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In high volume automated discrete item batch production systems, the batches or lots 

are typically fixed quantity (i.e., size), with setups incurred between the different 

production lots. Processing times for the fixed-size lots are relatively constant when the 

workstation is operating however, random workstation disruptions cause variability in 

the lot completion time making the operations of interrelated activities such as material 

handling and setup crews less efficient. In this dissertation, the long-run average cost 

performance of fixed-size lot batch production systems is compared to batch production 

systems where the lot size is defined as a fixed time. In the “fixed-time” lot batch 

production system, there is ideally no variability in the time length to produce a lot, but 

the production output in this fixed time length may vary. In this comparison, the batch 

production systems considered are workstations operating under a continuous review 

(Q, r) inventory system. The comparison was conducted assuming unmet demands are 



 

 

lost (lost-sales policy), and also when unmet demand can be backordered (backordering 

policy). 

One objective of this research was to identify the factors having the largest 

effect on the long-run average cost differences between fixed-size lot and fixed-time 

lot systems. Because of the system complexity due to the inclusion of multiple real-

world factors, a designed experiment is employed to compare the fixed-sized and fixed-

time lot systems using discrete event simulation. For every treatment combination 

tested the batch sizes and reorder point levels (quantities or time) were optimized, so 

that differences between systems cannot be attributed to poor batch size and re-order 

point selection. The experimental results show that for the lost sales policy the factors: 

interarrival time between demands, and the coefficient of variation of the demand 

probability distribution have the largest impact on the long-run average cost difference 

between a fixed-size lot and fixed-time lot batch production systems. For the 

backordering policy the factors: workstation stand-alone availability, failure and repair 

frequency, and capacity utilization have the largest impacts 

Another research objective was to identify functional relationships between the 

input factors and the output. A feedforward backpropagation neural network with the 

connection weight approach was applied to the experimental results database to search 

for relationships between various input factors and the categorical outcomes 1) a fixed-

size lot production system has significantly lower cost performance than a fixed-time 

lot system, 2) a fixed-time lot production system has significantly lower cost 

performance than a fixed-size lot system, and 3) the cost performance of two systems 



 

 

is not significantly different. The results show that for the lost sales policy the factors: 

demand coefficient of variation, and stand-alone availability, have the largest relative 

importance in predicting the outcomes. For the backordering policy the factors: demand 

coefficient of variation, stand-alone availability, and inventory holding cost have the 

largest relative importance in predicting the outcomes. In general, at higher stand-alone 

availability levels and lower demand coefficient of variation the production time to 

produce a fixed-size lot is low enough that the system can operate in a “just-in-time” 

manner and a fixed-size lot production system will result in lower costs than a fixed-

time lot system. However, as the stand-alone availability reduces and demand 

coefficient of variation increases, the fixed-time lot system results in significantly 

lower costs than the fixed-size lot system. The insights developed from this research 

can be utilized by the decision makers to select which batch production system should 

be utilized such that the long-run average cost can be minimized. 
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1 Introduction 

An automated workstation can represent a single machine, or a set of machines (e.g., sheet 

metal stamping line) that transforms incoming units of material into a product. The performance 

of the workstation is affected by random disruptions such as machine breakdown, maintenance 

issues, and tool wear. The performance measures of the workstation can include – time to produce 

a job, variability in the time to produce a job, the number of jobs produced over a fixed time period, 

and variability in the number of jobs produced. These performance measures affect the ability to 

meet a customer’s service level requirements. The nonfulfillment of a service level requirement 

may lead to a penalty from the customer, or the customer switching their supplier. Current 

performance level requirements of manufacturing enterprises reflected in phrases such as “world-

class manufacturing”, “lean and sustainable manufacturing”, and “Just-In-Time production” 

requires manufacturers to adopt a production control system to meet the customer’s desired service 

level in the most cost efficient manner. 

The decision on the adoption of different production control systems can depend on the 

time horizon under consideration, and how long the effects of the decision will last. Strategic 

decisions focus on long term decisions that involve some degree of uncertainty. For example, what 

will the customer demand trajectory look like in the next five years or how many new products 

can be launched in the next few years? Tactical decisions are medium term focusing on allocating 

resources to meet the strategic goals. Operational decisions are short term decision that focus on 

effective utilization of resources to meet short term goals such as daily/weekly fulfilment of 

customer orders. This research provides insights to decision makers to assist them in adopting a 
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production control system such that the customer’s desired service level is met in the most cost 

efficient manner. 

In many high volume automated discrete item batch production systems, such as automated 

sheet metal stamping facilities, the production of products occur in a fixed-size lots, with 

workstation setup required after completion of a lot. A fixed-sized lot is defined by the number of 

discrete units of a particular product to produce. Due to their dynamic and stochastic nature, how 

the workstation is managed has a significant impact on long-run cost performance. For example, 

if workstation disruptions occur at random time points, and last for a random time lengths then it 

is impossible to predict the production completion time of a fixed-size lot. The inability to predict 

the lot completion time also affects the planning and management of several interrelated activities 

such as production planning and scheduling, setup crew scheduling, and scheduling the delivery 

of final product to the customer. 

In this research a “fixed-time lot” batch production system is introduced. In this production 

system the lot is defined by a fixed time T rather than a fixed number of items. The motivation for 

fixed-time lot production control is that the planning and management of interrelated activities will 

be less affected by workstation disruptions, and should lead to more efficient overall operations. 

With fixed-time lot size production control system, the workstation may still experience random 

failures and random repairs. However, once the fixed time length (T) has elapsed the workstation 

stops producing, and the jobs produced up to time T are treated as the production quantity for the 

lot time T. With this production control system, there is ideally no variability in the time length to 

produce a lot, the lot completion time is always known in advance.  However, there is a variability 

in the uptime i.e., it is impossible to predict the exact uptime in each lot of fixed time length. This 
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is exactly the opposite of fixed-lot production where the batch quantity is fixed, but the total time 

to produce the lot varies.  

In the research literature there are a large number of studies conducted to examine the 

performance of fixed-size lot production systems operating under continuous review inventory 

policy. The primary focus of prior research has been optimizing the lot size and reorder level such 

that the total cost of the system is minimized. With respect to fixed-time lot production system, 

Kletter (1996) is the only prior research discovered that compared fixed-size lot and fixed-time lot 

batch production system. Kletter (1996) derived the density function of production output for a 

fixed-time lot. They also derived the density function, expected time length, and variance of time 

to produce a fixed-size lot. These results were used to examine and compare the performance of 

several production and inventory policies. However, they did not include the production system 

costs as a measure to compare the two production systems, and the results they presented may not 

be generalizable and may be applicable only to the specific manufacturing system studied. 

Therefore, a comparison of the two batch production systems in a more general manner is 

conducted with a goal of that the results can be used by production managers and decision makers. 

For the unreliable production environments considered, tactical or operational decisions 

need to be made on the adoption of a production system such that the customer’s desired service 

level is met in the most cost efficient manner. The goal of this dissertation is to investigate and 

understand the contribution of several input factors that affect the cost performance of a production 

system, and provide deeper understanding and useful insights that can be used by the decision 

makers to decide when either of the batch production systems should be utilized. 
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1.1 Research Approach 

In this study the performance of fixed-size lot and fixed-time lot batch production systems 

is compared such that from a customer’s perspective both production control systems perform 

identically (Figure 1.1). In Chapter 2, an automated unreliable workstation is considered, and 

discrete event simulation is used to compare fixed-lot and fixed-time production control systems 

through a factorial experiment. The system parameters that define the factorial space included 1) 

stand-alone availability, 2) failure and repair frequency, 3) service level, 4) capacity utilization, 

5) demand interarrival time, 6) coefficient of variation of demand, 7) ordering cost, 8) inventory 

holding cost, and 9) backordering cost. System parameters and system related quantities such as 

demand size, demand variability, production lot size, reorder level, on-hand inventory, are 

converted into the equivalent time units of production expressed in processing minutes or 

processing hours. The inventory holding cost and backordering cost on per job basis were scaled 

such that they are charged on per processing minute basis. This conversion expands the inference 

space of the results obtained since after conversions of system parameters to processing minutes, 

many more production systems fall within the factorial space examined. 

The workstation examined adopts a continuous review (Q, r) inventory system operating 

under either a lost sales, or backordering policy. Simulation was used to estimate production 

system performance, and an optimization search procedure was used to optimize the lot sizes and 

reorder levels of the fixed-size lot and fixed-time lot batch production systems each time any 

system parameter was changed. The optimization search procedure used was a hybrid of greedy 

search and random walk algorithms. This hybrid algorithm is designed to reduce the chance that a 

solution found is a local minima.  
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The Python programming language and discrete event simulation library SimPy is used to 

develop the simulation model. The expectation and variance formulas of the time length to produce 

a fixed-size lot, and the uptime in a fixed-time lot provided by Kim and Alden (1997), Keltter 

(1996) were utilized to validate simulation models. After conducting 1,536 different experiments 

with both fixed-lot and fixed time systems, ANOVA was used to identify the factors and 

interactions that have the largest effect on the long run average cost difference between the two 

batch production control systems. 

In Chapter 3, a feedforward backpropagation neural network is utilized to discover 

functional relationship between inputs factors and predefined categorical outputs by analyzing the 

experimental database and results obtained from Chapter 2. Neural networks process multiple 

inputs in parallel and capture the causal relationships between input factors and outputs. The 

Python programming language is used to develop the feedforward backpropagation neural network 

with connection weight approach. This approach is found to be one of the most effective 

approaches in determining the relative importance of the input factors to predict the outcomes 

(Olden et al., 2004).  
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Figure 1.1 Overview of Research Approach 

 

1.2 Research Contribution 

This research compares the performance of fixed-size lot and fixed-time lot production 

control systems and provide general insights for lost sales and backordering policies by 1) 

analyzing the long run average cost difference of the two production systems and identifying the 

input factors and their interactions that are significant, and 2) establishing strong predictive 

functional relationships between the input factors and outputs. 

The experimental results show that for a lost sales policy the interarrival time between 

demands, and the coefficient of variation of the demand probability distribution have the largest 

impact on the long-run average cost difference between fixed-size lot and fixed-time lot batch 
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production control systems. For a given demand interarrival length, a higher demand variability, 

and lower workstation stand-alone availability creates more variable production, which favors a 

fixed-time lot batch production system. For the batch production systems operating under a 

backordering policy the experimental results show that the workstation stand-alone availability, 

failure and repair frequency, and capacity utilization have the largest impact on the long-run 

average cost difference between fixed-size lot and fixed-time lot batch production systems. If the 

workstation operates under low capacity utilization (workstation is underutilized) and a high 

stand-alone availability the fixed lot batch production system had lower cost. However, the fixed-

time lot batch production system was preferred when the workstation operates with high capacity 

utilization and lower stand-alone availability. 

The feedforward backpropagation neural network with connection weight approach results 

show that for a lost sales policy the coefficient of variation of the demand probability distribution 

and the stand-alone availability of the workstation have the highest relative importance in 

predicting the three categorical outcomes, 1) a fixed-size lot system has lower average cost than a 

fixed-time lot system, 2) a fixed-time lot system has lower average cost than a fixed-size lot 

system, and 3) the cost performance of the two systems is not different. For the batch production 

systems operating under the backordering policy the feedforward backpropagation neural network 

results show that the demand coefficient of variation, stand-alone availability and inventory 

holding cost have the highest relative importance in predicting the outcomes. 

In a real production environment, the general insights from lost sales and backordering 

policy results, and the short and medium term changes in demand variability, workstation stand-

alone availability can be utilized for making tactical or operational decisions. For example, the 

higher demand CV drives larger optimized Q values for both fixed-size lot and fixed-time lot 
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systems. However, higher Q values in a fixed lot system combined with lower workstation stand-

alone availability leads to higher variability in the time to complete the fixed lot. It was discovered 

that this fact causes many lot completion times to be late or to occur after a demand arrival. To 

protect against the variability and meet the customer’s desired service level, the fixed lot system 

has to maintain a relatively higher on-hand inventory level, which makes the average inventory 

holding cost significantly higher for fixed-size lot system than fixed-time lot system. At a high 

stand-alone availability such as 98%, the variability in the time length to produce a fixed lot is low 

enough such that the probability of completing a fixed-size lot before the next demand arrival is 

close to 1. However, in the fixed-time lot production system the variability in the uptime in a fixed 

time length drives higher reorder levels leading to a higher average inventory than fixed-size lot 

system.  

The decision makers can utilize the insights and decide the most appropriate production 

system to meet the customer’s desired service level with minimum long-run average cost. For 

example, the fixed-size lot batch production system should be preferred if the workstation operates 

under lost sales policy, receives weekly demand of 4500 processing minutes with standard 

deviation of 225 processing minutes, 95% workstation stand-alone availability and it expects to 

meet 95% customer’s demand. 

 

1.3 Dissertation Organization 

This dissertation is divided into two chapters. In Chapter 2 the performance of fixed-size 

lot and fixed-time lot production systems is compared by analyzing the factors that affect the long-

run average cost difference of the two production systems, and Chapter 3 identifies the 
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relationships between various input factors and output by implementing feedforward 

backpropagation neural networks by utilizing the experimental database obtained from Chapter 2. 

The common theme that connects the two chapters is the identification of inputs factors that affect 

the performance of the two batch production systems. 

Chapter 2 begins by introducing the fixed-size lot and fixed-time lot batch production 

systems. The literature review of fixed-sized lot and fixed-time lot systems is presented in Section 

2.2. The workstation, its operating assumptions, and various production-inventory cycles observed 

in the two batch production systems are described in Section 2.3. The simulation optimization 

model is presented in Section 2.4. The experimental design and results are discussed in Section 

2.5. The result discussion, and conclusions with future work are presented in Section 2.6 and 2.7 

respectively. 

Chapter 3 begins by briefly introducing the fixed-size lot and fixed-time lot batch 

production systems. A brief literature review of fixed-sized lot and fixed-time lot systems is 

presented in Section 3.2. The workstation, and the operating assumptions are described in Section 

3.3. The data utilized in this chapter is presented in Section 3.4. The feedforward backpropagation 

neural network and the connection weight approach is presented in Section 3.5. The results from 

the neural network are presented in section 3.6. Finally the conclusions and future work are 

presented in Section 3.7.  
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2 Performance Comparison of Fixed-Sized Lot and Fixed-Time Lot 

Batch Production Systems 
 

Abstract: 

In high volume automated discrete batch production systems, the batches or lots are typically fixed 

quantity (i.e., size), with costs/setup incurred between the different production lots. Processing 

times for the fixed-size lots are relatively constant when the workstation is operating however, 

random workstation disruptions cause variability in the lot completion time making the operations 

of interrelated activities such as material handling and setup crews less efficient. In this research, 

the long-run average cost performance of fixed-size lot batch production systems is compared to 

batch production systems where the lot size is defined as a fixed time. In the “fixed-time” lot batch 

production system, there is ideally no variability in the time length to produce a lot, but the 

production output in this fixed time length may vary. In this comparison, the batch production 

systems considered are workstations operating under a continuous review (Q, r) inventory system. 

A designed experiment is employed to compare the fixed-sized and fixed-time lots using discrete 

event simulation. The objective is to identify the factors having the largest effect on the long-run 

average cost differences. For every treatment combination tested the batch sizes and reorder point 

levels (quantities or time) were optimized. The experimental results show that for the lost sales 

policy the factors interarrival time between demands, and the coefficient of variation of the demand 

probability distribution, and for the backordering policy the factors workstation stand-alone 

availability, failure, and repair frequency, and capacity utilization have the largest impact on the 

long-run average cost difference between a fixed-size lot and fixed-time lot batch production 

systems. The insights from the lost sales and backordering experimentation can be utilized in an 
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actual production environment to decide the most appropriate batch production system that can 

minimize long-run average costs. 

Keywords: Productivity and competitiveness, Batch production systems, Fixed-size lot, Fixed-time 

lot, Experimental design, Simulation optimization 

2.1 Introduction 

In high volume automated discrete item batch production systems, such as automotive 

sheet metal stamping, workstation production occurs in fixed-size lots with workstation setups 

required between lots. A fixed-sized lot is defined by the number of discrete units of a particular 

product to produce, and a “workstation” can represent a single machine, or a set of machines (e.g., 

sheet metal stamping line).  If the workstation is perfectly reliable and there are no disruptions due 

to machine breakdown, maintenance issues, and tool wear, etc., the time to produce a fixed-size 

lot is predictable. However, most often workstation disruptions are likely to occur. These 

disruptions occur at random time points and last for random time lengths, which causes the time 

length to produce a fixed-size lot to be variable. This variability may lead to an excessive delay in 

the production of a lot, which may further delay the production of all the fixed-size lots that follow. 

Such variability also makes the planning and management of production and interrelated activities 

more complex, and overall reduces operational efficiency. Examples of such activities are 

production scheduling, setup crew scheduling, and scheduling the delivery of final product to the 

customers. 

In this research fixed-size lot discrete item batch production systems are compared to 

systems where the lot size is defined by a fixed time T rather than a fixed number of items. The 

production of fixed time length batches will be referred to as “fixed-time lot” production. The 
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initial motivation for fixed-time lot production is that the planning and management of interrelated 

activities will be less affected by the workstation disruptions, and lead to more efficient overall 

operations. However, as will be seen even without consideration of interrelated activities, the 

fixed-time lot production approach stands on its own when compared to a fixed-lot production 

approach with regards to long run average cost. 

During a fixed-time lot size of T the workstation may experience random failures and 

random repairs. However, once the fixed time length has elapsed the workstation stops producing, 

and the units produced up to time T are treated as the production quantity for the batch. With this 

strategy, there is ideally no variability in the time length to produce a lot, but instead variability in 

the production output.  This is exactly the opposite of fixed-lot production where the batch quantity 

is fixed, but the total time to produce the lot varies. 

The comparison of the long-run average cost of utilizing fixed-size lot and fixed-time lot 

batch production systems was completed so that from the customer perspective the systems 

perform identically. This was accomplished by enforcing the same service level or backorder 

constraints in both cases. Both systems were examined under similar scenarios (i.e., experimental 

treatment combinations) where various combinations of workstation reliability (and thus 

production system variability), service levels, and customer demand variability were examined. 

Each system operated under a continuous review (Q, r) inventory policy, and for each specific 

scenario examined both batch sizes and reorder point levels (in units or time) were separately 

optimized for each system. It is worth noting that fixed-size lot and fixed-time lot production are 

equivalent if the workstation is perfectly reliable. 

The remainder of this paper is organized as follows. Section 2.2 presents a literature review.  

In Section 2.3 the workstation and operating assumptions are described. Next the simulation 
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optimization model is presented in Section 2.4. Section 2.5 discusses the experimental design and 

results. Finally a results discussion is presented in Section 2.6, and conclusions and future work 

are presented in Section 2.7. 

2.2 Literature Review 

The thesis of Kletter (1996) is the only prior research discovered that directly or indirectly 

compares the cost performance of fixed-size lot and fixed-time lot batch production systems. 

