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Let H be a cyclically-presented group on n generators with a single defining relator.

Attempts have been made to classify such groups by their order, their status as a 3-

manifold group, and the asphericity status of their presentations. For groups with a

defining relator of length 3 these classifications are nearly complete, with only two groups,

H(9, 4) and H(9, 7), representing outstanding cases in each classification. We complete the

asphericity classification for the presentations of these two groups and show that H(9, 4)

is not a 3-manifold group. We also determine that H(9, 7) is a 3-manifold group if and

only if it is cyclic of order 37.

We consider a relative presentation P for a natural degree-n split extension E of H,

and apply a practical computational method to find reduced relative spherical pictures (a

type of graph) over P. Our method uses a depth-first search to construct pictures region-

by-region (i.e., face-by-face) from a pre-chosen starting region. New regions are typically

added directly adjacent to the newest and oldest regions with available edges. This gives

a construction of relative picture in a spiral ordering centered on the initial region. The

addition of regions outside of this spiral ordering is sometimes required, but is done only

in a limited capacity. Some user-defined limitations are also applied to prevent the search



from continuing indefinitely down non-viable branches of the search graph. The method

terminates when all edges have been connected–resulting in a complete picture–or when

the search backs up and can no longer continue from the initial region.

We successfully apply our method to the split extensions arising from H(9, 4) and

H(9, 7). In each case, the resulting symmetric picture reveals interesting relations in the

group extension E. In particular, these relations can establish that the relative presen-

tation P for E is not relatively aspherical, and hence the presentation for the cyclically-

presented group H is not aspherical in each case. One of these two cyclically-presented

groups, H(9, 7), is also shown to contain a torsion element. The question of whether these

groups are infinite remains unresolved.
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NOTATION

Let k,m, n be integers with n > 0.

Cn the finite cyclic group of order n

Fn the free group on n generators

θ the shift automorphism on Fn

Gn(m, k) the groups of Fibonacci type with presentations Gn(m, k)

F (2, n) the Fibonacci groups with presentations F(2, n) = Gn(1, 2)

H(n,m) the Gilbert-Howie groups with presentations H(n,m) = Gn(m, 1)

S(2, n) the Sieradski groups with presentations S(2, n) = Gn(2, 1)

Let w ∈ Fn.

Gn(w) the cyclically presented group with generator w

En(w) the shift extension of Gn(w)

Let x be a set.

F (x) the free group on x

x−1 the set {x−1 : x ∈ x} of inverses of elements of x

|x| the cardinality of x

Let G and H be groups.

G×H the direct product

G ∗H the free product

GoH the split extension of G by H

Goϕ H the split extension of G by H with H-action ϕ

G ∼= H G is isomorphic to H

G/H the quotient of G by H

K(G, 1) an Eilenberg-MacLane space



NOTATION (Continued)

Let a, b ∈ G and s ⊆ G.

|a| the order of a

[a, b] the commutator of a and b

〈〈s〉〉 the least normal subgroup of G containing s

Let r ⊆ G ∗ F (x).

r∗ the set of all cyclic permutations of elements of r ∪ r−1 that start with a

symbol in x ∪ x−1

r̃ the set of lifted words

Let R = Sg ∈ r∗ where g ∈ G and S begins and ends with an element of x ∪ x−1.

R S−1g−1

λ(R) g−1

Let P = 〈G,x | r〉 be a relative presentation.

G(P) the group defined by P

L(P) the relative cellular model of P

P̃ a lifted presentation

Pst the star graph

Let w = (R1, R2 . . . , Rn) be a walk in Pst where R1, R2, . . . , Rn ∈ r∗.

λ(w) λ(R1)λ(R2) · · ·λ(Rn)

Let L and K be path-connected topological spaces with K ⊆ L.

πn(L) the nth homotopy group of L

πn(L,K) the nth relative homotopy group of the pair (L,K)



NOTATION (Continued)

Let P be a picture over P.

P̃ a lifted picture over P̃

∂P the boundary of P

Let κ be a corner of P.

W (κ) the element of r∗ obtained by reading counterclockwise around the disc

associated to κ

Let M and N be manifolds.

M#N the connected sum
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1 INTRODUCTION

1.1 Background

In 1965, John Horton Conway [17] asked whether the group on 5 generators a, b, c, d, e

subject only to the relations ab = c, bc = d, cd = e, de = a, ea = b is cyclic of order

11. This question generated significant interest [18], as the group naturally generalizes to

groups on n generators. These groups are now known as the Fibonacci groups F (2, n)

with presentations

F(2, n) = 〈x0, . . . , xn−1 | xixi+1 = xi+2 (0 ≤ i < n)〉

where all indices are reduced mod n. The most studied question regarding these groups is

whether they are finite or infinite. By 1974 this question had been answered for all these

groups except F (2, 9), with F (2, n) being infinite for n = 6, 8 and n ≥ 10 [11]. F (2, 9)

was finally shown to be infinite in 1990 by Newman [51] based on computational results

from various authors. While the finiteness question has been a major driver of interest in

these groups, many other questions have arisen about their structure.

We consider a natural generalization of the Fibonacci groups. Let w be a word in

the free group Fn with generators x0, . . . xn−1, and let θ : Fn → Fn be the shift auto-

morphism defined by xi 7→ xi+1 (subscripts mod n). The cyclic presentation

Gn(w) = 〈x0, . . . , xn−1 | w, θ(w), . . . , θn−1(w)〉.

defines the cyclically presented group Gn(w).

We are concerned with the groups of Fibonacci type, that is, the 3-parameter

family Gn(m, k) = Gn(x0xmx
−1
k ). This family was first considered in [43] and generalizes

the Fibonacci groups F (2, n) = Gn(1, 2), as well as the Sieradski groups S(2, n) =

Gn(2, 1) of [57] and the Gilbert-Howie groups H(n,m) = Gn(m, 1) of [25] (we write
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Gn(m, k), S(2, n), and H(n,m) for the presentations of these groups). Many results about

these groups were collected in [40, 61] and in most cases, two groups stand out. H(9, 4)

and H(9, 7) have proven difficult to study, and several classification results note these as

the only exceptional unsolved cases. These two groups, and their presentations H(9, 4)

and H(9, 7), are the primary focus of this dissertation. The finiteness question for these

groups is still unresolved [40].

Of particular interest to us are two topological questions. The first concerns group

presentations. Given a group H with presentation P, it is possible to build a 2-dimensional

CW-complex L based on P with fundamental group H. If the higher homotopy groups

πi(L) are trivial, then L is an aspherical space (since L is 2-dimensional, we only need to

consider π2(L)). A classical result of CW topology gives that the fundamental group of a

finite-dimensional aspherical CW-complex is torsion free [30, Proposition 2.45]. This has

immediate bearing on the finiteness question. Indeed, showing that a group presentation

defines an aspherical complex is the route by which many groups have been shown to be

infinite [55, 15, 5, 22].

It is natural to ask whether a presentation P defines an aspherical CW-complex. We

call this the asphericity question for P. One of the primary approaches for resolving

this question is the theory of pictures. For many presentations, generators of π2(L) can

be constructed combinatorially as certain labeled planar graphs called spherical pictures.

If it can shown that every spherical picture represents the identity in π2(L), then this

suffices to prove asphericity.

We approach the asphericity question of Gn(w) by considering a natural exten-

sion for the group Gn(w). The shift automorphism θ defined on Fn descends to an

automorphism on Gn(w). By letting xi = gixg−i we can construct the shift exten-

sion En(w) = Gn(w)o
θ
Cn with a two-generator two-relator presentation of the form

En(w) = 〈g, x | gn,W 〉 where W ∈ 〈g〉 ∗ 〈x〉. This extension suggests the more general
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notion of a relative group presentation 〈G, x | W 〉 where G is a group and W ∈ G ∗ 〈x〉.

The groups En(w) then have a relative presentation 〈G, x | W 〉 with G cyclic of order n.

A recent treatment of relative presentations is given in [10].

Associated to relative presentations is the concept of relative asphericity and relative

pictures. These concepts have been explored directly in [7, 21, 4, 5, 22] (see the references

in [10] for further examples). Not surprisingly, there is a direct connection between the

asphericity question for cyclically presented groups and the relative asphericity question

for their extensions. We develop a method to search for relative spherical pictures which

we implement as a computer program. In this way, our work extends beyond cyclically

presented groups.

The (ordinary) asphericity question had previously been answered for presentations

of the form Gn(m, k) that are not in some sense equivalent to H(9, 4) or H(9, 7) [25][60]

(see also [61, Theorems 25 and 26]). In this dissertation we resolve the asphericity ques-

tion for H(9, 4) and H(9, 7), completing the asphericity classification for prestentations of

Fibonacci type. In both cases, the presentation is not aspherical, so this does not appear

to be an immediate avenue towards a resolution of the finiteness question for H(9, 4) or

H(9, 7).

Our second topological question, the 3-manifold question, asks whether a given

group is the fundamental group of a 3-manifold. Helling, Kim, and Mennicke [48] found

that for even n ≥ 8, F (2, n) is the fundamental group of a hyperbolic 3-manifold. Since

hyperbolic 3-manifolds are covered by the contractible space H3, they are aspherical,

so their fundamental groups are torsion-free. Cavicchioli, Repovš, and Spaggiari [13,

Corollary 3.5], expanding on the ideas of Maclachlan [45], proved that many cyclically

presented groups with an odd number of generators could not be the fundamental group

of a closed, oriented, hyperbolic 3-manifold with finite volume, among them H(9, 4) and

H(9, 7).
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Howie and Williams [40] considered the general 3-manifold question for groups of

Fibonacci type, and produced a classification that omitted groups isomorphic to H(9, 4)

or H(9, 7) as the only unsolved cases. We prove that H(9, 4) is not a 3-manifold group

and that H(9, 7) is a 3-manifold group if and only if it is cyclic of order 37, very nearly

completing this classification. Our proof makes use of the Elliptization Theorem–a con-

sequence of the Geometrization Theorem proved by Perelman [52, 53, 54] based on the

earlier work of Hamilton [27, 28, 29]–which places significant restrictions on the structure

of finite 3-manifold groups.

1.2 Main Results

Our first result is the development and implementation of a method for searching

for spherical pictures over certain relative group presentations. Despite the limitations

discussed in Section 3.5, it has proven sufficient for discovering pictures in some previously

unresolved cases. The structures of these pictures form the basis for the series of theorems

given below.

The relative asphericity question for presentations of the form 〈G, x | xaxbx−1c〉 was

largely answered by Edjvet in [21]. Three exceptional cases were identified, one of which

was solved by Bardakov and Vesnin in [3]. We answer this question for the remaining two

cases, the results being given in Theorems A and B. This naturally yields answers to the

ordinary asphericity question in the two unsolved cases listed in [61, Theorem 25] (see also

[25, Theorem 3.2]), as captured in Corollaries A.1 and B.2. We additionally show that

the group in Theorem B has interesting torsion.

Theorem A. Let G = 〈g | g9〉. Then the relative presentation P = 〈G, x | x2gx−1g3〉 is

not aspherical.

Corollary A.1. The presentation H(9, 4) is not aspherical.
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Theorem B. Let G = 〈g | g9〉. Then the group generated by the relative presentation

P = 〈G, x | x2gx−1g−3〉 contains a finite subgroup that is not isomorphic (and hence not

conjugate) to a subgroup of G. In particular, P is not aspherical.

Corollary B.1. H(9, 7) has nontrivial torsion.

Corollary B.2. The presentation H(9, 7) is not aspherical.

The complete classification of relative asphericity for the cases considered in [21]

is given by Theorem C. While the presentations in [21] have a more general form, they

each reduce to one of those given here by a series of Tietze transformations, and these

reductions preserve the answer to the asphericity question. Our contribution is in the

resolution of cases (k) and (l).

Theorem C. Let P = 〈G, x | x2gx−1h〉 where g, h ∈ G and |g| ≥ |h| > 1. Then P is not

aspherical if and only if |g| <∞ and at least one of the following holds.

(a)
1

|g|
+

1

|h|
+

1

|gh−1|
> 1,

(b) h = g−1,

(c) h = g−2 or g = h−2,

(d) |h| = 2 and [g, h] = 1,

(e) |g| = 3, |h| = 2, and (gh)2 = (hg)2,

(f) |g| = |h| = 3 and [g, h] = 1,

(g) |g| = 6 and h = g2,

(h) |g| = 7, and h = g2 or g = h2,

(i) |g| = 8, and h = g2,
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(j) |g| = 9, and h = g2 or g = h2,

(k) |g| = 9 and h = g3,

(l) |g| = 9 and h = g−3.

We next consider which obstructions to asphericity are present in the exceptional

cases of Theorem C. Two obstructions suffice to establish nonasphericity in the cases (a)–

(j) and (l). The following theorem is due to William Bogley, except as it regards cases (k)

and (l) of Theorem C.

Theorem D. Let P = 〈G, x | x2gx−1h〉 where G = 〈g, h〉 and |g| ≥ |h| > 1. Then at least

one of the following conditions holds:

(i) P is aspherical.

(ii) There exists a finite subgroup of G(P) that is not conjugate to a subgroup of G.

(iii) The natural map G → G(P) is split by a retraction G(P) → G whose kernel is a

nontrivial 3-manifold group.

(iv) |g| = 9, and h = g3.

Moreover, P is not aspherical in cases (ii)–(iv).

We wonder if the statement of Theorem D is still true with (iv) removed–that is, if

case (k) of Theorem C satisfies (ii) or (iii). Theorem F shows that (k) does not satisfy (iii),

but it is not known whether (k) satisfies (ii). We may consider relaxing (iii) as follows.

(iii)′ The natural map G → G(P) is split by a retraction G(P) → G that is not an

isomorphism, and G(P) is a virtual 3-manifold group.

It may then be possible that (k) satisfies (iii)′, however Corollary E.1 shows that if (k)

does not satisfy (ii), then it also does not satisfy (iii)′. Thus, even in this relaxed form,

the possibility of removing (iv) from Theorem D is dependent on its inclusion in case (ii).
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Theorem E. Let P = 〈G, x | x2gx−1g3〉 where G = 〈g | g9〉. If every finite subgroup of

G(P) has order dividing 18, then G(P) is not a virtual 3-manifold group.

Corollary E.1. Let P = 〈G, x | x2gx−1g3〉 where G = 〈g | g9〉. If every finite subgroup

of G(P) is conjugate to a subgroup of G, then G(P) is not a virtual 3-manifold group.

In [40, Theorem A] Howie and Williams identified, with the exception of those

groups that are isomorphic to H(9, 4) or H(9, 7), precisely which groups of Fibonacci

type are the fundamental groups of 3-manifolds. We contribute to this classification by

showing that H(9, 4) is not a 3-manifold group. We additionally show that if H(9, 7) is a

3-manifold group, then it must be isomorphic to the cyclic group C37.

Theorem F. H(9, 4) is not a 3-manifold group.

Theorem G. H(9, 7) is a 3-manifold group if and only if H(9, 7) ∼= C37.

Finally, we successfully apply our picture searching method to one of the exceptional

presentations in [5] (Exception E2). We additionally prove that the group defined by this

presentation has interesting torsion, and hence that the presentation is not aspherical.

Theorem H. Let G = 〈g | g6〉. Then the element xg−1 has order 12 in the group generated

by the relative presentation P = 〈G, x | x3g2x−1g〉. In particular, P is not aspherical.

