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In this thesis we study mathematical and computational models for phenomena of

flow and transport in porous media in the presence of changing pore scale geometries.

The differential equations for the flow and transport models at Darcy scale involve the

coefficients of permeability, porosity, and tortuosity which depend on the pore scale

geometry. The models we propose help to understand how the presence of obstruc-

tions impacts the Darcy scale models. The particular changes in pore scale geometry

we consider are due to the formation of obstructions to the flow, and come from two

important applications of interest, biofilm clogging and gas hydrate crystal plugging

up the pores. The direct simulations or experiments of these processes at pore scale is

generally unfeasible or impractical.

We propose two computationally efficient mathematical and computational models

to simulate the formation of the obstructions. The first method extends the phase

separation model based on the Allen-Cahn equation; in our variant we add volume

constraints and additional localization functions. The second method we propose is a

Markov Chain Monte Carlo method inspired by the Ising model; here we use heuristics

to choose the particular coefficients which guide the formation of obstructions of a

particular type.

After we generate independent realizations of the obstructed geometries, we solve

flow and transport problems at pore scale. Next we use the technique called upscaling

which carries the information to larger scale by averaging, and we are able to derive the



ensemble of Darcy scale properties for a collection of generated pore scale geometries

with obstructions. We show how these techniques can be used in synthetic geometries as

well as in geometries obtained from imaging. In addition, we see that the permeability

coefficient is not merely a function of porosity, but is rather highly dependent on the

type of obstruction growing at the pore scale.



c©Copyright by Joseph G. Umhoefer

June 4, 2019

All Rights Reserved



Modeling Flow and Transport at Pore Scale with Obstructions

by
Joseph G. Umhoefer

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 4, 2019
Commencement June 2020



Doctor of Philosophy thesis of Joseph G. Umhoefer presented on June 4, 2019

APPROVED:

Major Professor, representing Mathematics

Head of the Department of Mathematics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Joseph G. Umhoefer, Author



ACKNOWLEDGEMENTS

I must first thank my advisor, Dr. Ma lgorzata Peszyńska, whose patience, sup-
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Modeling Flow and Transport at Pore Scale with Obstructions

1 Introduction

In this thesis we explore mathematical and computational models for phenomena

of flow and transport in porous media. In particular, we study how the flow and trans-

port properties change as the porous media geometry changes due to the formation

of obstructions to the flow at the pore scale resulting, e.g.. from chemical reactions.

Our main objective is to propose computationally efficient tunable mathematical and

computational models which support the understanding of these processes across the

different length scales.

Porous media. A porous medium is an aggregate of solids, a domain of solid

grains and void spaces. The solid grains may be organic, such as particles of skin,

agglomerates of flour in bread, bone cells in bone, or rock particles in soils. The grains

can be rigid or flexible, and the entire solid skeleton can be considered as rigid or elastic.

In this thesis we only consider rigid porous media in which the position of the porous

medium skeleton is fixed. In addition, in this thesis we consider only porous media in

which the void space is connected, so that some fluid may flow through the medium.

The applications which involve porous media are as diverse as porous media itself,

from pharmaceutical delivery in the body to subsurface engineering. Our work focuses

on applications in the subsurface. By subsurface, we refer to the porous media below

the surface of the earth. The porous media in this regime include aquifers, soils, and oil

reservoirs.

The models used to describe flow and transport are dependent on the scale of the

problem considered. In this dissertation we consider the pore scale of µm length scale

and Darcy scale appropriate at the cm−m− km scales. At the pore scale we recognize
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individual grains and the viscous fluid flow which moves in the void space between the

grains. At Darcy scale we consider average quantities, where we do not distinguish

individual grains and channels of flow, but rather how fluid moves through the porous

medium in aggregate. The challenge addressed in this thesis is to model the flow and

transport at these two scales and to connect these models together.

Pore scale geometry with obstructions. Darcy scale properties of a porous

media, such as permeability, porosity and tortuosity, are highly dependent on the pore

scale geometry. We are particularly interested in phenomena which involve clogging of

pores due to reactive transport and phase transitions. In particular, we are interested in

applications which involve biofilm growth such as in Microbial Enhanced Oil Recovery

(MEOR), or the growth of hydrate crystals at the pore scale [56, 10].

As the pore scale geometry changes, so do the aforementioned Darcy scale proper-

ties. The pore scale geometry may change due to chemical processes, such as precipita-

tion or dissolution, or biological processes, such as biofilm growth. Changing geometries

in particular are crucial to biological clogging of soils [49], methane hydrate formation

[10], biocementation [17] and contaminant transport [5].

There are many approaches to finding how the porous media properties change

when the geometry changes due to chemical processes. We review these methods below.

(A) First, one can study the problem experimentally, and measure the properties

while subjecting the medium to some given chemical process.

(B) Second, one can design an experiment and image the media while the process is

ongoing; this provides the measures of the Darcy scale properties properties accompanied

by the detailed information about the geometry.

(C) Third, one can study the problem using computations, and conduct direct

numerical simulation (DNS) of the process at the pore scale, accompanied by upscaling

of the properties to Darcy scale. Such simulations can be carried out using first principle

physical models, such at those involving advection, diffusion, and reaction.

Overview of the models proposed in this thesis. In this work we propose the

fourth approach (D) of generating multiple realizations of the process using computation
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simulations which are not based on first principles. Yet we generate geometries similar to

those found by x-ray imaging. The advantage of our approach is that it is fast and does

not require calibration or exact coefficients. We propose two methods for generating

physically realistic pore scale obstruction in porous media.

One of the advantages of our methods is that they are computationally cheap and

easy to run. The methods are designed to quickly find a realistic obstruction representa-

tion starting from some initial random configuration. By running them multiple times,

we find as many independent realizations as desired.

Furthermore, each of the two methods proposed has a few parameters that can

be tuned to account for different obstruction characteristics. Currently, the parameters

are set by hand based on heuristics. For example, hydrate crystals seem to “avoid” the

solid matrix as seen in the experiments in [56]. Biofilms on the other hand “cling” to

the solid matrix as seen in [35]. The methods we propose can easily reproduce these

different behaviors.

Last but not least, our models can be iteratively coupled with a flow solver to

model how flow changes as hydrates or biofilm aggregate.

We complete several experiments to infer how porous media properties are im-

pacted by geometry changes. By completing these experiments for multiple types of

obstructions we see that the permeability is highly dependent on the type of obstruc-

tion growing at the pore scale. In particular, we confirm that the permeability is not

merely a function of porosity, but is rather highly dependent on how the geometry is

changing.

Outline. This work is organized as follows. In Chapter 2 we discuss the mathe-

matical preliminary topics necessary to develop the rest of the thesis. In Chapter 3 we

discuss the fundamentals of flow and transport in porous media. This chapter includes

a description of models for flow and transport at both pore scale and at Darcy scale.

We also include methods for upscaling, the process used to take information from the

pore scale to the Darcy scale. Lastly, this chapter describes the numerical methods used

to solve flow and transport at pore and Darcy scales, as well as our numerical schemes
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for deriving the Darcy scale quantities porosity, permeability and tortuosity.

In Chapter 4 we provide context for our methodology of creating obstructions.

We review other current methods for studying changing pore scale geometry. We de-

scribe two particular obstructions of interest, those that are pore coating and those that

are pore filling. Lastly, we introduce some background material for our Constrained

Localized Phase Separation (CLPS) Model.

In Chapter 5 we discuss the first model for generating pore scale obstructions,

the CLPS model. This method is an extension of a phase separation model based on

the Allen-Cahn equation subject to constraints. This method finds local minima of a

functional which is not convex, subject to constraints. These minimizers are reached

from different initial conditions. We describe how we find the local minima and discuss

adding constraints to minimization problems using linear examples. We then describe

how the process works with nonlinear equations and tie the pieces together to describe

our method.

In Chapter 6 we discuss the second model for generating pore scale obstructions.

This method is a Markov chain Monte Carlo method inspired by the Ising model, which

we call the Lattice model. This method is probabilistic and is well known to generate

multiple final states. We begin by providing an overview of MCMC methods in general.

We next describe the Ising model. Lastly, we describe the Lattice model and provide a

few examples.

In Chapter 7 we collect the main results of this thesis. The results we present

are from a number of experiments, where we describe (1) permeability distributions in

single pore domains, (2) permeability against pore scale breakthrough in many pore

domains, (3) tortuosity distributions in many pore domains generated with phase sep-

aration simulations and (4) breakthrough curves at pore scale against breakthrough

curves at Darcy scale.
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2 Preliminaries

In this section we introduce the background mathematical material necessary for

the development of our ideas. We begin with notation for basic concepts in Section 2.1.

In Section 2.2 we move to intermediate topics, providing definitions and examples. In

Section 2.3 we describe one way to constrain minimization problems. In Section 2.4 we

describe some of the numerical schemes used.

Many derivations in this thesis will be done with unit coefficients. However, ex-

ample problems will include constant coefficients that do not meaningfully change the

derivations, but add interesting behavior to the examples.

2.1 Notation

Let D ( Rd, d = 1, 2, 3 be an open, bounded, connected domain with boundary

∂D. Denote x ∈ Rd as x = (x1, . . . , xd). For elements x ∈ D, we do not distinguish

with vector notation between the cases where d = 1 and d = 2, 3.

Let DA, DB ⊆ D be open subsets of D. We denote the interface of DA and DB

as ΓA,B = ∂DA ∩ ∂DB. We also let DA,B = DA ∪DB ∪ ΓA,B.

Let f : D → R. For d = 1 we may denote continuous derivatives of f(x) as any of

the following

df

dx
, fx, fx(x).

For d = 2 or d = 3, we may denote the partial derivatives of f in the direction of x as

any of the following

∂f

∂x
, ∂xf, fx, fx(x).

Context should make clear whether fx refers to a derivative or partial derivative. Let

d-tuple α ∈ Nd, α = (α1, . . . , αd). For d = 2, we denote the partial derivative of order

|α| = α1 + α2 as Dα,

Dα =
∂|α|

∂xα1∂yα2
.
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This extends in the usual way when d = 3.

For the gradient operator acting on f when d = 2, we may use any of the following

∇f, ∇xf, ∇x,yf, (∂xf, ∂yf) .

We extend the operator in the usual way when d = 3, and restrict the operator in the

usual way when d = 1.

We denote the gradient in the normal direction along a boundary of a set as the

following
∂f

∂n
= ∇xf · n.

Let f : D×R→ R, f(x, λ) where x ∈ D, λ ∈ R. For d = 2, we denote as follows,

∇x,λf := (∂xf, ∂yf, ∂λf) .

For d = 3, we extend ∇x,λ in the usual way.

Let 1A be the characteristic function of the set A,

1A(x) =

1, x ∈ A,

0, x /∈ A.
(2.1.1)

For a volume V (x) ⊆ D centered at x ∈ D, we denote the average of a function q

over V (x) as

〈q〉V ≡ 〈q〉(x) ≡ 1

|V (x)|

∫
V (x)

q(y) dy. (2.1.2)

2.2 Background material

2.2.1 Function Spaces

Let K ⊂ Rd. Then, K ⊂⊂ D means that K is a compact subset of the open

D ⊂ Rd.

Define the space of continuous f : D → R as C(D). Define the space of continuous

functions on D with continuous derivatives up to order p ≥ 0 as Cp(D),

Cp(D) = {f ∈ C(D) : Dαf ∈ C(D), ∀α, |α| < p} ,
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and

C∞(D) =
⋂
p≥1

Cp(D).

We denote the space of continuous functions on D with compact support as C0(D),

C0(D) = {f ∈ C(D) : supp(f) is compact} .

We also define the sets

Cp
0 (D) = Cp(D) ∩ C0(D), and C∞0 = C∞(D) ∩ C0(D).

Define the usual Lp norm

||f ||Lp(D) =

(∫
D

|f |p
)1/p

.

In general, if no specific norm is specified, the L2 norm is implied, i.e.,

|| · || = || · ||L2(D)

We use the Lebesgue spaces, Lp(D), defined as

Lp(D) =
{
f : ||f ||Lp(D) <∞

}
.

Definition 2.2.1 (Weak derivative). Let f ∈ L2(D) and α ∈ Nd. The weak derivative,

∂αf , of f of order |α| is a function in L2(D) such that∫
D

∂αfφ = (−1)|α|
∫
D

f∂αφ, ∀φ ∈ C∞0 .

Example 2.2.1. Let D = (−1, 1), and f : D → R, f(x) = |x|. In this case f is not

classically differentiable at x = 0. We calculate the weak derivative by finding ∂f
∂x

such

that ∫ 1

−1

fφx = −
∫ 1

−1

∂f

∂x
φ, ∀φ ∈ C∞0 (0, 1).

Observe, ∫ 1

−1

|x|φx =

∫ 0

−1

−xφx +

∫ 1

0

xφx

= −xφ
∣∣0
−1

+

∫ 0

−1

∂x

∂x
φ+ xφ

∣∣1
0
−
∫ 1

0

∂x

∂x
φ =

∫ 0

−1

φ−
∫ 1

0

φ.
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So the weak derivative of f is the piece-wise function

∂f

∂x
=


−1, x < 0,

α, x = 0,

1, x > 0.

We recall that it does not matter what value α takes, when ∂f
∂x

is considered a represen-

tative of an equivalence class of functions in L2.

In what follows we do no distinguish between the classical derivative and the weak

derivative. When the classical derivative exists, it is equivalent to the weak derivative.

Let k ∈ N. Define the Sobolev space Hk(D) as follows

Hk(D) =
{
f ∈ L2(D) : ∂αf ∈ L2(D), |α| ≤ k

}
.

We define Hk
0 (D) to be the closure in Hk(D) of C∞0 (D).

Let f, g ∈ L2(D). Define the L2 inner product as follows

(f, g)L2(D) =

∫
D

fg.

We will often refer to this inner product without the subscript, i.e.,

(f, g) = (f, g)L2(D).

For the following two examples, let D = (−1, 1) and f : D → R. Let u : D → R.

Let V ⊆ L2(D) and f : V → R. For the next two examples, we consider the differential

equation

−uxx = f, x ∈ (−1, 1) (2.2.1)

where we vary f ∈ V between examples, so that u is either a classical or weak solution

to (2.2.1). For both examples we impose homogeneous Dirichlet boundary conditions.

Example 2.2.2. Let f(x) = 1, so f ∈ C0(−1, 1). Then

−uxx = 1, x ∈ (−1, 1).
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The classical solution u ∈ C2(−1, 1) to (2.2.1) is

u(x) =
1

2
(x+ 1)(1− x).

Example 2.2.3. Define f(x) as follows

f(x) =

1, x ∈ (−1, 0),

−1, x ∈ (0, 1),

so f ∈ L2(−1, 1). Then the solution u(x) ∈ H2(−1, 1) to (2.2.1) is

u(x) =

−
1
2
x(x+ 1), x ∈ (−1, 0),

1
2
x(x− 1), x ∈ (0, 1).

Note in particular that while u ∈ H2(−1, 1), we have that u /∈ C2(−1, 1), but u ∈

C1(−1, 1).

2.2.2 Gâteaux derivative and notation for the derivative of
functionals

Definition 2.2.2 (Gâteaux derivative). Let V be a Hilbert space and J : V → R. For

ψ, φ ∈ V , the Gâteaux derivative of J at ψ in the direction of φ is defined as follows,

δJ

δψ
(φ) =

d

dt
J(ψ + tφ)|t=0 = lim

t→0

J(ψ + tφ)− J(ψ)

t
.

This derivative is also known as the first variation of J at ψ in the direction of φ.

Other common notation for the Gâteaux derivative includes δJ(ψ)φ, used in [21]

and J ′(ψ)(φ), used in [48]. In some other literature the notation 〈J ′(ψ), φ〉 is used to

emphasize the duality pairing between the linear functional J ′(ψ), and its argument φ.

In turn, in computational physics it is common to use the symbol ∇J(ψ)(φ) or ∇ψJ(φ).

By the Riesz representation theorem [48, Ch.1] we have for δJ
δψ
∈ V ′ that we can

find some representer g ∈ V of this functional, which is unique,

δJ

δψ
(φ) = (g, ψ) , ∀φ ∈ V. (2.2.2)
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In what follows we do not distinguish between the operator δJ
δψ
∈ V ′ and the unique

element g ∈ V .

We provide now some examples of δJ
δψ

(ψ)(φ) which are relevant to our model de-

velopment below.

Example 2.2.4. Let J(ψ) =
∫ 1

0
f(x)ψ(x)dx where f, ψ ∈ L2(0, 1). Then δJ

δψ
(φ) =∫ 1

0
f(x)φ(x)dx. One could identify δJ

δψ
with f for any ψ. In other words, δJ

δψ
is constant.

Example 2.2.5. Let J(ψ) =
∫ 1

0
f(x)ψ2(x)dx. Then δJ

δψ
(φ) =

∫ 1

0
2f(x)ψ(x)φ(x)dx. One

can identify δJ
δψ

with 2fψ. Here δJ
δψ

is not constant.

Example 2.2.6. Let J(ψ) =
∫ 1

0
f(ψ(x))dx. Then δJ

δψ
(φ) =

∫ 1

0
df
dψ

(ψ(x))φ(x)dx, and we

must assume that df
dψ
∈ L2(0, 1). One can identify δJ

δψ
with df

dψ
.

Example 2.2.7. Let J(ψ) =
∫ 1

0
f(x, ψ(x))dx. Then δJ

δψ
(φ) =

∫ 1

0
∂f
∂ψ

(x, ψ(x))φ(x)dx.

One can identify δJ
δψ

with ∂f
∂ψ

(x, ψ(x)). Here we must assume that ∂f
∂ψ
∈ L2(0, 1).

In what follows we will use notation(
δJ

δψ
, φ

)
=
δJ

δψ
(ψ)(φ). (2.2.3)

This choice will avoid the clash with the notation 〈·, ·〉 commonly used for the averages,

and will avoid multiple parentheses needed present in δJ
δψ

(ψ)(φ) when we need to em-

phasize the dependence of δJ
δψ

on ψ. Even though (·, ·) also means an inner product on

L2(D), we find the notation we suggest more intuitive.

The first variation is commonly used to find critical points of functionals. In

particular, it is used in the Euler-Lagrange equations in variational calculus. We discuss

this below.

2.2.3 Minimization problems, variational formulation, and dif-
ferential equations

Minimization problems can often be posed as differential equations. By changing

the problem formulation new opportunities for solving the problem can be found. In

particular, transforming a minimization problem into a differential equation allows, e.g.
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finite difference methods to be employed to find approximations. In this section we

present some basic examples of how to formulate minimization problems as differential

equations and under what conditions the solutions satisfy both the differential equations

and the minimization problems. We follow [21, Ch. 11] and [20].

Let D be a bounded, open region in Rd, d = 1, 2 or 3. Let V ⊆ H1(D) and

f ∈ L2(D). We define the bilinear form a(·, ·) and the linear functional F (·) as follows

a(ψ, φ) :=

∫
D

∇ψ · ∇φ, F (φ) :=

∫
D

fφ.

We also let the quadratic functional A be defined as follows

A(φ) =
1

2
a(φ, φ),

and we define the functional J : V → R,

J(φ) =
1

2
a(φ, φ)− F (φ). (2.2.4)

We are interested in finding the minimizer, ψ ∈ V of J(φ),

ψ = arg min
φ∈V

J(φ).

When the minimizer ψ exists, we have

J(ψ) ≤ J(φ), ∀φ ∈ V.

Write φ = ψ + tρ ∈ V , for t ∈ R and ρ ∈ V . If ψ is the minimizer, we have that

J(ψ + tρ) has a minimum at t = 0 characterized by(
δJ

δψ
, ρ

)
= 0, ∀ρ ∈ V. (2.2.5)

Equivalently, we have that the minimizer ψ satisfies the problem

Find ψ ∈ V, such that a(ψ, ρ) = (f, ρ), ∀ρ ∈ V. (2.2.6)

In turn, if the solution ψ to (2.2.6) is smooth enough, then ψ satisfies an associated

PDE which we find by integration by parts.
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Example 2.2.8. Minimization with Dirichlet boundary conditions

Let V = H1
0 (D) and assume that the solution ψ to (2.2.6) or, equivalently, the

minimizer of J(φ) defined by (2.2.4), is sufficiently smooth. Then ψ satisfies the PDE{−∆ψ(x)− f(x) = 0, x ∈ D, (2.2.7a)

ψ(x) = 0, x ∈ ∂D. (2.2.7b)

See [21, Ch. 8] for details on the well-posedness of (2.2.7). In general, the discussion of

solvability of problems is outside the scope of this work. However, it is well known that

the functional J for the Dirichlet problem is strictly convex. It is also bounded from

below because a(u, u) ≥ C||u2|| which overpowers the linear term −
∫
D
fu. Thus there

is a unique minimizer ψ, the solution to the variational problem (2.2.6).

A general statement on the well-posedness of (2.2.6) when the form a(·, ·) is not

symmetric, and there is no associated minimization principle, is provided by the Lax-

Milgram Theorem [47].

Example 2.2.9. Minimization with Neumann boundary conditions

Suppose now that V = H1(D) and assume that for (2.2.6) the solution ψ is

sufficiently smooth. Then ψ satisfies the PDE
−∆ψ(x)− f(x) = 0, x ∈ D, (2.2.8a)

∂ψ

∂n
(x) = 0, x ∈ ∂D. (2.2.8b)

The solution to the Neumann problem is not unique. This is because the functional

J on V is not strictly convex. There exist many minimizers of J , any two of which differ

by a constant. In addition, in (2.2.8) it must be that
∫
D
f = 0 for there to exist a

solution ψ. This is required in order for the functional J(·) to be bounded from below.

If f is arbitrary and u is any constant, then the term −
∫
D
fu is not bounded from

below.

To see why the condition
∫
D
f = 0 is needed from the form of the PDE (2.2.8),

we integrate (2.2.8a), ∫
D

f = a(ψ, 1) = 0. (2.2.9)

We come back to these two examples several times in what follows.
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2.3 Lagrange Multipliers for constrained minimization prob-
lems

In this section we introduce concepts from [40]. The authors consider constrained

optimization problems of some real-valued or possibly extended-real-valued function,

f0. They consider a broad class of constraints including real valued equality constraints,

fi = 0, and inequality constraints, fi ≤ 0. Let G ⊂ Rn. Then a standard formulation

of optimization is to

minimize f0(x) over all x ∈ G,

such that fi(x)

≤ 0, i = 1, . . . , s,

= 0, i = s+ 1, . . . ,m.

(2.3.1)

For this work, we are interested in how the authors use Lagrange multipliers

to enforce equality constraints. The Lagrangian for problem (2.3.1) is the function

L : G× Rm → R defined by

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x), y = (y1, . . . , ym). (2.3.2)

Theorem 2.3.1 (2.2, [40]). Consider problem (2.3.1) with equality and inequality con-

straints present. If x is a locally optimal solution at which the gradients ∇fi(x) of the

equality constraint functions and the active inequality constraint functions are linearly

independent, then there must be a vector y in

Y = {y = (y1, . . . , ys, ys+1, . . . , ym) : yi ≥ 0 for i = 1 . . . , s}

such that

∇xL(x, y) = 0, (2.3.3a)

∂L

∂yi
(x, y)

= 0 for i ∈ [1, s] with y > 0, and for i ∈ [s+ 1,m],

≤ 0 for i ∈ [1, s] with y = 0.

(2.3.3b)

The components of y are called Lagrange multipliers. The first-order optimality

conditions in the theorem are known as the Karush–Kuhn–Tucker conditions.

We apply these technique next to the minimization problems described in Sec-

tion 2.2.3 in which we introduce some constraints on the solution.
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2.3.1 Using Lagrange multipliers for boundary value problems

Now we apply the technique of Lagrange multipliers described above to solve the

minimization problem under constraints. We consider again the functional J(·) defined

by (2.2.4). We proceed without developing the abstract framework.

Let k ∈ R be given. We want to minimize J(·) defined by (2.2.4) over K = {v ∈

V :
∫
D
v = k}. Let V = H1

0 (D). We note that K is a closed convex set. Let also

f ∈ L2(D) be given.

The solution to this constrained minimization problem is formulated with the

Lagrange multiplier λ as follows. We first formulate the Lagrangian

L(u, λ) = J(u)− λ(

∫
D

u− k), (2.3.4)

then calculate the first order optimality conditions similar to (2.3.3),
δL

δu
= 0, (2.3.5a)

δL

δλ
= 0. (2.3.5b)

Find solutions (u, λ) that satisfy (2.3.5).