Kletter (1996) derived the density function of production output over a fixed time period (fixed-

time lot). Different density functions were obtained for the cases when the workstation is initially 

in a working, or failed state, or at steady state. Using Laplace transforms, a workstation’s expected 

uptime and variance over a fixed time period, and the expected time length and variance of time 

to produce a fixed-size lot were derived. The performance of several production and inventory 

policies, including fixed-size lot and fixed-time lot production on a single multi-product 

workstation requiring setups was examined and compared. However, cost was not used in the 

comparison. For fixed-time lot production an order-up-to policy was used, and order-up-to levels 

were adjusted to achieve the same average inventory level as the fixed-size lot system. Relatively 

lower service levels with fixed-time lot production was observed. 

The fixed-lot batch production system operating under a continuous review inventory 

policy has been studied extensively with much of the focus on optimizing the lot size and reorder 

point such that the ordering, inventory holding, and backordering costs are minimized. Results 

have been obtained under various assumptions such as fixed and random demand (Abboud, 2001; 

Hadley & Whitin, 1963; Johansen & Thorstenson, 1993; Song et al., 2010), deterministic and 

random lead times (Federgruen & Zheng, 1992; Mohebbi, 2003; Mohebbi & Posner, 2002), 
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unreliable suppliers (D. Gupta, 1996; Mohebbi, 2003; Parlar, 1997), and service level constraints 

(Fattahi et al., 2015; Moon & Choi, 1994; Sarkar et al., 2015; Tajbakhsh, 2010).  

The fixed-lot and fixed-time systems considered in this research utilize workstations that 

experience random failures and repairs. As a result, the time to produce a fixed lot size, and the 

number of units produced in a fixed time length are random variables. In addition to Kletter (1996) 

other prior research has examined these random variables. Kim and Alden (1997) derived the 

density function, and variance of the time to produce a fixed-size lot. They consider a single 

workstation with deterministic processing time and exponentially distributed time between failures 

and exponentially distributed time to repair. Gershwin (1993) obtains a formula for the production 

output variance over a fixed time period for an unreliable workstation with deterministic 

processing times. Carrascosa (1995) extended Gershwin’s work and obtained the output variance 

for a single unreliable machine with two failure modes during a time interval. 

Other studies that are not directly related to the current research analyzed and calculated 

the output variability of the production lines with unreliable workstations. These studies 

considered a single unreliable workstation (Bariş Tan, 1999), N-station production line with no 

buffer (Bariş Tan, 1997), production lines with workstations in series and parallel (Bariş Tan, 

1998), and buffered production lines (He et al., 2007; Li & Meerkov, 2000; Barış Tan, 2000). 

2.3 System Description 

The system considered is a single automated unreliable workstation that produces one 

product with a fixed processing time s (time/job) when the workstation is up. This workstation 

experiences random operation-time dependent failures (i.e., it fails only when it is operating). The 

time between failures and times to repair are assumed to be exponentially distributed, which has 
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been shown to be a reasonable assumption (Inman, 1999). During repair, part processing is pre-

empted, and the part remains in the workstation. After repair completion, part processing resumes 

to complete the remaining processing. Workstation production is dictated by a continuous review 

(Q, r) inventory policy, where Q is the reorder quantity, and r is the reorder level. A comparison 

between Q as a fixed quantity (fixed-lot size), and Q as fixed elapsed time (fixed-time lot) will be 

conducted. 

A Q, r inventory policy is frequently implemented with either a backordering or a lost sales 

policy, or a mix of both. With a backordering policy, if a demand cannot be met with on-hand 

inventory, the excess demand is backordered, and a time-based penalty is incurred on the 

backordered demand. With a lost sales policy, unmet demand is lost when the on-hand inventory 

level drops to zero and a penalty is incurred for each lost order instance. The demand is lost in all 

cases, even if the completion of the in-process lot is imminent.  In a production system operating 

under a Q, r inventory policy the unreliable workstation alternates between three states: up 

(operating), down (repair), and idle (up and not operating) Figure 2.1 illustrates the production 

systems examined. Figure 2.2 and Figure 2.3 present examples of backordering and lost sales 

respectively.  

 

Figure 2.1 Production systems under study 
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To make the comparison of different workstation and production systems more 

straightforward, all parameters such as demand sizes, lot size Q, reorder-level r, on-hand 

inventory, and backordered inventory are expressed in their equivalent time units of production – 

processing minutes (p.mins). For example, if the workstation’s speed is 60 jobs per hour, then each 

job is worth 1 processing minute (time/job). To obtain the normalized value (p.mins) of an 

inventory parameter, the inventory value normally expressed as jobs/units is multiplied by the 

processing time of the workstation (time/job).  

Table 2.1 presents the normalized values of two workstations whose parameters as 

typically specified imply differences that are not present after normalization. 

  

Figure 2.2 Backordering System               
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Figure 2.3 Lost Sales System               

 

Table 2.1 Normalization of production system parameters 

Parameter Workstation 1 

Equivalent 

Time Units of 

Production 

Workstation 2 

Kletter (1996) 

Equivalent 

Time Units of 

Production 

Workstation speed 60 JPH 1 min./job* 495 JPH 0.1212 min./job* 

Demand per week 4509 jobs 4509 min. 37200 jobs 4509 min. 

Demand standard 

deviation  
901 jobs 901 min. 7440 jobs 901 min. 

Lot size 2254 jobs 2254 min. 18600 jobs 2254 min. 

Reorder level 1127 jobs 1127 min. 9300 jobs 1127 min. 

*Processing rate of the workstation 

2.3.1 Workstation with Fixed-Size Lot Production 

While producing, the workstation experiences random failures followed by random repair 

times (Figure 2.4). If no failures occur during lot production, the minimum time to produce a fixed-
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size lot Q is realized and equals the processing time s (time/job) multiplied by Q. However, if the 

workstation experiences failures, the time to produce Q is greater than the minimum time. Kim 

and Alden (1997) derived the expected time length (Equation 1) and variance of the time length 

(Equation 2), as well as the density function for the time to produce a fixed-size lot. Equation 2.1, 

Equation 2.2 are used to validate the fixed-size lot simulation model. 

𝐸(𝑇𝑛) =  
𝜆𝑛

𝑆𝜇
+ 𝑛𝑆 

Equation 2.1 Expected time to produce a fixed-size lot 

 

𝑉𝑎𝑟(𝑇𝑛) =  
2𝑛𝜆

𝑆𝜇2
 

Equation 2.2 Variance of time length to produce a fixed-size lot 

            

where, 𝑇𝑛 – time length to produce a fixed-size lot of n jobs; 𝜆 - failure rate; 𝜇 - repair rate; S - 

workstation speed (jobs/hour). 

 

Figure 2.4 Up and down profile of a fixed-size lot 

 Figure 2.5 illustrates the on-hand inventory path of a workstation that experiences random 

failures during the production of fixed-size lot Q. The workstation starts production at t0 and 
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experiences a failure at time t1. At this time the workstation transitions to a down state and stops 

production. It stays in the down state until the end of a repair with length 𝑡2 − 𝑡1. At t2 the 

workstation transitions to an up-state and resumes production. Another failure occurs at t3 and the 

workstation transitions to a down state. At time t4, a random demand of size D arrives. Since 

inventory level (𝐼𝐿) < 𝐷, the excess demand is either lost or backordered. At t5, the repair is 

completed, and the workstation resumes production until the fixed-size lot Q is produced. At t6, Q 

processing minutes are added to the current IL. At this time the IL is checked and a decision is 

made to either reorder and produce another fixed-size lot, or transition to an idle state and wait 

until the IL drops to or below r.  With random failures and random times to repair, the time length 

to produce Q is variable. 

 

Figure 2.5 Fixed-Size Lot Q, r Policy with Failures and Repairs 

2.3.2 Workstation with Fixed-Time Lot Production 

In this production system the lot size is defined by a fixed elapsed time T rather than fixed 

size-lot Q or fixed amount of production time (Figure 2.6). If no failure is observed the production 

quantity in units (P) in fixed time T is T multiplied by the workstation production rate. However, 

if the workstation experiences random failures and random times to repair, the production in a 

fixed time length T will be in the interval [0, P]. Kletter (1996) derived expressions for the mean 
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uptime and variance of uptime of a single unreliable workstation if it is initially up (Equation 2.3, 

Equation 2.4), or down (Equations 5-6). Equations 3-6 are used to validate the fixed-time lot 

simulation model. 

 

Figure 2.6 Up and down profile of a fixed-time lot 

𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) =  (
𝜇

𝜆 + 𝜇
)𝑇 +

𝜆

(𝜆 + 𝜇)2
(1 − 𝑒−(𝜆+𝜇)𝑇) 

Equation 2.3 Expected uptime of a single unreliable workstation if initially in ‘up’ state 

 

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) =
𝜆2

(𝜆+𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆+𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)  

+ 
2𝜆𝜇

(𝜆 + 𝜇)3
𝑇(1 + 𝑒−(𝜆+𝜇)𝑇) −

2𝜆2

(𝜆 + 𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇 

Equation 2.4 Variance in uptime of a single unreliable workstation if initially in ‘up’ state 

                                                                              

𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) =  (
𝜇

𝜆 + 𝜇
)𝑇 −

𝜇

(𝜆 + 𝜇)2
(1 − 𝑒−(𝜆+𝜇)𝑇) 

Equation 2.5 Expected uptime of a single unreliable workstation if initially in ‘down’ state 

              

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) =
𝜇2

(𝜆+𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆+𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)  
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+ 
2𝜆𝜇

(𝜆 + 𝜇)3
𝑇 −

2𝜇(𝜆 − 𝜇)

(𝜆 + 𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇 

Equation 2.6 Variance in uptime of a single unreliable workstation if initially in ‘down’ state 

  

Similar to fixed-size lot production, a workstation producing fixed-time lots may also 

experience several production-inventory cycles. Figure 2.7 illustrates an example of fixed-time lot 

production system with failures and repairs. In a fixed-time length system T = T1 = T2 = T3, and 

the number of units produced is a function of uptime in T. At the start time t0 of a production lot, 

the end time is known. 

 

Figure 2.7 Fixed-Time Lot Q, r Policy with Failures and Repairs 

During fixed-time length T1 the workstation experiences a failure at t1 with a repair length 

of t2 – t1. At t3 the units produced (Q‘) are released and the on-hand inventory level is updated. The 

probabilities that a workstation is up (Equation 2.7) or down (Equation 2.8) at the end of time T1  

(t3), given it is working at t0 are provided by Ross (2014).  

𝑃𝑢𝑝−𝑢𝑝(𝑇) =   
𝜇

𝜆 + 𝜇
+

𝜆

𝜆 + 𝜇
𝑒−(𝜆+𝜇)𝑇 

Equation 2.7 Probability a workstation is up at the end of time T 
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𝑃𝑢𝑝−𝑑𝑜𝑤𝑛(𝑇) =  
𝜆

𝜆 + 𝜇
(1 − 𝑒−(𝜆+𝜇)𝑇) 

Equation 2.8 Probability a workstation is down at time T 

Assuming the workstation remains up at t3, since 𝐼𝐿 > 𝑟, the workstation transitions to an 

idle state and stays idle until IL is less than r.  A random demand of size D arrives at t4. After the 

demand arrival, IL goes below r and production restarts at t4. The fixed time length available for 

production in this cycle is T2. The units produced through time t8 (Q‘) are released. If at the end of 

T2 the workstation is in a down state and the repair time length extends into the next production 

time lot, the repair time that extends beyond T2 is subtracted from the fixed-time length T3. 

Therefore, the maximum available time for production in next period is T3 – (t9 – t8). Figure 2.8 

illustrates a cycle where the random repair length (t10 – t6) consumes the entire fixed time length 

T3. In such cases, there will be no production in the fixed time length. 

 

Figure 2.8 Fixed-Time Lot with a Repair Eliminating a Fixed-time Lot 

2.4 Simulation Model 

The simulation model is divided into three processes (Demand, Inventory, and Production) 

as shown in Figure 2.9. Table 2.2 shows the input parameters for this simulation model. In the first 

process, a demand quantity (D) following a specified probability distribution (a lognormal 
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distribution rounded to the nearest integer was utilized) arrives at fixed time intervals (weekly or 

daily). In the second process, the incoming demand is compared against the on-hand inventory 

level (IL). If D < IL, then either the excess demand is backordered, or it is lost. Next, if the IL < r, 

an order is placed to produce either a fixed-size lot Q or a fixed-time lot T. In the third process, the 

workstation produces either the fixed lot Q, or produces for the fixed time T. During production 

the workstation may experience random failures and random repairs. After production of Q or T 

the on-hand inventory level, and backorders if any, are updated. When backordering is allowed, 

the number of outstanding backorders can be greater than one. Outstanding backorders are 

processed on a first-come-first-serve basis. In a lost sales system, there are no outstanding orders 

and demand that is not met is assumed to be lost. At the end of the simulation run length, the long-

run average cost and service level for the given set of parameters for both fixed-size lot and fixed-

time lot production are recorded.  

For each treatment combination in the designed experiment, this simulation model uses 

optimized values for Q or T and r. These parameter values are determined from the optimization 

algorithm described in Appendix A, and are set to minimize long-run cost while meeting specified 

service level constraints. 
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Figure 2.9 Demand, Inventory, and Production Sub-processes 

 
Table 2.2 Simulation Parameters 

Sub Process Input Parameter 

Production Processing rate (minutes/job) 

MTBF (hours) 

MTTR (hours) 

Reorder level (processing minutes) * 

Fixed-size lot (processing minutes) * 

Fixed-time lot (hours)* 

Demand Demand inter-arrival time (hours) 

Capacity utilization 

CV of demand size 

        * Value from optimization algorithm 

2.4.1 Simulation Model Validation 

 The performance of the simulation models was compared to analytical results where 

possible.  For a fixed-size lot system the analytical results expected time length E(Tn) and 

variability in the time length Var(Tn) to produce a fixed-size lot (Equation 2.1, Equation 2.2) are 

compared to simulation model results. As shown in Table 2.3, there are no statistically significant 
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differences between the analytical results and simulation output. For a fixed-time lot system 

analytical results for the expected uptime E(U) and variability in uptime Var(U) of a fixed-time 

lot (Equation 2.3 - Equation 2.6) are compared to simulation model results. In Table 2.4, there are 

no statistically significant differences between the analytical results and simulation output. 

Table 2.3 Validation of fixed-size lot production simulation model 

𝑊𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 =  60 𝐽𝑃𝐻,𝑀𝑇𝐵𝐹 = 10 ℎ𝑟𝑠. ,𝑀𝑇𝑇𝑅 =  2.5 ℎ𝑟𝑠. 

Q 

Analytical 

Results 

Simulation 

Output Absolute 

Difference 

Analytical 

Results 

Simulation 

Output Absolute 

Difference 
E(Tn) E(Tn) Var(Tn) Var(Tn) 

2000 41.67 41.66 0.01 41.67 41.79 0.12 

3000 62.50 62.52 0.02 62.50 62.87 0.37 

4000 83.33 83.33 0.00 83.33 83.89 0.56 

5000 104.17 104.14 0.03 104.17 104.53 0.36 

 

Table 2.4 Validation of fixed-time lot production simulation model 

𝑊𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 =  60 𝐽𝑃𝐻,𝑀𝑇𝐵𝐹 = 10 ℎ𝑟𝑠. ,𝑀𝑇𝑇𝑅 =  2.5 ℎ𝑟𝑠. 

T 

(hrs.) 

Analytical 

Results 

Simulation 

Output Absolute 

Difference 

Analytical 

Results 

Simulation 

Output Absolute 

Difference 
E(U) E(U) Var(U) Var(U) 

50 40.40 40.42 0.02 29.60 29.48 0.12 

75 60.40 60.41 0.01 45.60 45.70 0.10 

100 80.40 80.40 0.00 61.60 61.32 0.28 

125 100.40 100.43 0.03 77.60 77.09 0.51 

 

2.5 Experimental Design and Simulation Result Analysis 

A designed experiment utilizing the simulation model was to examine the differences in 

long-run average cost between fixed-size lot and fixed-time lot production systems. When 

conducting empirical experimental-based research, the inference space for which any results are 
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applicable is an important question. The factors considered in this research, which are known to 

affect the long-run average cost of the high-volume automated batch production systems (Table 

2.5) were carefully selected so the inference space will include many real systems. The factor 

values utilized were determined from a literature review and discussion with production 

managers1, and are intended to be representative of many scenarios that occur in actual high-

volume batch production systems. Preliminary experiments were conducted with three levels of 

each factor to investigate the presence of curvature (non-linearity) in the response. Since no 

curvature was observed a two-level full factorial design (Table 2.6) was utilized.   

 

Table 2.5 Factors and levels in the experiments 

Factor Level 1 Level 2 

Stand-alone availability 0.80 0.90 

Failure/Repair frequency Frequent 

 

Infrequent 

 

Mean time between failures (hours) 

Mean time to repair (hours) 
10 
1.11̅ 

10 

2.5 

20 

2.22̅ 

20 

5 

Service level 0.95 0.98 

Capacity utilization 0.70 0.78 

Demand inter-arrival time (hours) 24  

(Daily) 

120  

(Weekly) 

CV of demand (120 hours)* 0.015 0.1 

CV of demand (24 hours)* 0.03 0.2236 

Ordering cost ($) 500 1000 

Inventory holding cost 

($/processing minutes/month) 
1 2 

Backordering cost** 

($/processing minutes/month) 
0.5 2.5 

* Nested in Demand inter-arrival,   

                                                      
1 S. Jain, B. Kumar (personal communication, June 2020)  
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**Factor used only in backordering system 

Month = 480 hours 

 

Table 2.6 Total treatment combinations for each production system 

System Q, r Policy Treatment combinations 

Fixed-size lot Lost sales 28 = 256 

 Backordering 29 = 512 

Fixed-time lot Lost sales 28 = 256 

 Backordering 29 = 512 

 

For each treatment combination, 25 replications were conducted. At the beginning of each 

replication, the inventory level is zero and the workstation is in an up (operating) state. A warm-

up period of 6,240 simulated hours (1 year) is run to eliminate any start-up effects, and then 

statistics collection for 624,000 simulated hours (100 years) is conducted. At the end of 25 

replications the long-run average cost and average service level are computed. 

2.5.1 Generality of the Factorial Space 

The rationale for selecting each factor and their levels is presented next. 

Stand-alone availability (SAA): The SAA is the expected fraction of time the machine will be in a 

working state when not idle. For the stand-alone availability (SAA), the expectation is to have as 

high a workstation SAA as possible. For manufacturing operations the standard for achieving 

world-class performance includes a workstation availability of at least 90% (Ahuja & Khamba, 

2008). Therefore one SAA level considered is 90%.  For the lower SAA level, any SAA lower 

than 80% is judged to be uncompetitive.  At very high SAA levels (> 95%), the two batch 

production control systems tend towards very similar performance (they are the same at 100% 

SAA), so these higher SAA levels are not considered. Moreover, a 10% difference in the two levels 
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of SAA is a relatively large difference that should show any factor effects if they exist. From a 

realistic standpoint, a SAA below 80% was judged to be unreasonable. Table 2.7 lists prior 

production related research where workstation SAA were specified, and the values assumed. 

