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Chapter 1: Introduction

The use of light for imaging, manipulation, and stimulation is ubiquitous across

all fields of science and medicine. Among the countless applications, it is employed

to manipulate delicate micro-scale objects, probe the mechanics of the molecular

and cellular environment, deliver light through opaque materials and within living

tissues, and reveal hidden structure at the smallest and largest scales. In many

of these applications, the ability to correct for aberrations in the optical system is

crucial.

When light travels through a medium with spatial or temporal variations in its

refractive index, distortions in the optical wavefront are induced. Left uncorrected,

such distortions can severely degrade the image or focus quality in an optical

system. For most of history, propagating media with severe aberrations were seen

as an insurmountable obstacle to the effective control of light. However, with

the invention of advanced filtering and adaptive optics techniques, it has become

possible to overcome many of these limitations.

The field of Adaptive Optics (AO) grew out of efforts to correct for atmo-

spheric aberrations in astronomical observation and satellite communication [1, 2].

The basic idea is to incorporate a deformable optical element into the imaging

system which can be used to modulate the phase or amplitude pattern of imag-

ing wavefront. Modern AO uses fast, high resolution active optical elements such
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as digital micromirror devices and spatial light modulators (SLMs) that are able

to modulate wavefronts with resolution at the micron scale. This has enabled

enormous improvement and become mainstream in astronomical imaging, but AO

techniques are also rapidly spreading into the fields of biological imaging and mi-

croscopy [3, 1, 4, 5, 6], where resolving smaller and smaller structures has become

an imperative.

More recently, a sub-field of Adaptive Optics called Wavefront Shaping has

emerged to address the correction of aberrations due to strongly scattering materi-

als [7]. When passing through optically thick, disordered materials, the light from

an incident wavefront is completely scrambled (Figure 1.1), creating a random

speckle field in the output plane. The aberrations in such materials are scattering

dominant and, until recently, were viewed as impossible to overcome. However,

motivated by a statistical optics view of the problem [8, 9], it has been shown

by many that focusing light through optically thick materials can be achieved by

shaping the phase or amplitude pattern of the incident wavefront [10, 11, 12, 13].

The scattering effect of a medium can be overcome by modulating a plane wave

in such a state that the transmission of the wave through the medium produces a

desired intensity pattern.

1.1 Aberration Correction Domains

The distinction between the general Adaptive Optics correction domain and the

specific correction domain addressed by Wavefront Shaping has to do with the
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Figure 1.1: Optical Thickness. A collimated wavefront propagating through (left)
an optically thick medium and (right) an optically thin medium.

severity and spatial frequency of the aberrations. In general AO, the media are

generally optically thin with smooth, well ordered aberrations. This is why the

Zernike Polynomial basis (see Section 1.3) is often used as the correction basis to

optimize over. In the Zernike basis, the wavefront is decomposed into a set of two

dimensional polynomials defined over the unit disc [14]. It was formulated to aid in

characterizing common optical aberrations seen in the field of optometry, but it has

since been applied to a wide range of correction problems across astronomy, pho-

tography, and microscopy [1]. Wavefront Shaping, on the other hand, employs the

Segmented basis (see Section 2.2.3) modulation, which decomposes the wavefront

into a set of spatially contiguous regions, usually rectangular in shape. In either

approach, the aim is to find an optimal modulation pattern that, when applied

to the laser wavefront, will correct for the aberrations induced by the distorting

media and improve the image or focus quality.
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Each approach has its own strengths and limitations depending on the optical

domain. The Zernike basis provides a powerful representation of well ordered and

highly symmetric optical aberrations, such as are present in weakly scattering,

non-turbulent media. Because it was derived to include functions that describe

patterns often found in optical tests, the Zernike basis enables efficient representa-

tion of these types of aberrations. However, the Zernike basis loses effectiveness in

highly disordered media. The Segmented basis, alternatively, is able to correct for

aberrations that are highly disordered. This is due to the spatial flexibility afforded

by modulating over each region of the wavefront independently. The Segmented

basis’s weakness is that it requires a large number of modes (segments) to achieve

a high quality fit for smooth, low order aberrations. In Chapter 2, we investigate

the performance of each of these techniques at the overlap of the the two optical

domains. We manufacture a set of optical phantoms with scattering dominated

aberrations over a range of optical depths, from optically thin to optically thick

(see Section 2.2.2). We then test the relative performance of aberration correction

using the Segmented and Zernike bases over these set of phantoms, with the goal

of more clearly delineating the correction domain over which each basis is effective.

1.2 Dynamic Aberrations and Single Shot Correction

Many of the traditional Adaptive Optics algorithms rely on a slow iterative op-

timization process, which has major limitations in systems where the aberrations

are non-static. These types of aberrations are common in many astronomical and
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biological domains due to the need to image through dynamic media such as living

tissue or atmospheric fluctuations. In Chapter 3 we focus on the application of

Deep Learning (DL) algorithms to this problem, which have the potential to greatly

speed up the AO correction process. We build on previous work [15, 16, 17, 18] to

develop a Convolutional Neural Network (CNN) model that can correct aberrations

using a single measurement.

The basic idea is to train a CNN model on a large dataset of aberrated images,

simulated by loading random Zernike Polynomial modulation patterns onto an

optical elements. Since each aberrated image is generated from a known set of

Zernike Polynomial coefficients, the network can be trained to predict the correct

set of coefficients corresponding to each distorted intensity pattern. Once trained,

the CNN model would then be able to take an unseen aberrated focus image as

an input and output a set of Zernike coefficients that would refocus the beam. If

successful, this method could enable millisecond timescale correction of dynamic

aberrating media such as living tissue, turbulent liquids, or chaotic atmospheric

fluctuations.

1.3 Zernike Polynomials

The Zernike basis comprises of a set of polynomials which are orthogonal over

the unit disc [19, 14]. They can describe any sufficiently smooth and continuous

optical aberration over the unit disc, requiring a relative few individual polynomials

to achieve a high quality of correction. Out of the many possible two-dimensional
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polynomial sets, Zernike Polynomials are often chosen for optical system correction

in part because they describe many of the common aberrations in optical systems,

such as Tip, Tilt, Defocus, Coma, Trefoil, Atigmatism, etc. (see Figure 1.2). In

general, the Zernike Polynomials are described by,

Zm
n (ρ, ϕ) = R|m|n (ρ) ·


sin(|m|ϕ) if m < 0,

0 if m = 0,

cos(|m|ϕ) if m > 0

(1.1)

where R|m|n are the radial Zernike polynomials. The indices n and m are the radial

order and azimuthal order, respectively. The radial polynomials are described by

the equation,

R|m|n (ρ) =

n−|m|
2∑

k=0

(−1)k(n− k)!

k!
(
n+|m|

2
− k

)
!
(
n−|m|

2
− k

)
!
ρn−2k (1.2)

for all integers n,m such that n ≥ 0, |m| ≤ n, and (n + m) ∈ even. There are

multiple formulations of the Zernike polynomials with differing indexing schemes.

