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Simultaneous speech translation (SimulST) is widely useful in many cross-lingual communica-

tion scenarios, including multinational conferences and international traveling. Since text-based

simultaneous machine translation (SimulMT) has achieved great success in recent years. The

conventional cascaded approach for SimulST uses a pipeline of streaming ASR followed by

simultaneous MT but suffers from error propagation and extra latency. Recent efforts attempt

to directly translate the source speech into the target text or speech simultaneously, but this is

much harder due to the combination of separate tasks. In this dissertation, we focus on improv-

ing simultaneous translation model, enabling it to handle speech input and directly generate the

translated text in the target language. First, we investigate how to improve simultaneous trans-

lation by incorporating generated more monotonic pseudo references in training. These pseudo

references with fewer reorderings cause fewer anticipations and can substantially improve si-

multaneous translation quality. Then, we propose an ASR-assisted direct SimulST framework.

The model can directly translate from the given speech with a wait-k policy guided by a syn-

chronized streaming ASR. However, speech translation tasks suffer from data scarcity problems.

To alleviate the issue, we next introduce a Fused Acoustic and Text Masked Language Model

(FAT-MLM), which jointly learns a unified representation for both acoustic and text input from

various types of corpora, including parallel data for speech recognition and machine translation,

and even pure speech and text data. By finetuning from FAT, the speech translation model can be

substantially improved. Besides that, we further extend FAT to cross-lingual speech synthesis.

Our proposed model can clone the voice of the source speaker and generate the corresponding

speech in the target language.
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Chapter 1: Introduction

Simultaneous translation incrementally translates source-language speech into speech or text in

target-language, and is widely useful in many cross-lingual communication scenarios such as

international travels and multinational conferences. Recently, text-to-text simultaneous machine

translation has witnessed great progress thanks to fixed-latency policies (such as wait-k) [62]

and adaptive policies [39, 4]. A more nature way is to translate directly from the source speech

to maximize the use of input information. However, these methods cannot be directly applied to

models that take speech as the input.

1.1 Simultaneous Speech translation

Neural machine translation (NMT) has received much attention in recent years. Sequence-to-

Sequence (seq2seq) models based on Recurrent Neural Network (RNN) [8] and Transformer

[88] achieves significant performance in this task. We briefly review full-sentence machine

translation and the wait-k policy in simultaneous translation.

Full-Sentence NMT uses a Seq2seq framework (Fig. 1.1) where the encoder processes the

source sentence x = (x1, x2, ..., xm) into a sequence of hidden states. A decoder sequentially

generates a target sentence y = (y1, y2, ..., yn) conditioned on those hidden states and previous

predictions:

ŷ = argmax
y

pfull(y | x;θfull) (1.1)

pfull(y | x;θ) =
|y|∏

t=1

p(yt | x,y<t;θ) (1.2)

The model is trained as follows:

θfull = argmax
θ

∏

(x,y∗)∈D

pfull(y
∗ | x;θ) (1.3)

Simultaneous Translation translates concurrently with the (growing) source sentence, so Ma
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Figure 1.1: Full-sentence vs. simultaneous (wait-k) MT.

et al. [62] propose the wait-k policy (Fig. 1.1) following a simple, fixed schedule that commits

one target word on receiving each new source word, after an initial wait of k source words. In

this example, the model uses a wait-2 policy, it starts translating “there” after receiving first two

source words “中国的”. Then when it receives the next source word “西部”, it generates the

new translated word “are”. Formally, the prediction of y for a trained wait-k model is

pwait-k(y |x;θ)=
|y|∏

t=1

p(yt |x<t+k,y<t;θ) (1.4)

where the wait-k model is trained as follows

θwait-k = argmax
θ

∏

(x,y∗)∈D

pwait-k(y
∗ | x;θ). (1.5)

In general, we expect the model can translate the give input into the target language in a

monotonic fashion.

For speech processing like automatic speech recognition (ASR) and speech translation (ST).

They differ from the above formulae in that the input becomes processed speech features s =

(s1, ..., s|s|).

A typical instance of speech translation parallel data can be described as a triplet. 1. A

continuous speech waveform s, and it can be described as spectrogram or mel-spectrogram of
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the source speech, like s = (s1, ..., s|s|). 2. The text transcript x in the source language. 3. A

corresponding text translation y in the target language.

End-to-End Speech Translation (E2E-ST) aims to directly translate the source speech s into

the text translation in the target language.

ŷ = argmax
y

pfull(y | s;θfull) (1.6)

pfull(y | s;θ) =
|y|∏

t=1

p(yt | s,y<t;θ) (1.7)

It is also known as direct ST. The training remains the same as the text-based NMT model.

Besides that, to facilitate closing the speech-text modality discrepancy and improve the perfor-

mance, a multi-task learning framework, which jointly train ASR and ST with shared parameters.

1.2 Challenges in Simultaneous Speech Translation

The conventional approach to this problem is a cascaded one [6, 96, 108], involving a pipeline

of three steps. First, the streaming automatic speech recognition (ASR) module transcribes the

input speech on the fly [68, 90], and then a simultaneous text-to-text translation module translates

the partial transcription into target-language text [70, 28, 62, 104, 102, 105, 5]. Finally, an

incremental TTS system is used to generate corresponding audio wavs.

However, the cascaded approach inevitably suffers from three limitations: (a) error prop-
agation, where the errors generated in each step will be passed on to the next step, creating an

accumulation of errors. For example, streaming ASR’s mistakes confuse the translation module

(which are trained on clean text), and this problem worsens with noisy environments and ac-

cented speech; and (b) extra latency, where Each module needs to wait for the module in the

previous step to finish processing. (c) information loss, where the prosody, durations, and other

information in the source speech can help improve the quality of translated text and speech, but

they are discarded in the speech recognition step. (d) There exist many non-orthographic lan-

guage that cannot be transcribed into text. To overcome the above issues, some recent efforts

[77, 65, 64] attempt to directly translate the source speech into target text simultaneously by

adapting text-based wait-k strategy [62]. However, unlike simultaneous translation whose input

is already segmented into words or subwords, in speech translation, the key challenge is to figure

out the number of valid tokens within a given source speech segment in order to apply the wait-k
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policy.

Besides that, the parallel corpora for simultaneous translation are limited, and even less for

speech input. It is challenge to obtain high-quality translations. Therefore, both simultaneous

translation and speech translation suffer from the problem of data scarcity.

1.3 Our Proposed Methods

In this dissertation, three topics that related to simultaneous speech translation are introduced.

First, we will introduce a simple and effective technique to generate pseudo-references with

fewer reordering based on parallel corpora that designed for full-sentence translation [23]. Train-

ing simultaneous translation models with these generated pseudo references can reduce antici-

pations during training and result in fewer hallucinations in decoding and lower latency (Chapter

2). It can effectively enhance the monotonicity of the translation model without the use of ad-

ditional data. Next, we will introduce a ASR-assisted direct simultaneous speech translation

framework [21] (Chapter 3). It bridges the gap between text-based translation and ST, we can

easily adopt the wait-k methods which were designed for text-based input to address speech

input. Then, to alleviate the problem of data scarcity in the parallel speech translation corpora,

we also propose using multi-modal pretraining method to learn a unified acoustic and text rep-

resentations [109, 22] (Chapter 4). Besides that, we extend the multi-modal pretraining method

to speech synthesis. The proposed model can generally conduct voice cloning between different

languages (Chapter 5).
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Chapter 2: Improving Simultaneous Translation with Pseudo-References

2.1 Motivation

Recently, all state-of-the-art simultaneous translation models are trained on conventional parallel

text which involve many unnecessary long-distance reorderings [13, 16]; see Fig. 2.1 for an

example. The simultaneous translation models trained using these parallel sentences will learn to

either make bold hallucinations (for fixed-latency policies) or introduce long delays (for adaptive

ones). Alternatively, one may want to use transcribed corpora from professional simultaneous

interpretation [66, 10, 69]. These data are more monotonic in word-order, but they are all very

small in size due to the high cost of data collection (e.g., the NAIST one [69] has only 387k

target words). More importantly, simultaneous interpreters tend to summarize and inevitably

make many mistakes [81, 96, 108] due to the high cognitive load and intense time pressure

during interpretation [19].

How can we combine the merits of both types of data, and obtain a large-scale, more mono-

tonic parallel corpora for simultaneous translation? We propose a simple and effective technique

to generate pseudo-references with fewer reorderings; see the “Pseudo-Refs” in Fig. 2.1. While

previous work [42] addresses this problem via language-specific hand-written rules, our tech-

nique can be easily adopted to any language pairs without using extra data or expert linguistic

knowledge. Training with these generated pseudo references can reduce anticipations during

training and result in fewer hallucinations in decoding and lower latency.

2.2 Methods

Since the wait-k models are trained on conventional full-sentence bitexts, their performance is

hurt by unnecessary long-distance reorderings between the source and target sentences. For

example, the training sentence pair in Fig. 1.1, a wait-2 model learns to output y1=“there”

after observing x1x2=“中国 的” (china ’s) which seems to induce a good anticipation (“中国

的...” ↔ “There ...”), but it could be a wrong hallucination in many other contexts (e.g., “中国

的 街道很挤” ↔ “Chinese streets are crowded”, not “There ...”). Even for adaptive policies
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zhōngguó de xı̄bù yǒu hǔnduō gāo shān
Source
Input

中国 的 西部有 很多 高 山

china ’s west have many big mountain

Gold-Ref there are many big mountains in western china

Pseudo-Refs
(wait-1) china ’s west has many big mountains

(...wait-2...) the chinese west has many big mountains
(...wait-3...) western china has many big mountains

(...wait-4...) there are many big ...

Figure 2.1: Example of unnecessary reorderings in the bitext which can force the model to
anticipate aggressively, along with the ideal pseudo-references with different wait-k policies.
Larger k improves fluency but sacrifices latency (pseudo-refs with k ≥ 4 are identical to the
original reference).

[39, 4, 103], the model only learns a higher latency policy (wait till x4=“有”) by training on the

example in Fig. 1.1. As a result, training-time wait-k models tend to do wild hallucinations [62].

To solve this problem, we propose to generate pseudo-references which are non-anticipatory

under a specific simultaneous translation policy by the method introduced in Section 2.2.1.

Meanwhile, we also propose to use BLEU score to filter the generated pseudo-references to

guarantee that they are semantic preserving in Section 2.2.2.

2.2.1 Generating Pseudo-References with Test-time Wait-k

To generate non-anticipatory pseudo-references under a wait-k policy, we propose to use the full-

sentence NMT model θfull (Eq. 1.3) which is not trained to anticipate, but decode with a wait-k

policy. This combination is called test-time wait-k [62], which is unlikely to hallucinate since

the full source content is always available during training. Although here the full-sentence model

θfull only has access to the partially available source words x<t+k, it can still enforce fluency

because ŷt relies on the decoded target-side prefix ŷ<t (Eq. 1.4). Formally, the generation of

pseudo-references is:

ỹ∗ = argmax
y

pwait-k(y | x;θfull)

Fig. 2.1 shows the pseudo-references with different wait-k policies (k = 1..4). Note that
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k = 1 or 2 results in non-idiomatic translations, and larger k leads to more fluent pseudo-

references, which converge to the original reference with k ≥ 4. The reason is that in each

wait-k policy, each target word ŷt only rely on observed source words (x<t+k).

To further improve the quality of the pseudo-references generated by test-time wait-k, we

propose to select better pseudo-references by using beam search. Beam search usually improves

translation quality but its application to simultaneous translation is non-trivial, where output

words are committed on the fly [107]. However, for pseudo-reference generation, unlike simul-

taneous translation decoding, we can simply adopt conventional off-line beam search algorithm

since the source sentence is completely known. A larger beam size will generally give better

results, but make anticipations more likely to be retained if they are correct and reasonable. To

trade-off the expectations of quality and monotonicity, we choose beam size b = 5 in this work.

2.2.2 Translation Quality of Pseudo-References

We can use sentence-level BLEU score to filter out low quality pseudo-references. Fig. 2.2

shows the sentence level BLEU distributions of the pseudo-references generated with different

wait-k policies. As k increases, the translation qualities are better since more source prefixes

can be observed during decoding. The obvious peak at the BLEU=100 on Zh→En denotes

those pseudo-references which are identical to the original ones. Those original references are

probably already non-hallucinatory or correspond to very short source sentences (e.g. shorter

than k). The figure shows that even for wait-1 policy, around 40% pseudo-references can achieve

BLEU score above 60.