Table 2.7 Prior research involving the workstation availability 

Workstation Stand-Alone 

Availability (%) 
Reference 

80 Kletter (1996), 

Gupta and Garg (2012), 

88 Panagiotis (2018), 

Nurprihatin et.al. (2019) 

90 Ahuja and Khamba (2008), 

Groenevelt et. al. (1992) 

91 Mendez and Rodriguez (2017) 

 

Failure/Repair frequency: This factor is nested in the factor SAA. In a nested design the levels of 

this factor are not identical for different levels of SAA. Prior research (Kim & Alden, 1997; Patti 

& Watson, 2010) has shown that for the same stand-alone availability, different combinations of 

downtime frequency (i.e., frequent failures with shorter mean repair times and infrequent failures 

with longer mean repair times) impact the production system differently. Using the density 

function for the time distribution to produce n jobs (Kim and Alden (1997), and the density 

function for the distribution of uptime in a fixed-time T (Kletter, 1996), the impact of different 

MTBF and MTTR combinations with the same SAA is shown in Figure 2.10 and Figure 2.11. 

Figure 2.10 shows how different MTBF and MTTR combinations change the production time 

distribution required to complete 4500 processing minutes. Increases in the MTBF and MTTR, lead 

to increased production time variance. Figure 2.11 shows uptime (processing minutes) 
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distributions for a fixed time length of 4500 minutes for different MTBF and MTTR combinations 

with the same SAA. The SAA is a function of the mean time between failure (MTBF) and the 

mean time to repair (MTTR), and various combinations of MTBF and MTTR can be used to obtain 

the same SAA. In this research frequent failures with shorter repair lengths and infrequent failures 

with longer repair lengths are considered (Table 2.8). 

Table 2.8 Factor levels Failure/Repair Frequency 

Failure/Repair Frequent failures Infrequent failures 

MTBF (hours) 10 10 20 20 

MTTR (hours) 1.11 2.5 2.22 5 

 

In many high-volume production systems such as automated stamping plants, the number 

of unplanned stoppages occur regularly. Since the extremes may not be representative of a real 

systems and since the question revolves around factor effects, MTBF values of 10 hours (frequent 

failure) and 20 hours (infrequent failures) were selected. A 10 hours MTBF is 1 failure per shift 

on average, and a 20 hour MTBF is 1 failure per every three shifts on average. Kim and Alden 

(1997) show that variability of time length to produce a fixed-size lot increases proportionally to 

the square of mean repair length. The levels selected should be sufficiently far apart to show any 

effects from this factor. 

 

Service level: The service level is the fraction of demand met with on-hand inventory, also known 

as the fill rate. The service levels utilized are 0.95 and 0.98. Customers in general desire a high 

service level, and at higher service levels (> 0.95) a slight service level increase can significantly 

affect the inventory, ordering, and backordering costs (Bartezzaghi et al., 1999). Therefore the two 
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service levels utilized, 0.95 and 0.98 are high levels and should show the factor effects if they 

exist. 

 

Capacity utilization: This is the ratio of average demand and average production in a given period. 

Based on the levels of SAA used in a design, the levels of capacity utilization (C) can be computed 

as,  

𝐶 = 
𝐴𝑣𝑔.  𝑑𝑒𝑚𝑎𝑛𝑑 (

P.𝑚𝑖𝑛𝑢𝑡𝑒𝑠
𝑑𝑎𝑦

)

𝑀𝑎𝑥.  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (
P.𝑚𝑖𝑛𝑢𝑡𝑒𝑠
𝑑𝑎𝑦

) ∗ 𝑆𝐴𝐴
 

The capacity utilization is inversely affected by the levels of SAA, i.e., for constant average demand 

and average production over a time period, high SAA will yield a lower capacity utilization, 

whereas low SAA will yield a higher capacity utilization. The question of interest is the impact of 

capacity utilization at realistic utilization values. Given the multiple sources of variability from 

both the demand and production sides a higher utilization value in the neighborhood of 0.80 was 

selected. Similar utilizations were assumed in Groenevelt (1992), Kletter (1996), Taj et. al. (2012). 
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Figure 2.10 Density functions for time to produce job for four combinations of MTBF and MTTR with equal stand-alone availability 
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Figure 2.11 Density functions of uptime to produce jobs for four combinations of MTBF and MTTR with equal stand-alone 

availability
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Demand inter-arrival time: Commonly seen in many high-volume batch production system, the 

inter-arrival times between demands is either daily or weekly. Therefore, demand inter-arrival time 

of 24 hours (daily) and 120 hours (weekly) are utilized (Table 2.9). The probability distribution 

for demand sizes for both inter-arrival periods is assumed to be lognormal (rounded to the nearest 

integer). 

Table 2.9 Prior research with various demand inter-arrivals 

Demand inter-arrival Reference 

Daily Kalchschmidt (2003), 

Abdulmalek and Rajgopal (2007), 

Ferguson et. al. (2007), 

Sabaghi et. al. (2015) 

Weekly Kletter (1996), 

Kalchschmidt (2003), 

Abdulmalek and Rajgopal (2007) 

 

CV of demand: This factor controls the variability of the demand quantities. Li et al. (2004) shows 

that CV of demand affects the probability of customer demand satisfaction. This factor is nested 

in demand inter-arrival time. The CVs at both levels are scaled such that the demand variability 

per week is same for different demand inter-arrival times (Appendix 2B). For low levels, CVs of 

0.015, 0.03 are considered. The standard deviation of demand at the low CV level is assumed to 

be the square root of the mean demand. For example, if daily demand is 800, then the CV of daily 

demand is 
√800

800
  ≈ 0.03. At the high level, a CV of 0.1 for weekly demand is assumed, and a CV 

of 0.2236 for daily demand is used. The daily CV values are scaled such that the demand variability 

per week remains the same as that of weekly demand. Higher CVs are not considered because for 
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asymmetrical distribution such as the log-normal, higher CVs leads to poor inventory management 

performance (Tadikamalla, 1984). 

Costs: Inventory holding costs and backordering costs are based on the average monthly inventory 

level. Past studies on inventory systems have considered inventory holding cost on ‘per item per 

unit time’ basis (Taj et al., 2012; Vander Veen & Jordan, 1989). In this research inventory holding 

costs are based on processing minutes per month. The low level for inventory holding cost is 

assumed to be $1/processing minutes/month, and the high level is assumed to be twice the low 

level at $2/processing minutes/month. After conversion to processing minutes per month the 

inventory holding costs in (Taj et al., 2012; Vander Veen & Jordan, 1989) fall within this range. 

The ordering cost is a fixed cost that is incurred whenever an order of fixed-size lot Q or 

fixed-time lot T is placed. In inventory systems studied in the literature, the ordering costs 

considered are significantly higher than the inventory holding costs (Chiu, Wang, et al., 2007; 

Vander Veen & Jordan, 1989). Chiu et al. (2007) assumed the ordering cost at $450 per order, and 

Vander Veen & Jordan (1989) assumed it to be $1000. In this study for the low level of ordering 

cost was increased to $500 per order so that the high level is twice the low level. Therefore, the 

low level for ordering cost is assumed to be $500/order, and the high level is assumed to be 

$1000/order. 

The backordering cost is incurred on the average excess demand backordered per month. 

Previous studies on inventory systems have considered backordering cost to be both smaller (Chiu, 

Ting, et al., 2007) and greater (Wee et al., 2007) than inventory holding cost. The low level of 

back-ordering cost is assumed to be smaller than the two levels of inventory holding cost at 
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$0.5/processing minutes/month, and the high level is assumed to be greater than the two levels of 

inventory holding cost at $2.5/processing minutes/month. Therefore to study the impact of 

backordering cost on the long run average cost performance, the low level of backordering cost is 

assumed to be smaller than the two levels of inventory holding cost, and the high level is assumed 

to be greater than the two levels of inventory holding cost. 

2.5.2 Results Analysis 

The experimental results implementing lost sales and backordering policies were analyzed 

separately. Analysis of Variance (ANOVA) was used to identify the factors and interactions that 

have the largest effect on the long run average cost difference between fixed-time lot and fixed-

size lot production systems. The difference in the long run average cost (ΔTC) is computed by 

subtracting the long-run average cost of fixed-size lot system from the fixed-time lot system. For 

any treatment combination, if ΔTC > 0 and is statistically significant, then the fixed-size lot is a 

better system based on cost. If ΔTC < 0 is statistically significant then the fixed-time lot is a better 

system, and if ΔTC is not significantly different from zero then the systems are not different.  

The experiments conducted are 28 and 29 factorial designs for lost sales and backordering 

policies respectively. The ANOVA conducted is based on an assumed linear statistical model for 

the response that includes 8 or 9 main effects, and (8
2
) − 2 or  (9

2
) − 2 two-factor interactions. The 

factors failure repair frequency and Coefficient of variation (CV) of demand are nested in factors 

stand-alone availability (SAA) and demand interarrival time respectively (see Table 2.5). 
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2.5.2.1 Results and Analysis - Lost Sales Policy 

The subset of the ANOVA results in Table 2.10 show the model terms that are statistically 

significant and contribute more than 1% to the total sum of squares. The demand process related 

factors, CV of demand and demand inter-arrival time have the largest influence on the average 

long-run cost difference between fixed-lot and fixed-time systems, and account for over 60% of 

the total sum of squares. The factors service level, stand-alone availability, and failure repair 

frequency account for about 6%, 5%, and 2% of the total sum of squares respectively. 

Table 2.10 Analysis of Variance for the Lost Sales Experiment 

Source of Variation 

Degrees 

of 

Freedom 

Sum of 

Squares 

Percent 

Contribution 

Mean 

Square 
F-value 

P-

value 

CV(Demand) 2 2.62E+15 42.71% 1.31E+15 39323.97 0 

Demand Inter-arrival 1 1.10E+15 17.87% 1.10E+15 32914.28 0 

Service level 1 3.73E+14 6.08% 3.73E+14 11188.54 0 

CV(Demand)* Inventory 

holding cost 
2 3.38E+14 5.50% 1.69E+14 5062.63 0 

Stand-alone availability 

(SAA) 
1 2.82E+14 4.59% 2.82E+14 8448.58 0 

CV(Demand)*Service level 2 2.12E+14 3.44% 1.06E+14 3171.24 0 

Inventory holding cost* 

Demand Inter-arrival 
1 1.38E+14 2.24% 1.38E+14 4124.21 0 

Failure repair 

frequency(SAA) 
2 1.07E+14 1.75% 5.37E+13 1609.26 0 

Demand Inter-arrival* 

Service level 
1 9.54E+13 1.55% 9.54E+13 2858.99 0 

Inventory holding cost 1 8.73E+13 1.42% 8.73E+13 2617.59 0 

 

The ANOVA identifies the factors that have the largest impact on ΔTC, and a statistically 

significant (here at a 0.05 level) ΔTC determines if fixed-time or fixed-size lot systems is better. 

The experimental results for significantly different long-run average cost performance at two 

levels of the most influential factors are summarized in Figure 2.12 and Figure 2.13. Figure 2.12 

shows the impact of demand interarrival time, CV of demand, and service level on the performance 
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of fixed-size lot and fixed-time lot production systems as measured by the percentage of treatment 

combinations where a particular system (fixed-lot or fixed-time) performs better.  

Overall, a fixed lot system performs better than a fixed-time lot system with weekly 

demand arrivals, and vice versa with daily demand arrivals. Weekly demand arrivals increase the 

day to day demand variability. However, within a specific demand interarrival period a higher 

demand variability increases the percentage of treatment combinations where a fixed-time lot 

system performs better. The relationships displayed in Figure 13 can be quantified by fitting a 

logistic regression model to those treatment combinations where a statistically significant ΔTC 

occurred. For example, for daily demand arrivals and demand CV, and service level as categorical 

predictors: 

𝑌 =  −0.938 + 2.273 ∗ 𝐶𝑉 + 1.373 ∗ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙, 

𝑃(𝐹𝑖𝑥𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 ℎ𝑎𝑠 𝑙𝑜𝑤𝑒𝑟 𝑐𝑜𝑠𝑡) =  
𝑒𝑌

1−𝑒𝑌
. 

Here CV and Service Level equals 1 when at a high level, and 0 when low. All model 

coefficients are significant as is the regression model. 

Figure 2.13 shows the impact of workstation’s stand-alone availability or reliability 

(higher stand-alone availability implies higher reliability), frequency of failures and repair length, 

and service level on the performance of fixed-size lot and fixed-time lot production systems as 

measured by the percentage of treatment combinations where a particular system significantly 

performs better. Overall the fixed lot production system performs better on a workstation with a 

high reliability, and the fixed-time lot system works better with lower reliability. 
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Figure 2.12 Lost Sales Policy - Performance of fixed-size lot and fixed-time lot production systems with different levels of demand 

interarrival, CV of demand, and service level (SL) 

0%

20%

40%

60%

80%

100%

SL-0.95 SL-0.98 SL-0.95 SL-0.98 SL-0.95 SL-0.98 SL-0.95 SL-0.98

Low CV High CV Low CV High CV

Daily Weekly

B
et

te
r 

T
re

at
m

en
ts

Performance Comparison of Fixed-Lot and Fixed-Time Systems

Fixed Lot System Fixed Time System



39 

 

Overall a higher service level pushes results in favor of a fixed-time lot system. In Figure 2.12 

and Figure 2.13 moving from a 95% to 98% service level results in a relatively large increase in 

the percentage of treatment combinations where a fixed-time lot system has lower cost. Other 

general observations from the experimentation for a lost sales policy are stated next. Recall that Q 

and r values were optimized for fixed-lot and fixed-time systems for each treatment combination. 

 Both high CV of demand and lower stand-alone availability drive the average number of 

orders processed in the fixed-time system to be less than the fixed lot system. Fewer orders 

implies that the average amount produced in the fixed-time lot system is greater than in the 

fixed lot system, and that lower ordering costs push total cost in favor of a fixed-time lot 

system 

 Low CV of demand and higher stand-alone availability, drives lower average inventory 

levels in fixed lot systems and drives costs in favor of fixed lots systems due to lower 

inventory costs.  

 The fixed-time system generally performed better in treatments that had low stand-alone 

availability and high capacity utilization, and high stand-alone availability and low 

capacity utilization generally favors a fixed-lot systems.  

 There was no significant difference in ΔTC for 7% of all treatment combinations. 
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Figure 2.13 Lost Sales - Performance of fixed-size lot and fixed-time lot production systems with different levels of workstation’s 

reliability (SAA), failure repair frequency, and service level (SL)
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2.5.2.2 Results and Analysis - Backordering Policy 

A subset of the ANOVA results in Table 2.11 show the model terms that are statistically 

significant and contribute more than 1% to the total sum of squares.  The factors stand-alone 

availability, CV of demand, ordering cost, service level, capacity utilization, and failure repair 

frequency have the largest influence on the experimental response (ΔTC) accounting for about 37% 

of the total sum of squares.  With a backordering policy the effects are more even and spread out 

over more factors than with the lost sales policy. The stand-alone availability factor is the only 

factor that stands out relative to other factors listed in Table 2.11. For backordering more of the 

dominant factors are production side related, rather than demand side related as was seen with a 

lost sales policy. 

Table 2.11 Analysis of Variance for Backordering Experiment 

Source of Variation 
Degrees of 

Freedom 

Sum of 

Squares 

Percent 

Contributio

n 

Mean 

Square 

F-

value 

P-

value 

  Stand-alone Avail.  1 8.63E+12 13.94% 
8.63E+1

2 
198.9 0 

  CV(Demand) 2 3.08E+12 4.97% 
1.54E+1

2 
35.44 0 

  Order Cost 1 2.94E+12 4.75% 
2.94E+1

2 
67.75 0 

  Service Level 1 2.84E+12 4.59% 
2.84E+1

2 
65.49 0 

  Cap Utilization 1 2.65E+12 4.28% 
2.65E+1

2 
61.01 0 

  Failure Repair 

Frequency(SAA) 
2 2.46E+12 3.97% 

1.23E+1

2 
28.34 0 

  Inventory Holding 

Cost* Demand 

Interarrival 

1 2.04E+12 3.29% 
2.04E+1

2 
46.94 0 

  CV(Demand)*Inventory 

Holding Cost 
2 1.85E+12 2.99% 

9.26E+1

1 
21.34 0 

  Order Cost* Demand 

Interarrival 
1 1.75E+12 2.83% 

1.75E+1

2 
40.37 0 
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Source of Variation 
Degrees of 

Freedom 

Sum of 

Squares 

Percent 

Contributio

n 

Mean 

Square 

F-

value 

P-

value 

  SAA* Service Level 1 1.69E+12 2.72% 
1.69E+1

2 
38.85 0 

  SAA* Inventory 

Holding Cost* Order 

Cost 

1 1.03E+12 1.66% 
1.03E+1

2 
23.72 0 

  SAA*Demand 

Interarrival 
1 9.61E+11 1.55% 

9.61E+1

1 
22.15 0 

  Service Level* Failure 

Repair Frequency (SAA) 
2 9.05E+11 1.46% 

4.53E+1

1 
10.43 0 

  SAA* Inventory 

Holding Cost* Demand 

Interarrival 

1 8.97E+11 1.45% 
8.97E+1

1 
20.67 0 

  Demand Interarrival 1 8.37E+11 1.35% 
8.37E+1

1 
19.3 0 

  SAA* Order Cost 1 6.71E+11 1.08% 
6.71E+1

1 
15.47 0 

 

Results for the two levels of the most influential factors for ΔTC, as measured by the 

percentage of treatment combinations where a particular system (fixed-lot or fixed-time) performs 

significantly better, are shown in Figure 2.14, Figure 2.15, and Figure 2.16.  

Similar to the lost sales policy, the fixed-time system generally performed better in 

treatments that had low stand-alone availability and high capacity utilization, however high stand-

alone availability and low capacity utilization generally performed similarly for both systems. 

With backordering the impact of interarrival time between demands, and CV of demand is similar 

to what occurs for a lost sales policy, however a fixed-time system is better for a higher percentage 

of treatment combinations (Figure 2.15 and Figure 2.16). With daily interarrival time between 

demands, and with both low CV of demands and high CV of demands, the fixed time systems 

perform better by reducing the number of orders that are processed and in turn reducing the average 

ordering cost. 
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The effects of capacity utilization is similar to service level where higher capacity 

utilization and a higher required service level leads to a higher percentage of treatment 

combinations where a fixed-time system performs better. Other general observations from the 

experimentation with a backordering policy are stated next.  

