuples in CN is ΠTS∈CN |TS|.
It is unlikely that all tuples of every tuple-set join with all tuples in every other tuple-

set in a candidate network. Hence, we divide this value by 2 to get a more realistic

estimation. We do not consider candidate networks with cyclic joins, thus, each tuple-

set appears at most once in a candidate network. The value of M is the sum of the

aforementioned values for all candidate networks with size greater than one and the

total scores of tuples in each tuple-set. Since the scores of tuples in each tuple-set is

kept in main memory, the maximum and total scores and the size of each tuple-set is

computed efficiently before computing the results of any candidate network.

Both Reservoir and the aforementioned Poisson sampling compute the full joins of

each candidate network and then sample the output. This may take a long time partic-

ularly for candidate networks with some base relations. There are several join sampling

methods that compute a sample of a join by joining only samples the input tables and

avoid computing the full join [86, 85, 87]. To sample the results of join R1 ./ R2, most of

these methods must know some statistics, such as the number of tuples in R2 that join

with each tuple in R1, before performing the join. They precompute these statistics in a

preprocessing step for each base relation. But, since R1 or R2 in our candidate networks

may be tuples sets, one cannot know the aforementioned statistics unless one performs

the full join.

However, the join sampling algorithm proposed by Olken [86] finds a random sample
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of the join without the need to precompute these statistics. Given join R1 ./ R2, let

to R2 denote the set of tuples in R2 that join with t ∈ R1, i.e., the right semi-join of t

and R2. Also, let |t o R2|t∈R1
max be the maximum number of tuples in R2 that join with

a single tuple t ∈ R1. The Olken algorithm first randomly picks a tuple t1 from R1. It

then randomly selects the tuple t2 from t1 o R2. It accepts the joint tuple t1 ./ t2 with

probability |t1oR2|
|toR2|

t∈R1
max

and rejects it with the remaining probability. To avoid scanning

R2 multiple times, the Olken algorithm needs an index over R2. Since the joins in our

candidate networks are over only primary and foreign keys, we do not need too many

indexes to implement this approach.

We extend the Olken algorithm to sample the results of a candidate network with-

out doing its joins fully as follows. Given candidate network R1 ./ R2, our algorithm

randomly samples tuple t1 ∈ R1 with probability Sc(t1)∑
t∈R1

(Sc(t)) , where Sc(t) is the score

of tuple t, if R1 is a tuple-set. Otherwise, if R1 is a base relation, it picks the tuple

with probability 1
|R1| . The value of

∑
t∈R (Sc(t)) for each tuple set R is computed at the

beginning of the query processing and the value of |R| for each base relation is calculated

in a preprocessing step. The algorithm then samples tuple t2 from t1 o R2 with proba-

bility Sc(t2)∑
t∈t1oR2

(Sc(t)) if R2 is a tuple-set and 1
|t1oR2| if R2 is a base relation. It accepts

the joint tuple with probability

∑
t∈t1oR2

Sc(t)

max (
∑

t∈soR2,s∈R1
Sc(t)) and rejects it with the remaining

probability.

To compute the exact value of max (
∑

t∈soR2,s∈R1
Sc(t)), one has to perform the full

join of R1 and R2. Hence, we use an upper bound on max (
∑

t∈soR2,s∈R1
Sc(t)) in Olken

algorithm. Using an upper bound for this value, Olken algorithm produces a correct

random sample but it may reject a larger number of tuples and generate a smaller num-

ber of samples. To compute an upper bound on the value of max (
∑

t∈soR2,s∈R1
Sc(t)),

we precompute the value of |t o Bi|
t∈Bj
max before the query time for all base relations Bi

and Bj with primary and foreign keys of the same domain of values. Assume that

B1 and B2 are the base relations of tuple-sets R1 and R2, respectively. We have

|t o R2|t∈R1
max ≤ |t o B2|t∈B1

max . Because max (
∑

t∈soR2,s∈R1
Sc(t)) ≤ maxt∈R2 (Sc(t))|t o

R2|t∈R1
max , we have max (

∑
t∈soR2,s∈R1

Sc(t)) ≤ maxt∈R2 (Sc(t))|t o B2|t∈B1
max . Hence, we

use

∑
t∈t1oR2

Sc(t)

maxt∈R2
(Sc(t))|toB2|

t∈B1
max

for the probability of acceptance. We iteratively apply the

aforementioned algorithm to candidate networks with multiple joins by treating the join

of each two relations as the first relation for the subsequent join in the network.
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The following algorithm adopts a Poisson sampling method to return a sample of

size k over all candidate networks using the aforementioned join sampling algorithm.

We show binomial distribution with parameters n and p as B(n, p). We denote the

aforementioned join algorithm as Extended-Olken. Also, ApproxTotalScore denotes the

approximated value of total score computed as explained at the beginning of this section.

Algorithm 2 Poisson-Olken

x← k
W ← ApproxTotalScore

k
while x > 0 do

for all candidate network CN do
if CN is a single tuple-set then

for all t ∈ CN do
output t with probability Sc(t)

W
if a tuple t is picked then

x← x− 1

else
let CN = R1 ./ . . . ./ Rn

for all t ∈ R1 do
Pick value X from distribution B(k, Sc(t)W )
Pipeline X copies of t to the Olken algorithm
if Olken accepts m tuples then

x← x−m

The expected value of produced tuples in the Poisson-Olken algorithm, shown in Al-

gorithm 2, is close to k. However, as opposed to reservoir sampling, there is a non-zero

probability that Poisson-Olken may deliver fewer than k tuples. To drastically reduce

this chance, one may use a larger value for k in the algorithm and reject the appropri-

ate number of the resulting tuples after the algorithm terminates [85]. The resulting

algorithm will not progressively produce the sampled tuples, but, as our empirical study

in Section 3.7 indicates, it is faster than Reservoir over large databases with relatively

many candidate networks as it does not perform any full join.
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3.7 Empirical Study

In this section we show the results of an empirical study of our proposed model and

algorithms. We would like to validate and ground our proposed model and show that

considering whether the user learns or not is an important aspect of interaction with a

DBMS. We also want to evaluate the effectiveness and efficiency of our proposed learning

algorithm for DBMS in the presence of the user learning.

3.7.1 Effectiveness

3.7.1.1 Experimental Setup

It is difficult to evaluate the effectiveness of online and reinforcement learning algorithms

for information systems in a live setting with real users because it requires a very long

time and a large amount of resources [54, 53, 88, 89, 44]. Thus, most studies in this

area use purely simulated user interactions [88, 89, 53]. A notable expectation is [54],

which uses a real-world interaction log to simulate a live interaction setting. We follow

a similar approach and use the Yahoo! interaction log [67] to simulate interactions using

real-world queries and dataset.

3.7.1.2 User Strategy Initialization

We train a user strategy over the Yahoo! 43H-interaction log whose details are in Sec-

tion 3.3 using Roth and Erev’s method, which is deemed the most accurate to model

user learning according to the results of Section 3.3. This strategy has 341 queries and

151 intents. The Yahoo! interaction log contains user clicks on the returned intents, i.e.

