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Chapter 1: Introduction

Ribonucleic Acid (RNA) is a polymeric molecule which plays essential roles in

various biological systems, in coding, decoding, regulation and expression of genes.

We are interested in building a system that can reveal structural information of an

RNA sequence. For example, given an RNA sequence "CUCGUCUAGUCAUUUCUUGCCCC

ACUGGAGGUCGAG", we are curious if it forms a stem-loop, or more basic, what does

its secondary structure looks like. Such a system should be trained on a labeled

RNA dataset with minimal information.

The secondary structures and base-pairing interactions of RNAs reveal infor-

mation about their functions [7, 8, 21, 39]. Starting from RNA secondary structure

prediction [57], computational approaches for RNA biology have emerged and be-

come an important part of computational biology. While traditional methods, es-

pecially the widely-used minimum free energy models, have made decent progress

on modeling RNA sequences with structures[38, 36], deep learning approaches have

shown strong potential to break the limitations of those models with the advantage

of learning high-level features with a huge (up to billions) number of parameters

from large-scale datasets [22].

Therefore, we are looking for such a system that can utilize these advantages

of deep neural networks, and take on the structure prediction tasks well enough.

Motivated by this, we present our line of research all the way from a novel anno-
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tated dataset to the systematic deep learning RNA secondary structure prediction

approach.

In this dissertation, we will first go through the background knowledge, getting

the basic concepts of the proposed techniques; then we cover part of the research of

bpRNA which is our presented RNA data annotation toolkit including a large-scale

dataset bpRNA-1m; we next introduce part of the research of LinearFold, in which

we presented the first incremental linear-time dynamic programming algorithm to

predict RNA secondary structures in linear-time.

While the algorithm of LinearFold has to be based on the MFE energy pa-

rameters (explained in the background section) which is heavily manual designed,

we next explored the prediction of RNA structural information without it. The

work DeepSloop is followed, describing our proposed Recurrent Neural Network

approaches that can learn complex rules to detect stem-loop-forming RNA se-

quences; as a next step of DeepSloop, we have the research DeepStructure which

predicts the whole RNA secondary structure directly from RNA sequences. Both

DeepSloop and DeepStructure conclude achieved our goal, which are able to avoid

looking at any energy knowledge or other manual designed knowledge, but directly

learn to predict RNA structural information directly from large-scale datasets.

We also investigated RNA structure visualization tools, and presented bpRNA-

Visual for RNA structure visualization purposes. This work is put into the Ap-

pendix section.
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Chapter 2: Background

2.1 RNA sequence and its structure

Fig. 2.1 shows a segment of RNA sequence and its secondary structure. Consider

an RNA sequence r which is a sequence of nucleotides r[i] ∈ {A,C,G, U}. We

define its structure Sr to be a set of base-pairs (r[i], r[j]), with the restriction

of each nucleotide cannot be paired twice: Sr = {(r[i], r[j])}. In Fig. 2.1, eight

base-pairs are formed with blue lines.

There are exponential number of possible structures S ′r given one RNA sequence

r, but under a certain environment, only one of them Sr is considered as the (most

stable) secondary structure of it. Our goal is to design a system that can take r

as an input and Sr as an output. Moreover, Sr as a base-pairing set, cannot fully

reveal the structural information of RNA sequences [10], thus a systematic method

is needed here. We will cover this part in Chapter 3 , which introduces bpRNA.

2.2 Minimum free energy models

Minimum free energy models [57], also known as MFE models, is the conventional

way to solve the secondary structure prediction problem. The model has a energy

functionfE which takes the RNA sequence r and a structure S ′r and returns its free

energy: free energy of S ′r = fE(r, S ′r). In thermodynamics, a RNA structure with
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A
U

G
C

Figure 2.1: The secondary structure of an RNA sequence.

a higher energy is considered unstable and tend to fold (form a base-pair) and/or

unfold to transform to another structure which has a lower free energy. Therefore,

a structure with the minimum free energy could be a reliable way to model the

secondary structure: Sr = argminS′
r
fE(r, S ′r).

However, there is no exact method to calculate fE: physical experiments can

be performed to measure on a RNA sequence with its secondary structure, but this

is resource consuming and can’t be generalized to an algorithm. As a computa-

tional solution, the energy function is decomposed with local features for different

structure types, and its value is being widely researched and manual designed, to
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simulate the original energy function fE. The decomposition is designed to fit

into a bottom-up dynamic programming algorithm (CKY algorithm), leading to a

cubic-time, quadratic-memory solution for calculating the simulated minimum free

energy, f ∗E, and its secondary structure, S∗r = argminS′
r
f ∗E(r, S ′r). Fig. 2.2 is an ex-

ample of energy decomposition, using the sum of local energy to estimate the free

energy of the whole sequence; Fig 2.3 explains these local types for decomposed

energy calculation.

However, despite the convenience from automatically predicting secondary struc-

tures from sequences, experimental results show that the simulated energy function

f ∗E is far from perfect: models built on this decomposition can hardly reach 70%

of the pairwise accuracy (accuracy of the base pairs) [33, 14] and thus limits the

application of secondary structure prediction.

2.3 Deep neural networks and sequence models

Consider an input layer is a matrix representation (with numerical values) of what

we want to model on, and an output layer is another matrix (can be a single node)

of what we want to predict. A deep neural network (DNN) is multiple layers of

network mapping the input layer all the way to output layer. Such a layer can

be regarded as a linear and/or nonlinear computation from a matrix to another

matrix, usually with a large parameter set. There is a large world of deep neural

networks [32], and we just focus on part of it for our system.

The core part of a deep neural network is its model architecture, and usu-



6

A
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Figure 2.2: An example of the energy decomposition of RNA secondary structure.

ally with a reliable training strategy. For sequential data input (e.g., sentences

in human language, RNA sequence), models including convolutional neural net-

works (CNN) [29], recurrent neural networks (RNN, sometimes combined with

CNN layers) [35], and others (e.g., Transformer networks..) [53]. The work in this

dissertation is mostly related to the bi-directional LSTM technique and the LSTM

plus Attention architecture.
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Figure 2.3: A brief example of RNA structure types. MFE models divide free
energy into these types, and use a set of simulated, hand-engineered features for
calculating the energy within each type. This figure was published in [10].

2.4 Bidirectional LSTM

Generally, the bi-directional LSTM technique is able to model sequential data, and

map a (fixed or any) length of sequential input to either a scalar/vector (which

could be a classification label, a regression number, or a rich class of features

represented by the vector), or with a (fixed or any) length of sequence of vectors.

See Fig. 2.4 for the overview.

Taking a vector of inputs, the bi-directional LSTM layers use a forward LSTM
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Input

Forward
LSTM

Concatenation

Backward
LSTM

BiLSTM
Layer

BiLSTM
Layer

Forward
LSTM

Backward
LSTM

Figure 2.4: An illustration of the bi-directional LSTM technique as a sequence
model. This architecture is used in part of the DeepSloop model.

and a backward LSTM (with the LSTM cell unit explained in Fig. 2.5), and each

independently produces an output sequence of vectors (and a hidden sequence of

vectors that would be used later or ignored). The sequential output of a BiLSTM

layer is a concatenation of these two sequences of vectors to one sequence of vectors;

the vector output of a BiLSTM layer takes a concatenation of the end of these two

sequences of vector and produces one vector.

We used the BiLSTM technique in DeepSloop and DeepStructure which would

be detailedly described in the later chapters.

2.5 Seq2Seq Models and Encoder-Decoder Networks

The Seq2Seq (sequence-to-sequence) models generally stand for a set of neural

network models including an encoder layer and a decoder layer, which both the



9

σσ
σ

x

+

tanh

x

x

tanh

ht
xt

ctt-1c

ht-1

ht

Figure 2.5: An LSTM unit, which takes a vector of input and a pair of vector
(c, h), using math computations to produce the next pair of vector (c, h).

encoder and the decoder uses RNN (e.g., BiLSTM for encoder, LSTM for decoder)

layers to produce a mapping from a sequence of vectors to another sequence of

vectors. The Encoder-Decoder Network idea is from machine translation[48] and

widely used in sequence-to-sequence tasks including speech recognition, image pro-

cessing and natural language processing [30].

2.6 LSTM with Attention Layer

The LSTM with Attention architecture is a typical variant of the Seq2Seq frame-

work. The attention technique here is to take the encoder output (the output

can be regarded as two parts: an output vector and a sequence of output hidden

vectors; attention works on this sequence) and provide extra information for the
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decoder layer; this extra information is usually a vector, either directly fed into the

decoder input (first cell), or dynamically map the decoder hidden vector from any

decoder cell and concatenate to the input of the next cell. The overview showed in

Fig. 2.6 is a typical LSTM plus attention architecture and used in DeepStructure

framework.

Encoder Output

Context Vector

Decoder Layer

Softmaxed 
Correlation
(scalar)

Alignment 
Vector

Addition

Multiplication

Concatenation

Attention Layer

Decoder LSTM

FeedForward

Output

dot-product

Encoder Layer

BiLSTM Layer

BiLSTM Layer

Figure 2.6: A brief overview of the LSTM plus Attention architecture. In this
framework, both encoder layer and decoder layers are required to be RNNs which
works with the input/output and hidden vector for each cell. This architecture is
used in part of the DeepStructure Model.
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2.7 Transformer Encoder and Transformer Decoder

Transformer Networks [53, 9] generally stack attention-based neural network layers

in the Seq2Seq framework with multiple transformer encoder and decoder layers;

each layers takes a sequence of vectors as input and output. A transformer en-

coder layer usually consists a self-attention layer and a feed-forward layer, while a

transformer decoder layer usually consists a self-attention layer, a encoder-decoder

attention layer (which takes the encoder output sequential vectors and makes at-

tention with the current input sequential vectors), and a feed-forward layer. See

Fig. 2.7, 2.8 for the layer overview.

Feed Forward

Input

Self Attention

Transformer
Encoder Layer

Output

Figure 2.7: An overview of the Transformer encoder layer.