 Higher stand-alone availability and low capacity utilization drives lower average inventory 

levels for fixed-lot systems and thus pushes more treatment combinations to have lower 

cost with a fixed-lot system due to lower average inventory cost. However, low reliability 

and low capacity utilization or high capacity utilization, tends to lower the number of 

orders processed in fixed-time systems when compared to fixed-lot systems and pushes 

more treatment combinations to have lower cost with a fixed-time system due to lower 

ordering costs.  

 There was no significant difference in ΔTC for 11% of all treatments. For such treatments, 

either batch production system, fixed-size lot or fixed-time lot, will give similar cost 

performance. 
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Figure 2.14 Backordering - Performance of fixed-size lot and fixed-time lot production systems with different levels of capacity 

utilization, failure repair frequency, and workstation reliability 
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Figure 2.15 Backordering - Performance of fixed-size lot and fixed-time lot production systems with different levels of CV of demand, 

demand interarrival, and capacity utilization 
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Figure 2.16 Backordering - Performance of fixed-size lot and fixed-time lot production systems with different levels of CV of demand, 

demand interarrival, and service level (SL) 
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2.6 Discussion of Results 

The experimental results demonstrate that there are no clear rules with respect to particular 

factors that can be established where one particular strategy (fixed-sized or fixed-time lot sizes) is 

always better with respect to total long-run costs.  Trying to identify such rules is complicated by 

the fact that the Q and r parameters are optimized for each test case. However, some 

explanation/insight for some general results/trends can be offered.  The experimental results 

clearly show that for a lost sales policy the interarrival time between demands, and the coefficient 

of variation of the demand probability distribution have by far the largest impact on the long-run 

average cost difference between fixed-size lot and fixed-time lot batch production systems.  For a 

given demand interarrival length (weekly or daily), a higher demand variability, and lower 

workstation stand-alone availability (more variable production) favors a fixed time batch 

production system. Upon examination of the optimized Q values it stands to reason that higher 

demand CV drives larger optimized Q values for both fixed lot and fixed time systems. However 

higher Q values in a fixed lot system combined with lower workstation stand-alone availability 

leads to higher variability in the time to complete the fixed lot. This fact causes many lot 

completion times to be late or to occur after a demand arrival.  When used with the “unforgiveness” 

of a lost sales policy, either the lost sales will be very large or the optimized Q, and r values will 

be optimized at a high level to avoid such costs, but this results in higher inventory costs. For the 

batch production systems operating under a backordering policy the same effects of the 

interarrival time between demands, and the coefficient of variation of the demand probability 

distribution do not occur. In a backordering policy, finishing a lot after a demand arrival is not as 

severely punished. 

For the batch production systems operating under a backordering policy the experimental 

results show that the workstation stand-alone availability, failure and repair frequency, and 
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capacity utilization have the largest impact on the long-run average cost difference between fixed-

size lot and fixed-time lot batch production systems. Unlike the lost sales results, these factors are 

related to production rather than demand. If the workstation operates under low capacity utilization 

(workstation is underutilized) and a high stand-alone availability the fixed lot batch production 

system had lower cost. However, the fixed time batch production system was preferred when the 

workstation operates with high capacity utilization and lower stand-alone availability. In general, 

the fixed time system can accommodate higher levels of production variability better than a fixed 

lot system. In the treatment combinations tested, the backordering costs tested were lower than 

inventory costs at a low level, and higher than inventory costs at a high level. However, the 

differences between backordering and inventory costs in any treatment was relatively small and 

seems to have resulted in less significant effects of factors on ΔTC. 

The general insights from lost sales and backordering experimentation can be utilized in an 

actual production environment to decide the most appropriate production system that can minimize 

the long-run average cost. For example, the fixed-time batch production system is preferred if the 

workstation operates under backordering policy, receives weekly demand of 4500 units with 

standard deviation of 450 units, and it expects to meet 98% of  demand. 

2.6 Conclusion and Future Work 

The main objective of this research is to compare fixed-size lot and fixed-time lot batch 

production systems, and develop useful insights for understanding when either system should be 

utilized based on minimizing long-run average cost with a constraint on the service level. 

Expectations at the start of this research was that, in the absence of considering support activities 

such as set-up crews, the fixed-size lot system will outperform the fixed-time lot system. This 

expectation was mainly due to the ubiquitous use of fixed-sized lot systems in practice. However, 
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the experimental results demonstrated that this is not the case. Additionally, there are no clear rules 

that can be established for when a fixed lot strategy is better than a fixed time strategy. 

The experimental results show that for lost sales systems the interarrival time between 

demands, and the coefficient of variation of the demand probability distribution have (by far) the 

largest impact on the long-run average cost difference between fixed-size lot and fixed-time lot 

batch production systems. For the batch production systems operating under a backordering policy 

the experimental results show that the workstation stand-alone availability, failure and repair 

frequency, and capacity utilization have the largest impact on the long-run average cost difference. 

The following are possible directions for extending this research. 

1. More complex empirical relationships between the factors examined and the long run 

average cost differences between fixed lot and fixed time systems can be explored by 

utilizing other modeling techniques such as artificial neural networks. 

2. The performance of the production systems can be examined when a workstation produces 

multiple products, and requires a setup with a random setup time whenever a new product 

is produced. This workstation will utilize limited setup crew resources, shared with other 

workstations, whenever a setup is requested. 
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Appendix 2A 

SIMULATION OPTIMIZATION MODELS 

In this research the simulation model is a substitute for a function that estimates production 

system performance as a function of specific parameters.  The simulation model is used as part of 

an optimization procedure to optimize specific system parameters. Simulation optimization 

models (SOM) for the fixed-size lot and fixed-time lot production systems described in section 3 

were developed using the programming language Python and discrete event simulation library 

SimPy. SimPy is a process-based discrete-event simulation framework based on standard Python 

in which every activity is modeled as a process (Matloff, 2006). The SOM consists of the 

Optimization Algorithm, and the Simulation Model as shown in Figure 2.17. In SOM, the 

optimization algorithm provides the input parameters to the simulation model that then provides 

an estimate of the long-run average cost and service level for those input parameters. The objective 

of the SOM is to optimize the fixed-size lot Q, fixed-time lot T, and corresponding reorder levels 

r that minimizes the long-run average cost given that other simulation parameters remain fixed. 

 

Figure 2.17 Simulation Optimization Model 

OPTIMIZATION ALGORITHM 

Optimization algorithm provides optimized values of Q, T, and r that minimizes the long-

run average cost by utilizing a hybrid greedy and random walk algorithm. This hybrid algorithm 

is designed to reduce the chance that the solution found is not a local minima. The search 

boundaries are selected for Q, T, and r by utilizing classical EOQ closed form results (Tajbakhsh, 
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2010), and outcomes from preliminary simulation runs. From the search boundaries, a random 

combination of Q or T, and r is generated and treated as candidate solution. The optimization 

algorithm provides input (candidate solution parameters) to the simulation model, and the 

simulation model provides an estimate of the long-run average cost and service level for the 

candidate solution. If customer specified service level is obtained, the candidate solution is 

accepted as a best candidate solution, otherwise the algorithm keeps generating random 

combinations and runs the simulation model until the service level is obtained. From the best 

candidate solution the neighboring solutions are explored for a better solution. To search the 

neighborhood for a better solution, the best candidate solution is mutated, and the long-run average 

cost and service level is obtained. This is repeated until a better solution is obtained. If a new 

candidate solution has a better long-run average cost than the current best candidate solution, it 

then becomes the best candidate solution. After n neighborhood searches with no improvement, a 

large random jump away from the best candidate solution is made. This ensures the search moves 

out of the region of a possible local minima and extends the search into other regions. After each 

random jump, m neighborhoods of the randomly generated parameters are searched for a better 

solution. The random jumps and m neighborhood search continues until no better solution is 

obtained. The simulation optimization ends after a pre-defined number of search iterations are 

complete. At this time the best solution is reported. The data set in Zheng (1992) is used to validate 

the optimization algorithm. The proposed algorithm is shown next where the nth iteration 

represents the iteration up to which no improvement in the Best Candidate Solution is observed. 

Best Solution is the combination of decision variables with minimum long-run average total cost 

meeting a specified service level. 
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BEGIN 

Set termination criteria (total number of iterations) 

Set number of iterations (n) before making large random move 

Set number of iterations (m) to search random move’s neighborhood 

Set desired service level 

Set search boundaries for decision variables Q, T, r 

while Current service level is less than desired service level, do 

Generate a combination of decision variables Q or T, and r 

Simulate decision variables 

end 

Best Candidate Solution = Current Solution 

while Current iteration number is less than total iterations, do 

Increment current iteration number 

if nth iteration, then 

if Improvement in Best Solution, then 

Best Candidate Solution = Current Solution 

Reset nth iteration 

else 

Make large move away from Best Solution 

Simulate random decision variables 

Reset mth iteration 

 

if not mth iteration, then 

Search immediate neighborhood of random parameters for 

New Solution 

 Mutate random parameters 

 Simulate mutated random parameters 

  if New Solution is accepted, then 

Best Candidate Solution = New Solution 

end 

increment mth iteration 
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end 

end 

else 

Search immediate neighborhood of Best Candidate Solution for New 

Solution 

Mutate Best Candidate Solution 

Simulate mutated decision variables 

if New Solution is accepted, then 

Best Candidate Solution = New Solution 

Reset nth iteration 

else 

increment nth iteration 

end 

end 

end 

Report Best Solution  

END 

 

The optimization algorithm was validated by comparing the optimized Q and r with the 

numerical results reported by Zheng (1992). As shown in Table 2.12, there are no differences in 

the numerical values obtained by Zheng, and values obtained by the optimization algorithm 

developed.  

Table 2.12 Validation of optimization algorithm 

 

𝐷𝑒𝑚𝑎𝑛𝑑 𝑟𝑎𝑡𝑒 = 50, 𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 = 1, ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 10, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑠𝑡 = 25 

Fixed cost per order 
Zheng’s Simulation Optimization 

Q* r* Q* r* 

1 7 50 7 50 

25 23 44 23 44 

100 40 38 40 38 

1000 120 15 120 15 
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Appendix 2B 

 
DEMAND VARIABILITY OVER A GIVEN TIME PERIOD 

 
Table 2.13 Computation of demand variability 

 Weekly Demand Daily Demand 

Jobs per hour 60 

Minutes/job 1 

Demand interarrival time (processing 

hours) 
120 24 

Expected units per demand arrival 4500 900 

Expected demand (processing minutes 

per arrival) 
4500 900 

CV of demand 0.1 0.2236 

Demand variance (p.minutes2/arrival) 202500 40498 

Average demand rate (p.minutes/hour) 37.5 37.5 

Demand variance (p.minutes2/hour) 

Var[X] = E[X2]-E[X]2 

45002 + 202500

120
− 37.52 

 

= 169,031 

9002 + 40498

24
− 37.52 

 

= 34,031 
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3 Factor Analysis of Fixed-Size Lot and Fixed-Time Lot Batch 

Production System using Artificial Neural Network 
 

Abstract 

High volume discrete item batch production systems such as automotive sheet metal stamping 

facilities are complex in nature, and effective production control can have a significant impact on 

cost. Production control in such systems is normally based on fixed-size lots, however recent 

research has shown that production control using fixed time length lots can be advantageous. In 

this research, functional relationships between various input factors and three categorical outcomes 

(representing the lower cost system) are explored using feedforward backpropagation neural 

networks. Results show that when unmet demand is lost the factors: demand coefficient of 

variation, and system stand-alone availability have the largest relative predictive importance. 

When unmet demand can be backordered the factors: demand coefficient of variation, system 

stand-alone availability, and inventory holding cost have the largest relative predictive importance. 

Mechanistically, at higher stand-alone availability levels and lower demand coefficient of variation 

the fixed lot production time variance is low enough that the system can operate in a “just-in-time” 

manner and results in lower costs than a fixed time lot system. However, as the system stand-alone 

availability reduces, and demand coefficient of variation increases, the fixed-time lot system 

results in significantly lower costs than the fixed-size lot system. 

 

Keywords: Batch production systems, Fixed-size lot, Fixed-time lot, Artificial neural network, 

Connection weight approach 
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3.1 Introduction 

High volume discrete item batch production systems such as automotive sheet metal 

stamping facility are complex in nature, and their effective management can have a significant 

impact on cost. Conventionally, the workstation (represented by a single machine, or a set of 

machines) in such production systems produces a fixed-size lot with workstation setups required 

between lots. A fixed-sized lot is defined by the number of discrete units of a particular product to 

produce. Tiwari and Kim (2022) explored an alternate production system where the lot size is 

defined by a fixed time T rather than a fixed number of items, and called such a time length a 

“fixed-time lot”.  

For a perfectly reliable workstation with no disruptions due to machine breakdown, 

maintenance issues, tool wear, etc., the time to produce a fixed-size lot is predictable, and is the 

same as a fixed-time lot equal to the fixed-size lot multiplied by the fixed processing time per unit. 

However, in a real production system, workstation disruptions are likely to occur, and such 

disruptions occur at random time points and last for random time lengths. This causes the time 

length to produce a fixed-size lot to be variable. This variability in the time length may lead to an 

excessive delay in the production of a fixed-size lot, which may further delay the production of all 

the fixed-size lots that follow. In the fixed-time lot, the workstation disruption introduces no 

variability in the time length to produce a lot, but does so with respect to production output 

variability, which is exactly the opposite of fixed-lot production. 

Tiwari and Kim (2022) compared the long-run average cost performance of the fixed-size 

lot and fixed-time lot batch production systems. 1,536 different production systems were simulated 

based on a two-level full factorial design with the following factors: 1) stand-alone availability, 

2) failure and repair frequency, 3) service level, 4) capacity utilization, 5) demand interarrival 
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time, 6) coefficient of variation of demand, 7) ordering cost, 8) inventory holding cost, and 9) 

backordering cost. The simulations estimated production system cost performance, and ANOVA 

was used to identify the factors and interactions that have the largest effect on the cost difference 

between the two batch production systems. Based on the results, insights were developed for 

understanding when either batch production system should be utilized. The use of ANOVA 

focused on factor effects, and not on functional patterns or relationships that may be established 

between the various input factors and the output. 

Due to its ability to parallel process multiple inputs, and capture the causal relationships 

between independent and dependent variables in any given data set, the present research utilizes 

feedforward backpropagation neural network (FFNN), a classification of artificial neural network, 

to further analyze the experimental database and the results obtained in Tiwari and Kim (2022). 

This FFNN is suited to discover complex relationships between input factors and outputs from the 

experimental database such as patterns and relationships between various input factors and their 

levels. The output of this FFNN is then utilized to provide useful insights and a deeper 

understanding of when either batch production system should be utilized. 

The remainder of this paper is organized as follows. Section 3.2 presents a literature review.  

In Section 3.3 the workstation and operating assumptions are described. Next the feed forward 

back propagation neural network is presented in Section 3.4. Section 3.5 discusses the results. 

Finally, conclusions and future work are presented in Section 3.6. 

 

3.2 Literature Review 

The research literature contains extensive studies examining fixed-size lot batch production 

systems operating under a continuous review inventory policy. The primary focus of this prior 
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research has been optimizing the lot size and reorder point such that the total cost, which includes 

ordering, inventory, and backordering/lost sales costs, is minimized. Examples of such research in 

this area includes Federgruen and Zheng (1992), Moon and Choi (1994), Parlar (1997), Mohebbi 

(2003), Song (2010), Sarkar et al. (2015).  With respect to fixed-time lot batch production systems, 

Kletter (1996) and Tiwari and Kim (2022) are the only prior research discovered that focuses on a 

comparison of fixed-size lot and fixed-time lot batch production systems. Other research that 

examines characteristics of production over a fixed time period includes Gershwin (1993), who 

calculated the variance of output as a function of time, Carrascosa (1995) extended Gershwin’s 

work and analytically derived the variance of output for a single unreliable machine. Tan derived 

variance of output for a single unreliable workstation (1999), N-station production line with no 

buffer (1997), production lines with workstations in series and parallel (1998). Tan (2000), Li and 

Meerkov (2000), He et. al. (2007), and Colledani et. al. (2010) analyzed the production output 

variability for the buffered production lines. A list of expected times length to produce a fixed lot, 

expected uptime in a fixed time length and their variances are provided in Appendix A.1. 

Kletter (1996) derived the density function of production output for a fixed-time lot. They 

also derived the density function, expected time length, and variance of time to produce a fixed-

size lot.  These results were used to examine and compare the performance of several production 

and inventory policies, including fixed-size lot and fixed-time lot production on a single multi-

product workstation requiring setups. In addition to Kletter (1996), Kim and Alden (1997) also 

derived the density function, and variance of the time to produce a fixed-size lot. This lot was 

produced on a single workstation with deterministic processing times, and exponentially 

distributed times between failures and repair are times. Several expressions from the literature for 
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the expected output and the variability in output for different production systems is compiled in 

Appendix 3A. 

Tiwari and Kim (2022) compared the fixed-size lot and fixed-time lot batch production 

systems, and provides insights for when either system is preferred based on minimizing long-run 

average cost with a constraint on the service level. They consider a single workstation that 

experiences random failures and repairs, and operates under a continuous review (Q, r) inventory 

system with either lost sales or backordering of unmet demand. The production system long-run 

average costs were estimated using simulation. To develop a better understanding of when fixed-

time or fixed-lot systems are preferred a two-level full factorial experiment was conducted. The 

experimental factors were: 1) stand-alone availability, 2) failure and repair frequency, 3) service 

level, 4) capacity utilization, 5) demand interarrival time, 6) coefficient of variation of demand, 7) 

ordering cost, 8) inventory holding cost, and 9) backordering cost. 1,536 different batch 

production systems were simulated, and ANOVA was used to identify the factors and interactions 

that have the largest effect on the cost difference between the two batch production systems (Table 

3.1).  The experimental results show that for the lost sales systems the interarrival time between 

demands, and the coefficient of variation of the demand probability distribution have the largest 

impact on the long-run average cost difference between fixed-size lot and fixed-time lot batch 

production systems. For batch production systems operating under a backordering policy the 

workstation stand-alone availability, failure and repair frequency, and capacity utilization have 

the largest impact on the long-run average cost difference between fixed-size lot and fixed-time 

lot batch production systems. However, the use of ANOVA focused on factor effects, and not on 

functional patterns or relationships that may be established between the various input factors and 

the output. 
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This research utilizes the extensive experimental results obtained from Tiwari and Kim 

(2022) as inputs to a feed forward back propagation neural network to search for empirical 

relationships between the input factors and outputs. The objective is to take advantage of their 

results to establish functional relationships that may provide useful insights and a deeper 

understanding of when each batch production system should be utilized (Table 3.1). 

 

Figure 3.1 Analysis approaches used in Tiwari and Kim (2022) and current research 

 

3.3 System Description 

The system considered in this research is the same as the one considered in Tiwari and Kim (2022), 

which produces batches (fixed-sized lot or fixed-time length) of a single product on an automated 

unreliable workstation with a fixed processing time per job when the workstation is up. This 

workstation experiences random failures only when it is operating, with exponentially distributed 

time between failures and repair times. Workstation production is dictated by a continuous review 
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(Q, r) inventory policy, where Q is the reorder quantity, and r is the reorder level. For a specified 

set of parameters Q and r are optimized to minimize long-run average cost. 