URLs. However, a user may click a URL by mistake [54]. We consider only the clicks

that are not noisy according to the relevance judgment information that accompanies

the interaction log. According to the empirical study reported in Section 3.3.2, the pa-

rameters of number and length of sessions and the amount of time between consecutive

sessions do not impact the user learning mechanism in long-term communications. Thus,

we have not organized the generated interactions into sessions.
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3.7.1.3 Metric

Since almost all returned results have only one relevant answer and the relevant answers

to all queries have the same level of relevance, we measure the effectiveness of the algo-

rithms using the standard metric of Reciprocal Rank (RR) [56]. RR is 1
r where r is the

position of the first relevant answer to the query in the list of the returned answers. RR

is particularly useful where each query in the workload has a very few relevant answers

in the returned results, which is the case for the queries used in our experiment.

3.7.1.4 Algorithms

We compare the algorithm introduced in Section 3.4.1 against the state-of-the-art and

popular algorithm for online learning in information retrieval called UCB-1 [55, 54, 89,

90]. UCB-1 outperforms its competitors in several studies [90, 89]. It calculates a score

for an intent e given the tth submission of query q as: Scoret(q, e) =
Wq,e,t

Xq,e,t
+ α

√
2ln t
Xq,e,t

,

in which X is how many times an intent was shown to the user, W is how many times

the user selects a returned intent, and α is the exploration rate set between [0, 1]. The

first term in the formula prefers the intents that have received relatively more positive

feedback, i.e., exploitation, and the second term gives higher scores to the intents that

have been shown to the user less often and/or have not been tried for a relatively long

time, i.e., exploration. UCB-1 assumes that users follow a fixed probabilistic strategy.

Thus, its goal is to find the fixed but unknown expectation of the relevance of an intent

to the input query, which is roughly the first term in the formula; by minimizing the

number of unsuccessful trials.

3.7.1.5 Parameter Estimation

We randomly select 50% of the intents in the trained user strategy to learn the explo-

ration parameter α in UCB-1 using grid search and sum of squared errors over 10,000

interactions that are after the interactions in the 43H-interaction log. We do not use

these intents to compare algorithms in our simulation. We calculate the prior probabil-

ities, π in Equation 3.1, for the intents in the trained user strategy that are not used to

find the parameter of UCB-1 using the entire Yahoo! interaction log.
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3.7.1.6 DBMS Strategy Initialization

The DBMS starts the interaction with an strategy that does not have any query. Thus,

the DBMS is not aware of the set of submitted queries apriori. When the DBMS sees a

query for the first time, it stores the features in its strategy, assigns equal probabilities

for all intents to be returned for this query, returns some intent(s) to answer the query,

and stores the user feedback on the returned intent(s) in the DBMS strategy. If the

DBMS has already encountered the query, it leverages the previous user’s feedback on

the results of this query and returns the set of intents for this query using our proposed

learning algorithm. Retrieval systems that leverage online learning perform some fil-

tering over the initial set of answers to make efficient and effective exploration possible

[54, 53]. More precisely, to reduce the set of alternatives over a large dataset, online and

reinforcement learning algorithms apply a traditional selection algorithm to reduce the

number of possible intents to a manageable size. Otherwise, the learning algorithm has

to explore and solicit user feedback on numerous items, which takes a very long time. For

instance, online learning algorithms used in searching a set of documents, e.g., UCB-1,

use traditional information retrieval algorithms to filter out obviously non-relevant an-

swers to the input query, e.g., the documents with low TF-IDF scores. Then, they apply

the exploitation-exploration paradigm and solicit user feedback on the remaining candi-

date answers. The Yahoo! interaction workload has all queries and intents anonymized,

thus we are unable to perform a filtering method of our own choosing. Hence, we use

the entire collection of possible intents in the portion of the Yahoo! query log used for

our simulation. This way, there 4521 intent per query that can be returned, which is

close to the number of answers a reinforcement learning algorithm may consider over a

large data set after filtering [54]. The DBMS strategy for our method is initialized to be

completely random.

3.7.1.7 Results

We simulate the interaction of a user population that starts with our trained user strategy

with UCB-1 and our algorithm. In each interaction, an intent is randomly picked from

the set of intents in the user strategy by its prior probability and submitted to UCB-1

and our method. Afterwards, each algorithm returns a list of 10 answers and the user
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clicks on the top-ranked answer that is relevant to the query according to the relevance

judgment information. We run our simulations for one million interactions.

Figure 3.2 shows the accumulated Mean Reciprocal Rank (MRR) over all queries

in the simulated interactions. Our method delivers a higher MRR than UCB-1 and its

MRR keeps improving over the duration of the interaction. UCB-1, however, increases

the MRR at a much slower rate. Since UCB-1 is developed for the case where users do

not change their strategies, it learns and commits to a fixed probabilistic mapping of

queries to intents quite early in the interaction. Hence, it cannot learn as effectively as

our algorithm where users modify their strategies using a randomized method, such as

Roth and Erev’s. As our method is more exploratory than UCB-1, it enables users to

provide feedback on more varieties of intents than they do for UCB-1. This enables our

method to learn more accurately how users express their intents in the long-run.

Figure 3.2: Mean reciprocal rank for 1,000,000 interactions

We have also observed that our method allows users to try more varieties of queries
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to express an intent and learn the one(s) that convey the intent effectively. As UCB-1

commits to a certain mapping of a query to an intent early in the interaction, it may not

return sufficiently many relevant answers if the user tries this query to express another

intent. This new mapping, however, could be promising in the long-run. Hence, the user

and UCB-1 strategies may stabilize in less than desirable states. Since our method does

not commit to a fixed strategy that early, users may try this query for another intent

and reinforce the mapping if they get relevant answers. Thus, users have more chances

to try and pick a query for an intent that will be learned and mapped effectively to the

intent by the DBMS.

Because our proposed learning algorithm is more exploratory than UCB-1, it may

have a longer startup period than UCB-1’s. One method is for the DBMS to use a

less exploratory learning algorithm, such as UCB-1, at the beginning of the interaction.

After a certain number of interactions, the DBMS can switch to our proposed learn-

ing algorithm. The DBMS can distinguish the time of switching to our algorithm by

observing the amount of positive reinforcement it receives from the user. If the user

does not provide any or very small number of positive feedback on the returned results,

the DBMS is not yet ready to switch to a relatively more exploratory algorithm. If

the DBMS observes a relatively large number of positive feedback on sufficiently many

queries, it has already provided a relatively accurate answers to many queries. Finally,

one may use a relatively large value of reinforcement in the database learning algorithm

at the beginning of the interaction to reduce its degree of exploration. The DBMS may

switch to a relatively small value of reinforcement after it observes positive feedback on

sufficiently many queries.

We have implemented the latter of these methods by increasing the value of rein-

forcement by some factor. Figure 3.3 shows the results of applying this technique in our

proposed DBMS learning algorithm over the Yahoo! query workload. The value of rein-

forcement is initially 3 and 6 times larger than the default value proposed in Section 3.4

until a threshold satisfaction value is reached, at which point the reinforcement values

scales back down to its original rate.