Example 2.3.1. We seek u ∈ H1
0 (D) and λ ∈ R which satisfy the first order optimality

conditions for J(·) under the single constraint expressed in the definition of K.
−∆u(x)− λ = f(x), x ∈ D, (2.3.6a)∫
D

u(x) = k, (2.3.6b)

u|∂D = 0. (2.3.6c)

We do not provide rigorous analysis of this problem but note that we formulate the

PDE (2.3.6) by integration by parts.

We discuss the numerical approximation and remark on the solvability of the

discrete problem in Example 2.4.2.

Example 2.3.2. Now let V = H1(D) and find u ∈ H1(D) and λ ∈ R as in the previous
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example. 
−∆u(x)− λ = f(x), x ∈ D, (2.3.7a)∫
D

u(x) = k, (2.3.7b)

∂u

∂n
(x) = 0, x ∈ ∂D. (2.3.7c)

This example should be compared to Example 2.2.9.

Note that (2.3.7) is (2.2.8) with constraints. We remind the reader that solutions

to (2.2.8) are unique only up to constants and any solution requires that
∫
D
f = 0.

However, the solvability of (2.3.7) is not limited by
∫
D
f . We also have uniqueness of

solutions. Observe that by integrating (2.3.7a) we get

λ = − 1

|D|

∫
D

f,

so the solution λ is the average value of f , i.e., the function f +λ automatically satisfies

that
∫
D
f + λ = 0. In turn, by (2.3.7b) ensures uniqueness of the solution u. Should

u vary by a constant as in solutions to (2.2.8), then the constraint (2.3.7b) would be

violated.

The discussion above on existence and uniqueness of solutions for the linear prob-

lems under constraints in Examples 2.3.1 and 2.3.2 does not carry over to the case when

f = f(u). This is discussed in Sections 4.2.1 when we discussed our proposed model.

2.4 Numerical solution to differential equations

In this section we introduce some of the numerical schemes used in this work.

These methods include a standard finite difference scheme for boundary value problems

in one dimension and a cell centered finite difference scheme for the Poisson equation in

two dimensions. We also discuss the backward Euler method for time stepping and the

Implicit-Explicit scheme used for solving time-dependent nonlinear equations.

Many of the examples in this work are solved with second order accurate methods.

One can, of course, develop higher order methods or employ strategies, such as adaptive
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mesh refinement, to improve the accuracy of the results. However, our focus is on the

development of the model and being able to compute numerical solutions quickly.

In Sections 2.4.1 and 2.4.3 we describe the finite difference schemes used in the

one dimensional examples. In Section 2.4.2 we describe the cell centered finite difference

scheme used to solve Poisson’s equation. In Section 2.4.4 we describe the numerical

scheme used to generate obstructions in porous media via phase separation.

Solving elliptic or parabolic boundary value problems with finite differences usually

involves solving a linear system. In this thesis we do not address the linear solvers

directly. In particular, we do not employ any special linear solvers beside the usual

“backslash operator”. In fact, the numerical solutions in Section 4.2.1 are calculated

with Matlab.

2.4.1 Numerical schemes for equilibrium examples with d = 1

To compute solutions to example problems in one dimension, we will use a standard

Finite Difference scheme. Here we assume that the solution to the underlying differential

equation exists and is smooth enough so that the Finite Difference method converges

at an optimal rate. In particular, this might require C4 smoothness of the solution. We

follow [26].

Let the domain D = (0, 1). We use uniform step size h = 1/M , and M + 1 points.

We will use M = 1000. Discretize the domain by xi := ih, for i = 0, . . . ,M .

Let u : D → R be any function. We denote the pointwise approximations of u as

ui ≈ u(xi).

To denote vectors of approximations ui, i = 1, . . . ,M − 1, we use capital, blackboard

bold font,

UT =
[
u1 u2 · · · uM−1

]
.

In the case where the function is denoted by a Greek letter, we use the capital Greek

letter. We use the norm function in Matlab, which calculates the l2 norm,

||U||l2 =

(
M−1∑
i=1

u2
i

)1/2

.
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We denote a vector of units as

1
T =

[
1 1 · · · 1

]
.

Example 2.4.1. Suppose we want to approximate the solution to (2.2.7) in one dimen-

sion. We solve

AU = F,

where the operator A is defined with the standard centered difference for the Finite

Difference approximation. When solving for the interior values, the boundary conditions

for the problem are encoded in the matrix A. With homogeneous Dirichlet boundary

conditions we have

A =
1

h2



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2


≈ − d2

dx2
.

In this case, the matrix A is symmetric positive definite (SPD) [26]. A symmetric matrix

M ∈ Rnxn is positive definite if

uTMu > 0, for all u ∈ Rn\0. (2.4.1)

To approximate Neumann boundary conditions as in (2.2.8b) we use a first order,

one-sided approximation

ux(0) ≈ 1

h
(u1 − u0) .

In this case we must also solve for the boundary values u0 and uM . The matrix A and

the right hand side are modified, with A as follows

A =
1

h2



1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


≈ − d2

dx2
.
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Here, the matrix A is symmetric non-negative definite (SND). A symmetric matrix

M ∈ Rnxn is non-negative definite if

uTMu ≥ 0, for all u ∈ Rn. (2.4.2)

It is well known that this Finite Difference scheme converges with the order O(h2)

as long as the solution u(x) is C4 smooth [26]. Following [26] one can easily extend this

method to 2D.

Example 2.4.2. Let λ ∈ R, u be a smooth solution of the constrained minimization

problem from Example 2.3.1. Suppose we are interested in approximating the solutions

to the system of equations
−uxx(x)− λ = f(x), x ∈ (0, 1),∫ 1

0

u(x)dx = k,

u(0) = u(1) = 0.

where k ∈ R.

We approximate its solution similarly to that above. The new element is that we

have to discretize the second equation with an integral. To approximate integrals over

D, we use the trapezoidal method,∫
D

u(x) ≈ h

2
u0 +

M−1∑
i=1

hui +
h

2
um.

To find the approximations U and λ we solve the saddle point systemA −1

1
T 0

U
λ

 =

 F

k/h

 .
The solution [U, λ]T to this linear system can be shown to exist and be unique.

Since this system is square, existence is equivalent to uniqueness. To show uniqueness,

we consider M [U, λ]T = 0 where M is the matrix

M =

A −1

1
T 0

 .
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From the inner product (M [U, λ]T , [U, λ]T ) = 0 we get the system of equations

(AU,U)− (λ1,U) = 0, (2.4.4)

(U, λ1) = 0. (2.4.5)

Adding (2.4.4) and (2.4.5) gives UTAU = 0. Since A is SPD, (2.4.1) implies U = 0.

Further, from M [U, λ]T = 0 we calculate

AU− λ1 = −λ1 = 0,

thus λ = 0, completing the uniqueness calculation.

Example 2.4.3. We repeat the previous example, but change the boundary conditions

from homogeneous Dirichlet to homogeneous Neumann.
−uxx(x)− λ = f(x), x ∈ (0, 1),∫ 1

0

u(x)dx = k,

u′(0) = u′(1) = 0.

Let B =
[
1.5 1 · · · 1 1.5

]T
. Then the approximation of the constraint func-

tion is ∫ 1

0

u(x) ≈ BTU. (2.4.7)

To find the approximations to U and λ we solve the saddle point system A −B

BT 0

U
λ

 =

 F

k/h

 .
Thanks to the constraint we can show that the solution [U, λ]T exists and is unique.

Analogously to the last example, define the matrix M as follows,

M =

 A −B

BT 0

 ,
and consider M [U, λ]T = 0. From the inner product (M [Uλ]T , [U, λ]T ) = 0 we again

find that UTAU = 0, but A is SND and we conclude that U is constant. However, to

satisfy

BTU = 0 (2.4.8)

it must be that U = 0. It follows that λ = 0 and thus the solution exists and is unique.
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2.4.2 Cell-centered finite differences for Poisson’s equation

The models used in this work will frequently use homogeneous Neumann boundary

conditions. In addition, it will be important for the models to be mass conservative.

For this reason, in our realistic examples in d = 2 we employ the cell-centered variant

of the finite difference method. We will also use this method for a mass-conservation

correction to the Stokes problem.

To solve Poisson’s equation we use the cell-centered finite difference scheme de-

scribed in [38], which is equivalent to the expanded mixed finite element method where

the approximation spaces are lowest order Raviart-Thomas spaces on a rectangular grid.

The scheme in [38] is an extension of the scheme in [43], with a focus on the handling

of boundary conditions.

We apply the model in [38] as follows. The mass balance equation is

∇ · U = f, (2.4.9)

where U is the mass flux and f is a source term. Darcy’s law, neglecting gravity, and

lumping µ in with K is

U = −K∇P. (2.4.10)

Combine (2.4.9) and (2.4.10) to get

−∇ · (K∇P ) = f. (2.4.11)

To discretize (2.4.9) and (2.4.10) we recall the expanded mixed finite element

method with lowest order Raviart-Thomas spaces on a rectangular grid. Define test

spaces

(W,V ) = (L2(D), H(div;D)),

for the pressure and velocity, respectively. The approximation spaces are (Wh, Vh) ⊂

(W,V ), where test functions wij ∈ Wh are piecewise constant on cell Dij and v ∈ Vh

are linear in one coordinate direction and constant in the others. For example, vi+1/2,j

is linear in the x direction and constant in y, with support Dij ∪Di+1,j and value 1 at
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the support cells interface. We discretize domain D into uniform rectangular cells with

cell width h. We suppress the subscript h in the rest of this model description.

The interior discretization is as follows. To discretize (2.4.9) multiply by test

function wij and integrate over D to get∫
D

∇ · Uwij =

∫
D

fwij. (2.4.12)

The left hand side in (2.4.12) simplifies to∫
D

∇ · Uwij =

∫
Dij

∇ · U, (2.4.13)

and the right hand side in (2.4.12) simplifies to∫
D

wij =

∫
Dij

f. (2.4.14)

For (2.4.13) in the x direction, employ the divergence theorem to get∫
Di+1/2,j

Ui+1/2,j · n+

∫
Di−1/2,j

Ui−1/2,j · n = h(Ui+1/2,j − Ui−1/2,j). (2.4.15)

We solve for discrete velocity values U via Darcy’s equation (2.4.10).

The following discretization of (2.4.10) assumes scalar K and is in only the x

direction. Suppose K is not degenerate so one can write

K−1U = −∇P. (2.4.16)

Now, multiply (2.4.16) by test function vi+1/2,j and integrate over D,∫
D

K−1uvi+1/2,j = −
∫
D

∇Pvi+1/2,j.

Apply the trapezoidal rule to integration in the x direction and the midpoint rule in the

y direction to get the equation for the nodal value ui+1/2,j,

h

(
1

2
K−1
ij +

1

2
K−1
i+1,j

)
ui+1/2,j = (Pi+1,j − Pij). (2.4.17)

Define the transmissibilities Ti+1/2,j as

Ti+1/2,j = h

(
1

2
K−1
ij +

1

2
K−1
i+1,j

)−1

.
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Then rewrite equation (2.4.17) as

hUi+1/2,j = Ti+1/2j(Pi+1,j − Pij). (2.4.18)

Note that the transmissibilities on an edge use harmonic averages of K values on the

adjacent cells.

Combine (2.4.15) and (2.4.18) so that there is only a single variable to solve for, as

in (2.4.11). We briefly show how this mixed finite element method is equivalent to the

cell-centered finite difference scheme up to quadrature error. This mixed finite element

discretization for (2.4.11) on left hand side is the familiar tri-diagonal matrix A as in

the previous sections on finite difference methods, establishing that the left hand side is

discretized similarly for the two methods. Use the trapezoidal method to approximate

the integral in (2.4.14), ∫
Dij

f ≈ fij, (2.4.19)

then the right hand side for the mixed finite element scheme is equivalent to the finite

difference scheme up to quadrature error in (2.4.19).

The boundary conditions considered for Poisson’s equation in this work are Dirich-

let boundary conditions and homogeneous Neumann boundary conditions. Suppose

there is a boundary in the x direction on the right face. Let PL be the value on the

boundary. Define the boundary transmissibility to be

TL = 2K.

Then the discretization (2.4.18) is modified to be

hUi+1/2,j = TL(PL − Pij).

To enforce the homogeneous Neumann boundary condition set

TL = 0.

2.4.3 Numerical approximation for time dependent examples
with d = 1

We extend the notation from 2.4.1 to include time dependence. Let t ∈ (0,∞).

Discretize time by tn := τn, for τ > 0, n = 0, 1, . . .. We will vary τ between examples
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to maintain stability.

Let u : D× (0,∞)→ R. In this case, u is a function of space and time. We denote

pointwise approximations of u at time t as

uni ≈ u(xi, tn).

To denote vectors of function approximations at time tn, we use

Un =
[
un1 un2 · · · unM−1

]T
.

Let f : R→ R which can be used when f = f(u). We also we consider f : R×R→

R useful for f = f(x, t). Finally, we can have f = f(x, u(x, t)) or f = f(x, t, u(x, t)).

We define fni = f(uni ) or fni = f(xi, tn) or fni = f(xi, u
n
i ) for the three cases listed,

respectively. The particular meaning of fni will be clear from the context.

Now we consider a specific time dependent problem of interest. This problem is

similar to the gradient flow problems to be considered later in this work. Suppose we are

interested in approximating the solutions (u(x, t), λ(t)) to the following nonlinear system

of equations involving a semilinear parabolic equation, and subject to a constraint.

ut(x, t)− uxx(x, t)− λ(t) = f(x), x ∈ D, t > 0,∫
D

u(x, t) = k, t > 0,

u(0, t) = u(1, t) = 0. t > 0,

u(x, 0) = uinit(x), x ∈ D.

We apply discretizations in space and in time. In time, we apply the backward

Euler scheme. We discretize in space as in Section 2.4.1. We solve the systemI + τA −τ1

1
T 0

Un

λn

 =

Un−1 + τF

k/h

 .
The above scheme is unconditionally stable [26].

2.4.4 Approximation for nonlinear problems with Neumann
conditions with d = 2

The main results formulated in this work are two dimensional phase separation

problems in porous media. We provide now a statement on how we approximate their
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solutions in D ∈ R2.

Let f : R → R be non-linear. Let λ(t) ∈ R and u : D × (0,∞) → R be unknown

and k ∈ R fixed. We use the nonlinear function f to achieve the desired modeling

results; these are motivated below. Here we focus on the framework for the numerical

approximation.

The system of equations we want to approximate is as follows

ut −∆u− λ = f(u), x ∈ D, t > 0, (2.4.21a)

∂u

∂n
= 0, x ∈ ∂D t > 0, (2.4.21b)

u(x, 0) = uinit(x), x ∈ D, (2.4.21c)∫
D

u(x, t) = k, t > 0. (2.4.21d)

We discretize (2.4.21) as follows. In time, we treat linear terms implicitly with

backward Euler scheme, and we treat the nonlinear terms associated with f(u) explicitly

in time. Schemes of this type are known as Implicit-Explicit (IMEX) schemes which

can be beneficial due to their stability properties and ease of implementation.

In space we apply the cell-centered Poisson solver in Section 2.4.2. The terms

u, λ and f are all cell centered quantities. We consider the implicit in time treatment

of −∆u (discretized as in Section 2.4.2). We also solve implicitly for λ. We approximate

(2.4.21d) as follows ∫
Df

u ≈ h2
∑
ij

uij. (2.4.22)

The resulting system is an nonlinear algebraic saddle-point system. To find solu-

tions, U and λ at every time step tn, we solve the saddle point systemI + τA −τ1

1
T 0

Un

λn

 =

Un−1 + τFn−1

k/h2

 , (2.4.23)

where I is the identity matrix. The numerical scheme shown above can be shown to

converge at a rate O(τ + h2) provided some mild stability conditions depending on f

hold.
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2.5 Newton’s method

In this Section we give a brief outline of Newton’s method. We follow the method

as in [3, Ch. 5.4].

Let F : V → V be Fréchet differentiable, with derivative denoted F ′. Let u ∈ V .

To solve the equation

F(u) = 0 (2.5.1)

we use the following iterative method. Choose an initial guess u(0) ∈ V , for k = 0, 1, . . .,

solve the equation

F ′
(
u(k)
) (
u(k+1) − u(k)

)
= −F

(
u(k)
)

(2.5.2)

for u(k+1).

Theorem 2.5.1. Assume u∗ is a solution to (2.5.1) such that F ′(u∗) is nonsingular,

bounded, and locally Lipschitz continuous. Then there exists an δ > 0 such that if

||u(0) − u∗|| ≤ δ, then the iteration (2.5.2) is well defined and converges to u∗. We have

also the error bound

||u(k+1) − u∗|| ≤ C||u(k) − u∗||2, (2.5.3)

for some constant C with Cδ < 1.

This theorem of local convergence with quadratic convergence supposes the exis-

tence of the root. A theorem due to Kantorovich however, does not suppose the existence

of the root. One drawback on Kantorovich’s theorem is that in practice it can often be

difficult to verify the conditions for a given problem [3].

Theorem 2.5.2 (Kantorovich). Let r > 0, u(0) ∈ V and F be continuously differentiable

on K = B(u(0), r) := {x ∈ V : ||u(0) − x|| < r}. Assume that F ′ is Lipschitz on K with

constant γ, F ′(u(0)) is nonsingular, and there exists two constants β, η ≥ 0 such that

||F ′(u(0))−1|| ≤ β

||F ′(u(0))−1F(u(0))|| ≤ η.
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If α = βγη < 1/2, then the iteration converges to the unique zero u∗ of F in B(u(0), r1)

where

r1 = min

(
r,

1 +
√

1− 2α

βγ

)
.

Theorem 2.5.2 gives sufficient conditions for the Newton iteration (2.5.2).
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3 Flow and Transport

In this chapter we introduce mathematical models of flow and transport in porous

media. We follow established literature on the topic, and introduce those models which

are relevant for this work. In particular, we follow [7] for Darcy scale models, [19] for

pore scale models, and [52] for upscaling. Details are provided in what follows. We

begin by discussing the different scales of interest. The models used to describe flow

and transport are dependent on the scale of the problem considered.

At the pore scale we recognize individual grains and the viscous flow with fluid

which moves in the void space between the grains, with attention paid to the variation of

velocity from zero on pore walls to maximum somewhere in the flow channels between the

walls. At Darcy scale we consider average quantities. We do not distinguish individual

grains and channels of flow but rather how fluid moves through the porous medium

in aggregate. We account for the presence of grains and channels in an average way

through the coefficients of porosity and permeability. Porosity is a scalar coefficient that

measures what fraction of the porous medium is void space. Permeability is a tensor

coefficient that describes how easily fluid moves through a porous medium. These

coefficients are clearly impacted by the geometry at the pore scale. They central to

the models of flow and transport in porous media at Darcy scale described by partial

differential equations. In this work we are interested in the applications in which the

permeability and porosity change due to some phenomena associated with the flow and

transport.

In this work, we consider porous media in which the individual pores have char-

acteristic lengths on the order of µm to mm. This is a characteristic pore size for

soils, or consolidated and unconsolidated sediments [7, Ch. 2.4]. Models for flow at the

pore scale are useful because of their ability to capture flow through the void space. In

principle, one can set up a computational model with sufficient resolution to simulate

viscous flow (e.g., Stokes flow problem), through a cm scale sample of porous medium,

whose results are upscaled to provide the coefficients of porosity and permeability. Such
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a model would, however, require a million or more unknowns [15] in order to cover a

large enough representative volume called REV (Representative Elementary Volume) of

a cm length.

Furthermore, large scale applications in porous media or even lab experiments

require that we model at a scale of m or km, the lab, core, or reservoir scales. Thus

modeling the detailed flow entirely at pore scale is unfeasible since this would require

an unmanageable complexity. When the porous medium has characteristic lengths on

the order of m to km we use Darcy’s law to describe the flow.

The capability to consider the detailed pore scale geometry and solve for the flow at

pore scale is not completely lost, however. Through a technique called upscaling, we are

able to take information from the lower scale, the pore scale models to the upper scale,

Darcy scale. To move information from pore scale to Darcy scale we use homogenization.

Homogenization is a means for taking a problem with very heterogeneous data and

finding an approximating problem with averaged homogeneous quantities which can

be solved more easily. In this work we employ both mathematical and computational

homogenization. Both are called upscaling.

Even with upscaling, one faces another conundrum, since at this time it is unreal-

istic to think one might know the actual pore geometry of every single REV of porous

medium. Instead, in [15] the authors proposed to consider random ensembles of pore

scale geometries, and produce experimental distributions of porosity and permeability,

from which one can draw to simulate at Darcy scale.

The focus of this work is to consider pore geometries in which some new obstruc-

tions arise. In particular, we consider the obstructions which form due to one of two

possible mechanisms of interest: the growth of biofilm or hydrate crystal growth. In

the following Chapters we introduce these two applications and explain why we are in-

terested in these particular obstructions, and provide context for how our strategy for

studying obstructions fits within the field. For each realization of a geometry with ob-

structions we simulate the flow and calculate upscaled coefficients. This section provides

the background on these tasks.
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In Section 3.1 we present several different models for flow in porous media. In

Section 3.2 we present advective transport. In Section 3.3 we discuss the process of

upscaling. In Section 3.4 we present numerical methods to solve for flow. In Section 3.5

we present numerical methods to solve for transport.

3.1 Models of flow in porous media

In this section we recall basic models of flow in porous media. We explain four

different models which have particular scales associated with them. In particular, we

discuss the Stokes flow model, Darcy flow model, Brinkman’s flow model, and the im-

mersed boundary Stokes flow model, which is a localized Brinkman’s flow.

Each model consists of equations for mass conservation and momentum conserva-

tion. Since we consider only fluid that is incompressible, the mass conservation equation

has the same form for each of the models. However, the momentum equation depends

on the scale at which it is posed and which flow features we are trying to capture in the

model. In all cases, the momentum equation describes a relationship between the fluid

velocity and pressure gradient.

We start by defining some notation. Let D denote a region of porous medium.

The porous domain is partitioned into the solid matrix, Ds and the flow domain Df , so

D = Ds∪Df ∪Γs,f . Refer to Figure 3.1 for an example porous domain. The distinction

between the flow domain and the solid matrix is necessary at the pore scale. For pore

scale flow, the solid matrix is the grains which are assumed to be impermeable; the

flow domain is the space between the grains, where fluid may flow. We assume that

the flow domain is connected, but the solid matrix does not have to be connected. In

computational simulations of flow we also assume that the flow domain is connected to

the inflow and outflow boundaries to be defined in the sequel.

At the pore scale the momentum and mass conservation equations are posed in

Df . Let u : Df → Rd denote velocity and p : Df → R denote pressure. The flow model

at pore scale considered here is the Stokes flow model; we describe it in Section 3.1.1.
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FIGURE 3.1: A cartoon of a porous medium cross-section. The grey grains represent

the solid matrix Ds. The connected blue region is the flow domain Df .

At Darcy scale the momentum and mass conservation equations are posed on D.

Let U : D → Rd denote the Darcy flux and P : D → R denote Darcy scale pressure.

The flow model at the Darcy scale considered here is the Darcy flow model described

in Section 3.1.2. For the Darcy model geometry information based on Df and Ds are

incorporated into the coefficients permeability, K, tortuosity, T, and porosity, φ. For

Darcy scale flow the coefficients K and φ are local averages based on the porous media

geometry. The different domains on which pore scale and Darcy scale flow are solved is

a crucial distinction.

We will consider the case where obstructions appear at the pore scale of the porous

medium. In the presence of obstructions, the domain is further refined into rock matrix,

Dr, obstruction, Do, and void space, Dv. When the obstructions are permeable, the

obstructions are part of the flow domain, Df = Dv,o. When the obstructions are not

permeable, the obstructions are part of the solid matrix, Ds = Dr,o. We will make

clear when necessary which situation we are considering. The reader is reminded that

notation for the partitioning of domain spaces was defined in Section 2.1.