 

3.3.1 Workstation Operating Policy 

 During the production of a batch (Figure 3.2), if no failures occur then there will be no 

differences between a fixed-size lot and fixed-time lot batch production systems. In such cases, 

the time to produce a fixed-size lot Q equals the processing time per job multiplied by Q, or the 

number of units (U) produced in a fixed time T equals T divided by processing time per job. 

However, if the workstation experiences random failures, and random repair times then fixed-size 

lot and fixed-time lot batch production system will operate and perform differently. The 

expressions for the expected time length to produce a fixed lot and the variability in the time length 

to produce this lot on an unreliable workstation (Equation 1, 2) were derived by Kim and Alden 

(1997).  

𝐸(𝑇𝑛) =  
𝜆𝑛

𝑆𝜇
+ 𝑛𝑆                        (1) 

𝑉𝑎𝑟(𝑇𝑛) =  
2𝑛𝜆

𝑆𝜇2
                  (2) 

where, 𝑇𝑛 – time length to produce a fixed-size lot of n jobs; 𝜆 - failure rate; 𝜇 - repair rate; S - 

workstation speed (jobs/hour). 

 

The expressions for the mean uptime and variance of uptime of a single unreliable 

workstation if it is initially operating (Equations 3, 4), or under repair (Equations 5, 6) were 

derived by Kletter (1996). 



68 

 

 

Figure 3.2 Up and down profile of fixed-size lot and fixed-time lot batch production systems 

 

𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔) =  (
𝜇

𝜆+𝜇
)𝑇 +

𝜆

(𝜆+𝜇)2
(1 − 𝑒−(𝜆+𝜇)𝑇)                           (3) 

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔) =
𝜆2

(𝜆+𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆+𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)  

+ 
2𝜆𝜇

(𝜆+𝜇)3
𝑇(1 + 𝑒−(𝜆+𝜇)𝑇) −

2𝜆2

(𝜆+𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇                                                   (4) 

 

𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑟𝑒𝑝𝑎𝑖𝑟) =  (
𝜇

𝜆+𝜇
)𝑇 −

𝜇

(𝜆+𝜇)2
(1 − 𝑒−(𝜆+𝜇)𝑇)                    (5) 

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑟𝑒𝑝𝑎𝑖𝑟) =
𝜇2

(𝜆+𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆+𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)  

+ 
2𝜆𝜇

(𝜆+𝜇)3
𝑇 −

2𝜇(𝜆−𝜇)

(𝜆+𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇             (6) 

 

where,  

T is the fixed-time length;  

𝜆 – workstation’s failure rate;  

𝜇 – workstation’s repair rate. 
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Using equations 3-6 an expression for variance of uptime in a fixed time length is derived in 

Appendix 3B.  

 

3.3.2 Fixed-Size Lot vs Fixed Time Lot Batch Production System 

In a fixed-size lot batch production system a fixed-sized lot can be defined as the number 

of discrete units of a particular product to produce. For a perfectly reliable workstation the time to 

produce a fixed-size lot is known even before the start of production of a fixed-size lot. However, 

in reality a workstation experience disruptions at random time points and last for random time 

lengths, which causes the production time length to produce a fixed-size lot to be variable (Figure 

3.2). This variability may lead to an excessive delay in the production of a lot and such variability 

also makes the planning and management of interrelated activities such as production scheduling, 

setup crew scheduling more complex. 

In a fixed-time lot batch production system the lot size is defined by a fixed time T rather 

than a fixed number of units. During a fixed-time lot size of T the workstation may experience 

disruptions at random time points and last for random time lengths. Unlike fixed-size lot batch 

production system, once the fixed time length has elapsed the workstation stops producing, and 

the units produced up to time T, a random variable, are treated as the production quantity for the 

batch (Figure 3.2). In this production system, there is no variability in the time length to produce 

a lot, but instead variability in the production output, which is exactly the opposite of fixed-lot 

production where the batch quantity is fixed, but the total time to produce the lot varies. The 

interested readers are referred to Tiwari and Kim (2022), where the details of several production-

inventory cycles are presented. 
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3.4 Data Description 

 

In the current research, to search for empirical relationships between the input factors and 

outputs, the experimental database from Tiwari and Kim (2022) is used as input to a feedforward 

backpropagation neural network (FFNN). This database includes the various combinations of 

factor levels defined by a 2k factorial design, and the associated difference in the long-run average 

cost between optimized fixed-lot and fixed-time systems. Estimated cost differences for 1,536 

different combinations were obtained. The factors and their levels are presented in Table 3.1. For 

more details around the rationale for selecting each factor and their levels, see Tiwari and Kim 

(2022). 

To better understand the contents of this database consider a single factor combination.  

Discrete event simulation and optimization models were developed to optimize the batch sizes and 

reorder point levels in both fixed-size lot and fixed-time lot batch production systems. Then the 

difference in the long-run average cost (ΔAC) is estimated using discrete event simulation by 

subtracting the long-run average cost of the fixed-size lot from the fixed-time lot production 

system. If ΔAC > 0 is statistically significant, then the fixed-size lot is considered a better system. 

If ΔAC < 0 is statistically significant then the fixed-time lot is considered a better system, and if 

ΔAC is not significantly different from zero then the two systems are not different. Thus the 

dependent variable used in the FFNN consists of three nominal categorical levels. 

Table 3.1 Factors and levels considered in Tiwari and Kim (2022) 

Factor Level 1 Level 2 

Stand-alone availability 0.80 0.90 

Failure/Repair frequency Frequent Infrequent 
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Factor Level 1 Level 2 

Mean processing time between failures (hours) 

Mean processing time to repair (hours) 

10 

1.11 

10 

2.5 

20 

2.22 

20 

5 

Service level 0.95 0.98 

Capacity utilization 0.70 0.78 

Demand inter-arrival time (processing hours) 

24  

(Daily) 

120  

(Weekly) 

CV of demand (120 processing hours) 0.015 0.1 

CV of demand (24 processing hours) 0.03 0.2236 

Ordering cost ($) 500 1000 

Inventory holding cost ($/p.mins/month) 1 2 

Backordering cost ($/p.mins/month) 0.5 2.5 

3.4.1 Conversion to Processing Minutes 

To expand the inference space of the results obtained, various production system 

parameters will be converted to processing minutes. Parameters such as demand size, demand 

variability, production lot size, reorder level, on-hand inventory, inventory holding cost, and 

backordering cost are converted into the equivalent time units of production expressed in 

processing minutes or processing hours. For example, a demand value that is normally expressed 

in jobs is multiplied by the processing time of the workstation so if workstation speed is 300 jobs 

per hour, then each job is worth 0.2 processing minutes (processing time per job). Table 3.2 

presents parameters for three different batch production workstations with original values, and 

then expressed in equivalent time units of production. Using this, the varying parametrizations of 
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many batch productions systems in the literature can also be converted to equivalent time units of 

production. 

 

Example  

 In this example the production parameters from a real automated high volume sheet metal 

stamping plant are utilized to compare the long-run average cost performance of system simulated 

in the original parameter units, versus a simulation of the system using parameters converted to 

their equivalent time units of production (Table 3.3). The parameters demand size, demand 

standard deviation, lot size, reorder level, and inventory holding cost are converted into the 

equivalent time units of production by utilizing the processing rate of the workstation (60÷765 

minutes per job). For example, the demand of 74,265 (jobs per week) * 60÷765 (minutes per job) 

yields an equivalent demand of 5825 (p.mins per week).  

Both original and converted systems are then optimized to obtain the fixed-size lot (Q), 

reorder point (r), and fixed-time length (T). Once optimized, the lot size (Q), reorder point (r), and 

fixed-time length (T) of the original system can be compared to the optimized lot size (p.mins), 

reorder point (p.mins), and fixed-time length of the converted system (Table 3.3). When the 

optimized parameters in original units are converted, the results are the same as the optimized 

parameters of the converted system. For example, the optimized lot size (Q) in original units is 

45229 jobs. When this lot size is converted into equivalent time units of production the result is 

45529*60/765 ≈ 3571 p.mins, which is very close to the optimized lot size (in p.mins) of the 

converted system. Also, the holding costs, ordering costs obtained for the system in original units, 

and those obtained by simulating the converted system are not statistically different. 
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Table 3.2 Conversion of parameters to their equivalent time units of production - processing minutes (p.mins) 

Parameter 

Workstation 1 

Original 

Specification 

Workstation 1 

Equivalent Time 

Units of 

Production 

Workstation 2 

Original 

Specification  

Workstation 2 

Equivalent Time 

Units of 

Production 

Workstation 3 

Original 

Specification 

Workstation 3 

Equivalent Time 

Units of Production 

Workstation speed 495 JPH 0.1212 p.mins/job* 60 JPH 1 p.mins/job* 49.5 JPH 1.212 p.mins/job* 

Demand per week 37200 jobs 4509 p.mins 4509 jobs 4509 p.mins 3720 jobs 4509 p.mins 

Demand standard 

deviation 
7440 jobs 901 p.mins 901 jobs 901 p.mins 744 jobs 901 p.mins 

Inventory 

holding cost 
$0.12/unit/month $1/p.mins/month $1/unit/month $1/p.mins/month $1.2/unit/month $1/p.mins/month 

Backordering 

Cost 
$0.24/unit/month $2/p.mins/month $2/unit/month $2/p.mins/month $2.4/unit/month $2/p.mins/month 

*Processing rate of the workstation 
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Table 3.3 Cost performance comparison of original and converted parameters of a workstation 

 

 
Sheet Metal 

Stamping 

Equivalent Time Units of 

Production 

Demand Interarrival 120 hours 120 processing hours 

Machine Speed 765 JPH 60 JPPH* 

Demand Distribution Log Normal Log Normal 

Demand Size 74265 jobs 5825 p.mins 

Variability in Demand 8900 jobs 698 p.mins 

Demand CV 0.120 0.120 

Mean Time Between Failures 26.37 hours 26.37 processing hours 

Mean Time To Repair 2.93 hours 2.93 processing hours 

SAA 90% 90% 

Capacity utilization 90% 90% 

Service Level Requirement 95% 95% 

Inventory Holding Cost 0.5 ($/unit/month) 6.375 ($/p.mins/month) 

Ordering Cost ($/Order) 500 500 

Optimized Reorder Point (Fixed lot 

system) 
110798 jobs 8690 p.mins 

Optimized Fixed-Size Lot 45529 jobs 3571 p.mins 

Fixed Lot Inventory level 33901.47 33894.17 

Fixed Lot Ordering Cost 3244.47 3244.59 

Optimized Reorder Point (Fixed 

time system) 
80964 jobs 6349 p.mins 

Optimized Fixed-Time Lot 59.10 hrs. 59.10 processing hrs. 

Fixed Time Inventory level 31059.91 31053.30 

Fixed Time Ordering Cost 3632.87 3633.71 

*Jobs per processing hours 
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3.4.2 Generality of Factorial Space 

When conducting empirical experimental-based research, the inference space for which any 

results are applicable is an important question. The factors considered in this research, which are 

known to affect the long-run average cost of the high-volume automated batch production systems 

(Table 3.1), were carefully selected so the inference space will include many real systems. The 

factor values utilized were determined from a literature review and discussion with production 

managers2, and are intended to be representative of many scenarios that occur in actual high-

volume batch production systems. 

For the stand-alone availability (SAA), the expectation is to have as high a workstation 

SAA as possible. For recent manufacturing operations the standard for achieving world-class 

performance includes a workstation availability of at least 90% (Ahuja & Khamba, 2008). 

Therefore one SAA level considered is 90%.  For the lower SAA level, any SAA lower than 80% 

is judged to be uncompetitive.  At very high SAA levels (> 95%), the two batch production control 

systems tend towards very similar performance (they are the same at 100% SAA), so these higher 

SAA levels are not considered. Table 3.4 lists prior production related research where workstation 

SAA were specified, and the values assumed. 

Table 3.4 Workstation availability 

Workstation Stand-Alone 

Availability (%) 
Reference 

80 Kletter (1996), 

Gupta and Garg (2012), 

88 Panagiotis (2018), 

Nurprihatin et.al. (2019) 

                                                      
2 S. Jain, B. Kumar (personal communication, June 2020)  



76 

 

Workstation Stand-Alone 

Availability (%) 
Reference 

90 Ahuja and Khamba (2008), 

Groenevelt et. al. (1992) 

91 Mendez and Rodriguez (2017) 

 

The SAA is a function of the mean time between failure (MTBF) and the mean time to 

repair (MTTR), and various combinations of MTBF and MTTR can be used to obtain the same 

SAA. In this research frequent failures with shorter repair lengths and infrequent failures with 

longer repair lengths are considered (Table 3.5).  

Table 3.5 SAA with various Failure/Repair Frequency 

Failure/Repair Frequency 

MTBF 

(processing 

hours) 

MTTR 

(processing 

hours) 

SAA 

(
𝑴𝑻𝑩𝑭

𝑴𝑻𝑩𝑭 +𝑴𝑻𝑻𝑹
) 

Frequent failures with shorter repair 

length 

10 1.11 0.9 

10 2.5 0.8 

Infrequent failures with longer repair 

length 

20 2.22 0.9 

20 5 0.8 

 

Since the extremes may not be representative of a real systems and since the question 

revolves around factor effects, MTBF values of 10 hours and 20 hours were selected.  A 10 hour 

MTBF represents one failure per shift on average, and a 20 hour MTBF is close to one failure per 

every three shifts on average. 

The factors utilized to model the customer’s demand includes the demand inter-arrival 

time, and demand coefficient of variation. For several production systems studied in the literature, 

demand interarrival periods considered are daily and weekly (Table 2.9), and the actual demand 
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in a period is a random variable. The same demand interarrival periods were used here with log 

normally distributed demands. 

Table 3.6 Demand inter-arrival 

Demand inter-arrival Reference 

Daily Kalchschmidt (2003), 

Abdulmalek and Rajgopal (2007), 

Ferguson et. al. (2007), 

Sabaghi et. al. (2015) 

Weekly Kletter (1996), 

Kalchschmidt (2003), 

Abdulmalek and Rajgopal (2007) 

 

The variability in the demand quantities is controlled by the coefficient of variation (CV). 

Two levels of CVs are considered for both daily and weekly demands. These CVs are scaled such 

that the weekly demand variability is the same for both daily and weekly demand interarrival. Due 

to the asymmetrical nature of log-normal distribution, higher CVs are not considered since this 

leads to unreasonably high demands occurring often enough to lead to very poor inventory 

performance. 

Another factor considered is the capacity utilization, which is the ratio of average demand 

and average production in a given period. The capacity utilization is inversely affected by the 

levels of SAA, i.e., for constant average demand and average production over a time period, high 

SAA will yield a lower capacity utilization, whereas low SAA will yield a higher capacity 

utilization. The question of interest is the impact of capacity utilization at realistic utilization 

values. Therefore, capacity utilizations in the neighborhood of 0.8 are selected. Similar utilizations 

were assumed in Groenevelt (1992), Kletter (1996), Taj et. al. (2012). 
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Inventory holding costs and backordering costs are based on the average monthly inventory 

level. Past studies on inventory systems have considered inventory holding cost on ‘per item per 

unit time’ basis (Taj et al., 2012; Vander Veen & Jordan, 1989). In this research inventory holding 

costs are based on processing minutes per month. The low level for inventory holding cost is 

assumed to be $1/processing minutes/month, and the high level is assumed to be twice the low 

level at $2/processing minutes/month. After conversion to processing minutes per month the 

inventory holding costs in (Taj et al., 2012; Vander Veen & Jordan, 1989) fall within this range. 

The ordering cost is a fixed cost that is incurred whenever an order of fixed-size lot Q or 

fixed-time lot T is placed. In inventory systems studied in the literature, the ordering costs 

considered are significantly higher than the inventory holding costs (Chiu, Wang, et al., 2007; 

Vander Veen & Jordan, 1989). Chiu et al. (2007) assumed the ordering cost at $450 per order, and 

Vander Veen & Jordan (1989) assumed it to be $1000. In this study for the low level of ordering 

cost was increased to $500 per order so that the high level is twice the low level. Therefore, the 

low level for ordering cost is assumed to be $500/order, and the high level is assumed to be 

$1000/order. 

The backordering cost is incurred on the average excess demand backordered per month. 

Previous studies on inventory systems have considered backordering cost to be both smaller (Chiu, 

Ting, et al., 2007) and greater (Wee et al., 2007) than inventory holding cost. The low level of 

back-ordering cost is assumed to be smaller than the two levels of inventory holding cost at 

$0.5/processing minutes/month, and the high level is assumed to be greater than the two levels of 

inventory holding cost at $2.5/processing minutes/month. Backordering cost is not utilized in the 

lost sales system, where the unmet demands are lost if on-hand inventory is not available. 
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3.5 Artificial Neural Network 

Functional patterns or relationships between multiple input factors on the performance of 

fixed-size lot and fixed-time lot production systems can provide insight into system operations, 

but can be difficult to establish. An artificial neural network (ANN) is one method that is 

appropriate to deal with such complexities. ANNs process in parallel, multiple inputs and capture 

the causal relationships between the input factors and the outputs in a given dataset. However, 

beyond the predictive realm, ANNs can also aid in assessing the contribution of each input factor.  

  

Figure 3.3 Architecture of artificial neural network 

 Empirical relationships existing in the fixed-time and fixed-lot experimental database are 

explored using a classical one hidden layer feedforward backpropagation neural network. The 

schematic diagram of this neural network is shown in Figure 3.3. It consists of three layers: input, 

hidden, and output layers, with each layer having a sufficient number of neurons. The number of 

neurons in the input layers depends on the dataset, i.e., the number of input factors or independent 

variables. The number of hidden layers and their neurons can be determined by trial and error. The 

number of neurons in the output layers depends on the specific problem. Thus, based on the 
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specific problem, the number of neurons in the input and output layers are fixed. In this research 

the output layer contains three neurons that represent three categorical outcomes or dependent 

variables: 1) a fixed-size lot system has lower average cost than a fixed time system, 2) a fixed-

time lot system has lower average cost than a fixed-size lot system, and 3) the cost performance of 

the two systems is not different. 

The input data is scaled such that all inputs are in the range [0, 1], and this ensures that all 

inputs are treated equally. The neurons of a layer are connected to the neurons of the next layer 

and each connection carries a weight. The neurons of the input layer are multiplied by their 

respective connection weights to get a single neuron value of the hidden layer. The next step is a 

mathematical transformation to generate the output between 0 and 1. For this, a more commonly 

used activation/transfer function such as sigmoid function (logistic function) is utilized. In 

addition, there is a bias component connected to hidden and output layers. This procedure is the 

same for all of the successive layers (hidden → output), and hence it is called a feedforward neural 

network (Figure 3.4). 