1.3 Organization of this Dissertation

Chapter 2 contains background material that is necessary to understand the the-

orems given in Section 1.2, as well as their proofs. In Section 2.1 we describe the basic

notation for group presentations and relative presentation. We define asphericity and rela-

tive asphericity, the main subject of our theorems, in Section 2.2. Our proofs rely heavily

on the theory of pictures, which is discussed at length in Section 2.3. We consider a
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connection between relative asphericity and ordinary asphericity in Section 2.4. This also

includes explanations of Corollaries A.1 and B.2. Finally, we include some basic results

in the theory of 3-manifold groups in Section 2.5.

Chapter 3 is devoted to discussion of our picture-building method. Our method is

described in detail in Section 3.1, and outlined in a flow chart in Figure 3.2. We provide

basic examples in Sections 3.2 and 3.3 to give a sense of how our method works. We give

details of our specific implementation in Section 3.4, and we discuss limitations of our

method in general in Section 3.5.

Chapter 4 contains results obtained from our program. This includes both direct

output (Section 4.1) and explicit constructions of spherical pictures (Section 4.2). These

results are used in Chapter 5 to prove the theorems listed in Section 1.2.

Spherical pictures generated by our program for some presentations known to be

nonaspherical are given in Appendix A.
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2 PRELIMINARIES

2.1 Notation and Conventions

Here we define notation that will be used throughout the subsequent chapters. The

usage of symbols in this section will be consistent with later sections (so G always repre-

sents a coefficient group, x always represents a set of generators, etc.) Unless otherwise

stated, we adopt definitions and notation from [10].

A relative group presentation (or relative presentation) P is a triple

P = 〈G,x | r〉

where G is a group (called the coefficient group of P), x is a set (called the generators

of P), and r is a subset of G ∗ F (x) (called the relators of P) where F (x) denotes the

free group on x.

The relative presentation P = 〈G,x | r〉 defines a group

G(P) = (G ∗ F (x))/〈〈r〉〉

where 〈〈r〉〉 is the normal closure of r in G ∗ F (x). If s is a subset of r, we denote by s∗

the set of all cyclic permutations of the set s ∪ s−1 that start with a member of x ∩ x−1.

If G is the trivial group, the relative presentation 〈G,x | r〉 reduces to the ordinary group

presentation 〈x | r〉.

Let P = 〈G,x | r〉 be a relative presentation. To build some constructions explicitly,

we need an ordinary presentation P̃ that generates the same group as P. The construction

is as follows:

Let Q = 〈a | s〉 be an ordinary presentation for G. Then there is a homomorphism

φ : F (a) → G with ker(φ) = 〈〈s〉〉. For each g ∈ G choose a representative word from

φ−1(g) ⊆ F (a), and for each r ∈ r ⊆ G ∗ F (x) use the representatives of G to form a
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lifted word r̃ ∈ F (a ∪ x). Define the lifted presentation P̃ for P to be the ordinary

presentation

P̃ = 〈a ∪ x | s ∪ r̃〉

where r̃ = {r̃ | r ∈ r}.

2.2 The Cellular Model and Asphericity

A path connected topological space X is called aspherical if πn(X) is trivial for all

n ≥ 2. This restriction on higher homotopy groups does not by itself imply a restriction

on the fundamental group. Indeed, for any group G we can form an aspherical space K

with fundamental group π1(K) ∼= G. Such a space is called an Eilenberg-MacLane

space of type K(G, 1).

We can in fact construct a K(G, 1) as a CW-complex, and thus take advantage

of the rich theory such complexes provide. If X is a connected CW-complex and Y is

aspherical, then any homomorphism π1(X) → π1(Y ) is induced by a map X → Y [30,

Proposition 1B.9]. It follows immediately from the Whitehead Theorem [58, 59] that any

two aspherical CW-complexes with isomorphic fundamental group are homotopy equiva-

lent. Since covering projections induce isomorphisms on the higher homotopy groups, we

have a useful equivalence: a CW-complex is aspherical if and only if its universal cover is

contractible.

Our interest is in the application of asphericity to the study of groups. While we

can construct a K(G, 1) complex for any group G, further restrictions on the shape of this

complex impose strong group-theoretic consequences on G. A useful example is captured

in the following theorem.

Theorem 2.2.1 ([30, Proposition 2.45]). Every finite-dimensional aspherical CW-complex

has torsion-free fundamental group.
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Fix a relative presentation P = 〈G,x | r〉. The relative cellular model for P is a

particular relative CW-complex (L,K), where K is taken to be a K(G, 1)-complex. The

process for building L from K is as follows:

1. For each x ∈ x attach a 1-cell to K at a single point, forming the 1-point union

K ∨
∨
x

S1
x.

2. For each r ∈ r take ϕ̇r : S1 → K ∨
∨

x S
1
x to be a cellular representative of the

homotpy class [ϕ̇] ∈ π1(K ∨
∨

x S
1
x) ∼= G ∗ F (x) corresponding to the element r ∈

G ∗F (x). Form L by attaching a 2-cell c2
r for each r ∈ r via a characteristic map ϕr

that restricts to ϕ̇r on the boundary of c2
r :

L = K ∨
∨
x

S1
x ∪

⋃
r

c2
r .

Since any two K(G, 1)-complexes are homotopy equivalent, the homotopy type of

L and the pair (L,K) is uniquely determined by the relative presentation P. The relative

cellular model of P is denoted L(P), although for convenience we will often write L when

the presentation is unambiguous.

If G is trivial, then K can be taken to be a point, and the relative model reduces to

a 2-complex called the ordinary cellular model for the ordinary presentation 〈x | r〉.

We typically write “cellular model” when referring to both ordinary and relative cellular

models, with the appropriate definition being assumed based on the presentation being

discussed.

The notion of asphericity, which is central to our work, is defined in terms of the

cellular model for both ordinary and relative presentations.

Definition 2.2.2. An ordinary presentation P is said to be aspherical if the (ordinary)

cellular model for P is an aspherical space (i.e., π2(L(P)) is trivial).
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Definition 2.2.3 ([9], [10]). A relative presentation P is said to be aspherical in the

relative sense if the relative homotopy group π2(L(P),K) is trivial.

The following reformulation of relative asphericity gives some preliminary indication

of its group-theoretic importance.

Lemma 2.2.4 ([10, Lemma 2.3]). A relative presentation P = 〈G,x | r〉 is aspherical if

and only if the natural homomorphism G→ G(P) is injective and π2(L(P)) = 0.

Proof. This follows from direct inspection of the long exact homotopy sequence of the pair

(L(P),K):

0 = π2(K)→ π2(L(P))→ π2(L(P),K)→ π1(K)→ π1(L(P)),

noting that the inclusion-induced homomorphism π1(K) → π1(L(P)) corresponds to the

natural homomorphism G→ G(P).

If P = 〈G,x | r〉 is aspherical, we can view G as a subgroup of G(P), and this

subgroup has substantial influence over the structure of G(P). The restrictions on torsion

elements and finite subgroups of G(P) are particularly rigid.

Theorem 2.2.5 ([10, Theorem 2.4(c)]). Let P = 〈G,x | r〉 be an aspherical relative

presentation. Then

(a) every finite subgroup of G(P) is conjugate to a subgroup of G,

(b) if w ∈ G(P) and G ∩ wGw−1 contains a nontrivial element of finite order, then

w ∈ G.

If P is a relative presentation such that G→ G(P) is injective, then Theorem 2.2.5

represents potential obstructions to the asphericity of P. This is the cornerstone of our

proofs that the relative presentations P in Theorems A, B and H are not aspherical.

The presentations considered in Theorems A to E and H fall into a class of 1-generator,

1-relator relative presentations for which G→ G(P) is known to be injective.
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Theorem 2.2.6 ([38, Theorem 2]). Let P = 〈G, x | xaxbx−1c〉 where a, b, c ∈ G. Then

the natural map G→ G(P) is injective.

Theorem 2.2.7 ([20]). Let P = 〈G, x | xngx−mh〉 where n,m ∈ Z with n 6= m and

g, h ∈ G with {|g|, |h|} 6= {2, 3}. Then the natural map G→ G(P) is injective.

Perhaps not surprisingly, relative asphericity relies only on those coefficients present

in the relators of G(P).

Lemma 2.2.8 ([10, Lemma 2.14]). Given a relative presentation P = 〈G,x | r〉, if H is

any subgroup of G for which the set of relators r ⊆ G ∗ F is contained in the free product

H ∗ F , then P is aspherical if and only if 〈H,x | r〉 is aspherical.

We may then assume without loss of generality thatG is generated by the coefficients

present in the elements of r. For example, given the presentation 〈G, x | x2gx−1h〉 we

assume that G = 〈g, h〉. This assumption is useful in conjunction with Theorem 2.2.5, as

it becomes easier to identify subgroups that prove non-asphericity.

2.3 Relative Pictures

2.3.1 Basic Definitions

In order to build elements of the relative homotopy group π2(L,K) of the cellular

model L of P, it is helpful to approach the problem from a combinatorial perspective. We

start with the definition of relative pictures and related terminology given in [10].

Definition 2.3.1. A picture P is a finite collection of pairwise disjoint discs {D1, . . . , Dm}

in the interior of an ambient disc D2, together with a finite collection {α1, . . . , αn} of pair-

wise disjoint simple arcs properly embedded in the closure of D2 \
⋃
{D1, . . . , Dm} such

that each endpoint of an arc meets the boundary of a disc or the boundary of the ambient

disc.
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The boundary of P, denoted ∂P, is the boundary of the ambient disc D2. A region

of P is the closure of a connected component of D2 \ (
⋃
{D1, . . . , Dm} ∪

⋃
{α1, . . . , αn}).

An inner region of P is a simply connected region that does not intersect the boundary

of P.

By a disc of P we mean one of the discs Di and not the ambient disc D2. A corner

of the disc Di is a connected component of ∂Di \
⋃
{α1, . . . , αn} where ∂Di denotes the

boundary of Di.

Definition 2.3.2. A picture P is connected if
⋃
{D1, . . . , Dm} ∪

⋃
{α1, . . . , αn} is con-

nected, is nontrivial if m ≥ 1, and is spherical if it is nontrivial and none of its arcs

meet the boundary of P.

Let P = 〈G,x | r〉 be a relative presentation. Apply the following labeling to a

picture P:

• Each arc of P is given a transverse orientation, denoted by an arrow intersecting the

arc, and is labeled by an element of x ∪ x−1.

• Each corner of P is given a counterclockwise orientation and is labeled by an element

of G.

Let κ be a corner of a disc Di of the picture P. Denote by W (κ) the word obtained

by reading the labels of each corner and arc meeting Di while traversing counterclockwise

around the boundary of Di ending at κ (we read the label of κ last). When we cross an

arc labeled x in the direction of its transverse orientation, we read x, and we read x−1

when we cross in the direction opposite its orientation.

Definition 2.3.3. Fix a relative presentation P = 〈G,x | r〉. A relative picture over P

is a picture P with a labeling as above such that the following two conditions are satisfied:

(1) W (κ) is an element of r∗ for any corner κ of P,
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(2) If g1, . . . , gk are the labels of the corners read in a clockwise order about the boundary

of an inner region of P, then g1 · · · gk = 1 in G.

A spherical picture is called strictly spherical if it is connected and the product of the

corner labels in the outer annular region read in a counterclockwise order gives the identity

in G.

Connected spherical pictures are visualized as plane-embedded graphs, with each

vertex representing a disc, each edge representing an arc, and each face representing a

region. Figure 2.1 gives an example of a strictly spherical picture over the presentation

〈G, x | x2gx−1g−2〉 where G is the cyclic group of order 8 generated by g. Arc labels

and orientation arrows are often omitted from our visual depictions, but can typically

be deduced from the corner labels. From here on, graph-theoretic terms will be used

interchangeably with the corresponding picture-based terminology.

g−2 g−2

g−2 g−2

g−2

g−2

g−2

g−2

g

g
g

g

g

g
g

g

g−1

g−1

g−1 g−1

g−1

g−1

g−1 g−1

g2

g2

g2

g2

g2

g2

g2

g2

FIGURE 2.1: A strictly spherical picture over the presentation 〈G, x | x2gx−1g−2〉 where
G = 〈g | g8〉
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2.3.2 The Pictorial van Kampen Lemma

If the group G is trivial, then the relative presentation 〈G,x | r〉 becomes the

ordinary presentation P = 〈x | r〉. A corresponding definition for a picture over P is

obtained by ignoring corner labels.

Definition 2.3.4. Fix an ordinary presentation P = 〈x | r〉. A picture over P is a

picture P satisfying the following two conditions:

1. Each arc is given a transverse orientation and is labeled by an element of x ∪ x−1.

2. For each disc Di in P, the word in x∪x−1 obtained by reading the labels of the arcs

intersecting ∂Di in counterclockwise order (accounting for transverse orientation)

from any starting point is an element of r∗.

Define the boundary label of a picture P over the ordinary presentation 〈x | r〉

to be the word in x ∪ x−1 obtained by reading the labels (accounting for transverse

orientations) of each arc meeting the boundary of P in a counterclockwise traversal of ∂P.

Over ordinary presentations, pictures are dual (as graphs) to van Kampen diagrams, and

in analogy, there is a pictorial version of the van Kampen Lemma:

Theorem 2.3.5 ([8, Theorem 1.4]). Let P = 〈x | r〉 be an ordinary presentation. A word

u in x ∪ x−1 represents the identity in G(P) if and only if there is a picture over P with

boundary label u.

Let P be a picture over an ordinary presentation P. If β is the image of any simple

closed curve in P that does not intersect any discs and only intersects arcs transversely,

then β bounds a subpicture P0 of P. As we traverse β in a counterclockwise direction, the

arcs that intersect β define the boundary label u of P0. By Theorem 2.3.5 u represents the

identity in G(P). Thus, we can find representatives of the identity in G(P) by drawing

simple closed curves in the picture P.
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We can likewise find representatives of the identity in G(P) when P is a relative

presentation. Let P be a relative picture over P = 〈G,x | r〉 and consider a lifted presen-

tation P̃ = 〈a ∪ x | s ∪ r̃〉 for P, where Q = 〈a | s〉 is a presentation for G. We can build

a lifted picture P̃ over P̃ from P by the following process:

Identify all corner labels of P with their corresponding representative words in

a ∪ a−1. The corner labels read clockwise about an inner region ∆ of P give a word

u ∈ F (a) that is trivial in G(Q) ∼= G. Reading the corner labels instead in a counter-

clockwise order gives the word u−1. By Theorem 2.3.5 there is a picture P∆ over Q with

boundary label u−1. Place P∆ in the inner region ∆ and extend the arcs meeting ∂P∆ so

that they connect with their corresponding corner (do not allow the arcs to cross). Note

that a single corner may connect to any number of extended arcs. For regions ∆′ that

meet the boundary of P, add arcs from the corners of ∆′ corresponding to that corner’s

label (where the corner label is considered as an element of F (a)) and extend these arcs

until the meet the boundary of P. Give these arcs the appropriate transverse orientation

and label in a. Finally removing the now redundant corner labels from P gives the lifted

picture P̃.

While the lifted picture lets us apply Theorem 2.3.5 to relative spherical pictures,

we do not usually explicitly construct these lifted pictures. Instead, we rely on our imagi-

nation to fill in the missing discs and arcs. As an example, consider the 1-relator relative

presentation P = 〈G, x | x2gx−1g−2〉. A spherical picture P for P was given in Figure 2.1.