Denote the components of U as Ui, i = 1, . . . , d, i.e. U = (U1, . . . , Ud). Let µ ∈ R

be the dynamic viscosity, K ∈ R be the permeability, and ρ ∈ R be fluid density.
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3.1.1 Pore scale flow model

We use Stokes equations to solve for the flow at the pore scale. To develop the

Stokes equations we follow [19, Ch. 3]. The Stokes equations are{−µ∆u+∇p = f, in Df , (3.1.1a)

∇ · u = 0, in Df . (3.1.1b)

The fundamental assumption when using this Stokes model is that the flow is “slow”

and “steady”, so we neglect any turbulence or inertial effects in the flow.

Stokes equation is appropriate for flow with a low Reynolds number, or laminar

flow regime. The Reynolds number has many definitions, but we follow one given in [7],

Re =
ρul

µ
.

One can see that slow flow with a short characteristic length, l, relative to the fluid

viscosity has a low Reynolds number.

For boundary conditions, we decompose Γ = ∂Df into three parts, Γ = Γwall ∪

Γin∪Γout, shown in Figure 3.2. The boundary Γ is also decomposed into the parts where

we impose Dirichlet and Neumann conditions. We prescribe values for u on the Dirichlet

part of the boundary. In particular, Γwall = ∂Df ∩ ∂Ds is the fluid-solid interface. On

Γwall we impose the no-slip boundary condition. Next, Γin is an inflow boundary. On

the Neumann part of the boundary we prescribe values for the total stress in the normal

direction; in particular, Γout is a outflow boundary. We assign values as follows,
u = 0, on Γwall, (3.1.2a)

u = uD(x), on Γin, (3.1.2b)

µ∇u · n− pn = 0, on Γout. (3.1.2c)

Note that the Dirichlet boundary, ΓD, is comprised of two parts of the boundary, ΓD =

Γwall ∪ Γin.

The solvability of (3.1.1) with boundary conditions (3.1.2) is well established for

f ∈ L2(Df ) (see, e.g., [20]). In the case where Γout = ∅ and uD = 0, then a unique

solution u ∈ H1
0 (Df ) and p ∈ L2(Df )\R exists. We note that p is only unique up

to a constant. Now, if Γout 6= ∅ and u exists and is unique, then −∆u + ∇p = f
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FIGURE 3.2: Illustration of a pore geometry and a possible partition of the boundary.

Γin is shown as the left, dashed green boundary. Γout is shown as the right, dash-dotted

red boundary. Γwall is shown as the solid black lines.

specifies p up to a constant, but then on Γout we have ∇u · n − pn = 0 which fixes

p. We will approximate solutions u ∈ H1(Df )
d and p ∈ L2(Df ) numerically using the

computational environment called HybGe-Flow3D [14] which is described later in this

chapter.

Example 3.1.1 (Hagen-Poiseuille flow). In this example we describe Hagen-Poiseuille

flow, that is flow described by (3.1.1) with boundary conditions (3.1.2) in a long uni-

formly cylindrical tube Df = (0, L)×(−R,R) with radius R and length L, see Figure 3.3.

The flow is in the lengthwise x1 direction of the tube and there is no flow in the radial

x2 direction.

For the Hagen-Poiseuille flow the boundary conditions are as follows. At the

wall of the tube apply the no-slip condition on Γwall = {x : x2 = ±R}. At the left

boundary Γin = {x : x1 = 0} we have the inflow condition, and impose the same flow at

Γout = {x : x1 = L}. The inflow condition has the well-known parabolic profile which

maintains continuity of u on ΓD = Γin∪Γwall. The fully developed flow solution has the

same parabolic profile throughout the tube.

The velocity u = (u1, u1) solution is

u1 =
1

µ
(R2 − x2

2),

u2 = 0. (3.1.3)
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FIGURE 3.3: Hagen-Poiseuille flow as described by (3.1.1) and (3.1.2).

The pressure p solution is unique up to a constant c ∈ R,

p = −2x1 + c.

3.1.2 Darcy scale flow model

To model flow at the Darcy scale we use Darcy’s law (3.1.4). To develop Darcy’s

law we follow [7, Ch. 4]. The porous media system is{
µU = −K∇P, in D, (3.1.4a)

∇ · U = 0, in D. (3.1.4b)

Throughout this work we ignore gravity which would otherwise appear on the right

hand side of (3.1.4a).

Darcy’s law originated as an empirical law proposed by Henri Darcy in 1856. It

has since been shown to have a physical basis as a momentum equation and can also be

derived from Stokes equation through asymptotic homogenization.

The Darcy flux, U , is the discharge per unit area. It has units of length per

time. The domain on which Darcy’s law is solved is D, rather than Df as in Stokes

equation. This characteristic makes Darcy’s law ideal for the numerical modeling of

flow at realistic reservoir length scales.

We partition the boundary at Darcy scale as follows. Let Γ = ΓD ∪ ΓN = ∂D,

with Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN ,{
P = PD, on ΓD, (3.1.5a)

U · n = G, on ΓN . (3.1.5b)
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FIGURE 3.4: A cartoon of potential flow modeled with Darcy’s equation. In fact U1

and U2 are constant in D; if one interprets this example as the Hagen-Poiseuille flow

averaged across domain D.

If ΓD is non-empty, there is a unique solution (P,U) to (3.1.4) and (3.1.5).

See Figure 3.4 for an illustration of solutions to a flow modeled with (3.1.4) using

boundary conditions (3.1.5). The flow pictured is subject to the no flow conditions

on the top and bottom boundaries, i.e. U · n|Γwall = U2|Γwall = 0. Second, to obtain

U1 = const in the entire domain, we can either (i) use Neumann boundary conditions,

or (ii) Dirichlet boundary conditions. For (i), we set Neumann boundary conditions

with U1 = G = const on the left and right boundaries Γin and Γout, and obtain pressure

solution unique up to a constant. Or we (ii) set ΓD = Γin ∪ Γout and set pressures

P |Γin = Pin and P |Γout with some Pin > Pout.

3.1.3 Brinkman model

When the fluid flow domain contains both the porous domain and free flow domain,

or alternatively when the porosity is high, is it is preferable to use Brinkman’s equation

rather than Stokes equation [7]. This is related to an incompatibility in the boundary

conditions of free flow and flow in the porous media. For flow in the fluid domain

described by Stokes equation (3.1.1), there is a no-slip condition at the interface with the

solid porous media, as in Figure 3.3. For flow in the porous media described by Darcy’s

law there is slippage, i.e. non-zero flow, at the boundary, as in Figure 3.4. Brinkman’s

equation resolves the interface incompatibility. Without Brinkman’s equation one would
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FIGURE 3.5: A Brinkman flow profile. The dotted line is the Stokes flow solution for

Hagen-Poiseuille flow. The solid line shows how the drag term in the Brinkman model

slows the flow.

have to pose some delicate interface conditions.

Brinkman’s equation is{
−µ∆U + µK−1U = −∇P, in Df , (3.1.6a)

∇ · U = 0, in Df . (3.1.6b)

The Brinkman equation shares characteristics with both Stokes equation and

Darcy’s law. The Laplacian ∆U is found in both Stokes equation and Brinkman’s

equation. In Brinkman’s equation, ∆U accounts for the energy dissipation due to the

shear rate within the fluid [7, Ch. 4]. The term K−1U is found in both Darcy’s law and

Brinkman’s equation and accounts for the drag of fluid due to the presence of porous

medium.

A flow profile for Brinkman flow is shown in Figure 3.5. Here, the K−1 term is a

drag term on the flow, slowing down the flow relative to Stokes flow.

3.1.4 Immersed boundary Stokes model

As mentioned above in this work we are interested in the flow in pore scale ge-

ometries in which some new permeable or impermeable obstructions appear due to the

transport or other processes. If these obstructions are impermeable, we can treat them

as part of the solid domain Ds, and a computational model would have to use new grid

for the flow domain.
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However, if they are permeable, say with permeability K, we should formulate a

flow model such as Brinkman model to account for these.

The idea is to account together for all the possible obstructions. The case when

K = 0 corresponds to impermeable obstructions. The case when K = inf corresponds to

the Stokes model. The case when K is finite but nonzero would require Brinkman model.

To bridge these cases we consider the immersed boundary Stokes model described below.

The flow model of principle interest in this work is the immersed boundary Stokes

model (IBSM) for obstructions presented in [15, 2.4]. We use this model in particular

when the obstructions at pore scale are permeable, but we aim to use the model also in

the limiting cases of infinitely permeable obstructions or no obstructions.

Now we consider that the flow domain consists of void space and obstructions,

Df = Dv,o ∪ Γv,o. Since the void space and obstructions can be saturated with fluid,

it makes sense to call this domain Df . The solid matrix is comprised of only the rock

matrix, Ds = Dr. The entire domain is D = Ds ∪Df ∪ Γs,f . Let Γ = Γs,f denote the

interface between the solid matrix and the flow domain.

The flow model is as follows,
−µ∆u+

1

η
1Dou+∇p = f, in Df , (3.1.7a)

∇ · u = 0, in Df , (3.1.7b)

u = 0, on Γ. (3.1.7c)

The coefficient η ∈ R is a volume penalty parameter that corresponds to the permeability

of the obstructions. It is shown in [15] that as η → 0, the velocity on D0 decreases at

O(
√
η). As η →∞, we have that (3.1.7) approaches (3.1.1). In Figure 3.6 we show an

illustration of what flow modeled with this equation looks like.

In Figure 3.7 we exhibit how the IBSM can be used to approximate flow through

permeable and impermeable obstructions. The fluid moves from left to right, with no-

slip boundary conditions on the top and bottom boundary. The rectangular obstruction

Do is in the center of the channel and outlined with a dashed black line.

In the top figure we set η ≈ 0 so that the obstruction is impermeable and we find

that the flow velocity in the obstruction is machine zero. In the bottom figure we set
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FIGURE 3.6: An IBSM flow profile. The blue box is a permeable obstruction. The

solid line exhibits x-direction velocity at the dotted line.

η > 0 so that the obstruction is permeable. The flow velocity in the obstruction clearly

is non-zero, yet has a lower magnitude than the flow velocity around the obstruction.

If one identifies η−1 with µK−1, then (3.1.7) can be viewed as a local Brinkman’s

equation. This model is an alternative to flow models utilizing the Beavers-Joseph-

Saffman interface conditions between Stokes and Darcy domains [2].

Well-posedness of (3.1.7) is discussed in [15].

3.1.5 Tortuosity

Beside porosity and permeability there are other quantities important for Darcy

scales model of flow and transport that can be derived from pore scale simulations. In

this section we consider tortuosity.

Tortuosity T is a coefficient that measures how tortuous a path the fluid must take

to cross the domain. As stated in [6], the permeability of a porous medium depends on

its porosity, its tortuosity and the average medium conductance, a characteristic related

to the cross-sections of the channels through which flow takes place.

There are many definitions and many uses of tortuosity, explained in depth in [12].

In this work we use the notion of hydraulic tortuosity. Denote the straight-line length of

a domain D in the direction of flow as l. Also, denote the effective path length taken by

the fluid across D as leh, i.e. the fluid path through Df . Then the hydraulic tortuosity
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FIGURE 3.7: Velocity magnitude solutions to (3.1.7), as calculated by HybGe-Flow3d.

Top: impermeable obstruction. Bottom: permeable obstruction.

is

T =
leh
lmin

. (3.1.8)

In [6] it is stated that this definition is incorrect and that the term on the right should

be squared. Nonetheless, we use (3.1.8) as given in [12].

3.2 Models of transport in porous media

There are many phenomena taking place in the subsurface causing the transport

of chemical species. They include advection, diffusion and dispersion. The model used

in this work incorporates only advection of a single species. Advection is the process of

being moved by the bulk flow of a fluid. In many applications it is appropriate to assume

that the species being advected do not impact the flow itself. While the purpose of this

work is to show the pore scale geometry is affected by some transport phenomena, we

do not account directly for the local modification, e.g, of flow viscosity or magnitude in
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the transport models.

Furthermore, the problems we are considering involve approximating solutions to

viscous laminar flow and transport models with lower order numerical schemes; we will

assume physical diffusion to be negligible. In fact, it is likely that the numerical diffusion

in the lower order numerical transport schemes used is significant enough to outweigh

the actual physical diffusion. Therefore, we do not address diffusive transport below.

We consider advective transport in both the Lagrangian and Eulerian frames of

reference. The Lagrangian frame of reference follows an object being advected, and

the solutions follow streamlines. The Eulerian frame of reference holds steady in space,

observing particles moving through a location. In Section 3.5 we discuss the numerical

approaches to solving for each frame of reference.

3.2.1 Transport at the Darcy scale

Let C ∈ Rd → R denote Darcy scale solute concentration. The model for transport

at the Darcy scale in [27] is

∂

∂t
(φC) +∇ · (−φTD∇C + UC) = R, (3.2.1)

where D is the diffusion coefficient, T is the tortuosity, φ is the porosity and R is a

reaction term. By assuming that φ is constant in time, diffusion is negligible, and there

is no reaction term, we simplify (3.2.1) to
φCt +∇ · (UC) = 0, in D, (3.2.2a)

C(x0, 0) = C0(x0), in D, (3.2.2b)

C = CD, on Γin. (3.2.2c)

Darcy fluxes U are given or can be found via the numerical homogenization tech-

nique discussed in Section 3.3.1. In what follows we assume U is constant. This is valid,

e.g. following the upscaling over D. The homogenization process produces a constant

U on D.

Because U is constant, one can calculate an analytical solution to (3.2.2) with the
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method of characteristics. When d = 2, the solution is as follows for U = (U1, U2),

C(x, t) = C0

(
x1 −

U1

φ
t, x2 −

U2

φ
t

)
. (3.2.3)

3.2.2 Advection at the pore scale

Let c ∈ Rd → R denote pore scale solute concentration. The model for pore scale

advection is the following system
ct +∇ · (uc) = 0, in Df , (3.2.4a)

c(x, 0) = c0(x), in Df , (3.2.4b)

c = cD, on Γin. (3.2.4c)

The advection model at porescale is very similar to that at Darcy scale. The main

difference is the absence of porosity coefficient and the use of u instead of U . We recall

that, unlike U , the velocity u is not constant. In addition, the inflow boundary at the

porescale Γin is, in practice, just a subset of the inflow boundary at the Darcy scale.

3.2.3 Breakthrough curves

We use breakthrough curves to compare the flow and transport through different

geometries. Breakthrough curves measure the total amount of solute leaving the domain

of interest over time, depending on the flow conditions such as the geometry at the

porescale or permeability at Darcy scale.

Some common ways of measuring breakthrough are as follows

B(t) =

∫
Γout

(u(x) · n)c(x, t) dx, (3.2.5)

B(t) =

∫
Γout

(u(x) · n)c(x, t) dx∫
Γout

u(x) · n
, (3.2.6)

B(t) =

∫
Γout

c(x, t) dx. (3.2.7)

In particular, the second definition attempts to remove the dependence of the break-

through curves on the magnitude of the flow velocity, which in turn depends on the flow

boundary conditions.

The breakthrough curve definitions we use in this work are (3.2.5) and (3.2.7).

Definitions similar to those above can be formulated at Darcy scale as well.



41

3.3 Upscaling

In this section we discuss mathematical and computational methods which relate

the models and quantities defined at the microscale to their macroscale counterparts.

There are many ways to relate microscale to macroscale models called “upscaling”.

Techniques of asymptotic expansions or homogenization are popular in mathematics,

while techniques of volume averaging have been popular in other sciences and engineer-

ing. Numerical homogenization or upscaling are used in computational science. These

techniques are used in many contexts and applications. Here we only discuss to the up-

scaling from pore to Darcy scale. The mathematical theory of homogenization presented

rigorously ties the pore scale and Darcy scale models and variables together, based on an

assumption that the geometry of the medium is periodic. Numerical homogenization is

the method used in practice to utilize information from pore scale simulations in Darcy

scale simulations, and works well even if the geometry is not periodic.

As mentioned in Section 3.1, flow at pore scale is solved in Df , so flow solutions

respect the exact geometry of the porous media. However, flow at Darcy scale is solved

in D, so the flow solutions lose detail in the geometry. To balance the loss in geometric

detail in Darcy scale models, coefficients that represent geometric qualities such as

permeability K, porosity φ, and tortuosity T are included. Upscaling is a means for

obtainig these coefficients.

Numerical homogenization uses geometries known as Representative Elementary

Volumes (REV). REV’s are the smallest porous media geometries still large enough to

capture all the necessary features of that porous medium. The size of an REV depends

on the characteristic of the porous medium being upscaled. For example, to upscale

porosity an REV needs to be at least 50 times the pore radius [7, Ch. 1.3.4].

One of the classic results in homogenization is upscaling Stokes flow to Darcy flow

[52].

The results of homogenization are useful in establishing formal models for flow

and transport, however, these techniques are not ideally suited to our computational

models. Homogenization assumes periodic media, but our simulations will be run on
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non-periodic packed beads derived from physical experiments. Thus, we employ a nu-

merical homogenization scheme as well.

In Section 3.3.1 we present the numerical method for the homogenization of pore

scale flow following [37, 36].

3.3.1 Numerical homogenization

We follow the volume averaging approach detailed in [36]. We present the case

where pore scale flow is modeled by immersed boundary Stokes flow (3.1.7). The ho-

mogenization for pore scale flow modeled by Stokes flow (3.1.1) is similar and can be

found in [36].

This method assumes knowledge of pore scale flow, u, pressure p, and geometry,

to calculate Darcy scale flux, U , pressure P , porosity, φ, and permeability, K. If the

porous medium is isotropic, then K is scalar. If the porous medium is anisotropic, then

K ∈ Rd×d is a tensor.

Assume a known pore scale domain D = Df,s, with permeable obstructions

present, Df = Dv,o. The geometry D has a uniform, rectangular discretization aligned

with an orthogonal coordinate system with base vectors ei, i = 1, . . . , d. For a series

of computational experiments j = 1, 2, . . ., we calculate numerical solutions (ujh, p
j
h) to

(3.1.7).

Next, we superimpose a Darcy scale rectangular grid on D. The Darcy scale grid,

D∗, is composed of a macro cell, shown in Figure 3.8. Let D∗ ( D, be a proper subset

such that the boundaries of D∗ are far enough from the inlet and outlet boundaries

of D. We average over the subset domain D∗ due to potential numerical artifacts at

the boundaries, such as backflow at the outlet. Define the following subsets of D∗:

DL = D1,3, DR = D2,4, DB = D1,2, and DT = D3,4. Let xA be the centroid of DA.

We calculate the porosity as follows,

φ =
|Df ∩D∗|
|D∗|

.
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We calculate the Darcy flux as follows,

U j
h = 〈ujh〉D∗ =

1

|D∗|

∫
D∗ujh

= φ
1

|D∗ ∩Df |

∫
D∗∩Df

ujh.

Denote the components of U j
h as U j

i , i = 1, . . . , d. Note that uh is extended on D∗ as

uh|D∗∩Ds = 0. We calculate average pressures on DA ⊂ D∗ as follows

P j
A = 〈pjh〉DA .

Approximate the pressure gradient as follows

(Gj
LR, G

j
TB) = −∇P j ≈

(
P j
L − P

j
R

xR − xL
,
P j
B − P

j
T

xT − xB

)
.

For each experiment, j = 1, . . . , d, the global flow is aligned with ej. Let e1

point left to right. Then boundary conditions imposed on (3.1.7) are inflow on the left

boundary, outflow on the right boundary and no-slip elsewhere.

Then we calculate K from (3.1.4). For each experiment j we can writeµU
j
1 = K11G

j
LR +K12G

j
TB,

µU j
2 = K21G

j
LR +K22G

j
TB.

With d experiments we can create the following system,

µ


U1

1

U1
2

U2
1

U2
2

 =


G1
LR G1

TB

G1
LR G1

TB

G2
LR G2

TB

G2
LR G2

TB




K11

K12

K21

K22

 . (3.3.1)

Due to the judicious choice of experiments, this system is non-singular in practice and

we can solve for K.

Symmetry of K is a fundamental property of permeability, but it is not imposed

by the method just described. Instead, symmetry of K should come naturally from a

good method and set of experiments.
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FIGURE 3.8: Domain partitioning for numerical homogenization scheme in Sec-

tion 3.3.1. From left to right: Domain D∗ ( D; D∗ =
⋃4
i=1Di; DL = D1,3 and

DR = D2,4; DB = D1,2 and DT = D3,4.

3.3.2 Remarks on upscaling flow coupled to transport

The approximation for Darcy flux is based on Dupuit’s relation [12],

U = 〈u〉Dfφ. (3.3.2)

This is a natural and reasonable approximation; the seepage velocity is the average

fluid velocity reduced in magnitude by the fraction of the space available to the fluid.

An interesting feature of this relation, however, is that this relationship alone does not

capture the impact of pore scale obstructions in our numerical experiments. Employing

the numerical homogenization technique in 3.3.1, for flow in one direction we find that

that the principle components of U are constant, dependent only on the boundary

conditions and not on the geometry. Clearly the other component(s) of U as well as the

pressure distribution depend on the pore geometry and in particular on the presence of

obstructions, but the transport model (3.2.2) will not “see” these other quantities. We

demonstrate this below.

Let D = (a, b) × (c, d) be a rectangular Darcy scale domain of fixed size aligned

with the coordinate axis, with associated pore scale flow domain Df . Let γA be a

collection of segments within a pore scale line in D at some A ∈ (a, b). We define

γA = {(A, y) : (A, y) ∈ Df}. Let γ̄A be the associated macroscale line segment that

subsumes γA, γ̄A = {(A, y) : y ∈ (c, d)}. See Figure 3.9 for an illustration.
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FIGURE 3.9: A porous media domain with a line specified. The solid vertical lines

denote the portions of pore scale line γA. The macroscale line γ̄A is comprised of the

solid and dotted lines.

Define φA as the “porosity” of γA,

φA =
|γA|
|γ̄A|

.

Extend this definitions to the boundaries, so that γa, γb are the pore scale boundaries

on the left and right of Df respectively, and that γ̄a, γ̄b are the Darcy scale boundaries

of D on the left and right, respectively.

Lemma 3.3.1. Consider Stokes flow with boundary conditions as in (3.1.1) on Df with

geometry as described above. Let Γin = γa, so n = (−1, 0), and let Γout = γb, so

n = (1, 0). All other boundaries have the no-slip condition on Γwall. Then

U1 := 〈u1〉Dfφ = 〈u1〉γaφa (3.3.3)

Proof. The proof is completed in d = 2, but the idea works also in d = 3.

The first step is integrating the incompressibility condition, (3.1.1b), using Green’s

theorem in (3.3.4) and enforcing no slip conditions on Γwall to get that the total flow

over the inlet is equal to the total flow over the outlet. Observe that,

0 =

∫
Df

∇ · u =

∫
Γ

u · n (3.3.4)

=

∫
Γin

u · n+

∫
Γout

u · n+

∫
Γwall

u · n,

= −
∫

Γin

u1 +

∫
Γout

u1.
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Thus, by (3.3.4) ∫
Γin

u1 =

∫
Γout

u1.

Next, we note that u can be extended on γ̄A by u|γ̄A/γA := 0. This extension

allows the macro scale flux to be written as an average over the macro scale domain,

φA〈u〉 =
φA
|γA|

∫
γA
u =

1

|γ̄A|

∫
γ̄A
u.

Next, we show the Darcy flux at the outlet is equal to the Darcy flux at the inlet,

φb〈u1〉γb =
φb
|γb|

∫
γb
u1 =

1

|γ̄b|

∫
γ̄b
u1 =

1

|γ̄a|

∫
γ̄a
u1 =

φa
|γa|

∫
γa
u1 = φa〈u1〉γa .

Now, this works across any vertical cross section, γA. Thus, as a consequence of

incompressibility,

φA〈u〉γA = φa〈u〉γa .

We now prove our claim,

U1 := φ〈u1〉Df

=
φ

|Df |

∫
Df

u1

=
1

|D|

∫
D

u1

=
1

|D|

∫ b

a

∫ d

c

u1

=
1

|D|

∫ b

a

|γ̄a|φa〈u1〉γa

= φa〈u1〉γa .

This result shows that for Stokes flow restricted to one direction, the average

velocity in the principal direction depends only on the conditions at the inflow boundary.

Of course, U2 and the pressure p as well its upscaled pressure gradient depend both on

the actual pore geometry.

We give an example to illustrate Lemma 3.3.1.
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FIGURE 3.10: Flow domains D
(i)
f and D

(ii)
f , and an illustration of the flow solutions for

Example 3.3.1.