We notice that by increasing the reinforcement value by some factor, the startup

period is reduced. However, there are some drawbacks to this method. Although we

don’t see it here, by increasing the rate of reinforcement in the beginning, some amount of

exploration may be sacrificed. Thus more exploitation will occur in the beginning of the
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Figure 3.3: Mean reciprocal rank for 1,000,000 interactions with different degrees of
reinforcements

series of interactions. This may lead to behavior similar to UCB-1 and perform too much

exploitation and not enough exploration. Finding the correct degree of reinforcement is

an interesting area for future work.

3.7.2 Efficiency

3.7.2.1 Experimental Setup

We have built two databases from Freebase (developers.google.com/freebase), TV-Program

and Play. TV-Program contains 7 tables and consisting of 291,026 tuples. Play contains 3

tables and consisting of 8,685 tuples. For our queries, we have used two samples of

621 (459 unique) and 221 (141 unique) queries from Bing (bing.com) query log whose

relevant answers after filtering our noisy clicks, are in TV-program and Play databases,
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respectively [91]. After submitting each query and getting some results, we simulate user

feedback using the relevance information in the Bing log.

Freebase is built based on the information about entities in the Wikipedia (wikipedia.org)

articles. Each entity in Freebase database contains the URL of its corresponding article

in Wikipedia. For our queries, we have used a sample of Bing (bing.com) query log

whose relevant answers according to the click-through information, after filtering our

noisy clicks, are in the Wikipedia articles [91]. We use two subsets of this sample whose

relevant answers are in the TV-Program and Play databases. The set of queries over

TV-Program has 621 (459 unique) queries with the average number of 3.65 keywords

per query and the one over Play has 221 (141 unique) queries with the average number

of 3.66 keywords per query. We use the frequencies of queries to calculate the prior

probabilities of submission. After submitting each query and getting some results, we

simulate user feedback using the relevance information in the Bing query log.

3.7.2.2 Query Processing:

We have used Whoosh inverted index (whoosh.readthedocs.io) to index each table in

database. Whoosh recognizes the concept of table with multiple attributes, but can-

not perform joins between different tables. Because the Poisson-Olken algorithm needs

indexes over primary and foreign keys used to build candidate network, we have build

hash indexes over these tables in Whoosh. Given an index-key, these indexes return the

tuple(s) that match these keys inside Whoosh. To provide a fair comparison between

Reservoir and Poisson-Olken, we have used these indexes to perform join for both meth-

ods. We also precompute and maintain all 3-grams of the tuples in each database as

mentioned in Section 3.6.1. We have implemented our system using both Reservoir and

OlkenPoisson algorithms. We have limited the size of each candidate network to 5. Our

system returns 10 tuples in each interaction for both methods.

Hardware Platform: We run experiments on a server with 32 2.6GHz Intel Xeon

E5-2640 processors with 50GB of main memory running CentOS.
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3.7.2.3 Results

Table 3.13 depicts the average time for processing candidate networks and reporting the

results for both Reservoir and Poisson-Olken over TV-Program and Play databases over

1000 interactions. These results also show that Poisson-Olken is able to significantly

improve the time for executing the joins in the candidate network, shown as performing

joins in the table, over Reservoir in both databases. The improvement is more signifi-

cant for the larger database, TV-Program. Poisson-Olken progressively produces tuples

to show to user. But, we are not able to use this feature for all interactions. For a consid-

erable number of interactions, Poisson-Olken does not produce 10 tuples, as explained

in Section 3.6.2. Hence, we have to use a larger value of k and wait for the algorithm

to finish in order to find a randomize sample of the answers as explained at the end of

Section 3.6.2. Both methods have spent a negligible amount of time to reinforce the

features, which indicate that using a rich set of features one can perform and manage

reinforcement efficiently.

Table 3.13: Average candidate networks processing times in seconds for 1000 interactions

Database Reservoir (sec) Poisson-Olken (sec)

Play 0.078 0.042
TV Program 0.298 0.171

3.8 Related Work

The Database community has proposed several systems that help the DBMS learn the

user’s information need by showing examples to the user and collecting her feedback [92,

93, 94, 95, 96]. In these systems, a user explicitly teaches the system by labeling a set

of examples potentially in several steps without getting any answer to her information

need. Thus, the system is broken into two steps: first it learns the information need of

the user by soliciting labels on certain examples from the user and then once the learning

has completed, it suggests a query that may express the user’s information need. These

systems usually leverage active learning methods to learn the user intent by showing

the fewest possible examples to the user [93]. However, ideally one would like to have a

query interface in which the DBMS learns about the user’s intents while answering her
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(vague) queries as our system does. As opposed to active learning methods, one should

combine and balance exploration and learning with the normal query answering to build

such a system. Moreover, current query learning systems assume that users follow a

fixed strategy for expressing their intents. Also, we focus on the problems that arise in

the long-term interaction that contain more than a single query and intent.

Sampling has been used to approximate the results of SQL queries with aggregation

functions and achieve the fast response time needed by interactive database interfaces

[84, 5]. However, we use sampling techniques to learn the intent behind imprecise point

queries and answer them effectively and efficiently.

Reinforcement learning is a classic and active research area in machine learning and

AI [97]. There is a recent interest in using exploitation-exploration paradigm to im-

prove the understanding of users intents in an interactive document retrieval [44]. The

exploitation-exploration trade-off has been also considered in finding keyword queries

for data integration [98]. These methods, however, do not consider the impact of user

learning throughout the interaction. Reinforcement learning has also been utilized in

database areas for some time [99].

Researchers have leveraged economical models to build query interfaces that return

desired results to the users using the fewest possible interactions [100]. In particular,

researchers have recently applied game-theoretic approaches to model the actions taken

by users and document retrieval systems in a single session [101]. They propose a frame-

work to find out whether the user likes to continue exploring the current topic or move

to another topic. We, however, explore the development of common representations

of intents between the user and DMBS. We also investigate the interactions that may

contain various sessions and topics. Moreover, we focus on structured rather than un-

structured data. Avestani et al. have used signaling games to create a shared lexicon

between multiple autonomous systems [102]. Our work, however, focuses on modeling

users’ information needs and development of mutual understanding between users and

the DBMS. Moreover, as opposed to the autonomous systems, a DBMS and user may

update their information about the interaction in different time scales.

Our game is special case of signaling games, which model communication between

two or more agents and have been widely used in economics, sociology, biology, and

linguistics [103, 46, 104, 80]. Generally speaking, in a signaling game a player observes

the current state of the world and informs the other player(s) by sending a signal. The
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other player interprets the signal and makes a decision and/or performs an action that

affect the payoff of both players. A signaling game may not be cooperative in which the

interests of players do not coincide [46]. Our framework extends a particular category

of signaling games called language games [105, 104, 80] and is closely related to learning

in signaling games [71].
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Chapter 4: Toward Autonomous Data Integration

4.1 Motivation

The data relevant to a query or analysis task is usually stored in various data sources,

therefore, users often have to integrate information from several data sources. This is

challenging as each data source may represent information in a distinct form, e.g., each

data source may refer to the same entity under a distinct name. Users have to translate

their queries to forms that are understandable by underlying data sources. This process

is traditionally done by writing a set of potentially declarative rules called mappings,

which takes the query or data organized in one form and translate it to the query/ data

under another representation [6]. It, however, takes a very long time, a great deal of

manual labor, and constant expert attention to develop and maintain mappings [6, 7].