2.3 Anticipation & Hallucination Metrics

2.3.1 Anticipation Rate of (Pseudo-)References

During the training of a simultaneous translation model, an anticipation happens when a target

word is generated before the corresponding source word is encoded. To identify the anticipa-

tions, we need the word alignment between the parallel sentences.

A word alignment a between a source sentence x and a target sentence y is a set of source-

target word index pairs (s, t) where the sth source word xs aligns with the tth target word yt. In
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Figure 2.2: Sentence-level BLEU distributions of Pseudo-Refs using wait-k policies for Zh→En
and Ja→En, respectively. The parts to the right of the vertical lines indicate the top 40% refer-
ences in terms of BLEU in each distribution.

the example in Fig. 2.3, the word alignment is:

a = {(1, 8), (3, 7), (4, 1), (4, 2), (5, 3), (6, 4), (7, 5)}

Based on the word alignment a, we propose a new metric called “k-anticipation” to detect the

anticipations under wait-k policy. Formally, a target word yt is k-anticipated (Ak(t, a) = 1) if it

aligns to at least one source word xs where s ≥ t+ k:

Ak(t, a)=1[{(s, t) ∈ a |s ≥ t+ k} ≠ ∅]

We further define the k-anticipation rate (ARk) of an (x,y, a) triple under wait-k policy to

be:

ARk(x,y, a)=
1

|y|
∑|y|

t=1
Ak(t, a)
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Ak(t, a) 1 1 1 1 1 0 0 0
Figure 2.3: An example word alignment and the wait-1 policy. The red and blue lines indicate
the 1-anticipated and non-anticipated alignments, resp. Here AR1 = 5/8.

2.3.2 Hallucination Rate of Hypotheses

The goal of reducing the anticipation rate during the training of a simultaneous translation model

is to avoid hallucination at testing time. Similar to the anticipation metric introduced in the

previous section, we define another metric to quantify the number of hallucinations in decoding.

A target word ŷt is a hallucination if it can not be aligned to any source word. Formally, based

on word alignment a, whether target word ŷt is a hallucination is

H(t, a)=1[{(s, t) ∈ a} = ∅]

We further define hallucination rate HR as

HR(x, ŷ, a)=
1

|ŷ|
∑|ŷ|

t=1
H(t, a)

To avoid non-faithful contextual alignments, we use IBM Model 1 [17] for HR.

2.4 Expriments

2.4.1 Datasets and Models

We conduct the experiments on two language pairs Zh→En and Ja→En. We use NIST corpus

(2M pairs) for Zh→En as training set, and NIST 2006 and NIST 2008 as dev and test set, which

contains 616 and 691 sentences with 4 English references respectively. We also collected a set of

••• 
• 
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Figure 2.4: k-Anticipation rates (ARk) of gold training references and Pseudo-Refs with various
k. The top 40% Pseudo-Refs are selected in terms of BLEU.

references annotated by human interpreters with sight-interpreting1 for the test set. For Ja→En

translation, we use ASPEC corpus (3M pairs). Following Morishita et al. [67], we only use the

first 1.5M parallel sentences and discard the rest noisy data. We use the dev and test datasets

in ASPEC with 1,790 and 1,812 pairs. We preprocess the data with Mecab [55] as the word

segmentation tool and Unidic [100] as its dictionary. Consecutive Japanese tokens which only

contain Hiragana characters are combined to reduce the redundancy.

The full-sentence model is trained on the original training set. We use fast_align [35] as

the word aligner (Model 2 for anticipation and Model 1 for hallucination) and train it on the

training set. All the datasets are tokenized with BPE [78]. We implement wait-k policies on

base Transformer [88] following Ma et al. [62] for all experiments

2.4.2 Results

We compare the performance of wait-k models trained on three different settings: (i) original

training references only; (ii) original training references with all Pseudo-Refs; (iii) original train-

ing references with top 40% Pseudo-Refs in sentence-level BLEU.

Chinese-to-English Table 2.1 shows the results of Zh→En translation. Compared with using

original references only, adding Pseudo-Refs substantially improves the translation quality and
1Sight interpreting refers to (real-time) oral translation of written text. It is considered as a special variant of

simultaneous interpretation but with better translation quality.

·--■ x--- ----■-111 x,---xi---x;---x 
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(4-reference BLEU) k=1 k=3 k=5 k=7 k=9 Avg.△
Training- BLEU ↑ 29.7 32.1 34.2 35.6 37.6
Refs (*) HR% ↓ 8.4 7.8 6.4 6.0 5.8
*+100% BLEU ↑ 31.8 32.6 35.9 37.9 39.4 +1.7 ( 5.0%)
Pseudo-Refs HR% ↓ 5.5 7.4 5.4 5.2 4.6 −1.3 (18.9%)
*+Top 40% BLEU ↑ 32.3 34.3 36.4 38.4 38.8 +2.2 ( 6.5%)
Pseudo-Refs HR% ↓ 5.9 5.8 5.3 5.1 5.3 −1.4 (20.3%)

Table 2.1: BLEU scores and hallucination rates (HR) of Zh→En wait-k models on the test set
against the original 4 references. (Full-sentence BLEU: 39.9).

(single-reference BLEU) k=1 k=3 k=5 k=7 k=9 Avg.△
Training-Refs (*) 10.9 12.1 13.0 13.7 13.8
*+Top 40% Pseudo-Refs 12.6 14.2 13.9 14.2 14.1 +1.1 (7.5%)

Table 2.2: BLEU scores of Zh→En wait-k models on the test set, taking human sight interpre-
tation as reference.

reduces hallucination rate. The filtered 40% Pseudo-Refs achieve the best results except k = 9.

Fig. 2.4 shows that the generated Pseudo-Refs can significant reduce the k-anticipation rate

compared with the original training references, especially for smaller k. As shown in Table

2.2, if taking the human sight-interpreting result as a single reference, the improvement is more

salient than evaluated on the standard 4 references (+7.5% vs. +6.5%), which confirms that our

method tend to translate in a “syntactic linearity” fashion like human sight and simultaneous

interpreters [63].

zhōngguó rùshì yı̌hòu , zhōng měi liǎng guó jiāng
Training

Source Input ... 中国 入世 以后 , 中 美 两 国 将 ... (a) Training Example
china entry wto after , china USA two country will

(a) Gold Training-Ref ... the two countires will ... after china ’s entry into the wto .
(a’) wait-3 Pseudo-Ref ... after china ’s accession to the wto , china and the united states will ...

fēngzhōng hòu shǒushù qǔdé yuánmǎn chénggōng。
Dev

Source Input 29@@ 5 分钟 后 , 手术 取得 圆满 成功 。 (b) Dev-set Decoding Results
minutes after surgery achieve complete success .

(b) Only Training-Refs the two countries had a complete success in the operation after 2@@ 95 minutes .
(b’) + top 40% Pseudo-Refs 2@@ 95 minutes later , the operation was a complete success .

Figure 2.5: In the training example in (a), the gold reference anticipates “the two countries”,
which encourages the wait-k model trained on it to make irrelevant hallucination after any tem-
poral phrase; see the decoding example in (b). Training with the pseudo-reference in (a’) fixes
this problem, resulting in the correct translation in (b’).
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(single-reference BLEU) k=3 k=5 k=7 k=9 Avg.△
Training- BLEU ↑ 16.6 19.0 20.8 21.7
Refs (*) HR% ↓ 10.8 7.3 6.5 6.2

*+100% BLEU ↑ 17.7 18.9 20.8 22.2 +0.3 (1.5%)
Pseudo-Refs HR% ↓ 6.5 6.2 5.6 5.3 −1.4 (18.2%)
*+Top 40% BLEU ↑ 17.9 19.2 21.5 22.5 +0.6 (3.1%)
Pseudo-Refs HR% ↓ 8.3 7.6 6.0 5.2 −0.7 (9.1%)

Table 2.3: BLEU scores and HR of Ja→En wait-k models on the test set. (Full-sentence: 28.4).

Fig. 3.7 shows an example of how the wait-k model is improved by generated Pseudo-Refs.

In this example, the original training references actively delay the translation of adverbial clause

(time). It makes the model learn to anticipate the subject before its appearance. It is common in

the original set. Fig. 2.6 shows two other examples of generated pseudo references on Ja→En

and Zh→En, respectively. The generated pseudo-references are obviously more ideal than the

original references. We also show several examples of solving other avoidable anticipations

in Figs. 2.7–2.10. Besides changing the structure of training references, the full-sentence model

also has the ability to generate Pseudo-Ref that avoids anticipation by adding several prepositions

while preserving the meaning. There is an illustrated example in Fig. 2.9.

Training 現在 までに症例・ 照 の ２０ペアが有効 回答 として報告 された 。
Source Input Present by case and contrast 20 pairs effective answers as are reported .

Gold Training-Ref 20 pairs of case and before contrast were reported as a usefulness answers by the present .

wait-3 Pseudo-Ref to the present , 20 pairs of cases and controls have been reported as effective answers .

jiǎng zuò kāishı̌ qián , lı̌ péng fābiǎo jiǎnghuà 。
Training

Source Input
讲座 开始 前 , 李 鹏 发表 讲话 。

lecture begin before , li peng deliver speech .

Gold Training-Ref li peng made a speech before the start of the lecture minutes .

wait-3 Pseudo-Ref before the lecture began , li peng gave a speech .

Figure 2.6: Two examples dealing with adverbial clause delay. The adverbial clauses are at
the end of the training references. This introduces anticipation during training and hallucination
during decoding.

Japanese-to-English Table 2.3 shows the results of Ja→En translation task. Japanese-to-

English simultaneous translation is a more difficult task due to long distance reorderings (SOV-

to-SVO); many Japanese sentences are difficult to be translated into English monotonically. Be-

sides that, the test set has only one single reference and does not cover many possible expres-
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sions. Results show that filtered Pseudo-Refs still improve the translation quality (Tab. 2.3), and

reduces anticipation (Fig. 2.4) and hallucination (Tab. 2.3).

wǔjiǎodàlóu méiyǒu xuānbù xı̄n de fāshè rìqí 。
Training

Source Input
五角大楼 没有 宣布 新 的 发射 日期。

pentagon not announce new ’s launch date

Gold Training-Ref no new launch date was announced by the pentagon .

wait-3 Pseudo-Ref the pentagon has not announced a new launch date .

Figure 2.7: The training reference uses passive voice while the source sentence uses active
voice. This kind of problem often appears in sentences with “there be" (e.g. Fig. 2.8). The
generated Pseudo-Ref can avoid anticipation by keeping the active voice as the source sentence.

liǎng guó jı̄ngmào hézuò cúnzài zhe hěn dà de qiánlì 。
Training

Source Input
两 国 经贸 合作 存在 着 很 大 的 潜力 。

two country economic trade corperation exist very big ’s potential .

Gold Training-Ref there is very great potential for economic and trade cooperation between the two countries .

wait-3 Pseudo-Ref the economic and trade cooperation between the two countries has great potential .

Figure 2.8: A similar example in which the pseudo-reference avoids the anticipation brought by
the “there be” phrase in the gold reference.

dàn xiéyì hái xūyào dédào sūdān nèigé de pı̄zhǔn
Training

Source Input
但 协议 还 需要 得到 苏丹 内阁 的 批准 。

but agreement also need get sudan cabinet ’s approval .

Gold Training-Ref but the agreement still needs approval by the sud@@ anese cabinet .

wait-3 Pseudo-Ref but the agreement still needs to be approved by the sud@@ anese cabinet .

Figure 2.9: An example about improving the reference by adding preposition. The generated
Pseudo-Ref avoids anticipation by adding a preposition “to”. Besides changing the structure
of training references, the full-sentence model also has the ability to generate Pseudo-Ref that
avoids anticipation by adding several prepositions while preserving the meaning.