In the DeepStructure project, we have two architectures utilizing Transformer

Networks: one uses both the Transformer encoder and the Transformer decoder;

another one uses LSTM encoder with the Transformer decoder.
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Encode-Decoder Attention Transformer
Decoder Layer

Output

Encoder Output

Figure 2.8: An overview of the Transformer decoder layer.
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Chapter 3: bpRNA: Large-scale Automated Annotation and

analysis of RNA Secondary Structure

3.1 Abstract

bpRNA is a novel annotation tool capable of parsing RNA structures, including

complex pseudoknot - containing RNAs, to yield an objective, precise, compact,

unambiguous, easily-interpretable description of all loops, stems, and pseudoknots,

along with the positions, sequence, and flanking base pairs of each such structural

feature. bpRNA also introduces several new informative representations of RNA

structure types to improve structure visualization and interpretation. bpRNA-

1m is further generated as a web-accessible meta-database, ‘bpRNA-1m’, of over

100,000 single-molecule, known secondary structures; this is both more fully and

accurately annotated and over 20-times larger than existing databases. Both the

bpRNA method and the bpRNA-1m database will be valuable resources both for

the specific analysis of individual RNA molecules and large-scale analyses such as

are useful for updating RNA energy parameters for computational thermodynamic

predictions, improving machine learning models for structure prediction, and for

benchmarking structure-prediction algorithms.
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3.2 Overview of bpRNA

Ribo-nucleic acid (RNA) plays an essential role in all lives, with various functions

including molecular scaffolding, gene regulation, and encoding proteins. Research

studies focus on the secondary structures and base-pairing interactions of RNAs

which reveal information about their functions [7, 8, 21, 39]. With the tremen-

dous improvements on RNA structure prediction, the limited and outdated data

resources start to constrain the research in this field. For example, the most de-

tailed meta-database, RNA STRAND v2.0 [2], contains only ¡5,000 entries, with

information not been updated in a decade. Another common fact for the resources

is that, even with the base pairing data, it can be hard to infer their structural

features since there’s no systematic way to resolve the structural topology and

identify all structural features given the base pairing relationships. Therefore, it is

needed for a system analyzing RNA base pairing data and identify and annotate

structural features.

We present ‘bpRNA’, a program for RNA structural topology that parses base

pair data into detailed structure ‘maps’ providing relevant contextual data for

stems, internal loops, bulges, multi-branched loops (multiloops), external loops,

hairpin loops, and pseudoknots. This work is aiming to fill a long-standing vacancy

that previous work to parse RNA structural topology does not handle pseudoknots

or only analyze tertiary structures. A detailed meta-database consisting of more

than 100,000 single-molecule RNA secondary structures called ‘bpRNA-1m’, is also

released. We use ‘bpRNA-1m’ as the standard dataset for training in the projects
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of this proposal.

bpRNA is focused on these aspects of improvements against previous work: 1)

it handles a detailed analysis of complex structures with pseudoknots, including

Page-wise pseudoknot analysis; 2) it outputs both high-level and detailed-level of

RNA structural information to help users understand the structure; 3) a complete

bpRNA-1m dataset is released with accurately generated dot-bracket sequences

for all structures including pseudoknots. Here we focus on the first one which the

author of this proposal mainly contributes to.

3.3 RNA structure types, pseudoknots, and page number

RNA structure types include hairpin loops, bulges, stems, internal loops, multi-

branch loops, external loops, and pseudoknots, showing in Fig. 2.3.A. An unpaired

sequence with both ends meeting at the two strands of a stem region forms a hairpin

loop (Fig. 2.3.B). An internal loop is defined as two unpaired strands flanked by

closing base pairs on both sides; if only one of the strands has length zero, this

forms a bulge (Fig 3.1.C/D). Multi-branch loops (multiloops) consist of more than

two unpaired strands in one cycle, connected by stems (Fig 2.3.E); if this is not

connected in a cycle, we call it external loops.

Pseudoknots (PKs) are defined by the crossing of the base-paired positions.

Generally, consider two set of base pairs (usually stems), Sbp0, Sbp1, if ∀(r[i], r[j]) ∈

Sbp0, (r[i
′], r[j′]) ∈ Sbp1, i < i′ < j < j′ or i′ < i < j′ < j, then Sbp0, Sbp1 forms a

pseudoknot. Pseudoknots are related to the planar graph since a pseudoknot-free
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Figure 3.1: RNA structure types. B shows a hairpin loop, C shows a internal loop,
D shows a bulge loop, and E shows a multi-stem loop. F is the page hierarchy of
the pseudoknots. This figure was published in [10].
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structure can be represented by non-crossing pairing arcs in a half-plane with the

boundary of RNA strand; but a pseudoknotted structure needs several distinct

half-planes to present the secondary structure (Fig. 2.3.F). A structure with k

planar can be represented as the dot-bracket format of k types of brackets; this k

is called page number.

Finding the minimum page number of pseudoknots is challenging, as no exist-

ing work solved this in polynomial time. Therefore, pseudoknots cause the gaps

between the base-pairings and the structural features of the RNA sequence: the

base-pairings can be parsed to a unique structure if it is pseudoknot-free, but

introducing pseudoknots would make this task non-deterministic and complicated.

3.4 Maximizing first-page pair numbers

We are interested in a sustainable algorithm to parse the structural information

from a set of base-pairs with pseudoknots. Specifically, since most structure pre-

diction algorithms are focused on pseudoknot-free structures, it is important for

bpRNA providing a pseudoknot-free structure, i.e., a set of first-page base-pairs,

as the first step.

We design and develop a dynamic programming algorithm that can guarantee

to find the PK-free set of the maximum number of base-pairs. The algorithm

MaxFirstPagePairs (Algorithm 1) uses a bottom-up CKY-approach [27] to identify

the maximum set of base pairs to produce a pseudoknot-free structure.

We also use the backtracking algorithm to get the dot-bracket format for the
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Algorithm 1 Identify the maximum set of base pairs to produce a pseudoknot-free
structure

1: function MaxFirstPagePairs(S, L)
2: . input is a set of base pairs S for an RNA of length L
3: . matrix score stores the number of pairs on each span [i, j]
4: score ← 2D array
5: . backptr for the corresponding [i, j] span
6: backptr ← 2D array
7: . initialize the 0-length/1-length spans
8: for i ∈ 0 · · ·L do
9: score[i][i]← 0

10: score[i][i+ 1]← 0
11: end for
12: . bottom-up CKY
13: for span ∈ 2 · · ·L do
14: for i ∈ 0 · · ·L− span do
15: j ← i+ span
16: . pair (i, j-1)
17: if (i, j − 1) ∈ S then
18: score[i][j]← 1 + score[i+ 1][j − 1]
19: backptr[i][j]← (PAIR,−1)
20: else
21: score[i][j]← 0
22: end if
23: end for
24: end for
25: . loop over all split points
26: for k

∫
i+ 1 · · · j − 1 do

27: if score[i][k] + score[k][j] > score[i][j] then
28: score[i][j] < −score[i][k] + score[k][j]
29: backptr[i][j] < −(SPLIT, k)
30: end if
31: end for
32: return backtrack(0, L)
33: end function
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first-page structure (see Algorithm 2).

Algorithm 2 Recursively track back MaxFirstPagePairs to get structures

1: function backtrack(i, j)
2: if score[i][j] = 0 then
3: return "."× (j − i)
4: else if backptr[i][j][0] = PAIR then
5: return "(" + backtrack(i+ 1, j − 1) + ")"

6: else if backptr[i][j][0] = SPLIT then
7: k = backptr[i][j][1]
8: return backtrack(i, k) + backtrack(k, j)
9: end if

10: end function

3.4.1 Proof of the Algorithm

Here we prove that the algorithm is always able to find the maximum number of

the first-page pairs. We instead prove: for any segment ri...rj with a structure

that contains m brackets, the state (defined as the maximum number of

first-page pairs in a segment (i, j)) s[i, j] ≥ m.

We formulate the transition system as follows. The core part of a transition sys-

tem is the states and the transitions, representing the max first-page pair number

of a segment and the transition of it to other states. The dynamic programming

algorithm processes the transition system and gives values for all states.
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state :s[i, j], 0 ≤ i < j < n

axiom :s[i, i+ 1], 0 ≤ i < n− 1

goal :s[0, n− 1]

initialization :s[i, i+ 1] = 0, 0 ≤ i < n− 1

transition :

s[i, j] = max



s[i, j − 1](A)

s[i+ 1, j](B)

1 + s[i+ 1, j − 1], if (i, j) ∈ S(C)

s[i, k] + s[k + 1, j], k ∈ [i+ 1, j − 1](D)

We further define the transition graph. A transition graph is a collection of

states and state transitions and the states are connected by transitions, just like

nodes and edges in the graph.

Now we consider a sequence segment ri...rj with a valid first-page structure,

there is a unique mapping from this sequence-structure (segment-substructure)

pair to a transition graph as a tree structure. The uniqueness requires removing

(A) rules in the transition system thus the transition could be determined by the

pairing status of xi each time; removing it would not cause the proof to be much

different, but adds simplicity.

The transition graph mapping is defined here:

• if i unpaired, then s[i, j]←− s[i+ 1, j](B);
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• if (i, j) paired, then s[i, j]←− s[i+ 1, j − 1] + 1(C);

• otherwise, if (i, k) paired where k 6= j, then s[i, j]←− s[i, k] + s[k+ 1, j](D).

From the unique mapping, we can see that any valid first-page structure of a

segment could map to a state transition graph. Assuming a structure contains m

brackets, and only rule (C) transits the bracket and increments the value of the

state, thus there is m number of (C) rules being used in the transition graph. This

would lead to s[i, j] ≥ m since the transition would guarantee the s[i, j] value has

been incremented m times.

Therefore, this algorithm would guarantee to achieve the maximum number of

first-page pairs.

3.5 Minimizing page numbers by approximation

We are looking for minimizing the page numbers of the RNA structures as much as

possible, despite this problem is challenging and not yet solved by any polynomial

algorithms. For example, RNA STRAND v2.0 had RNA sequences with high page

number as high as 30, presenting a very complex analyzed structure; novel methods

are needed to further optimize these structures, and then convert these structures

to multi-bracket dot-bracket representation for bpRNA.

Intuitively, if we have an algorithm A parsing the base-pair set S and get a set

of first-page basepairs Sfirst, then we can perform a recursive algorithm:

• Step 1: run algorithm A to get Sfirst = A(S), mark base-pairs in Sfirst as
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page number 1;

• Step 2: take the rest of the base-pairs Srest = S − Sfirst;

• Step 3: run algorithm A on Sfirst to get Ssecond = A(Sfirst), mark the BPs

as page number 2, then go back to step 2;

• run Step 2-3 until no base-pairs are left; return the current parsed structure.

We modify Algorithm 1 to generate multiple first-page parsing algorithms. The

left-to-right and right-to-left order are used instead of bottom-up order for dynamic

programming, which would lead to different results since the search order affects

the tie-breaker. We also do the reverse direction of pointers in bottom-up order:

we compute from the right side instead of the left side for generating a different

set of first-page base-pairs from tie-breakers.

With different versions of Algorithm 1, we take the steps described above on

each of the sequences. Since each version might generate a different page number,

we take the minimum page number found.