In order to find an identity in G(P), we draw a loop β on P as in Figure 2.2. In the

regions through which β passes, we imagine that all extra discs are added outside the area

bounded by β. If we travel around β counterclockwise, the extra arcs that intersect β

inside a region ∆ of P correspond to those corner labels (read clockwise about ∆) that

are within the area bounded by β. These are the corner labels to the left of β as we travel

along it counterclockwise.
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g−2 g−2

g−2 g−2
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g−2
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g
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g

g−1

g−1

g−1 g−1

g−1
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g−1 g−1
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g2

g2

g2

g2

g2

g2

g2

β

FIGURE 2.2: A loop in a spherical picture over the presentation 〈G, x | x2gx−1g−2〉 where
G = 〈g | g8〉

Consider the closed curve β in the picture P given in Figure 2.2. Start at the

distinguished point given in the central region and begin to travel counterclockwise around

β. When we cross the first arc of P we read x (transverse orientations for the arcs of

P are given in Figure 2.1). As we travel through the next region, we read the corner

labels that are within the area bounded by β in clockwise order around the region, giving

(1)(g−2)(1) = g−2. we next cross an arc reading x−1, then read g2 in the following region,

and then x−1 as we cross the outermost arc. On the path from the central region to the

outer region, we have so far read the word

y = xg−2x−1g2x−1.

We now continue counterclockwise through the outer region, passing by a single corner

and reading g2. The path we take from the outer region back to the central region is

essentially the same (due to symmetry) as the path we took going out, but traversed in
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the opposite direction. We therefore read the word y−1. Finally, to reach our starting

point we travel past a single corner in the central region, reading g−2. The identity in

G(P) given by β is

yg2y−1g−2

where y is as above. We conclude that y and g2 commute in G(P). The word y is related

to the polar words of [47]. We use a similar path in the proof of Theorem A.

2.3.3 Spherical Pictures as Elements of π2(L,K)

Fix a relative presentation P = 〈G,x | r〉 with cellular model L. Given a connected

spherical picture P over P we can construct an element [f ] ∈ π2(L,K) by following a

process analogous to that outlined in [41]. The map f : (D2, S1) → (L,K) is defined as

follows:

• Fix a lifted presentation P̃ = 〈a∪x | s∪ r̃〉 of P, where Q = 〈a | s〉 is a presentation

for G. Choose K to be a K(G, 1)-complex whose 2-skeleton is the cellular model for

Q.

• Build a lifted picture P̃ over P̃ and identify (D2, S1) with (P̃, ∂P̃). Expand each arc

αj of P̃ to a collared neighborhood of αj as in Figure 2.3. Expand all discs so that

these neighborhoods are flush with the disc boundaries as in Figure 2.4(iii).

• Along each expanded arc, let f map each collar line onto L characteristically with

respect to the arc label and transverse orientation. Some curving of collar lines must

be done near the boundary of a disc to ensure f is continuous.

x x

FIGURE 2.3: An arc expanded to a collared neighborhood
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ab

c

x

x x

(i)

ab

c

x

x x

(ii)

ab

c

x

x x

(iii)

FIGURE 2.4: (i) a relative disc, (ii) a lifted disc, and (iii) an expanded disc in the case
P = 〈G, x | xaxbx−1c〉

• For each disc Di there is an associated boundary word rε where r ∈ r̃ and ε = ±1.

Let f map Di characterstically (i.e., by ϕr) onto L precomposed by an orientation-

reversing map in the case ε = −1.

Conversely, any continuous map (D2, S1) → (L,K) can be represented by a (not

necessarily connected) spherical picture over P (see the proof of theorem 4.1 in [7]). In

this way, the process of finding elements of π2(L,K) becomes the combinatorial exercise

of building spherical pictures.

2.3.4 Dipoles

Our main results involve the construction of reduced spherical pictures, that is,

spherical pictures that do not contain a certain degenerate subpicture called a dipole.

This is analogous to reduced words in a free group.

Definition 2.3.6 ([7]). A dipole in a spherical picture P over P = 〈G,x | r〉 is a pair

of corners κ and κ′ together with an arc meeting the closure of each corner such that the

following two conditions are satisfied:

(1) κ and κ′ are contained in the same region of P.

(2) If W (κ) = Sg where g ∈ G and S begins and ends with an element of x ∪ x−1, then

W (κ′) = S−1g−1.
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Intuitively, a dipole is a mirrored pair of discs, with one disc representing a relator

r, and the other disc representing r−1. Figure 2.5 gives an example of the construction of

a dipole in the case P = 〈G, x | r〉 where r = xaxbx−1c.

ab

c

r = xaxbx−1c

(i)

a−1c−1

b−1

r−1 = c−1xb−1x−1a−1x−1

(ii)

a
b

c

a−1

c−1
b−1

(iii)

FIGURE 2.5: (i) and (ii) vertices (discs) representing r and r−1. (iii) A dipole is formed
when these discs are connected by an arc with a mirrored orientation.

It is easy to construct spherical pictures with dipoles. Indeed, joining the right top

arc with the left top arc and the right bottom arc with the left bottom arc in Figure 2.5(iii)

gives a strictly spherical picture over 〈G, x | xaxbx−1c〉.

Definition 2.3.7. A relative presentation P is orientable no relator of P is a cyclic

permutation of its inverse.

In the case that P is orientable, the picture formed by a single diplole is homo-

topically trivial (via a homotopy that folds the two discs together), and hence does not

represent an obstruction to asphericity. This need not be the case for non-orientable pre-

sentations. Consider the non-orientable relative presentation P = 〈C2, x | [x, a]2〉 where

C2 is the cyclic group of order 2 generated by a. [7, Figure 1] gives a lifted picture for a

single relative dipole over P that is not homotopically trivial. Another example of a non-

orientable presentation is given in [6, Example 3.5]. The presentations in Theorems A, B

and H are easily checked to be orientable.

The “folding” homotopy can be used to remove any dipole from a spherical picture

over an orientable relative presentation without changing its homotopy class (see [7, theo-
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rem 4.1]). In terms of pictures, removing a dipole means removing the two mirrored discs

and connecting the corresponding arcs. An example is given in Figure 2.6.

ab

c d

a−1

d−1

b−1

c−1

FIGURE 2.6: Removal of a dipole in the case 〈G, x | xaxbxcx−1d〉

Definition 2.3.8. A picture over a relative presentation is called reduced if it contains

no dipoles.

Definition 2.3.9. A relative presentation P is diagrammatically reducible if every

connected spherical picture over P contains a dipole.

If an orientable relative presentation is diagrammatically reducible, then every

strictly spherical picture represents the identity in π2(L,K), and hence the presentation

is aspherical. Notice that the strictly spherical picture given in Figure 2.1 is reduced, so

P = 〈G, x | x2gx−1g−2〉 is not diagrammatically reducible.

2.3.5 The Star Graph

Let P = 〈G,x | r〉 be a relative presentation. The star graph Pst of P is a directed

graph with vertex set x ∪ x−1 and edge set r∗, together with an edge labeling function

λ : r∗ → G. Fix R ∈ r∗ and write R = Sg where g ∈ G and S begins and ends with an

element of x ∪ x−1. We say that R is an edge from y ∈ x ∪ x−1 to z ∈ x ∪ x−1 if y is the

first symbol of S and z−1 is the last symbol of S. We assign the label λ(R) = g−1 to the

edge R and extend this labeling scheme to directed walks in Pst by right multiplication

in G. That is, if a walk w consists of the sequence R1, R2, . . . , Rn of edges in Pst, then

λ(w) = λ(R1)λ(R2) · · ·λ(Rn).
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For R = Sg ∈ r∗ as above, there is a corresponding edge R̄ = S−1g−1 ∈ r∗ which

is a cyclic permutation of R−1. If R is an edge from y to z with label λ(R) = g−1,

then R̄ is an edge from z to y with label λ(R̄) = g. When drawing the star graph, we

typically only draw one of these two edges for each corresponding pair, as in Figure 2.7.

The traversal of R̄ in Pst can then be understood as a traversal of R in the direction

opposite its orientation. Thus, when we travel backwards along an edge R, we read the

label λ(R)−1. The two-edge walk consisting of edges R and R̄ is called a backtracking.

a
b c

xx−1

(i)

a

b

c d
xx−1

(ii)

FIGURE 2.7: The star graphs for the presentations (i) 〈G, x | xaxbx−1c〉 and (ii) 〈G, x |
xaxbxcx−1d〉

The star graph is useful, because it gives insight into the construction of a reduced

spherical picture P over P. If κ1, . . . , κn is the sequence of corners read counterclock-

wise about an inner region of P, then W (κ1), . . . ,W (κn) gives a closed walk in Pst [7,

Lemma 2.1(i)]. Likewise, a closed walk w satisfying λ(w) = 1 in G gives rise to a picture

with a single inner region whose corner labels are the inverses of the labels of each edge

in w. A backtracking in the star graph then corresponds to a dipole in the picture [7,

Lemma 2.1(ii)].

The results in the preceding paragraph are obtained rather intuitively. Consider the

discs of a picture over P given in Figure 2.8 where κ1, κ2 are corners, and z ∈ x ∪ x−1

is an arc label. As the arcs labeled z have matching transverse orientations, they can be

joined so that κ1 and κ2 are adjacent corners in the same region. Now write W (κ2) = Sg

and W (κ1) = Th where S, T start and end with symbols in x ∪ x−1 and g, h ∈ G. If S

ends with z−1, as in Figure 2.8, then W (κ1) is an edge in Pst ending at z. If T starts

with z, then W (κ1) is an edge in Pst ending at z. Hence, connecting the arc labeled z in
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the picture corresponds to the walk W (κ1),W (κ2) in Pst. The correspondence between

backtracking and dipoles follows directly.

z

κ1

z

κ2

FIGURE 2.8: Two discs in a picture over P. The star graph determines whether the discs
can be joined along an arc.

A sequence of corners κ1, . . . , κn defines an admissible region (or admissible

face) if W (κn), . . . ,W (κ1) defines a closed walk w in Pst with λ(w) = 1 in G. We form

this region by placing the corners in a clockwise order about the region. An admissible

word is a sequence of corner labels read clockwise about an admissible region.

2.4 Retraction Kernels

Given a group presentation P, the Reidemeister-Schreier method allows us to

construct presentations for subgroups of G(P) (see [46, Section 2.3]). Consider the one-

generator, one-relator relative presentation P = 〈G, x | r〉, and suppose G → G(P) is

split by a retraction ν : G(P) → G. We can then write G(P) as a semidirect product

G(P) ∼= ker(ν)oG. We adapt the Reidemeister-Schreier rewriting process outlined in [6,

Section 2] to build a presentation for ker(ν) as follows.

The presentation for ker(ν) has generators {xd}d∈G which are elements of G(P).

Define xe = xν(x)−1 where e is the identity in G. For any element u in G(P) we can write

u = g1x
ε1
e g2x

ε2
e · · · gnxεne gn+1.

where εi = ±1. Then u ∈ ker(ν) if and only if g1g2 · · · gn+1 = e in G. We can thus write
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any u ∈ ker(ν) as a product of G-conjugates of powers of xe:

u =
n∏
i=1

Πik=1gkxεie

where hg = hgh−1. There is a Reidemeister-Schreier rewriting process ρ defined by

ρ(u) =

n∏
i=1

xεi
Πik=1gk

.

In particular, ρ(dxν(x)−1d−1) = xd for d ∈ G. [46, Theorem 2.9] gives the presentation

〈xd (d ∈ G) | ρ(drd−1) (d ∈ G)〉

for ker(ν).

Example 2.4.1. Consider the relative presentation P = 〈G, x | x2gx−1h〉 where |g| = n,

|h| = 2, and |g−1h| = 2. Then G = 〈g, h〉 is isomorphic to the dihedral group D2n. There

is a retraction ν : G(P)→ G given by ν(x) = hg, and we define xe = xg−1h. The relator

r = x2gx−1h can be written as

r = (xg−1h)hg(xg−1h)hggg−1h(hgx−1)h

= xe(hg)xe(hg)−1(h)x−1
e (h)−1

The Reidemeister-Schreier rewriting process gives

ρ(r) = xexhgx
−1
h .

Applying ρ to drd−1 has the effect of left-multiplication by d on each subscript. That is,

ρ(drd−1) = xdxdhgx
−1
dh .

A presentation for ker(ν) is given by

〈xd (d ∈ G) | xdxdhgx−1
dh (d ∈ G)〉.
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Suppose now thatG is the cyclic group of order n generated by g, and let νf : G(P)→

G be the retraction defined by νf (x) = gf . The Reidemeister-Schreier rewriting pro-

cess ρf from [6] produces a cyclic presentation for the kernel of νf . Specifically, letting

ρf (xg−f ) = x0 and ρf (gix0g
−i) = xi (0 ≤ i ≤ n − 1) allows us to write elements of

ker(νf ) in terms of the cyclic generators x0, . . . , xn−1. The presentation for ker(νf ) under

this rewriting process is Gn(ρf (r)). A connection between relative asphericity of P and

ordinary asphericity of Gn(ρf (r)) is captured in the following theorem.

Theorem 2.4.2 ([6, Theorem 4.1(b)]). Let L be the cellular model of a relative presen-

tation P = 〈G, x | r〉 where G is the cyclic group of order n generated by g. Suppose that

νf : G(P) → G is a retraction given by νf (g) = g and νf (x) = gf . Let w = ρf (r). If

Gn(w) is orientable and combinatorially aspherical, then π2L = 0.

Here the concept of an “orientable” cyclic presentation differs from the relative case

given in Definition 2.3.7.

Definition 2.4.3. A cyclic presentation Gn(w) is orientable if w is not a cyclic permu-

tation of the inverse of any of its shifts.

For our purposes, it is enough to note that if Gn(w) is nonorientable, then n is even [6,

Lemma 3.6]. In particular, H(9, 4) and H(9, 7) are orientable. A definition of combina-

torial asphericity can be found in [16]. Combinatorial asphericity is a weaker condition

than ordinary asphericity ([16, proposition 1.3]), so if a presentation is not combinatorially

aspherical, then it is not aspherical.

Using Theorem 2.4.2, we can relate the relative asphericity of the presentation P in

Theorem A with the ordinary asphericity of the presentation H(9, 4). This will establish

Corollary A.1.

• Consider the relative presentation P = 〈G, x | x2gx−1g3〉 where G is the cyclic group

of order 9 generated by g. We apply the following Tietze transformations to P:
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(1) Invert the relator:

g−3xg−1x−2

(2) Apply a cyclic permutation (conjugate by x2):

x−2g−3xg−1

(3) Apply the change of variables z = x−1:

z2g−3z−1g−1

This produces a series of relative presentations with homotopy equivalent cellular

models. Since G → G(P) is injective, P is aspherical if and only if V = 〈G, z |

z2g−3z−1g−1〉 is aspherical.

There is a retraction ν4 : G(V)→ G given by ν4(z) = g4. The Reidemeister-Schreier

process gives the presentation Gn(w) for ker(ν4) where

w = ρ4
(
z2g−3z−1g−1

)
= ρ4

(
(zg5)g4(zg5)g−4g(zg5)−1g−1

)
= x0x4x

−1
1 .

This is precisely the presentation H(9, 4). Now, if P is not relatively aspherical,

then neither is V, and hence the presentation Gn(w) = H(9, 4) is not aspherical by

Theorem 2.4.2. This establishes Corollary A.1.

It is helpful to recognize that the groups H(9, 4) and H(9, 7) are isomorphic to retraction

kernels without the need for a series of preliminary Tietze transformations.

Lemma 2.4.4 ([3, Lemma 1.1(3)]). Gn(m, k) ∼= Gn(n−m,n−m+ k).