In this work, we used the Zernike Fringe Polynomials which are ordered by the

spatial frequency n + |m|. In Figure 1.2, the first 15 polynomials are shown over

the unit disc. For the Zernike Fringe Polynomials, one can generate the correct

ordering of the polynomials by using the notation from Wyant and Creath [19],

where the factoring of the radial Zernike polynomials,

R
|m|
2n−|m|(ρ) = Q|m|n (ρ)ρ|m|, (1.3)
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leads to the ordering index j to be given by,

j =

(
1 +

n+ |m|
2

)2

− 2|m|+ |sign(m)|1− sign(m)

2
. (1.4)

The index j denotes the ordering of the polynomials Zm
n → Zj. Equation 1.4

gives the Fringe index, which is equivalent to the Wyant index except that the

Fringe index begins at j = 1, whereas the Wyant index begins at j = 0. This is

as opposed to the completely different ordering given by the standard OSA/ANSI

index,

j =
n(n+ 2) +m

2
, (1.5)

where the polynomials are ordered by the radial order n instead of spatial frequency

(n+ |m|).
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Figure 1.2: The first 15 Zernike Polynomials (ANSI ordering) plotted over the unit
disc. Each disc is labeled with the aberration name (below) along with the symbol
jf
ja
Zmn (above) where n is the radial order, m is the azimuthal order, jf (maroon)

is the Fringe Polynomial index, and ja (teal) is the ANSI/OSA Polynomial index.
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Chapter 2: Scattering Aberration Correction

2.1 Introduction

The problem of aberration correction using phase or amplitude modulating el-

ements such as deformable mirrors or spatial light modulators (SLMs) can be

separated into two main approaches. The first approach is to use the Zernike ba-

sis where a set of Zernike Polynomial functions are used as orthogonal modulation

modes to overcome low order aberrations in weakly scattering media [2, 1, 19]. The

second approach is to use a spatially Segmented basis where the SLM is divided

into a grid of spatially independent modes to overcome aberrations from strongly

scattering media (see Figure 2.1)[13].

The purpose of the experiment is to test how well aberrations due to scattering

particles in biological like materials can be corrected for by finding the optimal

phase shape of a laser wavefront using each of these bases. The Segmented basis

has been applied to wavefront shaping in optically thick scattering media [13], but

it is unclear how ”thick” a material must be before the Segmented basis provides

an advantage over the Zernike polynomial basis used predominantly in AO correc-

tion for optically thin media.
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Figure 2.1: Example of random phase patterns generated by the Zernike basis and
the Segmented basis over the active area of the spatial light modulator.

2.2 Materials and Methods

2.2.1 Phantom Aberration Correction Experiment

We compared the relative effectiveness of using the two bases to correct for opti-

cal aberrations in materials of varying turbidity using the optical setup in Figure

2.2. A 532 nm laser beam is linearly polarized, spatially filtered through a pin-

hole aperture, expanded, and reflected off of a Holoeye LC-R 2500 liquid crystal

spatial light modulator (SLM). The beam is then focused with an objective lens

(NA=0.4, 20x) onto a scattering sample, and a second objective (NA=0.4, 20x)

imaged the focus plane within the sample. An 8-bit CCD camera (DMK21BU04,

Imaging Source) collected the output intensity pattern. The SLM phase response

was linearized using an interferometric method discussed in Section 2.2.5 [20].

For each sample, optimization algorithms were carried out in which the op-

timal phase pattern on the SLM was found for each of the bases. The optimal
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Figure 2.2: Schematic of the aberration correction optical setup. A 532 nm laser
beam is expanded and reflected off of a liquid crystal spatial light modulator, with
the polarization set to achieve phase-mostly modulation. The modulated beam is
focused on a scattering sample, and a CCD camera measures the output intensity
pattern.

phase pattern was determined to be the one that produced the highest intensity

focus. The procedure for each sample went as follows: First, a Zernike polynomial

optimization was executed and repeated 5 times, each time using the previous

best phase mask as the starting point. The 5 optimized Zernike phase masks were

then compared by taking an averaged intensity measurement over 500 frames and

choosing the mask with the best focus. This repetition is necessary due to noise

sensitivity in the Zernike optimization process. Second, genetic optimizations over

the Segmented basis were executed with N=128 and N=512 segments, using the

best Zernike phase mask as the base mask (as opposed to a uniform phase mask).

To compensate for the possibility of sample optical shift between optimization

runs, another Zernike optimization procedure is conducted between the N=512
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and N=128 genetic optimizations, to ensure that the Zernike base mask used is

optimal. Finally, genetic optimizations over the Segmented basis were executed

for N=128 and N=512 segments, using a uniform phase mask as the base mask.

Due to laser intensity drift over the course of the optimization process as well as

the possibility of sample optical shifts (persistence), optimized phase mask output

fields could not be compared contemporaneously across all optimization runs. After

each optimization, 500 focus intensity field images were collected and used to assess

the focus quality with metrics (see section 2.2.4) that are insensitive to fluctuations

in laser intensity.

2.2.2 Phantom Sample Preparation and Characterization

We fabricated a set of 16 scattering samples using standard optical phantom ma-

terials and design [21, 22, 23]. The samples were composed of aluminum oxide

scattering particles (Al2O3 powder, ≤ 10µm avg. part. size, Sigma-Aldrich) em-

bedded in a clear polyester resin (Castin’ Craft Clear Polyester Casting Resin,

Environmental Technology Inc.). The aluminum oxide embedded resin was cast

between two microscope slides, creating an optically smooth outer surface and mit-

igating the need for polishing. The refractive index of the polyester (n=1.54) also

closely matches that of the microscope slides (n=1.52), which leads to a low re-

flection interface between the two media. The set of optical phantoms had varying

aluminum oxide concentration ranging from 0-45 g/L and resin thickness of 1,2,

or 3 mm.
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We characterized the extinction depth of each sample using a transmitted inten-

sity measurement (see Figure 2.3), measuring a range of extinction depths between

0-8.5 after correcting for the reflection from the glass. The goal of the measurement

is to determine the extinction depth τ , using the definition from the Beer-Lambert

Law of the transmittance T of light passing through an attenuating medium,

T =
Φt

Φi

= e−τ , (2.1)

where Φt is the transmitted flux, Φi is the incident flux, and τ is the optical depth

the medium. Rearranging equation 2.1 as

τ = − lnT (2.2)

allows us to determine τ directly from the measurement of the transmittance T for

each sample. Importantly, since this measurement does not distinguish between

absorption by the sample and scattering, we will be referring to τ simply as the

extinction depth.