In this way, we reduce the page number of many RNA structures from the

available resources and represent them in the bpRNA-1m dataset. We are able to

represent all structures with a page number less than or equal to 7 (reduced from

30 of RNA STRAND v2.0), and 99.46% of the structures with a page number of

2 or less. For all 1,497 structures where bpRNA differs from RNA STRAND v2.0,

we produce a lower page number, and thus a simpler dot-bracket sequence, see

Fig 3.2.
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Figure 3.2: Our proposed algorithm reduces the page number of 1,497 sequences
and simplifies their structure representation. This figure was published in [10].
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Chapter 4: LinearFold: Linear-Time Prediction of Secondary

Structures

4.1 Abstract

Predicting the secondary structure of an RNA sequence with speed and accuracy

is useful in many applications such as drug design. The state-of-the-art predictors

have a fundamental limitation: they have a run time that scales cubically with

the length of the input sequence, which is slow for longer RNAs and limits the use

of secondary structure prediction in genome-wide applications. To address this

bottleneck, the first linear-time algorithm is designed for this problem. which can

be used with both thermodynamic and machine-learned scoring functions. Our

algorithm, like previous work, is based on dynamic programming (DP), but with

two crucial differences: (a) LinearFold incrementally processes the sequence in a

left-to-right rather than in a bottom-up fashion, and (b) because of this incremental

processing, the beam search pruning is employed to ensure linear run time in

practice (with the cost of exact search). Even though our search is approximate,

surprisingly, it results in even higher overall accuracy on a diverse database of

sequences with known structures. More interestingly, it leads to significantly more

accurate predictions on the longest sequence families in that database (16S and

23S Ribosomal RNAs), as well as improved accuracies for long-range base pairs
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(500+ nucleotides apart).

4.2 Overview of LinearFold

As described in the previous chapters, RNA is involved in numerous cellular pro-

cesses, and its structure reveals the functions they have, especially for noncoding

RNAs (ncRNAs) which have intrinsic functions without being translated to pro-

teins [15]. However, on the one hand, predicting the (pseudoknot-free) secondary

structure of RNA sequences remains challenging and costs at least cubic time given

a minimum free energy model [57]; on the other hand, RNA sequences with long

length (> 1,000nt) widely exist in non-coding RNAs, showing a need for faster

prediction algorithms.

Therefore, we present LinearFold, a linear-time global RNA secondary struc-

ture prediction algorithm. while the classical cubic-time dynamic programming

if bottom-up, our algorithm firstly design a transition system to solve the opti-

mal structure in a left-to-right fashion; we then use the beam search to keep top b

highest-scoring states at each position, making the prediction algorithm linear with

the approximation. Practically, with b = 100, our approach leads to a slightly bet-

ter prediction accuracy than the baselines, by using either thermodynamic model

or machine-learned models.
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4.3 Dynamic Programming with Minimum Free Energy Models

As mentioned in chapter 2.2, applied minimum free energy approaches are based on

energy decomposition. The core part of the decomposition is that the decomposed

energy function f ∗E(r, S ′r) is monotonic in the transition of every rule in the folding

grammar, i.e., the best of the left-hand structure depends on the best of the right-

hand substructures only. Thus, dynamic programming can be applied to reach the

structure with the minimum free energy: S∗r = argminS′
r
f ∗E(r, S ′r).

From the previous prediction systems, two types of model weights, i.e., free

energy parameters, on top of this dynamic programming algorithm remain popular:

1. free energy parameters from thermodynamics, which is hand-engineered to

simulate the thermodynamic free energy. We use Vienna RNAfold system

with Turner 2004 Free Energy Parameters [36] as the baseline.

2. free energy parameters from machine learning, which is based on the MFE

models and the same parameter set, but learning weights from data directly.

We use CONTRAfold system [14] with its pretrained model as the baseline.

4.4 Incremental Linear-Time Dynamic Programming

The basic idea of linear-time prediction is to predict incrementally from left to

right, labeling each nucleotide as unpaired “.”, opening “(”, or closing “)”. We

require this dot-bracket string to be well-balanced as we only consider pseudoknot-

free structures.
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Figure 4.1: Illustration of the LinearFold algorithm, using a short sequence CCAGG

and the simple Nussinov model (maximizing the number of base pairs). A: the opti-
mal path, showing states (predicted prefix structures), actions (push “(”, skip “.”,
and pop “)”), and stacks (unpaired open brackets which are shown in bold in
states). B: two example paths (the optimal one in green and a suboptimal one
in blue) and two essential ideas of left-to-right dynamic programming: merging
equivalent states with identical stacks (Idea 1) and packing temporarily equivalent
states sharing the same stack top, and corresponding unpacking upon pop (Idea
2). C: illustration of beam search, which keeps top b states (those in the shaded
region) per step (Idea 3). D: the whole search space of the naive algorithm (O(3n)
time). E: improving to O(2n) time with Idea 1. F: further improving to O(n3) time
with Idea 2. G: further improving to O(n) time (but with approximate search)
with Idea 3. In B, F, and G, each blue/green arrow pair is actually a single arrow,
denoting two paths temporarily packed as one; we draw paired arrows to highlight
that two states .( and (( are performing skip action together. This figure was
published in [12].
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Following the CONTRAfold annotation, given an input RNA sequence x =

x0x1 . . . xn−1 where xi ∈ {A, C, G, U}, our algorithm aims to find the best structure

y = y0y1 . . . yn−1 where yi ∈ {“.”, “(”, “)”} with minimum free energy (or minimum

model cost):

f(x) = argmin
y∈Y(x)

c(x,y; w). (4.1)

Here Y(x) is the set of all possible structures, i.e., {y | y has balanced parentheses},

c is the cost function (i.e., free energy function), and w is the model (and param-

eters).

4.4.1 Naive exhaustive incremental prediction: O(3n) time

By exhaustively predicting y from left-to-right, we traverse all the possible struc-

tures in Y(x), and pick the one with the minimum free energy or model cost. We

formalize each state at step j (j ∈ {0, . . . , n}) to be a triple, s = 〈σ|i, j〉 : y, where

σ|i is a stack consisting of unmatched openings so far where i is the top of the

stack, meaning xi is the last unmatched opening nucleotide. y is the correspond-

ing dot-bracket (sub)sequence up to xj−1. For each state, it can transition to a

subsequent state, taking one of the three actions: push , which labels the current

nucleotide xj as a left bracket “(”, putting it on top of the stack, skip , which labels

xj as a dot “.”, leaving the stack unchanged, and pop , which labels xj as a right

bracket “)”, if it matches xi and popping i from the stack. See Fig. 4.2 (a) for

the deductive system. This algorithm takes O(3n) time to exhaustively traverse

all possible structures (see Figure 4.1 D).
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4.4.2 Dynamic Programming via Full Stack Merging: O(2n) time

Now we apply dynamic programming on top of this exhaustive method to exploit

shared computations. Consider a simple case that two states can be merged: if

there are two states in the same step j, 〈σ, j〉 : y and 〈σ, j〉 : y′, sharing the exact

same stack σ but with different dot-bracket strings y and y′, we say that these

two states are “equivalent” and we can merge them (and only keep the better

scoring between y and y′). Fig. 4.1 E illustrates this merging. Although we merge

to reduce the number of states, it is still exponential time, since there could be

exponentially many different stacks in each step. This algorithm takes O(2n) time.

4.4.3 Dynamic Programming via Graph Structured Stacks: O(n3)

time

To avoid considering exponentially many states, we further merge states with dif-

ferent stacks. Consider two states in the same step j, 〈σ0|i, j〉 and 〈σ1|i, j〉, which

share the last unpaired opening i (i.e., stack top). We call these states “temporarily

equivalent”, since they can be treated as exactly the same until the unpaired open-

ing xi is closed (and thus popped from the stack). In other words we can represent

both stacks σ0|i and σ1|i as ...i where ... denotes part of the history that we do

not care at this moment. This factorization of stacks is called “Graph-Structured

Stacks” (GSS) by Tomita [51]. After merging, we define the new state to be 〈i, j〉

and therefore we maintain O(n2) states. For each state 〈i, j〉, the pop action can
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take worst-case O(n) time because 〈i, j〉 can combine with every 〈k, i〉 from step

i. Thus the overall time complexity is O(n3). See Fig. 4.1 F for an example of the

merging process and Fig. 4.2 for the deductive system.

4.4.4 Dynamic Programming via Beam Search: O(n) time

In practice, the exact search algorithm still runs in O(n3) time. But this left-to-

right O(n3) search is easily “linearizable” unlike the traditional bottom-up O(n3)

search used by all existing systems for RNA structure prediction. We further em-

ploy beam search pruning [24] to reduce the complexity to linear time. Generally,

we only keep the b top-scoring states 〈i, j〉 for each step. This way all the lower-

scoring states are pruned, and if a structure survives to the end, it must have been

one of the top b states in every step. This pruning also means that in a pop action,

a state (i, j) can combine with at most b states (k, i) from step i. Thus the overall

time complexity is O(nb2). However, instead of generating b2 new states from a

pop action, we use cube pruning [23] to generate the best b states, which would

take O(b log b) time. Thus the overall running time over a length-n sequence is

O(nb log b), see See Figure 4.1 G for beam search.

4.4.5 Dataset, Evaluation Metrics and Significance Testing

We choose the ArchiveII dataset [45], a diverse set of over 3,000 RNA sequences

with known secondary structures. But since the current CONTRAfold machine-
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learned model (v2.02) is trained on the S-Processed dataset [3] we removed those

sequences appeared in the S-Processed dataset. The resulting dataset we used

contains 2,889 sequences over 9 families, with an average length of 222.2 nt . Due to

the uncertainty of base-pair matches existing in comparative analysis, we consider

a base pair to be correctly predicted if it is also slipped by one nucleotide on a

strand, accordingly([45]). Generally, if a pair (i, j) is in the predicted structure,

we claim it’s correct if one of (i, j), (i− 1, j), (i+ 1, j), (i, j− 1), (i, j+ 1) is in the

ground truth structure. We report both Sensitivity and PPV where

Sensitivity =
true positives

true positives + false negatives
,PPV =

true positives

true positives + false positives

We use the paired two-tailed t-test to calculate the statistical significance, with

the type I error rate, consistent with the previous methods [55].
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Figure 4.2: The actual deductive system implemented in LinearFold program. Here
δE, δM , ξMij , ξEij , ξ

H
ij , ξSij, and ωSijlk are the various energy or scoring parameters (E

stands for external loop, M for multiloop, S for single loop, and H for hairpin
loop). Our LinearFold algorithm can linearize any dynamic programming-based
pseudoknot-free RNA secondary structure prediction algorithm. The next (i, j)
returns the next position after xj that can pair with xi; this is the “jumping” trick
used in CONTRAfold and ViennaRNA to speedup from the theoretical runtime of
O(n3) to the empirical O(n2) to O(n3). Our final two rules also use this jumping
trick in the righthand side loop. The only cubic-time rule is reduce (intermediate
step in multiloop), again inspired by CONTRAfold source code. This figure was
published in [12].
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Chapter 5: DeepSloop: A Recurrent Neural Network Learns

Complex Rules to Detect Stem-Loop-Forming RNA Sequences

5.1 Abstract

The analysis of RNA structure is an important problem because RNA plays es-

sential roles throughout all living things. Increasingly, RNA plays pivotal roles in

biotechnology including RNA silencing, guide RNAs for CRISPR, ligand-binding

aptamers, and drug design. While several studies have used deep learning mod-

els for analyzing RNA structure, these approaches rely on the outputs of tradi-

tional dynamic programming algorithms based on known thermodynamic energy

parameters during training. The challenge remains to train neural networks to in-

dependently learn thermodynamic principles, so that potentially new biology can

be uncovered. DeepSloop is a deep recurrent network capable of distinguishing

hairpin-forming sequences from non-hairpin-forming, and that is trained purely

on class-labeled nucleotide sequences. DeepSloop can accurately classify hairpin

stem-loops, and thus learned a distinct internal representation of structure that

includes destabilizing energies of bulges and internal loops.
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5.2 Overview of DeepSloop

The secondary structures of RNA molecules reveal information about their func-

tions [6, 52]; therefore, the prediction of how RNA sequences fold into structures

is an important area of computational biology.

