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Successful cryopreservation of all biological specimens would have an untold positive 

impact on medicine and scientific research. However, cryopreservation of the most 

complex biological specimens, such as tissues and organs, remains elusive. 

Vitrification, or ice-free cryopreservation, is promising for cryopreservation of 

complex specimens. The biggest challenge, though, is the toxicity imparted by the large 

concentration of cryoprotectant(s) (CPAs) required to suppress ice formation. There 

are several approaches to overcome toxicity that have been proposed in the field, but 

our group has proposed the use of mathematical modeling to minimize toxicity. The 

optimization strategy revolves around design of a vitrification protocol that minimizes 

the toxicity cost function. In a previous work, this approach was used to identify a 

vitrification protocol using glycerol as the CPA that was less toxic for endothelial cells 

when compared to conventional protocols used in the field.  This previous work serves 

as a foundation for the current work presented here, which seeks to expand the utility 

of the toxicity cost function approach. In the first research chapter of this work, an 

automated liquid handling methodology is proposed to characterize CPA toxicity, and 

five of the most common CPAs and their binary and ternary combinations are 

characterized. This approach lays the foundation for future high-throughput screening 

of CPA toxicity, and the data set that was obtained will inform future models for 



 

 

predicting the toxicity of multi-CPA mixtures. To apply the toxicity cost function 

approach to tissues and organs, more complicated mass transfer models are required to 

predict the flow of CPAs and calculate the toxicity imparted. In the second research 

chapter of this work, a general mass transfer model is proposed for tissues. This model 

augments an acellular cartilage-based model in the literature by adding cells and 

accounting for their effects on mass transfer within tissues. We show that this modeling 

approach is applicable to the two very different tissues of cartilage and pancreatic islets. 

Moving to the organ regime and the third and final research chapter of this work, mass 

transfer within kidneys is investigated. Specifically, slaughterhouse porcine kidneys 

are perfused with various CPA solutions and the overall mass response is compared to 

that of a single cell. Also, an experimental method is proposed to measure the CPA 

concentration within the kidney as a function of space and time using computed 

tomography (CT). Another experimental method utilizing a lactate dehydrogenase 

(LDH) assay is also proposed that could measure damage imparted from CPA addition 

and removal. The third research chapter provides a basis for informing organ-based 

mass transfer models in the future. Overall, it is the hope that the chapters of this work 

provide a solid foundation for future research of furthering the toxicity cost function 

approach within all specimen regimes of cryopreservation.  
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1. GENERAL INTRODUCTION 

 

1.1 Cryopreservation Background and Limitations 

Cryopreservation stands at the forefront of the long-term storage of biological 

specimens. The ability to cryopreserve any specimen, from single cells to tissues to 

organs, would forever change the face of medicine and have far-reaching implications 

for many scientific fields. This is not the current situation, but many strides have been 

made in the research of each specimen regime. Single cell cryopreservation has been 

applied successfully for many different bacterial and mammalian cell types and has 

been instrumental in reproductive medicine in both animal breeding and assisting 

human reproduction [9,34,68,92,107,115]. At the tissue level, impacts can be again 

seen within the field of reproductive medicine with the successful cryopreservation of 

ovarian tissue [113,120]. Also, we can see the successful cryopreservation of articular 

cartilage, which has applications for tissue banking and subsequent transplantation 

[76]. Moving to the most complex specimen regime of organs, we can see the 

demonstrated feasibility of successfully cryopreserving a rabbit kidney from Fahy [49]. 

Despite these successes in the field, it is still an immense challenge to successfully 

cryopreserve complex three-dimensional tissues and organs; successful examples are 

few [47,48]. There is a gap in our knowledge when it comes to successfully 

cryopreserving complex specimens. Breakthroughs in complex specimen 

cryopreservation would have far-reaching implications for 1) transplantation medicine 

of donor and engineered specimens, and 2) banking specimens for numerous research 

endeavors [48,61,90].  

 

The difficulties in preserving the most complex specimens stem from the biggest 

problem incurred during cryopreservation, which is ice formation [47,105]. There are 

two general methods to cryopreservation—slow cooling and vitrification—and they 

refer to if extracellular ice is formed, as excessive intracellular ice cannot be tolerated 

by any specimen. Slow cooling involves the formation of extracellular ice and is 

ubiquitous when discussing the cryopreservation of suspension-phase cells. However, 

vitrification eliminates ice formation in general by holding a specimen in the glassy 
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state and is especially promising for specimens that are damaged by extracellular ice 

formation such as the complex specimens of adherent cells, tissues, and organs 

[49,76,94,121]. In order to overcome ice formation, a large concentration of foreign 

chemicals—designated as CPAs—need to be introduced to the specimen. As most 

complex specimens are heat transfer limited due to their large thermal mass when 

compared to suspension-phase cells (e.g. a 1 mL suspension of cells compared to an 

entire kidney), a higher CPA concentration is needed in order to increase the 

crystallization time and give the specimen a chance to reach its glass transition 

temperature. However, such a large concentration of CPAs introduces both mechanical 

(osmotic) damage and chemical (toxicity) damage. For osmotic damage, large osmotic 

gradients are induced due to the high concentration of CPAs, and the resulting fluxes 

of multiple species in the fluid phase can cause a cell or tissue space to shrink or swell 

beyond physiological limits [29,38,40,47,86]. Osmotic damage can be overcome, 

though, with a CPA addition and removal protocol that slowly manipulates the CPA 

concentration of the specimen in either a stepwise or continuous fashion. This prevents 

excessive volume excursions [29,38,59,86,98]. Toxicity is a more challenging problem 

and is considered the biggest hurdle to successful vitrification [5,46,47,75]. In the end, 

vitrification trades the ice formation problem for a toxicity problem. 

 

The problem of toxicity is a challenging one as there are several variables of a CPA 

addition and removal protocol that can influence toxicity. CPA mixture type, CPA 

concentration, temperature, and exposure time can be varied across multiple steps. 

There are some general rules of thumb that can be applied in order to get an idea about 

the toxicity of a protocol. For example, toxicity tends to increase with increasing 

temperature as well as exposure time [29,36,46,85]. However, one can increase 

temperature in order to increase mass transfer rates which would result in a shorter 

exposure time required in order to meet a concentration of interest. Thus, it becomes 

difficult to develop an intuition about the toxicity of a protocol when multiple variables 

are changed. To overcome this, large data sets characterizing toxicity need to be 

collected in order to develop intuition about a specimen and make predictions. 
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Some studies in the field serve as good examples of obtaining large data sets that seek 

to characterize toxicity for a given specimen. One of the big challenges of obtaining a 

sound data set is to make sure that the toxicity results are not confounded by osmotic 

damage. As mentioned previously, osmotic damage can be overcome by slowly 

manipulating the CPA concentration a specimen is exposed to. However, some studies 

have not taken this approach and have exposed their specimens directly to peak CPA 

concentrations, making interpretation difficult [4,130]. Some of the largest data sets 

that seek to isolate toxicity and eliminate osmotic damage come from two groups, one 

researching chondrocytes [5,38,75] and the other researching rabbit kidneys [46]. 

Although both groups present some of the most comprehensive toxicity 

characterization attempts in the field, their data sets are still lacking. This lack stems 

from minimal dependency of the data set on exposure time and temperature. Their data 

sets have a large dependency on CPA mixture type and CPA concentration but at very 

few exposure times and temperatures. These data sets serve to move the understanding 

of toxicity forward but do lack the ability to provide a comprehensive understanding of 

toxicity kinetics, as they account for a narrow range of CPA mixture type, CPA 

concentration, exposure time, and temperature combinations.  

 

Large data sets serve as a foundation to understand toxicity, and predictive capabilities 

can start to be developed from them. Going back to the large data set examples, the 

chondrocyte studies [5,38,75] leveraged regression models with interactions to predict 

toxicity as a function of CPA mixture type and concentration. Fahy and colleagues [46] 

looking at rabbit kidneys also proposed an empirically driven relationship where they 

predicted the toxicity of vitrification solutions based on simple concentration properties 

of the solution. These relationships highlight promising attempts at predicting the 

toxicity of vitrification solutions based on the composition of the solution. However, 

as discussed previously, these relationships are limited due to a lack of exposure time 

and temperature dependence. Also, these relationships can be classified as empirically-

based approaches to toxicity reduction, and there is a good chance they will have 

limited value at some point outside of the direct data sets from which they were formed 

from. There will always be more CPA solution compositions or equilibration 
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techniques to test in the laboratory in order to expand the applicability of empirical 

relationships. As such, empirically-based approaches can never exhaustively test all 

possible combinations of CPA mixture type, CPA concentration, exposure time, and 

temperature. Successes can be found with an empirical approach such as the work of 

Fahy and colleagues [49] who showed the feasibility of vitrifying a lone rabbit kidney, 

but the odds are stacked against such an approach in the face of so many variables to 

choose from. One must take a large data set and start to create a more comprehensive 

mathematical model rooted in physical phenomena that can make many predictions 

outside of the data set. 

 

1.2 A Potential Solution Strategy  

As has been stated, there are several potential avenues to address toxicity, from 

empirical to mathematical and the area in between the two. We have taken a 

mathematical optimization approach to toxicity minimization, and in previous works, 

we developed a toxicity cost function that we hope to expand [11,28,29]. This cost 

function approach takes a CPA addition and removal protocol as an input and outputs 

a toxicity cost. The inputs are number of protocol steps, as well as the duration, 

temperature, and CPA composition used for the steps—we account for all of the 

variables influencing toxicity kinetics. The toxicity cost output is a metric of the viable 

cells remaining. We implemented the toxicity cost function approach at the single cell 

level for bovine pulmonary artery endothelial cells (BPAEC) to begin with and were 

able to mathematically iterate through the protocol inputs in order to minimize the 

toxicity cost output. Starting at the single cell level allows us to develop the algorithm 

in the simplest specimen regime both physiologically and mathematically, while 

providing knowledge that can be applied to more complicated specimen regimes. 

Overall, we implemented an algorithm where we sought to minimize toxicity cost while 

operating under the constraints of introducing enough CPA for vitrification and staying 

within the physiological cell volume limits. 

 

Our approach relies on mathematical modeling to generate the toxicity minimization 

algorithm, where we need to have a mass transport description of the system coupled 
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to a damage description. We laid the mass transport groundwork in earlier work where 

we measured the permeability of BPAEC [56] within the two-parameter (2P) model 

formalism [79]. The 2P model provides cell volume predictions to keep a protocol 

within cell volume constraints. It also provides intracellular CPA concentration 

predictions if a toxicity description is to be dependent on the intracellular composition. 

Toxicity predictions are harder to make, however. Mechanisms of toxicity are research 

fields unto themselves and fully applying such knowledge for cryopreservation 

applications is challenging and inherently CPA dependent. For example, glycerol 

inhibits the glycerol phosphate cycle [70], and dimethyl sulfoxide interferes with ion 

channels [73] among other proposed mechanisms. For the toxicity cost function 

approach to be most effective, we need simple toxicity relationships for a wide variety 

of solutions—a systems biology perspective is required. A mechanistic/reductionist 

description of toxicity would increase the complexity of the models employed and 

would inevitably increase computational time for optimization. In a previous work [29], 

we described the simplest form of toxicity kinetics, where we assumed that BPAEC 

had a constant cell death (toxicity) rate. We modeled this toxicity rate as a function of 

CPA concentration and temperature for an exposure of the BPAEC to glycerol. In the 

end, we were able to predict a novel protocol for glycerol addition and removal that 

greatly improved cell yield above conventional protocols. Through this success, there 

are many avenues of research to expand upon within the toxicity cost function 

approach. 

 

We could find the best cryopreservation protocol for BPAEC if the entire protocol input 

space was available for the algorithm. Of course, it is not, since we only have data for 

glycerol, and the biggest variable to explore for a protocol is that of the CPA mixture 

type. Outside of conventional CPAs, there are many potential candidates for CPAs that 

have not been historically treated as such, all with presumptive varying toxicities. Not 

only are there single compounds that could be potential CPAs and have lower toxicity, 

but there are combinations of compounds. Most vitrification protocols use multi-CPA 

cocktails in an attempt to mitigate toxicity [47,76]. The sheer number of experiments 

that must be conducted to characterize the toxicity of libraries of compounds is 
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incredibly vast, though. For each CPA mixture type, CPA concentration, exposure 

time, and temperature need to be varied in an experiment, in conjunction with the 

multiple steps probably required to avoid osmotic damage. In order for the toxicity cost 

function approach to become more robust and move forward, the CPA mixture type 

input needs to be expanded.  

 

CPA mixture type is the biggest variable to explore for BPAEC, but as has been 

mentioned, our goal is the cryopreservation of complex specimens. We believe that the 

toxicity cost function approach will eventually be able to describe and hopefully predict 

successful vitrification protocols for the most complex specimens of interest. That 

being said, we can have exhaustive predictive capabilities of any CPA mixture type for 

BPAEC, but we are still a long way from applying the toxicity cost function approach 

to an organ. As such, the specimen type is limited within the current toxicity cost 

function approach. Benson et al [13] described a way to calculate the toxicity cost 

within three-dimensional tissue structures, which would include organs, but to calculate 

the toxicity cost, we need a mass transfer model to predict the CPA distribution within 

the specimen as a function of time and space. The development of adequate mass 

transfer models in complex specimens is a very challenging problem. The complex 

geometry of a three-dimensional specimen is challenging in and of itself, but there are 

several physical phenomena that also need to be considered. Within a complex 

specimen, we need to consider mass transfer in the extracellular space which becomes 

very difficult with non-dilute vitrification solutions, the coupled effects of mass transfer 

in the extracellular space with mass transfer across the cell membrane (2P model for 

example), the mechanical properties of the specimen that can lead to volume changes 

due to mass transfer, and fixed electrical charges within the tissue that can impact mass 

transfer and volume changes. 

 

The future of the toxicity cost function approach can be thought of as having two main 

research fronts. The first is expanding along the protocol complexity front, and we have 

discussed the need to be comprehensive within that front by including CPA mixture 

type, CPA concentration, exposure time, and temperature within a protocol. We have 
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also discussed that CPA mixture type is the biggest variable to explore for a protocol 

and large data sets need to be obtained in order to characterize the toxicity of a large 

library of potential CPAs. By characterizing the toxicity and generating toxicity models 

for many CPAs, the toxicity cost function approach becomes more robust and we have 

a greater probability of finding the best CPA addition and removal protocol for a 

specimen. The second front is to consider more complex mass transfer models to 

adequately describe the flow of CPAs within three-dimensional specimens. These two 

research fronts expand upon the applicability of the toxicity cost function approach and 

have set the stage for my graduate research studies within cryopreservation. 

 

1.3 Current Work and Organization 

The research portion of this dissertation is broken up into three chapters that delve into 

extending the applicability of the toxicity cost function approach, and two of these 

chapters are motivated directly from the work of Davidson et al [29]—application of 

the toxicity cost function for BPAEC. The chapters will also be divided based on one 

of the two research fronts that expand upon the toxicity cost function approach, which 

have been mentioned previously.  

 

1.3.1 Chapter 2 

To start, Chapter 2 builds off of Davidson et al [29] and investigates the protocol 

complexity front, specifically CPA mixture type. The work presents an accepted 

manuscript that characterizes the toxicity of five of the most common CPAs as well as 

their binary and ternary mixtures for the model system of BPAEC. In doing so, we 

developed a methodology to measure toxicity using automated liquid handling on a 

Hamilton Microlab STARlet system. This methodology improved the accuracy of the 

data obtained and allowed for higher throughput than the manual methods of Davidson 

et al [29]. This work generated a large toxicity data set that serves as our first large data 

set acquisition, but we have developed methods using automated liquid handling to 

create a high-throughput CPA toxicity screening pipeline in the future. The current 

toxicity data set can also be used for future vitrification solution optimization and 

provides key learnings for how multiple CPAs within a solution impact toxicity. As a 
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future work, we are investigating ways to predict the toxicity rates as a function of CPA 

mixture type, as our previous toxicity rate description from Davidson et al [29] only 

predicted toxicity rate as a function of glycerol concentration and exposure 

temperature. Our first toxicity data set was acquired at the room temperature isotherm 

and we focused on CPA mixture type as our biggest variable of interest, but in the 

future, we can also investigate many CPA mixture types as a function of temperature 

with our high-throughput methodology. 

 

1.3.2 Chapter 3 

In Chapter 3, we depart from the protocol complexity research front and the work of 

Davison et al [29]. Instead, we look at the mass transfer research front and more 

complicated specimens than single cells. Specifically, we seek to build off of the most 

comprehensive mass transfer model presented in the cryobiology literature. The work 

of Abazari et al [1] presents a model for the flow of CPA within articular cartilage and 

treats cartilage as a four-component system: water, CPA, salt, and solids. The 

continuum description of cartilage checks most of the boxes for the physical 

phenomena that could be important for CPA addition and removal protocol design: a 

non-dilute mass transfer description for the extracellular space, a mechanical 

representation of the tissue that allows for volume changes, and fixed electrical charges. 

However, the model does not account for the coupling between extracellular mass 

transfer and mass transfer across the cell membrane. This is an adequate assumption 

for the low cell density of cartilage but does not apply to tissues in general, specifically 

high cell density tissues. We hypothesize that such a continuum description of a tissue, 

though, can be applied to any tissue, not just cartilage. As such, the model proposed by 

Abazari et al [1] could be extended to a general tissue. To model a specific tissue, one 

would just have to change a few specific parameters for that given tissue. In order to 

move the model of Abazari et al [1] to the general case, we must first address the 

inherent coupling between extracellular mass transfer and mass transfer across the cell 

membrane. Chapter 3 presents a draft manuscript of the augmentation of the model of 

Abazari et al [1] and a first attempt at applying the general framework to a tissue outside 

of cartilage—pancreatic islets.  
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1.3.3 Chapter 4 

In Chapter 4, we move back to the foundation of Davidson et al [29] but continue on 

the specimen complexity research front. In particular, we move to the most complex 

specimen regime of organs. As has been mentioned, we seek to be able to successfully 

vitrify the most complex specimens, and organs stand as the holy grail of the field. In 

this work, though, we do not investigate mass transfer modeling but investigate some 

experimental methods that can inform models in the future. To initially probe the organ 

regime, we completed some preliminary perfusion experiments using porcine kidneys 

where we manipulated the tonicity of the perfusate used. Manipulating tonicity was 

identified in Davidson et al [29] as a key variable when designing a less toxic protocol 

when compared to conventional methods. For example, it is conventional to load CPAs 

in isotonic buffer, but it was found in Davidson et al [29] that loading CPA in hypotonic 

buffer—leveraging cell swelling—led to a novel protocol that was less toxic. As such, 

the question becomes whether this technique can be applied to more complex 

specimens. We found similar qualitative trends between kidneys and single cells 

(BPAEC) when perfused with CPA in hypotonic buffer compared to CPA in isotonic 

buffer. From this, the questions of perfusion uniformity and osmotic damage also arose. 

To address these questions, we developed methods using CT to investigate the 

distribution of CPA within the kidney and we developed a LDH assay to assess osmotic 

damage of the hypotonic treatment.  
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2. RAPID QUANTIFICATION OF MULTI-CRYOPROTECTANT TOXICITY 

USING AN AUTOMATED LIQUID HANDLING METHOD   

 

2.1 Abstract 

Cryopreservation in a vitrified state has vast potential for long-term storage of tissues 

and organs that may be damaged by ice formation. However, the toxicity imparted by 

the high concentration of cryoprotectants (CPAs) required to vitrify these specimens 

remains a hurdle. To address this challenge, we previously developed a mathematical 

approach to design less toxic CPA equilibration methods based on the minimization of 

a toxicity cost function. This approach was used to design improved methods for 

equilibration of bovine pulmonary artery endothelial cells (BPAEC) with glycerol. To 

fully capitalize on the toxicity cost function approach, it is critical to describe the 

toxicity kinetics of additional CPAs, including multi-CPA mixtures that are commonly 

used for vitrification. In this work, we used automated liquid handling to characterize 

the toxicity kinetics of five of the most common CPAs (glycerol, dimethyl sulfoxide 

(DMSO), propylene glycol, ethylene glycol, and formamide), along with their binary 

and ternary mixtures for BPAEC. In doing so, we developed experimental methods that 

can be used to determine toxicity kinetics more quickly and accurately. Our results 

highlight some common CPA toxicity trends, including the relatively low toxicity of 

ethylene glycol and a general increase in toxicity as the CPA concentration increases. 