As an optical substrate, polyester is clear with low intrinsic absorption and

scattering with a refractive index n=1.54 close to that of many tissues. Aluminum

oxide scatterers in polyester have been shown to have a high anisotropy factor,

meaning they exhibit forward dominant scattering [24]. The scattering material

with an average particle size ≤ 10µm was chosen to match the size of common

scattering structures in biological tissues and produce strong interaction with our

532 nm light source. Because the polyester substrate is optically clear, the op-
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Figure 2.3: Optical set up for the phantom transmission test. A 532 nm laser beam
is split into two paths (a) and (b) using a glass microscope slide. The light in path
(a) passes through the sample being tested before being focused by a lens (L)
through an aperture (A) onto a photodiode (PD). Reference path (b) reflects off
of a mirror (M) before also being focused through an aperture onto a second PD.
The voltage on each PD is read by an oscilloscope. To compensate for potential
laser intensity fluctuations, the voltage measurement from the PD on reference
path (b) is used to normalize the measurement from the PD on sample path (a).
Distance d between the sample and the lens is large (≈ 1m) in order to minimize
measurement of scattered light.
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tical extinction of each sample can be assumed to be due almost entirely to the

aluminum oxide particles.

Figure 2.4: Phantom extinction depth τ vs. Scatterer Concentration Thickenss
([mm] · [ g

L
Al2O3]). Extinction depth τ of the phantom samples as a function of

the Scatterer Concentration Thickness calculated from the transmittance measure-
ments. Transmittance measurements for the phantom samples as a function of the
Scatterer Concentration Thickness. Optical phantom distortion of text printed on
paper (12-pt Arial font). Text Imaged with microscope slide glass contacting paper
surface, creating a 1 mm glass separation between text and resin surface.
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2.2.3 Wavefront Optimization

The goal of optimization in this experiment is to search through the space of

all possible wavefront modulation patterns to find an optimal phase pattern for

correcting the imaging wavefront. Given an optical wavefront Ψ with wavelength

λ propagating along the z direction,

Ψ = eikz, (2.3)

where k = 2π
λ

, and z = z(x, y) = z(r, θ), we can decompose z
λ

into a sum of Zernike

Polynomials,

W (r, θ) =
z(r, θ)

λ
=
∑
j

cjZj(r, θ), (2.4)

where cj, Zj, and W are dimensionless with scale λ. Therefore, if we have an ideal

wavefront described by W (r, θ), then we can describe an aberrated wavefront by,

Ψ = ei2π(W+∆W ), (2.5)

where the term ∆W describes the aberration to the ideal wavefront, or wavefront

error (see Figure 2.5). The goal of wavefront optimization, then, is to shape the

incident wave such that the wavefront error is minimized.

The two bases we are comparing have different properties and require different

approaches (algorithms) when it comes to wavefront optimization. To define what

is optimal one needs a metric, or set of metrics, which accurately describe the

relative quality of measurements. It is common to use the maximum intensity of
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(a)

(b)

(c)

(d)

aberrated

Wavefront Error

ideal

Figure 2.5: Wavefront correction and wavefront error. (a) Optically flat (ideal)
plane wave focused by a lens. (b) Optically flat plane wave propagating through
an aberrating medium focused by a lens. Ideal wave shown (red) for comparison.
(c) Wavefront shaped such that after propagating through the aberrating medium,
an ideal wavefront emerges. (d) Wavefront error visualized for (b).
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the focus as a metric. However, to compensate for significant intensity noise in our

light source, we instead used a weighted maximum intensity metric

maxw(IROI) =
N∑
n=1

wnIsn (2.6)

where N is the number of weights, IROI is the set of intensity values of the pixels

in the focus region of interest (ROI), Is is the set of ROI pixel intensity values

sorted from highest intensity to lowest intensity, and In is the nth highest pixel

intensity value in the ROI. In this work, we use a ROI of 50x50 pixels defining the

focus region. The weights

wn =


0.56 if n = 1,

0.04 if 2 ≤ n ≤ 9,

0.01 if 10 ≤ n ≤ 21

(2.7)

were chosen such that higher intensity pixels were given higher weights, the bright-

est pixel intensity contributes the majority of the metric value, and that
∑
nwn = 1.

The effect of this weighting regime is to reduce the noise sensitivity of a strict max-

imum intensity value, while still ranking intensity patterns that are brighter and

more compact. The effect of the weighting, when applied to a focused spot, is

visualized in Figure 2.6.

Other metrics have been proposed such as the S1 spot sharpness metric [25, 26],

S =

∑
n I2

n

(
∑
n In)2

(2.8)
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Figure 2.6: (left) Focus region of interest intensity pattern, IROI . (right) Zoomed
in view of the focus intensity pattern with weights wn (red) shown on pixels as
would be applied by the maxw function. For comparison, maxw(IROI) = 40.9 and
max(IROI) = 50.
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where In are the individual pixel intensity values in the focus ROI. However, S does

not work as an optimization metric for the random search algorithms because it can

be optimized by decreasing the number of pixels with non-zero values, which can

be achieved by decreasing the average intensity of IROI . The genetic algorithm

we used for optimizing the segmented basis is a random search algorithm. For

consistency, we used the maxw as the optimization metric for both the Zernike

and Segmented optimization algorithms.

2.2.3.1 Zernike Optimization Algorithm

In the Zernike basis the wavefront is decomposed into a set of two dimensional

polynomial functions. The number of optimization modes is defined by the number

of polynomials included in the optimization. In this work, we optimize over the

first 49 polynomials (see Figure 2.7), excluding the first three (piston, tip, and

tilt). This gives a total of 46 optimization modes.

The optimization algorithm that we use for the Zernike basis involves taking

maxw intensity measurements over a range of coefficients, creating a least-squares

fit of the measurements using a parabolic function, and choosing the optimal coeffi-

cient as the one corresponding to the maximum of the parabolic fit. The parabolic

function is

f(x) = a− b(x− x0)2, (2.9)

where a, b, and x0 are the fitted parameters, and x is the Zernike coefficient value.