2.5 Related work

In the pre-neural statistical MT era, there exist several efforts using source-side reordering as a

preprocessing step for full-sentence translation [27, 37, 97]. Unlike this work, they rewrite the

source sentences. But in the simultaneous translated scenario, the source input is incrementally

revealed and unpredictable. Zheng et al. [106] propose to improve full sentence translation by
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wǒmen de xı̄nwén méitı̌ nénggòu dédào rénmín de xìnrèn , gēnběn yuányı̄n jiù zài zhèlı̌ .
Training

Source Input
我们 的新闻 媒体 能够 得到 人民 的 信任 , 根本 原因 就 在 这里 。

we ’s news media can get people ’s trust , fundamental reason that on this .

Gold Training-Ref this is the fundamental reason why our news media can be trust by the people .

wait-3 Pseudo-Ref our news media can obtain the trust of the people , the fundamental reason for this .

wait-5 Pseudo-Ref our news media can win the trust of the people, and this is the fundamental reason .

Figure 2.10: Comparisons of Pseudo-Refs using different wait-k policies. These examples also
show the trade-off between latency and fluency of pseudo-references. Using wait-3 policy can
effectively reduce the anticipation, but the translation is not completely correct due to the re-
quirement of delay requirement is too small. Using wait-5 policy can not only avoid anticipation
but also obtain high quality Pseudo-Ref.

generating pseudo-references from multiple gold references, while our work does not require the

existence of multiple gold references and is designed for simultaneous translation.

This work is closely related to the work of He et al. [42], which addresses the same prob-

lem but only in the special case of Ja→En translation, and uses handwritten language-specific

syntactic transformations rules to rewrite the original reference into a more monotonic one. By

comparison, our work is much more general in the following aspects: (a) it is not restricted to

any language pairs; (b) it does not require language-specific grammar rules or syntactic pro-

cessing tools; and (c) it can generate pseudo-references with a specific policy according to the

requirement of latency.

2.6 Summary

In this chapter, we introduce a simple but effective method to generate more monotonic pseudo

references for simultaneous translation. We leverage the full-sentence trained model to generate

translation in test-time wait-k mode. We take generated translation results as our pseudo refer-

ences, which contain fewer reorderings with the source sentence. These pseudo references cause

fewer anticipations in training and can substantially improve simultaneous translation quality by

being added to the training data.
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Chapter 3: Direct Simultaneous Speech-to-Text Translation with

Synchronized Streaming ASR

3.1 Motivation

Simultaneous speech-to-text translation incrementally translates source-language speech into

target-language text, and is widely useful in many cross-lingual communication scenarios such

as international travels and multinational conferences.

Streaming  
ASR

wait-2

unstable results

wait-k  
policy

streaming speech input

extra  
delay

wait-2 wait-k  
policy

streaming speech input

streaming speech input
wait-k  
policy…

Streaming  
ASR

(a)

(b)

(c)

wait-2

our  
method

Ren et al,. 2020
Ma et al,. 2020 (a,b)
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z1 z2 z3 z4 z5

y1 y2 y3 y4 y5

y1 y2 y3 y4

y1 y2 y3 y4

Figure 3.1: Comparison between (a) cascaded pipeline, (b) direct simultaneous ST, and (c) our
ASR-assisted simultaneous ST. In (a), streaming ASR keeps revising some tail words for better
accuracy, but causing extra delays to MT. Method (b) directly translates source speech without
using ASR. Our work (c) uses the intermediate results of the streaming ASR module to guide
the decoding policy of (but not feed as input to) the speech translation module. Extra delays
between ASR and MT are reduced in direct translation systems (b–c).

As we discussed in Chapter 1, the conventional cascaded method has several limitations:
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(a) error propagation, (b) extra latency (see Fig. 3.1), (c) information loss and (d) non-

orthographic language.

To overcome the above issues, some recent efforts [77, 65, 64] attempt to directly translate

the source speech into target text simultaneously by adapting text-based wait-k strategy [62].

However, unlike simultaneous translation whose input is already segmented into words or sub-

words, in speech translation, the key challenge is to figure out the number of valid tokens within

a given source speech segment in order to apply the wait-k policy. Ma et al. [65, 64] simply

assume a fixed number of words within a certain number of speech frames, which does not con-

sider various aspects of speech such as different speech rate, duration, pauses and silences, all of

which are common in realistic speech. Ren et al. [77] design an extra Connectionist Temporal

Classification (CTC)-based speech segmenter to detect the word boundaries in speech. How-

ever, the CTC-based segmenter inherits the same shortcoming of CTC, which only makes local

predictions, thus limiting its segmentation accuracy. On the other hand, to alleviate the error

propagation, Ren et al. [77] employ several different knowledge distillation techniques to learn

the attentions of ASR and MT jointly. These knowledge distillation techniques are complicated

to train and it is an indirect solution for the error propagation problem.

3.2 Methods

We instead present a simple but effective solution (see Fig. 3.2) by employing two separate, but

synchronized, decoders, one for streaming ASR and the other for End-to-End Speech-to-text

Translation (E2E-ST).

Our key idea is to use the intermediate results of streaming ASR to guide the decoding policy

of, but not feed as input to, the E2E-ST decoder. We look at the beam of streaming ASR to decide

the number of tokens within the given source speech segment. Then it is straightforward for the

E2E-ST decoder to apply the wait-k policy and decide whether to commit a target word or to

wait for more speech frames. During training time, we jointly train ASR and E2E-ST tasks

with a shared speech encoder in a multi-task learning (MTL) fashion to further improve the

translation accuracy. We also note that having streaming ASR as an auxiliary output is extremely

useful in real application scenarios where the user often wants to see both the transcript and the

translation. En-to-De and En-to-Es experiments on the MuST-C dataset demonstrate that our

proposed technique achieves substantially better translation quality at similar level of latency.

In text-to-text simultaneous translation, the input stream is already segmented. However,
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Figure 3.2: Decoding for synchronized streaming ASR and E2E-ST. Speech signals are fed
into the encoder chunk by chunk. For each new-coming speech chunk, we look at the current
streaming ASR beam (B) to decide the translation policy. See details in Algorithm 1.

when we deal with speech frames as source inputs, it is not easy to determine the number of

valid tokens within certain speech segments. Therefore, to better guide the translation policy, it

is essential to detect the number of valid tokens accurately within low latency. Different from the

sophisticated design of speech segmenter in Ren et al. [77], we propose a simple but effective

method by using a synchronized streaming ASR and using its beam to determine the number of

words within certain speech segments. Note that we only use streaming ASR for source word

counting, but the translation decoder does not condition on any of ASR’s output.

3.2.1 Streaming ASR-Guided Simultaneous ST

As shown in Fig. 3.2, at inference time, the speech signals are fed into the ST encoder by a series

of fixed-size chunks s[1:i] = [s1, ..., si], where w = |si| can be chosen from 32, 48 and 64 frames
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Algorithm 1 Streaming ASR-guided Simultaneous ST

1: Input: speech chunks s[1:T ]; k; ϕπ(Bj); streaming decoding models: pST
full and p̂ASR

full

2: Initialize: ASR and ST indices: j = t = 0; B = B0

3: for i = 1 ∼ T do ▷ feed speech chunks
4: repeat w/r steps ▷ do ASR beam search w/r steps
5: B ← topb(next(B, j)); j++ ▷ ASR beam search
6: while ϕπ(B)− k ⩾ t do ▷ new tokens?
7: ŷt+1 ← pST

wait-k(yt+1 | s[1:i+1], ŷ≤t;θ
ST
full)

8: yield ŷt+1; t++ ▷ commit translation to user

of spectrogram.

As a result of the CNN encoder, there is down sampling rate r (e.g., we use r = 4), from

spectrogram to encoder hidden states. For example, when we receive a chunk of 32 frames, the

encoder will generate 8 more hidden states. In conventional streaming ASR, the number of steps

of beam search is the same as the number of hidden states.

We denote Bj to be the beam at time step j, which is an ordered list of size of b, and it

expands to the next beam Bj+1 with the same size:

B0 =[⟨<s>, p̂ASR
full (<s> | s0;θ)⟩]

Bj = topb(next(Bj−1, j))

next(B, j) ={⟨z ◦ zj , p · p̂ASR
full (zj | s≤τ(j), z;θ)⟩ |

⟨z, p⟩ ∈ B, zj ∈ V }

where topb(·) returns the top b candidates, and next(B, j) expands the candidates from the

previous step to the next step. Each candidate is a pair ⟨z, p⟩, where z is the current prefix and

p is the accumulated probability from joint score between an external language model, CTC

and ASR probabilities, p̂ASR
full . We denote the number of observable speech chunks at j step as

τ(j) = ⌈j ∗ r/w⌉. And vice versa, for each new speech chunk, ASR beam search will advance

for w/r steps.

Note CTC often commits empty tokens ϵ due to empty speech frames, and the lengths of

different hypotheses within beam of streaming ASR are quite different from each other. To take

every hypothesis into consideration, we design two policies to decide the number of valid tokens.

• Longest Common Prefix (LCP) uses the length of longest shared prefix in the streaming

ASR beam as the number of valid tokens within given speech. This is the most conserva-
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Figure 3.3: An example of streaming ASR beam search with beam size 3. LCP is shaded in red
(ϕLCP(B7)=3); SH is highlighted in bold (ϕSH(B7)=5). We use • to represent empty outputs
in some steps caused by CTC.

tive strategy, which has similar latency to cascaded methods.

• Shortest Hypothesis (SH) uses the length of shortest hypothesis in the current streaming

ASR beam as the number of valid tokens.

More formally, let ϕπ(B) denote the number of valid tokens in the beam B under policy π:

ϕLCP(B) = max{i | ∃z′, s.t.∀⟨z, c⟩∈B, z≤i=z′}
ϕSH(B) = min{|z| | ⟨z, c⟩ ∈ B}

For example in Fig. 3.3, ϕLCP(B7)=3, ϕSH(B7)=5. Also note that ϕLCP(B) ≤ ϕSH(B) for any

beam B, and that both policies are monotonic, i.e. ϕπ(Bj) ≤ ϕπ(Bj+1) for π ∈ {LCP,SH} and

all j.

Note we always feed the entire observable speech segments into ST for translation, and

streaming ASR-generated transcript is not used for translation, so LCP might have similar la-

tency with cascaded methods but the translation accuracy is much better because more informa-

tion on the source side is revealed to the translation decoder.

As shown in Algorithm 1, during simultaneous ST, we monitor the value of ϕπ(Bj) while

speech chunks are gradually fed into system. When we have ϕπ(B) − k ⩾ t where t is the

number of translated tokens, the ST decoder will be triggered to generate one new token as

follows:

ŷt = argmax
yt

pwait-k(yt | s[1:τ(j)], ŷ<t; θ̂
ST
full) (3.1)

XfX 



20

Speech signal TranslationEncoder ST decoder

Transcription ASR decoder

Vanila E2E-ST model

E2E-ST with  
ASR MTL

Figure 3.4: We use full-sentence MTL framework to jointly learn ASR and ST with a shared
encoder.

3.2.2 Joint Training between ST and ASR

Different from existing simultaneous translation solutions from [77, 65, 64], which make adap-

tations over vanilla E2E-ST architecture as shown in gray line of Fig. 3.4, we instead use simple

MTL architecture which performs joint full-sentence training between ST and ASR:

θ̂ST
full, θ̂

ASR
full = argmax

θST
full,θ

ASR
full

∏

(s,y∗,z∗)∈D

pST
full(y

∗ | s;θST
full)

·pASR
full (z

∗ | s;θASR
full )

For ASR training, we use hybrid CTC/Attention framework [94]. Note that we train ASR

and ST MTL with full-sentence fashion for simplicity and training efficiency, and only perform

wait-k decoding policy at inference time. Also, θST
full and θASR

full share the same speech encoder.

3.3 Experiments

3.3.1 Datasets and Models

We conduct experiments on English-to-German (En→De) and English-Spanish (En→Es) trans-

lation on MuST-C [31]. We employ Transformer [88] as the basic architecture and LSTM [43]

for LM. For streaming ASR decoding we use a beam size of 5. Translation decoding is greedy

due to incremental commitment.

Raw audios are processed with Kaldi [74] to extract 80-dimensional log-Mel filterbanks

stacked with 3-dimensional pitch features using a 10ms step size and a 25ms window size. Text

is processed by SentencePiece [54] with a joint vocabulary size of 8K. We take Transformer [88]

as our base architecture, which follows 2 layers of 2D convolution of size 3 with stride size of 2.