Our results also suggest potential new approaches to reduce toxicity, including a 

surprising toxicity neutralization effect of glycerol on formamide. In the future, this 

dataset will serve as the basis to expand our CPA toxicity model, enabling application 

of the toxicity cost function approach to vitrification solutions containing multiple 

CPAs. 

 

2.2 Introduction 

The ability to cryopreserve living biological samples has had far-reaching implications 

in many fields. For example, cryopreservation is routinely used to store bacterial and 

mammalian cells, making thousands of cell types available to the research community 

[9,34,92]. In addition, cryopreservation of gametes and embryos has dramatically 

improved animal breeding, and expanded options and improved outcomes for human 



12 
 

 

assisted reproduction as well [68,107,115]. However, not all biological samples can be 

successfully cryopreserved. In particular, it remains a challenge to cryopreserve 

complex three-dimensional samples such as tissues and organs [47,48]. Breakthroughs 

in complex specimen cryopreservation would have far-reaching implications for 

medicine and public health including organ transplantation, banking tissues for 

research including drug discovery, and banking skin, blood vessels, and bone marrow 

for emergency preparedness [48,61,90]. 

 

Cryopreservation methods can be divided into two main categories: slow cooling and 

vitrification. Slow cooling involves formation of extracellular ice and is often 

successful for cryopreservation of suspension-phase cells. Vitrification is particularly 

promising for preserving specimens that are damaged by extracellular ice formation, 

such as adherent cells, tissues, and organs [49,76,94,121]. The main challenge with 

vitrification methods is that a high concentration of CPA(s) must be added to prevent 

ice formation. Exposure to high CPA concentrations can cause damage by two 

mechanisms: 1) mechanical (osmotic) damage from specimen volume excursions, and 

2) chemical (toxicity) damage from unfavorable CPA interactions with the specimen 

[29,38,40,47,86]. Osmotic damage can be overcome by slowly adding and removing 

CPA to prevent excessive volume excursions [29,38,59,86,98]. However, toxicity is 

more challenging and is considered the single biggest hurdle to vitrification 

[5,46,47,75]. 

 

Before toxicity can be reduced, it first needs to be characterized. One of the biggest 

challenges with measuring toxicity is decoupling it from osmotic damage. Several 

previous studies involve direct exposure to high CPA concentrations [4,130]. This can 

cause osmotic damage, making it impossible to distinguish whether a corresponding 

loss of viability is due to toxicity or osmotic damage. Studies that have attempted to 

decouple toxicity from osmotic damage include the chondrocyte studies of Jomha et al 

[75], Almansoori et al [5], and Fahmy et al [38]. These studies provide an in-depth 

analysis of the toxicity of CPAs to chondrocytes, including development of a 

mathematical model that enables prediction of toxicity as a function of CPA mixture 
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composition. However, the model does not allow prediction of CPA toxicity as a 

function of exposure time or temperature. The work of Fahy and colleagues [46] serves 

as another example of a large data repository that decouples osmotic damage from 

toxicity but for rabbit kidneys. They propose an interesting empirical relationship 

linking the toxicity of a vitrification solution to its composition, which may facilitate 

selection of less toxic compositions for vitrification, but again, the relationship lacks a 

time and temperature dependency. Overall, current data sets are lacking, and there is a 

need for a more comprehensive understanding of toxicity kinetics for design of CPA 

equilibration methods in which exposure time and temperature are varied.  

 

The vast majority of previous efforts to reduce CPA toxicity have used an empirical 

approach. For example, Fahy and colleagues chose to iteratively exploit CPA solution 

compositions and the corresponding perfusion pressure, temperature, and duration as a 

way to overcome CPA toxicity, and thus to vitrify rabbit kidneys [39-44,47-52]. Others 

have explored the use of additives in an attempt to reduce CPA toxicity [106,134,135]. 

While these empirical approaches have led to some promising results, including the 

long-term survival of a lone rabbit kidney after vitrification [49], there are too many 

potential solution compositions and/or equilibration methods to exhaustively test 

experimentally.  

 

Mathematical modeling can potentially address this limitation by exploring the range 

of possible CPA equilibration methods in silico and identifying promising approaches 

toward reducing CPA toxicity. A recent example is the use of diffusion predictions to 

design methods for equilibration of articular cartilage with CPAs [74,76,119]. The 

predictions were used to design a multistep vitrification protocol with the goal of 

reaching a desired minimum CPA concentration in the shortest amount of time [119]. 

Karlsson and colleagues also used mathematical modeling to minimize the duration of 

CPA equilibration in an attempt to reduce CPA toxicity [77]. However, minimizing 

CPA equilibration time does not necessarily correspond to minimizing toxicity [13]. 

Another example comes from Lawson et al [86] where heat and mass transfer were 

modeled as well as CPA toxicity. Lawson et al [86] used their model to predict cell 
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viability for several protocols of interest, but  they stopped short of using their model 

for optimization of CPA equilibration methods to minimize toxicity.  

 

In previous studies, we sought to minimize toxicity through the development of a 

toxicity cost function [11,28,29]. This cost function approach enables the estimation of 

toxicity during CPA equilibration, making it possible to mathematically optimize 

methods that minimize toxicity. We implemented the toxicity cost function approach 

for adherent BPAEC and were able to predict a novel protocol for glycerol addition 

and removal that greatly improved cell viability compared to conventional equilibration 

protocols [29]. To date, the toxicity cost function approach has only been used to design 

methods involving a single CPA. However, many vitrification protocols use multi-CPA 

mixtures in an attempt to mitigate toxicity [47,76], highlighting the need for 

development of a toxicity model that can account for multiple CPAs. Without new 

experimental methods that ease the workload burden over previous manual methods 

[29], the task of conducting the large set of experiments needed to assess multi-CPA 

toxicity would be cumbersome and difficult.  

 

In this work, we quantified the toxicity of five of the most common CPAs (glycerol, 

DMSO, propylene glycol, ethylene glycol, and formamide), as well as their binary and 

ternary mixtures, using BPAEC as a model system. For these CPA mixture types, we 

varied CPA concentration and exposure time at room temperature. In order to carry out 

these experiments, we developed methods leveraging automated liquid handling using 

a Hamilton Microlab STARlet system. The Hamilton system features a 96-channel 

head that can manipulate fluid in every well of a 96-well plate at the same time, and it 

has 8 independently moving channels that we used to prepare CPA solution reservoirs. 

As a result, automated liquid handling allowed us to randomize CPA treatment 

locations in the 96-well plate format, as well as improve the accuracy of our 

experiments and increase throughput when compared to our previous manual methods 

[29]. The resulting comprehensive toxicity data set provides a foundation for future 

expansion of the toxicity cost function approach to vitrification using CPA mixtures.  
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2.3 Methods and Materials 

2.3.1 Experimental Overview  

This work is a direct extension of our previous work [29] where we measured the 

viability of an adherent monolayer of BPAEC after exposure to glycerol while varying 

exposure time, temperature, and glycerol concentration. By varying these experimental 

conditions, we were able to characterize the toxicity rate of glycerol as a function of 

concentration and temperature. In this work, we again seek to characterize CPA toxicity 

but for more CPA types and for mixtures containing multiple CPAs. Table 2.1 details 

the experimental conditions tested. 

 

Table 2.1. CPA exposure conditions tested. 

 

Table 2.1 highlights that we tested a total of 340 experimental conditions. For each 

condition, multiple solution exchange steps are required, including washing the cells at 

the beginning and end of the protocol, as well as multi-step addition and removal of 

CPA to avoid osmotic damage. This results in thousands of pipetting operations, many 

of which need to be timed precisely. To facilitate these pipetting operations, we utilized 

an automated liquid handling instrument at the Oregon State University High 

Throughput Screening Services Laboratory. In our previous work, we conducted CPA 

exposure experiments manually, and we will discuss later on the benefits of moving to 

an automated liquid handling methodology. 

 

CPA Mixture 

Type 
Single CPA Binary Mixture Ternary Mixture 

CPAs 

Glycerol, DMSO, 

propylene glycol, 

ethylene glycol, 

formamide 

10 binary combinations 

of the 5 CPAs 

10 ternary combinations 

of the 5 CPAs 

Total CPA 

Concentrations 

(molal) 

1, 3, 5, 7, 10 
1, 3, 5, 7, 10 (equi-molal 

split between CPAs) 

7 (equi-molal split 

between CPAs) 

Times (min) 5, 10, 30, 60 

Temperature 

(oC) 
Room temperature (25 ± 2.1) 
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Although we changed our liquid handling methodology, the core principles of the 

experiment remained the same. Namely, we cultured the BPAEC in 96-well plates, 

exposed the BPAEC to various solutions through repeated aspirate/dispense operations, 

and measured viability before and after CPA exposure using the PrestoBlue assay.  

 

2.3.2 Cell Culture 

BPAEC were purchased from Cell Applications, Inc. (San Diego, CA). The cells were 

received at passage 2 and subsequently expanded to passage 5 using culture methods 

described previously [29,56], at which point they were cryopreserved in 90% culture 

medium (Dulbecco’s Modified Eagle Medium augmented with 5% fetal bovine serum, 

100 U/mL penicillin, and 100 µg/mL streptomycin [29,56]) and 10% DMSO (Corning 

Inc., Corning, NY). These cryopreserved cells were used for all experiments. For each 

experiment, a vial of cells was thawed (~106 cells/vial), seeded into a T-75 flask 

containing 15 mL of culture medium, and cultured for 24-30 h, at which point the cells 

had reached about 80% confluency. At that time, the cells were harvested and seeded 

into black clear bottom 96-well plates (Greiner Bio-One, Monroe, NC) at a density of 

1500 cells/well. The cells were cultured in the well plates for two days, at which point 

an initial PrestoBlue assay was performed. The cells were then treated with CPA 

solutions and cultured for an additional 20-24 h before performing the final PrestoBlue 

assay. This approach allowed us to maximize confluency to increase the signal in the 

PrestoBlue assay, while making sure that confluency did not reach 100% at the end of 

the experiment on the third day. 

 

2.3.3 Experimental Solutions for CPA Addition and Removal  

We employed multi-step CPA addition and removal to mitigate osmotic damage, as 

described in our previous study [29]. Table 2.2 shows the necessary steps for maximum 

CPA concentrations ranging between 1 and 10 molal, including the time the cells were 

exposed to each solution (see Appendix A for how CPA addition and removal steps 

were designed). Solutions were prepared in a similar fashion to our previous work [29]. 

The following chemicals were used to prepare the buffer solutions: MgCl2·6H2O 

(VWR Chemicals BDH, Radnor, PA), CaCl2·2H2O (Fisher Chemical, Waltham, MA), 
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NaCl (VWR Chemicals BDH, Radnor, PA), KCl (EMD Millipore, Burlington, MA), 

and HEPES (VWR Chemicals BDH, Radnor, PA). The following CPAs were used: 

glycerol (Macron Fine Chemicals, Radnor, PA), DMSO (Fisher Chemical, Waltham, 

MA), propylene glycol (VWR Chemicals BDH, Radnor, PA), ethylene glycol (Macron 

Fine Chemicals, Radnor, PA), and formamide (Sigma-Aldrich, St. Louis, MO). 

 

Table 2.2. Multi-step methods for CPA exposure. For each step, the solution 

composition is listed first followed by the exposure time in parentheses. 

 

 

 

As shown in Table 2.2, CPA solutions were prepared in either isotonic or hypertonic 

buffer, at CPA concentrations ranging from 1 molal to 10 molal. This results in a total 

of 155 distinct CPA solutions. Rather than make 155 solutions from scratch, we 

prepared the solutions by diluting stock solutions as described in our previous work 

[29]. To make all of the 155 unique solutions, we only had to make 7 different stocks: 

isotonic HEPES buffered saline, hypertonic HEPES buffered saline, and 10 molal 

isotonic stocks of each of the 5 CPAs. All stock solutions were pH-adjusted to 7.3 ± 

0.1 and sterile filtered. 

 

Max 

CPA 

Conc. 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 

1 

molal 

Isotonic 

Buffer 

(2.5 min) 

1 molal 

CPA in 

Isotonic 

Buffer 

(Variable) 

Hypertonic 

Buffer 

(3 min) 

Isotonic 

Buffer 

(5 min) 

Media 

(20-24 h) 
    

3 

molal 

Isotonic 

Buffer 

(2.5 min) 

1 molal 

CPA in 

Isotonic 

Buffer 

(4 min) 

3 molal 

CPA in 

Isotonic 

Buffer 

(Variable) 

1 molal 

CPA in 

Hypertonic 

Buffer 

(4.5 min) 

Hypertonic 

Buffer 

(4.5 min) 

Isotonic 

Buffer 

(5 min) 

Media 

(20-24 h) 
  

5 

molal 

Isotonic 

Buffer 

(2.5 min) 

1 molal 

CPA in 

Isotonic 

Buffer 

(4 min) 

3 molal 

CPA in 

Isotonic 

Buffer 

(2 min) 

5 molal 

CPA in 

Isotonic 

Buffer 

(Variable) 

3 molal 

CPA in 

Hypertonic 

Buffer 

(6.5 min) 

1 molal 

CPA in 

Hypertonic 

Buffer 

(4.5 min) 

Hypertonic 

Buffer 

(4.5 min) 

Isotonic 

Buffer 

(5 min) 

Media 

(20-24 h) 

7 

molal 

Isotonic 

Buffer 

(2.5 min) 

1 molal 

CPA in 

Isotonic 

Buffer 

(4.5 min) 

3 molal 

CPA in 

Isotonic 

Buffer 

(4.5 min) 

7 molal 

CPA in 

Isotonic 

Buffer 

(Variable) 

3 molal 

CPA in 

Hypertonic 

Buffer 

(7 min) 

1 molal 

CPA in 

Hypertonic 

Buffer 

(7 min) 

Hypertonic 

Buffer 

(5 min) 

Isotonic 

Buffer 

(5 min) 

Media 

(20-24 h) 

10 

molal 

Isotonic 

Buffer 

(2.5 min) 

1 molal 

CPA in 

Isotonic 

Buffer 

(4.5 min) 

3 molal 

CPA in 

Isotonic 

Buffer 

(10.5 min) 

10 molal 

CPA in 

Isotonic 

Buffer 

(Variable) 

3 molal 

CPA in 

Hypertonic 

Buffer 

(12.5 min) 

1 molal 

CPA in 

Hypertonic 

Buffer 

(7 min) 

Hypertonic 

Buffer 

(5 min) 

Isotonic 

Buffer 

(5 min) 

Media 

(20-24 h) 
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Isotonic HEPES buffered saline was made as in our previous work [29]. The osmolality 

was measured to be within 2% of 300 mOsm on an Advanced Micro Osmometer Model 

3300 (Advanced Instruments, Norwood, MA). The water mass concentration was 

determined by measuring the density of the solution and multiplying by the known 

water mass fraction, resulting in a value of 1 kg/L. The hypertonic HEPES buffered 

saline was made in the same way as its isotonic counterpart, but extra NaCl was added 

to bring the osmolality to 1200 mOsm, assuming a dissociation factor of 1.68 [29]. The 

measured osmolality was within 5% of 1200 mOsm. The water mass concentration of 

the hypertonic HEPES buffered saline was 0.97 kg/L. 

 

For the CPA solutions in isotonic buffer, the concentration of nonpermeating solute 

was adjusted to ensure that the equilibrium cell volume was equal to the normal 

physiological volume. This nonpermeating solute concentration was calculated as 

before [29], and the 10 molal stocks were made by adding pure CPA to isotonic HEPES 

buffered saline with an additional amount of NaCl to reach the desired nonpermeating 

solute concentration. The necessary calculations for dilution of the stock solutions were 

made using their water mass concentrations, as described in our previous study [29]. 

The water mass concentrations of the 10 molal CPA stock solutions were measured to 

be 0.59 kg/L for glycerol, 0.60 kg/L for DMSO, 0.58 kg/L for propylene glycol, 0.66 

kg/L for ethylene glycol, and 0.72 kg/L for formamide.  

 

To make a CPA solution in isotonic buffer, 10 molal CPA stock solutions were diluted 

with isotonic HEPES buffered saline. The resulting CPA solution has a nonpermeating 

solute concentration that allows the cells to equilibrate at the normal physiological 

volume. For the CPA solutions in hypertonic buffer, the same dilution strategy was 

used but with hypertonic HEPES buffered saline. The hypertonic nature of the solution 

is not intended to allow the cell to equilibrate at its physiological volume but to 

counteract cell swelling during CPA removal.  
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2.3.4 Automated Liquid Handling 

2.3.4.1 Overview 

For the CPA exposure experiments, a Hamilton Microlab STARlet liquid handler 

(Hamilton Company, Reno, NV) was employed. The Hamilton system has both a 96-

channel head and 8 independently moving channels that were used to conduct 

experiments. To carry out the experimental steps shown in Table 2.2, fluid was 

transferred from a source plate to the cell-seeded assay plate using the 96-channel head. 

Multiple source plates were needed that contained the necessary solutions for each step 

of the CPA addition and removal process. These source plates were prepared using the 

8 independently moving channels. Figure 2.1 shows a picture of the Hamilton system 

and highlights its key features, along with demonstrating the fluid transfer scheme. 

 

Figure 2.1. Pictures showing the key features of the Hamilton Microlab STARlet liquid 

handler. The 8 independently moving channels were used to fill source plates (A), and 

the 96-channel head was used to transfer fluid from a source plate to an assay plate (B).  

 

2.3.4.2 Treatment Layouts on a 96-Well Assay Plate 

With the capabilities of the Hamilton system, we were able to randomize the 

experimental conditions on a well-by-well basis on the assay plate. Plate layout maps 

were generated with a custom MATLAB script. We included 5 replicates per 

experimental condition, allowing us to have a total of 19 experimental conditions on a 

plate. Fifteen experimental conditions were dedicated to different CPA treatments, with 
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one treatment having a randomly assigned 6th replicate. The remaining four 

experimental conditions were used for a positive control, negative control, and two 

different background media controls (see Fig. 2.3 in Results and Discussion for a plate 

layout example).  

 

The positive control was subjected to the same liquid handling as a CPA treatment, but 

the fluid used at every step was isotonic buffer, with the exception of the media wash 

in the final step. The negative control was washed with isotonic buffer during the first 

step and then had no liquid handling until the penultimate step, at which point 70% 

ethanol in water was introduced. The media control wells were not seeded with cells 

and were kept in the same position on every plate to streamline the seeding process. 

One media control was subjected to the same liquid handling as the positive control. 

The other media control was only subjected to a water wash, and fresh culture medium 

was only added right before the PrestoBlue assay was conducted. The first media 

control served as the background fluorescence to subtract off for the assay, and the 

second media control serves as a check for contamination. The Hamilton system is open 

to the atmosphere, and the experiment takes place in semi-sterile conditions. If 

contamination were an issue and a resazurin reducing contaminant was present, we 

would expect a difference in the fluorescence signal to be seen between the two media 

controls. In our experiments, we did not see any spikes in the fluorescence signal of the 

second media control when compared to the first, nor did we see any evidence of 

contamination from random well checks under the microscope. 