The Zernike optimization algorithm is described in Figure 2.8.
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Figure 2.7: The first 49 Fringe Zernike Polynomials plotted over the unit disc.
Each plot is labeled with Zj, where j is the Fringe Polynomial index.
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For each Zernike Polynomial Zj being optimized:

1. Coarse Search:

(a) For Zernike coefficients ck = 40k, for all integers k ∈ [−20, 20], load the
Zernike mask ckZj onto the SLM and take a measurement maxw(IROI) of
the resulting focus ROI

(b) Create a least squares fit of data (ck,maxw(IROI(ck))) using a parabolic
function f(ck) (Eq. 2.9)

(c) Select the optimal coefficient as the one which maximizes the parabolic fit
xapprox = argmax(f(ck))

2. Fine Search:

(a) For Zernike coefficients ck = xapprox − 8k, for all integers k ∈ [−10, 10], load
the Zernike mask ckZj onto the SLM and take a measurement maxw(IROI)
of the resulting focus ROI

(b) Create a least squares fit of data (ck,maxw(IROI(ck))) using a parabolic
function f(ck) (Eq. 2.9)

(c) Select the optimal coefficient as the one which maximizes the parabolic fit
xbest = argmax(f(ck))

Figure 2.8: The Zernike optimization algorithm.
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The algorithm takes advantage of the roughly parabolic shape of the metric

function maxw(IROI(x)) near the maximum, as is shown in Figure 2.9 for polyno-

mials Z4−Z11. The purpose of the ”coarse search” step is to locate the approximate

optimum xapprox. Once the approximate optimum is located the ”fine search” fits

the metric function near the maximum, where the data are highly parabolic in

shape. Figure 2.10 shows the fine search step applied to polynomials Z4 − Z7 on

an aberrated optical setup.

Figure 2.9: Weighted max intensity of the focus plotted as a function of the Zernike
coefficient value for polynomials Z4 → Z11 over 23 data collection runs on an
aberrated optical setup. For each run, the weighted max intensity was recorded
for each integer [-600,600]. Black line indicates the averaged value across all runs.

2.2.3.2 Segmented Optimization Algorithm

In the Segmented basis the wavefront is decomposed into spatially contiguous re-

gions (segments) of arbitrary shape, and the number of independent optimization
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Figure 2.10: Zernike optimization data for polynomials Z4 → Z7. Weighted max
intensity measurements (blue dots) is shown as a function of coefficient value.
Polynomial fit (black line) is shown along with the optimal coefficient (red dashed
line) chosen from the maximum of the polynomial fit. This is the ”fine search”
part of the optimization process, where a narrow range of coefficients around the
”coarse search” optimum are searched over to acquire a good polynomial fit.
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modes is defined by the number of segments (see Figure 2.11). Unlike the Zernike

basis, which is defined continuously over the unit disc, the Segmented basis is dis-

crete by definition. Therefore, the spatial frequency of any phase pattern described

in the Segmented basis is determined by the size and shape of the individual seg-

ments. Fitting high frequency aberrations requires a high number of modes to be

optimized.

In this work, a rectangular segment shape is used with two different segment

sizes corresponding to N = 128 (32x48 pixels) and N = 512 (64x96 pixels) op-

timization modes. Due to the comparatively high number of optimization modes

employed when using the Segmented basis, random optimization algorithms such

as Partition, Genetic, or Particle Swarm algorithms are generally more efficient

than sequential optimization algorithms [27, 28, 29].

2.2.3.3 Genetic Algorithm

In this work we use a Genetic Algorithm (GA) to optimize the phase masks in

the Segmented basis. The algorithm is based on the process of natural selection

in biological systems, and provides an efficient and robust optimization process

for high dimensional spaces. The algorithm can be broken up into the following

elements:

Generate Initial Population: Generate an initial population of Mp SLM phase

masks (parent masks), each with randomly chosen phase values.
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segments (16x32) pixels (48x32)

(a) (b)

Figure 2.11: Segmented Basis displayed on SLM. (a) Example of a random phase
mask displayed on a spatial light modulator (SLM) with segment size 48x32 pixels
(WxH), giving an SLM segment resolution of 16x32 segments (N=512). The SLM
pixel resolution is 1024x768. (b) View of single segment showing individual pixels.
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Measure and Rank: Load each mask onto the SLM and measure its fitness

metric. In this work we use maxw (Equation 2.6) as the fitness metric. Rank each

parent mask based on its relative fitness metric value, with the highest rank given

to the mask with the highest metric value.

Breed: Select two parent masks for breeding, with a higher probability of selec-

tion given to higher ranked masks. Produce a new “child” mask from the two par-

ents by randomly generating a binary matrix T . The segments of the two parents

will be combined to make the new mask according to Child = P1 ·T +P2 · (1−T ).

Randomly choose a new phase value for (mutate) a proportion, R, of the segments

of the child mask according to R = (Ri − Rf ) · e
−n
λ + Rf , where Ri and Rf are

the initial and final mutation rates, n is the generation number, and λ is the decay

factor.

Select: Keep the top Mp ranked masks from the combined population of child

and parent masks, removing the Mc lowest ranked masks. This becomes the parent

mask population for the next generation.

The full algorithm is described in Figure 2.12. The algorithm randomly searches

the SLM phase pattern space over G generations, maximizing the value of the

fitness function. In this work, we use values Mp = 20, Mc = 15, Ri = 0.05,

Rf = 0.001, and λ = 650. For number of generations G we use values between

1500− 3000, with higher values of G used when optimizing over a higher number

of optimization modes N .
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1. Generate Initial Population of Mp parent masks

2. For each generation in G total generations:

(a) Measure and Rank the parent masks

(b) Breed Mc new child masks

(c) Measure and Rank the child masks

(d) Select the best Mp masks from the combined population of parent and child
masks

3. Select highest ranked mask in the final population as the best mask

Figure 2.12: The full Genetic Algorithm.

2.2.4 Assessing Focus Quality

A separate set of metrics is used to assess the quality of the corrected image

after optimization. Due to the potential for optical shifts within the samples and

intensity drift in the laser light source, a simple comparison of maximum intensity

or spot metric would yield biased results. Instead, we use the Full Width Half

Maximum (FWHM) of the focused spot and the signal to background ratio (SBR)

of the focus ROI. These metrics are more robust to the types of noise present in

our optical system.

To calculate the FWHM of our focused spot, we first fit the focus intensity

profile with a two dimensional elliptical gaussian function with translational and

rotational freedom (see Figure 2.13 a-c),

g(x, y, ...) = I0 + Ie
− ((x−x0) cos θ−(y−y0) sin θ)

2

2σ2x
− ((x−x0) sin θ+(y−y0) cos θ)

2

2σ2y , (2.10)
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where the parameters I0, I, x0, y0, σx, σy, θ are fit using a least squares method.

Once the parameters are fit, we compute an averaged FWHM value,

FWHM =
√

ln 2(σx + σy), (2.11)

where the un-averaged FWHM = 2
√

ln 2σ. Given that the diffraction limited focus

has a gaussian intensity profile and that the signal is strong enough to produce a

good fit, the FWHM metric will be independent of the intensity, I.

(f)(d) (e)

(a) (b) (c)

Figure 2.13: FWHM and SBR metrics. (a) Focus intensity pattern in the region of
interest (ROI). (b) Zoomed in view of focus within ROI. (c) Gaussian fit of focus
plotted over zoomed in view. (d) Pixels in ROI corresponding to the signal Isig.
(e) Pixels in the ROI corresponding to the background Ib. (f) Horizontal (top)
and Vertical (bottom) pixel intensity profile plots along lines intersecting the focus
maximum intensity, along with the corresponding fitted gaussian profiles. Signal
pixels Isig shaded with red background. Background pixels Ib shaded with blue
background.