The Transformer model has 12 encoder layers and 6 decoder layers. Each layer has 4 attention
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head with a size of 256. Our streaming ASR decoding method follows Moritz et al. [68]. We

employ 10 frames look ahead for all experiments. For LM, we use 2 layers stacked LSTM [43]

with 1024-dimensional hidden states, and set the embedding size as 1024. LM are trained on

English transcript from the corresponding language pair in MuST-C corpus. For the cascaded

model, we train ASR and MT models on Must-C dataset respectively, and they have the same

Transformer architecture of our ST model. Our experiments are run on 8 1080Ti GPUs. And the

we report the case-sensitive detokenized BLEU.

3.3.2 Translation quality against latency

In order to clearly compare with related works, we evaluate the latency with AL defined in Ma

et al. [65] and AP defined in Ren et al. [77]. As shown in Fig. 3.5, for En→De, results are on

the dev set to be consistent with Ma et al. [65]. Compared with baseline models, our method

achieves much better translation quality with similar latency. To validate the effectiveness of our

method, we compare our method with Ren et al. [77] on En→Es translation. Their method does

not evaluate the plausibility of the detected tokens, so it has a more aggressive decoding policy

which results in lower latency. However, our method can still achieve better results with slightly

lower latency. Besides that, our model is trained in full-sentence mode, and only decodes with

wait-k at inference time, which is very efficient to train. Our test-time wait-k could achieve

similar quality with their genuine wait-k (i.e., retrained) models which are very slow to train.

When we compare with their test-time wait-k, our model significantly outperforms theirs.

We further evaluate our method on the test set of En→De and En→Es translation. As shown

in Fig. 3.6, compared with the cascaded model, our model has notable successes in latency and

translation quality. To verify the online usability of our model, we also show computational-

aware latency. Because our chunk window is 480ms, and the latency caused by the computation

is smaller than this window size, which means that we can finish decoding the previous speech

chunk when the next speech chunk needs to be processed, so our model can be effectively used

online.

Fig. 3.7 demonstrates that our method can effectively avoid the error propagation and obtain

better latency compared to the cascaded model.
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Model
En→De En→Es

w=32 w=48 w=64 w=32 w=48 w=64

LCP 17.31 17.54 17.95 21.94 21.92 22.36
− LM 14.60 15.66 15.91 18.54 19.15 19.95

− LM & AD 13.76 14.82 15.26 17.42 18.06 19.32

SH 16.04 15.82 15.87 20.45 20.18 19.84
− LM 13.76 14.01 13.84 17.31 17.21 17.78

− LM & AD 10.44 11.25 11.65 13.61 14.27 14.62

Table 3.1: BLEU score of wait-1 decoding with different chunk sizes and ASR scoring func-
tions. AD denotes ASR Decoder. LM denotes Language Model.

3.3.3 Effect of chunk size and joint decision

Table 4.6 shows that the results are relatively stable with various chunk sizes. It can be flexible

to balance the response frequency and computational ability. We explore the effectiveness of

ASR joint scoring, and observe that the translation quality drops a lot without LM. Without

LM and AD, our token recognition approach is similar to the speech segmentation in Ren et al.

[77], which implies that their model is hard to segment the source speech accurately, leading to

unreliable translation decisions for ST.

3.4 Summary

We proposed a simple but effective ASR-assisted simultaneous E2E-ST framework. The stream-

ing ASR module can accurately detect the number of tokens within the given speech and guide

(but not give direct input to) the wait-k policy for simultaneous translation. Our method improves

ST accuracy with similar latency.
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Figure 3.6: Translation quality against latency. Each curve represents decoding with wait-k
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chunk index 1 2 3 4 5 6 end
Gold transcript can I be honest SIL I don ’t love that question SIL
Gold translation Darf ich ehrlich sein ? Ich mag diese Frage nicht .
Streaming ASR can I be on this I don ’t love that question

simul-MT wait-3 Kann ich da sein ? “ Ich liebe diese Frage nicht .
SH wait-3 Kann ich ehrlich sein ? Ich liebe diese Frage nicht .

LCP wait-3 Kann ich ehrlich sein ? Ich liebe diese Frage nicht .

Figure 3.7: An example from the dev set of En→De translation. In the cascaded approach
(streaming ASR + simul-MT wait-3), the ASR error (“on this” for “honest”) is propagated to
the MT module, causing the wrong translation (“da”). Our methods give accurate translations
(“ehrlich”) with better latency (esp. for the SH policy, the output of “diese Frage” is synchronous
with hearing “that question”). “SIL” denotes silence in speech.
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Chapter 4: Improving Speech Translation with Multimodal Pretraining

Direct speech translation shows it superiority in avoiding error propagation and reducing latency,

but it still suffers from the problem of data scarcity. Although we can use the triple data ({speech

s, transcript x in the source language, translation y in the target language}) for multi-task train-

ing, such data is also scarce, and not all languages have orthography systems.

4.1 Motivation

To improve the translation accuracy of E2E-ST models, researchers either initialize the encoder

of ST with a pretrained ASR encoder [11, 9, 91] to get better representations of the speech signal,

or perform Multi-Task Learning (MTL) with ASR to bring more training and supervision signals

to the shared encoder [3, 2, 84, 60] (see Fig. 3.1). These methods improve the translation quality

by providing more training signals to the encoder to learn better phonetic information and hidden

representation correspondence [85].

However, both above solutions assume the existence of substantial speech transcriptions of

the source language. Unfortunately, this assumption is problematic. On the one hand, for certain

low-resource languages, especially endangered ones [14, 15], the source speech transcriptions

are expensive to collect. Moreover, according to the report from Ethnologue [36]1, there are

more than 3000 languages that have no written form or no standard orthography, making pho-

netic transcription impossible [34]. On the other hand, the amount of speech audios with tran-

scriptions are limited (as they are expensive to collect), and there exist far more audios without

any annotations. It will be much more straightforward and cheaper to leverage these raw audios

to train a robust encoder directly.

In recent years, self-supervised learning (SSL) [72, 30, 86] has attracted much attention in

the NLP community due to its strong performance to many downstream tasks. However, because

of the difference in modality, the feature representation of speech is very different compared to

the discrete distributed feature representation of text data, so these methods cannot be directly

applied to speech.
1https://www.ethnologue.com/

https://www.ethnologue.com/
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Figure 4.1: The quality of end-to-end speech translation models has been limited by the scarcity
of speech translation datasets. However, there is an abundance of datasets for speech, text,
speech recognition, and machine translation data that can be leveraged.

4.2 Related Works

4.2.1 Masked Language Modeling

Radford et al. [75], Howard and Ruder [44] and Devlin et al. [30] investigate language modeling

for pretraining Transformer encoders. Unlike Radford et al. [75] using unidirectional language

models for pretraining, Devlin et al. [30] proposes BERT which enables deep bidirectional rep-

resentation pretraining by a masked language modeling (MLM) objective inspired by the Cloze

task [87] which randomly masks some of the tokens from the input, with an objective to recover

the masked word based only on its context. Their approaches lead to drastic improvements

on several natural language understanding tasks including text classification [89],and question

answering [76].
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Figure 4.2: Previous work for text monomodal representation learning.

4.2.2 Translation Language Modeling

Lample and Conneau [56] extend MLM to cross-lingual pretraining by proposing two meth-

ods: one unsupervised that only relies on monolingual data, and one supervised that leverages

parallel data with a new cross-lingual language model objective which is called Translation Lan-

guage Model (TLM). As shown in Fig. 4.2(b), TLM encodes both source and target sentences

from a parallel data after masking several tokens with [MASK], and then learn to recover the

masked tokens. Experiments show that TLM achieves state-of-the-art results on cross-lingual

classification, unsupervised and supervised machine translation.
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Figure 4.3: MAM (in blue box) can be treated as one extra module besides standard Transformer
encoder-decoder and convolution layers for processing speech signals.

4.3 Masked Acoustic Model

To relieve from the dependency on source language transcript, we present a straightforward

yet effective solution, Masked Acoustic Modeling (MAM), to utilize the speech data in a self-

supervised fashion without using any source language transcript, unlike other speech pretraining

models [25, 92]. Aside from the regular training of E2E-ST (without ASR as MTL or pretrain-

ing), MAM masks certain portions of the speech input randomly and aims to recover the masked

speech signals with their context on the encoder side. MAM not merely provides an alternative

solution to improving E2E-ST, but also is a general technique that can be used as a pretraining

module on arbitrary acoustic signals, e.g., multilingual speech, music, animal sounds.

As shown in Fig. 4.3, MAM can be used as part of training objective for ST task. Formally,

we define a random replacement function over the original speech input x:

x̂ ∼ Maskspan(x, λ), (4.1)

where Mask(·)span is similar with SpanBERT [50], we first sample a serial of span widths and

apply those spans randomly to different positions of the input signal x with a probability of

λ (30% in our experiments). And then we replace those frames with with the same random

initialized vector, ϵ ∈ Rdx . We do not allow overlap in this case. Note that we use the same

vector ϵ to represent all the corrupted frames (see one example in Fig.4.9(b)). Then we obtain a

corrupted input x̂ and its corresponding latent representation ĥ.
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Figure 1: Illustration of our framework which jointly learns contextualized speech representations
and an inventory of discretized speech units.

on labeled data with a Connectionist Temporal Classification (CTC) loss [14, 4] to be used for
downstream speech recognition tasks (§ 3)

Previous work learned a quantization of the data followed by a contextualized representations with a
self-attention model [5, 4], whereas our approach solves both problems end-to-end. Masking parts
of the input with Transformer networks for speech has been explored [4, 26], but prior work relies
either on a two-step pipeline or their model is trained by reconstructing the filter bank input features.
Other related work includes learning representations from auto-encoding the input data [52, 11] or
directly predicting future timesteps [8].

Our results show that jointly learning discrete speech units with contextualized representations
achieves substantially better results than fixed units learned in a prior step [4]. We also demonstrate
the feasibility of ultra-low resource speech recognition: when using only 10 minutes of labeled data,
our approach achieves word error rate (WER) 4.8/8.2 on the clean/other test sets of Librispeech.
We set a new state of the art on TIMIT phoneme recognition as well as the 100 hour clean subset
of Librispeech. Moreover, when we lower the amount of labeled data to just one hour, we still
outperform the previous state of the art self-training method of [42] while using 100 times less
labeled data and the same amount of unlabeled data. When we use all 960 hours of labeled data from
Librispeech, then our model achieves 1.8/3.3 WER (§ 4, § 5).

2 Model

Our model is composed of a multi-layer convolutional feature encoder f : X 7! Z which takes as
input raw audio X and outputs latent speech representations z1, . . . , zT for T time-steps. They are
then fed to a Transformer g : Z 7! C to build representations c1, . . . , cT capturing information from
the entire sequence [9, 5, 4]. The output of the feature encoder is discretized to qt with a quantization
module Z 7! Q to represent the targets (Figure 1) in the self-supervised objective (§ 3.2). Compared
to vq-wav2vec [5], our model builds context representations over continuous speech representations
and self-attention captures dependencies over the entire sequence of latent representations end-to-end.

Feature encoder. The encoder consists of several blocks containing a temporal convolution fol-
lowed by layer normalization [1] and a GELU activation function [21]. The raw waveform input to
the encoder is normalized to zero mean and unit variance. The total stride of the encoder determines
the number of time-steps T which are input to the Transformer (§ 4.2).

Contextualized representations with Transformers. The output of the feature encoder is fed to
a context network which follows the Transformer architecture [55, 9, 33]. Instead of fixed positional
embeddings which encode absolute positional information, we use a convolutional layer similar
to [37, 4, 57] which acts as relative positional embedding. We add the output of the convolution
followed by a GELU to the inputs and then apply layer normalization.

Quantization module. For self-supervised training we discretize the output of the feature encoder
z to a finite set of speech representations via product quantization [25]. This choice led to good

2

Figure 4.4: Wav2Vec 2.0.