Example 3.3.1. Consider Hagen-Poiseuille flow in Df ⊆ D = [0, 2] × [0, 1]. We find

analytical solutions for two cases, (i) and (ii), and denote the varying conditions and

solutions with a superscript (i) or (ii).

Hagen-Poiseuille flow describes Stokes flow (3.1.1) in a channel with parabolic

inflow. We use boundary conditions (3.1.2), where Γin is the left boundary, Γwall imposes

the no-slip condition on the top and bottom boundaries, and Γout is the right boundary.

Let µ = 1. The velocity solution is identical to the inflow propagated forward through

the domain, with solution given by (3.1.3). See Figure 3.10 for an illustration of the

domains and flow solutions.

(i) Let the flow domain be D
(i)
f = D, so φ

Γ
(i)
in

= 1. Set u
(i)
D (x, y) = y(1− y).

The average velocity at the inflow is

〈u(i)
D 〉Γ(ii)

in
=

1

6
.
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When considered as an average over the domain D we have

φ
Γ
(i)
in
〈u(i)

D 〉Γ(i)
in

=
1

6
.

Since the solution is constant in x, we have

Ua =
1

6
. (3.3.5)

(ii) Let the flow domain be D
(ii)
f = [0, 0.2]× [0, 1], so φ

Γ
(ii)
in

= 0.2. Set u
(ii)
D (x, y) =

125y(0.2− y).

The average velocity at the inflow is

〈u(ii)
D 〉Γ(ii)

in
=

5

6
.

When considered as an average over the domain D, we have

φ
Γ
(ii)
in
〈u(ii)

D 〉Γ(ii)
in

=
1

6
.

Since the solution is constant in x, we have

U (ii) =
1

6
. (3.3.6)

We see by (3.3.5) and (3.3.6) that U (i) = U (ii). That is the average velocity over

D is the same, despite different fluid speeds in Df .

Lemma 3.3.1 is important to the upscaling efforts in the following way. We are

investigating how pore scale geometry changes impact the upscaled permeability. The

upscaling method to find permeability, K, in section 3.3.1 has two degrees of freedom,

∇P and U = 〈u〉D∗ . We remind the reader that D∗ ( D is a subset such that the

boundaries of D∗ are away from the boundaries of D, but D∗ is sufficiently large to

capture the flow characteristics of D. By fixing the inflow conditions we have removed

one degree of freedom, thus the value of K is dependent only on ∇P . Now, that isn’t

quite true, as D∗ ( D, but then the only change in U from one experiment to the next

is what part of the flow exists in the subset domain. The impact of that has not been

determined.
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In some cases it may make sense to have the Darcy flux U incorporate the tor-

tuosity T. As explained in [12], if the Darcy flux is to remain constant while the fluid

path length increases, then the interstitial velocity must increase. The authors derive

the following modification to Dupuit’s relation (3.3.2),

U = 〈u〉DfφT−1. (3.3.7)

Our results will make use of both (3.3.2) and (3.3.7).

3.4 Numerical methods for flow

In this section we describe how to approximate numerical solutions to the im-

mersed boundary Stokes flow model (3.1.7), Stokes flow (3.1.1), and Darcy flow (3.1.4).

The Darcy flow solutions are calculated from the pore scale solutions via numerical

homogenization, as previously presented in Section 3.3.1.

The numerical approximation techniques for flow problems can be roughly divided

into the classes of finite element techniques, finite differences, and finite volumes. Each

class has its advantages and disadvantages. Finite element methods can provide very ac-

curate approximations on complex geometries, but for the viscous flow problems require

care in the choice of the approximating spaces; in addition, may not necessarily provide

mass conservative velocity solutions. Finite volume methods and some finite difference

methods can be quite robust, stable, and mass conservative but are not highly accurate.

In addition, working in complex pore scale geometries is challenging in itself. Detailed

discussion of these approximation techniques is outside the scope of this work, as they

are used only as a tool. Nevertheless we provide some information on the challenges to

the use of these techniques when applied to the flow simulations at the pore scale.

In Section 3.4.1 we overview some open finite element solvers that can be used to

solve flow. In Section 3.4.2 we describe the importance of having mass conservative flow

for use in transport simulations. In Section 3.4.3 we describe a method for correcting

mass conservation of flow solutions. In Section 3.4.4 we discuss HybGe-Flow3D [14],

which we use to solve (3.1.1) and (3.1.7).
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FIGURE 3.11: Stokes flow solution with classical checkerboard instabilities in pressure.

Left: velocity magnitude. Right: pressure.

3.4.1 Finite element flow solvers

Solving Stokes equation with mixed Finite Elements requires using stable element

pairs [19, Ch. 3.3]. One classical problem with an unstable element pair of finite element

spaces occurs with the approximation spaces of bilinear velocities and piecewise constant

pressures. In particular, one can get velocity solutions that seem reasonable, but with

a checkerboard pattern in the pressure solution. This issue requires a correction, i.e.,

stabilization. Detailed description is outside the scope of this work, but we provide an

example in Figure 3.11 where Stokes flow has been solved in a single pore model with

IFISS [19].

Assuming now that the flow solution was obtained in stable manner, for example

with bilinear velocities and a scheme which is stabilized, additional difficulty arises when

attempting to use that scheme in a transport scheme approximating, e.g, (3.2.4). With

Finite Elements there is no direct method for using the flow solution u directly for

transport. For example, bilinear velocities would have nodal solutions at the corners

of the cells, while a transport scheme would require it at the midpoints of the cell

edges. This is known as incompatibility between the numerical methods, a broader

topics outside our scope. A quick technique to fix this problem is to interpolate the
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velocity from the finite element solution to provide the approximate velocities at the

degrees of freedom required for the transport scheme.

This solution creates another difficulty however in that the obtained velocity is

not mass conservative, i.e., it does not satisfy ∇ · u = 0. We discuss how to handle this

in what follows.

3.4.2 Mass conservation of flow solutions

It is well known that a particular numerical flow solution will may not be appro-

priate for transport [16]. Small errors in satisfying conservation of mass, (3.1.1b) or

(3.1.4b), can cascade into problems in the approximation of transport. When using a

non-conservative velocity field for transport one would see non-physical creation and/or

destruction of the solute being transported.

The consequences of using non-conservative flow solutions for transport are exhib-

ited, e.g., in [16]. Consider the one dimensional transport equation

ct + (uc)x = 0, (x, t) ∈ D × (0, T ], (3.4.1)

with u = 1. Let U ≈ u be the approximation to u, with U = 1 + 0.05 cos(20πx). Then

U has 5% error approximating u, but −π ≤ Ux ≤ π. If one approximates (3.4.1) with

an upwind scheme which assumes that the velocity is divergence free, and velocity U ,

then the approximation to the solution c(x, t) is oscillatory and violates the maximum

principle.

The remedy to this problem is to either implement a special transport scheme or

to use post processing to approximate the flux across the cell faces. Another solution is

to make a correction to U so it would be mass conservative. This technique was imple-

mented very successfully in large scale ocean circulation models coupled to contaminant

transport [11]. Our first experience with this technique is described in [53] for a velocity

field interpolated from data. We describe this technique below.
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3.4.3 Mass conservation correction

One way to project Finite Element flow solutions for mass conservative flow is

presented in [11], which we adapt to the pore scale simulations. The method is as

follows. Let u be the Finite Element flow solution to Stokes flow (3.1.1) on domain Df .

Partition the domain boundary as ∂Df = ΓD ∪ ΓN , where ΓD = Γwall ∪ Γin, ΓN = Γout,

the note that ΓD ∩ ΓN = ∅. Let u · n = g(x) on ΓD.

We calculate Pu, the flow solution on the cell edge recovered from u. This can

be done by injection, interpolation, projection, etc. We want to find an approximation

û ≈ Pu, such that the approximation satisfies mass conservation and matches the

Dirichlet boundary condition, {∇ · û = 0, on Df , (3.4.2a)

û · n = g, on ΓD. (3.4.2b)

Define the approximation to be the original projected velocities with some correc-

tion,

û = Pu+ γ. (3.4.3)

Combine (3.4.2) and (3.4.3), to get the problem{∇ · γ = −∇ · Pu, on Df , (3.4.4a)

γ · n = g − Pu · n = g̃, on ΓD. (3.4.4b)

Assume that γ = −∇φ, where φ is a pseudo-pressure. Assume that φ = 0 on ΓN .

Then we can write the elliptic problem
−∆φ = −∇ · Pu, on Df , (3.4.5a)

−∇φ · n = g̃, on ΓD, (3.4.5b)

φ = 0 on ΓN . (3.4.5c)

Then, one solves (3.4.5) to get the correction term γ. We solve (3.4.5) with the

cell centered finite difference scheme described in Section 2.4.2.

In Figure 3.12 we exhibit the pitfall of using a non-conservative velocity field for

transport and the value of correcting that velocity field for conservation. We solve the
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(a)
(b)

FIGURE 3.12: Solutions to (3.4.6) with (a) non-conservative velocity approximation U

and (b) conservative velocity approximation Û . Note the red voxels (circled in some

instances) in (a), these are instances of overshoot, i.e. non-physical creation of solute c

that violates the maximum principle. We see no such instances in (b).

system 
ct +∇ · (uc) = 0, in Df , (3.4.6a)

c(x, 0) = 0, in Df , (3.4.6b)

c(x, d) = cd, on Γ. (3.4.6c)

We present solutions with velocity approximations U ≈ u, where U is non-conservative,

and Û ≈ U , where Û is found via the method described above so that ∇ · Û = 0.

Solutions are shown at arbitrary time T .

3.4.4 HybGe-Flow3d method for Stokes flow

A well known finite volume scheme which is stable and mass conservative is the

MAC scheme [34]. The scheme resembles the cell-centered Darcy scale flow solver de-

scribed in Section 2.4.2.

An extension of this scheme was developed in [13, 15] to solve the Stokes flow

problem with permeable obstructions. Without the obstructions, it simply solves the

Stokes flow problem. To solve Stokes flow we use HybGe-Flow3D [14]. HybGe-Flow3d

uses a well known staggered grid finite volume method [15, 55]. This approach defines
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pressures at cell centers and velocities at cell edges. This inherently mass conservative

method is a natural choice when using the velocity field for transport.

Our description of HybGe-Flow3D follows [13]. The domain Df is discretized into

uniform rectangular cells. Write (3.1.1) as follows,

−µ∆u1 + ∂x1p = f1, in Df (3.4.7a)

−µ∆u2 + ∂x2p = f2, in Df (3.4.7b)

−µ∆u3 + ∂x3p = f3, in Df (3.4.7c)

∂x1u1 + ∂x2u2 + ∂x3u3 = 0. (3.4.7d)

Each of the equations in (3.4.7) is discretized independently, following the staggered

grid method. The discretization of (3.4.7) gives a saddle-point system that is solved

iteratively. The iterative solvers implemented in HybGe-Flow3D include two Krylov

subspace methods, the Conjugate Gradient Method (CG) and the Generalized Minimum

Residual Method (GMRES).

3.5 Numerical methods for transport

In this section we describe our numerical schemes for both Eulerian and Lagrangian

transport. The methods used in the section were chosen due to ease of implementation,

as this work is a proof of concept. As such, the methods employed are both first

order accurate methods. We point to examples of higher order methods that could be

implemented to improve the accuracy.

We also describe how we calculate breakthrough curves for the transport. Lastly,

we discuss tortuosity and how it follows from the approximations of the Lagrangian

streamlines.

3.5.1 Eulerian advective transport

To solve the advection equation (3.2.4) in the Eulerian frame of reference we use a

simple Finite Volume upwind scheme. We implement Godunov’s method, following [25].

This explicit in time method is stable for a Courant-Friedrichs–Lewy (CFL) number up
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to 1/2 in d = 2.

The CFL condition states that a numerical method can be convergent only if its

numerical domain of dependence contains the true domain of dependence of the PDE,

at least in the limit as τ and h go to zero [25].

We develop the method with d = 2 and uniform step size h. In (3.2.4a), c is a

scalar conserved quantity and velocity is (u, v). Identify flux functions in the x and y

directions as f(c) and g(c) respectively. Expand the terms in (3.2.4a) as follows

ct +∇ · ((u, v)c) = ct + (uc)x + (vc)y = ct + f(c)x + g(c)x. (3.5.1)

Combine (3.5.1) and (3.2.4) to write

ct = −f(c)x − g(c)y. (3.5.2)

Integrate (3.5.2) on grid cell Cij to get the integral form of the conservation law,

d

dt

∫∫
Cij

c(x, y, t) = −
∫∫

Cij

f(c(x, y, t))x −
∫∫

Cij

g(c(x, y, t))y

=

∫ yj+1/2

yj−1/2

f(c(xi−1/2, y, t))−
∫ yj+1/2

yj−1/2

f(c(xi+1/2, y, t))

+

∫ xi+1/2

xi−1/2

g(c(x, yj−1/2, t))−
∫ xi+1/2

xi−1/2

g(c(x, yj+1/2, t)). (3.5.3)

We denote flux approximations across cell edges as follows

F n
i−1/2,j ≈

1

τh

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(c(xi−1/2, y, t)),

Gn
i,j−1/2 ≈

1

τh

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(c(x, yj−1/2, t)).

Define cell average cnij at time tn as follows

cnij =

∫∫
Cij
c(x, y, tn).

Integrate (3.5.3) in time and divide by cell size h2 to get the fully discrete flux

difference method as follows

cn+1
ij = cnij −

τ

h

[
F n
i+1/2,j − F n

i−1/2,j

]
− τ

h

[
Gn
i,j+1/2 −Gn

i,j−1/2

]
. (3.5.4)
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We use the upwind flux approximations

F n
i−1/2,j =

{
ui−1/2,jc

n
i,j, ui−1/2,j ≤ 0, (3.5.5a)

ui−1/2,jc
n
i−1,j, ui−1/2,j > 0, (3.5.5b)

and

Gn
i,j−1/2 =

{
vi,j−1/2c

n
i,j, vi,j−1/2 ≤ 0, (3.5.6a)

vi,j−1/2c
n
i,j−1, vi,j−1/2 > 0. (3.5.6b)

Using fluxes (3.5.5) and (3.5.6) is also known as the first-order accurate donor-cell

upwind (DCU) method [25] The DCU method is only stable for τ such that∣∣∣uτ
h

∣∣∣+
∣∣∣vτ
h

∣∣∣ ≤ 1. (3.5.7)

3.5.2 Lagrangian advective transport

Solving advection in the Lagrangian frame of reference follows the streamlines for

the flow. The equations we need to solve come from the method of characteristics.

Combine the pore scale advection equation (3.2.4a) with the divergence free condition,

∇ · (u, v) = 0, to get

ct +∇ · ((u, v)c) = ct + ucx + vcy = 0.

By the method of characteristics, we solve the following system of ordinary differential

equations, 

dt

dτ
= 1, (3.5.8a)

dx

dτ
= u(x), (3.5.8b)

dy

dτ
= v(x), (3.5.8c)

dc

dτ
= 0. (3.5.8d)

Now, c(x, t) is constant along streamlines, so for any given c(x, 0) = c0(x) we calculate

the path given by (3.5.8b) and (3.5.8c) with the one-step forward Euler method.

We follow the forward Euler method as in [26]. For (3.5.8b) with time step τ , the

method is

xn+1 = xn + τun(xn).
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The numerical velocity solutions are given on cell edges. To approximate velocities

for arbitrary point x, we use linear interpolation of cell edge velocities. For x ∈ Cij, the

approximation is as follows,

un(x) ≈
xi+1/2,j − x

h
uni−1/2,j +

x− xi−1/2,j

h
uni+1/2,j,

vn(y) ≈
yi,j+1/2 − y

h
vni,j−1/2 +

y − yi,j−1/2

h
vni,j+1/2.

While the method of characteristics is exact, the solution obtained with the technique

described here is only first order accurate due to low order time integration. As men-

tioned, c is constant along streamlines. The value for c is set at the inlet by boundary

condition (3.2.4c), then propagated according the streamline calculated.

This method could be improved by using a more stable or higher order multi-

stage method, such as from the Runge-Kutta family. We briefly describe Runge-Kutta

methods as in [25]. Runge-Kutta methods are explicit methods for ordinary differential

equations that generate intermediate values to construct higher order approximations.

For example, a second-order accurate method for (3.5.8b) would be

x∗ = xn +
τ

2
un(xn),

xn+1 = xn + τun(x∗).

3.5.3 Breakthrough curves

The breakthrough curve we use most often is (3.2.7),

B(t) =

∫
Γout

c(x, t). (3.5.9)

We approximate (3.5.9) at pore scale in both the Lagrangian and Eulerian frame of

reference.

First, consider the Lagrangian frame of reference. As described in Section 3.5.2,

this method calculates streamlines. All streamlines begin at the inlet, Γin and end at

the outlet Γout. Let i = 1, . . . , N be the index of N streamlines. We assume that the

boundary condition c = cD ∈ R on Γin is constant. Let D = [a, b] × [c, d], so that

Γout = {(x, y) : x = b}. Let ξni = (xni , y
n
i ) be the position of the front of streamline i
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at time n, where (x0
i , y

0
i ) = (0, y0

i ) for all streamlines. Let Ξn = {ξni : xn ≥ b}. Then

we approximate (3.2.7) by summing the number of streamlines that have reached the

outlet,

B(tn) ≈
∑
Ξn

cD. (3.5.10)

Next, consider the Eulerian frame of reference. Let CM,j be the cells bordering the

outlet of D discretized into M ×N cells.

Since we don’t have the values of c on the cell edges, we use the cell averages found

by the DCU scheme. To calculate the breakthrough value we use the approximation

B(tn) ≈
N∑
j=1

cnMj. (3.5.11)

3.6 Numerical method for tortuosity

In this last section we describe our method for calculating tortuosity T.

To determine the tortuosity (3.1.8) of a macro scale domain D = [a, b]× [c, d] we

average the effective path lengths for flow through the associated pore scale domain Df ,

which we normalize by the length of D.

To find the length of a streamline, we use the Lagrangian advective transport

solution as described in Section 3.5.2. The path of streamline (i) is given by (xni , y
n
i ),

n = 0, . . . , NT . The length leh of streamline (i) is estimated by

lieh ≈
NT−1∑
n=0

||ξn+1
i − ξni ||l2 =

NT−1∑
n=0

√
(xn+1

i − xni )2 + (yn+1
i − yni )2.

Then, we average the lengths of the streamlines i = 1, . . . , N,

leh ≈
1

N

N∑
i=1

lieh.

Lastly, we normalize by the length of D. In the case of flow in the direction of the

first dimension, we have

T =
leh
b− a

.
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4 Motivation and tools used to generate pore geometries
with pore filling and pore coating obstructions

In this chapter we introduce two methods for generating physically realistic pore

scale obstructions in porous media. The first method we introduce is an extension of a

phase separation model based on the Allen-Cahn equation subject to constraints. The

second method is a Markov chain Monte Carlo method, inspired by the Ising model.

Both methods are designed to generate not just one, but multiple independent

realizations of the geometries at pore scale. The first method finds local minima of

a functional which is not convex. These minimizers are reached from different initial

guesses or initial conditions. The second method is probabilistic and is well known to

generate multiple final states.

Motivation. As discussed in Chapter 3, Darcy scale properties of a porous media,

such as permeability, porosity and tortuosity, are highly dependent on the pore scale

geometry. As the pore scale geometry changes, so will the aforementioned Darcy scale

properties.

Below, we review methods several many approaches to finding how the Darcy

properties change when the geometry changes due to chemical processes at the micro

scale.

Literature review. (A) First, one can study the problem experimentally, and

measure the properties at Darcy scale only, while subjecting the medium to some given

chemical process.

(B) The second method provides measures of the Darcy scale properties accom-

panied by detailed information about the geometry by designing an experiment and

imaging the media while the process is ongoing. For example, in [10] the authors use

experiment to study hydrate formation. The authors find evidence of Ostwald ripening

of gas hydrate crystals in pores and porous media. Ostwald ripening is a process through

which small hydrate particles nucleate, then combine to form larger crystal structures.

At high hydrate saturations this ripening process leads to grain-cementing and reduced



60

permeability.

However, there are difficulties associated with those methods for studying pore

scale geometry changes. First, they can be costly and time consuming. Experiments to

grow hydrates require cryochambers kept at very high pressures and low temperatures,

possibly running for months [10]. Experiments to grow biofilms can’t be imaged in situ,

as the biofilm needs to be killed for imaging [35].

In addition, the imaging process for experiments is a hard problem in it’s own right.

The density of biofilm is only slightly higher than that of water, making it difficult to

distinguish the obstruction from the void space [35]. For the experiments in [10] xenon

is substituted for methane in the hydrate formation because xenon has an X-ray mass

attenuation coefficient one order of magnitude higher than methane, making it easier to

image.

(C) The third method utilizes computations, conducting direct numerical simula-

tions (DNS) of the process at the pore scale, accompanied by upscaling of the properties

to Darcy scale. In particular, in [54] the authors consider crystal dissolution and precip-

itation in a thin strip at pore scale. The authors work in 1D, establishing the existence

and uniqueness of solutions to their model, while accounting for how the pore geometry

changes due to dissolution and precipitation.

In [35] the authors combine experiment with DNS of biofilm growth in porous me-

dia. The numerical model incorporates an advection-diffusion-reaction model, for the

biofilm and nutrients, coupled to a Navier-Stokes system for the hydrodynamics. The

use of DNS is very appealing because they seem to connect the connect the computa-

tional models to physical reality. Unfortunately, the use of DNS is also very complex.

Simulations for realistic problems include evolving 3D geometries with the numbers of

voxels on the order of 10,000,000, and an appropriately larger number of unknowns.

Full transient studies with such simulations and multiple parameters are unfeasible [15].

Finally, any DNS simulation of flow and transport requires some initial geometry and

initial conditions which are plagued with large uncertainty, thus would require addi-

tional stochastic simulations. Rephrasing, DNS give very specific answers for what may
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be a very non-specific question, and is extremely complex.

Approach to generation of pore scale geometries obstructions proposed

in this work. In this work we propose the fourth approach (D) of generating multiple

realizations of the process of formation of obstructions using computational simulations.

Our simulations are not based on first principles, yet we generate geometries similar to

those found by x-ray imaging. The advantage of our approach over DNS is that it is

fast and does not require that we know or are able to calibrate the exact coefficients for

the complex process underlying the formation of obstructions.

One of the advantages of our methods is that they are computationally cheap

and easy to run. The methods are designed to quickly find a realistic obstruction

representation starting from some initial random configuration. When run multiple

times, we find as many independent realizations as desired.

Furthermore, each of the two methods proposed has a few parameters that can

be tuned to account for different obstruction characteristics. Currently, the parameters

are set by hand based on heuristics. These heuristics are based on our intuition and the

visual observation of images from the literature.

In particular, we consider two specific processes which lead to the so called “pore

filling” or “pore coating” behavior. In the first, typical for hydrate crystal formation,

the obstructions made by crystals form in the void space rather than at the walls. One

could say colloquially that the hydrates “avoid the solid matrix”. Such behavior is seen,

e.g., in the experiments in [56].

On the other hand, the latter, “pore coating” is the behavior when the obstructions

such as biofilms cling to the solid matrix. See, e.g., the experimental work reported in

[35].

The methods we propose can easily account for these two different behaviors.

Last but not least, in the future our models can be coupled with a flow solver

to model how flow changes as the hydrate or biofilm aggregate. The phase separation

method in Chapter 5 generates obstructions with smooth boundaries, and it could also

be coupled to the Lattice model presented in Chapter 6 to smooth the obstructions.
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The outline of this section is as follows. In Section 4.1 we describe why we study

pore filling and pore coating obstructions. In particular, we describe how biofilm and

hydrate meet those descriptions and what impacts they have on porous media flow and

transport. In Section 4.2 we present background literature relevant to the CLPS model

we develop in the next chapter.

4.1 Motivation behind the need for generation of geometries
with pore filling and pore coating obstructions

4.1.1 Pore filling obstructions: hydrate crystals

In this section we describe why we study hydrate. Clathrate hydrate is a crystal

lattice comprised of frozen water cages trapping gas molecules [10]. Our particular

interest is in methane hydrate is when the trapped gas is methane.