One may use supervised learning techniques to develop mappings. However, training

data is hard to find for data integration [6]. As the underlying data sources frequently

evolve, one has to repeatedly find fresh training data to re-train mappings. Thus, map-

ping development and maintenance remains and is becoming ever more challenging in

the face of rapidly growing number of available data sources [106, 107].

Nature, however, has successfully created and maintained an effective information

mapping system between millions of data sources: human language. In this system, one

may consider humans’ minds as data sources that contain their intents of communications

in some unobserved representations, e.g., the internal representation of the object book on

one’s brain. A natural language is a mapping from these intents to a vocal representation,

e.g., the word for book [104]. It is established that a natural language is created gradually

through a collaborative process between autonomous agents, called language game [104].

In its simplest form, the game is played between two agents, a speaker and a listener,

each with her own identical mapping from the objects in the domain of interest to a

set of shared primitive utterances or signals,i.e., private language. In each round of

the game, the speaker communicates an object by picking one of its associated signals

in her language and sharing it with the listener. The listener translates this signal
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by selecting one of the objects associated with it in her own language and shares this

interpretation with the speaker, e.g., by pointing to that object in the environment.

The interaction is successful if the listener interprets the shared signal correctly. Based

on the success of the communication, the speaker and listener revise their languages to

make them more compatible. Using relatively simple human learning mechanisms, e.g.,

simple reinforcement learning, this process converges to an effective shared language in

a population over time [104].

Given the success of this method, we have developed a framework with an au-

tonomous and progressive approach to mapping construction. Assume that to answer a

user’s query, a local data source needs some information stored in an external data source

within the same domain of interest. The local data source does not know how to express

its need such that the external data source understands it. Nevertheless, data sources

of the same domain usually support common query languages, such as keyword queries,

using which the local data source can express its information need. Because keyword

queries are inherently vague, the external data source may not precisely understand the

need of the local one and return some non-relevant information or do not deliver all the

relevant data it has. The local data source may integrate the returned information with

its own local results and presents them to the user. According to the end user’s feedback

on the returned result, the local data source will revise its method of formulating queries

to find relevant tuples from the external data sources. Given that the local data source

shares the user feedback with the external ones, the external data sources may modify

how to answer queries. Over the course of several interactions, they will learn how to

communicate effectively. This approach naturally extends for the communication of one

data source with multiple external databases.

Due to the enormous upfront cost of creating and the difficulties of maintaining data

integration systems, the database community has recognized the need to build pay-as-

you-go integration systems that rely on end user feedback [7, 98]. Our system extends

the state-of-the-art in pay-as-you-go mapping construction in several directions. First,

in our system every data source may learn to develop an effective mapping. This ap-

proach is particularly useful for organizations with many databases. Second, we leverage

reinforcement learning algorithms to find the most effective mappings over time and

provide a balance between creating the most useful mapping for the task at hand and

learn the most effective mapping for the long-run. Our method also leverages interactive
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communication in a common and possibly vague query language between data sources.

There are, however, important challenges in adapting this approach to create an

effective data integration system. First, one has to develop an effective learning algorithm

for the local data source to communicate with several data sources many which may not

learn or learn at a different rate than the local data source. Ideally, such a learning

algorithm should converge to an accurate mapping quickly. It should also scale to large

databases. Second, it may take too many interactions and user feedback to converge

the interaction to a reasonably effective common language. There may also be certain

restrictions and/or cost overheads on the number of interaction between data sources.

Third, it is not clear whether other data sources learn or learn at the same rate of the local

DBMS. Each data source may also use a different algorithm to adapt. Fourth, as opposed

to the current models used to describe the evolution of languages, the intents and objects

of communications between data sources are often complex and structured. Moreover,

the theoretical and empirical models in the study of language evolution consider the set

of shared signal to be relatively small [71]. Data sources, however, do not often agree

on using a fixed and relatively small set of queries apriori. For example, if the local and

external data sources interact via keyword queries, the set of possible queries will be

enormous.

4.2 Framework

We model the aforementioned communication and collaboration paradigm between data

sources as a repeated game with identical interest between multiple players, i.e., data

sources, whose common goal is to increase their communication effectiveness by commu-

nicating through queries and results and receiving feedback. We assume that one local

data source receives users’ queries and communicates with and integrates information

from multiple external data sources.

For the sake of simplicity, we assume that the information in each data source is

stored in a single relational table. Data integration is sometimes done through middle-

ware called a mediator, which communicates and collects the information from data

sources [6]. Our model extends this architecture by considering the mediator as a local

data source.

We use Tables 4.1a and 4.1b, which illustrate fragments of product databases in
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different companies, as our running example. Users of Products wish to see who sells

the given products. This information is stored in an external data source containing

the relation Sellers. Since databases store the information about the same product in

different forms, Products has to learn how to properly query the database in Sellers in

order to find the companies that sell the respective products and join the results on both

databases.

4.2.1 Local Query

Each round of the game starts when the a user of the local data source submits a query.

The local data source may find a set of tuples that satisfy this query in its own data

storage. This set of tuples will be used as the intents for the local strategy when it

decides which queries to submit to the external.

4.2.2 External Query

After receiving a query from the user, the local data source formulates and submits a

keyword query to the external one in order to extract information relevant to the local

query. This query, called an external query, must effectively convey the intent behind its

corresponding user query to the external data source. The local data source, however,

does not know precisely the representation of the data in the external one, therefore, it

has to leverage the information available in the user query, the matched tuples in its own

database, and its experience from previous communications to formulate the external

query. Since each tuple in the local database may join with a set of relevant tuples in the

external database, the local data source may construct an external query per matching

local tuple. For instance, given that tuple product Soda is in the local answers to a user

query over Table 4.1a, the local data source may submit external queries Soda Drinks or

Drinks.

4.2.3 Querying Strategy

The querying strategy reflects how the local data source expresses its intents in a way the

external data source understands, i.e., keyword queries. Roughly speaking, each intent
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(a) Products

ID Name Category

1 Soda Drinks
2 Beef Meat

(b) Sellers

P Name P Category P Seller P Price

Pop Drinks Kroger 1
Hamburger Sandwich 7/11 4

Table 4.1: Local database of Products and external database of Sellers

is a pair of user queries and one of its matching tuples in the local data source. Given

an intent, subsets of values/terms in its tuple or user query are obvious choice for its

keyword queries. The local data source may expand this set of keywords using the terms

and values returned from the external data source in previous interactions. It may also

add the metadata information, such as the attributes names, to the keyword queries.

The querying strategy stochastically maps each intent to a set of potential keyword

queries. We use stochastic mapping to allow the local data source to both exploit the

keyword queries that have relatively successfully expressed the intent in the past and

explore other keyword queries that have not been tried sufficiently frequently. Exploring

new queries enables the local data source to learn and acquire more knowledge [54].