For MAM module, we have the following training objective to reconstruct the original speech

signal with the surrounding context information with self-supervised fashion:

ℓRec(Ds) =
∑

sinDs
||s− ϕ(f(ŝ))||22 (4.2)

where ϕ is a reconstruction function which tries to recover the original signal from the hidden

representation f(ŝ) with corrupted inputs. For simplicity, we use regular 2D deconvolution as

ϕ, and mean squared error for measuring the difference between original input and recovered

signal.

The reconstruction module can be used in jointly training with ST to boost the performance

of translation. And it can also be directly used in self-supervised training on arbitrary raw speech.

We will show the experimental results in the following sections.

Different from BERT-style pretraining, MAM tries to recover the missing semantic infor-

mation (e.g., words, subword units) and learns the capabilities to restore the missing speech

characteristics and generate the original speech.
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Figure 4.5: Fused Acoustic and Text-Masked Language Model (FAT-MLM).

1' 1' 

D 
+ 

... ... 1' 1' 

I I 
□-□□ 1' 1' 1' 1' 

I 
1' 1' + 
DD□□ 

+ 1' 
a.llFIIJ, ,l'JI .. I 

+ + 
D 

+ + 1' + + 

1' + + + + + + 
I .. -.... 

+ + 
D D 

♦ 

+ + ♦ ♦ ♦ ♦ + + + + + + 
DD□□ DD□□ DD□□ - ---­□-□□□□-□ 

1' + + + 
I 

+ 1' 

ODD□ 



31

4.4 Fused Acoustic and Text Masked Language Model

Parallel to MAM, Baevski et al. [7] proposes the wav2vec 2.0 pretraining model, which masks

the speech input in the latent space and pretrains the model via a contrastive task defined over

a quantization of the latent representations. It was shown in Fig [? ]. Besides that, some other

works in speech self-supervised learning [58, 24, 45] also successfully improved many speech

related tasks, such as speech recognition.

However all these existing methods can only handle one modality, either text or speech, while

joint acoustic and text representation is desired for many end-to-end spoken language processing

tasks, such as spoken question answering [26] and end-to-end speech-to-text translation [61]. For

example, end-to-end speech translation (ST) is desired due to its advantages over the pipeline

paradigm, such as low latency, alleviation of error propagation, and fewer parameters [95, 12,

49, 83, 108, 21]. However, its translation quality is limited by the scarcity of large-scale parallel

speech translation data while there exists sufficient data for speech recognition and text machine

translation (Fig. 4.1). It would be helpful if source speech and bilingual text can be encoded into

a unified representation via abundant speech recognition and text machine translation data. Liu

et al. [61] show that jointly training a multi-modal ST encoder can largely improve the translation

quality. However, their proposed representation learning method is constrained to the sequence-

to-sequence framework and there is no experiment showing whether their proposed method can

benefit from extra speech recognition and machine translation data.

Inspired by recent cross-lingual language model pretraining work [56] which shows the po-

tential to unify the representations of different languages into one encoder, we propose a Fused

Acoustic and Text Masked Language Model (FAT-MLM). This model jointly learns a unified

representation for both acoustic and text input. In this way, we extend the masked language

model’s input from only acoustic or text data to multimodal corpora containing both acoustic

and text data, such as speech recognition and speech translation for the first time (Fig. 4.1).

We further extend this Fused Acoustic and Text encoder to a sequence-to-sequence frame-

work and present an end-to-end Speech Translation model (FAT-ST). This enables the model to

be trained from both speech and text machine translation data into one single encoder-decoder

model. Meanwhile, this model can also learn from speech recognition data using an extra FAT-

MLM loss. This resolves the limitation of existing single encoder and decoder speech translation

models, which can only learn from scarce parallel speech translation data, but neglects much

larger scale speech recognition and text machine translation data (Fig. 4.1).
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Although existing pretraining models show a strong representation learning ability and sig-

nificantly improve upon many down-streaming tasks, they all can only learn the representation

for either text or speech. However, a unified speech and text multi-modal representation is useful

for many end-to-end spoken language processing tasks.

To address this problem, we propose the Fused Acoustic and Text Masked Language Model

(FAT-MLM), a multimodal pretraining model which encodes acoustic, text into a unified rep-

resentation. The idea is similar with Lample and Conneau [56] who propose to learn a unified

representation of different languages. They first propose a method relying on the shared sub-

word vocabulary to align different languages’ representation. However this is unapplicable in

our case because of the modality difference. Thus we propose a method similar to their second

approach TLM which uses parallel speech recognition data. In the following sections, we first

introduce the monolingual FAT-MLM and then show how to extend it to translation scenario.

4.4.1 Monolingual FAT-MLM

The monolingual FAT-MLM takes speech and transcription tuples as input, denotes as Ds,x =

{(s,x)}, where s = (s1, ..., s|s|) is a sequence of acoustic features si ∈ Rds which can be

the spectrogram or mel-spectrogram of the speech audio, and each si represents the frame-level

speech feature, and x = (x1, ..., x|x|) is the sequence of corresponding transcription.

As shown in Fig. 4.5(b), similar with MAM, we first randomly mask several spans of s by a

random masking function over the input s:

ŝ ∼ Maskspan(s, λ) (4.3)

where Maskspan(·) replaces several random spans of s by probability of λ (30% in our work) with

a random initialized vector ϵs ∈ Rds . Then we encode ŝ with Convolutions and a Transformer

encoder for acoustic embeddings eŝ. Similarly, we randomly mask tokens in x by a random

masking function over the input s,x:

x̂ ∼ Masktoken(x, λ) (4.4)

where Masktoken(·) replaces several tokens of x by probability of λ with a random initialized vec-

tor ϵtoken ∈ Rdx . Then we concatenate acoustic embeddings and source text embeddings [ês; x̂],

and obtain the latent representation f([eŝ; x̂]) using another Transformer encoder, denoted as f .
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Same with Lample and Conneau [56], we reset the positional embeddings for different types of

input.

The training objective of monolingual FAT-MLM includes a speech reconstruction loss ℓs(Ds,x)

and a text reconstruction loss ℓx(Ds,x). For speech input s, we have the following training ob-

jective to reconstruct the original speech signal with the surrounding context information2:

ℓs(Ds,x) =
∑

(s,x)∈Ds,x
||s− g(f([eŝ; x̂])||22 (4.5)

where g is a reconstruction function (we use 2D deconvolution in this work) which tries to

recover the original signal from encoded representation f([eŝ; x̂]). We use mean squared error

for measuring the difference between s and the reconstructed spectrogram. For transcription

input x, following Devlin et al. [30] we use cross entropy loss , denoted as

ℓx(Ds,x) = −∑
(s,x)∈Ds,x

log p(x | [eŝ; x̂]) (4.6)

to reconstruct the masked token. The final loss for monolingual FAT-MLM is:

ℓFAT-MLM(Ds,x) = ℓs(Ds,x) + ℓx(Ds,x) (4.7)

4.4.2 Translation FAT-MLM

To support multimodal crosslingual tasks such as speech translation, We propose Translation

FAT-MLM which extends Monolingual FAT-MLM by using additional target language trans-

lation of the source language transcription as input. Formally Translation FAT-MLM takes

Ds,x,y = {(s,x,y)} as input, where y = [y1, ..., y|y|] denotes the sequence of target language

translation. This kind of triplet input is very common in speech translation corpus.

As shown in Fig. 4.5(d), we incorporate source language embedding esrc and target language

embedding etgt for different languages to show the language difference. Similar to Monolingual

FAT-MLM, Translation FAT-MLM randomly masks the translation input ŷ ∼ Masktoken(y, λ)

and concatenate it with another two embeddings:

hs,x,y = [eŝ + esrc; x̂+ esrc; ŷ + etgt]

2Similar with previous work using masked language model objective, this loss only takes the masked input into
consideration.
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Then we reconstruct masked input from concatenated embeddings hs,x,y via a Transformer en-

coder. The reconstruction loss for different masked input is:

ℓs(Ds,x,y) =
∑

(s,x,y)∈Ds,x,y
||s− g(f(hs,x,y)||22

ℓx(Ds,x,y) = −∑
(s,x,y)∈Ds,x,y

log p(x | hs,x,y)

ℓy(Ds,x,y) = −∑
(s,x,y)∈Ds,x,y

log p(y | hs,x,y)

We sum these loss functions for the final loss function of Translation FAT-MLM:

ℓFAT-MLM(Ds,x,y) = ℓs(Ds,x,y) + ℓx(Ds,x,y) + ℓy(Ds,x,y)

To fully utilize the corpora for different tasks, FAT-MLM can take any combination of

speech, transcription, translation triplets D2{s,x,y} as input.3 Specifically, these combinations

include speech only data {s}, monolingual text data, {x} or {y}, speech and transcription tuple

{(s,x)} for speech recognition, transcription and translation tuple {(x,y)} for machine transla-

tion, speech and translation tuple {(s,y)} for direct speech translation and speech transcription

translation triplets {(s,x,y)}. For different combinations of input, FAT-MLM encodes the full

concatenation of their embeddings and recover the masked portion. The loss function is:

ℓFAT-MLM(D2{s,x,y}) = ℓs(Ds⋆) + ℓx(Dx⋆) + ℓy(Dy⋆) (4.8)

where Ds⋆, Dx⋆, Dy⋆ means any input including speech, source language text and target lan-

guage text respectively. Note that in this framework, we can denote MLM as ℓx(Dx), TLM as

ℓx,y(Dx,y), MAM as ℓs(s).

4.5 Improving Downstream Tasks

In this section, we present how to adapt FAT-MLM to speech translation and enable speech

translation models to learn from speech recognition and text machine translation.
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Figure 4.6: Fused Acoustic and Text-Speech Translation (FAT-ST).

4.5.1 From Text Translation to Speech Translation

Regardless of the particular design of different seq-to-seq models, the text machine translation

encoder always takes the input sequence x = (x1, ..., xn) where each xi ∈ Rdx is a word embed-

ding of dx dimensions, and produces a new sequence of hidden states h = f(x) = (h1, ..., hn).

On the other hand, a decoder predicts the next output word yt given the source sequence (ac-

tually its representation h) and previously generated words, denoted y<t = (y1, ..., yt−1). The

decoder stops when it emits <eos>, and the final hypothesis y = (y1, ..., <eos>) has probability

p(y | x)MT =
∏|y|

t=1 p(yt | x, y<t) (4.9)

At training time, we maximize the conditional probability of each ground-truth target sentence

y⋆ given input x over the whole training data Dx,y, or equivalently minimizing the following

loss:

ℓMT(Dx,y) = −∑
(x,y)∈Dx,y

log p(y | x) (4.10)

Different from text machine translation, speech translation takes speech features s = (s1, ..., s|s|)

as input. Same as the speech input portion of FAT-MLM, these speech features are converted

32{s,x,y} is the power set of {s,x,y} triplets.

□□DD 
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from the speech signals (e.g. spectrogram). Formally, the decoding and training of speech trans-

lation models can be defined as follows:

p(y | s)ST =
∏|y|

t=1 p(yt | s, y<t) (4.11)

ℓST(Ds,y) = −∑
(s,y)∈Ds,y

log p(y | s) (4.12)

4.5.2 FAT-ST

To boost the performance of end-to-end speech translation, we propose to enable speech trans-

lation to encode both acoustic and text features as input by simply adapting the architecture of

monolingual FAT-MLM to a Fused Acoustic and Text Speech Translation model (FAT-ST).

As shown in Fig. 4.6, FAT-ST’s encoder shares identical architecture with monolingual FAT-

MLM. In this way, we can simply encode either acoustic or text features by this encoder and the

FAT-ST model can be optimized by speech translation loss ℓST, machine translation loss ℓMT and

FAT-MLM loss ℓFAT-MLM. For a speech translation dataset Ds,x,y, we decouple the triplets into

three part Ds,y for ℓST, Ds,x for ℓFAT-MLM and Dx,y for ℓMT. The loss function of FAT-ST is:

ℓFAT-ST(Ds,y ∪Ds,x ∪Dx,y) = ℓST(Ds,y) + ℓMT(Dx,y)

+ℓFAT-MLM(Ds,x)

Please note that the speech recognition and machine translation data can either be included in

speech translation data or additional datasets. Meanwhile, in practice, we find that CTC loss [38]

is useful to improve the translation quality so that we include it in all the experiments.