This naturally-occurring and highly-concentrated form of methane holds signifi-

cant quantities of carbon in the global system. Methane hydrate formation occurs in

areas of low temperature and high pressure making them abundant in permafrost and

marine sediments, which are estimated to contain 2× 103 to 4× 106 Gt of carbon [10].

Such a large quantity of carbon makes methane hydrates a energy source [8] and po-

tential climate change accelerant [42]. It is possible for ocean and atmospheric warming

to perturb hydrate stability, leading to the release of the trapped methane. The re-

leased methane may reach the atmosphere, exacerbating global warming. Methane has

a Global warming Potential of 25, meaning that pound for pound, methane emissions

are estimated to absorb 25 times the energy of carbon dioxide emissions [50].

Since methane and methane hydrate are important for various reasons, scientists

attempt to probe the subsea and arctic sediments to detect their presence and to predict

their evolution. The formation of hydrate has been shown to influence the porous media

in many significant ways, and these make observations and experiments at large scale

difficult. In particular, this includes impact of hydrate presence on the seismic velocities

[23], permeability [24], strength [29], thermal conductivity [22] and electrical properties
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[51].

Therefore, laboratory studies and imaging are undertaken to study the evolution of

hydrate crystals in small laboratory samples. In [10] the authors note that the transport

and mechanical properties of hydrate bearing sediments are dependent upon the spatial

distribution and shape of the hydrates, but that the evolution of hydrate shape and

spatial distribution are not yet well understood. In [10] the authors complete physical

experiments followed by x-ray imaging to help fill that knowledge gap.

The three experiments in [10] are (i) xenon hydrate growth in water and gas phases

without porous media, (ii) methane hydrate growth on water droplets, and (iii) xenon

hydrate growth in wet sandpack. Xenon is used as a substitute for methane to improve

the imaging process of the experiments. High-resolution CT images and photos of the

experiments are available in digital rocks portal [39].

The work of [10] provides experimental evidence of Ostwald ripening of gas hy-

drates in large pores and in a sand pack. The hydrate growth rate is shown to depend

on both overpressurization and undercooling. As the ripening occurs the hydrates be-

come pore-filling which has causes significant changes to the permeability and sediment

strength. At sufficiently high saturation levels the hydrates become grain cementing.

Relation to our work.

In this work we develop models which can be applied to the goal of obtaining

physically realistic pore scale geometries containing hydrate crystals so that Darcy scale

properties such as permeability or tortuosity can be studied. In particular, our CLPS

model captures the Ostwald ripening evolutionary process of hydrate formation and

simulates hydrate shape and distribution within an REV. Specifically, one could use our

model to reproduce geometries similar to those in experiment (iii) of [10] as follows.

(1) Starting with the images of the wet sandpack, extract a suitable REV to be

used with the CLPS model and use it as the pore domain D. (2) Tune the parameters

of the CLPS model such that the obstructions formed are similar to those imaged in

the experiment. (3) With the parameters fixed, create many realizations of obstructed

geometries. (4) For each realization of geometry from the family found in (3) calculate
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permeability, tortuosity, etc.

4.1.2 Pore coating obstructions: biofilm

In this section we describe biofilms and why we study them. By biofilm we refer to

the microorganisms growing in porous media which form a special extracellular polymer

substance called EPS of high density which is impermeable or almost impermeable to

the external flow. EPS protects the microbes but clogs the pore void space. As with the

formation of hydrate crystals, excessive growth of biofilm impacts the flow and transport

properties of porous media.

In particular, a reduction in hydraulic conductivity due to biofilm clogging porous

media has been shown to have significant impacts on the following topics. In [32]

the authors show that biofilm growth would be expected to have a major effect on

contaminant transport when proper conditions for growth exist. In [4] the authors

evaluate biofilm growth models in the context of enhancing in situ bioremediation of

contaminated aquifers. In [33] the authors study biological clogging during the artificial

recharge of underground storage. In [49] the authors simulate the progressive clogging

of a septic bed, showing how the biofilm initially forms at the up-gradient end of the

flow displacing wastewater infiltration.

The importance of determining the Darcy scale properties of porous media contain-

ing the evolving biofilm calls for laboratory experiments combined with x-ray imaging.

In particular, in [35] the authors combine experiment with direct numerical simulation

of biofilm growth in porous media. The authors note that the biofilm growth depends

on various environmental conditions, in particular on the flow rate. The experimental

dataset is based on a glass bead domain inoculated by biomass. The imaging data is

incorporated directly by a computational model for flow and transport , i.e., a DNS

model. Next, upscaling such as described in Section 3 is used to determine the Darcy

scale properties after biofilm growth. The computational model found good agreement

with the properties measured from the physical experiment.

Relation to this work.
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The complexity of the DNS simulations in [35] is enormous. Furthermore, the

results depend significantly on the local pore geometry, on the physical parameters

assumed, as well as on the initial conditions representing the inoculation with microbes.

In other words, there might be large uncertainty as to the actual results.

The methods proposed in this work could be used instead of such DNS models

and generating plausible realizations of geometries directly. This would would not con-

tradict the apparent uncertainty of DNS but rather directly support it. Our CLPS and

Lattice models can be used to enhance the link between the physical and computational

experiments in [35].

Furthermore, the models proposed in this paper could be used to generate a set

of physically plausible random initial conditions for the DNS model.

4.2 Literature background on CLPS models

In this work we consider two classes of models we call CLPS and Lattice. The bulk

of the thesis is spent on the model called CLPS, which extends Allen-Cahn equation. In

this section we review some work relevant to our CLPS model and provide context to

some of our design decisions. Background on Lattice models is provided in Chapter 6

where they are introduced.

In Section 4.2.1 we introduce the Allen-Cahn equation. In Section 4.2.2 we review

[18] to show known challenges for equations such as Allen-Cahn. In Section 4.2.3 we

review [45] to recall the error bounds for numerical approximations to the Allen-Cahn

equation. In Section 4.2.4 we review [41] to introduce adding a phase conservation

constraint to the Allen-Cahn equation.

4.2.1 Allen-Cahn equation

Let D ∈ Rd, d = 2, 3 be a bounded domain, n be the outward normal, and

f(u) = W ′(u), with W being a given energy potential, such as the double well potential
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W (u) = (1− u2)2. The Allen-Cahn equation is
ut −∆u+

1

ε2
f(u) = 0, x ∈ D, t > 0, (4.2.1a)

∇u · n = 0, x ∈ ∂D, t > 0, (4.2.1b)

u(x, 0) = u0(x), x ∈ D, (4.2.1c)

Here u represents the concentration of one of two phases and ε represents the

interfacial width. We note that in other work the parameter is applied differently as

ut− ε∆u+ 1
ε
f(u) = 0; the difference in the two equations amounts to a scaling of time.

The characteristic length of the domain is much larger than ε. These equations describe

the evolution and separation of the two phases. The two phases are represented as the

state where u = 1 or where u = −1. The equilibrium states are separated by a region

of width proportional to ε called the diffuse interface region.

As shown in [18], (4.2.1) describes the gradient flow of the Liapunov energy func-

tional

J(u) :=

∫
D

(
1

2
|∇u|2 +

1

ε2
W (u)

)
. (4.2.2)

Another classic phase separation model is the Cahn-Hilliard equation [9]. Similar

to the Allen-Cahn equation, the Cahn-Hilliard equation is a gradient flow for (4.2.2),

however it also satisfies phase conservation but is fourth order. We choose to not work

with the fourth order Cahn-Hilliard equation, but rather enforce phase conservation on

the Allen-Cahn equation as explained starting in Section 4.2.4.

4.2.2 Dynamics of semilinear parabolic equations

In [18] the authors consider the following semilinear parabolic initial value problem
ut −∆u+ f(u) = 0, x ∈ D, t > 0, (4.2.3a)

u = 0, x ∈ ∂D, t ≥ 0, (4.2.3b)

u(x, 0) = uinit(x), x ∈ D. (4.2.3c)

This is the Allen-Cahn equation introduced in the previous section, with ε = 1 and

homogenous Dirichlet boundary conditions. The authors assume that D ∈ Rd and d ≤ 3

is bounded with Lipschitz boundary ∂D. Further, assume that the initial condition
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uinit ∈ K = {η ∈ L2(D) : ||η||∞ ≤ M}. Finally, assume that the nonlinear function f

satisfies the following properties

f ∈ C2,

f(0) = 0,

There exists u > 0, such that f(r)/r > 0 for any r > u,

W ′′(u) ≥ −CF ,

where

W (u) =

∫
f(u),

and CF > 0.

The authors results are broad, but we present only those relevant to this work.

First, for each uinit ∈ K, there exists a unique solution to (4.2.3) which satisfies for all

T > 0

u ∈ L2(0, T ;H1
0 (D)) ∩ C[0, T ;L2(D)].

The mapping u0 → u(t) is continuous for each t > 0. Thus, the solution operators

{S(t)}t≥0 defined by S(t)u0 := u(t) forms a continuous semigroup on L2(D).

Next, we have that the functional (4.2.2) with ε = 1 is a Lyapunov functional

for {S(t)}t≥0. This means that solutions to (4.2.3) evolve towards solutions of the

equilibrium problem {−∆u+ f(u) = 0, x ∈ D, (4.2.4a)

u = 0, x ∈ ∂D. (4.2.4b)

There is no uniqueness guaranteed for (4.2.4).

These results help to understand the gradient flow as the process towards finding

the (multiple) equilibrium solutions for non-convex functionals.

In particular, the function known as double-well potential W (u) = (1 − u2)2

satisfies the properties above. Its derivative f(u) = W ′(u) is non-monotone, but

W ′′(u) ≥ −4. The function f(u) in e.g., u′ + f(u) = 0 provides the coarsening (phase

separation) effect towards the stable equilibria u = −1, u = 1 and away from the un-

stable local minimum u = 0. The PDE with this function is known as Allen-Cahn
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equation, it is also known as one of diffuse interface models or phase field or phase sep-

aration models. By design the solutions to these equations exhibit sharp gradients in

certain regions; these regions have a particular width related to the particular parame-

ters of the model. The sharp gradients arise due to a competition between the diffusive

effects and nonlinear functions involved.

Relation to this work. In what follows we do not use the analysis in [18] directly.

In fact, we use a function W (u) = 1
4
u2(u − 1)2 with local minima at u = 0 and u = 1

and a local maximum at u = 1/2. Furthermore, we use Neumann boundary conditions

as in Section 4.2.1, and we impose a constraint.

4.2.3 Numerical approximation of Allen-Cahn equation

Numerical solution of gradient flow problems such as Allen-Cahn equations is

challenging, and the literature is abundant. Below we discuss the general challenges

associated with the numerical approximation of gradient flow models and recall a few

relevant results.

The first challenge is the presence of sharp fronts. These require fine spatial grid

and small h. Second challenge is the strong nonlinearity. If explicit or semi-implicit

methods are used for the nonlinear terms, this calls for small τ .

The second challenge is nonlinearity of the model. If fully implicit methods are

used, one has to use a nonlinear solver such as Newton’s iteration, and this approach

may be very cumbersome. In turn, fully explicit methods with the stiff diffusion would

require very small time steps. Therefore, various authors consider semi-implicit schemes

where diffusion is treated implicitly but the nonlinear terms are treated explicitly. For

these, one does not aim to obtain unconditional stability, but rather a particular form

of stability in a specially chosen quantity of interest.

In particular, in [45] the authors develop energy stable numerical schemes with

error bounds for solving the Allen-Cahn and Cahn-Hilliard equations. The analysis in

that paper is done on the weak formulations, so that the results may be easily extended

from the intended spectral methods.
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We now give an example of a semi-implicit scheme for the Allen-Cahn equation.

Consider the time discretized, first-order semi-implicit method applied to the weak form

of (4.2.1)
Un+1 − Un

τ
+ AUn+1 +

1

ε2
Fn = 0. (4.2.5)

By [45, Lemma 2.1], if τ ≤ 2ε2

L
, then the proposed scheme is energy stable with J as

defined in (4.2.2), i.e.

J(un+1) ≤ J(un), ∀n ≥ 0,

provided various additional assumptions hold.

Because the estimates above are established in the weak form of the Allen-Cahn

equation, they apply not only to the spectral-Galerkin method preferred by the authors,

but also to Finite Element schemes. The stabilized first-order, semi-implicit scheme is

a promising possibility for improvement on our methods. We do not plan on implement-

ing the spectral-Galerkin method suggested by the authors in this paper and developed

in detail in [44] due to the complex geometries of the REVs used in our simulations.

Relation to this work. We employ the same implicit-explicit method as de-

scribed above to solve our CLPS model. We note that the CLPS model is different than

the one considered above in that the CLPS model adds constraint. Refer to Section 2.4.4

for a description of the scheme implemented in this thesis.

4.2.4 Literature on nonlocal reaction-diffusion equations and
nucleation

In [41] the authors consider a nonlocal reaction-diffusion equation for the phase

separation of a binary mixture. Their work modifies the equations considered in Sec-

tion 4.2.3 by incorporating phase conservation into the Allen-Cahn equation.

The phase conservation is incorporated as a constraint equation; this is done sim-

ilarly to what we discussed in Section 2.3, even if our model development was done

independently from [41]. We employ this same strategy for phase conservation in the

development of the CLPS model in the following sections. We also recall the background

material we developed in Examples 2.3.1 and 2.3.2.



70

Let D ∈ Rn be a smooth bounded domain with outward normal n and total volume

|D|. Let f = W ′, where W is the double well potential. Let u : D → R be the order

parameter and consider the system
ut −∆u+ f(u)− 1

|D|

∫
D

f(u) = 0, x ∈ D, t > 0, (4.2.6a)

∇u · n = 0, x ∈ ∂D, (4.2.6b)

u(x, 0) = uinit(x), x ∈ D. (4.2.6c)

One important characteristic of this system is that it conserves u. To see this,

integrate (4.2.6a) over space and time to get the following∫ t

0

∫
D

ut −
∫ t

0

∫
D

∆u+

∫ t

0

∫
D

(
f(u)− 1

|D|

∫
D

f(u)

)
= 0. (4.2.7)

Now, the second term of (4.2.7) vanishes by using Green’s theorem and the boundary

condition (4.2.6b), ∫
D

∆u =

∫
∂D

∇u · n = 0. (4.2.8)

The last term of (4.2.7) vanishes as well∫
D

(
f(u)− 1

|D|

∫
D

f(u)

)
=

∫
D

f(u)−
∫
D

(
1

|D|

∫
D

f(u)

)
=

∫
D

f(u)−
∫
D

f(u) = 0.

(4.2.9)

Finally, the first term of (4.2.7) simplifies as∫ t

0

∫
D

ut =

∫
D

∫ t

0

ut =

∫
D

u(x, t)−
∫
D

u(x, 0) =

∫
D

u(x, t)−
∫
D

uinit(x). (4.2.10)

Combining eqs. (4.2.7) to (4.2.10) we have that∫
D

u(x, t) =

∫
D

uinit(x), t > 0. (4.2.11)

Solving or approximating the system in the form (4.2.6) achieves the goal of phase

separation with order parameter preserved. However, the equation is nonlocal and

thus presents challenges to numerical approximation. An equivalent formulation is by

introducing an additional variable, a Lagrange multiplier. This formulation is equivalent

to (4.2.6).
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Consider systems of equations of the following form,

ut −∆u+ f(u)− λ(t) = 0, x ∈ D, t > 0, (4.2.12a)

∇u · n = 0, x ∈ ∂D, (4.2.12b)

u(x, 0) = uinit(x), x ∈ D , (4.2.12c)∫
D

u = k, t > 0, (4.2.12d)

for k ∈ R. A similar calculation to the above, using (4.2.12d) we find that

λ(t) =
1

|D|

∫
D

f(u).

Define the energy functional F as in (4.2.2). In (4.2.12) we have modified the

Allen-Cahn equation by including the non-local term λ(t) in (4.2.12a) and adding the

constraint (4.2.12d). In [41] the authors establish (4.2.12) as a second order, non-local,

mass conserving gradient flow for F , subject to the constraint (4.2.11).

For our purposes, this phenomenological model is an improvement over the Allen-

Cahn and Cahn-Hilliard equations. The Cahn-Hilliard equation is fourth order, local

and mass conservative. The Allen-Cahn equation is a second order, local, and mass non-

conserving. By using (4.2.12) one has the best of both, in that it is mass conserving,

but also second order and thus easier to work with.

The work in [41] focuses on the evolving interface of the binary mixture. Through

asymptotic analysis the authors established that the binary mixture rapidly separates.

Particularly useful to our CLPS model the authors have demonstrated that this model

qualitatively captures the behavior of ripening nuclei.
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5 Using phase separation models to generate obstructions

In this section we develop our phase separation model for obstruction generation

in porous media, which we call the Constrained Local Phase Separation (CLPS) model.

The model is an extension of the Allen-Cahn (AC) equation (4.2.1), originally proposed

in [1] to describe the motion of anti-phase boundaries in crystalline solids. The functional

f is a given energy potential. The AC equation models the phase separation of a binary

mixture by coupling a diffusion operator with a nonlinear reaction term.

The Cahn-Hilliard (CH) equation, proposed in [9], is another equation that models

phase separation of binary mixtures. The AC and CH equations are often studied

together, as in [45]. Both the AC and CH equations are L2 gradient flows for the

Ginzburg-Landau free energy functional [45]. See Sections 4.2.3 and 4.2.4 for more on

the development of these equations.

The AC equation is second order and phase non-conserving. The CH equation is

fourth order and phase conserving. The model developed in this section is both second

order and phase conserving. To achieve this we the AC equation and utilize a Lagrange

multiplier to enforce the total phase constraint, as described in Sections 2.3 and 4.2.4.

By adding the constraint the model becomes non-local reaction diffusion equation.

The phase separation occurs in the flow domain of porous media at the pore

scale. We add spatial variability to our model so that the phase separation can react

accordingly to the interface of the flow domain and the solid matrix. What this means is

that we can control whether obstructions aggregate adjacent to the solid matrix, similar

to biofilm, or whether the obstructions aggregate away from the solid matrix, similar to

hydrates.

The long time behavior the of the AC and CH equations is to find local energy

minima, suggesting that our model simulates physically realistic obstructions. We are

able to quickly generate a large number of pore scale geometries with obstructions,

introducing stochasticity by randomizing the initial conditions.

This section is organized as follows. We begin in Section 5.1 by explaining how
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we obtain multiple realizations of obstructions by using gradient flow and non-convex

energy functionals. In Section 5.2 we discuss how to add phase conservation to a linear

energy minimizing equation. In Section 5.3 we exhibit how to use gradient flow to

evolve a system to a local minimum. In Section 5.5 we minimize a constrained nonlinear

equation. In Section 5.6 we use gradient flow to evolve a constrained nonlinear equation

to a local minimum. In Section 5.7 we compare solutions calculated by Newton’s method

to the IMEX scheme we use. In Section 5.8 we present our model in full, exhibiting how

we use phase separation to generate pore scale obstructions in porous media.

5.1 Gradient flow and multiple minima of a non-convex func-
tional

As explained above, we are interested in finding mutliple realizations of pore scale

geometries with randomly distributed obstructions. In this Section these realizations

will be found as local minima of a certain functional or as stationary solutions of a

gradient flow problem associated with these functionals.

Let W be the so called “double well potential,”

W (ψ) =
1

4
ψ2(ψ − 1)2. (5.1.1)

We have

f :=
dW

dψ
= ψ

(
ψ − 1

2

)
(ψ − 1). (5.1.2)

See Figure 5.1 for illustration.

The function W is neither convex nor concave, and its gradient is only locally

monotone increasing and monotone decreasing. The function W has two minima at

ψ∗ = 0 and ψ∗ = 1, and a local maximum at ψ0 = 1
2
.

Note that in Section 4.2.1 the Allen-Cahn equation is introduced with a double

well potential with minima at ψ = −1 and ψ = 1. We define W as in (5.1.1) so that

the total sum of phases at a point is 1. With this definition, ψ can be thought of as the

percentage of phase total. We feel this definition is more easily extensible to multi-phase

separation.
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(a) W (ψ), defined in (5.1.1). (b) f(ψ), defined in (5.1.2).

FIGURE 5.1: The double well potential W and its derivative f introduced in Section

5.1.

It is clear what the critical points are for this simple problem. In general, one may

employ a numerical solver, e.g., Newton’s method, to solve the problem for the critical

points of W by finding the root of

f(ψ) = 0. (5.1.3)

iteratively. Since f is a non-monotone function with multiple zeros, depending on the

initial guess ψ(0), the iteration will converge to either ψ∗, ψ
∗, or to ψ0.

Alternatively, a gradient flow process steers ψ towards ψ∗ if the initial guess or

initial condition ψ0 < 0.5, or steers ψ towards ψ∗ if ψ0 > 0.5.. In other words, gradient

flow seeks the stationary point(s) of the evolution equation

dψ

dt
+ f(ψ) = 0, ψ(0) = ψ0. (5.1.4)

The stationary solution will be one of ψ∗, ψ
∗, or ψ0 depending on ψ0.

The existence of multiple stationary points and multiple equilibria for these simple

problems is the desired feature for our phase separation method developed below.
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5.2 Minimization under equality constraints

We recall the discussion in Section 2.3.1 and apply phase conservation constraints

to an AC-type equation as described in Section 4.2.1. In this section we exhibit the role

of the interfacial width ε.

Let f ∈ L2(D) be linear and V ⊆ H1(D). We want to find the minimizer of the

functional J ,

J(φ) =

∫
D

(
ε

2
|∇φ|2 +

1

ε
W (φ)

)
,

over K = {v ∈ V :
∫
D
v = k}, k ∈ R. Define L as in (2.3.4) with J as above.

Thus we solve the system
−ε∆ψ(x)− 1

ε
f(x)− λ = 0, x ∈ D, (5.2.1a)∫

D

ψ(x)− k = 0, (5.2.1b)

with boundary conditions determined from V .

Example 5.2.1 (Constrained minimization with Dirichlet boundary conditions). Let

V = H1
0 (D). We look for solutions to systems in the form of (5.2.1), with D = (0, 1),

k = 1, ε > 0 and f(x) = sin(2πx),
−εψxx(x)− 1

ε
sin(2πx)− λ = 0, x ∈ (0, 1), (5.2.2a)∫ 1

0

ψ = 1, (5.2.2b)

ψ(0) = ψ(1) = 0. (5.2.2c)

We present in Figure 5.2 numerical solutions to 5.2.2. We illustrate the dependence

of the solutions on ε by solving when ε = 0.1, ε = 0.15 ε = 0.3 and ε = 1. When ε = 0.1

the solution takes on the characteristics of the oscillatory sine function. As ε increases

we see that λ is increasing as well, shifting the source terms from being dominated by

f to being dominated by λ. We see that when ε = 1 the solution is nearly symmetric,

as one would expect if the source term was uniform.

To illustrate the impact of the constraint on the solutions, we solve the uncon-
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(a) ε = 0.1, λ ≈ 1.2. (b) ε = 0.15, λ ≈ 1.8.

(c) ε = 0.3, λ ≈ 3.6. (d) ε = 1, λ ≈ 12.

FIGURE 5.2: Numerical solutions ψ(x) to (5.2.2) in Example 5.2.1 with varying ε. In

each example λ provided is found by solving the problem (5.2.2).
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(a) ε = 0.1. (b) ε = 0.1.

(c) ε = 1. (d) ε = 1.

FIGURE 5.3: Numerical solutions ψ(x) to (5.2.2) (left) and (5.2.3) (right) in Example

5.2.1 with ε = 0.1 (top) and ε = 1 (bottom). Compares solutions to the same problem,

constrained by
∫
D
ψ = 1 (left) and unconstrained (right).

strained system −εψxx(x)− 1

ε
sin(2πx) = 0, x ∈ (0, 1), (5.2.3a)

ψ(0) = ψ(1) = 0, (5.2.3b)

for comparison. In Figure 5.3 we compare solutions to the unconstrained problem (5.2.3)

and the constrained problem (5.2.2). The solution to the unconstrained problem is

ψ(x) =
1

(2πε)2
sin(2πx),

which has the property ∫ 1

0

ψ(x) = 0.
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Example 5.2.2 (Constrained minimization with Neumann boundary conditions). Let

V = H1(D) and change function f(x) in (5.2.2) and look for new solutions. Let f(x) =

cos(2πx) and impose homogeneous Neumann boundary conditions to set up the system
−εψxx(x)− 1

ε
cos(2πx)− λ = 0 x ∈ (0, 1) (5.2.4a)∫ 1

0

ψ = 1, (5.2.4b)

ψx(0) = ψx(1) = 0. (5.2.4c)

Here, we have made a judicious choice for f , since we want compatibility with the

Neumann boundary condition.