 

2.3.4.3 Preparation of 96-Well Source Plates 

To enable the appropriate solution to be dispensed into each well at each step of the 

CPA addition and removal process, deep well plates were prepared containing solutions 

that mapped to the randomized treatment conditions of the assay plate. We refer to 

these deep well plates as source plates. A separate source plate was needed for each 

step in the CPA addition and removal process. The wash steps that do not include a 

CPA have a simple enough layout to fill source plates by manual pipetting, which was 

done under sterile conditions. However, source plates that require a CPA solution are 
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nearly impossible to fill by hand because 16 different solutions with 5-6 replicates each 

must be dispensed into a randomized well. To overcome this challenge, we used the 

Hamilton system to fill the source plates that contained CPA solutions. The Hamilton 

system has 8 channels that can move individually, allowing automated control of well-

by-well filling, and the 8 channels provide the means to successfully execute an 

experiment with randomized treatment locations. A custom MATLAB script was 

written that takes a plate map and generates the necessary commands for the Hamilton 

to fill a randomized source plate.  

 

2.3.4.4 Automated Addition and Removal of CPA   

After the initial PrestoBlue assay, the assay plate was immediately moved to the 

Hamilton system to carry out the subsequent liquid handling steps. For every 

experimental step, the following core operations were performed for every well: 1) 

aspirate, 2) dispense 250 µL, 3) aspirate, and 4) dispense 250 µL. We optimized the 

settings on the Hamilton system to minimize the amount of dead volume after 

aspiration while not disturbing the cell monolayer, which resulted in using an aspirate 

and dispense flowrate of 20 µL/s and a tip height offset from the bottom of the well of 

500 µm.  

 

Due to the nature of automated liquid handling, the pipette tip has to approach normal 

to the bottom of the well, resulting in a larger dead volume when compared to manual 

pipetting where the user can tilt the plate and slide the pipette tip down the side of the 

well. We measured a high-end well dead volume of 40 µL after aspiration, with the 

majority of dead volumes falling in the range of 20-40 µL. Using the high-end dead 

volume, the cells are exposed to approximately 86% of the intended change in fluid 

composition (by volume) after the first dispense and approximately 98% after the 

second dispense. We recorded the time the cells were exposed to a given fluid as the 

time between the first dispense from one source plate to the first dispense from the 

subsequent source plate. In the final dispense step on the Hamilton system, we 

transferred 180 µL of media (rather than 250 µL). This was done to achieve a total 

media volume of about 200 µL, the desired volume for the PrestoBlue assay.  
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2.3.5 Cell Viability Assay 

Cell viability was assessed using PrestoBlue (Invitrogen, Waltham, MA) right before 

CPA exposure and then 20-24 h after CPA exposure. The 20-24 h recovery period in 

culture before the second PrestoBlue assay was included to allow time for apoptosis 

induced by CPA exposure to occur [8,26]. The assay was conducted in 200 µL of 

culture medium and 20 µL of PrestoBlue reagent. We measured fluorescence on a 

Synergy 4 plate reader (BioTek, Winooski, VT) using excitation and emission filters 

of 528 nm and 600 nm, respectively. The plate reader was pre-heated to 37 °C and held 

at this temperature throughout the assay. PrestoBlue was first added to the assay plate 

at room temperature, and then the plate was transferred to the plate reader and given 5 

min to reach 37 °C, at which point the fluorescence was measured. After an additional 

20 min the fluorescence was measured again, giving a 20 min development time. As in 

our previous study [29], we defined the cell viability as the final fluorescence after CPA 

exposure divided by the initial fluorescence before CPA exposure, normalized to the 

average fluorescence ratio for the positive control: 

 

viability =
𝐹f𝐹i

P

𝐹i𝐹f
P 2.1 

 

where 𝐹 is the background-corrected fluorescence signal from the plate reader, the 

subscripts i and f denote the initial and final PrestoBlue assays, and superscript P 

denotes the positive control.  

 

2.3.6 Cell Viability Data Analysis 

2.3.6.1 Determination of Toxicity Rates  

As in our previous work [29], we used a first-order kinetic model for analysis of our 

viability data to determine the toxicity rate. In particular, we modeled the change in the 

number of viable cells 𝑁 as follows: 

 

𝑑𝑁

𝑑𝑡
= 𝜆𝑁 2.2 
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where 𝜆 is the sum of growth and toxicity rates. From the initial time 𝑡i to the final time 

𝑡f, we assumed a constant cell growth rate. The toxicity rate was assumed to vary 

depending on the CPA type and concentration. As an example of our data analysis 

method, consider an experiment with a maximum CPA concentration of 3 molal (see 

Fig. 2.2). This experiment involves exposure to a 1 molal CPA concentration during 

CPA addition and removal. Our data analysis method accounts for the different toxicity 

rates during exposure to each of these CPA concentrations.  

 

 

 

 

 

 

 

Figure 2.2. Timeline for an experiment with a maximum CPA concentration of 3 

molal, showing the CPA addition and removal steps in relation to the PrestoBlue 

assays. 

 

Figure 2.2 details that we have five distinct time periods, three of which are CPA 

exposure time periods. If we integrate Equation 2.2 for the five time periods with the 

convention 𝑡i = 0, we produce the following equations: 

 

𝑁1

𝑁i
= exp(𝛼𝑡1), 2.3𝑎 

 

𝑁2

𝑁1
= exp((𝛼 − 𝑘1)(𝑡2 − 𝑡1)), 2.3𝑏 

 

𝑁3

𝑁2
= exp((𝛼 − 𝑘3)(𝑡3 − 𝑡2)), 2.3𝑐 

 

𝑁4

𝑁3
= exp((𝛼 − 𝑘1)(𝑡4 − 𝑡3)), 2.3𝑑 
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𝑁f

𝑁4
= exp(𝛼(𝑡f − 𝑡4)), 2.3𝑒 

 

where α is the growth rate, 𝑘1 is the toxicity rate for 1 molal CPA exposure, and 𝑘3 is 

the toxicity rate for 3 molal CPA exposure. To isolate 𝑘3, we must first eliminate the 

growth rate. To do this, we can use the positive control, which is not exposed to CPA 

and hence does not exhibit CPA toxicity. For the positive control, we have from 𝑡i to 

𝑡f: 

𝑁f
P

𝑁i
P = exp(𝛼𝑡f). 2.4 

 

If we multiply Equations 2.3a-2.3e and divide by Equation 2.4, we arrive at 

 

𝑁f𝑁i
P

𝑁i𝑁f
P = exp(−𝑘1(𝑡4 − 𝑡3 + 𝑡2 − 𝑡1) − 𝑘3(𝑡3 − 𝑡2)). 2.5 

 

The left-hand side of Equation 2.5 is equivalent to the cell viability as defined in 

Equation 2.1, since the fluorescence signal 𝐹 is expected to be proportional to the 

number of viable cells 𝑁. The above equation includes two toxicity rates: 𝑘1 and 𝑘3. 

The value of 𝑘1 was first determined from experiments with a maximum CPA 

concentration of 1 molal (see Table 2.2), leaving 𝑘3 as the only unknown toxicity rate.  

 

To find the toxicity rate 𝑘3, we performed non-linear regression in MATLAB utilizing 

a least squares approach. Specifically, Equation 2.6 was used for the regression, which 

is a rearrangement of Equation 2.5: 

 

𝑁f𝑁i
P

𝑁i𝑁f
P exp(𝑘1(𝑡4 − 𝑡3 + 𝑡2 − 𝑡1)) = exp(−𝑘3(𝑡3 − 𝑡2)). 2.6 

 

We refer to the quantity on the left-hand side of Equation 2.6 as the adjusted cell 

viability. The adjusted viability was plotted versus the duration of exposure to 3 molal 

CPA (i.e., 𝑡3 − 𝑡2), which we varied according to the exposure times of Table 2.2 (5, 
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10, 30, and 60 min). The adjusted cell viability is a convenient quantity for examining 

toxicity during exposure to the maximum CPA concentration, as its value always starts 

at 1. 

 

For higher CPA concentration exposures (5, 7, and 10 molal), the same approach was 

used but the value of 𝑘3 in conjunction with 𝑘1 is needed to find the corresponding 

toxicity rate. For the most toxic CPA treatments, where cell viability was less than 1% 

for even the 5 min CPA exposure, the toxicity rate could not be accurately determined.   

 

In many cases, exposure to 1 molal or 3 molal CPA did not appreciably decrease cell 

viability, resulting in a best-fit toxicity rate that was not statistically different from zero. 

In these cases, we set the toxicity rate to zero for subsequent analysis. To assess this, 

we performed an F-test to estimate the p-value for the null hypothesis that the toxicity 

rate was equal to zero. Toxicity rates were only assumed significant for p ≤ 0.05.  

 

2.3.6.2 Outlier Analysis 

For outlier analysis, we employed Tukey’s (boxplot) method [125]. Outliers are 

identified if they are outside of the following range: 

 

𝑄1 − (𝑘 ∗ 𝐼𝑄𝑅) ≤ 𝑥 ≤ 𝑄3 + (𝑘 ∗ 𝐼𝑄𝑅) 2.7 

 

where 𝑄1 is the first quartile, 𝑄3 is the third quartile, 𝐼𝑄𝑅 is the inter-quartile range 

which is the difference between the third and first quartiles, 𝑘 is a constant, and 𝑥 

represents a specific sample value. Quartiles are found through the standard fourths 

method presented by Tukey. The value of 𝑘 has been historically presented as 1.5 as a 

general rule of thumb. We opted to use of value of 2.5, which is more conservative and 

identifies less data points as outliers [20,55,71,125].  

 

There are several samples in our data set that show ~0% average viability (e.g., 

exposure to 10 molal formamide). These samples are prone to erroneous identification 

of outliers. As such, we implemented outlier analysis only for samples that showed at 
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least 1% average viability. If an outlier was identified in a positive control, the CPA 

treatments were normalized against the positive control sample excluding the outlier. 

Overall, 3.9% of the entire data set was labeled as outliers. This is comparable to the 

work of Hoaglin et al [71], which found approximately 8.6% of data to be labeled as 

outliers for 𝑘 = 1.5 and 3.3% of data to be labeled as outliers for 𝑘 = 3.  

 

2.4 Results and Discussion 

2.4.1 Benefits of Automated Liquid Handling 

The use of automated liquid handling afforded us several benefits over our past work 

[29] that utilized manual pipetting. These benefits can be broken down into three main 

categories: 1) consistency of pipetting, 2) increased throughput for faster data 

generation, and 3) the ability to increase the complexity of the experimental workflow, 

including randomization of the experimental groups within the well plate.  

 

One of the biggest changes we made to our experimental setup was randomizing the 

locations of experimental conditions on a 96-well assay plate. This required preparation 

of multiple source plates containing appropriate wash solutions in randomized 

locations, a task that would have been very challenging to accomplish manually. Figure 

2.3 (top left panel) shows a schematic of a representative 96-well plate where we tested 

15 different CPA treatments. By randomizing locations on the well plate, we can 

distribute any systematic bias associated with location between treatments. Systematic 

bias has been reported due to higher rates of evaporation near the edges of the well-

plate [91,131], and can also occur due to pipetting inconsistencies when using a multi-

channel pipette. Overall, randomization of treatments within a well plate helps to 

improve results by mitigating location bias [83,84,96,117].  

 

The automated liquid handling system also enables improved consistency compared to 

manual pipetting. Pipetting operations can yield erroneous results through accidental 

mechanical damage to cultured cells and/or imprecise aspirate/dispense volumes 

[65,87]. In some cases, there can even be doubt if the pipetting operation was carried 

out [93]. With the automated liquid handling system, we know the exact location of the 
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pipette tip in relation to the cell monolayer, and the aspirate/dispense flowrate is 

precisely controlled. This enabled us to optimize settings to ensure that cells were not 

sheared from the surface during pipetting, as illustrated in Figure 2.3 (top right panel). 

In addition, there is a digital record that the pipetting operation was carried out, and the 

timing of each pipetting operation is controlled.  

 

Taken together, plate randomization and improved pipetting consistency are expected 

to reduce variability and lead to more accurate results. These improvements are 

illustrated in the bottom panels of Figure 2.3, which compare viability data we obtained 

in the current work to the corresponding results from our previous work [29]. A 

noticeable difference can be seen in the error bars: the average standard deviation in 

our previous work was 12.9% [29], compared to 6.0% for our current work. In addition, 

we observed a more substantial decrease in viability after exposure to high glycerol 

concentrations in our previous work, especially at early time points [29]. One 

explanation for this difference is the removal of viable cells through manual pipetting, 

either due to accidental contact between the pipette tip and the culture surface or 

excessive aspirate/dispense rates. As a result, in our current work, we have measured 

toxicity rates for glycerol to be about one-half of those in our previous work [29]. 

Overall, increased pipetting consistency and the ability to randomize the location of 

treatments has allowed us to develop a more accurate methodology for measuring CPA 

toxicity.  

 

As a final benefit of automated liquid handling over manual liquid handling, we not 

only can conduct more complicated experiments with higher precision, but we can 

conduct them more quickly resulting in higher throughput. As a simple comparison 

between the two liquid handling approaches, we can compare the number of pipetting 

operations between a manual 12-channel pipette and the 96-channel head of the 

Hamilton system. With the 96-channel head, we can perform about ~8x as many 

pipetting operations in the same amount of time as a 12-channel pipette, which by itself, 

would be expected to increase throughput ~8x. However, with manual pipetting, the 

user also has to manipulate the assay plate and source plates, perform multiple tip 
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changes during a step, and manually keep track of pipetting operations and their 

timing—all of which takes more time than automated liquid handling. Over the course 

of an experimental day, we also have to consider an increase in user fatigue from having 

to carry out so many manual operations, which could further slow the process towards 

the latter part of a workday. In the end, automated liquid handling provides a platform 

to conduct CPA exposure experiments in a faster, more precise, and more robust 

manner when compared to manual pipetting.  

 

 

 

Figure 2.3. Automated liquid handling reduces experimental variability and enables 

high-throughput measurement of CPA toxicity. Top left panel: schematic of a 

randomized 96-well plate map. The cell-free media controls (white wells) are in A1-

E1 and A12-E12. The remaining wells are seeded with cells and treatments are 
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randomly distributed throughout the rest of the plate. These include the positive 

controls (dark green), negative controls (red), and CPA treatments (15 unique colors). 

Top right panel: side by side comparison of a cell monolayer before (A) and after (B) 

optimizing the pipetting settings. There is a distinct hole in the monolayer in the before 

image with red arrows indicating the boundary. The images were taken under different 

lighting conditions and have been contrast enhanced. Bottom panels: comparison of the 

cell viability data between our previous [29] and current work for exposure to 1, 3, 5, 

and 7 molal glycerol. Error bars represent the standard deviation. We subjected our 

previous data set to the outlier analysis described in the methods section of the current 

study. 

 

2.4.2 Cell Viability Decreases after Exposure to CPA 

The goal of this study was to quantify the toxicity of five of the most common CPAs: 

glycerol, DMSO, ethylene glycol, propylene glycol, and formamide. The bottom panels 

of Figure 2.3 show representative cell viability data after exposure to glycerol. Cell 

viability decreased as the glycerol concentration increased and as exposure time 

increased. Similar trends were observed for the other CPAs. While this loss of cell 

viability is consistent with CPA toxicity, there are other potential explanations, 

including cell detachment from the culture surface and osmotic damage.  

 

2.4.3 Are Cell Losses Caused by Cell Detachment?  

Although we have confirmed that negligible cell detachment from the culture surface 

occurs in the positive control wells, it is possible that exposure to CPA weakens cell 

adhesion leading to loss of viable cells into the wash solution during liquid handling. 

To test this, we collected the cells in the solution phase in each of the CPA removal 

steps after exposure to 7 molal CPA for 60 min. These cells were collected into a new 

well plate which mapped to the original assay plate containing the cultured cells. We 

refer to this new well plate as the solution plate. After each wash step, the recovered 

solution was added to the solution plate and centrifuged to pellet the cells, and the 

excess fluid was then removed before the fluid from the next step was added. This 

process ensures that the cells still received the intended CPA removal procedure (which 

was designed to prevent osmotic damage). After completing the CPA removal process, 

the pelleted cells in the solution plate were resuspended in media and placed alongside 

the original assay plate in the incubator for recovery in culture. Figure 2.4 shows that 
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there is no viability signal for the solution plate for any treatment, whereas the viability 

of the original plate ranged from 0% to around 80%. We also examined the wells under 

the microscope, which revealed that cells were present in the solution plate. This 

indicates that cells were collected into the solution phase during the CPA removal 

process, but that the cells were not viable or the number of viable cells was below the 

detection threshold. Overall, our results show that cell losses after CPA exposure 

cannot be attributed to detachment of viable cells from the culture surface. 

 

Figure 2.4. Comparison of viability between cells in the original well plate and those 

lost into the solution phase during CPA removal after exposure to 7 molal CPA 

solutions for 60 min. CPAs are abbreviated as follows: glycerol (Gly), propylene glycol 

(PG), ethylene glycol (EG), and formamide (FA). Solution from each wash step during 

CPA removal was collected into a new well plate (solution plate), which was cultured 

alongside the original plate for the assessment of viability. The viability of solution 

phase cells was negligible. Error bars represent the standard error of the mean.  

 

2.4.4 Are Cell Losses Caused by Osmotic Damage? 

CPA exposure can cause osmotic damage due to cell volume changes resulting from 

the flow of water and CPA across the cell membrane. Out of the five CPAs tested, 

glycerol has by far the lowest membrane permeability [56,62,110,116,129] and 
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consequently is expected to cause the largest volume changes. As such, we designed 

our loading and removal procedures around cell volume predictions for glycerol. In 

particular, we designed multi-step procedures to ensure that the predicted cell volumes 

did not exceed the osmotic tolerance limits [29] (see Appendix A for more details). We 

assessed the potential for osmotic damage in both the CPA loading and removal 

regimes from an experimental and theoretical point of view, as described below. 

 

2.4.4.1 CPA Loading 

CPA loading typically causes cell shrinkage because water leaves the cells faster than 

CPA can enter. In our experiments, the conditions most likely to result in osmotic 

damage during CPA loading are exposure to either 7 molal or 10 molal glycerol. Figure 

2.5 shows the predicted cell volume response during each of the loading steps for 

maximum glycerol concentrations of 7 and 10 molal (solid lines of panels A and B, 

respectively). For both glycerol concentrations, the minimum predicted volume is 

about 30% of the physiological cell volume, which is well above the osmotic tolerance 

limit. Also shown in Figure 2.5 are conservative predictions using a glycerol 

permeability 2x lower than the published value (dashed lines) [56]. While more 

extensive shrinkage is predicted in this case, the minimum predicted volume still 

exceeds the osmotic tolerance limit. These theoretical predictions demonstrate that the 

CPA loading methods that we used in our experiments are not expected to cause 

osmotic damage.  
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Figure 2.5. Cell volume predictions for multi-step glycerol loading procedures for 

exposure to 7 and 10 molal glycerol. Solid lines show predictions using published 

permeability values [56], while the dashed lines show predictions using a 2x lower 

glycerol permeability. The red line in both panels shows the lower osmotic tolerance 

limit [29]. In all simulations, a temperature of 25 °C was used. 

 

Our experimental data also suggests that osmotic damage does not occur during CPA 

loading. Cell viability remained high (>87%) after exposure to 7 molal or 10 molal 

glycerol for up to 10 min, using the multi-step CPA addition processes depicted in 

Figure 2.5. Since the maximum cell shrinkage after exposure to 7 or 10 molal glycerol 

is predicted to occur in less than 1 min, osmotic damage from CPA loading should 

manifest itself in both 5 and 10 min exposures to glycerol. Therefore, the high cell 

viability observed for the 5 and 10 min glycerol exposures provides strong evidence 

that osmotic damage during CPA loading is negligible.  