4.5.3 Finetuning FAT-ST from Translation FAT-MLM

Similar to Lample and Conneau [56] we can further improve FAT-ST by finetuning from FAT-

MLM. Since the FAT-ST decoder predicts text only, we initialize it from the acoustic and text

shared Transformer encoder. Although Transformer decoder is unidirectional which is different

from bidirectional FAT-MLM, it can still benefit from FAT-MLM in our experiments, This is also

observed by Lample and Conneau [56] and Devlin et al. [30].
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4.6 Experiments

We conducted speech translation experiments in 3 directions: English to German (En→De),

English to Spanish (En→Es), and English to Dutch (En→Nl) to show the translation quality of

baselines and our proposed methods.

4.6.1 Dataset

(a) Bilingual Dataset

Type Name
En → De En → Es En → Nl

Hours #Sent Hours #Sent Hours #Sent
Ds,x,y Must-C ST 408 226K 504 262K 442 245K
Dx,y Europarl MT - 1.9M - 2.0M - 2.0M

(b) Monolingual Dataset

Type Name
En De Es Nl

Hours #Sent #Sent #Sent #Sent
Ds,x Librispeech ASR 960 281K - - -
Ds Libri-light Speech 3,748 579K - - -
Dx/Dy Europarl / Wiki Text - 2.3M 2.1M 2.0M 2.3M

Table 4.1: Statistics of all datasets used in our experiments. Note that we use Europarl for En,
De, Es monolingual text and Wiki Text for Nl because there is no monolingual Nl portion in
Europarl. #Sent means the number of sentences.

We use 5 corpora with different modalities and languages: speech translation data Ds,x,y

Must-C [31], speech recognition data Ds,x Librispeech [71], machine translation and monolin-

gual text data Dx,y, Dx, Dy Europarl V7 [53], speech only data Ds Libri-Light (medium ver-

sion) [51] and monolingual text data Wiki Text (only for Nl). The statistical results of the dataset

are shown in Table. 4.1. We evaluate our models on Must-C dev and test set. Note that Must-C

is collected based on spontaneous speeches (TED) which are very different from other audio-

book speech dataset used in our experiments. Spontaneous speeches are much harder for speech

translation than audiobook dataset such as Libri-trans [52]. That is one of the reasons why the

translation accuracy of end-to-end speech translation is much worse than cascaded systems on

Must-C than other speech translation corpus.

I I I I 
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4.6.2 Training Detail

Pretrain Method Models En→De En→Es En→Nl Avg. Model Size

No
Pretraining

ST 19.64 23.68 23.01 22.11 31.25M
ST + ASR 21.70 26.83 25.44 24.66 (+2.55) 44.82M
ST + ASR & MT 21.58 26.37 26.17 24.71 (+2.60) 56.81M
ST + MAM 20.78 25.34 24.46 23.53 (+1.42) 33.15M
ST + MAM + ASR 22.41 26.89 26.49 25.26 (+3.15) 46.72M
Liu et al. [61] 22.55 - - - -
Le et al. [57] 23.63 28.12 27.55 26.43 (+4.32) 51.20M
Cascade§ 23.65 28.68 27.91 26.75 (+4.64) 83.79M

FAT-ST (base). 22.70 27.86 27.03 25.86 (+3.75) 39.34M

ASR & MT
ST 21.95 26.83 26.03 24.94 (+2.83) 31.25M
ST + ASR & MT 22.05 26.95 26.15 25.05 (+2.94) 56.81M

MAM FAT-ST (base) 22.29 27.21 26.26 25.25 (+3.14) 39.34M

FAT-MLM
FAT-ST (base) 23.68 28.61 27.84 26.71 (+4.60) 39.34M
FAT-ST (big) 23.64 29.00 27.64 26.76 (+4.65) 58.25M

Table 4.2: BLEU comparisons on Must-C test set between our proposed methods and other
baselines over 3 translation directions using MuST-C (Ds,x,y) only (including pretraining meth-
ods). § are reported in Inaguma et al. [46].

Raw audio files are processed by Kaldi [74] to extract 80-dimensional log-Mel filterbanks

stacked with 3-dimensional pitch features using a window size of 25 ms and step size of 10

ms. We train sentencepiece [54] models with a joint vocabulary size of 8K for text in each

dataset. Training samples that have more than 3000 frames have been ignored for GPU ef-

ficiency. Our basic Transformer-based E2E-ST framework has similar settings with ESPnet-

ST[46]. the speech input is first down-sampled the speech input with 2 layers of 2D convolution

of size 3 with stride size of 2. Then there is a standard 12-layers Transformer with feed-forward

layer of 2048 hidden size to bridge the source and target side. We only use 4 attention heads on

each side of the transformer and each of them has a dimensionality of 256. We also show the

results of FAT-ST big model with 4096 hidden size for feed-forward layers of all transformer

layer. For speech reconstruction module, we simply linearly project the outputs of the Trans-

former encoder to another latent space, then upsample the latent representation with 2-layers

deconvolution to match the size of the original input signal. We choose 30% for the random
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Pretrain Data Pretrain Method Train Data Models En→De En→Es En→Nl Avg.

∅

Ds,x,y

ST 19.64 23.68 23.01 22.11
Cascade§ 23.65 28.68 27.91 26.75 (+4.64)

Ds,x,y ∪Ds,x ∪Dx,y

ASR & MT
ST 22.20 27.16 26.15 25.17 (+3.06)
ST + ASR & MT 22.73 27.99 27.12 25.95 (+3.84)

FAT-MLM
FAT-ST (base) 23.98 28.95 28.08 27.00 (+4.89)
FAT-ST (big) 24.34 29.41 28.86 27.54 (+5.43)

Ds,x,y ∪Ds,x ∪Dx,y

∪Ds ∪Dx ∪Dy
FAT-MLM

FAT-ST (base) 24.02 29.25 28.28 27.18 (+5.07)
FAT-ST (big) 24.58 30.10 29.36 28.01 (+5.90)

Ds,x,y ∪Ds,x ∪Dx,y

∪Ds ∪Dx ∪Dy
FAT-MLM

Ds,x,y

Ds,x ∪Dx,y

FAT-ST (base) 23.91 29.01 28.18 27.03 (+4.92)
FAT-ST (big) 25.47 30.75 30.08 28.77 (+6.66)

∅ Ds,x,y + D′
s,y Pino et al. [73] 25.2 - - -

Table 4.3: BLEU comparisons on Must-C test set between our proposed methods using addi-
tional data. Ds,x: Librispeech, Dx,y: Europarl MT, Ds: libri-light, Dx, Dy: monolingual data
from Europarl or Wiki Text. § are reported in Inaguma et al. [46]. Pino et al. [73] use extra D′

s,y

which includes Librispeech (Ds,x) and 35,217 hour version of Libri-light speech data (almost
10× of our Ds) paired with their corresponding pseudo-translations generated by ASR and MT
models. Their model size is 435.0M.

masking ratio λ across all the experiments including pretraining. During inference, we do not

perform any masking over the speech input. We average the last 5 checkpoints for testing. For

decoding, we use a beam search with beam-size 5 and length penalty 0.6 for German, 0.0 for

Spanish and 0.3 for Dutch.

4.6.3 Translation Quality Comparisons

We showcase the translation accuracy of FAT-ST comparing against to the baselines in Table 4.2

and Table 4.3:

• ST: this is the vanilla speech translation system which does not use transcriptions.

• ST + ASR MTL: ST model with an additional ASR decoder and is trained with ASR

multi-task learning using the transcriptions.

• ST + ASR & MT MTL: ST model with an additional ASR decoder and a MT encoder. It

is trained with ASR and MT multi-task learning.

• ST + MAM: ST trained with additional MAM loss [20] which can be formalized as ℓs(Ds)
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Model # Parameters
MAM 23.69 M
FAT-MLM (base) 25.76 M
FAT-MLM (big) 38.36 M

Table 4.4: Models sizes of different models.

(See Fig. 4.3).

• ST + MAM + ASR MTL: ST trained with MAM loss and ASR multi-task learning.

• Liu et al. [61]: An end-to-end ST system with a multimodal encoder.

• Le et al. [57]: The state-of-the-art end-to-end ST model with an extra ASR decoder.

• Cascade: cascaded model which first transcribes the speech into transcription then passes

the results to a machines translation system.

• ST + ASR & MT pretraining: the encoder of ST is initialized by a pretrained ASR

encoder and decoder initialized by a pretrained MT decoder

• Pino et al. [73]: They propose to leverage additional speech data by generating pseudo-

translations using a cascaded or an end-to-end speech translation model.

4.6.3.1 Model Size of Pretraining Models

Table 4.4 shows the number of parameters of different pretraining models. We can see that our

FAT-MLM base model is a little bit larger than the MAM pretraining model, and the FAT-MLM

big model is much larger than the base model.

4.6.3.2 Training with Ds,x,y

In Table 4.2, with no pretraining, we can see that our proposed FAT-ST base model achieves the

best results except Le et al. [57] and the cascaded model. However, our base model has much

less parameters than both of them. Models with ASR or MT MTL and Liu et al. [61] all use

the transcription data in Must-C dataset but show worse performance, thus our model can use
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transcription data more efficiently. Similar to other open source ST implementation results on

Must-C 4, our implementation of ST + ASR & MT MTL is worse than ST + ASR.

We also compare the performance of models pretrained from different pretraining models.

With pretrained on Must-C, FAT-ST (base) is improved by 0.85 BLEU by being finetuned from

FAT-MLM, while it’s performance drops by finetuning from MAM. Meanwhile, our proposed

methods achieve much better performance compared with ASR & MT pretraining baselines. We

also note that our FAT-ST base model for the first time achieves similar performances compared

with Cascade baselines in these three translation directions of Must-C, while comparing with the

cascaded model, our our base model is much smaller in size and faster in inference (see Fig. 4.7).

4.6.3.3 Pretraining with Additional Data

Table 4.3 shows that FAT-MLM can further improve FAT-ST by simply adding speech recog-

nition data Ds,x (Librispeech) text machine translation data Dx,y (Europarl) and even speech

only data Ds (Libri-light) and monolingual text data Dx ∪ Dy. This shows good representa-

tion learning ability of our proposed FAT-MLM models. We can see that using larger data, the

performance of our big model is increased much faster than the base model. That’s because the

number of parameters of the base model is too limited to learn from such big data.

4.6.3.4 Finetuning with Additional Data

The last part of Table 4.2 show that FAT-ST can be improved by learning from extra speech

recognition and machine translation data. This is promising because speech translation data

is very limited compared with much more abundant speech recognition and machine translation

data. Different from Pino et al. [73] who propose to leverage additional speech data by generating

pseudo-translations, our method doesn’t use any pseudo-labels. Our best model outperforms

their result on En→De by using much 7× smaller model size and almost 10× smaller speech

data.
4ESPnet: https://github.com/espnet/espnet
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Train Data Pretrain Data Models →De →Es →Nl

Ds,x,y

No
pretraining

MT§ 27.63 32.61 32.08

FAT-ST (base) 24.41 30.81 29.18

Ds,x,y
FAT-ST (base) 27.24 31.98 31.27

FAT-ST (big) 26.92 32.29 31.48

Ds,x,y

∪Ds,x ∪Dx,y

FAT-ST (base) 27.43 32.38 32.44

FAT-ST (big) 27.60 32.95 32.37

Ds,x,y ∪Ds,x ∪Dx,y

∪Ds ∪Dx ∪Dy

FAT-ST (base) 27.63 32.75 32.52

FAT-ST (big) 28.13 33.39 32.72

Ds,x,y

∪Ds,x ∪Dx,y

Ds,x,y ∪Ds,x ∪Dx,y

∪Ds ∪Dx ∪Dy

FAT-ST (base) 27.89 32.96 32.43
FAT-ST (big) 28.80 34.28 34.22

Table 4.5: Comparisons of the auxiliary MT task between MT baselines and our proposed
methods. § are reported in Inaguma et al. [46].

Model En→De
FAT-ST with FAT-MLM (base) 23.68

- FAT-MLM decoder init. 23.20
- FAT-MLM encoder init. 22.70
- CTC loss 22.30
- Hierarchical Transformer 22.07
- FAT-MLM loss 20.64
- MT loss 19.64

Table 4.6: Ablation study. Here, hierarchical transformer means the model only shares the 6
layers of the transformer encoder for acoustic feature input and text feature input.