Another point to note here, is that without the constraint this problem would not

have a unique solution. The Neumann boundary conditions allow for solutions that

vary by a constant, but with the constraint, there is a unique solution. For example,

for arbitrary c ∈ R, define φ(x) as follows

φ(x) =
1

(2π)2
cos(2πx) + c.

Then φ(x) satisfies the equation −φxx − cos(2πx) = 0, with homogeneous Neumann

boundary conditions. Compare this with the unique solution to (5.2.4),

ψ(x) =
1

(2επ)2
cos(2πx) + 1.

We present in Figure 5.4 the numerical solutions to (5.2.4). We illustrate depen-

dence of the solutions on ε, by showing solutions when ε = 0.1, ε = 0.15, ε = 0.3 and

ε = 1. For each value of ε, the solution takes the oscillatory shape of the cosine function

but varies in amplitude. The amplitude of the solutions decreases as ε increases. We

see that for all values of ε, λ remains small.

5.3 Gradient flow for convex functionals

Suppose now we are interested in the evolution towards one of the local minima

of J(·) over V . Let ψ : D × [0,∞) → R, and ψ(x, 0) = ψinit(x). To find the evolution
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(a) ε = 0.1, λ ≈ 0.01. (b) ε = 0.15, λ ≈ 0.0067.

(c) ε = 0.3, λ ≈ 0.0033. (d) ε = 1, λ ≈ 0.001.

FIGURE 5.4: Numerical solutions ψ(x) to (5.2.4) in Example 5.2.2, with varying ε.
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of ψ(x, t) from its initial condition ψinit(x) we use gradient flow as in [18] and described

in Section 4.2.2. We look for solutions to the gradient flow equation

∂ψ

∂t
+
δJ

δψ
= 0. (5.3.1)

Example 5.3.1 (Gradient flow with Dirichlet boundary conditions). We use the prob-

lem setup described in Section 2.4.3. Let V = H1
0 (D). Let ψ ∈ V , ψinit(x) = 0, and

f(x) = sin(2πx). We look for solutions to the follow system,
ψt(x, t)− εψxx(x, t)−

1

ε
sin(2πx) = 0, x ∈ (0, 1), t > 0, (5.3.2a)

ψ(0, t) = ψ(1, t) = 0, t > 0, (5.3.2b)

ψ(x, 0) = 0, x ∈ D. (5.3.2c)

In Figure 5.5 we illustrate how as t → ∞, the solution to (5.3.2) approaches to

the solution of the equilibrium problem (5.2.3).

5.4 Evolution to a constrained minimum

As explained earlier we are interested in finding local minima of a given functional

with constraints. To do this, we combine the ideas of gradient flow and constrained

minimization.

We want to find functions ψ that satisfy

∂ψ

∂t
+
δL

δψ
= 0, (5.4.1)

over V .

Let ψ : D × [0,∞)→ R. A solution ψ ∈ K to (5.4.1) will satisfy
∂ψ

∂t
(x, t)− ε∆ψ(x, t)− λ =

1

ε
f(x), x ∈ D, t > 0, (5.4.2a)∫

D

ψ(x, t) = k, t > 0. (5.4.2b)

We add an initial condition and set boundary conditions based on V .

Example 5.4.1 (Gradient flow to constrained minima with Dirichlet boundary con-

ditions). Consider systems in the form of (5.4.2). Let V = H1
0 (D), with D = (0, 1),
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(a) ψ(x, 0) (b) ψ(x, 0.1)

(c) ψ(x, 10) (d) ψ(x)

FIGURE 5.5: (a-c) Solutions, ψ(x, t) to (5.3.2) in 5.3.1. (d) Solution, ψ(x) to (5.2.3),

in 5.2.1.
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k = 1, ε > 0, and f(x) = sin(2πx). For boundary conditions, let ψ(0, t) = ψ(1, t) = 0.

As initial conditions, we use ψ(x) = 1, for x ∈ D.

ψt(x)− εψxx(x)− λ =
1

ε
sin(2πx), x ∈ (0, 1), t > 0, (5.4.3a)

ψ(0, t) = ψ(1, t) = 0, t > 0, (5.4.3b)

ψ(x, 0) = 1, x ∈ (0, 1), (5.4.3c)∫ 1

0

ψ(x, t) = 1, t > 0. (5.4.3d)

We illustrate how for two different values of ε, the solution, ψ(x, t), to (5.4.3)

converges to the equilibrium solutions of (5.2.2) in Section 5.2.1. In Figure 5.6 we show

the evolution of ψ(x, t) when ε = 1 and τ = 0.01. In Figure 5.7 we show the evolution

of ψ(x, t) when ε = 0.1 and τ = 0.1.

Example 5.4.2 (Gradient flow to the constrained minima with Neumann boundary

conditions). Let V = H1(D), so we have homogeneous Neumann boundary conditions

and redefine f(x) = cos(2πx),

ψt(x)− εψxx(x)− λ =
1

ε
cos(2πx), x ∈ (0, 1), t > 0, (5.4.4a)

ψx(0, t) = ψx(1, t) = 0, t > 0, (5.4.4b)

ψ(x, 0) = 1, x ∈ (0, 1), (5.4.4c)∫ 1

0

ψ(x, t) = 1, t > 0. (5.4.4d)

We present snapshots of solutions ψ(x, t) to (5.4.4) for two different values of ε.

The time step is varied since the solution when ε = 1 converges much faster than the

solution when ε = 0.1.. We see in Figures 5.8 and 5.9 the solutions when ε = 1 and

ε = 0, respectively. The solutions ψ(x, t) converge to the solutions of the equilibrium

problem (5.2.4).

5.5 Minimization of a constrained, nonlinear equation at pore
scale

In this section we introduce nonlinearities as well as the dependence on the ge-

ometry of the pore domain to the functional J . These are designed to “promote” a
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(a) t = 0.01.

(b) t = 0.05.

(c) t = 0.15.

FIGURE 5.6: Numerical solutions, ψ(x, t) to (5.4.3) in Section 5.4.1 with ε = 1. As

time increases, the solution approaches the equilibrium solution shown in Figure 5.2d.
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(a) t = 0.1.

(b) t = 0.5.

(c) t = 2.

FIGURE 5.7: Numerical solutions, ψ(x, t), to (5.4.3) in Section 5.4.1 with ε = 0.1. As

time increases, the solution approaches the equilibrium solution shown in Figure 5.2a.
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(a) t = 0.01.

(b) t = 0.05.

(c) t = 0.2.

FIGURE 5.8: Numerical solutions, ψ(x), to (5.4.4) with ε = 1. As time increases, the

solution approaches the equilibrium solution shown in Figure 5.4d.
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(a) t = 0.1.

(b) t = 0.5.

(c) t = 4.

FIGURE 5.9: Numerical solutions, ψ(x), to (5.4.4) with ε = 0.1. As time increases, the

solution approaches the equilibrium solution shown in Figure 5.4a.
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particular behavior of the solution ψ to the phase separation problem. In particular,

these nonlinear functions aim to produce the stationary solutions for which the regions

where φ(x) = 0 or φ(x) = 1 aggregate together. Furthermore, they are designed to

cause these regions to be close or to be far from the wall of the porous medium, as

desired for a given example.

Let V = H1(D). Now we define auxiliary functions used in the model to generate

obstructions.

Definition 5.5.1 (Injection functions). Let W : R → R, with W ∈ C1(R). Let also

G : D × R→ R, with

G(x, φ) = r(x)Q(φ)χ[a,b](φ). (5.5.1)

Here χ[a,b](φ) is the characteristic function on the interval (a, b), for a, b ∈ R, and

Q(·) ∈ C1(R) and r(x) ∈ C(D) be given.

Define W as the double well potential given in (5.1.1). We refer to f as the

coarsening function. We refer to ∂φG(x, φ) = g(x, φ) as the localization function.

Let J : V → R be defined as follows

J(φ) =

∫
D

(
ε

2
|∇φ|2 +

1

ε
W (φ) + θG(x, φ)

)
,

with θ ∈ R. Define L as in (2.3.4), with J as above.

We want to find functions ψ ∈ K that satisfy

δL

δψ
= 0. (5.5.2)

A solution ψ : D → R will satisfy
−ε∆ψ(x) +

1

ε
f(ψ) + θg(x, ψ)− λ = 0, x ∈ D, (5.5.3a)

∂ψ

∂n
(x) = 0, x ∈ ∂D, (5.5.3b)∫

D

ψ(x) = k. (5.5.3c)

Because this model is nonlinear, we do not make any claims on the existence and

uniqueness of solutions.
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In what follows we propose to use the particular functions W and G based on intu-

ition and heuristics. While full analysis of the well-posedness of the nonlinear problem

(5.5.3) with the particular functions W and G is out of our scope, we intend to consider

it in the future. On the other hand we attempt to explain the reasoning behind our

heuristics in the section below.

Definition 5.5.2 (Localization functions, d = 1). Let D = (0, 1). We define an auxil-

iary function Gδ(x, ψ) = rδ(x)Q(ψ), with δ ∈ R

rδ(x) =

1− x
δ
, x ∈ [0, 2δ],

−1, x > 2δ,

(5.5.4)

where

Q(ψ) =


0, ψ < 0,

1
3
ψ3 − 1

2
ψ2, 0 ≤ ψ ≤ 1,

−1
6
, ψ > 1.

(5.5.5)

Then we calculate

q(ψ) =
dQ

dψ
(ψ) =


0, ψ < 0,

ψ2 − ψ, 0 ≤ ψ ≤ 1,

0, ψ > 1.

We note that

q(ψ) ≤ 0, (5.5.6)

and that gδ is

gδ = rδ(x)q(ψ) = rδ(x)ψ(ψ − 1)χ[0,1](ψ). (5.5.7)

The one dimensional localization function is defined for optimal use in examples

illustrating the impact of gδ and θ. That is, rδ(0) = 1 and rδ(1) = −1. We see in the

following definition for localization functions in higher dimensions that rδ|Γ = 1.

Definition 5.5.3 (Localization functions, d > 1). Let D ∈ R2 and Γ ⊂ D. Define rδ
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as follows,

rδ(x) =


1− 1

δ
min
x0∈Γ
||x− x0||l2 , ||x− x0||l2 < 2δ

−1, ||x− x0||l2 ≥ 2δ.

(5.5.8)

Define localization function Gδ(x, ψ) = rδ(x)Q(ψ), with Q as above.

5.5.1 Equilibrium model with localization functions

We consider now an equation in the form of (5.5.3) in which we introduce addi-

tional parameters ε > 0 and θ ∈ R. We consider the stationary problem

−εψxx +
1

ε
f + θgδ − λ = 0. (5.5.9)

and the associated evolution problem

ψt − εψxx +
1

ε
f + θgδ − λ = 0. (5.5.10)

Our goal now is to explain the impact of f and g and of the parameters ε and θ.

We ignore the role λ for now: as we have seen, λ and the additional equation (5.5.3c)

together maintain the total amount of ψ.

First we consider the impact of f alone, i.e., if θ = 0. By including ε in (5.5.9)

we can control the magnitude of the diffusion relative to the sharpening due to f . In

other words, the diffusion operator smears the solution ψ while f sharpens the solution

ψ towards either 0 and 1; the parameter ε provides relative control on those effects.

Next we explain the role of θgδ. For illustration, we show the components of

g(x, ψ) = rδ(x)q(ψ)

in Figure 5.10, with δ = 0.25.

We first discuss the role of q(ψ) = −ψ(1− ψ)χ[0,1](ψ). This nonpositive function

when present in, e.g., −εψxx + 1
ε
f + θq = 0, acts as a penalty term or nonlinear source

term whose effect is confined to ψ ∈ [0, 1]. The impact is the strongest when ψ ≈ 1
2
.

It is hard however to discuss fully this equilibrium problem due to the nonlinearities

involved for the whole range of possible boundary conditions. In particular, we see that
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the problem −εψxx + q = 0 alone, with homogeneous Neumann conditions has exactly

two solutions ψ(x) = 1, and ψ(x) = 0.

On the other hand, we can get insight to the evolution problem (5.5.10) by study-

ing, e.g., the ODE ψt + f + θq = 0 first. With θ > 0 we see that ψt = −θq has a stable

equilibrium at 1, and an unstable one at 0. Adding −f to the right hand side does not

change the qualitative nature of this evolution towards the stable equilibrium ψ∗ = 1.

In contrast, if θ < 0 then it is the ψ∗ = 0 which is “promoted”.

Next we discuss the product in θgδ of θq(ψ) with rδ(x). By design, the factor rδ

controls the impact of q which depends the location x and its distance relative to the

left boundary of D.

Let θ > 0, (respectively θ < 0). Then close to the left boundary x = 0 we have

rδ ≈ 1, thus the effect for x < δ is to “encourage” ψ towards ψ∗ = 1. Away from the

boundary rδ ≈ −1, and the effect is to promote ψ∗ = 0.

Finally, we use the magnitude of θ ∈ R to control the amplitude of this feature.

5.6 Using gradient flow to find local minima of constrained
nonlinear equations

We now use the gradient flow method to find stationary solutions to nonlinear

equations. Since the functionals involved may not be necessarily convex, we expect to

get stationary solutions which correspond to local minima, and which are dependent on

the initial condition used. In other words, we expect that there are multiple equilibria.

This is the desired effect.

We explain gradient flow in Section 5.1. We refer to background information in

Section 4.2.2.

Define L as in the previous section. We wish to find solutions to (5.4.1) in K. By

using a family of initial conditions we will find a family of solutions ψ.

Example 5.6.1 (Gradient flow to local minima). Let D = (0, 1) and V = H1
0 (D). We
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(a) rδ(x), δ = 0.25, (5.5.4).

(b) q(ψ), defined in (5.5.7).

FIGURE 5.10: The components of gδ(x, ψ) = rδ(x)q(ψ) introduced in Section 5.5.2
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look for solutions ψ(x, t) to

ψt − εψxx − λ = −1

ε
f − θgδ, x ∈ (0, 1), t > 0, (5.6.1a)

ψx(0, t) = ψx(1, t) = 0, t > 0, (5.6.1b)

ψ(x, 0) = ψinit(x), x ∈ (0, 1), (5.6.1c)∫
D

ψ(x, t) = 0.5, t > 0. (5.6.1d)

This example will include many variations on ε, θ and δ, as we explore how these

variables impact solutions. As before, we use the numerical methods described in 2.4.3.

For illustration we use two different initial conditions, ψ
(i)
init(x), i ∈ {1, 2}. In

numerical experiments we set ψ
(1)
init(xj) to 0 or 1 such that ψinit(xj) ∼ U{0, 1}, 1 ≤ j ≤

M − 1. The second ψ
(2)
init(xj) is drawn from the same distribution.

Example 5.6.2. Our first experiment will show how different initial conditions allow

the method to find different local minima. Let ε = 0.005, θ = 10, and δ = 0.1.

In Figures 5.11 and 5.12 we show the two stationary states corresponding to the

different initial conditions.

When the initial condition is set at ψ
(1)
init(x), a single valley in the phase parameter

forms in ψ(x, 0.1). For this single large valley, the balance between the diffusion operator

and the double well potential is such that the peaks remain separate, i.e., the sharpening

due to the double well potential holds.

When the initial condition is set to ψ
(2)
init(x), two smaller valleys can be observed

in ψ(x, 0.5). In this case, the diffusion operator and the double well potential cause the

formation of a single block of phase parameter.

Example 5.6.3. In this experiment we check for dependence of solutions on the grid.

We repeat the previous experiment with ψinit(x) = ψ
(1)
init(x), but halve the step size.

Compare the result in Figure 5.13 with Figure 5.11. Let ψ̂ be the solution on the

refined grid and ψ the solution on the original grid. In Figure 5.14 we show |ψ̂−ψ| and
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(a) ψ(x, 0.005).

(b) ψ(x, 0.1).

(c) ψ(x, 0.4).

FIGURE 5.11: Solutions ψ(x, t) to (5.6.1), with initial conditions ψ
(1)
init(x) (top).
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(a) ψ(x, 0.005).

(b) ψ(x, 0.5).

(c) ψ(x, 5.5).

FIGURE 5.12: Solutions ψ(x, t) to (5.6.1), with initial conditions ψ
(2)
init(x) .
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observe that the greatest difference in solutions is at the phase interface. The relative

difference in λ is
|λ̂− λ|
λ̂

= 7.8× 10−4.

For the rest of the experiments, let ψinit(x) = ψ
(2)
init(x).

Example 5.6.4. In this example we study the impact of θ. In Figure 5.15 we compare

results for when θ = 1 and θ = 10. In both cases we use ε = 0.005 and δ = 0.1. For

this problem, higher positive values for θ encourage the phase parameter to be closer

to 1 on the left boundary and closer to 0 on the right boundary. So we see that when

θ = 1 we are only weakly encouraging this behavior and on the right boundary we have

that the phase parameter is near 1. Then, when θ = 10 we are strongly encouraging the

behavior, so at the right boundary the phase parameter is suppressed to near 0.

Example 5.6.5. We look next at the impact of ε, shown in Figure 5.16. Let θ = 1 and

δ = 0.1. We see from Figure 5.16a that smaller values of ε enforce separation of the

phase parameter towards 0 and 1, allowing multiple smaller blocks of phase parameter.

As ε increases, Figure 5.16b, the smaller peaks of phase parameter are absorbed into

the larger block when they are not separated by too much distance. At large values of

ε, as shown in Figure 5.16c, the solution smears and loses the sharp distinction in phase

parameter values.

5.7 Newton’s Method

We examine the use of Newton’s method to solve the equilibrium problem (5.5.2)

and the time dependent gradient flow problem (5.4.1) with L defined as in the previous

section. That is, we use Newton’s method to directly find the solution of an equilibrium

problem and also to solve for each time step in an evolutionary equation. The main

point is that the Newton iteration may converge to different solutions depending on the
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(a) ψ(x, 0.005).

(b) ψ(x, 0.1).

(c) ψ(x, 0.4).

FIGURE 5.13: Solutions ψ(x, t) to (5.6.1) with initial conditions ψ
(1)
init(x) on a refined

grid.
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FIGURE 5.14: Difference in solutions on original grid and the refined grid, |ψ̂ − ψ|.

(a) ψ(x, 4.5) with θ = 1. (b) ψ(x, 5.5) with θ = 10.

FIGURE 5.15: Solutions, ψ(x, t), to (5.6.1) showing the impact of the coefficient θ.
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(a) ψ(x, 4.5), ε = 0.005.

(b) ψ(x, 1.5), ε = 0.01.

(c) ψ(x, 3.0), ε = 0.1.

FIGURE 5.16: Solutions ψ(x, t), to (5.6.1) showing the impact of the coefficient ε.
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initial guess. Similarly, the gradient flow may converge to different stationary solutions

depending on the initial conditions chosen.

However, we show that the solution we calculate via gradient flow is qualitatively

similar to solutions found via Newton’s method.

Example 5.7.1 (Using Newton’s method to solve equilibrium problem (5.5.3)). Define

F as follows.

F(ψ, λ) =

F1

F2

 :=

−ε∆ψ + 1
ε
f + θg − λ∫

D
ψ(x)− k0

 . (5.7.1)

We apply the Finite Difference discretization described in Section 2.4.3 to (5.7.1), and

use Newton iteration (2.5.2).

Define the following diagonal square matrices with diagonals as follows,

diag(F(k)) =
[
f

(k)
1 · · · f

(k)
M−1

]T
,

diag(F(k)
ψ ) =

[
f ′1

(k) · · · f ′M−1
(k)

]T
,

diag(G(k)) =
[
g

(k)
1 · · · g

(k)
M−1

]T
,

diag(G(k)
ψ ) =

[
∂ψg

(k)
1 · · · ∂ψg

(k)
M−1

]T
.

This results in the following system,εA+ 1
ε
F(k)
ψ + θG(k)

ψ −B

BT 0

ψ(k+1)

λ(k+1)

 =

(1
ε
F(k)
ψ + θG(k)

ψ

)
ψ(k) −

(
1
ε
F(k) − θG(k)

)
1

k0/h

 .
(5.7.2)

Let ε = 0.005 and δ = 0.1. We present in Figure 5.17 solutions ψ(k) when θ = 1

and θ = 10. This set of coefficients and parameter is identical to the solutions presented

in Figure 5.15. We observe that the two methods find different local minima, i.e. the

distribution of the phase parameter ψ is significantly different. However, the same

qualitative behavior exists, in that as θ increases, we see the suppression of ψ on the

right boundary, as we’d expect.

Example 5.7.2. [Using Newton’s method to solve the evolutionary problem (5.4.1)]

In this case, we are using gradient flow to find the equilibrium solution and utilizing

Newton’s method to do a fully implicit solve for each time step.
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(a) ψ(1127) with θ = 1. (b) ψ(46) with θ = 10.

FIGURE 5.17: Solutions, ψ(k), to (5.7.2)

We first discretize (5.4.1) in time with backward Euler,

ψ(n+1) − ψ(n)

τ
− ε∆ψ(n+1) +

1

ε
f(ψ(n+1)) + θg(ψ(n+1)) = 0.

Define F , as

F(ψ̂, λ) =

F1

F2

 :=

 ψ̂−ψ(n)

τ
− ε∆ψ̂ + 1

ε
f(ψ̂) + θg(ψ̂)− λ̂∫

D
ψ̂(x)− k0

 . (5.7.3)

We apply the iteration (2.5.2) and the Finite Difference discretization described

in Section 2.4.3 to (5.7.3). This results in the following system,I + τεA+ τ
ε
F̂(k)
ψ + τθĜ(k)

ψ −τB

BT 0

ψ̂(k+1)

λ̂(k+1)

 =

ψn + τ
(

1
ε
F̂(k)
ψ + θĜ(k)

ψ

)
ψ̂(k) −

(
1
ε
F̂(k) − θĜ(k)

)
1

k0/h

 .
After the Newton iteration has converged, we set ψ(n+1) = ψ̂(k) and λn+1 = λ̂(k).

5.8 Generation of obstructions by phase separation in d = 2

We now use the tools described in this chapter to generate obstructions in pores.

We are interested in recreating obstructions that are either biofilm-like or hydrate-like.

As explained in Chapter 4 biofilm is a pore coating obstruction while hydrate is a pore
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filling obstruction. By judiciously choosing coefficients and injection functions we will

be able to capture the main characteristics of these obstructions. The choice of these

coefficients is guided by heuristics and intuition rather than any quantitative model. In

the future we hope to guide the choice of parameters by some data science approach.

Consider a pore domain Df,r, partitioned into the rock matrix and the fluid space,

Dr and Df respectively. Let Γ = Df ∩ Dr be the interface between the two domains.

Let rδ(x) be defined as in (5.5.8).

We use the double well potential defined in (5.1.1) and the localization function

∂gδ
∂ψ

defined in (5.5.7). With the definition of rδ given in (5.5.8) the behavior of g will be

to either “encourage” or “discourage” the formation of obstruction close to the interface

Γ. We say, colloquially, that we “promnote” certain desired behavior.

When θ > 0, we promote ψ = 1 on Γ, and when θ < 0 we promote ψ = 0 on Γ.

Next we present the algorithm of generation of independent realizations of pore

geometries with obstructions. In other words, we assign some cells originally in Df to

Do. Our algorithm has two main steps. STEP 1 uses a numerical simulations of the

model for generation of domains with obstructions, with some random initial condition

ψinit(x), and lets it run until a stationary state φ(x, tN) is achieved. STEP 2 post-

processes the numerical solution ψ(x, tN), and assigns Do.

5.8.1 STEP 1

We recap the model here. The system we solve is

ψt − ε∆ψ − λ = −1

ε
f − θgδ, x ∈ Df , t > 0, (5.8.1a)

∂ψ

∂n
= 0, x ∈ ∂Df t > 0, (5.8.1b)

ψ(x, 0) = ψinit(x), x ∈ Df , (5.8.1c)∫
Df

ψ(x, t) = k, t > 0. (5.8.1d)

We refer to Section 2.4.4 for details on the numerical method for solving the

following examples, as well as details on the domain D.
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We run the simulations in time until the system seems to have reached a stationary

solution, say until t = tN .