Let P = 〈G, x | x2gx−1g3〉 where G = 〈g | g9〉 as in Theorem A. Then there is

a retraction ν5 : G(P) → G defined by ν5(x) = g5. The Reidemeister-Schreier rewriting

process ρ5 gives the presentation G9(5, 6) = G9(x0x5x
−1
6 ) for ker(ν5), and by Lemma 2.4.4

we have

ker(ν5) ∼= G9(5, 6) ∼= G9(4, 1) = H(9, 4).
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Now let P = 〈G, x | x2gx−1g−3〉 where G = 〈g | g9〉 as in Theorem B. Then there is

a retraction ν2 : G(P)→ G defined by ν2(x) = g2. From a Reidemeister-Schreier rewriting

process and Lemma 2.4.4 we get

ker(ν) ∼= G9(2, 3) ∼= G9(7, 1) = H(9, 7).

If J is a finite subgroup of P not isomorphic to a subgroup of G, then ν2|J is not injective,

so J ∩ ker(ν2) is a nontrivial finite subgroup of H(9, 7). By Theorem 2.2.1 H(9, 7) cannot

be aspherical. This establishes Corollaries B.1 and B.2.

2.5 3-Manifold Groups

A 3-manifold is a Hausdorff space in which every point has a neighborhood that

is homeomorphic to the 3-ball. We consider only connected 3-manifolds, so that their

fundamental group is well defined irrespective of chosen base point. We make no fur-

ther assumptions about the structure of 3-manifolds (e.g., whether they are closed or

orientable). A 3-manifold group is a group that is isomorphic to the fundamental group

of a 3-manifold.

Let P be an aspherical relative presentation. Theorem 2.2.5 shows that asphericity

of P imposes restrictions on the structure of finite subgroups of G(P). There are similarly

strong restrictions on the 3-manifold status of finite-index subgroups of G(P).

Theorem 2.5.1 ([10, Theorem 2.19]). Let P = 〈G,x | r〉 be a relative presentation with

G,x, r finite and suppose the natural map G→ G(P) is split by a retraction ν : G(P)→ G.

Assume that G(P) is a virtual 3-manifold group.

(a) If P is a aspherical, then |r| ≤ |x|.

(b) If |r| = |x| (i.e., P is balanced), then P is aspherical if and only if G → G(P) is

an isomorphism.
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The presentations in Theorems A and B are balanced, and the retraction kernels

H(9, 4) and H(9, 7) calculated in Section 2.4 are finite-index subgroups. Since these pre-

sentations are not aspherical, it is natural to ask if these kernels are 3-manifold groups. We

find that H(9, 4) is not (this is Theorem F). It may still be possible that the presentation

in Theorem A defines a virtual 3-manifold group. We partially address this situation in

Theorem E. We do not eliminate the possibility that H(9, 7) is a 3-manifold group, but

we restrict it to the case H(9, 7) ∼= C37 (this is Theorem G).

As in groups with aspherical presentations, 3-manifold groups have restrictions on

the ways in which torsion can occur.

Theorem 2.5.2 ([23, Theorem 8.2] see also [33, Theorem 9.8]). If M is a 3-manifold and

J is a finite subgroup of π1(M), then either

(i) J ∼= C2, and the nontrivial element of J is conjugate in π1(M) to a loop on a

two-sided projective plane submanifold of M .

(ii) M = M1#Q where Q is closed and orientable, π1(Q) is finite, and J is conjugate

to a subgroup of π1(Q).

Here, a compact codimension-1 submanifold P of M is said to be 2-sided if there

is an embedding

h : P × [−1, 1]→M

such that h(z, 0) = z for each z ∈ P and

h(P × [−1, 1]) ∩ ∂M = h(∂P × [−1, 1]).

If M contains a 2-sided projective plane, then P × [−1, 1] ⊆ M is a non-orientable sub-

manifold of codimension 0, so M is necessarily non-orientable.

Since C2 is the fundamental group of the orientable 3-manifold RP 3, we can conclude

immediately from Theorem 2.5.2 that any finite 3-manifold group is the fundamental
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group of a closed, orientable 3-manifold. We may then apply the Elliptization Theorem

(a consequence of the Geometrization Theorem, see [53]).

Theorem 2.5.3 (Elliptization Theorem [2, Theorem 1.7.3]). Every closed 3-manifold with

finite fundamental group is spherical.

A spherical 3-manifold is one that is obtained as the quotient S3/Γ where Γ is a

finite subgroup of group of rotations SO(4) in R4. The fundamental groups of spherical

3-manifolds are well known, and were classified by Hopf [37]. We use the classification

presented in [2, Section 1.7].

Theorem 2.5.4 ([2]). The fundamental group of a spherical manifold is precisely one of

the following types of groups:

(1) the trivial group,

(2) Q4n = 〈x, y | x2 = (xy)2 = yn〉 where n ≥ 2,

(3) P48 = 〈x, y | x2 = (xy)3 = y4, x4 = 1〉,

(4) P120 = 〈x, y | x2 = (xy)3 = y5, x4 = 1〉,

(5) the dihedral group

D2m(2n+1) = 〈x, y | x2m = 1, y2n+1 = 1, xyx−1 = y−1〉,

where m ≥ 2 and n ≥ 1,

(6) the group

P ′8·3m = 〈x, y, z | x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3m = 1〉,

where m ≥ 1,

(7) the direct product of any of the above groups with a cyclic group of relatively prime

order.



32

We also consider structural requirements of some infinite 3-manifold groups.

Proposition 2.5.5. If H is an infinite 2-generator 3-manifold group with a nontrivial

finite subgroup not satisfying condition (i) of Theorem 2.5.2, then H is the free product of

two cyclic groups.

Proof. Let M be a 3-manifold with fundamental group H, and let J be a nontrivial finite

subgroup of H not satisfying condition (i) of Theorem 2.5.2. Then M = M1#Q and

H = π1(M) = π1(M1) ∗ π1(Q)

with π1(Q) finite and nontrivial. Since H is assumed to be infinite, this free product must

be proper, and by Grushko’s theorem [26] (see also [50]) the factors must be cyclic.

The abelianization of any group H satisfying the conditions of Proposition 2.5.5

is a direct product of two nontrivial cyclic groups. The order of the abelianization for

many cyclically-presented groups can be calculated as a particular resultant involving a

representer polynomial (see [42, Section 9]). It was reported in [61] that H(9, 4)ab ∼= C19

and H(9, 7)ab ∼= C37. Since the order of each is odd, they cannot have a subgroup of index

2, and hence cannot be the fundamental group of a non-orientable 3-manifold. Notice

that both abelianizations are indecomposable, which is inconsistent with the conclusion

of Proposition 2.5.5.

Given elements x, y of a group H, a Baumslag-Solitar relation has the form

yxay−1 = xb. In the proof of Theorem E we find that a surprising Baumslag-Solitar

relation occurs in the group defined by 〈G, x | x2gx−1g3〉 where G = 〈g | g9〉. Such

relations are restricted in 3-manifold groups.

Proposition 2.5.6 ([44, Proposition 1]). If x is an element of infinite order in a 3-

manifold group such that xm and xn are conjugate (m,n ∈ Z), then m = ±n.
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3 COMPUTATIONAL METHODS

3.1 A Method for Finding Spherical Pictures

In this section we describe a method for building connected, reduced spherical pic-

tures. Briefly, we build up a picture face-by-face, starting with a single face and progres-

sively adding faces in a spiral order. It is sometimes necessary to add new faces outside of

this spiral order (which we call “hop” faces). This process is continued until the picture

becomes spherical. We implemented our method in the C programming language and

used it to find pictures over the presentations given in Theorems A, B and H. Program

output is given in Section 4.1 and the completed pictures are given in Section 4.2.

There is potential for further development of picture-searching methods. Our method

is limited to adding faces in a particular order, and this may cause us to miss pictures

even when they exist. A breadth-first method could likely overcome this limitation, al-

though care would need to be taken to address reconvergence of the breadth-first graph

and computer memory limitations. Our method was chosen for ease of implementation

and proved sufficient for some outstanding cases.

3.1.1 Notation

Our current implementation is designed only to handle 1-generator, 1-relator relative

presentations. That is, presentations of the form P = 〈G, x | r〉 where

r = xε1g1x
ε2g2 · · ·xεngn

with εi = ±1 and gi ∈ G. Elements of G that occur in r are represented by the first n

lower case letters of the alphabet (a, b, c, . . . ), and G is assumed to be generated by these

elements. The inverse of a generator of G is represented by the corresponding uppercase

letter (e.g., a−1 = A).
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The presentations in Theorems A, B and H have cyclic coefficient groups, so we will

also assume that G = 〈g | gn〉. We experimented with a few non-cyclic coefficient groups,

but no new pictures were found.

As an example, consider the relative presentation 〈G, x | x2gx−1g−2〉 where G is

the cyclic group of order 8 generated by g. A spherical picture over this presentation was

given in Figure 2.1. When written using the notation of this section, the presentation

becomes 〈G, x | xaxbx−1c〉 where a = 1, |b| = 8, and c = b−2. Figure 3.1 gives the picture

for this presentation using the labeling specified in this section and with transverse arc

arrows omitted (compare with Figure 2.1).

a
b

c

a
b
c

A

B C

AB

C

a
b c

a

b
c

A
B

CA

B
C

a
b

c

a
b

c

A

BC

A B

C

a
bc

a

b
c

A
B

C A

B
C

FIGURE 3.1: A spherical picture over the presentation 〈G, x | xaxbx−1c〉 where a = 1,
|b| = 8, and c = b−2

When describing connected spherical pictures in this chapter, we avoid the picture

theoretic terms disc, arc, and region in favor of the respective graph-theoretic terms

vertex, edge, and face as in the discussion at the end of Section 2.3.1. To extend this to

a non-spherical connected picture P, we define a half edge to be an arc of P that meets
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the boundary of P. Since our depictions of pictures do not typically include the boundary,

a half edge appears as an edge with an initial vertex, but no terminal vertex. Each edge

can be thought of as two connected half edges (after disconnecting these half edges from

∂P).

We define the depth of a connected picture P to be the number of inner faces of P.

3.1.2 Input and Output

Let P = 〈G, x | r〉 be a 1-generator, 1-relator relative presentation where G is cyclic

generated by g and

r = xε1gσ1xε2gσ2 · · ·xεngσn

with εi = ±1 and σi ∈ Z. Our method searches for spherical pictures over P and takes

the following values as input:

• relatorLength: A positive integer representing the number of occurrences n of the

letter x in the relator r.

• relatorShape: A string representing the exponents εi in the relator r. ‘x’ represents

an exponent of 1, while ‘X’ represents −1. For example, the word r = xaxbx−1c is

represented by xxX.

• groupOrder: A positive integer representing the order of the finite cyclic coefficient

group G.

• coefficientExponents: A list of integers representing the exponents σi in the

relator r.

• symmetry: A positive integer representing the order of rotational symmetry. Any

picture detected will have symmetry-fold rotational symmetry about the starting

face.
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• startWord: A cyclically reduced word in the generators of G such that startWord

repeated symmetry times represents the corner labeling of an admissible face.

• maxVertices: A positive integer representing the maximum number of vertices al-

lowed in a single segment of the complete spherical picture. symmetry gives the

number of segments in the picture. A segment represents a fundamental domain of

the rotation action on the symmetric picture. The maximum number of vertices for

the entire picture is then symmetry * maxVerts.

• maxFaces: A positive integer representing the maximum number of regions allowed

in a single segment of the complete spherical picture.

• maxHalfEdges: A positive integer representing the maximum number of half edges

allowed in a single segment of current picture.

• maxNewVertices: A positive integer representing the maximum number of new ver-

tices added with each new face.

Upon successfully finding a reduced spherical picture P, the method prints a list of

words representing the corner labels of the faces of P in the order that they were added

(with indications for “hop” faces). Since faces are added in a prescribed order, this gives

an unambiguous description of P. Details about the output for our specific implementation

are given in Section 4.1. We do not present a method for efficiently drawing the resulting

pictures. We labored carefully to construct usable depictions of the pictures given in this

work.

3.1.3 Method Overview

Here we give a description of our method to search for spherical pictures over a rela-

tive presentation P. Information about our specific implementation is given in Section 3.4.
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As we follow our method, the state of the search always represents a reduced con-

nected picture over P, which we call the current picture. The method attempts to find a

spherical picture by adding admissible faces to the current picture. If symmetry ≥ 1 then

“adding a face” implicitly means adding that face at all equivalent positions as dictated

by the symmetry.

Assume we are given input as in Section 3.1.2. Let d be a variable representing the

current depth. We present a procedural description of our method. A flowchart outlining

the method is given in Figure 3.2. Our method is as follows:

1. Place the initial face with corner labels specified by startWord and symmetry. Ver-

tices are added in a clockwise order about the initial face.

2. Define βd to be the first half edge immediately clockwise to the clockwise-most edge

of the newly added face. When determining β1, this is the counterclockwise-most

half edge of the first added vertex.

3. Add and record a “hop” face if possible:

(a) If there are fewer than 3 remaining half edges, go to step 4.

(b) Let αd be the half edge immediately clockwise to βd when traveling around the

picture. Read the subword in G from αd to βd.

(c) If the subword is not admissible, go to step 4.

(d) The subword is admissible, so add a new face by connecting αd and βd into a

single edge

(e) Record that the face added at depth d is a hop face.

(f) Go to step 2.
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4. Generate an ordered list Ld of the possible next faces:

(a) Let γd be the half edge immediately counterclockwise to βd when traveling

around the picture.

(b) Read the subword in G from βd to γd.

(c) Use the star graph to build a list Ld of admissible words beginning with

that subword (there are only finitely many choices satisfying the restriction

maxNewVertices). If the subword itself is admissible, we stipulate that this be

the first element of Ld.

5. If Ld is nonempty, go to step 9.

6. Ld is empty, so remove the most recently added face from the picture. Removing a

face means removing all vertices and half edge connections that were added when

the face was added.

7. If d = 0, then the picture is empty, so terminate with failure.

8. If the removed face was a hop face, go to step 4. Otherwise, go to step 5.

9. Add the face between βd and γd corresponding to the first element in the list Ld and

remove this element from Ld.

10. If no half edges remain, the picture is spherical, so print a description of this picture

and terminate.

11. If any of maxVertices, maxFaces, or maxHalfEdges is not satisfied, remove the most

recently added face and go to step 5. Otherwise, go to step 2.
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FIGURE 3.2: A flowchart outlining our method
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3.2 Example 1

Let P = 〈G, x | xaxbx−1c〉 where a = 1, |b| = 8, and c = b−2. The star graph for

this presentation is given in Figure 2.7(i). We specify the following input for our method:

• symmetry = 1

• startWord = cccc

• maxVertices = 10000

• maxFaces = 10000

• maxHalfEdges = 5

• maxNewVerts = 3

The other input parameters are set by the definition of P. It is helpful to construct a list

of short admissible words using the star graph. We give the list of admissible words of

length at most 8 in Table 3.1. This list is complete up to cyclic permutation. There are

a large number of length-8 words; however, since maxNewVerts = 3, we would only add a

face with a word of length 8 if we already had a subword of length 5. Notice that for any

valid subword of length 5 there are at most two admissible words of length 8 containing

that subword. While this limits the possible pictures that can be found, such constraints

are often necessary to reduce branching and ensure the search completes in a reasonable

amount of time.