4.6.3.5 Performance of Auxiliary MT Task

Table 4.5 shows the translation quality of auxiliary MT task of FAT-ST. Although our models

trained with Must-C are worse than the MT baseline, by using FAT-MLM trained with more

data, our proposed methods can easily outperform the MT baseline. Note that these models’

parameters are tuned to optimize speech translation task and MT is just an auxiliary task.
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Speech transcription those are their expectations of who you are not yours

Target reference 那 是他们所期望的你的 样子 而不是你自己的期望
that is they expected your appearance not yourself expectation

Cascade-ASR those are there expectations to do you are not yours

Cascade-Translation 那些都是希望 做到的 , 你不是你的 。
those are expect achievement you not yours

FAT-ST 这些是 他们对你的 期望 , 而不是你的 期望。
these are they to your expectation not your expectation

Table 4.7: English-to-Chinese speech translation example. The cascaded system is our imple-
mentation using the TED training data. The errors of cascaded model is highlighted in red.

Models En→Zh

KD [59] 19.55
LUT [32] 20.84
COSTT [33] 21.12
Cascade [32] 21.36
ST* 22.07

FAT-ST 23.73
FAT-MLM + FAT-ST 25.49

Table 4.8: BLEU comparisons on English-to-Chinese speech translation. * is our implementa-
tion. Cascaded model is implemented by Dong et al. [32].

4.6.3.6 Ablation Study

Table 4.6 shows an ablation study of our proposed method. we can see that all the components

contribute to the final performance.

4.6.3.7 English→Chinese Speech Translation

We also compare several models in TED English→Chinese speech translation task [59] with 524

hours speech in training set, 1.5 hours validation set (dev2010) and 2.5 hours test set (tst2015).

We follow our previous experiments to preprocess the data. Same with previous work, we eval-

uate the performance with character-level BLEU. Table 4.8 shows that our proposed model can
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Figure 4.7: Decoding time comparison between Cascaded model (including its ASR) and FAT-
ST.

largely outperform other baselines. Table 4.7 shows one example in this dataset. The translation

of the cascaded model is wrong because of the errors in the its ASR (their→their, of who→ to

do), while our FAT-ST produces the right translation.

4.6.3.8 Decoding Speed

Fig. 4.7 shows the decoding speed comparison between the Cascade model and our proposed

FAT-ST. Our proposed FAT-ST model is almost 2× faster than the Cascade system which needs

to wait for the speech recognition module to finish before starting to translate. The decoding time

of FAT-ST (big) is almost the same as FAT-ST (base) because we only increase the feedforward

network in Transformers.

4.7 Analysis on Pretrained models

To demonstrate the effectiveness of our proposed method, we designed several visualization

analysis.
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Sustainable Proteins He Said

Standard ST ST + ASR-MTL 

(b)
Encoder self-attention 

of vanilla E2E-ST

(a)
Encoder self-attention 

of E2E-ST+ASR

input spectrogram 
w/ transcription

Sustainable Proteins He Said

Standard ST ST + ASR-MTL 

sustainable proteins he said

(c)
Encoder self-attention 

of E2E-ST+MAM

(d)
Encoder self-attention 
of MAM PT w/ English

Figure 4.8: One head of the last layer self-attention comparison between different models. ASR
MTL and MAM help the encoder learns similar self-attentions.

4.7.1 Attention Visualization

Compared with other tasks, e.g., MT or ASR, which also employ Seq2Seq framework for E2E

training, E2E-ST is a more difficult and challenging task in many ways. Firstly, data modali-

ties are different on the source and target sides. For ST, the encoder deals with speech signals

and tries to learn word presentations on the decoder side, while MT has text format on both

sides. Secondly, due to the nature of the high sampling rate of speech signals, speech inputs are

generally multiple (e.g. 4 to 7) times longer than the target sequence, which increases the dif-

ficulties of learning the correspondence between source and target. Thirdly, compared with the
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monotonicity natural of the alignment of ASR, ST usually needs to learn the global reordering

between speech signal and translation, and this raises the difficulties to another level. Especially

in ST, since source and target are in different languages, it is very challenging to obtain the

corresponding phoneme or syllable segments given the training signal from a different language.

Fig. 4.8 tries to explain and analyze the difference between E2E-ST (a) and E2E-ST with

ASR MTL (b). We extract the most top layer from the encoder for comparison. We notice

that E2E-ST (a) tends to get more meaningful self-attention on the encoder with the training

signal from ASR. With help from ASR, the source input spectrogram is chunked into segments

that contain phoneme-level information. During training, the monotonicity natural of the ASR

alignment functions as a forced alignment to group a set of adjacent frames to represent certain

phonemes or syllables from source speech. With a larger scale of segmented spectrograms, the

target side decoder only needs to perform reordering on those segments instead of frames. Our

observations also align with the analysis from Stoian et al. [85].

We also visualize the self-attention on encoder for E2E-ST with MAM (without pretraining)

in (c) of Fig. 4.8. We find that MAM has the similar ability with ASR to segment the source

speech into chunks. As it is shown in (d) of Fig. 4.8, when we only perform pretraining on the

English speech (Libri-Light dataset), without E2E-ST training, self-attentions that are generated

by pretrained MAM are mostly monotonic on source side. Recovering local frames usually needs

the information from surrounding context, especially for the speaker and environment-related

characteristic. But we still observe that self-attention sometimes focuses on longer distance

frames as well. This type of attention is very similar with low to mid layer self-attention of ASR.

When there is a down streaming task (e.g., ASR or ST) is used for fine tuning, the top layer’s

self-attention will get chunked attention which is similar to (a) and (c).

To conclude, we observe that MAM functions very similar to ASR on the encoder side.

Hence, MAM is a reliable framework that can be used as an alternative solution when there is no

transcription available. Especially, with the help of a large scale acoustic dataset, which does not

have transcription annotation, MAM provides the E2E-ST a much better encoder initialization.

4.7.2 Reconstruction Evaluation

To demonstrate what MAM has learned from pretraining step, we first showcase the reconstruc-

tion ability of MAM by visualizing the differences of spectrograms between the original and

recovered inputs. This experiment was conducted on two corpora, Libri-Light and the Free
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Sweetwater Someone Drew That Weapon Out

(a) The original speech spectrogram. Note that though we annotate the transcription
underneath, we do not use transcription information at all during pretraining.

(b) We mask the selected frames (underlined with blue lines) with the same random
initialized vector.

(c) Recovered spectrogram with MAM, pretrained with Libri-Light corpus.

(d) MAM that pretrains with FMA music corpus still have the ability to reconstruct
corrupted speech signal.

Figure 4.9: One speech example to showcase the reconstruction ability of pretrained MAM.
We notice that MAM reconstructs the corrupted audio signal in both pretraining with ordinary
speech and music dataset.

Music Archive (FMA) [29] dataset. We use the “fma-medium” setting 5 which contains about
5https://github.com/mdeff/fma
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(a) The original musical spectrogram that is mixed with different instruments’ sound.

(b) We mask the selected frames (underlined with blue lines) with the same random initialized
vector.

(c) Recovered spectrogram with MAM, pretrained with Libri-Light corpus.

Figure 4.10: One speech example to showcase the reconstruction ability of pretrained MAM.
pretrained MAM with Libri-Light corpus (only human speech data) can not reconstruct the orig-
inal music spectrogram accurately since there are many different musical instruments’ sound
that is unseen in speech data.

25,000 tracks of 30 seconds music within 16 unbalanced genres. The total music length is about

208 hours. We use FMA dataset for reconstruction visualization since FMA only contains music

data and the characteristic of the music signal is very different from pure human speech. Note

that our reconstructed spectrograms are a little blur compared with the original input since there

are some downsampling steps in the E2E-ST baseline framework.

To verify the pretrained results of MAM, we demonstrate the reconstruction ability of MAM

by visualizing the results in Fig. 4.9. We show the original spectrogram of input speech in
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Figure 4.11: One speech self-attention head’s output at the first transformer layer in acoustic
embedding module and its corresponding spectrogram. This is a Translation FAT-MLM model
trained with Must-C En→De dataset.

Fig. 4.9(a). Then we corrupted the original spectrogram by replacing the selected mask frames

with ϵ, which is a random initialized vector, to form x̂ (see Fig. 4.9(b)). In Fig. 4.9(c), we show

that our proposed MAM is able to recover the missing segments of input speech by pretraining

over the Libri-Light dataset. More interestingly, since MAM does not need any transcription

to perform pretraining, we also pretrain MAM with FMA dataset. Surprisingly, as shown in

Fig. 4.9(d), MAM performs very similar reconstruction ability compared with the one that is

pretrained with speech dataset considering the corrupted audio is only about pure speech. This

might be because some music tracks include human singing voices and MAM learns human

speech characteristics from those samples though human singing voice can be quite different

from speech.

In the other way around, we also try to use Libri-Light pretrained MAM to recover the
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corrupted music in Fig. 4.10. MAM that pretrained with human speech data does not show good

reconstruction in Fig. 4.10(c) since there are many different musical instruments’ sounds that are

unseen in speech data.

4.7.3 Cross-Modal Cross-Lingual Alignment

To demonstrate FAT-MLM’s ability to unify the representation of different modality and lan-

guage, we show the self-attention layers of a translation FAT-MLM in Fig. 4.11 and 4.12. The

clear monotonic attention in Fig. 4.11 shows that our proposed method can learn good repre-

sentation for speech [20]. Fig. 4.12(a) shows the self-attention on concatenated input in two

different modalities. that FAT-MLM can learn a good crosslingual alignment between two lan-

guages, such as “and” to “Und” and “you” to “Sie”. Fig. 4.12(b) shows that FAT-MLM is

able to learn a clear monotonic speech-to-text crossmodal attention like many speech recognition

models.

4.8 Summary

In this chapter, we first present a novel acoustic modeling framework Masked Acoustic Model

(MAM). MAM not only can be used as an extra component during training time, but also can be

used as a separate pretraining framework with arbitrary acoustic signal. Then, we further extend

MAM to Fused Acoustic and Text Masked Language Model (FAT-MLM) which learns a unified

representation for text and speech from any data that combines speech and text. We extend this

framework to a sequence-to-sequence speech translation model which enables learning from

speech recognition and text-based machine translation data at the first time. Our results show

significant improvement on three translation directions of the Must-C dataset and outperform the

cascaded baseline.
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(a) This self-attention head shows bilingual alignment between “and’‘ and “Und”, “you’‘ and “Sie”,
“what” and “?” in transcription and translation respectively.

(b) Left side spectrogram shows gold speech-transcription alignment. This self-attention head shows
monotonic crossmodal attention in red box. Meanwhile, the speech-to-translation attention (in blue box)
clearly show the alignment between “you’‘ and “Sie”, “know” and “wissen” in speech and translation
respectively. Note that in this speech, the pronounciation of “and” is very weak.

Figure 4.12: Two self-attention heads’ output at the first layer of acoustic and text shared trans-
formerfrom a Translation FAT-MLM model trained with Must-C En→De dataset, annotated with
corresponding spectrogram, transcription (red) and translation (blue).
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Chapter 5: Cloning the Voice for Translation with Multimodal Pretrained

Model

5.1 Motivation

Synthesizing generated translation text into speech in the target language is beneficial for break-

ing down communication barriers in case the users are not comfortable read it. However, the

current conventional Text-to-Speech (TTS) system, which usually synthesizes speech based on

a given text, does not have the ability to vary based on another given source speech.

In Chapter 4, we introduce a speech representation learning framework FAT. However, it

focuses on speech understanding tasks which take speech as input, but for the inverse direction,

speech synthesis, which synthesis speech as output, the potential of representation learning is

yet to be realized. MAM and FAT-MLM show that reconstructing masked spectrogram with

continuous units can improve speech-to-text translation. The quality of their proposed speech

reconstruction is far from the requirement of speech synthesis tasks. (see Fig. 4.9)

To address this problem, we extend FAT to a new framework, Alignment-Aware Acoustic-

Text Pretraining (A3T), where we introduce cross-modal alignment embeddings which make the

model easier to learn the alignment between the acoustic and phoneme input during multi-modal

pretraining, and significantly improve the quality of the reconstructed acoustic signals. Different

from the segment embeddings used in Segatron and Moreover, we borrow several useful ideas

from recent text-to-speech (TTS) literature, including Conformer [40, 41] and Post-Net [79], to

further improve the quality of our reconstructed spectrograms.