Modern RNA secondary structure prediction approaches have found great suc-

cess in algorithms based on thermodynamic principles, especially the minimum

free energy (MFE) models [37, 4, 38], which decompose free energies into individ-

ual loops to evaluate their stability in terms of thermodynamic energy parameters.

Based on this MFE model, several approaches have been proposed for predicting

RNA structures, mostly with the conventional dynamic programming algorithm

[33, 25, 56].

More recently, deep recurrent neural network models have made remarkable

progress on sequence modeling, including the analysis of sequential speech signals

[19], video frames [47], and natural language texts [13]. These deep learning ap-

proaches have also been applied to study RNA secondary structure [54, 31, 40].

While these approaches have demonstrated that deep neural networks are capable

of learning complex secondary structural patterns from sequence information, sev-

eral challenges remain in the application of these models to RNA structure. An

important remaining challenge is to train a neural network without directly using

the MFE calculations, or secondary structure predictions from dynamic program-

ming algorithms. The goal of this work is to train neural networks to independently

learn their own concept of energy, without specific input from calculations using
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existing thermodynamic models.

In our recent work, we created a large, richly annotated meta-database of RNA

secondary structures, bpRNA-1m, derived from both comparative sequence analy-

sis and biophysical experiments [10]. For example, this database contains 708,144

hairpin loops. As a fundamental RNA secondary structure type, hairpins, also

known as stem-loops, consist of a paired helical region that can contain bulges and

internal loops, with a hairpin loop on one end. Stem-loops can direct RNA fold-

ing, protect structural stability for messenger RNA, provide recognition sites for

RNA binding proteins, and serve as a substrate for enzymatic reactions [49]. Tradi-

tionally, hairpins are detected via thermodynamics secondary structure prediction,

followed by pattern matching on the dot-bracket sequence. As a proof-of-principle

that neural networks can independently learn thermodynamic rules, we present

“DeepSloop”, a deep neural network that is trained to recognize RNA sequences

that form stem-loops (S-loops). We extracted hairpin sequences from bpRNA-1m

[10], trained our deep neural network model to distinguish hairpins from random-

ized non-hairpin-forming sequences, and then analyzed what features our network

models learned in order to properly recognize hairpin patterns. Additionally, we

perform various destabilization tests and mutation experiments to show that our

model could learn distinct thermodynamic rules without being given energy pa-

rameters.
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5.3 Results

5.3.1 Data Preprocessing

In order to train our model, we needed to first build a collection of hairpin-

forming and non-hairpin-forming sequences. We demonstrate our data preprocess-

ing pipeline in Fig. 5.1A. As the first step, we source stem-loops from bpRNA-1m

[10], resulting in 532,012 stem-loops, applied a length-filtering procedure, and re-

moved highly similar sequences. This results in a filtered set consisting of 36,698

positive sequences.

Because there is no defined set of non-hairpin-forming sequences, we sought to

create one with the same length distribution, nucleotide and dinucleotide compo-

sition as our positive set. We achieved this by performing dinucleotide shuffling on

the positive sequences, resulting in a set of shuffled random sequences [1]. Because

of the possibility of a shuffled sequence also forming a hairpin, we developed a sta-

tistical approach to further refine our data sets. First, we defined two metrics for

scoring a putative hairpin. The balance score quantifies the degree of symmetry

in base pairing in the dot-bracket representation, and is defined as the proportion

of left brackets on the left side, plus the proportion of the right brackets on the

right side. The base pair density (BPD) describes how densely concentrated base

pairs are, and is defined as the number of base pairs per length of RNA. Because

we only have structures for the positive set, we used RNAfold [33] to predict the

secondary structure of each sequence for computing the balance score and BPD for

all sequences. The statistical distribution of these two metrics on the stem-loop set
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Figure 5.1: A. The data preprocessing pipeline, step by step from bpRNA-1m
data set to the split training/validation/test data set for DeepSloop. B. The bal-
ance score CDF comparing our filtered stem-loops and dinucleotide shuffled coun-
terparts. C. The base pair density CDF comparing our filtered stem-loops and
dinucleotide shuffled counterparts.
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and the shuffled set are shown in Fig. 5.1B-C. We defined our threshold for balance

score as the maximum separation of the cumulative distribution function (CDF)

for the stem-loops and shuffled sequences respectively. We defined the threshold

for BPD to be halfway between its theoretical limits.

After the boundary was decided, we refined our stem-loops by selecting a subset

of symmetric, dense stem-loops that pass both thresholds. We performed a 1-to-

1 negative data generation process, resulting in a data set balanced in positive

and negative examples. We required that each positive example should generate

exactly one negative example that fails both thresholds, so an iterative process

was used to repeat the dinucleotide shuffling until a sequence that fails both of our

thresholds was found. We then split this data set into training, validation, and

test sets, with the proportion of 80%:10%:10%.

5.3.2 Stem-Loop Prediction Model

Our design includes a bidirectional LSTM (BiLSTM) [43] centralized neural net-

work model architecture, shown in Fig. 5.2A. We use a one-hot encoding for the

nucleotide input, followed by two BiLSTM layers, stacked with a three-layer fully

connected neural network. The hidden vector is mapped to a scalar, called the

DeepSloop score, followed by a sigmoid function that outputs the probability of

the sequence forming a stem-loop.

To train our model with RNA hairpins, we sourced stem-loop segments from

the bpRNA-1m database [10]. Next, we applied the length filter, and removed
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Figure 5.2: A. The model architecture of DeepSloop, which consists of 1) an em-
bedding layer transforming the RNA sequence to a vector sequence by one-hot
embedding on each nucleotide; 2) stacked bidirectional LSTM layers, mapping the
sequential input to a sequence vector through stacked layers of LSTM cells; 3) a
fully connected layer, mapping the sequence vector to a single output (DeepSloop
score). The sigmoid transformation of DeepSloop score indicates the probability of
the input sequence being a hairpin. B. Demonstration of (part of) our hyperparam-
eter tuning, showing a relationship between validation accuracy and two factors:
the hidden dimension of BiLSTM, and the input dropout rate during training. C.
The validation accuracy through ensemble methods, regarding of 15 best models
from 40 runs. Accuracy from three ways of ensembling top-k models are plotted
in different colors, and the accuracy of k-th best single model are scattered.
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highly similar sequences, resulting in 36,698 stem-loops. We further generated a

negative set of sequences by dinucleotide shuffling, and applied structural filters to

remove shuffled sequences that form spurious hairpins. We also randomly added

nucleotides at both sides of copies of each sequence, preventing the first and last

nucleotides from always being complementary. The whole data preprocessing pro-

cedure is illustrated in Fig. 5.1A. Therefore, our final training and testing data are

strictly balanced, with the same distribution of nucleotides and dimers on positive

and negative data set, ensuring our model would not learn simple statistics features

to process the classification. We provided no RNA structural or thermodynamic

information to the network, only the RNA sequence and stem-loop binary class

labels during the training time, and we designed multiple ways of testing whether

our trained models learned structural patterns of RNA sequences.

We performed hyperparameter tuning on our training and validation sets; we

then performed augmented training by adding point mutations to the training data

set. We extended the training set up to 11 times the original size for “pre-training”.

We then used the pre-trained model to train on our original data set resulting in

our final model. This pre-training approach improved our training time validation

accuracy from 91.6% to 92.4%. We also performed ensemble testing to improve the

performance of our system. From our 40 different trained models, we ensembled

the top k-best models, resulting in improved testing time validation accuracy from

92.7% (single model) to 94.7% (15 models).

The hidden vector dimension of LSTM and input dropout rate are determined

by our hyperparameter tuning on the validation data, shown in Fig. 5.2B. During
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hyperparameter tuning, we used grid search on each parameter set with 5 replicates

for each. We selected the best parameter set of the averaged accuracy. As shown,

DeepSloop prefers a BiLSTM hidden dimension of 128 and input dropout rate of

0.1.

5.3.3 Overall Performance

We show our ensemble method for testing has a higher prediction accuracy over

single models, in Fig. 5.2C. We trained 40 replicates on an augmented data set

using our parameter set, and ranked them by their validation accuracy. We selected

the top-k models and ensembled them together in different ways, and plotted

their validation accuracy. The ensemble of multiple models leads to a consistent

improvement of validation accuracy (Fig. 5.2C).

We evaluated three different approaches with our test set: the best ensem-

ble model (best, i.e., with the highest accuracy on validation set), the best single

model, and the best single model without augmented training. The results show

that our data augmentation contributed 0.47% improvement of the testing accu-

racy, while the ensemble methods contribute the other 2.77%. Our overall perfor-

mance on the test set reaches 94.79% classification accuracy, benefiting from both

data augmentation methods and the ensemble method.
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in each direction.
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Model Test Accuracy
single model 91.55%
+data augmentation 92.02%
+ensemble method 94.79%

Table 5.1: Accuracy of the test set.

5.3.4 Energy Destabilization

In addition to the stem-loop prediction accuracy, we designed tests to assess

whether our model learned patterns associated with hairpin formation. The results

of the bulge and internal-loop destabilization test are shown in Fig. 5.3.