Length 4 Length 5 Length 6 Length 7 Length 8

cccc acAbb acccABB acAbaCAB aCCABBBB

CCCC aCABB aCCCAbb acABaCAb bbbbbbbb

accAbbbb BBBBBBBB

accABBBB cccccccc

aCCAbbbb CCCCCCCC

TABLE 3.1: Admissible words of length up to 8 for the presentation 〈G, x | xaxbx−1c〉
where a = 1, |b| = 8, and c = b−2

Figure 3.3 shows the first few iterations of our method. We also give a brief descrip-

tion of these steps:
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FIGURE 3.3: Our method applied to the presentation 〈G, x | xaxbx−1c〉 where a = 1,
|b| = 8, and c = b−2

1. We start by placing a face with corner labels cccc as in Figure 3.3(i). When placing

this face, we place the rightmost edge first, and then place the subsequent edges in

a clockwise order.

2. We define β1 to be the counterclockwise-most half edge of the first added vertex, as

in Figure 3.3(i).

3. We let α1 be the half edge immediately clockwise to β1, as in Figure 3.3(i). The

subword in G from α1 to β1 reads ba. Since this is not an admissible path, no hop

faces can be added.
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4. We let γ1 be the half edge immediately counterclockwise to β1, as in Figure 3.3(ii).

The subword in G from β1 to γ1 reads ba. Since maxNewVertices = 3 and ba has

length 2, the elements of L1 must have length at most 5. There is only one such

admissible word (up to cyclic permutation) containing ba, so L1 = {bacAb}.

5. L1 is not empty, so we go to step 9.

9. We add the face with corner labels bacAb between β1 and γ1 as in Figure 3.3(iii).

We remove the first (and only) element from L1 to get L1 = {}.

10. There are 5 remaining half edges, so we do not terminate at this step.

11. All of our constraints are satisfied, so we go to step 2.

2. We define β2 to be the first half edge immediately clockwise to the clockwise-most

edge of the newly added face, as in Figure 3.3(iii)

3. As indicated by Figure 3.3(iv), no hop faces are possible.

4. As indicated by Figure 3.3(v), the subword between β2 and γ2 is bac. There is only

one admissible word up to length 6 starting with bac, so we define L2 = {bacAb}.

5. L2 is not empty, so we go to step 9.

9. We add the face bacAb between β2 and γ2 as in Figure 3.3(vi).

Continuing this process eventually yields the picture shown in Figure 3.4 with faces

numbered in the order that they were added. At this point, the word from αd to βd is

CCCC, which is admissible. The spherical picture could be completed with a hop face

that encloses the C corners. Completing a picture with a hop face generally gives less

symmetric pictures than completion with an ordinary face. We therefore insist that a

picture be completed with a non-hop face. This is the reason for the restriction on the
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FIGURE 3.4: A nearly spherical picture over the presentation 〈G, x | xaxbx−1c〉 where
a = 1, |b| = 8, and c = b−2. Numbers indicate the order in which faces were added.

number of half edges in step 3(a) of our method. The process terminates after finding the

spherical picture shown in Figure 3.1.

Our implementation gives the following output:

0001 cccc (x1)

0002 ba cAb

0003 bac Ab

0004 bac Ab

0005 bbac A

0006 BaC AB

0007 BaCA B

0008 BaCA B

0009 BBaCA

0010 CCCC (x1)

Each line gives the number of a face and the admissible word (sometimes separated into

two pieces) representing the corner labels of that face. If a word is separated into two

pieces by a space, the subword before the space represents the subword already present

in the picture before that face was added, and the subword after the space represents the

subword that was added to make the complete word admissible. The final line gives the
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corner labeling of the outer annular face. The (x1) in the first and last lines indicates

1-fold symmetry (asymmetry).

The picture over this presentation is clearly symmetric of degree 4. If we run our

program with symmetry = 4 and startWord = c, we get the following output.

0001 c (x4)

0002 ba cAb

0003 BaC AB

0004 C (x4)

3.3 Example 2

Consider the presentation P = 〈G, x | xaxbx−1c〉 where a = 1, |b| = 8, and c = b2.

This presentation was shown to be non-aspherical by a calculation in [3, table 4]. A

reduced spherical picture for P with labels omitted is given in Figure 3.5. The picture can

be labeled by specifying that the central face is labeled with B9. All other corner labels

can be deduced from the fact that the picture is reduced.

We use this picture to illustrate the usefulness of hop faces. Suppose that we specify

the following input for our method:

• symmetry = 4

• startWord = BB

• maxVertices = 10000

• maxFaces = 10000

• maxHalfEdges = 10

• maxNewVerts = 6

After many iterations, we arrive at the picture given in Figure 3.6, with numbers indicating

the order in which faces were added. At this point, no hop faces have been used. The

half edges α13, β13, and γ13 are indicated in the upper left part of the picture. If hop

faces are not allowed, then we must make a face between β13 and γ13, preventing β13
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FIGURE 3.5: An unlabeled spherical picture over the presentation 〈G, x | xaxbx−1c〉
where a = 1, |b| = 8, and c = b2

from connecting with α13. Thus, under the given inputs, we cannot build the picture in

Figure 3.5 without hop faces.

Our implementation gives the following output:

0001 BB (x4)

0002 CA bba

0003 aCAb b

0004 acc cAbb

0005 baccc Ab

0006 Bac AB

0007 aCA BaCCAB

0008 BacA B

0009 BaCA BaCCA

0010 CCCC

0011 cABB a

0012 Abb aC

0013 ABB BBacc

0014 CCCC (hop)

0015 cABBa

0016 Abba C

0017 ccABB BBa

0018 CAbb a

0019 CAb ba

0020 cAb acAbac

0021 CAbba

0022 CAbb a

0023 accAb acAb

0024 cccc

0025 bbaC A

0026 BaC CCAB

0027 cccc (hop)
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FIGURE 3.6: A hop face between α13 and β13 is necessary to complete the picture.

0028 bbaCA

0029 ABBaCC C

0030 ABB ac

0031 cABBa

0032 bb (x4)

Lines that end in (hop) indicate a hop face. We can also find this picture with an 8-fold

symmetric search. This gives the following output.

0001 B (x8)

0002 CA bba

0003 acc cAbb

0004 Bac AB

0005 BaCA BaCCA

0006 CCCC
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0007 cABB a

0008 Abb aC

0009 ccABB BBa

0010 CAbb a

0011 CAb ba

0012 accAb acAb

0013 cccc

0014 bbaC A

0015 BBaC CCA

0016 ABB ac

0017 b (x8)

Notice that the 8-fold symmetric search did not require a hop face.

3.4 Implementation Details

We implemented our method for finding pictures over P using the C programming

language. Our code [49] can be found at the following address.

https://ir.library.oregonstate.edu/concern/datasets/6395wf63g

We now give a brief description of the details of our implementation.

Let P = 〈G, x | r〉 where G is a finite cyclic group generated by g and

r = xε1gσ1xε2gσ2 · · ·xεngσn

with εi = ±1 and σi ∈ Z. We start by constructing a representation of the star graph

Pst. The edges of Pst are ordered, so that each path in Pst can be represented by a list

of integers. All paths in Pst of length up to maxNewVertices without backtracking are

stored in a cache.

To represent the current picture, we maintain three stacks, SV , SC , and SE , con-

taining respectively the vertices, corners, and half edges. Here we expand the definition

of half edge given in Section 3.1.1. We now allow a half edge to be part of a complete

edge (and so disconnected from the boundary of the current picture). As faces are added

to the picture, corners and half edges eventually become part of a complete face. Each

corner and half edge is therefore given an integer depth flag indicating at what depth

that corner or half edge became part of a complete face. The corners and half edges that
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are not yet part of a complete face are given a depth flag value of 0, and will be called

outer corners or half edges.

When a new face is added to the picture, we push new vertices to SV in the order

matching a clockwise path around the new face. As an example, consider the face added

in Figure 3.3(iii) of Section 3.2. We would push the three new vertices to SV in the order

indicated in Figure 3.7.
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FIGURE 3.7: Adding vertices in a clockwise order about a new face

Since each vertex has the same number of corners and half edges, SE and SC should

always have the same length. For any half edge ` in SE , the corner at the same relative

position in SC is the corner immediately counterclockwise to `.

When a vertex is pushed to SV , we also push its corners and half edges to SC and

SE respectively. These corners and half edges are pushed in a clockwise order about the

newly added vertex starting from the corner inside the newly added face. In Figure 3.7 ,

the new corner labels are pushed to SC in the order c, b, a, A,B,C, b, a, c.

Our construction of the corner and half edge stacks gives the following invariants:

• the first outer half edge from the bottom of the stack SE represents βd as defined in

step 2 of the method.

• reading the outer corners or half edges in SC or SE respectively from bottom to top

represents reading clockwise around the boundary of the picture.

As a result, γd is always the last outer half edge from the bottom of SE . We can thus

add vertices (and corners and half edges) between γd and βd by pushing them onto the
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top of the stack. Notice that αd (as defined in step 3 of the method) is always the second

outer half edge from the bottom of SE . Since hop faces are only added by connecting two

existing half edges, we never add vertices (or corners or half edges) between βd and αd.

We can read the subword between the outer half edges βd and γd by starting at the

corner whose position in SC is the same as the position of βd in SE . We continue reading

each outer edge as we move towards the bottom of the stack. When we reach the bottom

of the stack, we loop back to the top and continue reading outer corners until we reach

the corner whose position in SC is immediately above the equivalent position of γd in SE .

Rather than calculating the list Ld every time we reach step 4 of the method, we

instead construct the lists for all possible starting subwords that we could read in step

4(b) and store these lists in a lookup table. Any starting subword w can be represented

by a triple (u, v, h) where u is the first corner label of w, v is the last corner label of w,

and words and h is the element of G corresponding to w. This is visualized in Figure 3.8.

To find an admissible word that starts with w, we need to find a word w′ that can follow

v and be followed by u in Pst such that w′ defines h−1 in G. When maxNewVertices is

small, it is possible to test all paths w′ in Pst from v to u.

v u

w

FIGURE 3.8: Corner labels from u to v give the starting word w.

3.5 Discussion of Limitations

Section 3.3 gave a situation in which hop faces were needed to complete a picture. In

that case, sufficiently complicated structure in a picture prevented the naive search order

(i.e., with no hops) from finding the picture. Hop faces solved this problem and allowed us



50

to find pictures in previously unsolved cases, but there is no reason to think that hop faces

are sufficient to deal with all possible picture structures. Indeed, the primary motivation

for our definition of hop faces was ease of implementation.

We noted at the end of Section 3.3 that an 8-fold symmetric search could find a

picture without using hop faces. In that case, the increased level of symmetry allowed

a more limited method to succeed. This is not always the case. The picture given in

Section 4.1.3 has 6-fold symmetry, but cannot be found by applying our method with

6-fold symmetry. We instead used 3-fold symmetry to find this picture.

Experimentally, the method seems to be less effective when the relator r in 〈G, x | r〉

has more x symbols. It appears likely that this is at least partly the result of our restrictive

prescribed order for adding new faces. Allowing for a more general face placement would

require different data structures than those presented in Section 3.4. For example, using

linked lists, rather than stacks, for storing corners and half edges and vertices would allow

faces to be added between any two outer half edges in the current picture.

There are two chief difficulties with allowing new faces to be added anywhere on the

picture:

1. The average branching factor of the search graph (the number of choices we can

make at each search state) is much larger. Although we can explore more of the

search graph, poor choices may take us down time-wasting paths that are unlikely

to result in a complete picture.

2. There is significant reconvergence of the search graph. That is, we often reach the

same search state from different paths, causing us to repeat work that has already

been completed.

We expect that a breadth-first search with periodic pruning can likely address these issues.

Unlike our depth-first search, which only stores a single picture at a time, a breadth-first

search would simultaneously store every picture up to the current depth. A hash function
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could then be used to identify different paths in the search graph that result in the same

picture. This addresses the high level of reconvergence.

To address the large average branching factor, we could periodically prune the

breadth-first graph by removing branches that have some undesirable quality (e.g., a large

number of outer half edges). Although this limits the search area, a reasonable choice of

pruning criteria would likely give us a better chance of finding a picture in a reasonable

amount of time than a search without pruning.

The biggest limitation of a breadth-first search is the high memory usage from

storing every branch of the search graph. We are hopeful that the current availability of

high capacity memory storage will be sufficient for a usable implementation.
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4 COMPUTATIONAL RESULTS

4.1 Program Output

In this section we give the direct output from our program for the presentations in

Theorems A, B and H. We follow the conventions given in Section 3.1.1. Output looks like

a list of words in G which represent the corner labels of the faces in a reduced spherical

picture. Since our pictures are built by placing adding faces in the prescribed order defined

in Section 3.1, this list is enough to construct the spherical picture. We build these pictures

explicitly in Section 4.2.

When searching for spherical pictures, we generally began with a starting word with

some degree of symmetry. We set maxNewVertices to a value in the range 3 to 7, and set

maxVertices and maxFaces to be large enough that they would not influence the search.

We then ran the search multiple times, incrementally increasing maxHalfEdges.

Each line of our output gives an admissible word that represents the corner labeling

of a face in the picture. When a word is split into two subwords by a space, the first

subword represents the corner labels that were in the picture before the face was added,

and the subword after the space represents the corner labels that were added to complete

the face. Hop faces are indicated by (hop). Faces are added in a clockwise spiral pattern.

as can be seen in Figure 3.4.

The first and last lines contain a (not necessarily admissible) subword and a mul-

tiplier denoted (xn), where n is the order of symmetry for the picture. The words for

the first and last faces are formed by repeating the respective subwords n times. When

n > 1, the output only represents a single section of the picture, with n sections forming

the complete spherical picture. See Figure 3.6 for an example of constructing a spherical

picture when n = 4.
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Program output for some other presentations is given in Appendix A. In each of

those cases, the presentations were known to be non-aspherical, but no explicit pictures

had been constructed.