The signal to background ratio (SBR) takes into account both the amount of

light in the focus and the amount of light remaining unfocused. It is especially



30

useful for characterizing the focus for stronger aberrations, where there remains a

significant amount of unfocused light within the defined ROI after optimization.

In general the SBR is calculated by taking the sum of the light in the ”focused”

region and dividing it by the light in the ”unfocused” region of the ROI. To define

”focused” and ”unfocused”, we use the fitted gaussian g of the focus intensity

profile (Equation 2.10). Given the fitted intensity values of g(x, y) defined over the

ROI region,

SBR =

∑
s Isig∑
b Ib

, (2.12)

where pixels Isig are the ROI pixels where g(x, y) > 0.05I + I0, and pixels Ib are

the ROI pixels where g < 0.001I + I0. In other words, the signal is the ROI

region corresponding to 5% of the gaussian fit maximum intensity and above. The

background is the ROI region corresponding to 0.1% of the gaussian fit maximum

intensity and below. Given Equation 2.10, intensity thresholds 0.05 and 0.001

correspond to a distance from the focus center of 2.45σ and 3.72σ, respectively.

The performance of the SBR metric on unfocused and focused ROIs is shown in

Figure 2.13.

2.2.5 SLM Calibration

We calibrated the SLM using an interferometric method [20] in order to ensure a

linear phase response. The method relies on measuring the interference pattern

of a collimated laser beam reflecting off of the SLM with a pattern consisting of

a binary grating on one half and a uniform piston on the other half as shown in
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Figure 2.14.

SLM

(b)

CCD

L
L

P
532 nm PH

(a)

(c)

Figure 2.14: Optical set up for spatial light modulator (SLM) phase calibration
experiment. (a) A 532 nm laser beam is filtered and expanded before being reflected
off of a liquid crystal SLM. An interference pattern is collected by an 8-bit CCD
camera (DMK21BU04). (b) Example interference pattern. (c) Example of SLM
phase pattern. The left half of the SLM displays a binary grating pattern, and
the right half of the SLM displays a uniform piston pattern. The binary grating
is kept fixed, while the pixel grey value of the piston pattern is incrementally
adjusted. The resulting interference pattern, created by the tilted first diffraction
order reflecting off of the binary grating overlapping with the un-tilted wavefront
reflecting off of the piston region, is measured to determine the corresponding
phase shift.

The first diffraction order from the portion of the wavefront that reflects off

the binary grating forms a tilted plane that interferes with the un-tilted wavefront

reflecting off the piston, creating the interference pattern seen in Figure 2.14 (b)

on the CCD camera (DMK21BU04, Imaging Source). For each piston grey value

g, an interference pattern image was collected, filtered, and averaged along the
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axis parallel to the fringes to produce a fringe profile (Figure 2.15).

The equation describing the interference fringe profile produced by a collimated

beam reflecting off of binary phase grating adjacent to a uniform piston phase

pattern is,

I(x, g) = I0 + ∆I · cos (2πx/P + φ0 + ∆φ(g)) , (2.13)

where I0 is the background intensity, ∆I is the interference fringe amplitude, P is

the fringe period, x is the pixel distance, ∆φ is the phase shift term, and g is the

piston grey value. What we’re really interested is in the interference term,

I(x, g)− I0 = ∆I · cos (2πx/P + ∆φ(g)) . (2.14)

This allows us to directly measure the phase shift ∆φ(g) as a function of the pixel

grey value, g, in the piston half of the SLM.

We use the Discrete Fourier Transform (DFT) to retrieve phase information

using the shift theorem from the fringe intensity profiles. This produces sub-pixel

resolution measurement of spatial shift, and is more accurate than a direct space

domain measurement. The shift theorem states that a ∆x shift in a signal’s space

(or time) domain corresponds to a linear phase shift term, ∆φ, in the frequency

domain.

F [f (x−∆x)] (ωk) = e−iωk∆xF [f (x)] (ωk), (2.15)

where F is the Fourier Transform function, f is a spatial signal function, ωk = 2π k
N

rad
N samples

, N is the number of samples, and k,∆x ∈ {1, 2, 3, ..., N}.
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Figure 2.15: Example of data from calibration experiment. (a) Raw image, (b)
fringe profile, and (c) DFT of fringe profile.
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Since the spatial shift in fringe pattern adds a linear phase term in the frequency

domain, then the phase at a particular frequency ωk will be given by

φk(g) = φ0,k + ∆φk(g), (2.16)

where φ0,k = φk(0) (zero-shift phase) and ∆φk(g) = ωk∆x(g). The frequency ωk

that we want to measure is the base frequency of the fringe profile, easily identified

in the power spectrum. Therefore, given the complex DFT coefficient

xk =
N−1∑
n=0

xn · e−iωkn = ak + ibk, (2.17)

one can extract the phase value as follows,

φk = tan−1

(
Im(xk)

Re(xk)

)
= tan−1

(
bk
ak

)
(2.18)

Inserting this into equation 2.16 and rearranging, we get

∆φk(g) = tan−1

(
bk(g)

ak(g)

)
− φ0,k. (2.19)

Applying this to our fringe profile measurements, we calculated the relative phase

shift ∆φ for each g (see Figure 2.16, top panel). From this data, we generated a

look up table (LUT) which maps each ”uncorrected” pixel value to the ”corrected”

pixel value corresponding to a linear phase shift (see Figure 2.16, bottom panel). To

account for measurement noise, we calculated a least squares fit of the uncorrected
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phase measurements with a polynomial function (degree 8). The fitted polynomial

function was then used to generate the LUT mapping of guncorrected → gcorrected.

Figure 2.16: SLM calibration curves. (top) Measurements of ∆φ(g) for the un-
corrected SLM and the corrected SLM. A polynomial fit of the uncorrected phase
measurements was used to produce the look up table. (bottom) Look up table
created to linearize the phase response of the SLM pixels as a function of the pixel
grey value g.

Once the corrected set of pixel values were found, we collected a second set

of phase measurements using the corrected pixel values, which showed a highly

linear phase response (see Figure 2.16, top panel). The successful calibration can

also be seen in the set of fringe patterns displayed in Figure 2.17, which shows

the phase error (equation 2.20) at values of g corresponding to target phase shift

values φtarget = 0, π
2
, π, 3π

2
, 2π.

φerror(g) = φmeasured(g)− φtarget(g). (2.20)
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Figure 2.17: Experimental fringe patterns for the uncorrected and corrected mea-
surements at various grey values along with the corresponding phase error com-
pared to the φtarget of a perfectly linearized phase response.