For the bulge destabilization test, we analyzed each stem-loop sequence from

the validation set, then inserted k ‘A’ nucleotides into the middle of the longest

helix on the left side of the sequence and observe the score change, with k from

1 to 10. Fig 5.3A shows the DeepSloop score change due to the bulge destabi-

lization, compared with the MFE change (from Vienna RNAfold [33]), averaging

from all positive sequences in the validation set. In addition, we visualized the spe-

cific values for 100 randomly sampled stem-loops in Fig 5.3B. Though our model

only learns from the RNA sequences with minimal structural information, the

DeepSloop score is able to represent the destabilization change due to bulges sim-

ilar to the MFE score. The DeepSloop score decreases consecutively when more

destabilizing nucleotides are inserted, and decreases less after there are already 10

nucleotides inserted. From the scatter plot, we observe that the DeepSloop score

decrease is varied, but increases with the length of the inserted bulge.

We also investigated the impact of bulge destabilization against the bulge inser-
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tion position in the sequence, shown in Fig 5.3C. The curves show that the decrease

of the DeepSloop score is lowest when the insertion position is close enough to the

middle of the sequences, where our hairpin is located. An insertion of a length 3

would not change the output classification at most positions on average, while a

longer insertion of length 7 would generally change the prediction.

We performed a similar experiment for internal-loop destabilization. We ran-

domly selected a position within the longest helix, and insert two loops of length

l1 and l2 consisting of ‘A’ nucleotides, and observe the DeepSloop score change.

The heatmap of the DeepSloop score change shown in Fig 5.3D demonstrates a

consistent decrease, and is also symmetric against two lengths, l1 and l2.

5.3.5 Point Mutation Analysis

We further performed several mutation tests on the DeepSloop model. First, we

performed point mutation tests, where we sampled stem-loops from the validation

set, applied a point mutation on each of the positions. For each position, we iden-

tified the most destabilizing point mutation based on the most negative DeepSloop

score change. Fig. 5.4A visualizes the point mutation test on stem-loop sequences.

Nucleotides in the long helices are unlikely to have a large DeepSloop score decrease

due to the mutation, but for nucleotides near a bulge, internal loop, or open struc-

ture, the mutation is more likely to destabilize. The DeepSloop captures patterns

of destabilization that are consistent with known energy functions.

We also designed an incremental selection process (ISP) using DeepSloop to
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mutate a random RNA sequence towards a hairpin. In the ISP, we selected an RNA

sequence from the negative set; then we performed all the possible point mutations

and selected the mutation with the highest increase in DeepSloop score. This

process is like evolving the sequence; by repeating this process until convergence,

we observe whether we could transform the non-stem-loop-forming sequences to

stem-loop-forming. Fig. 5.4B shows the statistics of sequences before and after.

On average, ISP increases the balance score, base pair density, DeepSloop score,

and decreases of the MFE. The structure and mutation process of two examples

are shown in Fig. 5.4C-D. The mutated nucleotides are highlighted to show a

step-by-step procedure.

5.3.6 Detection of Hairpins within Long Noncoding RNAs

We assessed whether DeepSloop could detect hairpin structures within long non-

coding RNAs (lncRNAs), despite the extra sequence information flanking the hair-

pin locations. We selected lncRNA sequences including HOTAIR (Domain1) [46],

the polycistronic microRNA precursor MIR17HG [20] and bpRNA CRW 12228

(16S rRNA Bacilli/DQ169500) [10]. For HOTAIR and bpRNA CRW 12228, the

structures are known from experiments and comparative sequence analysis, re-

spectively, and the MIR17HG is predicted by RNAfold. We used a collection of

fixed-size sliding windows over each sequence, computing the hairpin-forming po-

tential (DeepSloop probability) of each position. We then plotted a smoothed

curve of the probabilities with Savitzky-Golay filter [42] for each sequence, and
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Figure 5.5: Examples of DeepSloop hairpin prediction of lncRNAs; A: MIR17HG,
B: bpRNA CRW 12228(Bacilli/DQ169500), C: HOTAIR Domain1. The X-axis
is the sequence index, and the Y-axis is the DeepSloop hairpin probability. We
calculated the DeepSloop hairpin probability using a sliding window with size 51
over the whole sequence, smoothed by the Savitzky-Golay filter with width 35 and
degree 5, and plotted in the opaque blue color. All other light blue curves are
from window-size 41 to 61. The original secondary structure of the sequence is
shown using arcplot, where each base-pair is plotted using a red arc in the figures;
green-arcs show pseudoknots; purple boxes in the MIR17HG indicate the positions
of microRNAs.
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compared with its original secondary structure, shown in Fig. 5.5. We observed

that most of the strongest predicted peaks correspond to hairpins in the reference

structure.
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5.3.7 miRBase human Test

We also evaluated the performance of DeepSloop on an external data set, using

the miRBase human data [20] consisting of 1,917 hairpin precursor sequences. We

generated an equal number of negative examples by mono-nucleotide shuffling.

DeepSloop achieved 77.54% accuracy for classifying miR precursors as hairpins,

with 68.96% sensitivity and 86.12% specificity. We also visualized the miRBase

human set in Fig. 5.6, which shows a dense concentration of the positives on the

top right corner with mostly high DeepSloop scores, and a sparse distribution of

the negatives on the rest of the figure with mostly negative DeepSloop scores.

5.4 Discussion

In this study, we have shown that a BiLSTM deep neural network model can

successfully predict RNA hairpin-forming potential. This result demonstrates that

neural networks have the capacity to learn and encapsulate distinct thermodynamic

rules of RNA structure formation, breaking away from the dependence on energy

parameters.

DeepSloop learned rules that are very similar to known thermodynamic prin-

ciples in some instances, and different rules in others. We conclude from the bulge

and internal-loop destabilization tests that our model learned that the length of the

inserted region is proportional to the degree of destabilization. In the case of bulge

insertions, we observed that our model is not very sensitive to the bulges of length

1, but incurs a larger score decrease when the inserted length increases from 2 to
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5. This is in contrast to traditional bulge destabilization costs computed by most

RNA structure prediction algorithms [56, 38], which show the greatest increase

in destabilization at the first nucleotide. In the case of internal loops, DeepSloop

learned that symmetric internal loops, with both loops having the same length,

have the lowest cost. Similarly to bulges, the destabilization cost of internal loops

is less sensitive to the first inserted nucleotide than established thermodynamic

parameters. Thus, while DeepSloop disfavors these unpaired regions, it is more

tolerant of single-nucleotide bulges and internal loops, consistent with the fact that

short bulges and internal loops are the most frequent [10].

DeepSloop also has strong potential to reveal and quantify the stability of dif-

ferent regions of RNA sequences without knowing their structures, which suggests

that the network has an internal representation of the structure. From the muta-

tion test, we demonstrated that the most disruptive positions in hairpin sequences

correspond to base-paired nucleotides. In many examples, these positions corre-

spond to base pairs that are adjacent to bulges or other loops, which can be pivotal

for stability. Our model is also able to evolve a random non-hairpin-forming RNA

sequence to a hairpin-forming sequence by performing a series of point mutations

in a few steps. These experiments show that DeepSloop favors mutations that

introduce more base pairs and a more balanced structure.

Future work could explore the application of deep neural networks on the anal-

ysis of RNA structure more generally. Because hairpins play a pivotal role in

guiding some RNA structures, their prediction could be part of a multi-step pro-

cess of structure prediction by intelligent systems. The current DeepSloop model
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is sensitive to the window size when applied to long sequences using a sliding-

window approach. Future work is needed to detect hairpin forming sequences

within the context of surrounding sequence. This problem might be overcome by

improved design of the training data, such as with additional random flanking se-

quence padding added to training sequences. Alternatively, a model trained on a

different task, such as site-labeling positions or windows as either hairpin- or non-

hairpin-forming across the full-length RNA, may result in better hairpin detection

performance for long sequences.

5.5 Methods

5.5.1 Data Preprocessing

The bpRNA-1m database contains detailed structural information including stem-

loops [10]. We extracted 532,012 stem-loops, and applied a length filter, where

we keep RNA segments with stem lengths from 20 nt to 150 nt, with hairpin loop

lengths from 3 nt to 22 nt. This resulted in 72,586 stem-loop candidates. To remove

similar sequences, we ran CD-HIT-EST [18], a tool for clustering and comparing

nucleotide sequences, with 90% as the sequence identity threshold, and 70% as a

coverage threshold.
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5.5.2 Dinucleotide Shuffling and Boundary Detection

We generated a negative data set to have a nucleotide distribution similar to our

positive set, coaxing our classifier to learn high-level structural information instead

of simple features to separate them. We then performed the default folding settings

from RNAfold[33] to determine the secondary structure for each sequence. Next,

we defined two metrics based on the secondary structure of a sequence for filtering

positive and negative stem-loops, the BPD, and the balance score. The BPD is

defined as the number of base-pairs over the sequence length, ranging from [0, 0.5].

BPD(Sr) =
|Sr|
|r|

The theoretical range of the BPD score is from 0.0 for a completely unpaired RNA

to 0.5 for an RNA that lacks unpaired nucleotides. Therefore, we set the BPD

threshold halfway at 0.25, corresponding to half of the nucleotides being paired,

as the maximal CDF difference proved too restrictive.

Balance score is computed from the dot-bracket sequence, and is defined as the

proportion of left brackets on the left side, plus the proportion of the right brackets

on the right side. The range of the balance score is 0 ∪ [1, 2]. The balance score

is large when a structure is close to a stem-loop, which should have all the left

brackets on the left side, and similarly for right brackets.

BS(Sr) =
|left brackets on left|
|left brackets|

+
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|right brackets on right|
|right brackets|

We selected the balance score threshold boundary based on the balance score

distribution of our positive stem-loop data set and negative data set. Our first step

is to shuffle our initial positive data set, denoted as P0. We performed dinucleotide

shuffling, resulting in a data set noted as Nds. We then computed the difference

between the CDFs of balance score on these two data sets, P0 and Nds, using a

bin size of 0.01, shown in Fig. 5.1. We selected the balance score that has the

largest gap between these two CDF curves, which corresponds to the boundary,

TBS = 1.86.

5.5.3 Data set Generation, Augmentation and Split

After setting up two boundaries, we start generating our positive and negative

data set based on P0.

1. P = φ,N = φ

2. ∀r ∈ P0, if BPD(Sr) ≥ TBPD∧BS(Sr) ≥ TBS, then process steps below; otherwise

drop r.

(a) r′ = DinucShuffle(r)

(b) if BPD(S′r) < TBPD ∧ BS(S′r) < TBS, then P = P ∪ {r}, N = N ∪ {r′},

else go back to DinucShuffle; drop r if no r′ passed thresholds after

50 shuffles.
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3. return P and N of equal size.

After generating equal-size P and N , we split these into Dtrain, Dval, Dtest, with

80%:10%:10% proportion.

To train our model, we used a binary label 1/0 for each of the RNA sequences,

indicating whether it forms a stem-loop.