4.1.1 P = 〈G, x | x2gx−1g3〉 with G = 〈g | g9〉

Let P = 〈G, x | x2gx−1g3〉 where G is the cyclic group of order 9 generated by

g. This matches the presentation in Theorem A. Rewriting P using the notation of

Section 3.1.1 gives

V = 〈G, x | xaxbx−1c〉

where a = 1, b = g, and c = g3. We feed our program the following input (see Sec-

tion 3.1.2):

• relatorLength = 3

• relatorShape = xxX

• groupOrder = 9

• coefficientExponents = {0,1,3}

• symmetry = 3

• startWord = BBB

• maxVertices = 10000

• maxFaces = 10000

• maxHalfEdges = 27

• maxNewVertices = 6

This gives the following output:

0001 BBB (x3)

0002 CA bbba

0003 CAb bba

0004 aCAb acAB

0005 acA BBB

0006 acA baCAB

0007 accA BaCABB

0008 ccc (hop)

0009 bbacA bacA

0010 CCC (hop)

0011 CABaC ABBa

0012 aCAb bb

0013 ccc

0014 Abac ABaC

0015 CCC (hop)

0016 cABBB a

0017 Abb baC

0018 BBB acA
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0019 CCC

0020 aCABa cAb

0021 ccc

0022 bbaC Ab

0023 BBac AB

0024 CCA BBBa

0025 CAb bba

0026 BacAb aCA

0027 CCC

0028 cABB Ba

0029 acAbb acAb

0030 ccc

0031 cAbaC ABa

0032 bbbb bbbbb

0033 BBac AB

0034 CCC (hop)

0035 CABaCA BBa

0036 CAb bba

0037 acAb aCAB

0038 ccc (hop)

0039 CAbacA Ba

0040 ccAb bba

0041 bbb aCA

0042 BBaC ABaCA

0043 CCC

0044 acABB B

0045 acA BBB

0046 acA baCAB

0047 acA BBB

0048 CCC (hop)

0049 CABacA ba

0050 acAb accAB

0051 ccc (hop)

0052 AbacA BaC

0053 CCC (hop)

0054 acABBB

0055 ccc (hop)

0056 AbacAb bac

0057 BBBa cA

0058 CCC

0059 cABa CAba

0060 CCAbb acAba

0061 CAb acABa

0062 aCAb bb

0063 ccc

0064 Abac Abbac

0065 CCC (hop)

0066 CABBa CABa

0067 ccc (hop)

0068 bbaCAb

0069 bacA BaCA

0070 CCC (hop)

0071 acABaC Ab

0072 ccc

0073 AbbbaC

0074 BBBBB BBBB

0075 ccc (hop)

0076 bbaCA b

0077 Bac ABB

0078 ccc (hop)

0079 bbaCA b

0080 Bac AbaCA

0081 CCC

0082 BacABB

0083 aCAb acAB

0084 acA BBB

0085 ccA bbba

0086 Abbb aC

0087 CCC (hop)

0088 cABBB a

0089 CAbb ba

0090 CAb acABa

0091 CAb bba

0092 BaCAb acA

0093 CCC

0094 BaCABa CAB

0095 ccc (hop)

0096 bbaCA b

0097 CCC (hop)

0098 CABac Aba

0099 aCAb acAB
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0100 acA BBB

0101 ccc (hop)

0102 ccc (hop)

0103 bbacAbacA

0104 BaCA baCCA

0105 CCC

0106 acABB B

0107 ccc (hop)

0108 AbbacA bac

0109 BBa cAB

0110 BaCCA BB

0111 ccc (hop)

0112 bbaCA b

0113 CCC (hop)

0114 aCABac Ab

0115 ccc

0116 AbaC ABac

0117 aCABa cAb

0118 ccc

0119 bbbaC A

0120 CCC (hop)

0121 BBaCABaC A

0122 CCC

0123 cABBBa

0124 bbb (x3)

This defines a reduced spherical picture over V with 2 + 3(122) = 368 faces. An explicit

construction of this picture is given in Section 4.2.1.

4.1.2 P = 〈G, x | x2gx−1g−3〉 with G = 〈g | g9〉

Let P = 〈G, x | x2gx−1g−3〉 where G is the cyclic group of order 9 generated

by g. This matches the presentation in Theorem B. Rewriting P using the notation of

Section 3.1.1 gives

V = 〈G, x | xaxbx−1c〉

where a = 1, b = g, and c = g−3. We feed our program the following input (see Sec-

tion 3.1.2):

• relatorLength = 3

• relatorShape = xxX

• groupOrder = 9

• coefficientExponents = {0,1,-3}

• symmetry = 9

• startWord = B

• maxVertices = 10000

• maxFaces = 10000

• maxHalfEdges = 15

• maxNewVertices = 7
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This gives the following output:

0001 B (x9)

0002 CA bacABa

0003 ccA BacAba

0004 bbb acA

0005 CCC (hop)

0006 cABaC Aba

0007 bbb acA

0008 BaC ABB

0009 ccc (hop)

0010 bbaCA baCA

0011 BBaC AB

0012 ccc (hop)

0013 bbaCA BBacA

0014 BBaC AbbacA

0015 CCC

0016 aCABa cAb

0017 ccc

0018 AbaC ABac

0019 CCC (hop)

0020 CABBBa

0021 cAbb ba

0022 bbb acA

0023 BBaC AB

0024 aCA BBB

0025 acA bbb

0026 ccc

0027 bbbac A

0028 BBaC AB

0029 CCA BacABBa

0030 ccc (hop)

0031 bbacAb

0032 CCC (hop)

0033 CABBacA bba

0034 aCAb acAB

0035 CCC (hop)

0036 cABBacA Ba

0037 bbb acA

0038 BaC AbaCCA

0039 CCC

0040 aCABB B

0041 ccc (hop)

0042 bbacA b

0043 CCC (hop)

0044 ccABac Aba

0045 bbb acA

0046 BBaC AB

0047 aCA BacAb

0048 ccc

0049 AbaC AbbaC

0050 BaCABB

0051 ccc (hop)

0052 bbaCAb accA

0053 CCC (hop)

0054 cABBaC Abba

0055 bbb acA

0056 BBaC AB

0057 aCA BBB

0058 ccc (hop)

0059 bbacA b

0060 bac ABaCA

0061 BBaC AB

0062 aCA BBB

0063 ccc (hop)

0064 bbacA b

0065 CCC (hop)

0066 CABBac Abba

0067 BaCAb acA

0068 CCC

0069 cABa cABBa

0070 Abb bac

0071 CCC (hop)

0072 CABBBa

0073 BaCAbb acAB

0074 aCA BBB

0075 ccc (hop)
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0076 bbbacA

0077 BaCA baCCA

0078 CCC

0079 CABB Ba

0080 ccc (hop)

0081 bbacAb

0082 CCC (hop)

0083 aCABacA b

0084 ccc

0085 AbaCAB ac

0086 b (x9)

This defines a reduced spherical picture over V with 2 + 9(84) = 758 faces. An explicit

construction of this picture is given in Section 4.2.2.

4.1.3 P = 〈G, x | x3g2x−1g〉 with G = 〈g | g6〉

Let P = 〈G, x | x3g2x−1g〉 where G is the cyclic group of order 6 generated by

g. This matches the presentation in Theorem H. Rewriting P using the notation of

Section 3.1.1 gives

V = 〈G, x | xaxbxcx−1d〉

where a = b = 1, c = g2, and d = g. We feed our program the following input (see

Section 3.1.2):

• relatorLength = 4

• relatorShape = xxxX

• groupOrder = 6

• coefficientExponents = {0,0,2,1}

• symmetry = 3

• startWord = DD

• maxVertices = 10000

• maxFaces = 10000

• maxHalfEdges = 10

• maxNewVertices = 3

This gives the following output:

0001 DD (x3)

0002 AC bdd

0003 Ba

0004 aB (hop)

0005 dACb dAb

0006 ccc

0007 bd dAC

0008 ccaB c

0009 Ba (hop)
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0010 Cbd dA

0011 caDD B

0012 Ba (hop)

0013 CbA CC

0014 bA (hop)

0015 caDDB

0016 Ba (hop)

0017 CCbA C

0018 DDB ca

0019 Ab

0020 bA (hop)

0021 aDDBc

0022 dd (x3)

This defines a reduced spherical picture over V with 2 + 3(20) = 62 faces. An explicit

construction of this picture is given in Section 4.2.3.

4.2 Explicit Spherical Pictures

In this section we construct explicit descriptions of the spherical pictures found in

Section 4.1. We utilized the R software environment [56] with the igraph [19] and rgl [1]

packages for some basic visualizations. We then observed further symmetry (in addition

to the inherent rotational symmetry), allowing us to simplify our descriptions. Notation

matches the conventions in Section 3.1.1.

4.2.1 P = 〈G, x | x2gx−1g3〉 with G = 〈g | g9〉

Let P = 〈G, x | xaxbx−1c〉 where a = 1, |b| = 9, and c = b3. This matches the

presentation in Theorem A where g = b. The program output in Section 4.1.1 defines a

segment comprising one third of a complete spherical picture. In fact, this segment can

be broken down into two related pieces, which we draw as truncated squares. The first

square is given in Figure 4.1. The second square is given in Figure 4.2 and is obtained

by flipping the first square over a horizontal axis and replacing each corner label with its

inverse (i.e., replace a with A, etc.). Notice that the edges of these squares have the same

basic structure up to rotation and reflection and inverting of corner labels. We can thus

attach these squares together by allowing their edges to overlap in certain ways.



59

A
B

Ca
b
ca

bc

B

AC

B

A

CC

B

A

a
b
c

b
a

c

a b
c a

b
c

a

b
c

b

c
a

a
b
c A

BC

a
b c A

B C

A

BCa
bc

B

AC

A

CBa

b cA

B C
c

a

bb

ca

AB

C

B

AC

A

CBa

b c

A

B

C
A B

C

A
B

CA

BC
A
B

C

AB
C

A B

Ca

b

c

a
b

ca

b

c

a b

cA

B

CA

BCa
bcA

B

CA

BCa
bcA

B

CA

BCa
bc

B

A

Ca
bca

b

c

A
B
C

a
b

cA

B

CA

BC

b
ac

b
a

cc

b

a

A
B
C

A B
C

B

C
A

A

B C

A
B
C

BA
C A

B
C

A
B C

a
bca

b c

a
bcA

BC

b
ac

a

cbA

B Ca

b c
C

A

BB

CA

ab
c

b
ac

a

cbA

B C

a
b
c

a b

c

a
b
ca

bc
a
b

c

ab
c

a b

cA

B

C

A
B

CA

B

C

A B

Ca
b
ca

bcA

BCa
b
ca

bcA

BCa
b
ca

bcA

BC

b
a

cA

BCA

B

C

a
b
c

a b

c

a

b
ca

b

c

ab
c

a b

c

a

b
ca

b

c

ab
c

a b

c

a

b
ca

b

c

ab
c

B
A

C

B

A
CA

B

C

BA

C

B
A

C

B

A
CA

B

C

BA

C

B
A

C

B

A
CA

B

C

BA

C

ab

c

B
A

C

a
b

c

A
B
C

A
B

C

a
b

c

AB

C

a

b

c

FIGURE 4.1: A truncated square representing one sixth of a complete spherical picture
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Denote Figures 4.1 and 4.2 by truncated squares containing the letter “F” to indicate

orientation. Specifically, F represents Figure 4.1, and
F

represents Figure 4.2. We

visualize the picture as a truncated cube obtained by folding the net given in Figure 4.3.

F

F

F

F

F

F

∗

FIGURE 4.3: The picture is constructed by folding this net into a truncated cube.

We also visualize the picture as a rotationally symmetric plane-embedded graph.

Consider the truncated cube formed from Figure 4.3. We visualize this cube using an

isometric projection centered on the point marked ∗ in Figure 4.3, resulting in three non-

visible facets. We send the point opposite ∗ to the point at infinity in the plane and

stretch to non-visible facets accordingly. This is represented in Figure 4.4. Note that each

of the small circles in Figure 4.4 are faces of the spherical picture with corner labels b9 or

B9. The face containing ∗ has corner label B9. Note from Figure 4.3 that there is only a

single axis of 3-fold rotational symmetry, which passes through the point ∗ to the opposite

corner of the truncated cube.

∗
F

F

F

FIGURE 4.4: A symmetric visualization of the picture
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4.2.2 P = 〈G, x | x2gx−1g−3〉 with G = 〈g | g9〉

Let P = 〈G, x | xaxbx−1c〉 where a = 1, |b| = 9, and c = b−3. This matches the

presentation in Theorem B where g = b. The program output in Section 4.1.2 defines a

segment comprising one ninth of a complete spherical picture. Each segment is composed

of two annular sectors. The first sector is given in Figure 4.5.
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FIGURE 4.5: An annular sector representing one eighteenth of a spherical picture
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The second sector is given in Figure 4.6 and is obtained by reflecting the first sector

over a horizontal axis and replacing each corner label with its inverse (i.e., replace a with

A, etc.).
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FIGURE 4.6: A flipped annular sector with inverted corner labels
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Denote Figures 4.5 and 4.6 by annular sectors containing the letter “F” to indicate

orientation. Specifically, F represents Figure 4.5, and
F

represents Figure 4.6. Notice

that the left and right sides of the sector in Figure 4.5 have the same basic structure.

Reading the labels on the outward side from top to bottom along the left side of the

sector is the same as reading the labels on the inward side of the right side. After some

squashing and stretching, we can attach sectors together along overlapping sides to form

a circle. 9 sectors are required to make the central face admissible. We can likewise form

a circle from 9 copies of the flipped sector. These circles are visualized in Figure 4.7.

F
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F
F

FF
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F

F

FF

F

F
F F

F
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F

FIGURE 4.7: Circles formed from 9 copies of the the annular sectors

Each circle in Figure 4.7 represents a single hemisphere. These hemispheres can be at-

tached along their circumference as follows:

Consider the points marked by ∗ in Figures 4.5 and 4.6. In each case, reading the

corner labels to the right of the marked point in order along the arc gives the same se-

quence. Notice then that we can attach the two sectors by overlapping their long arc

as indicated in Figure 4.8(i). We can likewise attach another flipped sector as in Fig-

ure 4.8(ii). Repeating this with 9 copies of each sector indicates the attachment of the

two hemispheres.

Attaching these hemispheres gives a reduced spherical picture over P. To visualize

the picture in the plane, we orient the sphere so that only one hemisphere is visible.

We then send the center of the opposite hemisphere to the point at infinity in the plane
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FIGURE 4.8: Oppositely oriented sectors can be attached along their long arcs

and stretch the annular sectors of that hemisphere accordingly. This is represented in

Figure 4.9.
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FIGURE 4.9: A symmetric visualization of the picture

4.2.3 P = 〈G, x | x3g2x−1g〉 with G = 〈g | g6〉

Let P = 〈G, x | xaxbx−1c〉 where a = b = 1, c = d2, and |d| = 6. This matches the

presentation in Theorem H where g = d. The program output in Section 4.1.3 defines a

segment comprising one third of a complete spherical picture. We note that the picture

actually has 6-fold symmetry, but a limitation of our method did not allow us to find

this picture with a 6-fold symmetric search. Words of length 2 in the program output are
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represented by double edges in the picture with corner labels omitted.

We form the spherical picture over P by attaching two grooved hemispheres. The

first hemisphere is given in Figure 4.10. The other hemisphere is given in Figure 4.11 and

is obtained by reflecting the first hemisphere over a horizontal axis and replacing each

corner label with its inverse (i.e., replace a with A, etc.). A complete picture is formed by

fitting the two hemispheres together along their boundaries like gears.
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FIGURE 4.10: A hemisphere representing one half of complete picture



67

d

c a

DB
C

D
AC

B
b

c d

C
DA

D

B
C

a

c
d

d

c

a

D

B
C

D
A

C
B

bc

d

C

D
A

D
B

C

a
c

d

d

c

aD

B

C

DA

CB

b

c
d

CD

A

D
B C

a
c

d
d

ca
D B

C

D
A C
Bb

cd

C
D A

D

B
C

a

c
d

d

c

a
D

B
C

D
A

C
B

b c
d

C

D
A

D
B

C

a
cd

d

c

a D

B

C

D A

C B

b
c
d

C D

A

D
BC

a
c

d

FIGURE 4.11: A flipped hemisphere with inverted corner labels



68

5 PROOFS OF MAIN THEOREMS

In this chapter we give proofs of the theorems in Section 1.2. We make repeated

use of the GAP computer algebra system [24].

In proving that the presentations of Theorems A, B and H are not aspherical, we

do not attempt to show that the pictures given in Chapter 4 are nontrivial elements of

the second relative homotopy group π2(L,K). Instead, we draw paths in the pictures and

use the process of Section 2.3.2 to find representations of the identity in G(P) that reveal

violations of Theorem 2.2.5.

Recall that as our path passes through a face of the picture, we read the corner

labels of that face that are to the left of the path. Arc orientation arrows are omitted, but

for the presentations in Theorems A and B we can use the rule of thumb that orientation

arrows point towards b and B, and point away from c and C (see Figures 2.5(i) and 2.5(ii)).

That is, if we cross an arc α into a face κ, and one of the corners of κ meeting α has a

label b or B, then we read x, and otherwise we read x−1.