As the number of intents and keyword queries may be too large, we use their n-

gram features to materialize and maintain the querying strategy. This applies to both

the intents of the local data source and the signals that are to be sent to the external

data source. The local data source cannot share its strategy with the user and the

external data sources. If there are several external data sources, the local data source

may maintain one querying strategy per external data source. It may also maintain a

single querying strategy per group of external data sources if there are too many external

data sources.

Using our running example, let s1 and s2 denote the tuples with ids 1 and 2 in

the local database shown in Table 4.1a, respectively. The local data source uses the

four external queries in Table 4.2a to find the information related to these tuples in the

external data source. Table 4.2b shows a sample querying strategy used by the local
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(a) External Queries

Query# Query

g1 ‘Soda Drinks’
g2 ‘Beef Meat’
g3 ‘Drinks’
g4 ‘Meat’

(b) Querying strategy

g1 g2 g3 g4

s1 0.4 0.1 0.5 0

s2 0 0.4 0.1 0.4

(c) Answering strategy

r1 r2

g1 0.8 0.2

g2 0.5 0.5

g3 0 1

g4 0.7 0.3

Table 4.2: External Queries, Querying Strategy, and Answering Strategy

data source. If the local data source wishes to find information related to s1, it will send

the external query g1 with 40% probability.

For the sake of simplicity, we have included some of the possible queries that could

be in the local strategy. However, in practice we use 1-grams in our model. Thus, if we

were to use the current example in our model, only the signals Soda, Drinks, Beef, and

Meat would be in the local strategy. To construct a keyword query such as Beef Meat,

the keyword length would need to be at least two and the local would have to sample

both Beaf and Meat individually.

4.2.4 Answering Strategy

Each external data source decodes and answers the input keyword queries using its

answering strategy. It generally is a stochastic mapping from keyword queries to tuples in

the external data source. Of course, some data sources may use a deterministic mapping

to answer queries, e.g., traditional TF-IDF retrieval formulas [51]. The external data

source may not materialize this strategy and implement it using ranking models [51].
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The external data source does not share its strategy with the local data source.

Consider the database instance of Products in Table 4.1b. The answering strategy

for this DBMS is illustrated in Table 4.2c, where r1 and r2 are the first and second tuples

in the instance, respectively. In this example, if the external data source gets query g2,

it will return tuples r1 or r2 with equal probability. The external queries received on the

external data source strategy do not need to be known ahead of time. Instead, when a

new external query is received, then a new entry is added into the strategy. We also note,

that in practice that in order for a tuple in the external data source to be considered, it

would need to be a hit on at least one of the keyword queries. A hit refers to the tuple

containing at least one keyword that matches at least one of the keywords in the input

keyword query. There are methods such as Fuzzy Search that allow for spelling mistakes

or syntactically similar words to also land as hits, but we do not consider that in this

work [108].

4.2.5 Reward and Feedback

After finding related tuple(s) in the external data source for each tuple in the local

results, the local data source joins the local and external results and presents them the

user. For each tuple in the local data source that has some corresponding tuples in

the external one, the local data source creates a new tuple that contains information

about both. The user will inform the local data source whether the presented tuples

are relevant to her query. The user feedback may be explicit, e.g., click-through or eye

movement information [39], or implicit, e.g., skipping results [109].

The goal of all players in the game is to convey relevant and avoid delivering non-

relevant information to the user. Thus, we measure the amount of reward in each round

of the game for all players, i.e., data sources, using the well-known effectiveness metric

of Mean Reciprocal Rank (MRR), which is the inverse of the position that the correct

answer returned. One may use other effective metrics to measure the accuracy of the

returned answers. If the external data source supports feedback, the local data source

conveys the feedback to it. The expected payoff of the local and external data sources

are a discounted average reward of U =
∑

t≥0 δ
tmrr(t) where t is the round of the game

and 0 < δ < 1 is the discounting factor. The value of the δ is set according to the users’

preferences, i.e., the larger values of δ gives less importance to the reward in future
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interactions.

4.3 Learning Mechanisms

Since the local data source performs most of the data integration work, we focus on

learning a querying strategy to express the intents of the local data source effectively

such that the external data source returns only relevant answers. We plan to improve

the accuracy of data integration gradually as users interact with the local data source

and get answers to their queries. This setting is more natural and useful as it avoids the

enormous upfront cost of traditional data integration by creating a desired integration

system progressively. While users are training the system, they may get relevant answers

to their queries, thus, they will not get discouraged. Over the course of interactions, the

local data source will naturally update the mappings of the integration as the data

sources evolve. Thus, one may use reinforcement learning methods to adapt querying

strategy gradually.

External data sources may also learn and modify their strategy in answering keyword

queries, e.g., online search engines. Thus, the method of adapting query answering

strategy must be effective in both static and dynamic settings. However, it is known that

the learning methods that are useful in static settings do not deliver desired outcomes in

the dynamic ones [48]. At the first glance, it may also seem that if the local data source

uses a reasonable learning mechanism, the external data source’s learning can only help

both players achieve a greater reward. However, it has been shown that if the players do

not use the right learning algorithms in games with identical interests, the game and its

reward may not converge to any desired states [75]. Thus, choosing the correct learning

mechanism for the local data source is challenging. The following algorithmic questions

are of interest:

• Does local data source adaptation to the external data source’s answering strategy

improve interaction?

• Can this collaboration between the local and external data sources improve interac-

tion within a reasonable amount of time?

• How can this learning algorithm can be efficiently implemented over large databases?

We extend Roth and Erev algorithm [47], which is a well-known reinforcement learn-
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ing method in games, to learn a querying strategy. Oversimplifying a bit, in our context,

it updates the probability of using an external query for an intent proportional to the

amount of its reward. This algorithm uses probabilities to pick queries, therefore, we

plan to leverage random sampling methods over relational data [85] to implement it over

relational data. We compare this algorithm against a naive baseline. The local data

source does not learn and only sends the top 5 IDF features for each intent every time.

In all cases of our experiments where the external learns, it uses Roth and Erev’s model.

Thus, even with this baseline method there will be some amount of learning on the part

of the external data source.

4.3.1 Roth and Erev’s Model:

Roth and Erev’s model computes the probabilities of using a query to express an intent

based on the total accumulated reward of the query to express that intent over all

previous interactions [47]. Hence, it uses the full history of the game and the value of

reward to pick the future actions. It reinforces the probabilities directly from the reward

value r that is received when the local data source uses query q(t). Sij(t) in matrix S(t)

maintains the accumulated reward of using query qj to express intent ei over the course

of interaction up to round (time) t.

Sij(t+ 1) =

Sij(t) + r qj = q(t)

Sij(t) qj 6= q(t)
(4.1)

Lij(t+ 1) =
Sij(t+ 1)

n∑
j′
Sij′(t+ 1)

(4.2)

In the above equation, L is the local data source’s strategy. Each query not used in

a successful interaction will be implicitly penalized as when the probability of a query

increases, all others will decrease to keep L row-stochastic.
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4.3.2 Optimal Interaction Time

When considering the first two questions of interest, we need to first discuss how many in-

teractions would be acceptable to learn to effectively communicate between data sources.

Over time, Roth and Erev might perform better compared to the naive baseline. How-

ever, the naive approach might give more correct answers in the first few interactions.