5.5.4 Model Architecture

Our model architecture is presented in Fig. 5.2A. We explored alternative model

architectures as well. Instead of one-hot encoding, we tried learning an embedding

layer during training, and observed minimal differences between them, thus one-

hot is used. We also added a convolutional layer between the embedding layer and

the LSTM layers; however, this resulted in a slower training time and no improved

performance.

5.5.5 Hyperparameter Tuning

During the tuning and training step, we evaluated the validation accuracy on

Dval after each epoch. Our training stops when the validation accuracy is not

improved in the most recent 5 iterations, i.e., our early stopping patience is 5.

We tuned our model architecture on Dtrain, using grid search on all possible sets

of hyperparameters, with five replicates. We explored a set of hyperparameters

including the number of BiLSTM layers, input dropout rate, batch size, BiLSTM
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hidden vector size, and whether using a starting convolution layer.

5.5.6 Training and Augmented Training

Besides training our model on the original training set Dtrain, we also applied

augmented training to improve the performance of our models. We augmented

our data by using point mutations. For each of the RNA sequences in Dtrain,

we randomly generated 10 copies, where each copy has a point mutation; all the

sequences generated are added to the data set. We use Daug
train to represent our

augmented training set, |Daug
train| = 11|Dtrain|. To perform augmented training, we

first trained from scratch on Daug
train; after the model converged, or was halted by

early stopping, we saved our model for the next step. We further trained this saved

model on the original data set Dtrain, resulting in the output model. Experimental

results show that by performing augmented training, our single model accuracy on

the validation set improved from 91.6% to 92.4%. Additionally, to prevent Deep-

Sloop from learning that the first and last nucleotides are always complementary,

we performed an additional data augmentation step by adding a random prefix

and suffix to each copy of length 0, 1, 2, 3 nt.

5.5.7 Ensemble Testing

Our training resulted in 40 model replicates, each different due to the random

initialization and the stochastic nature of learning. We combined the top-k models
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together, with k in 1, 3, ..., 15, and ensemble them using different approaches. We

computed the validation accuracy of the ensembled models, and we measured the

performance on the testing set, using our best single model and the ensembled

model compiled from 15 individual models.

5.5.8 Destabilization Tests

The destabilization tests and mutation tests are based on mapping the change of

the RNA sequence to a DeepSloop score change. For an input RNA sequence r, we

calculated its DeepSloop score SDS(r); then made a small change on r to r′, and

calculated SDS(r′). We compute ∆SDS(r, r′) = SDS(r′)−SDS(r) to assess whether

the DeepSloop score change reflects this small perturbation.

In our bulge destabilization test, we first identified helical regions to insert

a disruptive bulge. For every positive sequence r in the validation set, we first

used RNAfold to label its secondary structure in dot-bracket format, for example

“...((((((...))))))...”; then we find the longest helix segment on the left

(longest consecutive left parentheses) and denote its middle position as i. Our

next step is to insert multiple ‘A’ nucleotides at i to destabilize the structure. We

insert k nucleotides with k = 1, 2, 3, ..., 10, making 10 destabilized sequences for

each sequence r, and compute ∆SDS(r, r′).

For the internal loops, we performed a similar test to find the insertion position

i. The only difference is that two loops of length k1, k2 from 1, 2, .., 10 are generated,

resulting in 100 destabilized sequences for each sequence r.
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5.5.9 Point Mutation Analysis

We designed two different mutation experiments. The first examines whether some

nucleotides in an RNA sequence are more unstable than others. For each position

i in the sequence r, we mutate the nucleotide, resulting in three different sequences

r′ ∈ mutate(r, i). We define the worst ∆SDS(r, r′) from these mutations, for each

position i. We then visualized the most negative score change of all the positions.

Our ISP experiment evolves a random RNA sequence to a stem-loop incremen-

tally. We performed 3|r| point mutations and selected the highest ∆SDS(r, r′) to

replace the original r with r′ at each step, until the best DeepSloop score becomes

positive, resulting in a hairpin-forming sequence.

5.5.10 Point Mutation Analysis

To further evaluate the performance of DeepSloop, we also evaluated performance

on miRBase human data as an external data set. We first source 1,917 miRNA

precursor sequences as positives. For each of the positive sequences, we generated

a negative counterpart by mono-nucleotide random shuffling. Thus a data set with

balanced positives and negatives is generated for testing.

5.5.11 Detection of Hairpins within Long Noncoding RNAs

We applied DeepSloop to lncRNAs by predicting hairpin-forming potential within

a sliding window that is moved over the full length of transcripts greater than 200
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nt. Using the window-size ranging from 41 to 61, for each window-size 2k + 1,

we loop over all indices i, taking segment from the original sequence with index

[i − k, i + k], with a padding of ’A’ nucleotides at the beginning or end of the

sequence. We tested the hairpin probability of each and plotted the score from

the ensembled DeepSloop model. For smoothing, we used Savitzky-Golay filter

[42], averaging nearby 35 data points with a polynomial degree of 5. We selected

window-size of 51 as the center window-size, and also plotted curves with window-

size [41, 61] using light color. The original secondary structure of the sequences

are presented as well for comparison.
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Chapter 6: DeepStructure: A Neural Network Approach for RNA

Secondary Structure Prediction from Scratch

6.1 Abstract

It is valuable to further investigate RNA secondary structure prediction using

deep neural networks. While deep neural network models have made remark-

able progress in many classification tasks on DNA and RNA sequences, predicting

RNA secondary structure is still challenging due to the structural complexity of the

output. DeepStructure is an end-to-end approach learning to predict secondary

structures from RNA sequences from scratch, and no longer relies on the energy

parameters. DeepStructure utilizes Bidirectional LSTM and Attention Networks

as the core part of its neural network architecture and learns the RNA folding

principles independently from the large-scale dataset bpRNA-1m. Experimental

results show that DeepStructure reaches a competitive performance against tradi-

tional RNA secondary structure prediction approaches.

6.2 Overview of DeepStructure

Our goal is to explore the RNA secondary structure prediction technique using

deep neural networks, without the involvement of free energy models. On the
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one hand, we proposed DeepSloop for prediction of stem-loops and model struc-

tural information, which shows the feasibility for neural network models to learn

structural information purely from the RNA sequences, in the last chapter; on

the other hand, recent researches show the success of deep neural networks mod-

eling sequence-to-sequence or sequence-to-structure problems, including machine

translation, syntax parsing, and speech recognition [32].

However, modeling RNA sequences is different from modeling text or speech

signals, as the core challenge is that the nucleotide (A/C/G/U) sequences provide

too little information at each position. From the previous studies, we found that 1)

researchers have applied neural networks to model RNA / DNA / protein sequences

for variety of tasks, but hard to solve problems beyond binary classification without

extra information for training or testing [22]; 2) the current neural network models

are still relied on the free energies [54] computed by MFE models, which is basically

learning features from the decomposed energy model and simulate its calculation,

instead of learning real structural information from RNA sequences.

We focus on an end-to-end neural network system that models RNA sequences

and predicts RNA secondary structures directly, without the help of any energy

parameters. In the previous DeepSloop work, we showed the potential that the

neural network is able to learn complex structural patterns and predict stem-loops

reliably. On the other hand, attention techniques are widely used in Seq2Seq mod-

els, such as Attention Layers between encoder and decoder[34], and Transformer

Networks [53, 9].

Thus, we present DeepStructure, an end-to-end neural network approach for
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RNA secondary structure prediction. Starting from the LSTM-Attention model,

we trained our basic model from the (preprocessed version of) bpRNA-1m dataset;

we next designed and performed base-pair-aware data augmentation, allowing the

complex model to be trained on a larger-scale dataset with a significantly im-

proved performance; at last, we tuned the Transformer architecture and used the

LSTM-Transformer framework instead, in which we further boosted the prediction

accuracy. Experimental results show that our model can reach competitive perfor-

mance against traditional RNA secondary structure prediction techniques without

hand-design features nor structure prediction algorithms.

6.3 Results

6.3.1 Model Architecture

We conclude our LSTM-attention model architecture in Fig. 6.1. Generally, for an

input sequence, we first map each nucleotide into a vector; then we feed a sequence

of vectors into the encoder layer, i.e., two stacked BiLSTM layers; next, we start

decoding in a mono-directional LSTM by taking the output of the encoder layer; in

each step of decoding, we utilize an attention layer to calculate the context vector

between the current decoder hidden vector and the sequential encoder hidden

vectors; the context vector is used by concatenated to the end of the input vector for

each LSTM cell; after a sequential output, if processed from the decoder LSTM, we

map the vectors to the dot-bracket labels and produce the output of the network.
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Figure 6.1: An overview of the LSTM-Attention Architecture of DeepStructure.
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Moreover, we combined the LSTM encoder with the Transformer decoder and

designed the LSTM-Transformer framework, shown in Fig. 6.2. In the LSTM-

Transformer framework, The encoder LSTM outputs a sequence of vectors which

is used for the input of the first decoder layer and the encoder-decoder attention for

every decoder layers; for the stacked Transformer decoder layer, each layer contains

a self-attention component, an encoder-decoder attention component, and a feed-

forward component. The attention component works similarly to our previous

shown attention technique, except a sequence of the attention actions is performed

thus the output is kept as a sequence of vectors. 6 stacked decoder layer is used.

The LSTM-Transformer framework can be regarded as an advanced version of

the LSTM-Attention framework since it utilizes a deeper structure of attention

technique, but it also requires a larger dataset to train since the parameter size is

a lot larger.

6.3.2 Base-Pair Prediction Quality

We evaluate the performance of our models on the test set, and show the base

pair precision, recall, and F-score in Tab. 6.1. As shown in the table, we reach

42.9 F-score using the LSTM-Transformer framework with base-pair-aware data

augmentation.
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Figure 6.2: An overview of the LSTM-Transformer Architecture of DeepStructure.
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Model BP Precision BP Recall BP F-score
LSTM+Attention 27.7% 26.4% 27.0
+ BP-Aware Augment 34.1% 33.5% 33.8
LSTM+Transformer 35.4% 35.2% 35.3
+ BP-Aware Augment 43.6% 42.2% 42.9
Transformer-only 18.3% 5.2% 8.1
+ BP-Aware Augment 17.0% 18.4% 17.7

Table 6.1: The base pair prediction performance of the RNA secondary structure
using our different settings.

6.3.3 Position Accuracy and Structure Accuracy

The position-wise accuracy and the structure exact match rate are shown in

Tab. 6.2, in which our LSTM-Transformer approach reaches 81.9% position ac-

curacy and 27.4% structure accuracy.

Model Position Accuracy Structure Accuracy
LSTM+Attention 71.2% 19.6%
+ BP-Aware Augment 74.5% 25.8%
LSTM+Transformer 74.5% 25.2%
+ BP-Aware Augment 81.9% 27.4%
Transformer-only 57.5% 4.1%
+ BP-Aware Augment 58.1% 12.6%

Table 6.2: The position-wise accuracy and the structure (exact match) accuracy
on the test set.