2.3 Results and Discussion

After running the aberration correction experiment described in Section 2.2.1 on

the set of phantom samples, we characterized the focus of the 500 optimized focus

intensity field images. The focus quality was assessed using the Full Width Half

Maximum (FWHM) and signal to background ratio (SBR), described in Section

2.2.4. The number of optimization sets for each sample Extinction depth is shown

in Figure 2.18 (c). For each optimization set, there are six different individual

optimizations as described in Table 2.1.

In Figure 2.19, the optimized focus intensity fields and optimized masks are

shown for the N=512 optimizations on a sample with τ = 2.2. The baseline

(no correction) focus pattern is also shown, which helps to visualize the relative
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Optimization Description

Zernike N=512 Zernike basis optimization over Z4−Z49. Also used for the Zernike-
Segmented N=512 optimization.

Zernike N=128 Zernike basis optimization over Z4−Z49. Also used for the Zernike-
Segmented N=128 optimization.

Zernike-Segmented N=512 Zernike basis optimization over Z4 − Z49 followed by a Segmented
basis optimization with N=512 optimization modes.

Zernike-Segmented N=128 Zernike basis optimization over Z4 − Z49 followed by a Segmented
basis optimization with N=128 optimization modes.

Segmented N=512 Segmented basis optimization with N=512 optimization modes.

Segmented N=128 Segmented basis optimization with N=128 optimization modes.

Table 2.1: Table describing the six different optimizations performed for each
sample run.

improvement of the various optimization processes.

The averaged SBR and FWHM metrics as a function of extinction depth are

shown in Figure 2.18 (a-b). In these plots, we see that all optimization types

exhibit a decreasing SBR as τ increases. Counter-intuitively, there appears to be

a slight improvement in the FWHM as τ increased. This effect has been noted

by others [12], showing that wavefront shaping in scattering media can achieve

sub-diffraction focusing. However, the effect is not very clear in our data, and may

simply be due to varying conditions between optimization runs. In both plots,

there appears to be a clear improvement of the Segmented optimizations over

the Zernike-only optimizations. To illustrate this trend more clearly, we plotted

the focus quality metrics for the Segmented and Zernike-Segmented optimizations

normalized by the corresponding Zernike-only optimization. For both metrics, the

Zernike normalized value is calculated by taking the metric value and dividing it

by the metric value of the Zernike-only optimization labeled with the same number

of Segmented modes N.
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Figure 2.18: Results of phantom aberration correction experiment. (a) Average
value of the Full Width Half Maximum metric as a function of the extinction
depth for all optimization runs. (b) Average value of the Signal to Background
Ratio metric as a function of the extinction depth for all optimization runs. (c)
The number of independent optimization sets completed at each extinction depth.
Each optimization set includes the six optimization types from Table 2.1.

Figure 2.19: Optimized phase modulation masks and focus intensity fields. Opti-
mized phase masks are shown for the Zernike, Segmented, and Zernike-Segmented
optimizations (N=512). Focus intensity fields are shown for each of the optimized
masks, alongside the Baseline (no correction) intensity pattern. Sample extinction
depth τ = 2.2.
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The Zernike normalized SBR is shown in Figure 2.20 (a-c), and the Zernike

normalized FWHM is shown in Figure 2.21 (a-c). In plots (a) the averaged values

are shown. In box and whisker plots (b) and (c), the distribution of the data is

shown at each optical depth.

Figure 2.20: Signal to Background Ratio (SBR) of the optimized focus, normalized
by the SBR value of the corresponding Zernike-only optimization, as a function
of the extinction depth for all optimization runs. (a) The normalized SBR value
averaged for each extinction depth. (b-c) Box and whisker plots showing the distri-
bution of the normalized SBR metrics as a function of extinction depth for (b) the
Segmented basis optimizations and (c) the Zernike-Segmented basis optimizations.
note: Boxes display median (middle box line), first quartile and third quartile (top and

bottom box lines), minimum and maximum values (whiskers), and outliers (black cir-

cles). Outliers are defined by a distance greater than 1.5(Q3 −Q1) from the edges of the

box.

The trend of improvement of the Segmented basis optimizations over the Zernike

only optimizations as τ increases can clearly be seen. In both figures there appears
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to be a threshold around τ = 3 where the improvement of the Segmented basis over

the Zernike basis optimizations appears to steadily increase as τ increases. Below

that threshold, the Zernike basis corrects for the aberrations equally well or better.

Note that we would expect the Zernike-Segmented basis to always outperform the

Zernike-only basis, since the Zernike-only optimized mask is the starting point for

the Segmented basis optimization. Also, the Segmented basis optimizations with

N=512 modes appear to be consistently better than those with N=128 optimiza-

tion modes. This too we would expect, given the ability of the basis to fit higher

spatial frequency aberration patterns with a higher number of modes (smaller seg-

ments). Surprisingly, the Segmented basis with N=512 optimization modes was as

or more effective as the Zernike basis across the full range of samples. Previously,

the Segmented basis was considered more effective at optical depths of τ >> 1.

2.4 Conclusion

In this work, we explored the effectiveness of optical aberration correction over a

wide range of optical depths using the Segmented and Zernike Polynomial bases.

In order to do so, we first manufactured a set of 16 optical phantom samples con-

sisting of a clear polyester resin substrate embedded with varying concentrations of

aluminum oxide (Al2O3) scattering particles (see Section 2.2.2). We measured the

scattering dominated optical depth of the sample set using a transmitted intensity

experiment, recording a range τ = 0− 8.5 (see Section 2.2.2).

To test the optimization performance of each of the two optimization bases over
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Figure 2.21: Full Width Half Maximum (FWHM) of the optimized focus, nor-
malized by the FWHM value of the corresponding Zernike-only optimization, as
a function of the extinction depth for all optimization runs. (a) The normal-
ized FWHM value averaged for each extinction depth. (b-c) Box and whisker
plots showing the distribution of the normalized FWHM metrics as a function of
extinction depth for (b) the Segmented basis optimizations and (c) the Zernike-
Segmented basis optimizations. note: Boxes display median (middle box line), first

quartile and third quartile (top and bottom box lines), minimum and maximum values

(whiskers), and outliers (black circles). Outliers are defined by a distance greater than

1.5(Q3 −Q1) from the edges of the box.
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the sample set (see Section 2.2.1), we used an optical setup (Figure 2.2) in which a

collimated laser beam modulated by a liquid crystal spatial light modulator (SLM)

is focused within the sample before being imaged onto a CCD sensor. The goal

of the experiment was to determine the range of optical depths over which each

optimization basis was effective. We completed wavefront optimizations for each of

the samples in the Zernike basis, the Segmented basis, and the Zernike-Segmented

basis (see Section 2.2.3). The results (Section 2.3) showed that the Zernike basis

was more effective at low optical depths (τ < 1.5), and the Segmented bases was

more effective at higher optical depths τ > 3 (see Figure ??). Surprisingly, the

Segmented basis with N=512 optimization modes proved to be as or more effective

as the Zernike basis across the full range of optical depths tested in this work.