 

2.4.4.2 CPA Removal 

During CPA removal, osmotic damage due to excessive cell swelling is the main 

concern. The potential for osmotic damage depends on the amount of CPA in the cell, 

which increases with the CPA concentration and exposure time. In our experiments, 

the condition most likely to cause osmotic damage during CPA removal is exposure to 

10 molal glycerol for 60 min. This condition completely killed the cells, resulting in a 

viability of less than 1%. The condition next most likely to cause osmotic damage is 

exposure to 7 molal glycerol for 60 min, which resulted in a viability of 18%. In order 
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to rule out osmotic damage as the main contributor to this loss in viability, we evaluated 

the 7 molal 60 min treatment using a more conservative CPA removal process in which 

the duration of each step was increased to 15 min (2-3 times longer than the standard 

procedure). As shown in Figure 2.6, the conservative CPA removal procedure is 

predicted to decrease the amount of cell swelling (panel B) compared to the standard 

procedure (panel A), which would be expected to reduce osmotic damage. However, 

the cell viability after CPA removal using the conservative method was only 15.5% ± 

2%, which is nearly identical to the viability of 18.0% ± 0.7% obtained using the 

standard method (p-value of 0.27 for a two-sample t-test). This suggests that the loss 

of viability after 60 min exposure to 7 molal glycerol is due to toxicity and not osmotic 

damage.  

 

Comparison of the results for 30 min and 60 min exposure to 7 molal glycerol provides 

further evidence that the observed cell losses cannot be attributed to osmotic damage. 

The viability was relatively high at 83% after a 30 min exposure to 7 molal glycerol 

but reduced to 18% after exposure to glycerol for 60 min. Cell volume predictions 

suggest that this reduction in viability is not caused by osmotic damage. As shown in 

Figure 2.6, the maximum predicted cell volume was actually higher after 30 min 

exposure to glycerol (using the standard CPA removal procedure) than after 60 min 

exposure using the more conservative CPA removal procedure. This indicates that 60 

min exposure to glycerol is actually expected to result in less osmotic damage (when 

the conservative CPA removal process is used) and rules out osmotic damage as the 

cause of the lower viability.  
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Figure 2.6. Cell volume predictions for multi-step CPA removal after exposure to 7 

molal glycerol. Solid lines show predictions using published permeability values [56], 

while the dashed lines show predictions using a 2x lower glycerol permeability. Red 

lines show the osmotic tolerance limits [29]. Panel A shows the cell volume predictions 

after 60 min exposure to glycerol using standard hold times for each CPA removal step, 

while Panel B shows predictions when the step times are increased to 15 min each. In 

Panel C, cell volume predictions are shown after a 30 min exposure using standard hold 

times during CPA removal. In all simulations, a temperature of 25 °C was used. 

 

 

The analysis above demonstrates that glycerol toxicity, rather than osmotic damage, is 

the most likely cause of the reduced cell viability after exposure to 7 molal glycerol for 

60 min. Therefore, toxicity is likely the major cause of the reduced viability after 

exposure to 10 molal glycerol as well. To evaluate the potential for osmotic damage 

after exposure to 10 molal glycerol, we examined cell volume predictions during CPA 

removal (not shown). The maximum predicted cell volume after 30 min exposure to 10 

molal glycerol is less than the maximum predicted cell volume after exposure to 7 

molal glycerol for 60 min, which suggests that osmotic damage is negligible in this 

case. This only leaves the experimental group with 60 min exposure to 10 molal 

glycerol with potential osmotic damage. We cannot conclusively rule out osmotic 

damage in this case because the maximum predicted cell volume is higher than that for 

60 min exposure to 7 molal glycerol. It is also difficult to experimentally assess osmotic 

damage after 60 min exposure to 10 molal glycerol because the resulting viability was 
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very low (<1%), probably as a result of glycerol toxicity. Nonetheless, osmotic damage 

is unlikely because the glycerol removal process was designed to maintain cell volumes 

within the osmotic tolerance limits based on predictions using the published glycerol 

permeability [56]. Since the other CPAs have a much higher permeability than glycerol, 

osmotic damage is even less likely for the other CPAs.  

 

2.4.5 Cell Losses are Caused by CPA Toxicity 

Our results suggest that CPA toxicity is the main cause for the observed reduction in 

cell viability after exposure to CPA. We quantified toxicity by fitting a first-order 

kinetic model to the cell viability data, resulting in best-fit toxicity rates for each CPA 

mixture type at various concentrations. Figure 2.7 presents viability data and the 

corresponding toxicity rate fits for solutions containing a single CPA and for binary 

CPA mixtures (see Research Data section for the full data set). Overall, the fits are a 

reasonable match for the data, and the best-fit toxicity rate provides a convenient metric 

for comparing the toxicity of different CPA solutions.  
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Figure 2.7. Cell viability after exposure to single CPA solutions and binary CPA 

mixtures. Lines show the best-fit toxicity rate models. Error bars represent the standard 

error of the mean. CPAs are abbreviated as follows: glycerol (Gly), propylene glycol 
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(PG), ethylene glycol (EG), and formamide (FA). Viability was adjusted to account for 

toxicity during CPA addition and removal as described in the methods section (see Eq. 

2.6). 

 

From the toxicity rate data, some common trends in CPA toxicity can be seen. Figure 

2.8 compares the toxicity rates for solutions containing a single CPA. Our results show 

that ethylene glycol is one of the least toxic CPAs and formamide is one of the most 

toxic, which are common findings in previous studies of CPA toxicity 

[5,22,38,75,130]. However, there is a strong concentration dependence of the toxicity 

rates that is more nuanced. Formamide is the most toxic CPA up to a concentration of 

5 molal, but at higher concentrations, propylene glycol toxicity increases dramatically 

and actually exceeds that of formamide. High propylene glycol toxicity has been 

reported in the oocyte and chondrocyte studies of Szurek and Eroglu [122], Jomha et 

al [75], and Almansoori et al [5]. Comparison of our results for propylene glycol and 

formamide reveals differing effects of concentration on the toxicity rate, which may 

reflect different mechanisms of CPA toxicity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Best-fit toxicity rates for solutions containing a single CPA as a function 

of CPA concentration. It was not possible to measure a toxicity rate for propylene 

glycol or formamide at a concentration of 10 molal, as no viability was measured for 

any exposure time. Error bars represent the 95% confidence intervals of the best-fit 

toxicity rates. 
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Examination of the toxicity rates for the binary CPA mixtures also revealed some 

interesting trends, as shown in Figure 2.9. We split Figure 2.9 into two panels, with one 

panel showing all of the binary mixtures without propylene glycol and the other panel 

showing the mixtures with propylene glycol. The binary mixtures with propylene 

glycol exhibited a dramatic increase in toxicity at higher concentrations, similar to the 

spike in toxicity that was observed for propylene glycol on its own. In Almansoori et 

al [5], they also show that multi-CPA mixtures with propylene glycol are particularly 

toxic. Figure 2.9 also shows that glycerol + ethylene glycol is a favorable binary 

mixture, which has also been shown in Jomha et al [75]. 

 

Figure 2.9. Best-fit toxicity rates for binary CPA mixtures. Left panel: binary CPA 

mixtures not containing propylene glycol. Right panel: binary CPA mixtures 

containing propylene glycol. Propylene glycol mixtures were the most toxic, and the 

toxicity rate axis scales are adjusted accordingly between the two panels. In the right 

panel, no viability was measured after exposure to 10 molal mixtures of propylene 

glycol + ethylene glycol and propylene glycol + formamide for any of the exposure 

times and therefore no toxicity rate could be measured. Error bars represent the 95% 

confidence intervals of the best-fit toxicity rates.  

 

Figure 2.10 compares toxicity rates for single CPA solutions, binary mixtures, and 

ternary mixtures at a total CPA concentration of 7 molal. Our results highlight the 

general decrease in toxicity as more CPAs make up a mixture, as has been observed in 

several previous studies [4,5,46,47,50,75]. Figure 2.10 also showcases that some CPA 

interactions in a mixture are more beneficial than others. Within the ternary 
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combinations shown in Figure 2.10, glycerol + DMSO + ethylene glycol was found to 

be the least toxic. This ternary CPA mixture was also found to be favorable in Jomha 

et al [75] and Almansoori et al [5]. 

 

Figure 2.10. Best-fit toxicity rates for single CPA solutions, binary mixtures, and 

ternary mixtures at a total CPA concentration of 7 molal. CPAs are abbreviated as 

follows: glycerol (Gly), propylene glycol (PG), ethylene glycol (EG), and formamide 

(FA). To determine the toxicity rates for the ternary solutions it was assumed that 

toxicity was negligible during exposure to 1 molal and 3 molal solutions during CPA 

addition and removal. This is a reasonable assumption considering that none of the 1 

molal toxicity rates were found to be statistically significant in this study, and the 

majority of 3 molal toxicity rates for binary solutions were not statistically significant. 

Moreover, even in cases where the 3 molal toxicity rate was significant, there is a 

negligible decrease in cell viability for relatively short exposure times of ~10 min (see 

Fig. 2.7), which is the case for the total time of the 3 molal CPA addition and removal 

steps. Error bars represent the 95% confidence intervals of the best-fit toxicity rates. 

 

We can further investigate toxicity in multi-CPA mixtures through the lens of toxicity 

neutralization, as described by Fahy. In particular, Fahy [45,50] has described the 

neutralization of formamide toxicity by DMSO. Fahy showed the neutralization of 

formamide toxicity in rabbit renal cortical slices by adding various concentrations of 

DMSO to fixed formamide concentrations. Even though the total CPA concentration 

was higher in the resulting mixtures, Fahy observed that the mixtures were less toxic 
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than the original formamide solutions on their own. As shown in Figure 2.11, we 

observed the same phenomenon in DMSO + formamide mixtures at some 

concentrations, but we observed even more substantial toxicity neutralization in 

glycerol + formamide mixtures. In particular, Figure 2.11 shows that a mixture 

containing 5 molal formamide and 5 molal glycerol is much less toxic than a solution 

containing 5 molal formamide on its own. A favorable glycerol + formamide 

interaction can be inferred from the model fit of Jomha et al [75], but to our knowledge, 

we are the first to report such a comprehensive case of formamide toxicity 

neutralization by glycerol.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Synergistic effects of glycerol and DMSO on formamide toxicity. The 

toxicity rates for the three CPA compositions are plotted against formamide 

concentration. In the glycerol and DMSO mixtures, formamide makes up half the CPA 

concentration on a molal basis, resulting in a total CPA concentration that is twice what 

is reported on the x-axis. Error bars represent the 95% confidence intervals of the best-

fit toxicity rates. 

 

 

2.5 Conclusions and Future Directions 

In this work, we have established an automated liquid handling methodology for high-

throughput measurement of CPA toxicity in a 96-well plate format. This new approach 

makes it possible to randomize treatment locations on the well plate and precisely 
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control the aspirate/dispense flow rate and timing, resulting in less experimental 

variability and more accurate results. Automated liquid handling also enables much 

higher throughput compared to manual pipetting, enabling faster generation of CPA 

toxicity data sets.  

 

Using this new high-throughput approach, we were able to rapidly test 340 unique 

experimental conditions, including CPA mixtures containing glycerol, DMSO, 

propylene glycol, ethylene glycol, and formamide at various concentrations. Our 

results are consistent with some commonly observed trends, including the observation 

that ethylene glycol and glycerol are relatively non-toxic CPAs, formamide is a 

relatively toxic CPA, and that overall toxicity decreases as the number of CPAs in the 

mixture increases. Our results also confirm previous observations that the toxicity of 

formamide can be neutralized by addition of DMSO to the solution. Surprisingly, we 

observed even more significant neutralization of formamide toxicity from glycerol.  

 

In the end, our goal is to create a robust toxicity model for multi-CPA vitrification 

solutions that can be implemented in our toxicity cost function approach for designing 

minimally toxic CPA equilibration methods [29]. In future work, we plan to use the 

data presented here to develop a multi-CPA toxicity model that accounts for multiple 

mechanisms of toxicity, including toxicity neutralization. In addition, we plan to carry 

out experiments at various temperatures, which will allow us to account for the 

temperature-dependence of CPA toxicity. We are currently integrating third-party 

hardware with the automated liquid handling system in order to control the temperature 

of the assay and source plates. Overall, the novel high-throughput approach described 

here is expected to enable quantification of CPA toxicity over a wide range of 

conditions, leading to the development of a comprehensive toxicity model that can be 

used for design of less toxic cryopreservation methods. 
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3. GENERAL MASS TRANSFER MODEL OF TISSUES FOR 

CRYOPRESERVATION APPLICATIONS 

 

3.1 Abstract 

Successful cryopreservation of complex specimens, such as tissues and organs, would 

greatly benefit both the medical and scientific research fields. Vitrification is one of the 

most promising techniques for complex specimen cryopreservation, but toxicity 

remains a major challenge due to the high concentration of cryoprotectants (CPAs) 

needed to vitrify. Our group has approached toxicity through mathematical 

optimization, and in previous works, we developed less toxic CPA equilibration 

methods for single cells by minimizing a toxicity cost function. We also have proposed 

a way to write a toxicity cost function at the tissue level. However, in that work, the 

toxicity cost function was informed by a mass transfer model based on the framework 

of Fick’s law. Fick’s law can be an adequate model for some tissues, but it is not 

applicable to tissues in general mainly due to its dilute assumption and not accounting 

for tissue size changes. Our goal is to develop a general approach to minimizing the 

toxicity of tissue vitrification protocols. In this work, we propose a general model for 

mass transfer in tissues. To accomplish this, we accounted for cellular effects by 

augmenting an acellular mixture theory model in the literature for articular cartilage. 

We show that the augmented model can accurately predict mass transfer within 

cartilage and pancreatic islets, two tissue types with vastly different properties. This 

demonstrates the general utility of the model, providing a promising foundation for 

future efforts to design improved tissue cryopreservation methods.  

 

3.2 Introduction 

The field of cryopreservation has had many successes in preserving biological 

specimens over long time scales. Successful cryopreservation of single cells, both 

bacterial and mammalian, has provided a variety of specimens to the research 

community and has also helped to facilitate animal breeding and human reproduction 

[9,34,68,92,107,115]. Single cells represent the simplest specimens that can be 

cryopreserved, but their successful cryopreservation protocols are not. Decades have 

been spent by the cryobiology community to understand the intricacies of 
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cryopreserving the simplest specimens. Moving on from single cells, more complex 

biological specimens such as tissues and organs prove to be much more challenging to 

successfully cryopreserve [47,48]. The task of cryopreserving these specimens is 

exceptionally challenging, but their successful cryopreservation would have untold 

benefits for the public health by allowing for the banking of tissues and organs. 

Successful complex specimen banking would immensely improve the effectiveness of 

transplantations, research, and emergency preparedness [48,61,90].  

 

Successful suspension-phase single cell cryopreservation usually relies on the 

technique of slow cooling. Slow cooling, likes its name suggests, involves slow cooling 

rates with the addition of low concentrations of permeating CPAs. Extracellular ice is 

allowed to form and the CPAs counteract excessive cell shrinkage. However, it is 

thought that more complex specimens (adherent cells, tissues, and organs), which 

cannot tolerate extracellular ice formation, need the promising technique of vitrification 

to be employed [49,76,94,121]. Vitrification eliminates the extracellular ice problem 

but poses two new problems stemming from the high concentration of CPAs required 

to suppress ice formation. The high concentrations of CPAs can induce excessive 

volume excursions (osmotic damage) of the specimen and impart unacceptable toxicity 

[29,38,40,47,86]. Osmotic damage can be successfully prevented by incrementally 

adding and removing CPA do reduce the extent of the volume excursions 

[29,38,59,86,98], but toxicity is not as straightforward and proves to be the single 

greatest challenge for successful vitrification [5,46,47,75].  

 

The problem of toxicity reduces down to a toxicity minimization problem, as the 

conventional CPAs used in the field will inevitably have some detrimental effects to 

the specimen. CPA toxicity can be minimized by finding trends within large toxicity 

data repositories (empirical approach) or mathematical models can be generated that 

minimize a function representing toxicity. In this work, we will be focusing on 

mathematical modeling of tissues, and the crux of any modeling approach is a mass 

transfer model that predicts both the spatial and temporal distribution of CPAs, as 

toxicity is dependent on the distribution. However, there are many tissue-based 
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phenomena that need to be considered when developing a mass transfer model, and the 

large concentration of CPAs used for vitrification poses an immense challenge by 

squarely placing the mass transfer within the non-dilute regime. In a previous 

discussion of tissue modeling [132], we highlighted some of the major considerations 

that need to be addressed: 1) non-dilute mass transfer in the extracellular space, 2) 

coupling between extracellular and cell membrane mass transfer, 3) fixed electrical 

charges on the extracellular matrix (generates an unequal ion distribution between the 

intra- and extra-tissue space, influencing the flux of all fluid phase species), and 4) 

tissue volume changes. The current state of mass transfer modeling of tissues within 

cryobiology is lacking because there is not one model that accounts for all of the 

phenomena. Some phenomena are more or less important depending on the tissue but 

they are nevertheless present, and our goal is to develop a general mass transfer model 

that accounts for all phenomena. If a tissue’s complete response to any CPA addition 

and removal protocol cannot be predicted, the least toxic protocol can never be 

determined from a mathematical standpoint.  

 

In the literature, the most common way to model mass transfer is using Fick’s second 

law. However, Fick’s law is based on a dilute framework and does not account for cell 

membrane transfer, fixed charges, or tissue size changes. Fick’s law can serve as the 

mass transfer model for successful cryopreservation of tissues, such as a recent series 

of papers for articular cartilage [74,76,119], but the approach is limited to only the 

vitrification of cartilage, since the diffusion coefficients were fit for the CPA 

concentrations used and cartilage has small volume changes. Fick’s law has also been 

coupled with cell membrane transport but this only accounts for one extra phenomenon 

[14,27,32,67]. Benson et al [12] has taken this approach a step further by also 

accounting for tissue size changes, but the approach was only applicable to pancreatic 

islets under the assumption that there was a constant volume ratio between the intra- 

and extracellular space. Fick’s law has the potential to be molded for a specific tissue 

but some phenomena will be lacking and the model is not general. Other modeling 

approaches have focused primarily on non-dilute extracellular transfer [137], while 

others have focused on non-dilute extracellular and cell membrane transfer with tissue 
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size change predictions [30]. Altogether, there is not one modeling paradigm that 

describes all of the phenomena nor can be applied outside of a limited application 

window.  

 

The closest modeling paradigm to describing all of the phenomena comes from the 

articular cartilage model presented by Abazari et al [1]. The model is rooted in the 

triphasic theory of articular cartilage as proposed by Lai et al [82] and subsequently 

modified by Shaozhi and Pegg [118] for applications in cryopreservation by adding 

CPA as a fourth phase. Abazari et al [1] furthers the work of Shaozhi and Pegg [118] 

by incorporating the non-dilute chemical potential expressions of Elliot et al [35] and 

Elmoazzen et al [37]. Overall, Abazari et al [1] represents cartilage as a four-component 

system, which is comprised of the solid matrix, water, CPA, and salt (NaCl). However, 

as they are considering mass transfer in the low cell density tissue of cartilage, they do 

not account for cells. To address this limitation for applications of this model for tissues 

in general, we have augmented their model by adding cells and accounting for transport 

of both water and CPA across the cell membrane. 