 𝑛𝑒𝑤 𝑛𝑒𝑢𝑟𝑜𝑛𝑗 = 𝜎(𝑤1𝑎1 + 𝑤2𝑎2 +⋯+𝑤𝑛𝑎𝑛 + 𝑏)  

Where, 

𝜎 =
1

1 + 𝑒−𝑥
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑥 =  (𝑤1𝑎1 + 𝑤2𝑎2 +⋯+𝑤𝑛𝑎𝑛 + 𝑏) 

wi is the connection weight between current layer’s ith neuron and next layer’s jth neuron 

ai is the value of the ith neuron 

b is the bias component, that is added to make the neuron values more meaningful 
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Figure 3.4 Feedforward backpropagation neural network 

 

Backpropagation is a method of adjusting the connection weights of a multilayer 

feedforward neural network. In backpropagation (Figure 3.4), the connection weights and biases 

between the input → hidden → output layers are adjusted such that the difference between the 

neural network output and the targeted output is minimized. Backpropagation along with the 

feedforward process is repeated until the error is minimized to an acceptable value. The final values 

of the adjusted connection weights are then used to determine the neural network output. The 

protocol used for implementing FFNN in Python programming language is provided in Appendix 

3C.  

After the FFNN is trained, a mathematical equation relating the input factors and the 

outcomes can be written as (Goh et al., 2005): 
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𝑌 = 𝑓𝑠𝑖𝑔 {𝑏𝑜 +∑[𝑤𝑘𝑓𝑠𝑖𝑔 (𝑏ℎ𝑘 +∑𝑤𝑖𝑘𝑋𝑖

𝑚

𝑖=1

)]

ℎ

𝑘=1

} 

Where, 

𝑏𝑜 = bias at output layer, 𝑤𝑘 = weight connection between neuron k of the hidden layer and the 

output neuron, 𝑏ℎ𝑘 = bias at neuron k of the hidden layer, 𝑤𝑖𝑘 = weight connection between input 

factor i and neuron k of hidden layer, 𝑋𝑖 = the input parameter i, normalized in the range (0, 1), 

𝑓𝑠𝑖𝑔 sigmoid transfer function. 

Using the trained weights and biases, expressions can be written to finally arrive at the 

outcome with the input parameters (Appendix 3D). The performance of the neural network can 

be computed using the prediction accuracy obtained over the test dataset. 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑏𝑦 𝐹𝐹𝑁𝑁 𝑚𝑜𝑑𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
) ∗ 100 

 

3.5.1 Connection Weight Approach 

After the neural network is trained and its prediction accuracy has reached an acceptable 

level, the next step is to identify the relative contribution of the input factors to the output. This 

contribution depends on the magnitude and direction of the inter-neuron connection weights. In a 

trained neural network the positive connection weights represent excitatory effects on the neurons 

thereby increasing the value of predicted response whereas, the negative connection weights 

represent inhibitory effects on the neurons thereby decreasing the value of the predicted response 

(Olden & Jackson, 2002). 



83 

 

The connection weights based approach has found its application in a wide variety of 

studies such as ecological, and geological (Das et al., 2011; Das & Basudhar, 2008; Kanungo et 

al., 2014; Olden et al., 2004, 2006; Olden & Jackson, 2002; Park et al., 2016). However, a literature 

review suggests that this approach has not been widely utilized in operations research. In a 

connection weights approach, the calculation includes a product of input-hidden and hidden-output 

connection weights between each input neuron and output neuron and sums the products across all 

hidden neurons. The relative importance, if expressed in percentages, of input factors in the neural 

network can be calculated by dividing the absolute value of each variable contribution by the sum 

of all absolute variable contributions. (Olden & Jackson, 2002). The relationship between the input 

and output can be determined in two steps. Positive input-hidden and positive hidden-output 

weights, or negative input-hidden and negative hidden-output weights, give the direct 

proportionality of the input factors. The inverse proportionality of the input factors is indicated by 

the positive input-hidden and negative hidden-output, as well as negative input-hidden and positive 

hidden-output weights. The input factors with larger connection weights represents a greater effect 

or relative importance on the prediction of the response than the input factors with smaller 

connection weights. The magnitude and direction of the relative importance of an input factor can 

be determined by using the following formula: 

𝑅𝑒𝑙𝐼𝑚𝑝𝑖𝑛𝑝𝑢𝑡 = ∑(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑝𝑢𝑡,ℎ𝑖𝑑𝑑𝑒𝑛(𝑘) ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡ℎ𝑖𝑑𝑑𝑒𝑛,𝑜𝑢𝑡𝑝𝑢𝑡(𝑘))

𝑛

𝑘=1

 

 

where, 

RelImpinput   relative importance of an input factor 

n   total number of hidden nodes, 

k   index number of hidden node 
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Example: 

 An example of a 2/2/2 neural network architecture is presented to explain the connection 

weight approach Figure 3.5.  

Table 3.7 shows the connection weights between the input and hidden layers that are obtained after 

training the network. Table 3.8 shows the connection weights between the hidden and output 

layers. To obtain the relative importance of each input factor, a matrix multiplication of Table 3.7 

and Table 3.8 is performed. The output of matrix multiplication is presented in Table 3.9. The 

input neuron 1 in Table 3.9 positively influences the Outcome 2. However, this neuron negatively 

influences the Outcome 1. The advantage of using the connection weight approach is that it takes 

into account the contrasting influence of each neuron through different hidden neurons resulting 

in correct estimation of a factor’s importance. The final output of the sums of connection weights 

are presented in Table 3.9. The input neuron IN1 has large relative importance in predicting 

Outcome 1, as well as in predicting Outcome 2.  

 

Figure 3.5 Example - Connection Weight Approach 
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Table 3.7 Input-Hidden connection weights from a trained neural network 

 HN1 HN2 

IN1 -1.468 1.851 

IN2 0.3771 -0.06259 

 

X 

Table 3.8 Hidden-Output connection weights from a trained neural network 

 ON1 ON2 

HN1 2.5154 -0.3391 

HN2 -2.5584 1.0036 

   

Table 3.9 Matrix multiplication and addition of Connection Weights 

 Outcome 1 Outcome2 

IN1 -8.4282 2.3555 

IN2 1.1086 -0.18093 

 

The advantage of utilizing connection weight approach is that it takes into account the 

contrasting influence of each neuron that results in the correct estimation of each factor’s relative 

importance. The results and their analysis are presented in the next section. 

 

3.6 Results  

The experimental results from Tiwari and Kim (2022) were analyzed to search for 

empirical relationships between the input factors and outputs. Tiwari and Kim (2022) utilized 

ANOVA to identify the factors having the largest effect on the long-run average cost performance  

by analyzing the difference in the long-run average cost performance (ΔAC) of the two batch 

production system. However, here a feedforward back propagation neural network (FFNN) was 

applied with three categorical outcomes 1) a fixed-size lot production system has significantly 

lower cost performance than a fixed-time lot system, 2) a fixed-time lot production system has 
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significantly lower cost performance than a fixed-size lot system, and 3) the cost performance of 

two systems is not significantly different. A connections weight approach (Olden et al., 2004; 

Olden & Jackson, 2002) was used to identify the factors that have the highest relative 

importance/influence on the three categorical outcomes. The FFNN was applied separately to the 

experimental results for production systems operating under lost sales, and backordering policies. 

 

3.6.1 Lost Sales Policy 

A feedforward backpropagation neural network with a 9/9/3 network architecture (i.e., 

input layers with 9 neurons, one hidden layer with 9 neurons, and output layer with 3 neurons) was 

constructed. The number of epochs and learning rate parameters were found using trial and error, 

resulting in a network that was trained for 1000 epochs with a learning rate of 0.1. The performance 

of the FFNN was evaluated by determining the prediction accuracy of the model on randomly 

selected testing data. The average classification accuracy of approximately 85% was achieved. 

The relative importance/influence of each input factor using the connection weight 

approach (for a 9/9/3 network architecture) is presented in Figure 3.6. The solid bars in Figure 3.6 

are positive valued relative importance that shows the direct proportionality, and the patterned bars 

are negative valued relative importance that shows inverse proportionality of the input factors. The 

magnitude and direction of the relative importance of each input factor as per connection weight 

approach is presented in Appendix 3E. The demand process related factor, CV of demand has the 

largest relative importance for all the three outcomes. There is a stark contrast of the influence of 

CV of demand to predict Outcome 1 and Outcome 2. It can be seen from Figure 3.6 that CV of 

demand is inversely proportional to Outcome 1, and directly proportional to Outcome 2. Thus it 
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can be inferred that with a shift in CV of demand level from low → high the fixed-time lot 

production system has significantly lower cost performance than a fixed-size lot system.  

The production process related factor, stand-alone availability (SAA) has the second 

overall largest relative importance/influence on the prediction of the outcomes. Thus it can be 

inferred from Figure 3.6 that with a shift in SAA level from low → high the fixed-size lot 

production system has significantly lower cost performance than a fixed-time lot system. 

To better understand the mechanisms for how CV of demand and SAA influence whether 

fixed-time or fixed-size lot production systems have lower cost, several levels of both factors were 

identified and simulated. The lot size (Q), reorder point (r), and fixed time length (T) for each 

treatment combination was optimized. Because other factors have relatively lower 

importance/influence in predicting the outcomes, the levels of these factors were fixed as shown 

in Table 3.10. The results of the long-run average cost performance obtained using the optimized 

parameters at different levels of CV of demand and SAA for the two production systems are 

summarized in Figure 3.7. Figure 3.7 shows the impact of the two factors on cost performance, 

and when a particular system performs better. 

At 100% SAA, fixed-size lot and fixed-time lot batch production systems are the same. 

However, with a reduction in the SAA, differences in the cost performance of the two systems 

starts to appear. For low levels of CV of demand and higher SAA levels a fixed-size lot system 

performs better than fixed-time lot system. Whereas, for lower SAA levels a fixed-time lot system 

performs better than fixed-size lot system. Tiwari and Kim (2022) observed a similar pattern. At 
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higher CV of demand levels, and higher SAA levels the cost performance of the two batch 

production systems is not significantly different. 

 

Table 3.10 Lost Sales Policy - Levels of CV of Demand and SAA to develop insights 

Factors Level 

Demand 
Weekly 

(120 p.hrs) 

Service Level 95% 

Inventory Holding Cost $1/p.mins/month 

Ordering Cost  $500/Order 

CV of Demand 0.015 0.05 0.1 0.2 

SAA (%) 98 95 90 85 80 75 

 

In Figure 3.7, using boxes, the CV of demand and SAA combinations for which a production 

system’s performance is better than the other is shown. A fixed lot production system is preferred 

when operating at high SAA and with a low CV of demand. Independent of the CV of demand, once 

the SAA drops below 85% there is a steep increase the in the long-run average cost performance 

of the fixed lot system as indicated by the “elbows” in each graph. The onset of this more rapid 

cost increase can be attributed to a threshold reached by the fixed lot production time variability 

caused by increased average repair lengths (that increase as the SAA decreases).  

If the system operates at a low SAA (< 80%), then for any CV of demand, a fixed-time lot 

production system has significantly lower cost. The following two examples provide insights into 

the mechanisms driving cost differences between fixed-size lot and fixed-time lot production 

systems under different CV of demand and SAA combinations. 
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Figure 3.6 Lost Sales Policy - Relative importance for all the input factors from the FFNN 

 

4
2
%

1
2
%

1
1
%

7
%

7
%

9
%

1
%

6
%

5
%

3
5
%

1
6
%

6
%

8
%

4
%

1
3
%

2
%

8
%

7
%

2
8
%

1
7
%

1
4
%

5
%

5
%

1
0
%

4
%

7
%

9
%

0%

10%

20%

30%

40%

50%

CV of

Demand

SAA Capacity

Utilization

Inventory

Holding Cost

Demand

Interarrival

Service level MTBF MTTR Ordering

Cost

Lost Sales - Relative Importance of Input Factors

Fixed Lot Fixed Time Not Different Performance



90 

 

Example 1: 

Figure 3.8 and Figure 3.9 show mixed mass/density functions for the time length to produce 

a fixed-size lot, and uptime in a fixed-time lot, respectively for a workstation operating at 98% 

SAA (MTBF =30 hrs., MTTR = 0.61224 hrs.). Density functions for several CV of demand levels, 

and weekly demand arrivals (120 processing hours) are shown, where different CV of demand 

levels change the optimal fixed lot and fixed time values.  

Figure 3.8 (fixed lot size time production lengths) shows that moving from 0.015 to 0.2 CV 

of demand results in an increase in the optimal lot size (p.mins). The increase in the lot size is to 

buffer against the increasing demand variability.  However, at 98% SAA the variability in the time 

length to produce a fixed lot size is low enough such that the probability of completing the fixed-

size lot before the next demand arrival is close to 1. This in turn drives lower reorder levels, and 

leads to lower average inventory levels. 

In Figure 3.9 (fixed-time lot uptime) moving from 0.015 to 0.2 CV of demand results in an 

increase in the fixed time length (p.hours). Like the fixed lot system, the increases in the optimal 

fixed time lengths buffer against demand variability increases. At 98% SAA the variability in the 

uptime in a fixed time length is low, but this variability drives higher reorder levels leading to a 

higher average inventory level to meet the service level requirement.  

  In general, at higher SAA levels when the production time to produce a fixed lot is low 

enough that the system can operate in a “just-in-time” manner a fixed-size lot production system 

will result in lower costs than a fixed-time lot system. 
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Example 2: 

Figure 3.10 and Figure 3.11 show mixed mass/density functions for the time length to 

produce a fixed-size lot, and uptime in a fixed-time lot, respectively for a workstation operating at 

85% SAA (MTBF =30 hrs., MTTR = 5.29411 hrs.). The mixed mass/density functions are shown 

for several CV of demand levels, and weekly demand arrivals (120 processing hours). Increasing 

CV of demand results in an increased lot size to buffer against demand variability. The increased 

lot sizes increase the variability in the time length to produce a fixed lot as shown in (Kim & Alden, 

1997), where n is the fixed lot size and S is the workstation speed.  

𝑉𝑎𝑟(𝑇𝑝.𝑚𝑖𝑛𝑠) =
2𝑛(𝑀𝑇𝑇𝑅)2

𝑆 ∗ 𝑀𝑇𝐵𝐹
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Figure 3.7 Lost Sales - Comparison of long-run average cost performance of fixed-size lot and fixed-time lot production systems at 

differnet levels of CV of demand and SAA
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Figure 3.8 Density Functions - Time to Produce a Fixed Lot with 98% Workstation SAA 
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Figure 3.9 Density Functions - Uptime in a Fixed-Time Lot with 98% Workstation SAA
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Figure 3.10 Density Functions - Time to Produce a Fixed Lot with 85% Workstation SAA 
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Figure 3.11 Density Functions - Uptime in a Fixed Time Lot with 85% Workstation SAA 
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system. In general, at lower SAA levels a fixed-time lot production system will be lower cost except 

at very low CV of demand levels.  

 

3.6.2 Backordering Policy 

For the backordering policy a 10/10/3 network architecture was constructed. The network 

was trained for 1000 epochs with a learning rate of 0.1. The FFNN prediction accuracy using the 

randomly selected testing data was approximately 82%. 

The connection weight approach was utilized to obtain the relative importance/influence 

of each input factor as shown in Figure 3.12. The relative importance of the input factors as per 

connection weight approach is presented in Appendix 3E. Similar to the lost sales policy, for a 

backordering policy the demand process related factor, CV of demand has the largest relative 

importance/influence, and the production process related factor, stand-alone availability (SAA) has 

the second largest relative importance/influence , and for the fixed size-lot system inventory 

holding cost has high relative importance. To understand the relative importance in predicting the 

outcomes the several additional levels of the CV of demand, SAA were identified and simulated 

(Table 3.11). Because the other factors have lower relative contribution in predicting the outcomes, 

the levels of these factors were fixed. The lot size (Q), reorder point (r), and fixed time length (T) 

were optimized whenever an input factor changed. 
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Figure 3.12 Backordering Policy - Relative importance for all input factors from the FFNN 
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Table 3.11 Backordering Policy - Levels of Inventory Holding Cost and SAA to develop insights 

Input Factors Levels 

Service Level 95% 

CV of Demand 0.015 0.05 0.1 0.2 

Inventory Holding Cost $1/p.mins./month $2/p.mins./month 

Backordering Cost $0.5/p.mins./month 

Ordering Cost $500/Order 

Demand interarrival  120 processing hours 

SAA (%) 98 95 90 80 75 

 

In Figure 3.13 and Figure 3.14, using boxes, the combinations of CV of Demand, and SAA 

for which a particular production system’s performance is better than the other or if the 

performances are not different, is summarized. At 100% SAA, and any level of CV of demand, the 

cost performance of the two batch production systems is not different. With the reduction in the 

SAA the difference in the cost performance of the two systems starts to appear. In Figure 3.13, for 

low CV of demand levels and high SAA levels there is no difference in the performance of the two 

batch production systems. For low SAA levels a fixed-time lot system performs better than fixed-

size lot. At higher CV of demand and higher SAA levels the cost performance of the two batch 

production systems is not different. The backordering system here follows the similar mechanisms 

followed by lost sales as demonstrated in example 1 and 2. 

In Figure 3.14, with inventory holding cost at high level, high SAA levels and low CV of 

demand levels, the performance of the two production systems is not different. However, with 

reduction in SAA with low CV of demand, the performance of fixed-size lot production system is 

better. With increase in CV of demand, even at higher SAA levels, fixed time is observed to be 

perform better. Similar to lost sales once the SAA drops below 90% there is a steep increase the in 

the long-run average cost performance of the fixed lot system. At higher inventory holding cost 
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level both production control systems produces smaller frequent lots. However, with increasing 

CV of demand, reducing SAA, and to meet the service level requirements the fixed-size lot 

production control system results in an increased reorder level, increased lot size and relatively 

larger on-hand inventory to buffer against the demand and production variability. This drives 

higher inventory holding cost in fixed-size lot system, and pushes the overall cost performance of 

a fixed-size lot system to be greater than fixed-time lot system. 

To better understand why the demand interarrival has higher relative importance, several 

levels of SAA and demand interarrival were identified and simulated (Table 3.11, Table 3.12). 

With reductions in the SAA the difference in the cost performance of the two systems is evident. 

For all demand inter-arrivals levels, and higher SAA levels the cost performance of fixed-size lot 

and fixed-time lot systems is not significantly different. As the SAA reduces, the fixed-time lot 

system results in significantly lower costs than the fixed-size lot system.  

 

Table 3.12 Backordering Policy - Levels of Demand Interarrival and SAA to develop insights 

Input Factors Levels 

Service Level 95% 

Inventory Holding Cost $1/p.mins./month 

Backordering Cost $0.5/p.mins./month 

Ordering Cost $500/Order 

Demand interarrival 

(p.hrs.)* 
24 48 96 120 

SAA (%) 98 95 90 85 80 75 

* Weekly demand variability was equal for all demand arrivals 

 

In Figure 3.15, using boxes, the combinations of Demand Inter-arrival and SAA for which 

a particular production system’s performance is better than the other or if performances are not 
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different, is shown. At high SAA level, the workstation can adopt either lot production system. 