Without any finetuning, the proposed model can be adopted as a speech-editing system,

a task that modifies an existing speech, by reconstructing the desired acoustic signals given

original contextual speech and modified text. Furthermore, with training on corpora in different

languages, the model can be adopted as a cross-lingual multi-speaker TTS system with our

proposed prompt-based decoding method, to clone the voice of the given speech and generate

the speech in another language.
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5.2 Alignment-Aware Acoustic-Text Pretraining

Although existing speech pretraining models show a strong representation learning ability and

significantly improve upon many down-stream tasks in speech understanding, all these efforts

can not support speech synthesis tasks. To address this problem, we propose the Alignment-

Aware Acoustic-Text Pretraining (A3T) which learns to generate high-quality spectrogram given

speech context and text.

5.2.1 A3T

A3T takes speech and transcription tuples as input, denotes as Ds,x = {⟨s,x⟩(n)}|D|
n=1, where

s = (s1, ..., s|s|) is a sequence of acoustic features si ∈ Rds which can be the spectrogram or

mel-spectrogram of the speech audio, and each si represents the frame-level speech feature, and

x = (x1, ..., x|x|) is the sequence of corresponding transcription.

As shown in Fig. 5.1, we first randomly mask several spans of s by a random masking

function over the input s: ŝ ∼ Maskspan(s, λ), where Maskspan(·) replaces several random spans

of s by the probability of λ with the same number of a random initialized masking vector ϵs ∈
Rds . Then we encode ŝ with a acoustic encoder for acoustic embeddings eŝ. In this work, we

use a nonlinear feed-forward layer as the acoustic encoder.

5.2.2 Cross-modal Alignment Embedding

To strengthen the interaction between the speech and text input, we introduce cross-modal align-

ment embedding as one input of encoder, where we sum the ith acoustic embedding esi or text

embedding xi with its positional embedding eposi and alignment embedding ealni all together:

esi + eposi + ealni , where previous work have proved the embedding sum operation is simple

and effective [30]. After that, the phoneme embedding and its acoustic embeddings will share

the same alignment embedding. We use a forced aligner to pre-process the dataset to get the

alignment information, which is shown in Fig. 5.1(a).

5.2.3 Conformer

Given the recent success of Convolution-augmented Transformer (Conformer) on various speech

tasks [40, 41], we adopt Conformer as the backbone of our encoder and decoder. Compared
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Figure 5.1: Alignment-Aware Acoustic-Text Pretraining (A3T).
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with Transformer, Conformer introduces a convolution module and an additional feedforward

module, which is shown in Fig. 5.1(c). In our experiments, we find Conformer is better than

Transformer for acoustic-text pretraining.

5.2.4 Post-Net and Loss Function

We follow Tacotron 2 [79] to use Post-Net to refine the generated spectrogram. The pre-

dicted spectorgram is passed through a 5-layer convolution Post-Net to be refined as shown

in Fig. 5.1(d).

The training objective of multi-modal A3T includes a speech reconstruction loss ℓs(Ds,x)

which takes a spectrogram s and a text sequence x as input. We have the following training

objective to reconstruct the original speech signal with the surrounding context information:1

ℓs(Ds,x) =
∑

⟨s,x⟩∈Ds,x

∥ f([eŝ;x]) + g
(
f([eŝ;x])

)
︸ ︷︷ ︸

refined spectrogram

−s∥1

+ ∥ f([eŝ;x])︸ ︷︷ ︸
reconstructed spectrogram

−s∥1
(5.1)

where g is a Post-Net which tries to recover a better original signal from encoded representation

f([eŝ; x̂]). We use mean absolute error (MAE) for measuring the difference between s and the

reconstructed spectrogram.

Similar with MAM and FAT, we can also apply text-level masking and reconstruction to

boost the learning for cross-modal representation.

We use the cross-entropy loss for text reconstruction:

ℓx(Ds,x) = −
∑

⟨s,x⟩∈Ds,x

logp(x|[eŝ; x]) (5.2)

The final loss is the combination of the speech and text:

ℓ(Ds,x) = ℓs(Ds,x) + ℓx(Ds,x) (5.3)

In this chapter, we use ℓx(Ds,x) for cross lingual setting only.

1Similar with previous work using masked language model objective, this loss only takes the masked input into
consideration.
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(a) Speaker embedding-based method.

(b) Prompt-based decoding.

Figure 5.2: Illustrations for one-shot TTS. The prompt speech and text are wrapped with blue
rectangles, and the target speech and text are wrapped with red.

5.2.5 Prompt-based decoding

Voice cloning is similar with the task of multi-speaker speaker TTS. Existing popular unseen

speaker TTS models [48] are trained with seen speaker embeddings and generalizes to unseen

speaker embeddings during the inference. However, such speaker embeddings are extracted from

an external speaker verification model which is trained with tens of thousands of speakers.

In this work, we find our model can achieve comparable naturalness to models with speaker

embeddings for unseen speaker TTS task; What’s more, our generations are more similar to

the unseen speaker’s reference speech. The illustrations of how to synthesis speech for unseen
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speakers with our A3T model are shown in Fig. 5.2, which is named prompt-based A3T.

The key idea is to concatenate the prompt and the target together into a new utterance input,

where the target speech is consist of n [MASK] and n is predicted by a duration predictor. By

inputting the concatenated speech and text, A3T model will predict the spectrogram of these

masked frames. The role of the reference text and speech in our model is similar to prompts

in language model [18], and hence we call it prompt-based decoding/generation. And we train

our model on a union corpus with different languages. The prompt decoding is able to do cross-

lingual multi-speaker TTS with given texts in two different languages.

5.3 Experiments

In this section, we introduce our experiments for spectrogram reconstruction pretraining task

multi-speaker TTS and cross-lingual multi-speaker TTS. The results are evaluated with the MOS

scores.

5.3.1 Datasets

For monolingual multi-speaker TTS, we conduct our model on LJSpeech [47] and VCTK [98].

And for cross-lingual voice cloning, we use VCTK [98] in English and AISHELL-3 [80] in

Mandarin.

5.3.2 Configuration Detail

Raw audio files are processed with 50 ms frame size and 12.5 ms frame hop with the Hann

window function to extract 80-dimensional log-Mel filterbanks. We use 24K sampling rate for

VCTK and 22K for LJSpeech. The forced alignment and G2P are both carried out by HTK [101]

to convert English words to phones and align phones with audio segments. For speech-editing

systems and prompt-based TTS, we use the publicly available duration predictor from Fast-

Speech 2 implemented in ESPnet [46]. We use Parallel-WaveGAN [99] vocoder for all the

systems.

All A3T models pretrained in our experiments share the same architecture: 4 layers Con-

former encoder, 4 layers Conformer decoder, and 5 layers Conv1d Post-Net, with 2 heads multi-

head attention in 384-dim. The convolution kernel sizes of the encoder and decoder are 7 and 31,
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respectively. The shape of alignment embeddings is (500, 384), where we assume the number

of phones will not exceed 500 for a single input. The shape of input phone embeddings is (73,

384), and we use a ReLU [1] nonlinear layer to transform 80-dim log-Mel filterbanks features to

384-dim.

For monolingual multi-speaker TTS, we train the model on LJSpeech and VCTK, and test it

on VCTK. For cross-lingual multi-speaker TTS, we train our model on VCTK and AISHELL-3,

and test it with 20 sample utterances.

5.3.3 Results

Model Seen Unseen

FastSpeech 2 3.33 ± 0.10 3.78 ± 0.10
+GST [93] 3.42 ± 0.10 3.81 ± 0.11
A3T 3.61 ± 0.09 3.90 ± 0.10
Groundtruth 3.94 ± 0.08 4.09 ± 0.10

Table 5.1: The MOS evaluation (↑) for speaker similarity on multi-speaker TTS on VCTK with
95% confidence intervals. The FastSpeech2 model is equipped with X-vectors [82].

Model Seen Unseen

FastSpeech 2 3.34 ± 0.11 3.85 ± 0.11
+GST [93] 3.27 ± 0.11 3.72 ± 0.11
A3T 3.63 ± 0.10 3.94 ± 0.11
Groundtruth 4.04 ± 0.08 4.05 ± 0.10

Table 5.2: The MOS evaluation (↑) for speech quality on multi-speaker TTS on VCTK with
95% confidence intervals. The FastSpeech2 model is equipped with X-vectors [82].

5.3.3.1 Monolingual Multi-speaker TTS

The quality of the generations and the speaker similarity between the generation and the ref-

erence are evaluated, and the results are shown in Tab. 5.1 and Tab. 5.2. From this table, we

can see that the style embedding GST [93] improves the similarity scores but harms the quality
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scores, while our A3T model is the most favorable system in both the speaker similarity and the

speech quality. Strikingly, we observe that the average score of the Unseen cases is higher than

the Seen, which is counterintuitive. However, when looking into the MOS of the Groundtruth,

the gap is still there and we believe this is due to the difference between these two test case sets.

5.3.3.2 Cross-lingual Multi-speaker TTS

To evaluate the ability of cross-lingual synthesizing, we sampled 20 unseen speakers with 20

utterances. Each audio sample is listened by 10 subjects whose first language is Chinese and

are well-educated in English. The subjects are asked to evaluate the quality and similarity of

synthesized audio. The results are shown in Tab. 5.3 and Tab. 5.4. From these tables, we can

see that even without speaker embedding (X-Vector) [82], Our model outperforms other baseline

systems in terms of speaker similarity and speech quality.

Model Unseen

Tacotron 2 + X-vectors + GST 3.33 ± 0.16
FastSpeech 2 + X-vectors + GST 3.49 ± 0.14
our work 3.58 ± 0.14

Table 5.3: The MOS for speech quality on cross-lingual multi-speaker TTS with 95% confidence
intervals.

Model Unseen

Tacotron 2 + X-vectors + GST 3.30 ± 0.17
FastSpeech 2 + X-vectors + GST 3.45 ± 0.16
our work 3.53 ± 0.11

Table 5.4: The MOS for speaker similarity on cross-lingual multi-speaker TTS with 95% confi-
dence intervals.

5.4 Summary

In this chapter, we propose Alignment-Aware Acoustic-Text Pretraining (A3T) which can recon-

struct masked acoustic signals with high quality. We show that our proposed A3T model has
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the improves multi-speaker speech synthesis in both monolingual and cross-lingual settings with

our proposed prompt-based decoding.
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Chapter 6: Conclusions

In this dissertation, we reviewed several works on simultaneous translation and speech transla-

tion. We proposed several works to conduct direct simultaneous speech translation and improve

the translation quality with multi-modal pretrained model.

First, we introduce a simple but effective method to generate more monotonic pseudo ref-

erences for simultaneous translation, which mitigate the reordering issues in the training data

(Chapter 2). Pseudo references generated from the full-sentence trained model in test-time

wait-k mode have fewer reorderings. And incorporating these pseudo references in generic

wait-k training can reduce anticipations in training and avoid hallucination in testing. We also

proposed two new metrics, anticipation rate and hallucination rate, to evaluate the bitext and

trained model, respectively.

Then we investigate the method for direct simultaneous speech translation (Chapter 3). We

apply a synchronized streaming ASR model to guide the decoding policy of the ST model. The

direct translation model can successfully avoid error propagation problem compared with the

cascade method. And our proposed method is more reliable than the pre-decision method and

the trigger-based method on speech signals.

Next, to address the data scarcity problem for speech translation, we introduce a self-supervised

frameworks Masked Acoustic Model (MAM) (Chapter 4). MAM can take the use of raw speech

data to improve the ability of speech encoder. We also extend MAM to Fused Acoustic and

Text Masked Language Model (FAT-MLM) which can be trained on any data combines speech

and text that is benefit to speech translation, e.g., speech recognition data and machine transla-

tion data. Out experiment shows that this framework can learn a unified representation for text

and speech. The proposed methods can greatly improve the translation quality. We also extend

FAT to Alignment-Aware Acoustic-Text Pretraining (A3T) by including alignment information

(Chapter 5), and make it able to use for TTS downstream tasks, like voice cloning.
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