 

With the model outlined in this work, we can address each tissue-based phenomenon, 

which all have impacts on the design of CPA addition and removal protocols. As such, 

we postulate that a model that accounts for all of the phenomena can be applied to any 

tissue, as moving from one tissue to another is just a matter of changing parameters. To 

show the feasibility of such an approach we have applied our cell augmented model to 

pancreatic islets, and we show that our model can match islet predictions found in the 

literature. As such, we have shown that our modeling approach can be used for two 

very different tissues—a stiff low cell density tissue in articular cartilage and an elastic 

high cell density tissue in pancreatic islets. This model will allow us to more accurately 

predict the least toxic CPA addition and removal protocol for a tissue. Moving forward, 

we can use this model within our toxicity cost function approach, where we have shown 

a mathematical framework that can minimize toxicity for single cells [11,28,29]. In a 

past work, we proposed a toxicity cost function for tissues, but the mass transfer model 

was based on Fick’s law [13]. With the model presented in this work used within the 
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toxicity cost function framework, we can create a more robust approach to minimizing 

toxicity of tissues in general.  

 

3.3 Model Formalism 

3.3.1 Model Description and Definition of State Variables 

We consider one-dimensional transport in a thin slab of tissue. One side of the tissue is 

insulated to mass transport and the opposite side is exposed to a bath solution. The 

insulated side of the tissue is fixed in space and the bath side is free to move as governed 

by the fluid fluxes and mechanical properties of the tissue. As such, this model is a 

classical one-dimensional moving boundary problem. Figure 3.1 shows the general 

geometry of the model. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic illustrating modeling approach. 

 

As shown in the Figure 3.1, the tissue is divided into four compartments: extracellular 

fluid, intracellular fluid, intracellular solids, and extracellular solids. Water, CPA, and 

salt can move through the interstitial space in the x-direction, and this can result in 

movement of solids in the x-direction as well. The cells are considered to be embedded 

in the extracellular solids and hence move with the solids. The intracellular fluid can 

exchange water and CPA with the extracellular fluid. 
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Various variables are used to describe the state of each of these compartments, as 

depicted in Figure 3.1.  Subscripts are used to specify the chemical species and the 

compartment: 𝑖𝑤, 𝑖𝑐, 𝑠, 𝑛, 𝑤, and 𝑐 represent intracellular water, intracellular CPA, 

solids, extracellular salt, extracellular water, and extracellular CPA, respectively.  

 

The mass concentration and volume fraction are defined per tissue volume and are used 

to write the continuity equations. The volume fraction of species 𝑖 can be calculated 

from the mass concentration as follows: 

 

𝜑i =
𝜌𝑖

�̅�𝑖
3.1 

 

where �̅�𝑖 is the density of pure 𝑖.  The volume fractions of extracellular and intracellular 

salt were considered to be negligible. 

 

The mole concentrations and mole fractions are used to represent driving forces for 

transport and are defined based on the fluid volume in which the chemical species is 

dissolved. For the extracellular fluid, the mole concentrations of water and CPA can be 

calculated from the mass concentrations as follows: 

 

𝐶𝑤 =
𝜌𝑤

𝑀𝑤(𝜑𝑤 + 𝜑𝑐)
3.2𝑎 

 

𝐶𝑐 =
𝜌𝑐

𝑀𝑐(𝜑𝑤 + 𝜑𝑐)
3.2𝑏 

 

where 𝑀𝑖 represents the molecular weight of species 𝑖. For the intracellular fluid, the 

mole concentrations of water and CPA can be expressed similarly: 

 

𝐶𝑖𝑤 =
𝜌𝑖𝑤

𝑀𝑤(𝜑𝑖𝑤 + 𝜑𝑖𝑐)
3.2𝑐 
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𝐶𝑖𝑐 =
𝜌𝑖𝑐

𝑀𝑐(𝜑𝑖𝑤 + 𝜑𝑖𝑐)
3.2𝑑 

 

The concentration expressions for the salt are slightly more complicated. The 

extracellular matrix (solids) is negatively charged and contains fixed positively charged 

sodium counterions that also contribute to the driving forces for transport. However, 

these fixed charges cannot move freely through the extracellular fluid and move with 

the matrix. The mole concentration of chloride ions can be calculated from the mass 

concentration as follows: 

 

𝐶𝐶𝑙 =
𝜌𝑛

𝑀𝑛(𝜑𝑤 + 𝜑𝑐)
3.2𝑒 

 

The mole concentration of sodium ions includes the counterions for the chloride ions, 

as well as the fixed charges: 

 

𝐶𝑁𝑎 = 𝐶𝐶𝑙 + 𝐶𝑓𝑐 3.3 

 

The total mole concentration of salt ions is then the sum of the sodium and chloride 

concentrations: 

𝐶𝑛 = 𝐶𝐶𝑙 + 𝐶𝑁𝑎 3.4 

 

While the concentration of fixed charges can change as the tissue shrinks and swells, 

the number of fixed charges per volume of solids does not change. This allows us to 

express the fixed charge concentration at any time in terms of a reference fixed charge 

concentration (𝐶𝑓𝑐
𝑜 ): 

 

𝐶𝑓𝑐 = 𝐶𝑓𝑐
𝑜 (

𝜑𝑤
𝑜 + 𝜑𝑐

𝑜

𝜑𝑠
𝑜 ) (

𝜑𝑠

𝜑𝑤 + 𝜑𝑐
) 3.5𝑎 

 

The mole concentration of intracellular salt can be expressed in a similar manner. Since 

we consider salt to be impermeable to the cell membrane, the moles of intracellular salt 
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per solids volume remains constant. This allows the intracellular salt concentration at 

any time to be expressed in terms of a reference initial concentration (𝐶𝑖𝑛
𝑜 ): 

 

𝐶𝑖𝑛 = 𝐶𝑖𝑛
𝑜 (

𝜑𝑖𝑤
𝑜 + 𝜑𝑖𝑐

𝑜

𝜑𝑠
𝑜 ) (

𝜑𝑠

𝜑𝑖𝑤 + 𝜑𝑖𝑐
) 3.5𝑏 

 

Finally, we can express the mole fraction of species 𝑖 in the extracellular fluid in terms 

of the mole concentrations as follows: 

 

𝑥𝑖 =
𝐶𝑖

𝐶𝑤 + 𝐶𝑐 + 𝐶𝑛
3.6 

 

3.3.2 Transport Equations 

We begin by writing continuity equations based on the six mass concentrations shown 

in Figure 3.1. Movement of each component in the x-direction is expressed in terms of 

its average velocity (𝑢), while exchange of water and CPA across cell membranes is 

expressed in terms of the two-parameter membrane transport model, as described 

below. This yields the following continuity equations: 

 

𝜕𝜌𝑤

𝜕𝑡
+

𝜕(𝜌𝑤𝑢𝑤)

𝜕𝑥
+

𝜕𝑉𝑖𝑤

𝜕𝑡
𝜂𝜑𝑠�̅�𝑤 = 0 3.7𝑎 

 

𝜕𝜌𝑐

𝜕𝑡
+

𝜕(𝜌𝑐𝑢𝑐)

𝜕𝑥
+

𝜕𝑉𝑖𝑐

𝜕𝑡
𝜂𝜑𝑠�̅�𝑐 = 0 3.7𝑏 

 

𝜕𝜌𝑛

𝜕𝑡
+

𝜕(𝜌𝑛𝑢𝑛)

𝜕𝑥
= 0 3.7𝑐 

 

𝜕𝜌𝑖𝑤

𝜕𝑡
+

𝜕(𝜌𝑖𝑤𝑢𝑠)

𝜕𝑥
−

𝜕𝑉𝑖𝑤

𝜕𝑡
𝜂𝜑𝑠�̅�𝑤 = 0 3.7𝑑 

 

𝜕𝜌𝑖𝑐

𝜕𝑡
+

𝜕(𝜌𝑖𝑐𝑢𝑠)

𝜕𝑥
−

𝜕𝑉𝑖𝑐

𝜕𝑡
𝜂𝜑𝑠�̅�𝑐 = 0 3.7𝑒 



52 
 

 

𝜕𝜌𝑠

𝜕𝑡
+

𝜕(𝜌𝑠𝑢𝑠)

𝜕𝑥
= 0 3.7𝑓 

 

where 𝑉𝑖𝑤 is the intracellular water volume per cell, 𝑉𝑖𝑐 is the intracellular CPA volume 

per cell, and 𝜂 is a constant term describing the cell density in the tissue (as defined in 

more detail below). These continuity equations follow from those given by Abazari et 

al [1], with the addition of intracellular components and terms describing cell 

membrane transport. These terms are based on the classic two-parameter membrane 

transport model [79], which gives the rate of change of intracellular water volume and 

intracellular CPA volume for a single cell in terms of concentration driving forces: 

 

𝜕𝑉𝑖𝑤

𝜕𝑡
= 𝐿𝑝𝐴𝑐𝑒𝑙𝑙𝑅𝑇(𝐶𝑖𝑐 + 𝐶𝑖𝑛 − 𝐶𝑐 − 𝐶𝑛) 3.8𝑎 

 

𝜕𝑉𝑖𝑐

𝜕𝑡
= 𝑃𝑐𝐴𝑐𝑒𝑙𝑙�̅�𝑐(𝐶𝑐 − 𝐶𝑖𝑐) 3.8𝑏 

 

In these equations, 𝐿𝑝 is the hydraulic conductivity, 𝑃𝑐 is the CPA permeability, 𝐴𝑐𝑒𝑙𝑙 

is the cell membrane surface area, �̅�𝑐 is the CPA molar volume, 𝑅 is the universal gas 

constant, and 𝑇 is temperature. The intracellular salt concentration (𝐶𝑖𝑛) represents the 

net osmotic contributions of all intracellular salts. In the two-parameter formalism, salt 

is considered to be impermeable to the cell membrane. 

 

To use these membrane transport equations in the continuity equations, it was necessary 

to relate the volume changes for a single cell to the corresponding rate of transport 

between the intracellular fluid and extracellular fluid per tissue volume. This was 

accomplished by defining a constant term 𝜂 to describe the cell density, which 

represents the number of cells per volume of solids. This term is constant because the 

cells are embedded in the solids and move with the solids. The number of cells per 

tissue volume can then be calculated as 𝜂𝜑𝑠. Also, 𝜂 is used to interconvert between 

intracellular volume fractions and single cell volumes as follows:  
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𝑉𝑖𝑤 =
𝜑𝑖𝑤

𝜂𝜑𝑠
3.9𝑎 

 

𝑉𝑖𝑐 =
𝜑𝑖𝑐

𝜂𝜑𝑠
3.9𝑏 

 

If we look back at the continuity expressions, we notice that the only unknowns left are 

the component velocities. To describe the velocity field, we relate the velocities to 

component chemical potential gradients, as described by Abazari et al [1]. The resulting 

multicomponent momentum balance is given below:  

 

−𝜌𝑤

𝜕𝜇𝑤

𝜕𝑥
= 𝑓𝑐𝑤(𝑢𝑤 − 𝑢𝑐) + 𝑓𝑤𝑠(𝑢𝑤 − 𝑢𝑠) + 𝑓𝑛𝑤(𝑢𝑤 − 𝑢𝑛) 3.10𝑎 

 

−𝜌𝑐

𝜕𝜇𝑐

𝜕𝑥
= 𝑓𝑐𝑤(𝑢𝑐 − 𝑢𝑤) + 𝑓𝑐𝑠(𝑢𝑐 − 𝑢𝑠) 3.10𝑏 

 

−𝜌𝑛

𝜕𝜇𝑛

𝜕𝑥
= 𝑓𝑛𝑤(𝑢𝑛 − 𝑢𝑤) 3.10𝑐 

 

where 𝜇𝑖 is the chemical potential of component 𝑖, and 𝑓𝑖𝑗 is the frictional coefficient 

between components 𝑖 and 𝑗. It should be noted that we only have three equations and 

four unknown velocities. A volume balance can be used to define a fourth expression:  

 

𝑢𝑠(𝜑𝑠 + 𝜑𝑖𝑤 + 𝜑𝑖𝑐) + 𝑢𝑐𝜑𝑐 + 𝑢𝑤𝜑𝑤 = 0 3.11 

 

However, one still has to define the frictional coefficients in the above momentum 

balances, as well as the chemical potential gradients. The frictional coefficients are 

defined by Abazari et al [1] as follows, where 𝐷𝑐𝑤 and 𝐷𝑛𝑤 are the diffusivities of CPA 

and salt in water, and 𝐾𝑐𝑠 and 𝐾𝑠𝑤 are the permeabilities of CPA and water in the tissue: 
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𝑓𝑐𝑤 =
𝑅𝑇(𝜑𝑤 + 𝜑𝑐)𝐶𝑐

𝐷𝑐𝑤
3.12𝑎 

 

𝑓𝑛𝑤 =
𝑅𝑇(𝜑𝑤 + 𝜑𝑐)𝐶𝐶𝑙

𝐷𝑛𝑤
3.12𝑏 

 

𝑓𝑐𝑠 =
𝜑𝑐

2

𝐾𝑐𝑠
3.12𝑐 

 

𝑓𝑤𝑠 =
𝜑𝑤

2

𝐾𝑠𝑤
3.12𝑑 

 

Chemical potential expressions follow from Abazari et al [1] and are defined below:  

 

𝜇𝑤 = 𝜇𝑤
∗ +

𝑃

�̅�𝑤
−

𝑅𝑇

𝑀𝑤

(1 − 𝑥𝑤)(1 + 𝐵𝑐𝑥𝑐) 3.13𝑎 

 

𝜇𝑐 = 𝜇𝑐
∗ +

𝑃

�̅�𝑐
+

𝑅𝑇

𝑀𝑐
(ln(𝑥𝑐) + 0.5𝑥𝑤

2 − 𝐵𝑐𝑥𝑤(1 − 𝑥𝑐)) 3.13𝑏 

 

𝜇𝑛 = 𝜇𝑛
∗ +

𝑅𝑇

𝑀𝑛

(ln(𝑥𝑁𝑎𝑥𝐶𝑙) + 𝑥𝑤
2 + 2𝐵𝑐𝑥𝑤𝑥𝑐) 3.13𝑐 

 

In the above expressions, 𝐵𝑐 is the second osmotic virial coefficient which is a constant, 

and we do not need to define the reference chemical potentials (𝜇𝑖
∗) as only the chemical 

potential gradients are needed.  

 

The last unknown in the chemical potential expressions is the pressure (𝑃). This 

pressure is the gauge pressure defined relative to the pressure in the bath. The pressure 

in the tissue can be expressed in terms of a reference gauge pressure (𝑃𝑜) and an elastic 

pressure that develops due to tissue strain: 

 

𝑃 = 𝑃𝑜 + 𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐 3.14 
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Assuming a linear stress/strain relationship for compressive and tensile deformations 

yields: 

 

𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐻𝐴𝑒 3.15 

 

where the aggregate modulus of elasticity (𝐻𝐴) is defined as a constant for both 

compressive and tensile deformations. The strain (𝑒) can be related to the deviation in 

the solids volume fraction from the reference point: 

 

𝑒 =  
𝜑𝑠

𝑜

𝜑𝑠
− 1 3.16 

 

3.3.3 Variable Transform to Fix the Size of the Spatial Domain 

To numerically solve the system of equations defined above, it is necessary to address 

the moving tissue boundary. Such a problem can be classified as a mass transfer analog 

to a classical one-dimensional Stefan problem where several solution strategies have 

been proposed [58,80,81]. We adopted a boundary immobilization method which fixes 

the domain size through coordinate transform [81]. The transform is defined below: 

 

𝛼 =
𝑥

ℎ
3.17 

 

where ℎ is the location of the tissue/bath interface (see Fig. 3.1). Transforming the 

problem is rather straightforward as there are only two unique spatial derivatives of 

first order: the chemical potential gradients and the flux gradients. These spatial 

gradients can be transformed through product rule as shown below:  

 

𝜕𝜇𝑖

𝜕𝑥
=

1

ℎ

𝜕𝜇𝑖

𝜕𝛼
3.18𝑎     

 

𝜕(𝜌𝑖𝑢𝑖)

𝜕𝑥
=

1

ℎ

𝜕(𝜌𝑖𝑢𝑖)

𝜕𝛼
3.18𝑏 
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The temporal gradient is more complicated but follows from the definition of the total 

derivative in both 𝑥 and 𝛼 space: 

 

𝜕𝜌𝑖

𝜕𝑡 𝑥
=

𝜕𝜌𝑖

𝜕𝑡 𝛼
−

𝛼

ℎ

𝑑ℎ

𝑑𝑡

𝜕𝜌𝑖

𝜕𝛼
3.19 

 

It should be noted that the cell volume derivatives do not need to be transformed into 

the new domain. This is because the cell volume derivatives are only used to describe 

flux between the intracellular and extracellular fluid in the continuity equations and are 

not solved directly to determine cell volumes as a function of time. Since these cell 

volume derivatives are represented by concentration variables that are already 

transformed, the derivatives are already described in the new domain. 

 

Looking at the transformed equations, we see that we need an expression for the domain 

width (ℎ), as well as its derivate (𝑑ℎ/𝑑𝑡). The derivative, or labeled as the Stefan 

condition [57] in classical problems, provides closure, and for our problem, is governed 

by a mass balance at the boundary:  

 

𝑑ℎ

𝑑𝑡
= 𝑢𝑠(𝛼 = 1) 3.20 

 

With the Stefan condition defined, ℎ follows from the integration of Equation 3.20: 

 

ℎ(𝑡 + ∆𝑡) = ℎ(𝑡) + 𝑢𝑠(𝛼 = 1, 𝑡)∆𝑡 3.21 

 

However, Equation 3.21 is prone to greater tissue size changes than expected, as we 

see double the expected tissue shrinkage upon CPA addition when comparing results 

to Abazari et al [1] (see Fig. 3.2 in Results and Discussion). Instead, we defined ℎ using 

a mass balance on solids within the entire tissue:  

 

ℎ =
𝜌𝑠

𝑜ℎ𝑜

∫ 𝜌𝑠𝜕𝛼
3.22 
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3.3.4 The Physiological Reference State 

Typically, tissue properties are measured and reported in the literature under normal 

physiological conditions. Thus, we define a physiological reference state in which the 

tissue is in equilibrium with a normal physiological solution and use this as a basis for 

the mass transfer simulations.  We begin by defining the following physiological tissue 

properties (superscript naught): tissue thickness (ℎ𝑜), fixed charge concentration (𝐶𝑓𝑐
𝑜 ), 

solids volume fraction (𝜑𝑠
𝑜), and intracellular water volume fraction (𝜑𝑖𝑤

𝑜 ). The values 

of these parameters can be estimated from experimental data reported in the literature. 

Given these parameters, we can determine the state of the extracellular water, 

extracellular salt, and intracellular salt, as described below.  