Similar to lost sales once the SAA drops below 85% there is a steep increase the in the long-run 

average cost performance of the fixed-size lot system. This increase is attributed to the variability 

in production time lengths driven primarily by increased average repair lengths. If the workstation 

operates at a lower SAA, then a fixed-time lot production system will have significantly lower costs 

than a fixed lot system. The mechanisms leading to cost differences between fixed-size lot and 

fixed-time lot systems with backordering are similar to that for lost sales demonstrated in examples 

1 and 2. 
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Figure 3.13 Backordering - Comparison of long-run average cost performance of fixed-size lot and fixed-time lot production systems 

at different levels of CV of demand, SAA, and low level of inventory holding cost
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Figure 3.14 Backordering – Fixed-Size Lot and Fixed-Time Lot Performance at different levels of CV of Demand, SAA, and high level 

of inventory holding cost 
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Figure 3.15 Backordering - Comparison of long-run average cost performance of fixed-size lot and fixed-time lot production systems 

at different levels of Demand Inter-arrival and SAA
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3.6.3 Managerial Insights 

 The results obtained in this research are applicable to the systems analyzed here and can 

be extended to many other production systems that fall within the same experimental space (after 

conversion into the equivalent time units of production), and can serve as an aid to production 

managers.  

The results presented clearly demonstrate the impact of stand-alone availability, and 

demand coefficient of variation on the performance of the two production control systems.  If the 

workstation follows a (Q, r) inventory policy with high stand-alone availability then fixed-size lot 

production time variability is low enough so that production can operate in a “just-in-time” 

manner. Before each demand arrival, enough processing minutes from the completion of the fixed-

size lot are added to on-hand inventory so that lost sales or backorders are minimal. However, with 

low workstation stand-alone availability and high demand variability many lots are completed 

after the demand arrival causing high lost sales or backorders.  

Consider an example of a workstation operating under a fixed-size lot production control 

system where material handling resources are normally scheduled to move completed lots. If lot 

completion is frequently late so that expedited movement of partially completed lots occurs to 

avoid lost sales, then such a “boots on the ground symptom” suggests that a fixed-time lot 

production control system may be more cost effective in the short term. In general, when fixed lot 

production time is highly variable due to lower stand-alone availabilities, a fixed-time lot 

production system will often yield a lower long run average cost (Figure 3.7, Figure 3.13, and 

Figure 3.14). However, if and when the workstation stand-alone availability is improved, then a 

move back to fixed-size lot production control should be considered. 
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The fact remains that the use of fixed-time lot production control in commercial 

manufacturing environments is rare.  The results obtained indicate that when the production 

environment has particular characteristics, fixed-time lot production control may be more cost 

effective. Some potential reasons a fixed-time lot production control system has not found 

widespread implementation in commercial manufacturing environments are listed: 

1. The operations at many if not most high volume production systems, including stamping 

plants, have evolved over time to relatively lower period to period demand variability, and 

high workstation stand-alone availability. This combination of factors favors the use of 

fixed lot systems. 

2. The impact of using a fixed time system on materials, material handling, and inventory 

management. Production and warehouse managers are now faced with uncertainty 

regarding the required quantity of raw material, the amount of material handling resources 

needed, and the storage space required for the raw material and the final product inventory.  

a. In stamping facilities, it is common to store the stamped parts in trolleys for their 

movement. Such trolleys are specifically designed to hold a fixed number of 

stamped parts and are expensive and require space to store when not in use. Thus 

the efficient use of such containers is important. 

3. Fixed-time lot system may not be suitable for products whose raw material have short shelf 

life, especially for the products that are once out of storage and can’t be returned such as 

product mix used to manufacture tires, paint containers for painting vehicle’s body, raw 

material of pharmaceuticals, and certain chemicals that have to be stored under inert 

environment. 
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4. To a lesser degree, the scarcity of literature and case studies on a fixed-time lot production 

system lowers the awareness of its use as a\an alternative production control system. 

On the other hand, there are other aspects of production operations that would operate more 

efficiently with a fixed-time lot system. Workstation setups/changeovers is one such example. 

Thus, in a more comprehensive comparison of fixed-size lot and fixed-time lot systems, the 

boundaries of the study should be expanded to include more supporting, upstream, and 

downstream processes in the whole production facility. 

 

3.7 Conclusion and Future Work 

This research examined experimental results comparing the performance of fixed-size lot and 

fixed-time lot production control systems to search for functional relationships between the input 

factors and the categorical outputs that indicate when a fixed-size lot or fixed-time lot batch 

production system should be utilized. A feedforward backpropagation neural network (FFNN) is 

applied to the experimental database from Tiwari and Kim (2022). The inference space for the 

FFNN results includes other production system that falls directly within the same experimental 

space, and many other system after the conversion of production system parameters to the 

equivalent time units of production. 

The FFNN with connection weight approach is used to search for a model to predict three 

categorical outcomes, 1) a fixed-size lot system has significantly lower average cost than a fixed 

time system, 2) a fixed-time lot system has significantly lower average cost than a fixed-size lot 

system, and 3) the cost performance of the two systems is not significantly different. The 

magnitude and direction (positive and negative) of the connections weights is utilized to identify 
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the relative importance of the input factors in predicting the outcome. The FFNN results show that 

for the lost sales policy the factors: demand coefficient of variation and workstation stand-alone 

availability have the highest relative importance in predicting the outcomes. For the batch 

production systems operating under the backordering policy the factors: demand interarrival time, 

stand-alone availability, and inventory holding cost have the highest relative importance in 

predicting the outcomes.  

To better understand the mechanisms for how these factors influence the performance of 

the fixed-size lot and fixed-time lot production systems, additional levels of these factors were 

identified, and optimized (batch sizes and reorder levels in both fixed-size lot and fixed-time lot 

batch production systems were optimized) systems were simulated. In general for the lost sales 

policy, higher stand-alone availability levels and a lower demand coefficient of variation results 

in lower production time variability and more predictable demand so that the system can operate 

in a “just-in-time” manner with fixed-size lot production. This results in lower costs than a fixed-

time lot system. Because this just-in-time operation breaks down as the stand-alone availability 

reduces and demand coefficient of variation increases, the fixed-time lot system results in 

significantly lower costs than the fixed-size lot system.  

For the backordering policy the demand coefficient of variation, stand-alone availability, 

and inventory holding cost were observed to have the highest relative importance. In general, at 

lower inventory holding cost level, as the demand coefficient of variation increases, and stand-

alone availability decreases, the fixed-time lot results in significantly lower costs that fixed lot 

system. The mechanics behind this is similar to lost sales. At higher inventory holding cost level 

both the fixed-size lot and fixed-time lot production control systems produces smaller frequent 

lots. However, with increasing CV of demand, and reducing SAA the fixed-size lot results in an 
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increased reorder level, increased lot size and relatively larger on-hand inventory to buffer against 

the demand and production variability. The increased lot size increase the variability in the time 

length to produce a fixed lot due to this many lot completion times are late or occur after the 

demand arrival and the increased on-hand inventory pushes the cost performance of fixed-size lot 

production control system to be greater than fixed-time lot production control system. 

 

3.7.1 Future work 

In this research a single product is considered with a workstation that requires no 

changeover. Many plants consist of multiple workstations that require changeovers between the 

production of different products. The findings from this research can be extended to examine the 

performance of the two production control systems in a larger production environment where 

multiple workstations produce multiple product types, and each product has their own demand 

variabilities. Each workstation requires a changeover of random time length whenever a new 

product is produced. Changeovers are performed by setup crew resources shared among the 

workstations. Given the more predictable nature of fixed-time lot production, fewer setup 

resources may be required to meet the performance requirements of a fixed-time lot system. 
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Appendix 3A 
EXPECTATION AND VARIANCE FOR VARIOUS PRODUCTION LINES 

 

Unless otherwise specified in the table, the following notations are used. 

i station number 

𝑝𝑖  Probability that station i may break down at the end of the cycle  

𝑟𝑖 Probability that down station i is repaired at the end of a cycle  

λ  Failure rate  

μ  Repair rate 

t, T Time length 

 

Research 

Production 

Line and 

Station 

Details 

Expected Output Variability in the Output 

Carrascosa 

(1995) 

Amount of 

material 

produced in t 

time steps on 

machine with 

two failure 

modes 

𝐶𝑡 
where, 

𝐶 = 
1

1 + ∑
𝑝𝑖
𝑟𝑖𝑖=1,2

 

(𝐶 
𝑟1
2𝑝2(2 − 𝑝2 − 𝑟2) + 𝑟2

2𝑝1(2 − 𝑝1 − 𝑟1) − 2𝑝1𝑝2𝑟1𝑟2
(𝑝2𝑟1 + 𝑟2𝑝1 + 𝑟1𝑟2)

3
) 𝑡

− 2𝐶 
(2 + 𝑏 − 𝑝1 − 𝑝2 − 𝑟1 − 𝑟2)((𝑟2 − 𝑟1)

2 − (𝑝1 + 𝑝2 − 𝑏)
2)

𝑏(−𝑏 + 𝑝1 + 𝑝2 + 𝑟1 + 𝑟2)
3

(1

− 𝛽1
𝑡)

− 2𝐶 
(−2 + 𝑏 − 𝑝1 − 𝑝2 − 𝑟1 − 𝑟2)((𝑟2 − 𝑟1)

2 − (𝑝1 + 𝑝2 − 𝑏)
2)

𝑏(𝑏 + 𝑝1 + 𝑝2 + 𝑟1 + 𝑟2)
3

(1

− 𝛽2
𝑡) 

 

𝑏2 = (𝑟2 − 𝑟1)
2 + (𝑝1 + 𝑝2)

2 + 2(𝑟2 − 𝑟1)(𝑝2 − 𝑝1) 
 

𝛽1 = 1 −
𝑝1 + 𝑝2 + 𝑟2 + 𝑟1 − 𝑏

2
 

𝛽2 = 1 −
𝑝1 + 𝑝2 + 𝑟2 + 𝑟1 + 𝑏

2
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Output of a 

machine with 

a single 

failure mode 

in an interval 

of length t 

𝑟

𝑟 + 𝑝
𝑡 

𝑟𝑝

(𝑟 + 𝑝)2
(
2

𝑟 + 𝑝
− 1) 𝑡

−
2𝑟𝑝

(𝑟 + 𝑝)4
(1 − 𝑟 − 𝑝)(1 − (1 − 𝑟 − 𝑝)𝑡) 

Kletter 

(1996) 

 

 

Uptime in 

length T of a 

single station 

initially in 

operating 

state  

(
𝜇

𝜆 + 𝜇
)𝑇 +

𝜆

(𝜆 + 𝜇)2
(1

− 𝑒−(𝜆+𝜇)𝑇) 

𝜆2

(𝜆 + 𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆 + 𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)

+ 
2𝜆𝜇

(𝜆 + 𝜇)3
𝑇(1 + 𝑒−(𝜆+𝜇)𝑇)

−
2𝜆2

(𝜆 + 𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇 

Uptime in 

length T of a 

single station 

initially in 

repair state 

(
𝜇

𝜆 + 𝜇
)𝑇 −

𝜇

(𝜆 + 𝜇)2
(1

− 𝑒−(𝜆+𝜇)𝑇) 

𝜇2

(𝜆 + 𝜇)4
(1 − 𝑒−2(𝜆+𝜇)𝑇) −

4𝜆𝜇

(𝜆 + 𝜇)4
(1 − 𝑒−(𝜆+𝜇)𝑇)

+ 
2𝜆𝜇

(𝜆 + 𝜇)3
𝑇 −

2𝜇(𝜆 − 𝜇)

(𝜆 + 𝜇)3
𝑇𝑒−(𝜆+𝜇)𝑇 

Time length 

to produce 

fixed number 

of parts 

𝑛𝜆

𝑆𝜇
 

2𝑛𝜆

𝑆𝜇2
 

  

n is the number of parts to be produced 

S is the production rate 

Kim and 

Alden 

(1997) 

Time length 

to produce 

fixed number 

of parts  

𝑛𝜆

𝑆𝜇
+
𝑛

𝑆
 

2𝑛𝜆

𝑆𝜇2
 

n is the number of parts to be produced 
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S is the production rate 

Tan (1998) 

 

N identical 

stations with 

no buffer 

𝜇𝑁

(𝜆 + 𝜇)𝑁
 2𝜇2𝑁

(𝜆 + 𝜇)2𝑁+1
 ∑ (

𝑁

𝑘
)

𝑁

𝑘=1

 
(
𝜆
𝜇)
𝑘

𝑘
   

M parallel 

stations with 

no buffer 

(𝜆 + 𝜇)𝑀 − 𝜆𝑀

(𝜆 + 𝜇)𝑀
 

2(𝜆𝑀[(𝜆 + 𝜇)𝑀 − 𝜆𝑀])

(𝜆 + 𝜇)2𝑀+1
∑ (

𝑀

𝑚
)

𝑀

𝑚=1

 
(−1)𝑚+1

𝑚
   

M parallel 

with N 

identical 

stations with 

no buffer 

𝜇𝑁

(𝜆 + 𝜇)𝑁
(𝜆 + 𝜇)𝑀 − 𝜆𝑀

(𝜆 + 𝜇)𝑀
 

 

(
2(𝜆𝑀𝜇2𝑁[(𝜆 + 𝜇)𝑀 − 𝜆𝑀])

(𝜆 + 𝜇)2(𝑀+𝑁)+1
) × 

 

(

 ∑ (
𝑀

𝑚
)

𝑀

𝑚=1

 
(−1)𝑚+1

𝑚
+ ∑(

𝑁

𝑘
)

𝑁

𝑘=1

((𝜆 + 𝜇)𝑀

− 𝜆𝑀) (
𝜆

𝜇
)
𝑘

/𝜆𝑀𝑘

+∑∑ (
𝑀

𝑚
)

𝑀

𝑚=1

(
𝑁

𝑘
)

𝑁

𝑘=1

 
(−1)𝑚+1 (

𝜆
𝜇)
𝑘

𝑚 + 𝑘

)
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Tan (1998) 

N-stations in 

series with no 

intermediate 

buffer 

𝜇𝑁

(𝜆 + 𝜇)𝑁
 

[
𝜇

(𝜆 + 𝜇)
]
𝑁

∑∑ (
𝑁

𝑛
)

𝑛

𝑚=0

𝑁

𝑛=1

(
𝑛

𝑚
) [

𝜇

(𝜆 + 𝜇)
]
𝑁−𝑛

× [
𝜆(√𝑠 − 2𝜇𝑝 + 𝜆)

2√𝑠(𝜆 + 𝜇)
]

𝑛−𝑚

× [
𝜆(√𝑠 + 2𝜇𝑝 − 𝜆)

2√𝑠(𝜆 + 𝜇)
]

𝑚

(
1

𝛼𝑛 − (𝛽 − 𝛼)𝑚
) 

 

𝑠 = (𝜆 + 2𝜇)2 − 4𝜇𝑝(3𝜆 + 2𝜇 − 𝜇𝑝) 

𝛼 = 𝜆 + 2𝜇(1 + 𝑝) + √𝑠 

𝛽 = 𝜆 + 2𝜇(1 + 𝑝) − √𝑠 
 

p is the probability that repair job, after receiving service, 

stays in the same stage for another service 

Tan (1999) 

Transfer line 

with two 

heterogeneou

s stations 

with no 

buffer 

- 

 

𝑟1𝑟2
(𝑝1 + 𝑟1)2(𝑝2 + 𝑟2)2

[𝑝1𝑟2
(2 − 𝑝1 − 𝑟1)

𝑝1 + 𝑟1

+ 𝑝2𝑟1
(2 − 𝑝2 − 𝑟2)

𝑝2 + 𝑟2

+ 𝑝1𝑝2
(2 − (𝑝1 + 𝑟1) − (𝑝2 + 𝑟2) + (𝑝2 + 𝑟2)(𝑝2 + 𝑟2))

𝑝1 + 𝑟1 + 𝑝2 + 𝑟2 − (𝑝2 + 𝑟2)(𝑝2 + 𝑟2)
] 

 

Homogeneou

s transfer line 

with N 

- 
𝑟2𝑁

(𝑝 + 𝑟)2𝑁
∑(

𝑁

𝑗
)

𝑁

𝑗=1

[1 + (1 − 𝑝 − 𝑟)𝑗]

[1 − (1 − 𝑝 − 𝑟)𝑗]
(
𝑝

𝑟
)
𝑗
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identical 

stations with 

no buffer 

Tan (1999) 

Output of a 

single 

machine in a 

given time 

interval [0, t) 

𝑟

𝑟 + 𝑝
𝑡 +

𝜆𝑝 − (1 − 𝜆)𝑟

(𝑝 + 𝑟)2
(1

− (1 − 𝑝 − 𝑟)𝑡) 
 

𝜆 = 0, machine initially down 

𝜆 = 1, machine initially up 

𝑝𝑟(2 − 𝑝 − 𝑟)

(𝑝 + 𝑟)3
𝑡

+ [
2𝜆2

(𝑝 + 𝑟)2
+ 𝜆

(𝑝 − 𝑟)(1 − 2𝑡) − 2

(𝑝 + 𝑟)2

+
𝑟(𝑟2 + 2𝑝2𝑡 − 2𝑝𝑟 − 2𝑟2𝑡 − 3𝑝2 + 4𝑝

(𝑝 + 𝑟)2
] (1

− 𝑝 − 𝑟)𝑡

+ [
−𝜆2

(𝑝 + 𝑟)2
+ 𝜆

2𝑟

(𝑝 + 𝑟)2

−
𝑟2

(𝑝 + 𝑟)4
] (1 − 𝑝 − 𝑟)2𝑡

+ [−
𝜆2

(𝑝 + 𝑟)2
− 𝜆

𝑝2 − 2𝑝 − 𝑟2

(𝑝 + 𝑟)2

+ 𝑟
(−𝑟2 + 2𝑝𝑟 + 3𝑝2 − 4𝑝)

(𝑝 + 𝑟)4
] 

 

Assaf et al. 