Figure 2.22: Range of effectiveness visualized for the Zernike, Zernike-Segmented,
and Segmented correction bases based on our results.

These results help clarify the previously undefined overlap between the opti-

cal domains of these two commonly used optical correction bases. Hopefully, this

work will be useful for those exploring new applications of Adaptive Optics and
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Wavefront Shaping techniques. Future work should expand on the set of Zernike

Polynomials used here. Increasing Zernike optimization to include even higher

spatial frequency polynomials may show a significant improvement over the per-

formance we showed with Z4 −Z49.
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Chapter 3: NN Zernike Aberration Correction

3.1 Introduction

Optical aberrations are present in almost all imaging systems, and at a time when

the fields of scientific and medical imaging are pushing the limits of diffraction

in their attempts to resolve ever smaller structures and ever shorter time scales,

it has become increasingly important to find improved methods for aberration

correction. The field devoted to the correction of such aberrations, referred to

as Adaptive Optics (AO), emerged out of the need for astronomers to correct for

atmospheric aberrations in order to image further into space [1, 30, 31].

Previous work has been done applying Deep Learning (DL) algorithms to bio-

logical AO systems using Zernike polynomials [15, 16, 17, 18]. The approach taken

by these groups has been to train a convolutional neural network (CNN) to take

an aberrated image as input, and output the coefficients for a set of Zernike poly-

nomials that will correct for that aberration when loaded onto an active optical

element. The system being corrected is typically a coherent laser wavefront re-

flecting off of an SLM and focused to a point at the image plane. The input image

to the network is the aberrated focus intensity pattern, typically collected by a

camera sensor. Although some groups have applied this technique to systems that

incorporate a direct wavefront sensor, such as a Shack Hartman Wavefront Sensor
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(SHWS) [32, 33], one of the promises of the deep learning approach is to enable a

simple CCD or CMOS sensor to provide the same functionality while lowering the

cost and technical complexity [18].

The CNN model can be trained using a dataset generated by loading a set of

Zernike polynomials with randomly selected coefficients onto the SLM, creating

an aberrated image with a known correction. This process is repeated thousands

or millions of times to generate a dataset which can be used to train a predic-

tive model. Testing can be done with unseen simulated data or with aberrating

materials such as biological tissue samples or optical phantoms.

3.1.1 Our Approach

In this work, we used an 18-layer ResNet architecture, pretrained on the ImageNet

dataset. We applied transfer learning, re-training the model with 8M examples of

aberrated images (see Section 3.2.2).

We use the Fringe Zernike Polynomial indexing, as shown in Figure 3.1. Some

previous groups have also chosen not to include the tip and tilt Zernike polynomials

in their model prediction, but to correct for them using a separate algorithm. These

polynomials correspond to vertical and horizontal translation of the focus intensity

pattern, and we think their inclusion is important to the ability of the network to

predict the other polynomials accurately. So in this work we will include tip and

tilt aberrations in our predictive model.
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Figure 3.1: The first 35 Fringe Zernike Polynomials plotted over the unit disc.
Each plot is labeled with Zj, where j is the Fringe Polynomial index.
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3.2 Methods

The experimental setup is shown in Figure 3.3. A 532 nm laser beam is linearly

polarized and spatially filtered through a pinhole aperture, expanded, and reflected

off of a Holoeye LC-R 2500 liquid crystal spatial light modulator (SLM). The beam

is then focused onto an 8-bit CCD camera (DMK21BU04, Imaging Source), which

collects the focus intensity pattern. The SLM phase response was linearized using

an interferometric method discussed in Section 2.2.5 [20].

3.2.1 Training Dataset

We used the SLM to generate a dataset of eight million examples of simulated

aberrations by randomly selecting coefficients for Fringe Zernike Polynomials Z2−

Z35 (see Figure 3.1). Each example consists of a set of coefficients and an aberrated

image (see Figure 3.2). The coefficient range was [-0.5,0.5] (λ scale) for each

polynomial. We split the dataset into 90% training set and 10% validation set.

3.2.2 Model and Parameters

The model we chose was an 18 layer ResNet architecture available through the

PyTorch model library, pretrained on the ImageNet dataset. We applied transfer

learning, re-training the model with 8M examples of aberrated images. We de-

creased some of the convolutional layer striding in order to preserve more of the

spatial information before the fully connected (FC) output layer (see Figure 3.5).
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Figure 3.2: Examples of aberrated images from randomly generated Zernike Poly-
nomials in training dataset.
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Figure 3.3: Schematic of the Deep Learning aberration correction optical setup.
A 532 nm laser beam is expanded and reflected off of a liquid crystal spatial light
modulator, with the polarization set to achieve phase-mostly modulation. The
modulated beam is focused on a CCD camera, which measures the focus intensity
pattern. Lens placed halfway between SLM and Camera, one focal length f from
each.

Figure 3.4: (a) Unaberrated and unaberrated focus shown for example from train-
ing dataset. (b) The SLM phase mask is shown along with (c) the Zernike Poly-
nomial coefficients.
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The layer before the FC layer outputs a batch × 512 × 7 × 7 tensor. The goal of

this modification is to increase the spatial information in the lower layers, thus

improving the prediction.

The input was a 112x112 greyscale image, and the output was an 34x1 coeffi-

cient vector corresponding to the Z2−Z35 Zernike polynomials. Before being input

into the model, the image is upsampled to 336x336 using bilinear interpolation.

This is done to better match the image feature scale of the ImageNet dataset. We

used mean squared error (MSE) loss to optimize the network over the training

dataset.

3.2.3 Image Correction Metrics

In order to assess the performance of the model in correcting for aberrations we

need a set of metrics for determining the quality of the focused image. Due to

the rapid timescale of correction and low order nature of the aberrations, we have

chosen to use the S1 spot sharpness metric described in [34, 25], defined as

S =

∑
n I2

n

(
∑
n In)2

. (3.1)

As shown in Figure 3.6, a lower spot metric value generally corresponds to a

more highly aberrated focus 1. For simulated aberrations with known Zernike

1Spot Metric displayed in figures is scaled by 104 for ease of interpretation.
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Figure 3.5: Neural network architecture used in this experiment, based on an 18
layer ResNet model with decreased down-sampling in the early layers. 112x112
image is upsampled to 336x336 using bilinear interpolation before being input in
to neural network.
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coefficients, we can also calculate the RMS wavefront error as,

RMS =

 N∑
j=3

c2
j

1/2

, (3.2)

where cj is the coefficient corresponding to the Zernike polynomial Zj [14]. As

shown in Figure 3.7, a higher RMS value generally corresponds to a more highly

aberrated focus. For both metrics, we have defined the improvement of the cor-

rected focus over the aberrated focus. For the spot metric, the improvement is

defined as

ηs =
Scorrected
Saberrated

, (3.3)

and for the RMS error,

ηRMS =
RMSaberrated
RMScorrected

. (3.4)

For both improvement metrics, a higher value corresponds to a bigger improvement

of the corrected focus over the aberrated focus.