 

Since the tissue and physiological bath are at equilibrium, we can equate the water and 

salt chemical potentials: 

 

𝜇𝑤
𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜇𝑤

∗ +
𝑃𝑜

�̅�𝑤
−

𝑅𝑇

𝑀𝑤

(1 − 𝑥𝑤
𝑜 ) = 𝜇𝑤

𝑏𝑎𝑡ℎ 3.23𝑎 

 

𝜇𝑛
𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜇𝑛

∗ +
𝑅𝑇

𝑀𝑛
(ln(𝑥𝑁𝑎

𝑜 𝑥𝐶𝑙
𝑜 ) + 𝑥𝑤

𝑜 2) = 𝜇𝑛
𝑏𝑎𝑡ℎ 3.23𝑏 

 

We assume that the physiological bath is an aqueous solution with sodium and chloride 

concentrations both equaling 150 mM. As such, the bath chemical potentials can be 

calculated. Note that the bath chemical potential expressions lack the pressure term 

because the bath is at a gauge pressure of zero, and the reference chemical potentials 

cancel out between the tissue and the bath. To solve these equations, we first rewrite 

the mole fractions in terms of concentrations: 

 

𝑥𝑖
𝑜 =

𝐶𝑖
𝑜

𝐶𝑤
𝑜 + 𝐶𝐶𝑙

𝑜 + 𝐶𝑁𝑎
𝑜 3.23𝑐 

 

The concentration of sodium can be expressed in terms of the fixed charge 

concentration: 
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𝐶𝑁𝑎
𝑜 = 𝐶𝐶𝑙

𝑜 + 𝐶𝑓𝑐
𝑜 3.23𝑑 

 

We can find the concentration of extracellular water directly through Equation 3.2a:  

 

𝐶𝑤
𝑜 =

�̅�𝑤

𝑀𝑤
3.23𝑒 

 

This reduces the number of unknowns to two (𝑃𝑜 and 𝐶𝐶𝑙
𝑜 ), and Equations 3.23a and 

3.23b can be solved directly for the unknowns. The final unknown in the extracellular 

space is the volume fraction of extracellular water, which can be found through a 

volume fraction balance: 

 

𝜑𝑠
𝑜 + 𝜑𝑖𝑤

𝑜 + 𝜑𝑤
𝑜 = 1 3.23𝑓 

 

Lastly, we finish defining our physiological reference state by describing the 

intracellular salt. At equilibrium, the intracellular and extracellular salt concentrations 

must be equal, resulting in:  

 

𝐶𝑖𝑛
𝑜 = 𝐶𝑛

𝑜 = 2𝐶𝐶𝑙
𝑜 + 𝐶𝑓𝑐

𝑜 3.23𝑔 

 

3.3.5 Initial Conditions 

Initially, we assume that the tissue is in equilibrium with a bath of known composition. 

In our simulations we used a bath composition that was identical to a normal 

physiological solution, but with a small amount of CPA. This small amount of CPA 

was included because the chemical potential expression for CPA contains the natural 

logarithm of the CPA mole fraction, which is undefined for a mole fraction of zero. 

Specifically, we used a bath composition with sodium and chloride concentrations 

again equaling 150 mM and a CPA concentration of 0.1 mM. Below, we present a 

general strategy for determining the initial conditions within the tissue that can be 

applied for any initial bath composition. 
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We can equate the chemical potentials in the tissue and the bath, but this time we must 

consider the chemical potential of CPA in addition to water and salt: 

 

𝜇𝑤
𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜇𝑤

∗ +
𝑃

�̅�𝑤
−

𝑅𝑇

𝑀𝑤

(1 − 𝑥𝑤)(1 + 𝐵𝑐𝑥𝑐) = 𝜇𝑤
𝑏𝑎𝑡ℎ 3.24𝑎 

 

𝜇𝑐
𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜇𝑐

∗ +
𝑃

�̅�𝑐
+

𝑅𝑇

𝑀𝑐
(ln(𝑥𝑐) + 0.5𝑥𝑤

2 − 𝐵𝑐𝑥𝑤(1 − 𝑥𝑐)) = 𝜇𝑐
𝑏𝑎𝑡ℎ 3.24𝑏 

 

𝜇𝑛
𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜇𝑛

∗ +
𝑅𝑇

𝑀𝑛

(ln(𝑥𝑁𝑎𝑥𝐶𝑙) + 𝑥𝑤
2 + 2𝐵𝑐𝑥𝑤𝑥𝑐) = 𝜇𝑛

𝑏𝑎𝑡ℎ 3.24𝑐 

 

Mole fractions can be written in terms of concentrations as shown in Equation 3.6, and 

the concentration of sodium is dependent on the chloride and fixed charge 

concentration, as shown in Equation 3.3. The fixed charge concentration can be defined 

in terms of the physiological reference state as follows (see Eq. 3.5a): 

 

𝐶𝑓𝑐 = 𝐶𝑓𝑐
𝑜 (

𝜑𝑤
𝑜

𝜑𝑠
𝑜 ) (

𝜑𝑠

𝜑𝑤 + 𝜑𝑐
) 3.24𝑑 

 

The concentrations of extracellular water and CPA can be written in terms of their 

volume fractions using Equations 3.2a and 3.2b, with Equation 3.1 substituted in for 

the mass concentration: 

 

𝐶𝑖 =
�̅�𝑖𝜑𝑖

𝑀𝑖(𝜑𝑤 + 𝜑𝑐)
3.24𝑒 

 

The pressure can be written in terms of the solids volume fraction by using Equations 

3.14-3.16: 

 

𝑃 = 𝑃𝑜 + 𝐻𝐴 (
𝜑𝑠

𝑜

𝜑𝑠
− 1) 3.24𝑓 
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At this point, we have written Equations 3.24a-3.24c in terms of 𝜑𝑠, 𝜑𝑤, 𝜑𝑐, and 𝐶𝐶𝑙, 

resulting in 3 equations and 4 unknowns. To solve this problem, we must describe the 

state of the intracellular components. At equilibrium, the extracellular and intracellular 

concentration for both the CPA and salt must be equal. For the CPA, we can express 

the concentrations in terms of volume fractions (e.g. Eq. 3.24e) and set them equal, 

resulting in: 

 

𝜑𝑐

(𝜑𝑤 + 𝜑𝑐)
=

𝜑𝑖𝑐

(𝜑𝑖𝑤 + 𝜑𝑖𝑐)
3.24𝑔 

 

For the salt, we write the extracellular concentration by combining Equations 3.3 and 

3.4, and set that equal to the intracellular salt concentration defined using Equation 

3.5b: 

 

2𝐶𝐶𝑙 + 𝐶𝑓𝑐 = 𝐶𝑖𝑛
𝑜 (

𝜑𝑖𝑤
𝑜

𝜑𝑠
𝑜 ) (

𝜑𝑠

𝜑𝑖𝑤 + 𝜑𝑖𝑐
) 3.24ℎ 

 

Finally, we write the overall volume fraction balance as: 

 

𝜑𝑠 + 𝜑𝑤 + 𝜑𝑐 + 𝜑𝑖𝑤 + 𝜑𝑖𝑐 = 1 3.24𝑖 

 

This results in six equations (Eqs. 3.24a-c and Eqs. 3.24g-i) and six unknowns (𝜑𝑠, 𝜑𝑤, 

𝜑𝑐, 𝐶𝐶𝑙, 𝜑𝑖𝑤 and 𝜑𝑖𝑐). After the unknowns are found, the final part is to define the initial 

tissue thickness by using Equation 3.22: 

 

ℎ =
𝜑𝑠

𝑜ℎ𝑜

𝜑𝑠
3.24𝑗 

 

3.3.6 Boundary Conditions 

Within the one-dimensional domain, we have two boundaries to consider: the insulated 

boundary and the bath boundary. The insulated boundary is the most straightforward 

to describe since it is an insulated surface to mass transfer. As such, there is no flux of 
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any species 𝑖 across the boundary and therefore each velocity 𝑢𝑖 is equal to zero (no 

penetration boundary condition): 

 

𝑢𝑖 = 0 3.25 

 

For the bath boundary, we notice that the addition of cells complicates calculations, 

since there is a finite transport time across the cell membrane. We examined two 

possibilities for the bath boundary conditions. The first is an instantaneous equilibration 

between the extracellular and intracellular space. In this case, the bath boundary 

conditions can be found in exactly the same way as the initial conditions by applying 

Equations 3.24a-3.24i and solving for the six unknowns simultaneously.  

 

For the second case, we considered time-dependent transport across the cell membrane, 

which renders the boundary conditions a function of time. For the boundary conditions 

at t = 0, we consider the intracellular concentrations and cell volumes to be the same as 

the initial conditions, and we also consider the extracellular components to 

instantaneously equilibrate with the bath. For this transient boundary condition, the 

intracellular space approaches equilibrium according to the two-parameter membrane 

transport model. The two-parameter model predicts the volume for individual cells, 

which can be related to the volume fractions of intracellular water and CPA (see Eqs. 

3.9a and 3.9b):  

 

𝜑𝑖𝑤 = 𝑉𝑖𝑤𝜂𝜑𝑠 3.26𝑎 

 

𝜑𝑖𝑐 = 𝑉𝑖𝑐𝜂𝜑𝑠 3.26𝑏 

 

With the intracellular volume fractions defined in terms of single cell volumes and the 

solids volume fraction, we are left with the familiar unknowns of 𝜑𝑠, 𝜑𝑤, 𝜑𝑐, and 𝐶𝐶𝑙 

for every time point. These unknowns are solved for in a similar manner as with the 

initial conditions.   
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To advance in time, we solve for new single cell volumes after a given time step by 

solving Equations 3.8a and 3.8b. This results in the calculation of new single cell 

volumes at the boundary for each time step, enabling the full set of state variables at 

the tissue boundary to be updated with time as the cells change size.  

 

For the purposes of this work, we employed the instantaneous boundary condition, as 

there is no appreciable difference between the results of either boundary approach for 

global variables. Specifically, we looked at average CPA concentration within the 

tissue as our convergence criterion as we will discuss later. 

 

3.3.7 Numerical Methods  

The model was written and solved in MATLAB. For temporal discretization, we 

employed MATLAB’s ODE 23 algorithm, an explicit variable-step Runge-Kutta 

method of third order accuracy. As a variable-step algorithm, ODE 23 adjusts the time 

step to keep the estimated error in any dependent variable within a given tolerance. We 

used ODE 23 as it has the potential to provide greater efficiency and stability at cruder 

tolerances than higher order Runge-Kutta methods [18]. As such, there is potential to 

reduce runtimes for simulations, which will be especially important if this model is to 

be applied for optimization work in CPA addition and removal protocol design. For 

this analysis, default tolerances were used. One drawback of ODE 23 and the 

MATLAB ODE suite in general is that the time differential must be written in explicit 

function form. Of course, we cannot write our mass concentration differential equations 

as an explicit function of mass concentration and time. To solve this problem, we can 

either implement a function stack to call upon when we interface with ODE 23, or we 

can implement the necessary ODE 23 source code in our own program. We opted for 

the latter approach, as the former could substantially increase runtime.  

 

For spatial discretization, we used central finite differencing with even spacing between 

nodes. For the model, we do need to define the chemical potential gradient at the bath 

boundary and the flux gradient at the insulated boundary, for which we used backward 

differencing and forward differencing, respectively. We chose central differencing due 
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to its ease of implementation in multi-species flow over upwind methods and its second 

order accuracy. In a diffusion-dominant situation, central differencing is in line with 

the physics of the problem. We conducted a mass transfer Péclet number analysis using 

the following definition: 

 

𝑃𝑒 =
𝐿𝑢

𝐷
3.27 

 

where 𝑃𝑒 is the Péclet number, 𝐿 is the characteristic length for mass transfer, 𝑢 is the 

convective velocity, and 𝐷 is the diffusion coefficient. We can write the characteristic 

length as 𝜕𝛼ℎ𝑜, where 𝜕𝛼 is dependent on the number of nodes we break our domain 

in to. With the convective velocity, we note that the model formalism treats velocity as 

a net velocity composed of a diffusive and convective contribution. In the non-dilute 

mixture, convection becomes difficult to define, but we can use the net velocity as an 

estimate on the upper bound of convection. Each species has its individual net velocity, 

but the net velocity of each species is most often on the same order of magnitude at a 

given location. During early simulation times at the bath boundary, the net velocity is 

about 10-3 m/s to 10-2 m/s depending on the number of nodes employed. Past early 

simulation times, though, the net velocity decreases several orders of magnitude to 

about 10-6 m/s throughout the tissue. The diffusion coefficient is also difficult to define 

given the mixture representation of the problem, but we can use the diffusion 

coefficients of salt and CPA used in the model which range from 10-10 m2/s to 10-9 m2/s.  

 

To obtain consistency with central differencing, we must keep the Péclet number less 

than two [128]. As such, at the bath boundary at early times, the smallest 𝜕𝛼 we can 

obtain to meet this criterion is about 2 x 10-5. If we translate 𝜕𝛼 into the necessary 

number of nodes, we obtain 50,001 nodes, as the number of nodes is found by taking 

the inverse of 𝜕𝛼 and adding one as to account for nodes at both boundaries. For the 

entire tissue past early times, the smallest 𝜕𝛼 becomes 0.2, which translates to 6 nodes. 

As such, there is a wide range in the estimate of the number of nodes needed. Both the 

low- and high-end node estimates seem unreasonable from inspection, and we expect 
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the number of nodes to be somewhere in between. Given that the net velocity is an 

upper bound estimate on convection and we expect the physical situation to be diffusion 

dominant, the number of nodes will be closer to the lower estimate. As will be described 

later, the number of nodes used in simulations is on the order of 10 to 102, which gives 

us confidence that 𝜕𝛼 is small enough to accurately describe the physics over most 

simulation times. For the bath boundary at early times, the 𝜕𝛼 employed allows for a 

stable solution to be obtained due to the large velocities encountered.  

 

For grid convergence, we looked at the global variable of average CPA concentration 

within the tissue. We conducted a grid convergence study for our base simulations, 

which included the model presented above for both articular cartilage and pancreatic 

islets, as well as an acellular version of the model (model variants are discussed in 

detail later). In every case, we conducted a grid convergence analysis using the classic 

grid convergence index (GCI) presented by Roache [111,112]. We conducted three 

successive levels of grid refinement using a coarse, medium, and fine grid. The coarse 

grid was set at 26 nodes, with the medium grid at 51 nodes, and the fine grid at 101 

nodes. The GCI for the fine grid was calculated as follows: 

 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒 = 1.25 ∗ (
|𝜀|

𝑟𝑝 − 1
) 3.28 

 

where 𝜀 is the relative error between the average CPA concentration for the medium 

and fine grid, 𝑟 is the grid refinement ratio (two in our case), and 𝑝 is the observed 

order of the numerical scheme. Both 𝜀 and 𝑝 are defined below: 

 

𝜀 =
𝑓2 − 𝑓1

𝑓1
3.29 

𝑝 =
𝑙𝑛 (

𝑓3 − 𝑓2

𝑓2 − 𝑓1
)

𝑙𝑛(𝑟)
3.30
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where 𝑓 is the average CPA concentration, with subscript 1 representing the finest grid, 

2 representing the medium grid, and 3 representing the coarse grid. Given the transient 

nature of the problem, the GCI was calculated for every minute time point of a cartilage 

simulation and every 20 seconds for the islet simulation due to a difference in the time 

scale of mass transfer. At every time point, we also checked to make sure that we were 

in the asymptotic range of convergence where the following relationship should be true: 

 

𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒

𝑟𝑝𝐺𝐶𝐼𝑓𝑖𝑛𝑒
=̃ 1 3.31 

 

where 𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒 is found just like 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 in Equation 3.28, but the relative error is 

calculated between the coarse and medium grid. All results are reported using the fine 

grid. We found higher GCI values at early time points, with the GCI decreasing as the 

simulation progressed, since the average CPA concentration is asymptotically 

approaching its steady-state value through time. GCI values higher than 5% were found 

for simulation times ≤ 5 min, with high-end values of ~30% for the cartilage 

simulations. No GCI values above 5% were found for the islet simulations. The use of 

the fine grid was deemed adequate for this study, but tighter tolerances for the average 

CPA concentration could be investigated for short CPA addition and removal steps. 

We also found that 𝑓1 > 𝑓2 > 𝑓3 or 𝑓3 > 𝑓2 > 𝑓1 is not always the case at very early 

times for the cartilage case, indicating that a finer mesh is needed for the average CPA 

concentration to show asymptotic approach behavior at the earliest times. Such a fine 

grid is computationally intensive and most likely unnecessary for future optimization 

work in CPA addition and removal protocol design, with the absolute value of the 

relative error (Eq. 3.29) being less than 3% for all times. If necessary though, the 

minimum number of nodes to obtain a threshold GCI of interest can be calculated 

according to Roache [112].  

 

3.3.8 Tissue Specific Parameters 

3.3.8.1 Articular Cartilage 
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The inclusion of cells within the articular cartilage model of Abazari et al [1] requires 

the inclusion of new parameters. We define the new parameters necessary for our 

augmented model in Table 3.1, as well as the original model parameters from Abazari 

et al [1].  

 

Table 3.1. Parameters used in the cell-augmented cartilage model, and CPA specific 

parameters are for dimethyl sulfoxide (DMSO).  

 

Parameter Description Value 

Parameters from Abazari et al [1] 

ℎ𝑜 Cartilage thickness [m] 1e-3 

𝐶𝑓𝑐
𝑜  Fixed charge concentration [mol/m3] 200 

𝜑𝑠
𝑜 Solids volume fraction 0.2 

𝑊𝑏 Dry weight fraction of cartilagea 0.227 

𝐷𝑛𝑤 Diffusivity of salt in water [m2/s]b 5e-10 

𝐷𝑐𝑤 Diffusivity of DMSO in water [m2/s]c 2.25e-10 

𝐾𝑐𝑠 Permeability of DMSO in cartilage [m4/N/s]c 4.7e-17 

𝐾𝑠𝑤 Permeability of water in cartilage [m4/N/s]c 4.98e-16 

𝐻𝐴 Modulus of elasticity [Pa]c 2.4e6 

New Parameters 

𝜁 Cell density of cartilage [cells/m3] 1e14 [124] 

𝑉𝑖𝑡
𝑜 Chondrocyte isotonic volume [m3] 1e-15 [95] 

𝑉𝑏 Chondrocyte solids volume fraction 0.41 [95] 

𝐿𝑝 
Hydraulic Conductivity [m/Pa/s] 

DMSO, 21 °C 
2.68e-14 [136] 

𝑃𝑠 
CPA Permeability [m/s] 

DMSO, 21 °C 
7.88e-8 [136] 

Derived Parameters 

𝜑𝑖𝑤
𝑜  

Intracellular water volume fraction 

𝜁 ∗ 𝑉𝑖𝑡
𝑜 ∗ (1 − 𝑉𝑏) 

0.059 

𝜂 
Cell density per volume of solids [cells/m3] 

𝜁/𝜑𝑠
𝑜 

5e14 

𝐴𝑐𝑒𝑙𝑙 
Chondrocyte surface area [m2] 

62/3 ∗ 𝜋1/3 ∗ 𝑉𝑖𝑡
𝑜2/3

 
4.84e-10 

aDry weight fraction is needed to calculate the pure component density of the solids in 

order to interconvert between mass concentration and volume fraction of solids. 
bConstant effective diffusivity used by Abazari et al [1]. 
cBest-fit values as presented in Figures 7-10 of Abazari et al [1] for DMSO at 22 °C.  
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3.3.8.2 Pancreatic Islets 

To adapt our model to pancreatic islets, we must first address the framework of the 

model before addressing tissue specific parameters. We start by addressing the 

spherical nature of islets, and a switch to spherical coordinates is the easiest way to deal 

with the new geometry. We again only consider one-dimensional transport but in the 

radial direction (𝑟). With this change in coordinate system, the definition of state 

variables remains the same, as the variables are scalar field quantities. However, there 

are several changes that need to be made to the transport equations and the subsequent 

variable transform. Starting with continuity, the accumulation and generation terms do 

not change, but the divergence of the flux does. Taking the continuity equation for 

extracellular water (see Eq. 3.7a) as an example, we have: 

 

𝜕𝜌𝑤

𝜕𝑡
+

1

𝑟2

𝜕(𝑟2(𝜌𝑤𝑢𝑤))

𝜕𝑟
+

𝜕𝑉𝑖𝑤

𝜕𝑡
𝜂𝜑𝑠�̅�𝑤 = 0 3.32𝑎 

 

Expanding the flux term results in: 

 

𝜕𝜌𝑤

𝜕𝑡
+

𝜕(𝜌𝑤𝑢𝑤)

𝜕𝑟
+

2

𝑟
𝜌𝑤𝑢𝑤 +

𝜕𝑉𝑖𝑤

𝜕𝑡
𝜂𝜑𝑠�̅�𝑤 = 0 3.32𝑏 

 

The flux and chemical potential gradients remain in the same form as in the cartilage 

case (see Eqs. 3.7a-3.7f and Eqs. 3.10a-3.10c, respectively), just with a radial 

dependence. The last change to the transport equations deals with a change in the 

stress/strain relationship. To address this, we turn back to the derivation of triphasic 

theory [82,118] and note that the divergence of the mixture stress is equal to zero. 