(2014) 

Output of 

single 

machine in a 

given time 

interval [1, t] 

- 

𝜎𝑌
2 [
𝑡 − 𝑡𝜌2 − 2𝜌 + 2𝜌𝑡+1

(1 − 𝜌)2
] 

 

𝑌 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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Output of 

Bernoulli 

machine 

- (1 − 𝑝)𝑝. 𝑡 

Single 

machine with 

multiple 

failure modes 

- 

𝑡𝑒(1 − 3𝑒) + 2𝑡𝜋𝜇𝑑𝑖𝑎𝑔𝑃𝑍𝜇 + 2𝜋𝜇𝑑𝑖𝑎𝑔(𝑃
𝑡+1 − 𝑃)𝑍2𝜇 

 

𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑟

𝑟 + 𝑝
) 

𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝜇𝑑𝑖𝑎𝑔 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 

𝑍 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 (𝐼 − 𝑃 + 𝐴)−1 

Rismanchia

n and Lee 

(2018) 

Output of 

single station 

in time length 

T 

𝜋 [
(
𝑐2
2
− 𝑎1𝑐1) 𝑠0𝑒

𝑇.𝑠1 + (𝑐1
2 −

𝑐2
2
) 𝑠1𝑒

𝑇.𝑠0

−𝑠1𝑐1
2 + 𝑠0𝑎1𝑐1(1 + 𝑠1𝑇) −

𝑐2
2
(𝑠0 − 𝑠1)

]

𝑐1
2𝑠1𝑠0

 

 

𝑎1, 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑏1, 𝑏2, 𝑏3 are the first 

three raw moments of distribution 

function FU(t) and FD(t) respectively 

𝑐1 = 𝑎1 + 𝑏1 
𝑐2 = 𝑎2 + 𝑏2 + 2𝑎1𝑏1 

𝑐3 = 𝑎3 + 3𝑎1𝑏2 + 3𝑎2𝑏1 + 𝑏3 

Asymptotic variance rate  

2𝜋2𝑎1(𝑎1𝑐1𝑠0 − 𝑐1
2𝑠1 −

𝑐2
2
(𝑠0 − 𝑠1))

𝑐1
3𝑠1𝑠0

 

 

𝑠0 = −
6(𝑐2 − 2𝑐1

2)𝑐1

2𝑐1𝑐3 − 3𝑐2
2  

 

𝑠1 = −
6(𝑐2 − 2𝑎1𝑐1)𝑐1

2𝑐3𝑐1 − 3𝑐2
2 + 6𝑐2𝑐1𝑎1 − 6𝑎2𝑐1

2 
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Appendix 3B 
 

VARIANCE OF UPTIME IN A FIXED TIME LENGTH 

 

Using the expected uptime and variance equations provided by Kletter (1996), expression for 

variance in uptime in a fixed time length is derived. 

  

𝑉𝑎𝑟(𝑋) = 𝐸[𝑉𝑎𝑟(𝑋|𝑌)] + 𝑉𝑎𝑟[𝐸(𝑋|𝑌)] 

Therefore, the variance of uptime in a fixed time length can be computed as 

 

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒) = [𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) ∗ 𝑆𝐴𝐴 + 𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) ∗ (1 − 𝑆𝐴𝐴)]

+ 𝑉𝑎𝑟[𝐸(𝑈𝑝𝑡𝑖𝑚𝑒|𝑢𝑝, 𝑜𝑟 𝑑𝑜𝑤𝑛)] 

 

𝑉𝑎𝑟[𝐸(𝑈𝑝𝑡𝑖𝑚𝑒|𝑢𝑝, 𝑜𝑟 𝑑𝑜𝑤𝑛)]

= [𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝)
2
∗ 𝑆𝐴𝐴 +  𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛)

2 ∗ (1 − 𝑆𝐴𝐴)]

− [𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) ∗ 𝑆𝐴𝐴 + 𝐸(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) ∗ (1 − 𝑆𝐴𝐴)]
2
 

 

= 
𝜇2𝜆 − 2𝜇2𝜆 ∗ exp−(𝜆+𝜇)𝑇 + 𝜇2𝜆 𝑒𝑥𝑝−2(𝜆+𝜇)𝑇 +  𝜇𝜆2 −  2𝜇𝜆2𝑒𝑥𝑝−(𝜆+𝜇)𝑇 + 𝜇𝜆2𝑒𝑥𝑝−2(𝜆+𝜇)𝑇

(𝜆 + 𝜇)5
 

 

[𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) ∗ 𝑆𝐴𝐴 + 𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) ∗ (1 − 𝑆𝐴𝐴)] = 

(𝜆2𝜇(1 − 𝑒𝑥𝑝−2(𝜆+𝜇)𝑇) − 4𝜆𝜇2(1 − 𝑒𝑥𝑝−(𝜆+𝜇)𝑇) + (2𝜆𝜇𝑇(1 + 𝑒𝑥𝑝−(𝜆+𝜇)𝑇) − (2𝜆2𝑇𝑒𝑥𝑝−(𝜆+𝜇)𝑇)) ∗ (𝜆𝜇 + 𝜇2))

(𝜆 + 𝜇)5
 

+ 
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(𝜇2𝜆(1 − 𝑒𝑥𝑝−2(𝜆+𝜇)𝑇) − 4𝜆𝜇2(1 − 𝑒𝑥𝑝−(𝜆+𝜇)𝑇) + (2𝜆𝜇𝑇 + 2(𝜇𝑇(𝜆 − 𝜇)𝑒𝑥𝑝−(𝜆+𝜇)𝑇)) ∗ (𝜆𝜇 + 𝜆2))

(𝜆 + 𝜇)5
 

 

Combining[𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑢𝑝) ∗ 𝑆𝐴𝐴 + 𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒𝑑𝑜𝑤𝑛) ∗ (1 − 𝑆𝐴𝐴)], 

𝑉𝑎𝑟[𝐸(𝑈𝑝𝑡𝑖𝑚𝑒|𝑢𝑝, 𝑜𝑟 𝑑𝑜𝑤𝑛)] and simplifying 

 

𝑉𝑎𝑟(𝑈𝑝𝑡𝑖𝑚𝑒) =  
2𝜇𝜆[(2𝜇𝜆𝑇 + 𝜇2𝑇 + 𝜆2𝑇) − (𝜆 + 𝜇)(1 − 𝑒𝑥𝑝−(𝜆+𝜇)𝑇)]

(𝜆 + 𝜇)5
 

 

𝑉𝑎𝑟(𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) = (
2𝜇𝜆[(2𝜇𝜆𝑇 + 𝜇2𝑇 + 𝜆2𝑇) − (𝜆 + 𝜇)(1 − 𝑒𝑥𝑝−(𝜆+𝜇)𝑇)]

(𝜆 + 𝜇)5
) 𝑆2 

 

where, S is the processing speed of the workstation The variance in uptime expression divided by 

T approaches 2𝜆𝜇/(𝜆 + 𝜇)2 as T approaches infinity, and approaches zero as T approaches zero. 
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Appendix 3C 
 

Initialize:  

1. Set number of folds for the k-fold cross validation 

2. Set learning rate 

3. Set number of epochs 

4. Set number of hidden layers, and number of neurons in each layer 

5. Scale all inputs between [0,1) 

6. Select a transfer/activation function 

7. Assign random weights between [0,1] to all connections between input → hidden and 

hidden → output neurons 

8. Assign a random bias between [0,1] to each neuron in hidden and output layers 

Feedforward Propagation:  

9. Calculate the weighted sum of inputs 

𝑤 = ∑(𝑤𝑒𝑖𝑔ℎ𝑡𝑖 ∗ 𝑖𝑛𝑝𝑢𝑡𝑖) + 𝑏𝑖𝑎𝑠 

10. Use transfer function to compute the output of the neuron. 

𝑛𝑒𝑢𝑟𝑜𝑛𝑗 =  𝜎(𝑊 ∗ 𝑛𝑒𝑢𝑟𝑜𝑛𝑗−1 + 𝑏)  

11. Repeat a. and b. for hidden → output layer 

Backpropagation:  

12. Use the derivative of sigmoid transfer function to calculate the slope of output value of 

neuron 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = 𝑛𝑒𝑢𝑟𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑜𝑢𝑡𝑝𝑢𝑡 ∗ (1 − 𝑛𝑒𝑢𝑟𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑜𝑢𝑡𝑝𝑢𝑡) 
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13. Calculate the error of each neuron in output layer 

𝑒𝑟𝑟𝑜𝑟𝑜𝑢𝑡𝑝𝑢𝑡→ℎ𝑖𝑑𝑑𝑒𝑛

= (𝑛𝑒𝑢𝑟𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑛𝑒𝑢𝑟𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)

∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  

14. Calculate the error value of neurons in hidden layer 

𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛→𝑖𝑛𝑝𝑢𝑡 = (𝑤𝑒𝑖𝑔ℎ𝑡𝑗 ∗ 𝑒𝑟𝑟𝑜𝑟𝑘) ∗ 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

where  

𝑤𝑒𝑖𝑔ℎ𝑡𝑗 – weight connecting neuron j to current neuron 

𝑒𝑟𝑟𝑜𝑟𝑘 – error from neuron k of output layer 

15. Update Weights and Bias 

𝑤𝑒𝑖𝑔ℎ𝑡𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑖𝑛𝑝𝑢𝑡 

𝑏𝑖𝑎𝑠𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑏𝑖𝑎𝑠𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ 𝑒𝑟𝑟𝑜𝑟 

16. Repeat steps 9a. through 9c.for fixed number of epochs 

Predictions on Testing Data: 

17. Utilize updated weights and biases from feedforward backpropagation 

18. For each row of test data set, compute neuron values of hidden and output layers 

19. Select index value in output layer with largest probability as prediction  
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Appendix 3D 
 

The mathematical equation relating the input factors and the output can be written as (Goh et al., 

2005), 

𝑌 = 𝑓𝑠𝑖𝑔 {𝑏𝑜 +∑[𝑤𝑘𝑓𝑠𝑖𝑔 (𝑏ℎ𝑘 +∑𝑤𝑖𝑘𝑋𝑖

𝑚

𝑖=1

)]

ℎ

𝑘=1

} 

Where, 

𝑏𝑜  bias at output layer 

𝑤𝑘  weight connection between neuron k of the hidden layer and the output neuron 

𝑏ℎ𝑘  bias at neuron k of the hidden layer 

𝑤𝑖𝑘  weight connection between input factor i and neuron k of hidden layer 

𝑋𝑖  input parameter i, normalized in the range (0, 1) 

𝑓𝑠𝑖𝑔  transfer/activation function 

 

Using the values of connection weights and biases are obtained from the trained neural network, 

the following expression can be written 

𝐴𝑖 = ℎ𝑖 +∑𝑤𝑗𝑁𝑗

𝑛

𝑗=1

 

Where, 

ℎ𝑖  bias of the jth hidden layer neuron 

𝑤𝑗 connection weight between the jth input layer neuron and ith hidden layer neuron 

𝑁𝑗  ith normalized input parameter 

n  number of input neurons 
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𝐵𝑖 =
𝑤𝑘

[1 + exp (−𝐴𝑖)]
 

where, 

𝑤𝑘  weight connection between neuron k of the hidden layer and the output neuron 

 

𝐶1 = 𝑏𝑜 +∑𝐵𝑖 

where, 

𝑏𝑜  bias at output layer 

𝑌 =  
1

[1 + exp (−𝐶1)]
 

 

The Y value obtained is in the range of [0, 1]. The above expressions and the connection weight 

values should be applied in the range of the dataset for which the neural network was trained.
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Appendix 3E 

Lost Sales – Relative importance of the input factors using connection weight approach 

Input Parameters 
Outcome 

1 

Outcome 

2 

Outcome 

3 

CV of Demand -236.05 

(1) 

208.46 

(1) 

76.51 

(1) 

SAA 68.62 

(2) 

-96.44 

(2) 

46.07 

(2) 

Capacity Utilization -63.66 

(3) 

34.98 

(7) 

39.16 

(3) 

Inventory Holding Cost 39.70 

(5) 

-49.84 

(4) 

14.14 

(7) 

Demand Interarrival 39.55 

(6) 

-24.42 

(8) 

-14.13 

(8) 

Service level -50.97 

(4) 

75.72 

(3) 

-28.12 

(4) 

Mean Time Between 

Failure 

-5.62 

(9) 

10.55 

(9) 

-9.86 

(9) 

Mean Time To Repair -33.30 

(7) 

46.06 

(5) 

-19.50 

(6) 

Ordering Cost -29.43 

(8) 

40.90 

(6) 

-25.83 

(5) 

 

Backordering - Relative importance of the input factors using connection weight approach 

Input Parameters Outcome 1 Outcome 2 Outcome 3 

Demand Interarrival 
90.22 

(4) 

-84.72 

(5) 

27.97 

(5) 

SAA 
111.70 

(3) 

-153.05 

(2) 

72.33 

(2) 

Inventory Holding Cost 
135.37 

(2) 

-117.01 

(3) 

6.97 

(10) 

Backordering Cost 
11.81 

(9) 

13.75 

(10) 

-14.97 

(8) 
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Input Parameters Outcome 1 Outcome 2 Outcome 3 

Mean Time Between Failure 
16.72 

(7) 

35.50 

(7) 

-44.04 

(4) 

Service level 
-13.37 

(8) 

24.52 

(8) 

-12.07 

(9) 

Ordering Cost 
-75.53 

(5) 

123.52 

(4) 

-54.71 

(3) 

Mean Time To Repair 
-0.53 

(10) 

17.58 

(9) 

-26.81 

(6) 

CV of Demand 
-149.97 

(1) 

219.80 

(1) 

-80.98 

(1) 

Capacity Utilization 
-71.32 

(6) 

60.36 

(6) 

-18.50 

(7) 
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4 Conclusion and Future Work 

 The main objective of this research is to develop useful insights for understanding when a 

fixed-size lot or fixed-time lot production control systems should be utilized based on minimizing 

long-run average cost with a constraint on the service level. The batch production systems 

considered are workstations operating under a continuous review (Q, r) inventory system where 

the order quantities Q, and reorder levels r are optimized to minimize the long-run average costs. 

When the workstations are perfectly reliable, the fixed-size lot and fixed-time lot production 

control systems converge since production times are assumed constant, and thus have the same 

long-run average cost. However, the workstation considered are unreliable and additionally the 

demand processes are variable. 

 Due to the availability of an extensive body of knowledge and ubiquitous use of the fixed-

sized lot systems in practice, the expectation at the beginning of this research was that, in the 

absence of considering the support activities such as setup-crews, the fixed-size lot production 

control system will outperform the fixed-time lot system. However, the results obtained in Chapter 

2 demonstrated that this is not the case. It was observed that there are several factors that can drive 

the long run average cost performance of the fixed-time lot production control system to be 

superior to the fixed-size lot production control system. This observation motivated the work in 

Chapter 3, where the functional relationships between the input factors and the output were 

explored. 

 Because of the complexity of the systems considered, the work done in Chapter 2 was 

experimental. The experimental objectives were to identify the factors that have the largest effect 

on the long-run average cost differences between the fixed-size lot and fixed-time lot production 

control systems. Discrete event simulation models were created for both fixed-size lot and fixed-
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time lot production control systems. Multiple factors that are known to drive the cost of such 

systems were identified. 28 and 29 experiments were conducted for the lost sales and backordering 

policies of (Q, r) inventory system of the fixed-size lot and fixed-time lot production systems. This 

required 1,536 different systems to be simulated. Simulation optimization models were developed 

to optimize the batch sizes and reorder point levels of each system simulated. System parameters 

such as demand sizes, lot sizes Q, reorder levels r, on-hand inventory, and backordered inventory 

are expressed in their equivalent time units of production. This conversion expands the inference 

space of the results obtained in this research to many other production systems that falls with the 

same experimental space. The simulation models were validated by comparing the simulation 

results with available analytical results for the special cases of the systems considered.  

The experimental results from Chapter 2 show that for a lost sales systems the interarrival 

time between demands, and the coefficient of variation of the demand probability distribution have 

by far the largest impact on the long-run average cost difference between fixed-size lot and fixed-

time lot batch production systems. If the workstation operates under lower demand variability, and 

lower workstation stand-alone availability (more variable production), the fixed-time lot batch 

production system performed better than the fixed lot batch production system. However, if the 

coefficient of variation of the demand probability distribution is low, and demand interarrival time 

is large the fixed lot batch production system had lower cost. For the batch production systems 

operating under a backordering policy the experimental results show that the workstation stand-

alone availability, failure and repair frequency, and capacity utilization have the largest impact 

on the long-run average cost difference between fixed-size lot and fixed-time lot batch production 

systems. If the workstation operates under low capacity utilization (workstation is underutilized) 

and a high stand-alone availability the fixed lot batch production system had lower cost. However, 
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the fixed-time lot batch production system was preferred when the workstation operates with high 

capacity utilization and lower stand-alone availability. 

The use of ANOVA in Chapter 2 focused on factor effects, and not on functional patterns 

or relationships that may be established between the various input factors and the output. In 

Chapter 3, a feedforward backpropagation neural network is utilized to further analyze the 

experimental database obtained from Chapter 2 and capture the relationships between the input 

factors and the output. The neural network considered consists of three layers: input, hidden, and 

output layers with input and hidden layer having a sufficient number of neurons. The output layer 

contains three neurons that represent three categorical outcomes: 1) a fixed-size lot system has 

lower average cost than a fixed-time lot system, 2) a fixed-time lot system has lower average cost 

than a fixed-size lot system, and 3) the cost performance of the two systems is not different. A 

connection weight approach was utilized to identify the relative importance of the input factors in 

predicting the outcomes. The input factors with large connection weights represent a higher 

relative importance on the prediction of the response than factors with small connection weights. 

The results show that for lost sales policy the factors: demand coefficient of variation and 

stand-alone availability of the workstation have the highest relative importance in predicting the 

outcomes. To better understand the mechanisms for how these factors influence the performance 

of the fixed-size lot and fixed-time lot production systems, several levels of these factors were 

identified, simulated, and summarized. In general, for lost sales policy at higher stand-alone 

availability levels and lower demand coefficient of variation the production time to produce a fixed 

lot is low enough that the system can operate in a “just-in-time” manner a fixed-size lot production 

system will result in lower costs than a fixed-time lot system. However, as the stand-alone 

availability reduces and demand coefficient of variation increases, the fixed-time lot system results 
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in significantly lower costs than the fixed-size lot system. For the batch production systems 

operating under the backordering policy the factors: demand coefficient of variation, stand-alone 

availability, and inventory holding cost have the highest relative importance in predicting the 

outcomes. The mechanism leading to the cost performance of fixed-size lot and fixed-time lot 

systems with backordering are similar to that of lost sales.  In general, at the higher inventory 

holding cost, the lots produced are smaller and frequent, however with increased CV of demand 

and reduced SAA, the fixed-size lot production control system results in relatively larger on-hand 

inventory to buffer against the demand and production variability. This drives higher total cost for 

the fixed-size lot results than fixed-time lot production control system. 

From the results presented in this research a deeper understanding and insights are gained 

on the performance trends of the fixed-size lot and fixed-time lot production control systems. In 

this research a single product with a workstation that requires no changeover between production 

of different products is considered. In the future the findings from this research can be extended to 

compare the performance of the two production systems in a larger real production environment 

with multiple workstations where the workstation produces multiple products, with their individual 

demand variabilities. Whenever a new product is produced, each workstation requires a 

changeover of random time length that are performed by set up crew resources, shared with other 

workstations. Given the predictable nature of fixed-time lot production, the setup crew resources 

and other supporting activities maybe efficiently scheduled to meet the performance requirements. 

Thus the boundaries of the future study should be expanded to include more supporting, upstream 

and downstream processes in the whole production facility. 
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