5.8.2 STEP 2

Now we must “translate” the information provided by the order parameter ψ(x, t)

to indicate where the obstructions have formed. Naturally, we want to use ψ as an

indicator of whether or not a particular cell is obstructed.

Now consider some value ψNj = ψ(xj, tN) found by the numerical model at time

tN and cell j. Since ψNj can take any value between 0 and 1, we must decide how to

decide whether xj is in Do or Df . In other words, we want to assign an indicator ij to

a cell based on ψNj . The indicator ij = 0 if the cell j is in Df and ij = 1 otherwise. We

discuss two ways to do that named ALGORITHM (A) and ALGORITHM (B).

ALGORITHM (A). One can establish a threshold value ψ∗ and use it in many

ways. For example, we could set a minimum value ψ∗ and assign the cell associated

with xj to Do if ψNj ≥ ψ∗, and to Df otherwise. This first way satisfies the idea that

the phase parameter ψNj represents the amount of obstruction material contained in cell

j. In fact, in the case of biofilm or hydrate growth we have a natural interpretation of

the threshold value. In particular, the biofilm detected in imaging experiments reported

in [35] was found due to the use of a contrast agent (barium) which is excluded from

the biofilm phase due to the molecule size. To paraphrase, this threshold idea says that

“there is enough material here to stop the flow in this cell.”

ALGORITHM (B). Another way to use a threshold is by choosing a certain number

M of the cells j1, j2, . . . jM with the highest ψNj values. This second way has the benefit

of allowing a fixed number of obstructed cells. A fixed number of obstructed cells may

be desirable in that it produces Do with a predetermined desired value of porosity. In

fact, recall that the initial condition ψinit(x) is piecewise constant and has M cells with

ij = 1 or ψ0
j = 1, and since our evolution model conserves the phase parameter so that∫

D
ψ(x, t)dx = const, after applying the evolution and applying the thresholding, there

should be M obstructed cells at tN .
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To find the M cells with the highest values of phase parameter we use the Matlab

function maxk. Consider a set (ψNi )M+1
1 such that ψN1 > ψN2 > · · · > ψNM = ψNM+1. Then,

using the function maxk to return the M highest values of (ψNi )M+1
1 will return (ψNi )M1 .

In this case, maxk returns ψNM instead of ψNM+1 because of the lower index.

5.8.3 Examples of pore scale geometries with obstructions

Now we present examples. Since the focus of this section is on modeling with the

phase parameter, we show the contours of ψ(x, tN) but we do not map from ψNj to the

indicator ij of obstructed cells.

In turn, when we generate multiple realizations of the geometries D0 and use them

for the results shown later in Chapter 7 we use ALGORITHM (B), i.e., the process of

choosing the M cells with the highest ψNj value.

Within each example the parameters are constant, but the initial condition ψinit

varies so that we generate multiple realizations.

Example 5.8.1 (Pore filling obstruction generation). In this case, we are generating

obstructions that aggregate together and avoid the fluid-rock interface.

We choose k = 0.05, ε = 0.2, δ = 0.1, and θ = −0.5. Note that we are also

using step size h = 0.05, so δ = 3h. In Figure 5.18 we present the simulated stationary

solution corresponding to some random initial condition.

We see that as desired the pore filling obstructions form away from the fluid-rock

interface.

Example 5.8.2 (Pore coating obstruction generation). In this case, we are generating

obstructions that aggregate together and whose growth is encouraged at the fluid-rock

interface.

This time we choose k = 0.05, ε = 0.3, δ = 0.15, and θ = 0.5. Note that we are

also using step size h = 0.05, so δ = 3h.

In Figure 5.19 we present the profile of the simulated stationary solution corre-

sponding to some random initial condition.
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FIGURE 5.18: Pore filling obstructions generated by a method of constrained optimiza-

tion. See 5.8.1. Black is the rock matrix, the color is ψ(x), x ∈ Df .
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As expected, the pore coating obstructions are all adjacent to rock, with throat

clogging present.

Example 5.8.3 (Pore filling obstruction on refined grid). With this next example we

explore the scaling effects as we refine the step size h. Denote quantities on the refined

grid with a superscript ∗. We recreate the first experiment in Example 5.8.1 on a refined

grid with step size h∗ = h/2.

The initial conditions across experiments are retained, so ψ∗init(x) = ψinit(x). Sim-

ilarly, the total phase parameter is kept consistent across scales k∗ = k as well as the

distance parameter δ∗ = δ.

To create obstructions similar to the result of Example 5.8.1 we set parameters

ε∗ = ε h
h∗

and θ∗ = θ h
∗

h
. The simulated stationary solution is shown in Figure 5.20

In general the results agree, with 3 primary obstructions forming. On the original

grid there were 4 distinct formations, but on the refined grid the two smaller obstructions

were aggregated into the larger obstructions. This may be due to the refined grid or

perhaps due to the necessary changes to the parameters; if ε were slightly smaller it’s

possible there would still be 4 obstructions.

One can also see that the obstructions have rounded edges, they aren’t as rectan-

gular. The middle obstructions is able to wedge into the crevice on its top side.

Finding the right combination of parameters to work on the refined grid was not

obvious to us. The appropriate method for scaling remains an open question.
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FIGURE 5.19: Pore coating obstruction generated by a method of constrained opti-

mization. See 5.8.2. Black is the rock matrix, the color is ψ(x), x ∈ Df .
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FIGURE 5.20: Pore filling obstruction generated on a refined grid. Compare with the

top image of Figure 5.18. Black is the rock matrix, the color is ψ(x), x ∈ Df .
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6 Using the Lattice method to generate obstructions

In this section we present our Markov Chain Monte Carlo (MCMC) method for

generation obstructions, which we refer to as the Lattice model. To develop the back-

ground of MCMC methods we follow [28] and [46]. Some ideas below follow the work

in [30] developed for the needs of multicomponent adsorption. We refer to this work for

detailed references of earlier work on the topic by Monson et al.

We recall first the Ising model, which is used to construct low energy configurations

of an L × M lattice. The lattice has nodes at Cartesian coordinates, 〈i, j〉, where

i, j = 1, . . . , L. A node is connected to all nodes with unit distance. For each node,

〈i, j〉, on the lattice we assign the value x〈i,j〉 = ±1. With the use of an appropriate

energy functional, called the Hamiltonian, we generate configurations, X = (x〈i,j〉)〈i,j〉,

that satisfy the Boltzmann distribution. A configuration is a event E in state space

Ω, where Ω is set of all possible arrangements for the Lattice. Event E occurs with

probability P (E).

Inspired by the Ising model, we build a model for the generation of obstructions

in a pore. This model allows for a fixed rock matrix and the generation of obstructions

with a predefined aggregation patter, e.g. adjacent to or avoiding the rock matrix. The

aggregation pattern is controlled by defining different Hamiltonians. Our Lattice model

is used to generate large families of obstructed pore scale geometries that follow the

Boltzman distribution, defined in what follows.

In Section 6.1 we introduce the probability background necessary for development

of our Lattice model. In Section 6.2 we discuss the fundamentals of MCMC methods. In

Section 6.3 we describe the Ising model. We conclude with Section 6.4 which describes

our model and provides examples of how we use it to generate pore scale obstructions

in porous media.
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6.1 Notation

Define the probability space triple (Ω,S, P ), where Ω is a nonempty set, S is a

σ−field of subsets of Ω, and P is a finite measure on the measurable space (Ω,S) with

P (Ω) = 1.

Let E ⊂ Ω, that is E is an event in state space Ω. Then P (E) is the probability

that E occurs and E ∈ S. Let X ∈ Ω be a real valued random vector, then the

cumulative distribution function (cdf) of X is

cdf(x) = P (X ≤ x).

For a discrete random variable, the probability density function (pdf) is

pdf(x) = P (X = x) = lim
ε→0

(cdf(x)− cdf(x− ε)).

We denote the continuous uniform distribution on interval (a, b) as U(a, b). Every event

in a uniform distribution is as likely as any other. The density function for the uniform

distribution is

f(x) =


1
b−a , a ≤ x ≤ b

0, otherwise.

We will most often use U(0, 1).

A Markov chain is a sequence of random variables (Xt)t∈N with the Markov prop-

erty. That is, the probability of moving from state Xt to Xt+1 depends only on Xt and

no prior random variables in the sequence,

P (Xt+1 = x|Xt = xt, . . . , X1 = x1) = P (Xt+1 = x|Xt = xt).

We use the shorthand notation A ∼ B to say that random variable A has the

distribution of B, where B may be either a distribution or another random variable.

6.2 MCMC methods

Markov Chain Monte Carlo methods are a method for sampling from a known

probability distribution, f . The MCMC methods discussed are designed in the style of
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the Metropolis algorithm [31].

Given a state space, Ω, and a distribution, f , on Ω we can create a Markov chain

(Xt)t>N whose entries follow the distribution f for N sufficiently large.

The methods require a proposal density, g, the target density, f , and an acceptance

discipline, h. The acceptance discipline, h : Ω× Ω→ (0, 1], is a functional whose value

is the likelihood of moving from one state to another. We often use g ∼ U , due to ease

of generating random numbers from U for proposed changes to the system state. We

accept proposed changes with probability h, to generate a sequence, (Xt), such that,

Xt ∼ f .

The sequence of states (Xt) is a Markov chain. For a Markov chain generated by

an MCMC method to converge to the invariant distribution, f , if must be that (Xt) is

(1) aperiodic and (2) irreducible [28]. For an aperiodic Markov chain, there is no integer

D > 1 such that for the chain to return to a state it must be in αD steps, α ∈ N. An

irreducible Markov chain can move from a given state to any other, with sufficient steps.

The Lattice model we develop below is both aperiodic and irreducible. The method

is aperiodic because each step in the method is reversible, so it can return to a state in

one step. We consider irreducibility of the model below.

The initial state, X0, is likely to be an uncommon state of the distribution f . The

algorithm needs to run through some number of iterations before the sequence states

are drawn from f . This is referred to as a “burn-in”. There is no set length of the

“burn-in”; it must be determined experimentally. In practice (Xt)t>N ∼ f only for N

sufficiently large.

6.3 Ising model

In this section, we describe the Ising model, as given in [46, §3.5].

The historical target of this model is magnetic materials. Consider an L × L

Cartesian lattice, where each node, 〈i, j〉, represents an iron atom. Each atom has a

spin, either +1 or −1, that denotes the magnetic direction of that atom, see Figure 6.1.
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FIGURE 6.1: A 5× 5 Cartesian lattice, with ±1 spins at each node.

The Ising model finds spin configurations that follow the Boltzmann distribution,

f(x) =
e−H(x)/(kBT )

Z
, (6.3.1)

where Z is the normalizing factor, Z =
∑

x∈Ω e
E(x)/(kBT ), and H(x) is defined in Equa-

tion (6.3.3). Let β = 1/(kBT ).

Let the proposal density be g ∼ U , the target density be the Boltzmann distribu-

tion, Equation (6.3.1), and the acceptance discipline be

h = min

{
1,
f(Y )

f(X)

}
= min

{
1,

exp(−βH(Y ))

exp(−βH(X))

}
= min{1, exp(β(H(X)−H(Y )))}

(6.3.2)

Let X ∈ Ω be an random variable, X = (x〈1,1〉, . . . , x〈L,L〉), where x〈i,j〉 = ±1,

i, j = 1, . . . , L, is the spin at each node. That is, our state space is Ω = {−1, 1}L2
. We

will monitor the net magnetic state for each configuration, i.e. we want to know for

each instance x of X, M(x) =
∑
〈i,j〉 x〈i,j〉.

Let Λ〈i,j〉 denote the neighbors of node 〈i, j〉. Define the Hamiltonian

H(x) =
1

2

∑
〈i,j〉

∑
〈r,s,〉∈Λ〈i,j〉

δ
(
x〈i,j〉 + x〈r,s〉

)
, (6.3.3)
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where δ is the Dirac delta function. The Hamiltonian is a functional for measuring the

total energy in a system. In this case, when the spin is the same between neighbors, the

energy decreases. The Ising model finds low energy spin configurations.

The notion of neighbors has to account for what happens to the lattice points close

to the boundary. One way to deal with this is to assume that the lattice is a torus, i.e.,

to implement periodic boundary conditions. Thus we include as neighbors of boundary

nodes, those nodes on the opposite side of the lattice. For example,

Λ〈1,L〉 = {〈2, L〉, 〈L,L〉, 〈1, 1〉, 〈1, L− 1〉}.

Choose X0 randomly, update the Markov chain until the chain follows distribution

f . The process for updating Xt = x at each step is as follows

1. Select 〈i, j〉 uniformly from {1, . . . , L} × {1, . . . , L}.

2. Propose new state y similar to x but with spin at 〈i, j〉 flipped

(a) y ←[ x

(b) y〈i,j〉 ← [ −y〈i,j〉

3. Accept y with probability h = min{1, exp(β(H(x)−H(y))}

(a) Select u ∼ U(0, 1)

(b) If u ≤ h, then Xt+1 = y

(c) If u > h, then Xt+1 = x

First we demonstrate how the algorithm above works. We use an example of a

2x2 lattice.

The equilibrium spin configurations depend on the temperature. If we vary the

temperature in the Boltzmann distribution (6.3.1) we find different spin configurations

to be most likely. Consider β = 0.01 (high temperature) and β = 1 (low temperature) to

account for the variation in temperature. Observe in Figure 6.2 that the configurations

favor a zero net spin when β = .01 and that when β = 1 the configurations are bimodal

with extreme net spins most likely.

At higher temperatures the acceptance discipline tends to be greater than at lower

temperatures. Physically, this property reflects that at higher temperatures all states
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(a) β = 1 (b) β = 0.01

FIGURE 6.2: Probability density approximations of the net spin on a 2× 2 lattice.

(a) β = 1 (b) β = 0.01

FIGURE 6.3: Typical spin configurations on a 20× 20 lattice. Black is spin down (−),

gray is spin up (+).

are reasonably likely to occur. At lower temperatures states that favor one charge or

another are more likely. We present in Figure 6.3 typical spin configurations on lattices

of L = 20 for different values of β. When β = 1 one can see that a likely state is in

mostly spin up. When β = 0.01 one can see that the spin configuration has less order.

In Figure 6.4 we show the energy at each MCMC step of the system for a 20× 20

lattice, with β = 0.01. For this system the burn in period is brief.
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FIGURE 6.4: The Energy, H(t), for each step of the Ising method on a 20× 20 lattice,

β = 0.01.

6.4 Lattice model to generate geometries with obstructions

In this section we introduce the Lattice model we use to generate obstructions in

a pore domain D. We partition the domain into the rock matrix and the flow domain,

D = Dr,f . We further partition the flow domain into void space and obstruction,

Df = Dv,o Define the obstruction volume to be the ratio of obstruction to flow domain

space,

Vo =
|Do|
|Df |

=
1

φ

|Do|
|D|

. (6.4.1)

To generate obstructions in D, we modify the Ising model in several important

ways. We (1) fix the rock matrix and flow domain, Dr and Df respectively, (2) fix the

obstruction volume, Vo, (3) now have three species, void, rock, and obstruction.

By fixing the rock matrix, we are only changing the position of void and obstruc-

tion. This is because we are considering fixed solid matrices and trying to find likely

obstruction configurations in the flow domain.

We will consider a range of obstruction volumes. Once Vo is fixed, the method

rearranges the obstructions and void to find likely configurations. This is analogous to

fixing the net magnetic spin in the Ising model.

With three species several interfaces can arise. In the design of the Hamiltonian
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functional we will include weights for the interaction at each type of interface, allowing

for control over the configuration of obstructions. We use this to create both obstructions

that favor adjacency to the rock matrix and obstructions that aggregate away from the

rock matrix.

Let a 2 dimensional porous media domain be uniformly partitioned into L ×M

voxels. For the Lattice method, we represent the domain as an L×M Cartesian lattice,

where each lattice node denotes the material in the corresponding cell. We assign a

value to each material as follows,

void↔ 0, rock↔ 1, obstruction↔ 2. (6.4.2)

Let Θ ∈ L×M be nodes corresponding to cells inDf . Then, with state space Ω = {0, 2}Θ

the method is irreducible.

Let Λ〈i,j〉 denote the neighbors of node 〈i, j〉. Let Λ2
〈i,j〉 denote the next nearest

neighbors of node 〈i, j〉,

Λ2
〈i,j〉 ={〈i+ 2, j〉, 〈i− 2, j〉, 〈i, j + 2〉, 〈i, j − 2〉,

〈i+ 1, j + 1〉, 〈i− 1, j + 1〉, 〈i+ 1, j − 1〉, 〈i− 1, j − 1〉}. (6.4.3)

Define a symmetric weighting function

ω(x〈i,j〉, x〈r,s〉) =



0, if x〈i,j〉 = x〈r,s〉 (6.4.4a)

wro if x〈i,j〉 = 1, x〈r,s〉 = 2 (6.4.4b)

wrv if x〈i,j〉 = 1, x〈r,s〉 = 0 (6.4.4c)

wvo if x〈i,j〉 = 0, x〈r,s〉 = 2. (6.4.4d)

Now, we define our nearest neighbor Hamiltonian,

H1(x) =
1

2

∑
〈i,j〉

∑
〈r,s〉∈Λ〈i,j〉

ω(x〈i,j〉, x〈r,s〉), (6.4.5)

where the coefficient of 1/2 is necessary because this notation includes each interface

twice.

We also define a next-nearest neighbor Hamiltonian,

H2(x) =
1

2

∑
〈i,j〉

 ∑
〈r,s〉∈Λ〈i,j〉

ω(x〈i,j〉, x〈r,s〉) +W
∑

〈r,s〉∈Λ2
〈i,j〉

ω(x〈i,j〉, x〈r,s〉)

 , (6.4.6)
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where W is a weight for the next-nearest neighbor interactions.

We will use again the Boltzmann distribution, Equation (6.3.1), as the target dis-

tribution. The proposal density is g ∼ U and acceptance discipline is h = min{1, exp(β(H(X)−

H(Y )))}. We again use periodic boundary conditions.

After randomly generating initial state, X0, the process for updating Xt = x ∈ Ω

at each step is as follows

1. Select 〈i, j〉, 〈r, s〉 uniformly from Θ.

2. Propose new state y, same as x but with spins at 〈i, j〉 and 〈r, s〉 swapped

(a) y ←[ x

(b) y〈i,j〉 ← [ x〈r,s〉

(c) y〈r,s〉 ← [ x〈i,s〉

3. Accept y with probability h = min{1, exp(β(H(x)−H(y)))}

(a) Select u ∼ U(0, 1)

(b) If u ≤ h, then Xt+1 = y

(c) If u > h, then Xt+1 = x

We extend the Markov chain until we are satisfied we’re through the burn-in process.

We then save the final state of the Markov chain as our pore with an obstruction.

Example 6.4.1 (Hydrate-like obstruction in a single pore). Let L = M = 50, β = 1,

W = 1/2, and Vo = 0.1. We use the next-nearest neighbor Hamiltonian, H2.

We first consider the generation of obstructions that avoid the rock matrix and

tend towards clumping. For this, set the weights

wro = 100, wrf = 1, wfo = 50. (6.4.7)

In Figure 6.5, we show the progression of the Lattice model process for generating the

obstruction. We see that the obstruction cells quickly for conglomerates, but it takes

many iterations for the process to stabilize with a single clump.

Example 6.4.2 (Biofilm-like obstruction in a single pore). We next consider the gener-

ation of obstructions that favor adjacency to the rock matrix. We use the same geometry
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(a) Initial state, X0 (b) X100000

(c) X200000 (d) X1000000

(e) X2000000

(f) Hamiltonian, H(Xt).

FIGURE 6.5: States of the Lattice model process for the formation of an obstruction

with weights given by Equation (6.4.7). Rock matrix, Dr, is yellow, void space, Dv, is

green, and the obstruction, Do is purple.
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as in the last example, but set the weights as follows

wro = 1, wrf = 100, wfo = 50. (6.4.8)

These weights also discourage the formation of fingers of obstruction. In Figure 6.6, we

show the progression of the Lattice model process for generating the obstruction. We

can see that the obstruction cells form a thin layer along the rock matrix. The burn-in

time for this process is much shorter than in our previous example.
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(a) Initial state, X0 (b) X10000

(c) X20000 (d) X30000

(e) X200000
(f) Hamiltonian, H(Xt).

FIGURE 6.6: States of the Lattice model process for the formation of an obstruction

with weights given by Equation (6.4.8). Rock matrix, Dr, is yellow, fluid space, Dv, is

green, and the obstruction, Do is purple.
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7 Results

In this chapter we present our main results. We combine the flow and transport

methods of Chapter 3 with the models for generating realizations of geometries with

obstructions of Chapters 5 and 6. The methods of Chapters 5 and 6 produce independent

realizations of domain geometries on which we simulate flow and transport, and then

upscale the results.

We complete several experiments to infer how Darcy scale results are impacted by

geometry changes at the pore scale. In particular we study (1) permeability distributions

as a function of obstruction volume, (2) change in permeability relative to pore scale

breakthrough, (3) tortuosity distributions as a function of obstruction volume, and (4)

a comparison of pore scale and Darcy scale breakthrough curves. By completing these

experiments for multiple types of obstructions we see that the permeability is highly

dependent on the type of obstruction growing at the pore scale. In particular, we confirm

that the permeability is not merely a function of porosity, but is rather highly dependent

on how the geometry is changing.

The process in our experiments is as follows.

(1) We start with a porous media domain D = Df,r. This domain may be either a

many-pore model or a smaller single-pore model. The two domains we use are shown in

Figure 7.1 We fix the desired obstruction volume, Vo. For the CLPS model this means

the constraint on the total phase parameter is Vo,∫
D

ψ = Vo.

(2) Then we choose the method we will use to create the obstructions. Here the

choice is between either the phase separation method of Chapter 5 or the Lattice model

of Chapter 6.

(3) Next we choose a type of obstruction that we are trying to emulate, i.e., we

choose from either biofilm, hydrate or colloid like obstructions. The parameters of the

model are set based on the obstruction type chosen.
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(a) Domain D for single-pore experiments. Df is green, Dr is yellow.

(b) Domain D for many-pore experiments. This domain is an imaged REV from [35]. Dv is

blue and Dr is gray. With no obstructions Df = Dv.

FIGURE 7.1: Experimental domains prior to obstruction formation.
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(4) We initialize the model in random fashion and run the model to generate

the first obstructed geometry. Next we repeat the simulation with new random initial

conditions until we have generated some desired number of obstructed geometries.

(5) On the unobstructed geometry and each of the obstructed geometries we solve

for Stokes flow in Df with HybGe-Flow3D [14], explained in Section 3.4.4. Our focus is

on illustrating our ideas and on proof-of-concept, thus we set up experiments only for

the case when the flow has one primary direction.

(6) For each flow solution we simulate the transport through the pore scale domain

Df . We use both the Eulerian and Lagrangian frames of reference; see the methods

described in Section 3.5. From the transport solutions we are able to calculate the

breakthrough curves (3.2.7) and (3.2.5), and the tortuosity T, as described in Section 3.6.

(7) Last, we upscale to find volumetric flow rate U , and permeability K, using

the method described in Section 3.3. To calculate U we may use Dupuit’s relation

(3.3.2) or the Dupuit’s relation modified by tortuosity (3.3.7). We state which we are

using. Lastly, we calculate the Darcy scale transport and breakthrough as described in

Section 3.5.

To infer from experimental results we often consider how the obstructions changed

quantities of interest relative to the unobstructed pore. To distinguish the quantities

associated with the unobstructed pore we denote them with a subscript 0. For example,

the upscaled permeability of the unobstructed pore is K0.

In Section 7.1 we calculate permeability distributions as functions of obstruction

volumes. In Section 7.2 we compare how permeability changes relative to the changes in

pore scale breakthrough. In Section 7.3 we calculate tortuosity distributions as functions

of obstruction volumes. In Section 7.4 we compare the breakthrough curves of pore scale

and Darcy scale transport.
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7.1 Permeability distributions in single pore geometries

The first results we present are on permeability distributions as a function of

obstruction volume. From this experiment we see how different types of obstructions

with different obstruction volumes impact the permeability of an idealized pore. We

also use this experiment to compare the upscaled permeability results derived from our

two methods for generating obstructions.