Following Albro et al [3] for the fluid pressure, we can write the relationship between 

stress and strain in a porous sphere for our case as: 

 

𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐻𝐴 (
2

𝑟
𝑣 +

𝜕𝑣

𝜕𝑟
) 3.33 
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where 𝑣 is the radial displacement. For the purposes of this islet investigation to 

simplify the model, we will consider the modulus of elasticity to equal zero, thus 

rendering 𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐 also equal to zero. The mechanical properties of islets are not as well 

studied for cartilage, and we expect a 1000-fold reduction in its modulus when 

compared to cartilage [100]. In cartilage simulations, we see no appreciable difference 

between volume predictions when the modulus is reduced 1000-fold and when the 

modulus is zero. Also, Benson et al [12] reports a Boyle van’t Hoff relationship for 

islets that can be used to predict the intracellular solids volume fraction, indicating a 

negligible modulus. As will be discussed later, a modulus of zero also provides a better 

replication of the islet model of Benson et al [12]. 

 

At this point, we have moved the transport equations to a spherical geometry, and we 

apply a similar variable transform strategy (see Eq. 3.17) to fix the size of the spatial 

domain: 

 

𝛼 =
𝑟

𝑅
3.34 

 

where 𝑅 is the location of the moving tissue/bath interface as before and is measured 

from the static center of the spherical islet (𝑟 = 0). To apply the transform, the temporal 

gradient (accumulation term) in continuity follows from the same procedure as 

Equation 3.19: 

 

𝜕𝜌𝑖

𝜕𝑡 𝑟
=

𝜕𝜌𝑖

𝜕𝑡 𝛼
−

𝛼

𝑅

𝑑𝑅

𝑑𝑡

𝜕𝜌𝑖

𝜕𝛼
3.35 

 

The flux term follows similarly from Equation 3.18b: 

 

𝜕(𝜌𝑤𝑢𝑤)

𝜕𝑟
+

2

𝑟
𝜌𝑤𝑢𝑤 =

1

𝑅

𝜕(𝜌𝑤𝑢𝑤)

𝜕𝛼
+

2

𝛼𝑅
𝜌𝑤𝑢𝑤 3.36 

 

The chemical potential gradient follows from Equation 3.18a: 
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𝜕𝜇𝑖

𝜕𝑟
=

1

𝑅

𝜕𝜇𝑖

𝜕𝛼
3.37 

 

To handle the Stefan condition, we again apply our previous strategy as in Equation 

3.20: 

 

𝑑𝑅

𝑑𝑡
= 𝑢𝑠(𝛼 = 1) 3.38 

 

However, the switch to spherical coordinates proves more challenging for defining 𝑅, 

as we need to account for the differential volume element in spherical coordinates 

before we apply the variable transform. The analog for Equation 3.22 becomes: 

 

𝑅 = √
𝜌𝑠

𝑜𝑅𝑜3

3 ∫ 𝜌𝑠𝛼2𝜕𝛼

3

3.39 

 

Defining the physiological reference state follows from the cartilage case, as do the 

initial conditions when we consider 𝑃𝑒𝑙𝑎𝑠𝑡𝑖𝑐 to be equal to zero. For the boundary 

conditions, the bath boundary follows from the cartilage case, but the boundary 

condition at the center of the islet slightly changes. With the move to spherical 

coordinates, the insulated boundary is now the center of the islet. We still apply the no 

penetration boundary condition for the center of the islet due to the radial axisymmetric 

nature of the problem. At the center of the islet (𝛼 = 0) we must contend with an 

indeterminate form in the flux though. In Equation 3.36 we note that the second term 

of the flux reduces to 0/0 at the center of the islet. To write this term in a determinate 

form at the center of the islet, we applied L’Hôpital’s rule: 

 

lim
𝛼→0

2

𝛼𝑅
𝜌𝑤𝑢𝑤 = lim

𝛼→0

2
𝜕(𝜌𝑤𝑢𝑤)

𝜕𝛼

𝑅
𝜕𝛼
𝜕𝛼

=
2

𝑅

𝜕(𝜌𝑤𝑢𝑤)

𝜕𝛼
3.40 
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With the geometry and transport equations set, we applied the model to a small hamster 

islet as described by Benson et al [12]. Specifically, we investigated an islet of ~82 µm 

exposed to a 1.5 molal DMSO solution at 22 °C, and the change in the size of this islet 

is reported in the second panel of Figure 3 of Benson et al [12]. As such, we performed 

a literature search for islet specific parameters but also fit some parameters based on 

the size change data of Benson et al [12]. Table 3.2 shows the parameters used in the 

islet model and is broken down into parameters found in the literature, subsequently 

derived parameters, and fitted parameters. 

 

Table 3.2. Parameters used for the pancreatic islet model. As many parameters as 

possible were taken from the model of Benson et al [12], and three parameters were fit 

based on the islet size change data of the second panel of Figure 3 of Benson et al [12].  

 

Parameter Description Value 

Literature Parameters 

𝜑𝑠
𝑜 Solids volume fraction 0.4 [12] 

𝜑𝑤
𝑜  Extracellular water volume fraction 0.2 [12] 

𝑉𝑖𝑡
𝑜 Islet cell isotonic volume [m3] 970e-18 [12] 

𝑉𝑏 Islet cell solids volume fraction 0.4 [12] 

𝐿𝑝 
Hydraulic Conductivity [m/Pa/s]a 

DMSO, 22 °C 
3.28e-14 [10,12] 

𝑃𝑠 
CPA Permeability [m/s]a 

DMSO, 22 °C 
1.84e-7 [10,12] 

𝐴𝑐𝑒𝑙𝑙 Islet cell surface area [m2] 408e-12 [12] 

𝑅𝑜 Islet radius [m] 82.2e-6 [12] 

𝐷𝑛𝑤 Diffusivity of salt in water [m2/s]b 5.18e-10 [12] 

𝐷𝑐𝑤 Diffusivity of DMSO in water [m2/s]b 5.31e-10 [12] 

Derived Parameters 

𝜑𝑖𝑤
𝑜  

Intracellular water volume fraction 

1 − 𝜑𝑠
𝑜 − 𝜑𝑤

𝑜  
0.4 

𝜁 
Cell density of islet [cells/m3] 

𝜑𝑖𝑤
𝑜 /(𝑉𝑖𝑡

𝑜 ∗ (1 − 𝑉𝑏)) 
6.87e14 

𝜂 
Cell density per volume of solids [cells/m3] 

𝜁/𝜑𝑠
𝑜 

1.72e15 

𝑊𝑏 Dry weight fraction of isletc 0.298 
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𝐻𝐴 Modulus of elasticity [Pa] 0 

Fitted Parameters 

𝐶𝑓𝑐
𝑜  Fixed charge concentration [mol/m3]d 53.3 

𝐾𝑐𝑠 Permeability of DMSO in cartilage [m4/N/s]d 6.45e-19 

𝐾𝑠𝑤 Permeability of water in cartilage [m4/N/s]d 5.40e-17 
aThe membrane permeabilities of the two-parameter membrane transport model were 

fit from the three parameters of the Kedem-Katchalsky formalism that are reported by 

Benson et al [10]. A least squares fitting approach was employed for an islet cell 

exposed to 1.5 molal DMSO at 22 °C. 
bAn effective diffusivity of salt found in the literature [12] was used as done by Abazari 

et al [1]. The effective diffusivity of DMSO in an islet at 22 °C as presented by Benson 

et al [12] was used rather than fitting for the effective diffusivity. In Abazari et al [1] 

they fit for the diffusivity, but we tried to reduce the number of fitted parameters. 
cThe dry weight fraction of an islet is needed to calculate the pure component density 

of the solids in order to interconvert between mass concentration and volume fraction 

of solids. The dry weight fraction was calculated by using the small islet dry weight 

estimate of Parman [102] in conjunction with the initial islet size and water fraction of 

Benson et al [12].  
dAs with Abazari et al [1], the permeabilities of DMSO and water at 22 °C were kept 

as fitted parameters. However, we also moved the fixed charge concentration to a fitted 

parameter. 

 

One of the biggest changes from our cartilage model was fitting the reference fixed 

charge concentration rather than using a literature value. Finding information on fixed 

charges outside of cartilage, or a few other tissues such as cornea [72], is challenging. 

The glycosaminoglycan (GAG) content of a tissue is a good proxy for the prevalence 

of fixed charges [132], though, and is easier to find in the literature. We initially 

attempted to estimate the reference fixed charge concentration by establishing a linear 

relationship between the fixed charge concentration and tissue GAG content [mol fixed 

charges/mass GAG]. By using the fixed charge concentration of Abazari et al [1] 

combined with average cartilage GAG content found in the literature [7,21], we 

established a point on the fixed charge vs. GAG content line. We then used the GAG 

content reported by Theocharis et al [123] for the pancreas to estimate the fixed charge 

concentration, resulting in a concentration estimate of 8.12 [mol/m3]. However, 

allowing the fixed charge concentration to be fit allows us to better match the osmotic 

response of Benson et al [12]. All of the fitted parameters of Table 3.2 were found by 

employing a least squares approach using the coarse mesh of 26 nodes. The coarse 
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mesh was used due to program runtime constraints. All simulation results are reported 

with the fine mesh of 101 nodes.   

 

3.4 Results and Discussion 

3.4.1 Model Validation 

For model validation, we compared the results of our model directly with the results of 

the model given by Abazari et al [1]. To do so, we created an entirely separate acellular 

model that mirrors Abazari et al [1] in conjunction with the cell augmented model 

detailed above. Both our acellular model and the model incorporating cells, for the limit 

of cell density approaching zero, yielded the same results. The biggest difference 

between our model and that of Abazari et al [1] is the numerical methods. Abazari et 

al [1] solved the model in COMSOL and it is unknown exactly how the moving 

boundary was represented. We also have a different equation for calculating the fixed 

charge concentration when comparing to Equation 23 of Abazari et al [1]. Figure 3.2 

shows a comparison between our acellular model and that of Abazari et al [1] for a 6.5 

M DMSO exposure of a cartilage slab. The two main predictions of normalized fluid 

weight and average DMSO concentration of the cartilage from Abazari et al [1] are 

compared against. The normalized fluid weight tracks the change in mass of both water 

and DMSO upon exposure of the cartilage with DMSO and is a good proxy for overall 

size change. Our results are a reasonable match with Abazari et al [1] considering our 

modeling approaches. 
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Figure 3.2. A direct comparison between our current work and that of Abazari et al [1] 

for a slab of cartilage exposed to a 6.5 M DMSO bath. All parameters and constants 

are kept the same as in Abazari et al [1] (see Table 3.1). Both panels detail overall tissue 

predictions as a function of time, with the bottom panel detailing the average DMSO 

concentration within the cartilage.  

 

3.4.2 Parametric Analysis and the Impact of Cells 

Abazari et al [1] did conduct a parametric analysis of the modified triphasic theory of 

articular cartilage, and the parameters investigated were their fitted parameters of 𝐷𝑐𝑤, 

𝐾𝑐𝑠, 𝐾𝑠𝑤, and 𝐻𝐴. For the design of CPA addition and removal protocols, it is necessary 

to understand the transient volume response of a specimen to compare against osmotic 

tolerance limits, as well as the CPA concentration to calculate toxicity and to know 
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when to end a protocol [29]. The parameters of 𝐾𝑐𝑠, 𝐾𝑠𝑤, and 𝐻𝐴 have little impact on 

CPA concentration predictions as shown by Abazari et al [1], but 𝐷𝑐𝑤 has a large 

impact on concentration predictions as expected, with CPA concentration predictions 

increasing with increasing 𝐷𝑐𝑤. When we look at volume responses, greater tissue 

shrinking (as evidenced by the normalized fluid weight predictions of Abazari et al [1]) 

is seen with increasing 𝐷𝑐𝑤, decreasing 𝐾𝑐𝑠, increasing 𝐾𝑠𝑤, and decreasing 𝐻𝐴. A 

parameter that was not investigated by Abazari et al [1] and one that we hypothesize 

has a large impact on predictions is that of the fixed charge concentration. In Figure 

3.3, we show both the CPA concentration response and volume response for a cartilage 

slab (no cells) exposed to 6.5 M DMSO with varying fixed charge concentrations. We 

show these predictions for two different values of 𝐻𝐴 as well, because the mechanical 

properties of the tissue offer resistance to an osmotic response influenced by fixed 

charges. 
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Figure 3.3. A parametric analysis on the CPA concentration and volume response of a 

cartilage slab exposed to a 6.5 M DMSO solution when changing both the fixed charge 

concentration and the modulus of elasticity. The panels with a high 𝐻𝐴 indicate a 

modulus of 2.4e6 [Pa] and the panels with a low 𝐻𝐴 indicate a modulus of 2.4e4 [Pa]. 

The fixed charge concentrations [mol/m3] are also varied by orders of magnitude in 

each panel. Parameters are kept the same as in Abazari et al [1] (acellular case, see 

Table 3.1), unless otherwise noted. 

 

As can be seen in Figure 3.3, fixed charge concentration has a small impact on the CPA 

concentration predictions but does have a large impact on the volume response. As the 

fixed charge concentration increases, so too does the osmotic pressure of the model and 

subsequent chemical potential gradients, driving a more pronounced osmotic response 

of the tissue. On the other hand, the modulus of elasticity serves as a counter to the 

osmotic response induced by the fixed charges. As shown by Figure 3.3, a higher 

modulus decreases the extent of the osmotic response (shrinking) of the tissue. Overall, 
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there is an interplay between fixed charges and the modulus of elasticity on the osmotic 

response of the tissue.   

 

Cartilage has both a high fixed charge concentration and a high modulus of elasticity, 

but of course, this is not the case for all tissues. For the first adaption of our model from 

cartilage, we are investigating pancreatic islets which have a relatively low fixed charge 

concentration and a low modulus of elasticity (see Table 3.2). In the bottom right panel 

of Figure 3.3, we see no rebound in the tissue volume for a low fixed charge 

concentration and a low modulus of elasticity. We do not see such a trend for islets as 

seen in Benson et al [12], but we expect there to be a threshold of the fixed charge 

concentration at which no rebound of the tissue volume is seen (at least without a time 

scale on a different order of magnitude). Even though islets have a relatively low fixed 

charge concentration when compared to cartilage, the concentration is high enough to 

induce a rebound in tissue volume. A tissue that does seem to show no rebound in 

volume is that of ovarian tissue. A prime example is the first panel of Figure 3 of Han 

et al [64] where they expose ovarian tissue to several different CPAs. The rebound in 

tissue weight (volume proxy) was on a time scale of a day when initial tissue shrinkage 

was on a time scale of an hour. We hypothesize that the fixed charge concentration 

could be behind such a phenomenon. In the limit of a very small fixed charge 

concentration for a non-stiff tissue, the osmotic response is only governed by the 

equilibration of CPA concentrations across the tissue boundary which happens 

relatively quickly. There is very little driving force for the tissue to rebound in volume 

since an unequal salt concentration across the tissue boundary is absent without fixed 

charges. An interesting analog at the single cell level is to consider the two-parameter 

model in the absence of a nonpermeating solute. 

 

Understanding the effect that fixed charges has on volume responses in tissues is 

important, but we haven’t seen many parameters that have an influence on CPA 

concentration. The effect of cell density, though, is expected to have an impact on the 

CPA concentration. In Figure 3.4, we show the effect that cell density has on CPA 

concentration as well as the volume response for a cartilage slab exposed to 6.5 M 
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DMSO. Figure 3.4 provides a direct comparison between the model of Abazari et al [1] 

and our cell augmented model. In Abazari et al [1] they consider a cartilage slab with 

20% solids, and we consider a cartilage slab with 20% solids and 5.9% cells 

(intracellular water) initially (see Table 3.1). We also provide a comparison using 

25.9% solids and a comparison using 20% solids and 30% cells to highlight the cell 

effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. A parametric analysis on the CPA concentration and volume response of a 

cartilage slab exposed to a 6.5 M DMSO solution when changing the cell density. A 

baseline comparison is drawn between the 20% solids reported in Abazari et al [1] and 

our addition of 5.9% cells . We also compare a case of using 25.9% solids to isolate the 

cell effect and show a case of 30% cells to highlight the effect. Parameters are kept the 

same as in Abazari et al [1] (see Table 3.1), unless otherwise noted. 
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In Figure 3.4, we show that the presence of cells decreases CPA concentration 

predictions. In standard diffusion modeling of the extracellular space, cells pose an 

additional barrier to diffusion by limiting the volume fraction of extracellular space 

available for diffusion and also creating a more tortuous path for diffusion. As a result, 

the effective diffusion coefficient in the porous network is smaller when compared to 

the diffusion coefficient in free solution [99]. In the model formalism we have 

presented, this phenomenon would be accounted for in the dependence of the frictional 

coefficients of CPA and salt (see Eqs 3.12a-3.12b) on the void fraction of the tissue. In 

conjunction with adding a barrier to mass transfer in the extracellular space, cells also 

influence the local concentration of fluid phase species around them. By exchanging 

CPA with the extracellular space, cells decrease the local concentration of CPA around 

them and decrease the driving force for CPA transport in the extracellular space. This 

effect is directly isolated in Figure 3.4, as there is a more pronounced effect in CPA 

concentration when cells account for part of the excluded volume (20% solids, 5.9% 

cells) compared to only solids excluding volume (25.9% solids). Figure 3.4 also shows 

that cells decrease the overall osmotic response. This can be attributed, again, to both 

a decrease in 𝐷𝑐𝑤 and a decrease in extracellular CPA concentration which decreases 

a driving force of the osmotic response.  

 

3.4.3 Model Applications – Pancreatic Islets 

When surveying the effects of the many parameters of this model, it becomes clear that 

there are many intertwined effects that have varying impacts on predictions. In just 

exploring the two parameters of fixed charge concentration and cell density, we have 

covered the tissue-specific phenomena of fixed charges and the coupling of 

extracellular and cell membrane transport, and how both phenomena influence tissue 

size changes. Overall, using cartilage parameters and just assessing the fixed charge 

concentration allowed us to show an interesting osmotic response seen in the literature 

for ovarian tissue. As such, the application of this model to tissues in general is a real 

possibility. In this investigation, we will explore the pancreatic islet, which has very 

different parameters than cartilage but also has a much shorter length scale. Such a 
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short length scale combined with a high cell density tests the framework of our 

proposed continuum-based modeling approach for tissues in general.  

 

As shown in Table 3.2, we were able to reduce the pancreatic islet model down to three 

fitted parameters, with the fixed charge concentration being included as a fitted 

parameter due to uncertainty in its value. The parameters were fit from islet size change 

data reported in the second panel of Figure 3 of Benson et al [12] for an islet exposed 

to 1.5 molal DMSO. Figure 3.5 compares the data and model fit of Benson et al [12] to 

our current model reported in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Size change data of a pancreatic islet exposed to 1.5 molal DMSO in 1x 

PBS as reported in the second panel of Figure 3 of Benson et al [12]. Model predictions 

of Benson et al [12] are also shown as well as predictions from the model described in 

this current work.  

 

As shown in Figure 3.5, we were able to match islet size predictions in a comparable 

way to that of the model developed by Benson et al [12]. For CPA addition and removal 

protocol design, we want to know the volume response of the cells in conjunction with 

that of the tissue, as well as the CPA concentration predictions. In Figure 3.6, we show 

the volume response of not only the islet but of a surface cell (closest to the CPA bath) 

and an interior cell (farthest from the CPA bath). We also show the intracellular DMSO 
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concentration for the surface and interior cell. Both the extracellular and intracellular 

concentrations are nearly identical in these simulations with the intracellular 

concentration slightly lagging the extracellular concentration (not shown) due to the 

short time scale of CPA transport across the cell membrane. Also shown in Figure 3.6 

are the same predictions but for the standard 6.5 M DMSO exposure of a cartilage slab. 