Thus, we have this trade off between a higher satisfaction in the very beginning of the

interaction but very little learning over time. However, using a online learning mecha-

nism such as Roth and Erev, we may start from a lower position and eventually surpass

the naive approach.

To put the number of interactions in perspective, we have devised a couple of real

world scenarios in which the number of users can determine how many interactions might

be acceptable. First, suppose a small company with knowledgeable users is querying the

local data source trying to integrate their data with that of some external data source.

In this scenario, the number of users querying the local database would be quite small,

but they may be willing to invest more time into the entity resolution processes. If there

are 10 users, each willing to submit 100 queries, then 1000 interactions would likely be

when the resolution process would need to reach some higher level of satisfaction.

Now suppose this query interface for the local data source is public and used by

thousands of users. If users only wanted to enter 5 or so queries each, we could say

that the maximum number of interactions to reach a satisfactory level of payoff would

be much higher, such as 20,000. We present these scenarios to the reader to give some

perspective on how practical the algorithms are given the number of interactions required

to reach some satisfaction level.

4.4 Improving the interaction

While our framework can be trained by interactions with the end and non-expert users,

like other reinforcement learning methods, it needs a great deal of training data to learn

an effective querying strategy. Of course, the amount of supervision may considerably

reduce over time. It can also use public databases, e.g., Wikipedia, to leverage distant

supervision and reduce the need for user feedback. Since, these resources are not always

available, we plan to use the following techniques to reduce the amount of feedback.
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First, we plan to filter the vocabulary using standard keyword query practices such as

stemming and stopping. Next, we examine the impact on the rate of learning by varying

the length of keyword queries. A small keyword query, less keywords sent, might provide

less hits on the external data source. However, it will produce less noise in the query.

We then plan to expand the signals available to the local data source. By improving the

vocabulary of the local data source it will have the ability to further diversify its queries

from others. We also plan to take advantage of the feedback we have already received

from the user. Feedback received from the user can be cached and used between user

interactions to continue learning. The feedback received can only be used on the intents

already queried. However, since the intents in the local data source are represented as

features in the strategy, we can learn more about features of the intents and which signal

is best to send for that feature.

4.4.1 Filtering

Currently there are many features produced by the strategies. This is exaggerated by

large data sets. We use multiple methods to filter out features that are likely not very

useful.

4.4.1.1 Stopping and Stemming

Before features are constructed, they are stopped and stemmed. Stop words are words

that are extremely common in a particular language. They occur in almost every entity.

It is common for many keyword query engines to completely ignore stop words. For

this reason, it is unnecessary to learn over these keywords. We use a standard English

dictionary stopper [110]. Often words in the English language contain prefixes and

postfixes. However, the root word is the same. It is common practice for keyword search

engines to stem the vocabulary in order to reduce the size of the index and capture

the general meaning of the root word. We stem the words using the Porter Stemming

method [111]
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4.4.1.2 IDF Filtering

The IDF value of a feature can be used to determine how unique that feature is across

the data. A high IDF value means that the keyword is quite unique and doesn’t occur

very much in the data. Having too many general features may lead to longer learning

times. Thus, we need to find a balance features that uniquely identify an intent and

general features that can be learned across multiple intents. For a feature to be used in

a strategy, it must first have a minimum IDF value. We find the IDF values of all features

as a preprocessing step and then normalize these IDF values. Features are pruned from

the strategy that do not have the required minimum IDF value. Currently, the IDF

value is set at 0.5, which prunes only the most frequently occurring and general features

such as the word “the”.

4.4.2 Keyword Length

An important factor in interacting with a database via keyword queries is the length of

said query. One might use long keyword queries containing many different keywords.

This would likely result in many hits on the external data source. However, studies have

shown that performance does decrease as the length of the keyword query increases,

performance of standard ranking metrics, such as BM25, may decrease [112, 113]. We

explore the difference in performance for varying query lengths.

4.4.3 Query Expansion

We expand the keyword queries available to the local data source by using the returned

tuples from the external data source. We receive feedback from the user on whether the

tuples returned to the local data source match or not. If a returned tuple matches the

desired tuple, then the local data source will convert that tuple to features using its own

method of feature generation. These features are then added to its own strategy for that

intent.

If the data sources have been interacting for some time, then weights are already

learned for the available features. Thus adding a new feature with a low initial weight

will prevent it from being sent in the near future. However, it is known that the new

features acquired from the external data source are relevant as they were constructed
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from the correct tuple returned. Thus, the initial weight of the added features is half

the maximum current weight of features available for that intent beforehand.

Each of the new features that are generated from the external data source’s tuples

also contain metadata such as which attribute they came from. We use this information

when adding the features to the local data source’s strategy. For example, if the feature

“purple” was constructed it may have been found in the attribute “color” in the external.

The new feature constructed would then be constructed in such a way to leverage this

information. When that feature is used in future interactions, the local data source will

construct the feature such that it will only search the “color” attribute for the keyword

“purple” in the external.

4.4.4 Autonomous communication

Receiving feedback from the user is an expensive operation. It costs the user time because

it requires the constant involvement of the user in the learning process. We introduce

an additional method of autonomous communication between the data sources. When

new feedback is received from the user, we cache this feedback. In this way, we know

that the intent queried for by the local data source matches the indicated tuple in the

returned set from the external data source.

When new feedback is provided by the user, we switch the communication between

the two data sources to an autonomous form where they use cached feedback to further

learn. The data sources interact for some minimum number of interactions over the

same intent, producing queries and returning results normally. However, when a result

is returned that the user has provided positive feedback on for the intent and we have

cached it, we reinforce using the same satisfaction metric that is used during interaction

with user involvement. Once the minimum number of interactions completes, the data

sources continue to interact until there is no improvement in the satisfaction.

4.4.5 Strategy Initialization

The local data source’s strategy is initialized such that the weights highly skewed towards

the IDF values of the features. Since we convert the intents of the local data source into

features that are used as rows in the strategy matrix, we choose only the top three based
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on IDF value to learn. When looking at a single row, the weights initially are weighted

such that the feature of the intent represented in that row has a higher weight on the

same feature in that column. That is to say, the matrix is initialized to nearly an identity

matrix with a 90/10 weight split. Most of the weight is put on the identity matrix while

10% of the weight is spread out across all of the other features available to that intent

feature. This means initially the local data source will be performing less exploration

and more exploitation based purely on the IDF value of the features.

4.5 Evaluation

We evaluate our method over three different datasets. The first dataset is a product

dataset containing products from Amazon and Google. The second dataset is one con-

taining published papers from DBLP and Google Scholar. The final dataset contains

movies scraped from IMDB and BoxOfficeMojo. Each of the data sets differ in the

content that each data source contains. We use the popular evaluation metric Mean

Reciprocal Rank as an effectiveness measure and for the reinforcement value.