For the experiments in this section we use an idealized pore for domain D, Fig-

ure 7.1a. The flow inlet is the left side of the domain, the outlet is the right side. At

the top and bottom of the domain we assume the no slip condition for the velocities.

We execute this experiment with both the CLPS model and the Lattice model.

With the CLPS model we consider two types of obstructions: biofilm-like and hydrate-

like. With the lattice model we consider three types of obstructions: biofilm-like,

hydrate-like, and colloidal. We generate obstructed geometries for each type of ob-

struction and for each of three different values of obstruction volume Vo = 0.1, 0.2, 0.3..

For a given type of obstruction and obstruction volume we generate M = 100

obstructed geometries. Next we analyze the results of the M independent simulations

i = 1, 2, . . .M of the geometries with obstructions. For each geometry D
(i)
f we calculate

the permeability K(i), where the upscaling was completed using Dupuit’s relation (3.3.2).

The results of this experiment are given relative to the permeability of the un-

obstructed pore, that is we present K(i)/K0. The first result presented is a histogram.

We use the Matlab function histogram to partition and present the calculated relative

permeabilities (K(i)/K0)i. The second result is the mean and standard deviation of

(K(i)/K0)i

7.1.1 Biofilm-like obstructions

First we complete the experiment with biofilm-like obstructions. We explain the

parameters used for both the CLPS and Lattice models. We then compare the results

derived from the use of each model.

Example 7.1.1 (Lattice model). To create the biofilm-like obstructions with the Lattice
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FIGURE 7.2: Biofilm-like obstruction with Lattice model. Vo = 0.2. For experiment in

Section 7.1.1.

model for this experiment we set the parameters as follows

ω =


wvr = 100,

wro = 1,

wvo = 50.

For illustration we show an example biofilm obstruction in Df in Figure 7.2.

The permeability change as a function of the obstruction volume is shown in

Figure 7.3. We see that the histograms appear somewhat like a Gaussian distribution.

The change in the mean of (K(i)/K0)i is near linear, dropping consistently closer to 0

as Vo increases. The standard deviation of (K(i)/K0)i is small, but slightly increasing

as Vo increases. As the biofilm grows larger it can have a slightly wider array of impact

on the permeability. One can infer that biofilm formation in porous media may cause

more predictable changes in permeability.

Example 7.1.2 (CLPS model). To create the biofilm-like obstructions with the CLPS

model for this experiment we set the parameters as follows

ε = 0.1, θ = 0.25, δ = 0.1.
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FIGURE 7.3: Relative change in permeability due to Lattice model biofilm-like obstruc-

tions, see Section 7.1.1. Top: histogram of (K(i))i values for 3 values of Vo. Bottom:

mean and standard deviation of (K(i))i for 3 values of Vo.
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FIGURE 7.4: Biofilm-like obstruction generated with CLPS model. Vo = 0.2. For

experiment in Section 7.1.1.

For illustration we show an example biofilm obstruction in Df in Figure 7.4. We see

that the biofilm simulation produces 6 distinct “colonies” and does not cover the entire

rock-fluid interface. This is in contrast with the Lattice model, which does cover the

entire rock-fluid interface.

The permeability change as a function of the obstruction volume is shown in

Figure 7.5. The histogram for Vo = 0.1 shows a Gaussian-like distribution. For the

higher values of Vo, we see that certain values are common, but there are also zero

permeability events. The change in the mean of (K(i)/K0)i follows a similar trajectory

to that in the case where the Lattice model is used to generate obstructions, Figure 7.3.

However, the CLPS model shows a greater variance in (K(i)/K0)i.

7.1.2 Hydrate-like obstructions

First we complete the experiment with biofilm-like obstructions. We explain the

parameters used for both the CLPS and Lattice models. We then compare the results

derived from the use of each model.

Example 7.1.3 (Lattice model). To create the hydrate-like obstructions with the Lat-
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FIGURE 7.5: Relative change in permeability due to CLPS generated biofilm-like ob-

structions, see Section 7.1.1. Top: histogram of (K(i))i values for 3 values of Vo. Bottom:

mean and standard deviation of (K(i))i for 3 values of Vo.
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tice model for this experiment we set the parameters as follows,

ω =


wvr = 1,

wro = 100,

wvo = 50.

We show an example hydrate-like obstruction in Df in Figure 7.6. The experiments use

obstruction volumes Vo = 0.1, 0.2, 0.3.

The permeability distribution change as a function of the obstruction volume is

shown in Figure 7.7. We see that the histograms show a distribution skewed towards

0, perhaps like a Poisson distribution. The change in the mean of (K(i)/K0)i is sharp,

dropping nearly 85% with Vo = 0.1. The decrease in the mean levels off, as Vo increases

from 0.1.

The standard deviation of (K(i)/K0)i is quite large, suggesting that where the

hydrate forms in the pore plays a large role in how it impacts permeability. Consider

the obstruction formation in Figure 7.6 with Vo = 0.2. Since the flow is unidirectional,

moving from left to right, the fluid needs to fit through the two small openings on the

left side of the obstruction. One can imagine how an obstruction forming in either the

top or bottom of the pore would be less obstructive to the flow. One can infer that

hydrate formation in porous media may cause less predictable changes in permeability.

Example 7.1.4 (CLPS model). To create the hydrate-like obstructions with the CLPS

model for this experiment we set the parameters as follows

ε = 0.28, θ = −0.3, δ = 0.1.

For illustration we show an example hydrate obstruction in Df in Figure 7.8. In this

case, the model reached an equilibrium point with two distinct hydrate-like formations.

Results for this experiment are shown in Figure 7.9. This experiment found a

drop in relative permeability of about one order of magnitude at Vo = 0.1. Comparing

the mean of (K(i)/K0)i with the case where obstructions are generated with the lattice

model, Figure 7.7, we see good agreement. The CLPS model, however, has a smaller

standard deviation in (K(i)/K0)i.
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FIGURE 7.6: Hydrate-like obstruction with Vo = 0.2 for experiment in Section 7.1.2.

7.1.3 Colloidal obstructions

To create colloidal obstructions we use only the Lattice model. To create the

colloidal obstructions for this experiment we set the parameters as follows,

ω =


wvr = −1,

wro = −1,

wvo = −1.

We show an example colloidal obstruction in Df in Figure 7.10. The experiments use

obstruction volumes Vo = 0.05, 0.1, 0.2.

The permeability distribution change as a function of the obstruction volume is

shown in Figure 7.11. The mean relative permeability change is about two orders of

magnitude with Vo = 0.05. We suspect that the impact of the colloidal obstructions

is overstated due to the experiments being in two dimensions. With flow in a three

dimensional domain there are more pathways within which the flow may move around

an obstructed cell.



130

FIGURE 7.7: Relative change in permeability due to hydrate-like obstructions, see

Section 7.1.2. Top: histogram of (K(i))i for 3 values of Vo. Bottom: mean and standard

deviation of (K(i))i for 3 values of Vo.
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FIGURE 7.8: Hydrate-like obstruction generated with CLPS model.Vo = 0.2. For

experiment in Section 7.1.2.

7.2 Permeability vs. pore scale breakthrough in many pore
geometries

The next experiment we present compares the relative change in permeability

with the pore scale break through. To characterize break through in this experiment

we record the time at which the outflow reaches some fixed ratio of the inflow of the

transported species. One should expect that for a less permeable porous media that

amount of time should experience some correlating change. This experiment studies

that correlation.

For the experiments in this section we use an REV from [35], shown in Figure 7.1b.

The flow inlet is the left side of the domain, the outlet is the right side. The fluid solid

interface, and the top and bottom of the domain enforce no slip conditions for the

velocity.

We consider two types of obstructions, biofilm-like and hydrate-like. The ob-

structed geometries are generated with the Lattice model of Section 6. We generate

obstructed geometries for each type of obstruction with Vo = 0.05.

For a given type of obstruction we generate M = 100 obstructed geometries.

Next we analyze the results of the M independent simulations i = 1, 2, . . . ,M of the
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FIGURE 7.9: Relative change in permeability due to hydrate-like obstructions, see

Section 7.1.2. Top: histogram of (K(i))i for 3 values of Vo. Bottom: mean and standard

deviation of (K(i))i for 3 values of Vo.
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FIGURE 7.10: Biofilm-like obstruction with Vo = 0.2 for experiment in Section 7.1.3.

geometries with obstructions. For each geometry D
(i)
f we calculate the permeability

K(i), where the upscaling was completed using Dupuit’s relation (3.3.2).

For each geometry we also calculate transport solutions in the Eulerian frame of

reference. From the transport solutions, we calculate the breakthrough curve (3.2.5).

We characterize the breakthrough curve for each obstructed geometry as follows.

Define the α−breakthrough time T (α) as follows

T (α) = t such that

∫
Γout

(u · n)c∫
Γin

(u · n)c
= α, (7.2.1)

where 0 ≤ α ≤ 1. T (α) is the time where the ratio of transport of c out of the pore to

transport of c into the pore is equal to α. That is, T (α) is the time when the pore is at

α ∗ 100 percent of the total possible outflux. We denote the α−breakthrough time for

simulation i with a subscript i, T
(α)
i . Note that B(t) is monotonically increasing in our

experiments.

We note that for many of the results in this section that Tα(i)/T
α
0 < 1. This counter-

intuitive result would suggest that due to obstructions the breakthrough is happening

quicker. This experimental result occurs because of Lemma 3.3.1. By restricting the

size of the flow domain while keeping inflow constant, the fluid in the fluid domain must

move faster through the pore to maintain mass balance.
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FIGURE 7.11: Relative change in permeability due to colloidal obstructions, see Sec-

tion 7.1.3. Top: histogram of (K(i))i for 3 values of Vo. Bottom: mean and standard

deviation of (K(i))i for 3 values of Vo.
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FIGURE 7.12: Biofilm-like obstruction for experiment in Section 7.2.1. The obstruction

is yellow, the solid matrix is gray and the void space is blue.

The results of this experiment are calculated relative to the unobstructed pore.

The results are presented as scatter plots of K(i)/K0 vs Tα(i)/T
α
0 . We include also a least

squares fit to the data as a solid gray line.

7.2.1 Biofilm-like obstructions

To create the biofilm-like obstructions for this experiment we set the parameters

as follows,

ω =


wvr = 1.2,

wro = 1,

wvo = 1.

We show an example biofilm-like obstruction in Df in Figure 7.12.

We present results for α = 0.8 and α = 0.95 in Figure 7.13. When α = 0.8 the

trend line suggests a correlation between Tα(i) andK(i), as the slope is about 0.6. However,

when α = 0.95 this trend has started to disappear and the trend line approaches level.

Note in particular the outlier where the permeability has dropped nearly 60% while

the breakthrough time has dropped less than 20%; this is likely due to the clogging of

certain throats in the REV.
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FIGURE 7.13: Relative change in K against the relative change in T (α) due to biofilm-

like obstructions. See Section 7.2.1. Top: α = 0.8. Bottom: α = 0.95.
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FIGURE 7.14: Hydrate-like obstruction for experiment in Section 7.2.2. The obstruc-

tion is yellow, the solid matrix is gray and the void space is blue.

7.2.2 Hydrate-like obstructions

To create the hydrate-like obstructions for this experiment we set the parameters

as follows,

ω =


wvr = 1,

wro = 10,

wvo = 5.

We show an example of hydrate-like obstruction in Df in Figure 7.14.

We present results for α = 0.8 and α = 0.95 in Figure 7.15. For the case with

hydrate-like obstructions we see the opposite of the biofilm-like obstructions, in that the

trend line gets steeper the experiment progresses from α = 0.8 to α = 0.95. There is

a dramatic vertical cloud of points around T
(0.8)
(i) /T

(0.8)
0 ≈ 1, showing that there can be

a wide range of changes in the permeability without changing the breakthrough time

much.

For both α = 0.8 and α = 0.95 the spread of the points on the scatter plots

are quite wide. This supports the notion discussed in the experiment in Section 7.1.2

that hydrate formation in porous media may cause less predictable changes in flow and

transport.
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FIGURE 7.15: Relative change in K against the relative change in T (α) due to hydrate-

like obstructions. See Section 7.2.2 Top: α = 0.8. Bottom: α = 0.95.
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7.3 Tortuosity distributions in many more geometries

The experiment presented in this section is a study on tortuosity changes in an

REV. We present distributions of the relative change in tortuosity T as a function of

obstruction volume. Tortuosity is a measure of fluid path lengths in a porous media,

explained in Section 3.1.5.

For this experiment we use an REV from [35], shown in Figure 7.1b. The flow

inlet is the left side of the domain, the outlet is the right side. The top and bottom of

the domain impose no slip conditions.

We consider two types of obstructions, biofilm-like and hydrate-like. The ob-

structed geometries are generate with the phase separation model of Section 5. We use

three values of obstruction volume Vo = 0.05, 0.1, 0.15.

For a given type of obstruction we generate M = 100 obstructed geometries.

Next we analyze the results of the M independent simulations i = 1, 2, . . . ,M of the

geometries with obstructions. For each geometry D
(i)
f we calculate the transport of a

single species through the domain and derive the tortuosity, as explained in Section 3.6.

The results of this section show instances of both increasing average path lengths

and decreasing average path lengths. We remind the reader that Ti/T0 > 1 means the

average hydraulic path lengths have increased for geometry i.

7.3.1 Biofilm-like obstructions

To create the biofilm-like obstructions with the CLPS model for this experiment

we set the parameters as follows,

ε = 0.2, θ = −0.5, δ = 0.1.

For illustration we show an example biofilm obstruction in Df in Figure 7.16. We see

two instances of throat clogging and many small “colonies”.

Results for this experiment are shown in Figure 7.17. We see that for most ge-

ometries with obstructions T is greater than in the unobstructed geometry, and that

with greater obstruction volume there is a greater increase in T.
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FIGURE 7.16: Biofilm-like obstruction with Vo = 0.05 for experiment in Section 7.3

7.3.2 Hydrate-like obstructions

To create the hydrate-like obstructions with the CLPS model for this experiment

we set the parameters as follows,

ε = 0.3, θ = 0.5, δ = 0.15.

For illustration we show an example hydrate obstruction in Df in Figure 7.18. In this

example we can see several hydrate-like “crystals” forming in the flow domain, as well

as one small “crystal” attached to the solid matrix. This example is useful in showing

that the CLPS model can capture the unlikely, but possibly occurring situation where

the hydrate and solid matrix are adjacent.

Results for this experiment are shown in Figure 7.19. In this case, we see decreasing

tortuosity T. Because of the decrease in average path lengths we can see that while

tortuosity is part of the bigger picture in understanding how porous media responds to

obstruction formation it does not tell the whole story.

7.4 Breakthrough curves at multiple scales

In this section we compare breakthrough results at the pore scale with break-

through results at the Darcy scale. For the results in this section we use the same
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FIGURE 7.17: Relative change in tortuosity due to biofilm-like obstructions in a many

pore geometry, see Section 7.3. Top: histogram of (T(i)/T0)i for 3 values of Vo. Bottom:

mean and standard deviation of (T(i)/T0)i for 3 values of Vo.
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FIGURE 7.18: Hydrate-like obstruction with Vo = 0.05 for experiment in Section 7.3

experiments and computational results from Section 7.3. With this experiment we

study the relationship between transport at multiple scales in obstructed porous media.

We report pore scale breakthrough with the quantity T (0.95), as defined in (7.2.1).

We model Darcy scale transport with (3.2.2). To calculate the upscaled velocity we

use (3.3.7), Dupuit’s relation modified to account for tortuosity. Because U is constant,

the Darcy scale transport has analytical solutions. Let D = (0, L1)× (0, L2). We report

the time Tf when quantity C has been transported across the domain,

Tf =
L1φ

U1

. (7.4.1)

We present results for both pore coating and pore filling obstructions in Fig-

ure 7.20. We observe that in the case of pore filling obstructions the range of outcomes

is larger than in the case of pore coating obstructions. We also see that for both types

of obstructions, as Vo increases so does the Darcy scale breakthrough time, which is the

behavior one would expect.
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FIGURE 7.19: Relative change in tortuosity due to hydrate-like obstructions in a many

pore geometry, see Section 7.3. Top: histogram of (T(i)/T0)i for 3 values of Vo. Bottom:

mean and standard deviation of (T(i)/T0)i for 3 values of Vo.
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(a) Pore coating obstructions

(b) Pore filling obstructions

FIGURE 7.20: Scatter plot of Darcy scale breakthrough time Tf vs pore scale break-

through time T (0.95).
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8 Summary

In this thesis we considered mathematical and computational models to study flow

and transport phenomena in porous media. In particular, we studied how Darcy scale

properties of the porous media change as the pore scale geometry changes due to the

formation of obstructions. The pore scale obstructions central to our work were of pore

coating and pore filling type specific to the applications involving biofilm and hydrate

crystal growth. These are important for various applications, and we provided details

motivating this work.

Our contributions are as follows. We proposed a new collection of methods for

the generation of geometries with obstructions which allow one to avoid expensive and

uncertain direct numerical simulations (DNS) of the physical processes. The first new

method we present in this work is the Constrained Local Phase Separation (CLPS)

model in Chapter 5. The CLPS model is an extension of the Allen-Cahn phase separa-

tion model where we have added constraints to make the model phase conserving, and

added a spatial injection function so the phase separation can respond to the complex

domain. The second new method we present in this work is the Lattice model in Chap-

ter 6. The Lattice model is a Markov chain Monte Carlo method inpired by the Ising

model.

We employed the two new models to complete numerical experiments, presented

in Chapter 7. Both models have parameters we tune by hand so that the obstructions

generated mimic the desired characteristics, either pore filling or pore coating. From

the completed experiments we can infer how porous media properties are impacted by

specific geometry changes. In particular, we confirm that the permeability is not solely

a function of porosity, but rather is highly dependent on how the geometry is changing.

We wish to highlight some features of our experiments and models. First, we find

that in general the two models produce upscaled results that are in agreement with

one another. For example, in the single pore permeability experiments of Section 7.1

one can compare Figures 7.3 and 7.5 and see similar qualitative behavior in the mean
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relative change in permeability due to biofilm-like obstructions.

Second, we point out that our models can capture important characteristics of

obstruction formation. For pore coating obstructions, we see throat clogging in a many

pore domain with the Lattic model in Figure 7.12, and with the CLPS model in Fig-

ure 7.16. For pore filling obstructions, we see that the obstructions mostly avoid the

rock matrix, but as in seen in [10] under certain conditions hydrate are adjacent to the

rock matrix. In Figure 7.18 we see a domain with pore filling obstructions generated by

the CLPS method, but with some contact between obstruction and rock matrix from

which we infer that our model can be tuned to match the behavior under such certain

conditions.

8.1 Using our methods

In developing and using our CLPS and Lattice model we have learned much that

we’d like to pass on to the interested reader. In particular, for both methods the choice

of parameters is currently more “art” than “science.” While we hope to address this in

the future, here we describe various considerations of the parameters to achieve desired

results.

The CLPS model. For the CLPS model the tuning parameters are ε, θ and δ.

The coefficient ε controls the relative amplitude of the diffusion and sharpening injection

function f . With larger ε there is more diffusion, which will result in fewer, but larger

aggregations of phase parameter.

The coefficient θ controls the amplitude of the spatial injection function gδ. With

θ > 0 the model produces pore filling obstructions. With θ < 0 the model produces

pore coating obstruction. With θ = 0 the spatial injection function plays no role. One

needs to be careful with the magnitude of θ; if the magnitude is too large then phase

parameter ψ may end up outside of the expected range [0, 1]. One can compensate

for this by decreasing ε, as the phase parameter will pushed back towards [0, 1], but it

comes at the cost of decreased diffusion.
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Lastly, we note that δ should be adjusted to the scale of the pore so that obstruc-

tion formation is either discouraged for an appropriate distance from the rock matrix, or

so that obstruction formation is encouraged near the rock matrix out to some distance.

With the CLPS model it is not practical to simulate colloidal obstructions. To

create colloidal obstructions one needs ε to be small to prevent large obstructions from

forming. But then the impact of diffusion is minimized, so the phase parameter doesn’t

change location much. The equilibrium phase solution in this case is more or less the

random initial condition.

The Lattice model. For the Lattice model the tuning parameters are the weights

ω assigned to interactions between nodes. A higher weight value for a given material

adjacency means it’s less likely for those materials to be adjacent. For example, if

wro = 1 and wrv = 2, then it’s more likely that the material in adjacent nodes are rock

matrix and obstruction, rather than rock matrix and void space.

In general, giving the weights higher magnitudes leads to finding states in the

desired distribution in fewer steps. However, this comes at the cost of the method

stagnating in a local energy minimum state. One of the advantages of MCMC methods

is that with some probability the system energy will increase from one step to the next,

which allows the method to find other local energy minima. Using Weights with high

magnitudes decreases the probability of increasing the system energy from one step to

the next.

Geometries generated by the Lattice model may have a single obstruction node

surrounded by nodes of void space or rock matrix, or possibly a void space node sur-

rounded by obstruction nodes. This behavior is expected from the model and is due to

the inherent randomness of the model, however these spurious node materials may be

physically unrealistic.

Coupling CLPS and Lattice models. To account for nodes with spurious

material designations in results generated by the Lattice model we can couple the Lattice

model with the CLPS model. One would first use the Lattice models, then apply the

CLPS model to the result. The diffusion present in the CLPS model would smooth the
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obstructions generated by the Lattice model.

This coupling could be used to optimize (in the sense of time) the process of

generating the random obstructions. The Lattice model is faster to use than CLPS

model by an order of magnitude. So one could use the Lattice model to first generate

rough obstructed geometries, then use the CLPS model to smooth the obstructions.

Computational considerations. For an estimate of computational complexity,

consider simulations on a many pore domain with O(17, 000) voxels. The simulations

were run on a 2013 Macbook Air. The CLPS model generated obstructed geometries

in around 5 minutes. The Lattice model generated obstructed geometries in around 45

seconds.

In terms of coding complexity, the CLPS method was more difficult to implement

than the Lattic model, even with the simplification of using an IMEX method.

Other tools used. The CLPS and Lattice models were implemented in Matlab.

This saves a tremendous amount of time in coding relative to, say, c++. For example,

we can use the “backslash” operator \ to solve the saddle point system of the CLPS

method with consideration of what iterative solver Matlab utilizes.

The other tool we made significant use of was HybGe-Flow3D [14]. HybGe-Flow3D

was simple to use and very efficient in finding flow solutions on the obstructed geome-

tries. Support for this tool was prompt. We contributed to this open source tool as we

extended it to perform the specific experiments that we report on in Chapter 7.

HybGe-Flow3D also offers features that we have not yet taken advantage of. This

includes the ability to simulate flow in the presence of permeable obstructions and

varying viscosity.

8.2 Future work

We see many avenues for where to take this research, some of which have been

touched on throughout the previous chapters. In particular, in Chapter 4 we discussed

how this work could be used to emulate and expand on the physical experiments com-
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pleted in [10]. Similarly, this work could be used in concert with the DNS method

presented in [35].

A natural place for this work to extend to is three dimensions. In higher dimensions

we expect to see smaller changes in the permeability due to pore scale obstructions,

because the extra dimension adds another degree of freedom for the flow to move around.

We would also like to validate our model. For example, can we recreate results

similar to the physical experiment and DNS in [35]?

Using the flow solver HybGe-Flow3D offers several possibilities as well. The two

main things to explore here are using the Immersed Boundary Stokes Model for flow

and varying viscosity. By using the IBSM we can make the obstructions permeable.

This is particularly useful for studying biofilm and hydrate because those obstructions

can be permeable.

One difficulty here is that it is not clear what the porosity of a porous media is

in the presence of permeable obstructions. This becomes a problem in, e.g., upscaled

transport, where porosity is coefficient.

Another way to improve our models would be to choose the parameters algorith-

mically rather than by hand. One way we see this working is to implement a machine

learning algorithm for classifying images. The idea is to use synthetic geometries with

specified parameter choices as a training set. Then, images from physical experiment

would be classified by the algorithm. The set of parameters that the experimental im-

ages are classified as would be deemed the “best” set of parameters for that particular

porous medium and obstruction formation. This process could be iterated and more

training data added to improve the accuracy of the classification.

Work specific to the CLPS model includes studying the well-posedness of the model

and consideration of other possible injection functions. The spatial injection function g

was chosen because it would create the desired patterns in the obstruction formation.

Perhaps another function could achieve the same or better functionality.
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