5.1 Proof of Theorem A

Let P = 〈G, x | x2gx−1g3〉 where G is cyclic of order 9 generated by g, and recall

the reduced spherical picture depicted in Figures 4.3 and 4.4. Figure 5.1 depicts a loop

drawn over our symmetric picture (compare with Figure 4.4). We also depict this loop in

Figure 5.2 drawn over our folding net (compare with Figure 4.3).

The labels in Figure 5.1 represent the words read as the path passes along the labeled

segments. Paths reading u and u−1 are shown explicitly in Figure 5.3, drawn on top of

Figure 4.1. Here the corner labels represent the elements of G by the correspondence

a = A = 1, b = g, B = g−1, c = g3, and C = g−3.
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FIGURE 5.1: A loop in the picture over 〈G, x | x2gx−1g3〉 where |g| = 9 (compare with
Figure 4.4)
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FIGURE 5.2: A loop in the picture over 〈G, x | x2gx−1g3〉 where |g| = 9 (compare with
Figure 4.3)
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Figure 5.3 omits corner labels that are not read. We read u from the path traveling

bottom-to-top on the right side of Figure 5.3:

u = x−1g2x−1g3x−1g5x.

Notice that reading along the path from left to right on the bottom of Figure 5.3 gives

u−1.

We now assume that P is aspherical in order to reach a contradiction. Starting from

the central circle, the loop in Figure 5.1 gives the identity

ug6ug6ug3u−1g−6u−1g−6u−1g−3 = 1.

Grouping reveals the commutator relation

(ug6ug6u)g3(ug6ug6u)−1g−3 = 1.

Thus g3 commutes with w = ug6ug6u, so g3 ∈ wGw−1 ∩ G. Since P is assumed to be

aspherical, we have w ∈ G by Theorem 2.2.5(b). There is a retraction ν5 : G(P) → G

given by ν5(x) = g5, and we can easily calculate ν5(u) = 1. Therefore ν(w) = g12 = g3, so

w = g3. A calculation in GAP shows that [w] 6= [g3] in the finite quotient G/〈〈x6〉〉 (this

quotient has order 1512). The GAP commands are as follows.

gap> F := FreeGroup("g", "x");;

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [ g, x ]

gap> Q := F / [g^9, x^2 * g * x^-1 * g^3, x^6];;

gap> AssignGeneratorVariables(Q);

#I Global variable ‘g’ is already defined and will be overwritten

#I Global variable ‘x’ is already defined and will be overwritten

#I Assigned the global variables [ g, x ]

gap> u := x^-1 * g^2 * x^-1 * g^3 * x^-1 * g^5 * x;;
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gap> w := u * g^6 * u * g^6 * u;;

gap> w = g^3;

false
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ab
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B

b

c

A

C

A

u

u−1

FIGURE 5.3: Explicit paths for u = x−1g2x−1g3x−1g5x in the case 〈G, x | x2gx−1g3〉
where |g| = 9 (compare with Figure 4.3)
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5.2 Proof of Theorem B

Let P = 〈G, x | x2gx−1g−3〉 where G is cyclic of order 9 generated by g, and recall

the reduced spherical picture depicted in Figure 4.9. Figure 5.4 depicts a loop drawn over

this picture, where labels represent the words read as the path passes along the labeled

segments. Here the corner labels represent the elements of G by the correspondence

a = A = 1, b = g, B = g−1, c = g−3, and C = g3. As in the proof of Theorem A, we

follow the rule that arc arrows point towards b and B and point away from c and C (see

Figures 2.5(i) and 2.5(ii)).

v

v

yy−1

g−1

FIGURE 5.4: A loop in the picture over 〈G, x | x2gx−1g−3〉 where |g| = 9 (compare with
Figure 4.9)

Explicit paths for y and v are given in Figure 5.5. We need to be careful when

reading the words y and v where their respective paths meet. It is probably easiest to

read v starting from the point labeled ∗ in Figure 5.5. As we travel along this path, we
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cross into the identical adjacent sector. We read the word

v = cABacxaCAx−1

which simplifies to

v = g−7xg3x−1

We want the path ending at ∗ to read v as well, so we must choose y accordingly. Note

that reading yv gives

yv = x−1gxg2xg5xg4x−1g−1xxg3x−1.

Solving for y gives

y = x−1gxg2xg5xg4x−1g−1xg7.

The loop in Figure 5.4 reveals the conjugate relation

yv2y−1g−1 = 1.

Letting w = yvy−1 we see that w2 = g. Since g has order 9 in G(P), w has order 9 or 18. If

w has order 18, then we have a finite subgroup not isomorphic (and hence not conjugate)

to a subgroup of G. Suppose then that w has order 9, so that G(P) ∼= G(P)/〈〈w9〉〉. A

calculation in GAP shows that G(P)/〈〈w9〉〉 is finite of order 333, so we again have a finite

subgroup not isomorphic (and hence not conjugate) to a subgroup of G. In either case, P

is not aspherical by Theorem 2.2.5(a). The GAP calculations are faster if we use the fact

that w9 = w(w2)4 = wg4. The commands are as follows.

gap> F := FreeGroup("g", "x");;

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [ g, x ]

gap> v := g^-7 * x * g^3 * x^-1;;

gap> y := x^-1 * g * x * g^2 * x * g^5 * x * g^4 * x^-1 * g^-1 * x * g^7;;

gap> w := y * v * y^-1;;
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FIGURE 5.5: Explicit paths for u and y in the case 〈G, x | x2gx−1g−3〉 where |g| = 9
(compare with Figure 4.5)

gap> Q := F / [g^9, x^2 * g * x^-1 * g^-3, w * g^4];;

gap> Order(Q);

333
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5.3 Proof of Theorems C and D

We offer a sketch of a proof of Theorem C. Edjvet proved in [21] that P is aspherical

when |g| = ∞ or when none of (a)–(l) of Theorem C hold. He additionally gave explicit

reduced spherical pictures over P in cases (a)–(h) and (j). A proof of non-asphericity

in case (i) was reported by Bardakov and Vesnin in [3]. Cases (k) and (l) represent

Theorems A and B respectively.

For each case (a)–(l), we show that at least one of the conditions (ii)–(iv) given in

Theorem D holds. By Theorems 2.2.5(a) and 2.5.1(b) and Theorem B, these presentations

are not aspherical. This has the effect of simultaneously proving Theorem D.

With the exception of cases (k) and (l), the proofs given here were previously known,

and were developed by William Bogley. We thank Bogley for his personal communications

on this topic. Let n = |g|. Proofs of the non-asphericity of P in cases (a)–(l) are as follows.

(a)
1

|g|
+

1

|h|
+

1

|gh−1|
> 1: We break this case into a number of subcases.

• h = g: Inverting the relator of P, applying the change of variables x 7→ t−1

and cyclicly permuting the resulting relator gives the presentation

V = 〈G, t | t2g−1t−1g−1〉.

Using the retraction ν2 : G(V) → G defined by ν2(x) = g2 we find by a

Reidemeister-Schreier rewriting process that ker(ν2) ∼= S(2, n), so G(P) ∼=

S(2, n) o Cn. For each n ≥ 2, S(2, n) is a 3-manifold group (reported in

[40, Theorem 2], see [57, 12] for details).

• |g| = |h| = 2 and |gh−1| = q: it is easy to check that 〈〈x〉〉 has index 2 in

G(P). By applying the general Reidemeister-Schreier method, one can prove

that 〈〈x〉〉 is cyclic of order 3q, so |G(P)| = 6q. The calculations are routine in

this case, and we omit the details. Note that this does not follow the method
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presented in Section 2.4, as here we do not use a retraction G(P)→ G.

• |h| = 2 and |gh−1| = 2: There is a retraction ν : G(P) → G defined by

ν(x) = hg. In Example 2.4.1 we found a presentation

〈xz (z ∈ G) | xzxzhgx−1
zh (d ∈ G)〉.

for ker(ν). Letting z = e and z = h gives the respective relators xexhgx
−1
h and

xhxgx
−1
e . The product of these relators gives the relation

xexhgxgx
−1
e = 1.

We conclude that xhg = x−1
g and hence xzhg = x−1

zg for all z ∈ G. Letting

z = g1−i and using the fact that hg = g−1h we have

xhgi = x−1
g2−i

,

so ker(ν) is generated by {xgi}0≤i<n. ker(ν) then has a presentation

〈xgi (0 ≤ i < n) | xgix−1
gi+1xgi+2 (0 ≤ i < n)〉.

Replacing each relator with a cyclic permutation of its inverse gives

〈xgi (0 ≤ i < n) | x−1
gi
x−1
gi+2xgi+1 (0 ≤ i < n)〉.

A change of variables ti = x−1
gi

reveals the presentation

〈ti (0 ≤ i < n) | titi+2t
−1
i+1 (0 ≤ i < n)〉 = S(2, n).

Then G(P) ∼= S(2, n)oD2n, and S(2, n) is a 3-manifold group as in the previous

case.

• Spherical von Dyck groups: there are 8 cases, each corresponding to one

of the non-dihedral spherical von Dyck groups A4, S4, and A5. Each case is
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approached similarly. Let p = |h| and q = |gh−1|. A cyclic permutation of the

relator x2gx−1h shows that

xgx−1 · hx = 1,

so |xh| = |hx| = |g| = n. We similarly find x−1hx · xg = 1 and deduce that

|xg| = |h| = p. The element

(xg)(xh)−1 = xgh−1x−1

has order |gh−1| = q. The group J = 〈xg, xh〉 is then a finite von Dyck group

of the same type as G, so J ∼= G. If G(P) were aspherical, then J must also

be conjugate to G. However, calculations in GAP show that the images of J

and G are not conjugate in some finite quotient of G(P). The results of these

calculations are given in Table 5.1.

(n, p, q) m |G(P)/〈〈xm〉〉| J ∼ G?

(3, 3, 2) 4 168 No

(4, 3, 2) 4 1440 No

(5, 3, 2) 4 14880 No

(3, 2, 3) 0 1440 No

(3, 2, 4) 7 168 No

(3, 2, 5) 8 14800 No

(4, 2, 3) 7 336 No

(5, 2, 3) 5 660 No

TABLE 5.1: GAP calculations show that in each case the finite subgroup 〈xg, xh〉 ∼= G of
G(P) is not conjugate to G.

(b) h = g−1: The relation x2gx−1g−1 = 1 is equivalent to gxg−1 = x2. We conclude

that x2n−1 = 1 and G(P) ∼= 〈g, x | gn, x2n−1, gxg−1 = x2〉 ∼= C2n−1 o Cn.
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(c) h = g−2 or g = h−2: We can assume without loss of generality that h = g2

(otherwise invert the relator of P and apply the change of variables x 7→ t−1).

Note that n ≥ 3, since otherwise h = 1. Using the retraction ν1 : G(P) → G

defined by ν1(x) = g we find by a Reidemeister-Schreier rewriting process that

ker(ν1) ∼= F (2, n), so G(P) ∼= F (2, n) o Cn. If n ≥ 9 is odd, then F (2, n) has an

element of order 2 [3, Proposition 3.1]. If n ≥ 4 is even, then F (2, n) is a 3-manifold

group (reported in [40, Theorem 1], see [32, 34, 35, 14] for details). If n = 3, 5, or

7, then F (2, n) is a nontrivial finite group [18, 31].

(d) |h| = 2 and [g, h] = 1: Note that G = 〈h, g〉 ∼= C2 × Cn. Using the retraction

ν : G(P)→ G defined by ν(x) = g−1h we find by a Reidemeister-Schreier rewriting

process that ker(ν) has a presentation

ker(ν) ∼= 〈xz (z ∈ G) | xzgxzhx−1
zgh (z ∈ G)〉.

Letting z = 1 and z = h we get the respective relators xgxhx
−1
gh and xghx1x

−1
g . The

product of these relators gives the relation

xgxhx1x
−1
g = 1

We conclude that xh = x−1
1 and hence xzh = x−1

z for all z ∈ G. Applying this

identity to the relator xzgxzhx
−1
zgh yields

xzgx
−1
z xzg = 1.

Solving for xz gives xz = x2
zg for all z ∈ G. We deduce that

ker(ν) ∼= 〈x1〉 ∼= C2n−1,

so G(P) ∼= C2n−1 o (C2 × Cn).

(e) |g| = 3, |h| = 2, and (gh)2 = (hg)2: A calculation in GAP shows that |G| = 18

and |G(P)| = 27216.
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(f) |g| = |h| = 3 and [g, h] = 1: A calculation in GAP shows that |G(P)| = 13608.

(g) |g| = 6 and h = g2: A calculation in GAP shows that |G(P)| = 336.

(h) |g| = 7, and h = g2 or g = h2: Briefly, G(P) ∼= H(7, 3)oC7, and H(7, 3) has an

element of order 2 (see [10, Example 4.3(c)] for details).

(i) |g| = 8, and h = g2: Using the retraction ν5 : G(P) → G defined by ν5(x) = g5

we find that G(P) ∼= ker(ν5) o G. A Reidemeister-Schreier rewriting process gives

the presentation

G8(5, 6) = G8(x0x5x
−1
6 )

for ker(ν5). In [3, Table 4] this group was found to have order 295245. Alternatively,

the order of G(P) can be calculated easily with GAP by adding the relation x24 = 1.

This relation can be deduced from the picture in Figure 3.5.

(j) |g| = 9, and h = g2 or g = h2: Briefly, G(P) ∼= H(9, 3)oC7, and H(9, 3) has an

element of order 2 (see [10, Example 4.3(b)] for details).

(k) |g| = 9 and h = g3: This is Theorem A.

(l) |g| = 9 and h = g−3: This is Theorem B.

5.4 Proof of Theorem E

Let P = 〈G, x | x2gx−1g3〉 where G is cyclic of order 9 generated by g. Recall the

picture over P given in Figure 4.1 and the word

u = x−1g2x−1g3x−1g5x

read from Figure 5.3. We note two interesting relations involving u. From the loop in

Figure 5.6 we obtain the relation

u
(
gx−1g2x−1

)
g4x

(
gx−1g2x−1

)−1
= 1,
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so u is conjugate to (g4x)−1. From the loop in Figure 5.7 we obtain the relation

u−1
(
g−2x−1g3x−1g−1

)
(g4x)8

(
g−2x−1g3x−1g−1

)−1
= 1,

so u is conjugate to (g4x)8. Together, these conjugacy relations reveal the Baumslag-

Solitar relation

w(g4x)w−1 = (g4x)−8

where w is some element of G(P).

We now proceed with the proof of Theorem E. Assume that every finite subgroup

of G(P) has order dividing 18. Let ν : G(P) → G be the retraction defined by ν(x) =

g4. Then g4x = g4(xg4)g−4 corresponds to the generator x4 ∈ ker(ν) ∼= H(9, 4) via

the Reidemeister-Schreier rewriting process ρ4. Any generator xi of H(9, 4) cannot be

contained in the commutator subgroup, for if it were, then so too would be all of its shifts,

and hence all of H(9, 4). Therefore, the image of x4, and hence of x18
4 , is nontrivial in

H(9, 4)ab ∼= C19. In particular, (g4x)18 = x18
4 is nontrivial in G(P). By our assumption,

g4x must then have infinite order. We can also conclude that w has infinite order, since

otherwise repeated conjugation would give (g4x)(−8)18 = g4x.

Let H be any finite-index subgroup of G(P). Since g4x and w have infinite order, H

must contain some nontrivial power of each, say (g4x)k and w`. We then have the relation

w`(g4x)kw−` = (g4x)k(−8)`

in H. Since (g4x)k ∈ H has infinite order, we conclude from Proposition 2.5.6 that H is

not a 3-manifold group.
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FIGURE 5.6: A path in a picture over P reveals that u is conjugate to (g4x)−1.
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FIGURE 5.7: A path in a picture over P reveals that u is conjugate to (g4x)8.
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5.5 Proofs of Theorems F and G

We collect these two proofs into a single section due to their similarity. We begin

with a simple lemma.