4.5.1 Datasets

The first dataset, titled Product, utilizes two data sources containing products from

Amazon and Google [114]. The Amazon dataset is used for the local data source while

the Google dataset is used for the external data source. Each dataset contains an ID,

Product-Name, Description, Manufacturer, and Price. There are entities where the

values for some of the attributes are missing. For example, a tuple in the Amazon dataset

may not have a Manufacturer, but the corresponding tuple in the Google dataset contains

the Manufacturer information. Many of the attributes have various interpretations of

the data and therefor represent the same data differently. For example, a Manufacturer

may be in both databases, but have a different value for that tuple. This dataset is quite

difficult to learn a mapping on. Other off line methods have only been able to achieve a

F-score of 0.6-0.7 using their best method [114, 115].

The second database is of medium size, titled DBLP-Scholar, containing 2616 entities

in the DBLP data source and 64263 entities in the Scholar data source [114]. We use

the DBLP dataset as the local data source and the Scholar dataset as the external data
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source. The number of attributes is the same, but the exact values for each attribute

varies. This dataset examines what happens to the interaction when the vocabulary on

the local data source is significantly smaller relative to the external data source.

We also run our method over a larger dataset that we call Movies. This dataset

contains 100,000 entities in each source. Both sources contain the same movies, however,

the entities are represented in different ways. For example, the titles of the movies may

contain additional terms, such as the year. One was scraped from IMDB while another

was scraped from BoxOfficeMojo. We use the IMDB dataset as the local data source

and BoxOfficeMojo as the external data source. This dataset examines how well our

proposed algorithm scales to larger datasets. Provided with all three datasets is the

ground truth join table on how these entities should be mapped to one another. We use

this as the oracle that gives feedback, simulating a user providing feedback during the

interactions.

4.5.2 Satisfaction Metrics

Mean Reciprocal Rank (MRR) is used as an effectiveness metric. Reciprocal Rank on

its own scores the returned results as the inverse of the position of the first correct result

returned. For example, if the 3rd result returned was correct, then the reciprocal rank

would be 1/3. The MRR takes mean over time of the Reciprocal Rank. We also show

the average rate of return over time. That is, the average number of interactions that a

correct result was returned.

4.5.3 Learning vs. Baseline

The very first question we want to know if whether having learning on the local side

if beneficial. For our baseline method, we employ a strategy that we will refer to as

IDF. IDF simply looks at the top k features of an intent and sends those to the external

every interaction. Since our features are keywords pulled from the intent, this method

tries to send the most distinguishing features. However, there is no learning happening

on the local data source side, since for each intent the IDF value does not change as

our data sets remain static. For these experiments we show the MRR for the past 500

interactions. We send keyword queries of length three and return 20 results.
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Figure 4.1: MRR of last 500 interactions - Product

In Figure 4.1 we observe that the learning outperforms the naive baseline approach.

In fact, while the IDF method remains mostly constant, after 100,000 interactions on

the product dataset, we see the MRR increase to 0.6 and continues to learn. Figure 4.2

shows the results when we run on the DBLP-Scholar dataset. Out algorithm does not

really outperform IDF by any considerable amount. IDF sends the most distinguishing

keywords of each tuple to the external data source. Often, the highest distinguishing

keyword in this dataset is contained within the Author, since DBLP contains a variety

of papers without much overlap. For example, the author with the last name “Diwan”

only appears once in DBLP and appears seven times in the external. Thus, the tuple

containing “Diwan” on the local will choose that as one of the keywords to send to the

external. The query will hit on the correct tuples in addition to some others. However,

when using IDF, no other tuple in the local will use the keyword “Diwan” as it does not

appear in that tuple. This allows the external data source to learn the correct mapping
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Figure 4.2: MRR of last 500 interactions - DBLP-Scholar

for “Diwan” rather quickly and return the correct result more often overtime.

Figure 4.3 illustrates our algorithm compared to IDF for the Movies database. For

this experiment we use a power law distribution prior over the intents in the local

database. Often in large databases, the amount of data queried over follows a power

law distribution [116]. Since this database contains movies, it is easy to imagine that

perhaps only the most recent or popular movies will be queried more frequently by the

user then the older or less popular movies. We notice that our model outperforms the

baseline, however, it appears that it doesn’t learn much after a relatively short amount of

time. This could be due to the distribution over the intents. There is a small percentage

of intents that are queried much more frequently then others. The methods are able to

learn those intents faster since a higher percentage of interactions are spent querying a

small number of intents. However, every once in a while another intent will be chosen

that the methods may have never seen before. We don’t see any significant drops in
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Figure 4.3: MRR of last 500 interactions - Movies

performance though, which indicates that by learning over the features in the local data

source we are able to learn something about other intents that have yet to be tried.

4.5.4 Keyword Length

Next, we examine the impact on learning for various keyword lengths. Increasing or

decreasing the number of keywords in a query can impact how many hits on the external

there are and also impact the learning rate. For some datasets, it might be better to use

a smaller query while others might benefit from a larger one. We send keyword queries

of length 1, 3, 5, and 10. As stated previously, increasing the length of the keyword can

decrease performance. We want to know how it impacts our method.

In general we notice that there is a drop off in performance as the length of the query

is increased. Figures 4.4 and 4.6 see the best performance with query size three. However,
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Figure 4.4: MRR of last 500 interactions - Product

in Figure 4.5 we see a significant performance increase when a keyword of length one is

used. This is likely due to the uniqueness and overlap between the datasets. Authors

is a unique category and if the online learning algorithm is able to pick out the correct

keyword to use, it can reduce a lot of noise that is being sent in the keyword query.

In all cases when we increase the keyword length to 10, there is a dramatic decline in

performance. This confirms earlier work that there is a point of increasing the keyword

query length that will inhibit performance. We will use keyword length 3 from in the

next set of experiments, as that fits the majority of our datasets the best.

4.5.5 Increasing Learning Rate

In these experiments, we explore the impact of utilizing the automatic learning and

expansion methods. “Learning” illustrates the method without any additional improve-
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Figure 4.5: MRR of last 500 interactions - DBLP-Scholar

ments. “Auto” indicates our method with the addition of autonomous communication.

“Expansion” shows our method using the external data source’s features to expand the

local data source’s set of possible signals. Our goal here is to increase the initial learning

rate, so we will be looking at the first 3,000 interactions to get a better understanding

of what is happing in the first few thousand interactions. The autonomous communica-

tion runs for 2,000 interactions, without our simulated human feedback, upon receiving

feedback it has never seen.

In both Figures 4.7 and 4.8 expansion performs the worst. When a returned tuple

is marked as correct, it is broken up into 1-gram features the exact same way that local

tuples are for the local data source’s strategy. The new features are then given weights

equal to half of the maximum weight of features for that tuple in the current strategy.

However, some of these new external features may not be beneficial and simply introduce

more noise. When combined with the autonomous communication, we can see that it is
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Figure 4.6: MRR of last 500 interactions - Movie

able to recover in a few hundred interactions and surpass the expansion.

However, in both cases none of the new methods outperform the regular learning

method by any noticeable amount. Looking back at Figure 4.4, we can see that keyword

length five was able to perform about as well and using keyword length three. Using

this, we can use keyword length five with autonomous communication and expansion,

as seen in Figure 4.9. Increasing the keyword size allows the local data source to use a

mixture of local keywords and external keywords in such a way that it can effectively

communicate to the external the exact tuples it is looking for.
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Chapter 5: Conclusion and Future Work

5.1 Summary

Chapter 2 introduces a system minimizes data driven bottlenecks that are typically

associated with large-scale data sets. Specifically, compression of the index minimizes

the space overhead, allowing it to be operated on within memory. Query response times

are also minimized due to the utilization of indexing coupled with the FileMap structure.