6.3.4 Balances of the Predicted Structures

Since our framework does not involve any traditional structural prediction algo-

rithms, there is no guarantee that our predicted structure is balanced in terms of

the bracketing. We further investigate the rate of balanced structures out of all

the structures we predicted; we also show the predicted left bracket rate and the
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right bracket rate and compare to the ground truth, shown in Tab. 6.3.

As we can observe, the LSTM decoder (in the LSTM-Attention framework)

actually outperforms our Transformer decoder (96.6% vs. 78.6%), although the

latter reaches the highest accuracy among all these models.

Model Structure Balanced LB / RB Rate LB / RB Rate Diff
LSTM+Attention 69.4% 22.5% / 20.9% +0.6% / −1.0%
+ BP-Aware Augment 96.6% 21.4% / 21.3% −0.5% / −0.6%
LSTM+Transformer 89.0% 22.0% / 21.9% +0.1% / +0.0%
+ BP-Aware Augment 81.5% 21.4% / 21.3% −0.5% / −0.6%
Transformer-only 92.8% 6.6% / 6.3% −15.3% / −15.6%
+ BP-Aware Augment 71.1% 24.5% / 23.7% +2.6% / +1.8%
Gold - 21.9% / 21.9% -

Table 6.3: The balance rate and the predict left/right bracket rate of the predicted
structures.

6.4 Methods

6.4.1 Dot-Bracket Representation

We regard the RNA secondary structure prediction as a sequence-to-sequence task,

by using the dot-bracket representation as to the structure representation. For

example, “GGGAAACCC (((...)))” represents a structure with three GC pairs

covering three A unpaired regions.
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6.4.2 Data Preprocessing

We first used a length filter [20, 200] on the full bpRNA-1m dataset, resulting in

76,009 RNA sequences with labeled structures; we then ran cd-hit [18] to remove

replicate sequences with 90% or more similarity, and split the 23,445 sequences

into train, val, test set with a 80 : 10 : 10 proportion.

We next recover sequences from the cd-hit preprocess step, allowing the re-

moved sequences highly similar to some training sequences, but not validation or

testing, to be added back to our training set. In this way, 40,360 sequences were

included in the training data, and val, test set size were kept at 2,344 and 2,345.

6.4.3 BP-Aware Data Augmentation

As for labeling the structure of an RNA sequence requires other structure predic-

tion tools, we aim to produce more RNA sequences with given structures in the

training set. Assume we have a RNA sequence with known structure, the core idea

of the base-pair-aware data augmentation is to transform the sequence based on

the base-pair relations such that its structure would be kept as stable as possible,

e.g., switching two nucleotides in a helix stem would be very unlikely to break the

stability of the stem itself.

Practically, for each sequence in the training data, we found all the base pairs

that are inside the stems, and then generated up to 10 new RNA sequences each

by switching one of the base pairs and kept the original structure. Our final

augmented data contains 407k RNA sequences as training.
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6.4.4 LSTM-Attention Framework

Our encoder architecture is similar to the DeepSloop model, where two stacked

layers of BiLSTM are used on top of the one-hot embedding for the inputs. The

Attention part is illustrated in Fig. 2.6, where an attention layer is used to connect

the encoder (stacked BiLSTM) and the decoder (mono-directional LSTM).

6.4.5 LSTM-Transformer Framework

We introduced LSTM encoder back to the Transformer architecture to combine

LSTM encoder and Transformer decoder together. (We also performed experi-

ments on the conventional Transformer-only architecture [53] as the comparison.)

For the conventional Transformer framework, both the encoder and the decoder

uses the stacked-attention structure, wherein the encoder, 6 encoder layer was used,

and each consists a self-attention layer and a feed-forward layer; in the decoder, 6

decoder layer was used and each consists a self-attention layer, an encoder-decoder

attention layer (described in the LSTM-attention section) and a feed-forward layer.

6.4.6 Learning

Generally, we kept the most hyperparameters and/or settings the same as the

OpenNMT work [30]. We performed 200, 000 batches as the one training run;

we kept Adam as the default optimizer, as the stochastic gradient descent method

didn’t have a significant difference with or without decayed learning rate comparing
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to Adam.

In the embedding layer, we started with a random embedding for each nu-

cleotide and kept it updated through the backpropagation of the neural network.

For the LSTM-Attention framework, we used a batch size of 64 during training,

with a 0.3 dropout rate in LSTM layers and 0.1 dropout rate in Attention layer.

The LSTM hidden dimension was kept to 512.

For the LSTM-Transformer framework, we used a batch size of 1024, having 6

layers of 8-head attentions; 0.1 dropout rate was used during training.

6.4.7 Testing and Performance Metrics

During testing, we used the following metrics to measure the quality of our pro-

duced RNA secondary structures are dot-bracket format, giving the length of the

output dot-bracket sequence is guaranteed to be equivalent to the input RNA

sequence.

• position-wise accuracy: the number of correctly predicted labels (dots and

brackets) divided by the total number of labels by comparing each position

of each predicted and gold dot-bracket structure.

• structure exact-match accuracy: the number of the correctly predicted exam-

ples (RNA structure for a sequence) divided by the total number of sequences.

• base-pair performance, including precision, recall, and F-score: comparing

the predicted base-pair set against the gold base-pair set for all examples. If



70

a predicted dot-bracket structure is not bracket-balanced, we simply remove

the redundant brackets.

• structure balance rate: the number of the balanced predicted examples di-

vided by the total number of sequences.

• label predicted rate: predicted rate of each label (left bracket / dot / right

bracket) comparing to the gold.
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Chapter 7: Conclusion

We presented a line of research, focusing on revealing structural information (stem-

loops, secondary structures) from RNA sequences. We have explored different

techniques on it, starting from an elegant RNA Structure annotation tool with

a organized large-scale dataset; then a BiLSTM-based deep learning framework

is proposed to predict stem-loops from RNA sequences; at last, we presented a

BiLSTM-Attention framework to directly predict the whole sequential RNA sec-

ondary structure from scratch, which achieves the sequence-to-sequence and end-

to-end characteristic.

The core idea of this line of research is to avoid using the conventional way to

reveal RNA structural information, which is based on the hand-designed energy

parameters and limited by the imperfect modeling of it. Our presented line of

research instead reveals structural information from training a deep neural network

model directly from the large-scale dataset, and is able to achieve the goal without

using any traditional features.

Alternatively, we explored an efficient dynamic programming algorithm for

RNA secondary structure prediction using MFE models with a slightly higher

accuracy; we also investigated how to visualize RNA secondary structures and

conclude our novel approach into bpRNA-visual to produce better visualizations

than previous work. These research pieces are also proved to be useful in the RNA



72

structure prediction area of research and could contribute on different topics of

studies.

Future work on this line of research could focus on exploring different deep

learning architectures for the RNA secondary structure prediction, including Trans-

former networks, structure prediction algorithms on top of the neural network,

which might be more accurate and efficient on the performance. The topic of a

generalized data augmentation approach on training the neural network models

could also be addressed, which we explored but not fully in the DeepSloop and

DeepStructure research; if the data augmentation approach would be generalized

on any learning-to-predict research on RNA sequences/structures, this would be a

solid research as well.
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Appendix A: bpRNA-Visual: A Compact RNA Secondary Structure

Visualizer with Layout Optimization via Genetic Algorithm

A.1 Abstract

Visualizing RNA secondary structure can be extremely important and useful for

RNA structure research. As visualizing RNA secondary structure is a complex

and challenging task, major drawbacks on the existing implementations include 1)

lack of simplicity on the data structure design and program implementation, and

2) the layout of visualization is ease-to-fail due to the massive overlapping issues.

To address these problems, a compact visualizer, bpRNA-Visual, is introduced for

RNA secondary structures with clean algorithm design and layout optimization

via genetic algorithms. Visualization and optimization results show the improved

performance of our presented approach.

A.2 Overview of bpRNA-Visual

Visualizing RNA secondary structure can be extremely important and useful for

RNA structure research. While visualizing RNA secondary structure is a complex

and challenging task, there exist some visualization systems from previous work,

including VARNA[11], forna[28], and TRAVeLer[17].
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However, there are two major drawbacks to the existing implementations. First

of all, the currently available visualizers are based on the complex data structure

design and program implementation, making a long road to explain and code, thus

not suitable for beginners to learn and implement the visualizer of RNA secondary

structures. This is contrary to the natural properties of RNA secondary structure

which is defined in a simple way and the core part of a visualizer shouldn’t require

any highly complicated data structure and algorithms. Moreover, the layout of

visualizing RNA secondary structure is ease-to-fail due to the massive overlapping

issues from stems and loops, especially for long-ranged RNA sequences. Existing

works are either not able to solve the structure overlaps in the visualization, or

tend to lead to non-intuitive shapes for long-ranged RNA sequences, or heavily

based on hand-designed templates.

To address these problems, we first designed a recursive layout algorithm, as-

signing positions to all the nucleotides through a simple and elegant strategy based

on the local structure; then we designed and implemented a novel genetic algorithm

to optimize the layout, minimizing the overlaps of structures revealed in a system-

atic way; the presented visualizer is named as bpRNA-Visual. The basic layout

algorithm visualizes RNA secondary structures in 200 lines of Python code and

uses the basic data structure and a well-defined recursive algorithm to achieve all

the basic functions, and the advanced genetic algorithm solves the massive layout

problem and results in a rational layout without any hand-designed templates.

Our designed data structure could lead to a unique mapping to the tree struc-

tures defined in the previous work [16]; we also reviewed the currently available
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Figure A.1: Example visualizations via the recursive layout algorithm only. Left:
5s Aeromonas salmonicida rRNA; Right: tRNA tdbR00000403.

RNA secondary structure visualizers [5, 11, 28, 17]; the presented genetic algorithm

gathered insights from the tree structure visualization literature [50, 26, 44, 41].

A.3 Results

A.3.1 Visualizing RNA Secondary Structures via Recursive Layouts

Fig. A.1 shows some example visualizations through our recursive layout algorithm

only (no optimization). Generally, the algorithms starts from the 5’ and 3’ end,

drawing two points with a unit distance and makes a recursion based on the local

structure: if the local structure on top of the current two nucleotides is a loop,

then a circle is drew (top right part of tRNA in Fig. A.1); if the local structure

forms a stem (helix), then the double-helix structure is drew on top of a long rect-

angle. After all the subsequences are solved using recursion, a fixed visualization
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Figure A.2: Example of the layout optimization by the proposed genetic algo-
rithm. Left: bpRNA-CRW-95 before optimization; Right: after optimization.
Pseudoknots exist in this structure, marked as red segments between nucleotides.

is generated for the output.