Lemma 5.5.1. H(9, 4) and H(9, 7) are 2-generated.

Proof. We prove this fact for H(9, 7). A similar argument can be used to prove that

H(9, 4) is 2-generated. A 2-generator presentation for H(9, 4) was found by Eamonn

O’Brien and reported in [61].

To see that H(9, 7) is 2-generated, consider the presentation

H(9, 7) = 〈x0, . . . , x8 | θi(x0x7x
−1
1 ) (0 ≤ i ≤ 8)〉.

From the relators

x2x0x
−1
3 x5x3x

−1
6

x3x1x
−1
4 x6x4x

−1
7

x4x2x
−1
5 x7x5x

−1
8

we can see that x2, x4, x5, x6, x7, x8 ∈ 〈x0, x1, x3〉. Using the above relations to rewrite x7

gives

x7 = x6x4

= x5x3x4

= x4x2x3x4

= x3x1x2x
2
3x1

= x3x1x3x
−1
0 x2

3x1

The relation x0x7x
−1
1 = 1 becomes

x0x3x1x3x
−1
0 x2

3 = 1,

so x1 = x−1
3 x−1

0 x−2
3 x0x

−1
3 ∈ 〈x0, x3〉, and hence H(9, 7) = 〈x0, x3〉.
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5.5.1 Proof of Theorem F

Let P = 〈G, x | x2gx−1g3〉 where G = 〈g | g9〉. Then H(9, 4) is isomorphic to the

kernel of a retraction ν : G(P)→ G as shown in Section 2.4, and hence H(9, 4) has index

9 in G(P). We noted in Section 2.5 that H(9, 4)ab ∼= C19 (see [61]). Consider first the

infinite case.

Proposition 5.5.2. If H(9, 4) is infinite, then it is not a 3-manifold group.

Proof. Assume that H(9, 4) is infinite. If H(9, 4) has a finite subgroup of order greater

than 2, then it is not a 3-manifold group by Lemma 5.5.1 and Proposition 2.5.5, since

H(9, 4)ab ∼= C19 is indecomposable.

Now assume that every finite subgroup of H(9, 4) has order at most 2. If J is a

finite subgroup of G(P), then ν induces an isomorphism of J/(J ∩ker(ν)) onto a subgroup

of G. Since J ∩ ker(ν) is either trivial or cyclic of order 2, we conclude that J has order

dividing 18, so the conditions of Theorem E are satisfied. Since H(9, 4) is a finite-index

subgroup of G(P), we conclude that H(9, 4) is not a 3-manifold group.

With this proposition in hand, we now consider the possibility that H(9, 4) is a

finite 3-manifold group. Such groups are limited by the Elliptization Theorem to one of

the types given in Theorem 2.5.4. Specifically, H(9, 4) ∼= Cm × J where J is one of the

groups (1)–(6) and m ≥ 1 is relatively prime to the order of J . It is easy to check that

Jab has an element of order 2 or 3 unless J = 1 or J = P120. Since H(9, 4)ab ∼= C19, we

must have either H(9, 4) ∼= C19 or H(9, 4) ∼= C19 × P120. However, neither of these cases

is possible, as H(9, 4) has the order-504 group PSL(2, 8) as a quotient (found by Eamonn

O’Brien and reported in [61]).

5.5.2 Proof of Theorem G

Let P = 〈G, x | x2gx−1g−3〉 where G = 〈g | g9〉. Then H(9, 7) is isomorphic

to the kernel of the retraction ν : G(P) → G defined by ν(x) = g2. We saw in the
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proof of Theorem B that v = g−7xg3x−1 ∈ G(P) has order either 9 or 18. Moreover, if v

has order 9, then G(P) is finite of order 333. We noted in Section 2.5 that H(9, 7)ab ∼= C37

(see [61]).

Proposition 5.5.3. If H(9, 7) is infinite, then it is not a 3-manifold group.

Proof. Assume that H(9, 7) is infinite. Then v9, considered as is an element of H(9, 7),

must have order 2. Assume in order to reach a contradiction that H(9, 7) is isomorphic

to the fundamental group of some 3-manifold M . Since H(9, 7)ab has odd order, H(9, 7)

cannot have a quotient of order 2. In particular, M must be orientable, so condition (i)

of Theorem 2.5.2 does not hold. Therefore H(9, 7) is the free product of two nontriv-

ial cyclic groups by Lemma 5.5.1 and Proposition 2.5.5. However, H(9, 7)ab ∼= C37 is

indecomposable, a contradiction.

If H(9, 7) is assumed to be a finite 3-manifold group, the proof works similarly to

the proof of Theorem F. We find that either H(9, 7) ∼= C37 or H(9, 7) ∼= C37 × P120. Here

P120 is the binary icosahedral group, which is a central extension of A5 by C2. Since every

element of A5 has order 1, 2, 3, or 5, every element of P120 has order dividing 4, 6, or 10.

Assume in order to reach a contradiction that H(9, 7) ∼= C37 × P120. If z is any

element of order 37 in H(9, 7), then H(9, 7)/〈〈z〉〉 ∼= P120. Any generator xi of H(9, 7)

cannot be contained in the commutator subgroup, for if it were, then so too would be

all of its shifts, and hence all of H(9, 7). In particular, the image of x0 has order 37

in H(9, 7)ab, so x0 has order dividing 37. Then x`0 must have order exactly 37 for some

` ∈ {4, 6, 10}, but calculations in GAP show thatH(9, 7)/〈〈x`0〉〉 ∼= 1 in each case. Therefore

H(9, 7) � C37 × P120. The only remaining case is H(9, 7) ∼= C37.
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5.6 Proof of Theorem H

Let P = 〈G, x | x3g2x−1g〉 where G is cyclic of order 6 generated by g, and recall

the picture depicted in Figure 4.10. A circular loop in this picture is given in Figure 5.8.

Using the identifications a = A = b = B = 1, c = g2, C = g−2, d = g, and D = g−1 along

with the rule that arc arrows point towards d and D, we can read the relation

(xg−1)12 = 1

in G(P). Calculations in GAP show that |G(P)/〈〈(xg−1)4〉〉| = 4 and |G(P)/〈〈(xg−1)6〉〉| =

78. If is easy to check that G(P)ab ∼= C12, which is not a factor of 4 or 78. Therefore xg−1

has order 12 in G(P). The GAP commands are as follows.

gap> F := FreeGroup("g", "x");;

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [ g, x ]

gap> P := F / [g^6, x^3 * g^2 * x^-1 * g, (x * g^-1)^4];;

gap> Order(P);

4

gap> Q := F / [g^6, x^3 * g^2 * x^-1 * g, (x * g^-1)^6];;

gap> Order(Q);

78
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FIGURE 5.8: A path in a picture over P reveals the relation (xg−1)12 = 1.
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6 CONCLUSIONS

We conclude this dissertation with a discussion of unresolved questions and future

avenues of research. In Section 3.5 we discussed possible modifications to our picture

searching method to overcome its limitations. Based on encouraging results with our

limited search method, we believe that further development of automated tools for study

pictures is warranted.

Our method is intended to prove that a presentation is not aspherical. A common

technique for proving the opposite is to use curvature arguments to show that reduced

spherical pictures over a presentation P cannot exist. One of the simplest formulations

of this argument is the weight test, which specifies a curvature for each edge of the star

graph Pst, and hence for each corner of a picture P over P. It is then possible to define a

curvature γ at each vertex v and face f of P so that these curvatures satisfy a Gauss-Bonnet

formula ∑
v

γ(v) +
∑
f

γ(f) = 2πχ(S2) = 4π.

Under certain conditions, it can be shown that this curvature is nonpositive at every vertex

and face, so the picture P cannot exist (see [8, Section 1.1]).

While the weight test is easy to apply and is often effective, there are many presen-

tations for which it is insufficient. In some of these cases, it is possible to define curvatures

so that any region of positive curvature is sufficiently compensated by regions of negative

curvature (see [10, Section 3.3]). Proofs of this type were pioneered by Edjvet in [21]. As

further presentations have been considered, these proofs have become increasingly diffi-

cult, usually involving a complicated case analysis (e.g., see [22]) and often still leaving

some unresolved cases (e.g., see [5]). Just as an automated approach to picture building

produced pictures that likely could not have been constructed by hand, we wonder if an

automated approach to curvature distribution might provide proofs that could not have



89

been found by hand. Understanding these difficult cases could give insight into the tension

between the group theoretic and topological aspects of asphericity.

We now note some of the unresolved questions regarding the groups H(9, 4) and

H(9, 7). The most notable problem is the finiteness question.

Question 1. Is H(9, 4) infinite?

Question 2. Is H(9, 7) infinite?

Many of the techniques used for other groups of Fibonacci type have been insufficient.

Their presentations are not aspherical, and they do not satisfy the C(3)-T (6) small can-

cellation condition [39]. Newman’s criterion [51] requires the existence of large finite

quotients, but so far the only known nontrivial proper quotients of H(9, 4) and H(9, 7)

are PSL(2, 8) × C19 and its factors for H(9, 4) and C37 for H(9, 7). Holt [36] gave an

alternate computer proof that F (2, 9) is infinite by showing that it is automatic and using

the corresponding automatic structure to prove that its generators have infinite order.

H(9, 4) and H(9, 7) have resisted all attempts to find an automatic structure.

A possibly promising idea is the non-computational proof that F (2, 9) is infinite

given by Chalk [15]. This proof relies on reducing spherical pictures over F(2, 9) with

respect to a known spherical picture and using curvature arguments to show that certain

elements have infinite order. However, the spherical picture over F(2, 9) is much smaller

than those that we can construct over H(9, 4) and H(9, 7). A proof of this type, if it

exists, may require an infeasible case analysis. Still, we remain hopeful that the insights

gained from our pictures may help to solve this problem.

Regarding Theorem D, we ponder the following questions.

Question 3. Is H(9, 4) torsion-free?

Question 4. Is H(9, 4) a virtual 3-manifold group?
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We can conclude from Theorem E that if H(9, 4) is torsion free, then it is not a virtual

3-manifold group. We showed that H(9, 7) has nontrivial torsion, but we were not able to

determine the exact nature of a torsion element. Either a particular element has order 2

or the group is cyclic of order 37. This leads to the following question.

Question 5. Is H(9, 7) cyclic of order 37?

We believe it is not, although we present no particular evidence for this belief. Theorem G

shows that this is equivalent to the 3-manifold question, so a resolution would complete

the 3-manifold classification for groups of Fibonacci type.
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A APPENDIX Some Additional Spherical Pictures

In this appendix we collect the program output for a few additional relative presen-

tations. These presentations have the form

Jn(m, k) = 〈G, x | xm−kg3xkg2〉.

where n ∈ {4, 6} and G is the cyclic group of order n generated by g. When (m, k) = 1,

the groups defined by these presentations are finite [9, Theorem B(c)]. Orders for the

groups considered here are listed explicitly in [9], and a picture for J6(3, 1) is given in [9,

Fig. 1]

Since these groups are finite, we have by Theorem 2.2.1 that the presentations are

not aspherical. Thus they provided a useful testing ground for our program. We construct

the explicit spherical pictures for J4(5, 1) and J4(5, 2). We give only the program output

for J4(4, 1) and J6(4, 1). If a constraint such as maxVertices is not given as part of our

input, it is assumed to be large enough that it does not influence the search. symmetry

and startWord can be deduced from the output.

A.1 J4(4, 1)

Let P = 〈G, x | xaxbxcxd〉 where a = b = 1, c = g3, d = g2, and |g| = 4. This is

equivalent to J4(4, 1). We use the input

• maxFaces = 14

• maxHalfEdges = 8

• maxNewVertices = 2

and get the following output:
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0001 aD (x2)

0002 dC bC

0003 Ab (hop)

0004 aBcB cD

0005 dC bC

0006 bA (hop)

0007 aDcB cB

0008 aB (hop)

0009 dAdA

0010 bA (hop)

0011 aDcD cD

0012 bCdC

0013 aB

0014 Ad (x2)

A.2 J4(5, 1)

Let P = 〈G, x | xaxbxcxdxe〉 where a = b = c = 1, d = g3, e = g2, and |g| = 4.

This is equivalent to J4(5, 1). We use the input

• maxHalfEdges = 12

• maxNewVertices = 4

and get the following output:

0001 cD (x4)

0002 bC

0003 aB

0004 eA eDeD

0005 dEdC

0006 cB

0007 bA

0008 EaEa

0009 Ab

0010 Bc

0011 dC (x4)

An explicit construction of this picture is given in Figure A.1.

A.3 J4(5, 2)

Let P = 〈G, x | xaxbxcxdxe〉 where a = b = d = 1, c = g3, e = g2, and |g| = 4.

This is equivalent to J4(5, 2). We use the input

• maxHalfEdges = 10

• maxNewVertices = 2

and get the following output:
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FIGURE A.1: A reduced spherical picture over J4(5, 1)

0001 aC (x4)

0002 eB eB

0003 dA

0004 Db (hop)

0005 dA (hop)

0006 cEcE bE

0007 bD

0008 aD (hop)

0009 eCaC

0010 dB

0011 Ac (x4)

An explicit construction of this picture is given in Figure A.2.

A.4 J6(4, 1)

Let P = 〈G, x | xaxbxcxd〉 where a = b = 1, c = g3, d = g2, and |g| = 6. This is

equivalent to J6(4, 1). We use the input

• maxHalfEdges = 8

• maxNewVertices = 4
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FIGURE A.2: A reduced spherical picture over J4(5, 2)

and get the following output:

0001 dC (x6)

0002 cB cB

0003 bA

0004 bA (hop)

0005 aDaD aD

0006 dCdC dB

0007 Ab (hop)

0008 cBcA

0009 bD cDcD

0010 bCaC

0011 aB

0012 AdAd Ad

0013 Ba

0014 Ba (hop)

0015 CbCb

0016 cD (x6)
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INDEX

2-sided submanifold, 30

3-manifold, 29

spherical, 31

3-manifold question, 4

admissible

face, 25

region, 25

word, 25

aspherical

ordinary presentation, 12

relative presentation, 13

space, 11

asphericity question, 3

backtracking, 24

Baumslag-Solitar relation, 32

boundary

of picture, 15

boundary label, 17

cellular model

ordinary, 12

relative, 12

corner

of picture, 15

outer, 48

current picture, 37

depth

of picture, 35

depth flag, 47

diagrammatically reducible, 23

dipole, 21

disc

of picture, 15

edge

of picture, 16

Eilenberg-MacLane space, 11

Elliptization Theorem, 31

face

of picture, 16

generator, 10

group

3-manifold, 29

coefficient, 10

cyclically presented, 2

Fibonacci, 2

Fibonacci type, 2
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Gilbert-Howie, 2

Sieradski, 2

half edge, 34

outer, 48

hop face, 37

orientable

cyclic presentation, 27

relative presentation, 22

picture, 14

connected, 15

lifted, 18

nontrivial, 15

picture over P, 17

reduced, 23

relative picture over P, 15

spherical, 15

strictly spherical, 16

presentation

balanced, 29

cyclic, 2

lifted, 11

relative, 10

region, 15

inner region, 15

Reidemeister-Schreier method, 25

relator, 10

shift automorphism, 2

shift extension, 3

star graph, 23

vertex

of picture, 16
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