This results in the ability to perform frequent queries leading to efficient analysis of the

data.

Additionally, our event detection algorithm demonstrates its capability in correlating

PMU measurement readings resulting in effective monitoring of grid activity. This algo-

rithm is coupled with a visualization component enabling grid operators the ability to

efficiently identify occurrences of power system contingencies in addition to determining

its location. This algorithm shows significant promise in transitioning to automated grid

control. This level of intelligent computing is inevitable with the ever-increasing com-

plexity of power generation, distribution, and consumption. We look forward to further

developing this technology to advance the way that power engineers operate, control,

and maintain the electric power grid.

We further investigate how users may query databases and what algorithms can be

used to improve the efficiency and effectiveness of these algorithms in Chapter 3. Much of

the world data is in structured forms, but many users do not know how to express their

information needs over structured data using precisely framed and formal languages,

such as SQL. These users may express their intents using easy-to-use and inherently

vague languages, such as keyword queries. A DBMS may interact with these users and

learn their information needs. We showed that users also learn and modify how they

express their information needs during their interaction with the DBMS. We modeled

the interaction between the user and the DBMS as a game, where the players would

like to establish a common mapping from information needs to queries via learning.

We showed that users exhibit some reinforcement learning tendencies when interacting
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with database systems. They remember past decisions and attempt to improve their

queries over time to get better results. We have shown that these behavior can be

modeled accurately using a well-known reinforcement learning scheme used to model

human learning in behavioral game theory called Roth and Erev’s model.

Current query interfaces assume that the user has a static strategy and do not learn

over time. Thus, they do not effectively learn the information needs behind queries in

such a setting. We proposed a reinforcement learning algorithm for the DBMS that learns

the querying strategy of the user effectively. We proved that our proposed algorithm

converges in both the cases that users learn and do not modify her method of expressing

her intents stochastically speaking. We have also analyzed the equilibria of this game

and showed that the game has both desirable, in which the user and the DBMS get the

highest possible rewards and undesirable ones, where none of the players may get their

maximum reward. We also propose an efficient implementation of our algorithm for

large databases by leveraging novel sampling techniques. Our empirical study validates

our model and indicates that our proposed algorithm is more effective compared to

other popular ranking and online learning algorithms. It also shows that our sampling

techniques improve the running times of the algorithm over large databases significantly.

Finally, we modeled the creation of a mapping to perform entity resolution over

heterogeneous datasets in Chapter 4. Our model outperforms a naive baseline approach

and is able to learn a mapping online. Learning a mapping online is beneficial as the

users train the model overtime while receiving their desired information needs. We show

that our method improves effectiveness overtime with real-world datasets. We have also

proposed multiple methods in an attempt to reduce the number of interactions required

to improve effectiveness. Our model does not require any knowledge of the local or

external data source and is built to handle keyword queries, which most users are familiar

with. We also examined the impact of using different query lengths. Generally increasing

the length of a keyword query hurts up to a certain point. However, we also showed that

when it is combined with autonomous communication and expansion, we may get better

performance. The two models described in Chapters 3 and 4 could be combined into a

single system, if there was a need to allow the user to interface with a heterogeneous

dataset.
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5.2 Future Work

Given large data sets, it is necessary to add additional methods of indexing for faster

navigation and for queries to be returned in reasonable amounts of time. One such

method that could be applied is sampling. This adds tiers of bitmaps, i.e., bitmap

indices for progressively more precise bitmaps, each one at a lower resolution of the

data. For small amounts of data this is simply wasted space and too much overhead.

When bit data such as this is introduced the sampling overhead begins to diminish as

access times to the data doesn’t scale up with the amount of data as quickly.

Bitmap indexing currently performs best when applied to a static database. To

give the additional performance of allowing the bitmap to compress in real time can

be advantageous. Increasing the frequency of compressing the new data would allow

for queries resulting in recent tuples. Bitmap indices’ high compression rates rely on

large bit vectors. The trade off between compressing new data frequently and having

more recent data is the compression ratio will be worse, leading to decreased query times.

Understanding how often compression of new data and when re-compression of the entire

database should take place will allow for the bitmap index to be updated effectively in

real time.

Regarding the event detection algorithm, different clustering of PMU sites included

in the correlation are being analyzed in order to optimize observability of system events

in the visualization structure. Preliminary work indicates that when a subset of sites

are correlated (e.g. five PMUs sites - three “close” and two “far” relative to the system

event), the correlation visuals clearly indicate sensitivity of the overall system correlation

when analyzing phase angle. This analysis can be formalized with respect to other subsets

of signals such as voltage magnitude, frequency, and rate-of-change of frequency.

We believe that our proposed game-theoretic setting can be used as an effective

method to tackle the important and long standing problem of data interoperability in

databases. It is well established that due to the enormous upfront cost of data integration

and conversion, one ought to find the right mapping between databases gradually and

using human-in-the-loop methods [98]. A game-theoretic approach to this problem will

help users and underlying data sources to collectively establish a common representation

and mapping effectively. Our work can also be extended to other types of interactions,

such as data exploration. During data exploration, users may follow different states of
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interactions, e.g., exploring the whole data versus focusing on some parts of the data,

and may adapt different learning mechanisms in each state. An interesting future work

is to explore the learning behavior of users in these states and find the effective learning

algorithm for the DBMS that can effectively collaborate with users in each state.

Our proposed online learning method for creating a mapping between multiple data

sources is quite novel and leaves many future directions. Currently we only use 1-grams

in the local data source’s strategy. However, we may be able to capture additional

information by increasing it to two grams. In this way, we would be able to further

distinguish between keyword queries and ensure that certain keywords are always sent

together if it leads to a better mapping. another method would be to embed the tuples

using some popular method such as Word2Vec or Glove [117, 118]. We would also like to

investigate additional methods for decreasing the learning rate. This require trying other

online learning algorithms and a different representation of the data. Currently, the work

performed here is performed over static databases. In the future we would like to train

our model over some static database and then see how well the training holds when the

database has been modified with additional information. Our model does not consider

the structure of the database, thus a change in schema would not require any additional

training. However, we may be able to capture additional information by utilizing the

schema information available.
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[114] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution approaches on
real-world match problems,” Proc. VLDB Endow., vol. 3, pp. 484–493, Sept. 2010.

[115] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-
caute, and V. Raghavendra, “Deep learning for entity matching: A design space
exploration,” in Proceedings of the 2018 International Conference on Management
of Data, pp. 19–34, ACM, 2018.



127

[116] C. Petersen, J. G. Simonsen, and C. Lioma, “Power law distributions in information
retrieval,” ACM Transactions on Information Systems (TOIS), vol. 34, no. 2, p. 8,
2016.

[117] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method,” arXiv preprint arXiv:1402.3722, 2014.

[118] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre-
sentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.