3.3 Results and Discussion

3.3.1 Dataset Size

In optimizing the training of our model on the dataset, we first looked at the effect

of dataset size on prediction performance and convergence of the network. For

this, we trained the network on a subset of the Zernike polynomials Z2 − Z9 on

datasets ranging from 100k-1000k examples. The results are shown in Figure 3.8.
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Figure 3.6: Examples of the spot sharpness metric applied to a range of aberrated
focus images from the training dataset.

Figure 3.7: Examples of the RMS wavefront error calculated for a range of aber-
rated focus images from the training dataset.
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You can see that the RMSE test loss drastically decreases between 240k and 450k

examples. 2

In Figure 3.9 below, you can see that training the model on a dataset smaller

than 800k examples leads to sub-optimal performance on the validation set and

significant over-fitting on the training set. The over-fitting issue is not overcome

until the dataset is nearly 1 million examples.

Figure 3.8: RMSE test loss for trained CNN model. (a) RMSE test loss as a
function of dataset size. (b) RMSE loss for each of the Zernike Polynomials Z2−Z9

using our best model trained on 1 million examples in the dataset size test.

Figure 3.9: RMSE validation loss (top) and training loss (bottom) during training
for datasets with 100k, 450k, and 840k examples.

2All values of RMSE loss have been normalized to the the wavelength λ.
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For the 1M example dataset, we looked at the loss per Zernike polynomial.

In Figure 3.8, it is clear that aberrations caused by the first Zernike polynomial

are the least predictive. This is interesting, because the first two polynomials

correspond to horizontal and vertical translation, so we would not expect to see a

major difference in the ability of the network to predict their effects. Otherwise,

the loss is fairly consistent across the polynomials, which is a good sign for the

training regime.

3.3.2 Experimental Aberration Correction

After training the CNN model on the full dataset of 8M examples, we tested the

ability of the network to correct for aberrations on our experimental setup. To do

so, we loaded the modulation mask represented by a set of aberration coefficients

ca onto the SLM (see Figure 3.3) and collected the resulting aberrated focus image.

We then fed the image into the CNN model, which returns the predicted coefficients

cp for Zernike Polynomials Z2 − Z35 responsible for the aberration. To test the

correction, we then calculate the residual coefficients cr = ca− cp. Finally, we load

the residual coefficients onto the SLM and collect the corrected focus image. A

visualization of the focus intensity patterns for this process is shown in Figure 3.4.

A visualization of the coefficients cr, ca, cp are shown in Figure 3.11.

We repeated this process over a random subset of 4000 aberrations in the

validation dataset, with the results displayed as in Figure 3.12. The corrected

focus images are focused quite well compared to the aberrated focus image for
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Figure 3.10: The focus intensity patterns for the CNN aberration correction exper-
iment where the correction takes place on the experimental setup. Focus intensity
patterns are shown for the unaberrated focus, the aberrated focus, and the cor-
rected focus. The spot sharpness metric and RMS wavefront error are displayed
for each image.
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Figure 3.11: Aberrated, predicted, and residual (aberrated - predicted) coefficients
the CNN aberration correction experiment. The corresponding phase masks are
shown above. The RMS wavefront error is displayed for each set of coefficients.
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all randomly chosen examples shown.3 Histograms of the RMS wavefront error

and the spot metric normalized by the optimal focus spot metric Soptimal for the

aberrated and corrected focus images are also shown. The distribution of the

corrected metrics show clear improvement, with an average RMS improvement

ηRMS = 1.7 and an average spot metric improvement ηs = 2.

Figure 3.12: Experimental correction results of 4000 simulated aberrations from
the validation dataset. (left) Examples of aberrated and corrected focus intensity
field pairs from the CNN correction experiment with improvement metrics for
RMS wavefront error and spot sharpness metric displayed for each corrected focus
image. Coefficients describing aberrations are randomly chosen from the validation
dataset, and therefore were never used to train the neural network. The cross-hairs
indicate the approximate unaberrated center of focus. (right) Histograms of the
RMS wavefront error and the spot metric normalized by the optimal focus spot
metric Soptimal for the aberrated and corrected focus images.

3These results represent preliminary experimental data, and a more rigorous statistical anal-
ysis of the CNN model’s correction performance will be the next step in this work.
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Next, we repeated this process over a set of 8000 new, randomly generated

coefficients, with the results displayed as in Figure 3.13. Notice that even though

the aberration coefficients were not part of the training or validation dataset,

the neural network is able to correct the aberrated image to a high degree for all

randomly chosen examples shown. Histograms of the RMS wavefront error and the

spot metric normalized by the optimal focus spot metric Soptimal for the aberrated

and corrected focus images are also shown. The distribution of the corrected

metrics show clear improvement, with an average RMS improvement ηRMS = 1.8

and an average spot metric improvement ηs = 3.

3.4 Conclusion

In this work, we created a dataset and trained a convolutional neural network

CNN regression model to predict the Zernike correction to aberrations in an optical

system. The model that we used was based on an 18 layer ResNet architecture. We

trained the model on a dataset of eight million examples of simulated aberrations

using Zernike Polynomials Z2 − Z35. After the model was trained, we tested it

experimentally by using the SLM to create new aberrations, correcting them using

predicted coefficients from the trained model, and comparing the aberrated and

corrected focus intensity patterns that result. We presented preliminary results

from this experiment, which show that the trained CNN model is able to achieve

a high degree of correction on new, randomly generated optical aberrations.

To take this work further, we plan to complete a more rigorous statistical
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Figure 3.13: Experimental correction results of 8000 new, randomly generated
aberrations. (left) Examples of aberrated and corrected focus intensity field pairs
from the CNN correction experiment with improvement metrics for RMS wavefront
error and spot sharpness metric displayed for each corrected focus image. Coef-
ficients describing aberrations were not part the training or validation dataset.
The cross-hairs indicate the approximate unaberrated center of focus. (right) His-
tograms of the RMS wavefront error and the spot metric normalized by the optimal
focus spot metric Soptimal for the aberrated and corrected focus images.
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analysis of the CNN model’s correction performance on simulated aberrations.

We also have begun exploratory tests of our model correcting for real sample

aberrations. We are most interested in the performance of our model on dynamic

media such as living tissue. We intend to test the ability of the model to maintain

a focus through moving materials and turbulent liquids. Because the correction

takes place on the scale of milliseconds, these results represent an indication of

the exciting potential of neural networks to advance the field of optical aberration

correction into previously unreachable aberration domains.
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