A.3.2 Layout Optimization via Genetic Algorithm

The layout generated by the recursive algorithm could solve most of the RNA

structures with smaller sequence length (≤ 200nts) without overlaps, while there

are some exceptions due to the direction assignment of substructures in a circle

is without any heuristics. For long RNA sequences, the structures could be a lot

more complicated (Fig. A.2 Left, Fig. A.3 Left) and adjusting the directions of

substructures might not be enough to solve all the overlap structures. Thus both

rotation actions and stretch actions are needed.

We designed and implemented the genetic algorithm, aiming to solve the over-
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lapping issues by performing rotation and stretch actions on substructures in

a heuristic way. Fig. A.2 and Fig. A.3 shows two examples before and after

layout optimization through genetic algorithm. On Fig. A.2(bpRNA CRW 95,

length:563nts), our algorithm ran through the overlapping substructures and solved

all the overlapping parts in the end; on Fig. A.3(bpRNA CRW 1, length:1, 434nts),

the algorithm ran out of all 30 epochs, resulting in the final structure layouts with

no overlapping nucleotides and a single-digit number of crosses of segments.

Generally, the genetic algorithm runs several epochs; at the beginning of each

epoch, we shuffle all the substructures in a different order and perform rotation

and stretch actions on substructures according to this order; after each action is

performed, we keep track of the number of overlaps, and keep the updated layout

in a high probability (Monte-Carlo strategy) if the number of overlaps has reduced

from this action; the algorithm stops after a non-overlapping layout is found or we

run out of all the epochs. The algorithm is generally doing an optimization task

on the number of overlaps of the whole structure; when the layout is updated, the

number of overlaps is guaranteed to be reducing. The stretch parameter is also

controlled by the epoch index since long stretches might not lead to a dense layout.

The detailed algorithm is described in the method section below (see Algorithm 3).

A.4 Discussion

We present a novel visualization tool for RNA structures, bpRNA-Visual, which

optimizes both data structure / program design and the layout strategy. bpRNA-
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Figure A.3: Layout optimization in complex scenarios. Left: bpRNA-CRW-1
(1,434nts) before optimization; Right: after optimization.

Visual has 200 lines of code for the basic RNA visualization program, which is a

lot simpler than any existing approaches and could be used as tutorials or teaching

materials for people getting started with computational RNA research; which is

also good to reveal the veil of RNA structure visualization, letting people under-

stand how visualization works on drawing these secondary structures in an easier

way. The advanced version could be used for general-purpose, producing a rational

layout for RNA sequences, and even long-ranged RNA sequences. Comparing to

previous studies, our approach could efficiently solve the overlapping issues in a

genetic way and does not rely on any hand-designed templates, so that even the

RNA shape is far away from any templates we have in the database, the program

could still produce the optimized layout of the structures.

Future work may focus on two directions: 1) reducing the complexity of com-
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puting the number of overlaps. The current complexity here is O(k ∗ n) where k

is the number of nucleotides in the moved substructure and n is the number of all

nucleotides. Since we would need to check this optimizing goal after every set of ac-

tions, this occupies the majority of the run-time. An approximation strategy could

be used here to significantly reduce the run-time; 2) pruning redundant actions.

There is only a few numbers of actions that could minimize our goal especially

in the later epochs, which makes the program performing too many redundant

actions. We could possibly calculate some heuristics by the local layouts to try

actions only if it would not cause new overlaps against the current layout. This

might boost the efficiency of bpRNA-Visual as well.

A.5 Methods

A.5.1 The Recursive Layout Algorithm

To visualize the secondary structure of an RNA sequence, we need the sequence of

nucleotides and its base pairs as the inputs of the program. We denote the input

RNA sequence as s = s1s2...sn, and the base pair set as Bs = {(i, j)}. We also use

s[i, j] to represent the sub-sequence si...sj.

The goal of the recursive layout algorithm is to go through the input structure

and assign each nucleotide with a position in the plane, i.e., an (x, y) coordi-

nate. Once the position assignment is finished, we could either start plotting the

structure with these positions, or use high-level algorithms to optimize the layout
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positions.

We define the state and transition as follows.

A.5.1.1 State

To start with the layout of s = s[1, n], we select two points in the plane for the 5’

end and the 3’ end, and choose one of the two directions (vertical to the segment

of the two points) to expand the layout.

We define a state as a tuple of a sub-sequence s[i, j], a pair of points p1, p2, and

a unit vector as the direction D:

state = (s[i, j], p1, p2, D).

The intuition of the state definition can be conclude as, if (i, j) ∈ Bs and (i+

1, j−1) ∈ Bs, we would simply transit the state to (s[i+1, j−1], p1+D, p2+D,D);

and otherwise there would be a loop containing either si, sj which we need to assign

the layout and plot the loop circle.

For the starting state, we could easily choose a fixed set of values of p1, p2, and

D, i.e., p1 = (−0.5, 0), p2 = (0.5, 0), D = (0, 1).

state0 = (s[1, n], (−0.5, 0), (0.5, 0), (0, 1))
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A.5.1.2 Transitions

We consider three different cases for transiting a state (s[i, j], p1, p2, D) to another:

1) s[i, j] only contains one or two nucleotides; 2) helix, (i, j), (i + 1, j) ∈ Bs; 3)

otherwise, i.e., a loop would contain si and sj.

• if s[i, j] contains only one nucleotide si, we assign its position as the middle

point of p1 and p2; if it contains only two nucleotides, we directly assign p1

to si and p2 to sj. In this case, we close the state without transiting further.

• if (i, j), (i + 1, j) ∈ Bs (helix), we simply assign p1 to si, p2 to sj, and then

transit the state to (s[i+ 1, j − 1], p1 +D, p2 +D,D).

• otherwise, we use a circle shape to represent the current loop containing

si, sj. We go through sisi+1...sj and collect all k nucleotides in the current

loop, note as sl1sl2 ...slk , where i = l1, j = lk.

We then calculate the position of the circle center C which is at the D

direction of the middle point of p1, p2, with an L distance, such that all k

nucleotides could be uniformly distributed on the circle with the unit distance

against their neighbors.

L =
1

2 tan(π
k
)

By rotating the coordinates of p1 with the center of C by 2π
k

each time, all

the positions of sl1sl2 ...slk are calculated and assigned to pl1 , pl2 , ..., plk .



89

We then consider nucleotides in sl1sl2 ...slk into two cases:

– slu is unpaired and unrelated to any sub-structure, i.e., lu−1 = lu −

1, lu+1 = lu + 1; in this case we don’t further transit to another state;

– (lu, lu+1) ∈ Bs, in this case s[lu, lu+1] expands a sub-structure out of the

current loop, we transit to a state (s[lu, lu+1], plu , plu+1 , D
′), where D′ is

the direction from the current circle center C to the midpoint of plu and

plu+1.

The recursive layout algorithm starts from state0 and executes the transitions

until the positions of all nucleotides are assigned. We denote positions of each

nucleotide as Ps, and the set of all the states as STs. Since each state corresponds

to a base pair in the input structure except state0 may or may not, we have

|Bs| ≤ |STs| ≤ |Bs|+ 1, thus this algorithm runs in linear time against the length

of the input sequence n.

A.5.2 The Genetic Algorithm

The recursive layout algorithm would lead to a fixed structure layout for each of the

input RNA, with a set of states STs and positions of each nucleotide Ps. However,

as well as previous studies, the fixed structure layout might have overlapping issues.

We propose a genetic algorithm to optimize towards minimum overlapping by

exploring a combination of transforming substructure layouts, i.e., performing state

actions.
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A.5.2.1 State Actions

The core idea of transforming a substructure layout of s[i, j] is to perform rotation

and stretch transformation of all the nucleotides within s[i, j], based on our defined

state (s[i, j], p1, p2, D).

Consider a state (s[i, j], p1, p2, D), we define three different actions, left rotation,

right rotation, and stretch. The term “left” and “right” are based on the direction

D, as we could always claim p1 is on the left side and p2 is on the right side given

D as the direction.

• Left rotation of an angle θ (0 < θ ≤ π
2
). Regarding p1 as the center, consider

every nucleotide within s[i, j], we rotate its position by a degree of θ in the

counterclockwise direction.

• Right rotation of an angle θ (0 < θ ≤ π
2
). The rotation is clockwise and the

center is p2 instead.

• Stretch by a distance of L. Perform a stretch transformation of every nu-

cleotide within s[i, j] towards the D direction by an L distance.

A.5.2.2 Greedy and Monte-Carlo Strategy

The basic intuition of the genetic search is to 1) perform a state action on one state;

2) check if the overall number of overlaps is reduced; 3) if yes, decide if we would

keep this action to update our layout. Whenever the overlap count is reduced,

by using the greedy strategy, we always keep the action; and by the Monte-Carlo
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strategy, we use a fixed probability of α to control the process, and ignore this

action with an α probability.

A.5.2.3 Genetic Search

Algorithm 3 describes our genetic search algorithm. Generally, we run the genetic

search for a number of epochs E, with default 30; for each epoch, we generate a

different order of STs, and loop over the states in order; for each state, we perform

rotate actions and stretch actions, and update the layout with the probability

1 − α if the new layout has less number of overlaps. The algorithm stops if a

non-overlapping structure visualization is found, otherwise, we return the layout

with the minimum number of overlaps in the current search. Fig. A.2, A.3 show

the layout optimization via genetic search.
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Algorithm 3 Genetic Search Algorithm for Layout Optimization

1: actionsrotate ← {rotate(clockwise, counter-clockwise)} ×
{degree(15◦, 30◦, ..., 150◦)}

2: function GeneticSearch(STs, Ps, Bs, E, α)
3: . input is the state set STs, positions of nucleotides Ps base pairs Bs, epochs
E, and Monte-Carlo probability α

4: m← CalculateNumberOfOverlaps(Ps, Bs)
5: if m = 0 then
6: return Ps
7: end if
8: . m is the number of overlaps of current layout
9: for e ∈ E do

10: states ← a shuffled array of STs
11: . shuffle states at each epoch
12: for state ∈ states do
13: for actionrotate ∈ actionsrotate do
14: for actionstretch ∈ (e+ 1)× stretch(random(0, 2e)) do
15: . e+ 1 different lengths are randomized ranging from 0 to 2e
16: P ′s ← PerformAction(Ps, state, actionrotate)
17: P ′s ← PerformAction(P ′s, state, actionstretch)
18: m′ ← CalculateNumberOfOverlaps(P ′s, Bs)
19: if m′ < m and random(0, 1) > α then
20: Ps ← P ′s
21: m← m′

22: if m = 0 then
23: return Ps
24: end if
25: end if
26: end for
27: end for
28: end for
29: end for
30: return Ps
31: end function