 

 

Figure 3.6. Left Panels: Intracellular DMSO concentration and volume predictions for 

a slab of cartilage exposed to 6.5 M DMSO (see Table 3.1 for parameters). The surface 

cell is closest to the exposure bath and the interior cell is furthest away. Right panels: 

The same predictions as in the left panels but for a pancreatic islet exposed to 1.5 molal 

DMSO in 1x PBS (see Table 3.2 for parameters).  

 

The predictions for the pancreatic islet in Figure 3.6 match the predictions made in 

Figure 5 of Benson et al [12]. In Figure 5 of Benson et al [12], they use 1.5 molal 

ethylene glycol, but predictions will be very similar to DMSO since they used the same 

diffusion coefficient for both. When surveying Figure 3.6, one of the biggest 
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differences between cartilage and an islet is that of the time scale of transport, which is 

directly related to the difference in length scale between the two specimens. There is a 

finite time it takes CPA to move from the surface of a tissue to the interior, resulting in 

a more pronounced spatial gradient in the CPA concentration across the tissue as the 

tissue’s characteristic length increases. Depending on the characteristic length of a 

tissue, this CPA gradient can greatly influence the osmotic response of cells on the 

surface of a tissue compared to those within the interior. The bottom panels of Figure 

3.6 show that the osmotic response of a chondrocyte is a larger function of tissue 

position than that of a pancreatic islet cell. That being said, Abazari and colleagues [2] 

explored the applications of the modified triphasic theory considering initial spatial 

distributions of parameters—fixed charge concentration being one of them. As such, 

the osmotic response of a cell as a function of tissue position is also a function of 

potential tissue inhomogeneities, but the osmotic response of an interior cell, regardless 

of the magnitude of the response, will lag behind that of a surface cell due to time scale 

of transport across a tissue. 

 

Setting aside tissue inhomogeneities, Figure 3.6 shows that the difference in magnitude 

of the osmotic response between a surface and interior cell of cartilage is more 

pronounced than in the islet case. The islet of Langerhans study of de Freitas et al [30] 

also predicts a minimal difference in the osmotic response of islet cells. This difference 

between tissues is again attributed to the time scale of transport across the tissue. Since 

CPA takes much longer to reach the interior of cartilage, the interior cells are exposed 

to smaller CPA concentration gradients across the cell membrane through time. The 

surface cell experiences a similar volume excursion to what a cell in free solution would 

experience with an abrupt change in CPA concentration, but the interior cell sees a slow 

continuous increase in CPA concentration. In the end, a shorter time scale of transport 

leads to less differences in cell predictions as a function of tissue position. This is a key 

consideration when devising a CPA addition and removal protocol for one tissue over 

the other, and we have shown that our continuum-based modeling approach is able to 

describe two vastly different tissues.  
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3.4.4 Implications for CPA Addition and Removal 

In our results presentation, we have shown an interconnectedness of several model 

parameters as well as a large difference between predictions for the two different tissues 

investigated. As such, there are several CPA addition and removal implications that 

should be considered. To start, we have shown that different tissue types can have very 

different time scales of transport stemming from different characteristic length scales. 

For islets, CPA concentration equilibration occurs on the order of ~1 min, while 

cartilage is on the order of ~1 h. The osmotic response is also comparable, with islets 

being on the order of ~10 min and cartilage being on the order of ~1 h. We have also 

discussed a much longer response of ovarian tissue with a response being on the order 

of ~1 day. Such a difference in time scale draws attention to CPA exposure times. A 

cartilage slab will have to be exposed to CPA for a longer amount of time than a 

pancreatic islet for entire tissue equilibration to occur. This leads down the path of 

minimizing exposure time in order to minimize toxicity. However, we have shown that 

minimizing exposure time for CPA equilibration does not always render the least toxic 

approach [13]. In contrast, for example, Shardt et al [119] proposes a cartilage 

vitrification protocol by minimizing exposure time. When considering any specimen, 

especially a tissue such as cartilage with a large time scale of transport, the time 

difference between the least toxic equilibration protocol and the protocol that 

minimizes exposure time could be vast. In our previous work looking at the three 

different tissue types of skin, fibroid, and myometrium [13], we showed that the least 

toxic protocol can be almost twice as long as the protocol that minimizes exposure time. 

 

Moving on from CPA concentration predictions, the osmotic response of the cells and 

perhaps the tissue are important to consider when comparing against osmotic tolerance 

limits—the volume range a cell can move though before mechanical damage is induced 

[29,59,98]. The same principal could apply for the tissue itself and the strain of the 

model provides a metric for potential mechanical damage. A strategy to prevent 

osmotic damage of cells is to slowly add or remove CPA [29,38,59,86,98], but the idea 

is harder to extend to tissues due to transport complexities introduced by the 

extracellular space. As we have discussed in this work, cells at the surface of the tissue 
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will experience a greater osmotic response when compared to interior cells. As such, 

and also considering that surface cells will experience greater toxicity from prolonged 

CPA exposure [13,76,119], surface cells can be a constraint in CPA addition and 

removal protocol design.  

 

Both CPA concentration and osmotic responses are inherently linked. The presence of 

CPA can induce an osmotic response and the osmotic response can influence the CPA 

concentration due to a change in volume. Since the osmotic response can influence 

CPA concentration, it can also influence toxicity. In a previous work [29], we were 

able to leverage the osmotic response of endothelial cells to reduce toxicity. 

Specifically, we were able to leverage the swelling induced by loading cells with CPA 

in hypotonic buffer, which is in contrast with conventional protocols that rely on 

loading in isotonic buffer and primarily try to avoid excessive cell shrinkage. By 

manipulating the buffer tonicity, we were able to influence CPA loading kinetics and 

were able to load more CPA in a shorter amount of time, resulting in a low toxicity 

novel protocol. The same strategy is hypothesized to extend to tissues. The overall 

process is more complicated due to extracellular mass transfer, but the presence of fixed 

charges will influence both transient and equilibrium volume predictions for the tissue 

(and cells inside). A good way to visualize the phenomenon is to consider Boyle van’t 

Hoff plots for both cartilage and an islet. In Figure 3.7, we show Boyle van’t Hoff plots 

for both cartilage and an islet based on predictions of the model presented in this work, 

as well as data for both tissues found in the literature.   
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Figure 3.7. Left panel: A Boyle van’t Hoff plot for both cartilage and an islet using the 

model presented in this work (see Tables 3.1 and 3.2 for model parameters). The five 

concentrations of salt in the bathing solution are 100, 200, 300, 500, and 1000 

mOsmolar. Right panel: A Boyle van’t Hoff plot for both cartilage and an islet from 

data presented in the literature. The bovine articular cartilage data is presented as strain 

by Lai et al [82] and has subsequently been converted to volume. The concentrations 

of NaCl in the bathing solution are 30, 300, 600, 1500, 3000, and 5000 mOsmolar. For 

the human pancreatic islet, normalized volume data is presented in Woods et al [133]. 

The concentrations of NaCl in the bath solution are 75, 150, 300, 600, and 1200 

mOsmolar.  

 

As Figure 3.7 shows, islets show a Boyle van’t Hoff relationship [101] that can be used 

to predict the solids volume fraction (infinite salt concentration) while cartilage does 

not. This can be attributed to differing mechanical properties of the tissue and has been 

captured in the model with the modulus of elasticity. As such, manipulating the buffer 

tonicity for an islet CPA addition and removal protocol would be expected to have a 

greater impact on toxicity reduction when compared to cartilage. It is worthy to note 

that the tensile and compression moduli are different for cartilage, with the tensile 

modulus being about one order of magnitude greater than the compression modulus 

[6,97], which explains the right panel of Figure 3.7. As the modulus is kept as a constant 

for compression and tensile deformations in this work, it might be necessary to account 

for the two different moduli in the limit of leveraging very hypotonic buffers. 

Nevertheless, we have shown that the same model framework used in this work can 

describe the widely varying size change phenomenon of different tissues.  
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3.5 Conclusions and Future Directions 

In this work, we sought to develop a general model for mass transfer in tissues. The 

current state of tissue mass transfer modeling within cryobiology is lacking, since each 

modeling approach captures some tissue-based phenomena but not all. In order to find 

the least toxic CPA addition and removal protocol for tissues, we postulate that a mass 

transfer model needs to account for all phenomena. We have established these 

phenomena as non-dilute mass transfer in the extracellular space, coupling between 

extracellular and cell membrane mass transfer, fixed charges, and tissue volume 

changes [132]. To incorporate all of these phenomena in one model, we turned to the 

modified triphasic theory of articular cartilage as presented by Abazari et al [1], with 

the only lacking phenomenon being that of coupled mass transfer between the 

extracellular space and the cell membrane. To address this lack of such a representation, 

we incorporated the classic two-parameter membrane transport model into the overall 

model formalism. With such a formalism, we were able to address all of the tissue-

based phenomena in one model and parameters could then be changed to represent any 

tissue of interest. To test the applicability of this general formalism, we investigated a 

very different tissue than cartilage—pancreatic islets.   

 

In the process of model development, we showed that we can similarly match the 

predictions of Abazari et al [1], and we conducted a parametric analysis of the fixed 

charge concentration as well as the cell density. As the fixed charge concentration 

increases, so too does the magnitude of the osmotic response of the tissue, but the 

mechanical properties of the tissue serves as a countering effect to the osmotic 

response. Such an inherent coupling of two parameters on one tissue response shows 

the interconnectedness of the many parameters of the model described, leading to the 

interconnectedness of the tissue-based phenomena—fixed charges and tissue size 

changes in this case. Cell density influenced both CPA concentration predictions and 

the osmotic response, with increasing cell density leading to lower CPA concentration 

and osmotic response predictions. The cell density also shows an interconnectedness 

of the tissue-based phenomena—extracellular mass transfer, the coupling of 

extracellular and cell membrane transfer, and tissue size changes. We can then take this 
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a step further and consider that tissue size changes will affect the concentration of fixed 

charges due to a change in volume. Altogether, if any tissue is to be accurately 

represented by one model, that model needs to account for all phenomena. As such, we 

were able to show that the cell-augmented cartilage model presented in this work can 

be extended to pancreatic islets and we were able to match islet predictions found in 

the literature. Overall, we have shown a generality of our proposed model which can 

be applied to two very different tissues in cartilage and pancreatic islets, with a distinct 

possibility of extending the approach to more tissues.  

 

With our general model, we can assess its applicability to other tissues with size change 

and/or CPA concentration data found in the literature such as decellularized heart valve 

[127] and the high cell density of ovarian tissue discussed earlier [64]. In the end, 

though, we want to use this model within our toxicity cost function approach 

[11,28,29]. Specifically, we proposed a way to scale our toxicity cost function to the 

tissue level but used a conventional mass transfer model built upon the framework of 

Fick’s second law, which only covers the tissue phenomenon of extracellular mass 

transfer [13]. In the future, we can use the model proposed in this work to develop less 

toxic CPA addition and removal protocols by accounting for more phenomena that 

affect the CPA concentration and osmotic response of both the tissue and the cells 

embedded within it. We will also consider the application of such a model formalism 

at the organ level by pairing the tissue-based model proposed in this work with a 

vasculature representation for perfusions. To do so, and to more accurately account for 

high cell density tissues, we will revisit our modes of mass transfer. In its current 

formalism at the upscaled level, our model accounts for mass transfer across a cell 

membrane only in each control volume individually. In reality, cells on the border of a 

control volume can exchange fluid with the extracellular space of a neighboring control 

volume and cells can exchange fluid with one another. Accounting for these modes of 

transport will further the generality of our model and its applications. Overall, we have 

presented a general model for mass transfer within tissues of varying cell density that 

can be added to and be used for the design of less toxic CPA addition and removal 

protocols.  
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4. PROBING THE EFFECTIVENESS OF SINGLE CELL TOXICITY 

REDUCTION STRATEGIES AND SUBSEQUENT MODEL-INFORMING 

EXPERIMENTAL METHODS IN SLAUGHTERHOUSE PORCINE KIDNEYS 

 

4.1 Abstract 

The successful cryopreservation of organs serves as the pinnacle achievement and 

hardest problem of the cryobiology field. A promising solution to the problem is 

vitrification. However, the toxicity associated with the high concentration of 

cryoprotectants (CPAs) needed to vitrify has proven to be the technique’s greatest 

challenge. In previous works, our group has proposed a mathematical optimization 

strategy to minimize the toxicity of single cell CPA equilibration protocols. This 

strategy involves the minimization of a toxicity cost function, and we have recently 

expanded its applicability to tissues. In this work, we investigated some experimental 

techniques that can be used to expand the applicability of the toxicity cost function to 

organs. To start, we probed the effectiveness of loading CPA in a hypotonic buffer 

during slaughterhouse porcine kidney perfusion, as hypotonic loading reduced toxicity 

for single cells in our previous work. To evaluate hypotonic loading, we leveraged 

several experimental techniques including taking mass and effluent flowrate change 

data, evaluating CPA distributions within the kidney using computed tomography 

(CT), and evaluating osmotic damage using a lactate dehydrogenase (LDH) assay. Our 

mass data indicated promising CPA loading results and was comparable to that of a 

single cell. However, effluent flowrate results indicated greater vascular resistance, and 

CT results indicated no discernable benefit with a hypotonic buffer, although LDH 

results indicated no discernable increase in cell death. Overall, loading CPA in 

hypotonic buffer needs further evaluation at the organ level, but we have laid an 

experimental foundation for informing an organ toxicity cost function. 

 

4.2 Introduction 

Cryopreservation addresses the long-term storage problem of biological specimens that 

have a limited shelf life ex vivo by arresting all cellular metabolic processes. Although 

a still wide-open research field, cryopreservation has had many successes. Some of the 

most reliable success in the field can be seen at the single cell level. For decades, 
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successfully cryopreserved single cells have had immense beneficial impacts on 

scientific research, as well as animal breeding and human reproduction 

[9,34,68,92,107,110]. Moving past single cells, though, into more complex specimen 

regimes such as tissues and organs, cryopreservation becomes much more challenging 

and successful examples are much more sparse [47,48]. Despite the difficulty of the 

complex specimen cryopreservation problem, a reliable solution would forever change 

many research fields, as well as beneficially impacting public health. For example, the 

successful banking of complex specimens would forever change the face of 

regenerative and transplantation medicine, especially with the promise of a consistent 

supply from tissue engineering [48,61,90].  

 

In this work, we will be investigating the organ regime, specifically focusing on the 

kidney. Although cryopreservation is not the only technique for organ preservation, it 

does promise to be the end all method if it can be successfully achieved when surveying 

the scope of techniques available [31]. The progression of research within organ 

cryopreservation can be traced back as far as the 1950’s, and the field has been looking 

for promising protocols ever since [47]. The work of Fahy and colleagues throughout 

the decades on rabbit kidneys has been the archetypical example of organ 

cryopreservation research progression [39-44,47-52]. From the decoupling of osmotic 

and toxicity damage in 1984, we see the identification of the main problem in organ 

cryopreservation to be toxicity [40]. In the same year, we see the postulation that 

vitrification, where the specimen is kept ice-free, is the most likely avenue to successful 

cryopreservation [41]. More recently, Fahy and colleagues reported on the long-term 

survival of a single rabbit kidney after vitrification [49]. However, the success has yet 

to be replicated, and there is more work to be done to overcome the toxicity problem 

associated with vitrification. 

 

Toxicity is inherently tied to vitrification due to the high concentration of CPAs 

required to suppress ice formation. Mechanical (osmotic) damage is also a concern as 

the high concentration of CPAs can cause excessive volume excursions of the specimen 

and subsequent death. Osmotic damage is a simpler problem than toxicity and can be 
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mitigated by incrementally increasing the CPA concentration to the maximum 

concentration desired and then incrementally removing the CPA [29,38,59,86,98]. 

Toxicity is a much more challenging problem and is a complex function of the CPA 

addition and removal process [5,46,47,75]. As such, any combination of the protocol 

variables of perfusion pressure, temperature, exposure time, CPA type, and CPA 

concentration will result in a different toxicity.  

 

In order to find the least toxic protocol, one of two strategies can be employed. Most 

strategies in the field have employed an empirical approach where the researcher 

experimentally iterates through potential protocols, such as the work of Fahy [39-

44,47-52]. From large data repositories, new protocols can be proposed and tested, and 

useful empirical relationships can be proposed such as the one proposed by Fahy and 

colleagues [46] that links the toxicity of a vitrification solution to its composition. 

However, this empirical relationship lacks an exposure time and temperature 

dependency and is therefore limited to a small region of the protocol space, as are most 

empirical approaches. Overall, there are too many protocol combinations to 

exhaustively test experimentally. As such, we have proposed a mathematical toxicity 

minimization strategy to theoretically test a protocol space while reducing the amount 

of necessary experiments.  

 

Starting with the single cell vitrification problem, our group has sought to design 

minimally toxic CPA equilibration protocols [11,28,29]. This approach is rooted in 

CPA transport predictions based on cell membrane permeabilities. In conjunction, we 

have also quantified the toxicity imparted on the cells and have created a toxicity cost 

function that we seek to minimize during a CPA addition and removal protocol. In the 

application of this approach to adherent endothelial cells [29], mathematical 

optimization showed greater cell survival when CPA addition methods leveraged CPA 

in hypotonic buffer solution causing cell swelling, which is in contrast to typical CPA 

exposures that leverage isotonic exposure and try to avoid excessive cell shrinkage. 

This novel result is counterintuitive to the standard CPA addition paradigm but shows 
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promise for mathematical modeling and optimization to showcase new modes of 

investigation. The hope is that such a technique can be scaled up to the organ regime.  

 

Recently, Benson et al [13] scaled up the toxicity cost function approach to tissues, 

whereby the spatial dependence in a tissue was accounted for in the accumulated CPA 

toxicity. It was shown at the tissue level that there is a distinct difference between the 

toxicity imparted to a tissue that has the CPA exposure time minimized versus a tissue 

that has the toxicity cost function minimized, where the minimization of exposure time 

actually imparted more toxicity. This highlights that the quickest equilibration 

procedure is not always the best. Mathematical modeling at both the single cell and 

tissue levels has shown the most effective CPA equilibration procedures to not be the 

most intuitive. As such, we seek to apply such a toxicity cost function approach at the 

organ level.  

 

In this work, we begin to build a foundation of experimental methods that can be used 

to inform an organ transport model, which would be the cornerstone of the toxicity cost 

function approach. To start, we assessed the impact of perfusing slaughterhouse porcine 

kidneys with isotonic and hypotonic buffer as well as CPA in isotonic and hypotonic 

buffer. We leveraged swelling at the single cell level to reduce toxicity but swelling is 

part of the larger phenomenon that is specimen size change. Size changes can be seen 

at the single cell level [29], the tissue level [1,12,64], and the organ level [16,78]. We 

hypothesize that size changes are important to consider when reducing toxicity at the 

organ level and every biological specimen for that matter. In conjunction with assessing 

kidney size changes, we also evaluated two other experimental methods for informing 

the toxicity cost function approach. The first is a CT method that we used to evaluate 

the distribution of dimethyl sulfoxide (Me2SO) both spatially and temporally during a 

perfusion. Me2SO is radiopaque enough to be visible on CT scans and the phenomenon 

has been leveraged before to track Me2SO in organs [15,23]. Such a method will be 

able to provide data that can be compared against the predictions of an organ transport 

model. We also adapted a LDH cell death assay to evaluate osmotic damage in the 

kidney. Osmotic tolerance limits are a defined concept at the single cell level [29], but 
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the idea needs to be scaled to the organ level to provide limits on acceptable volume 

excursions. Finally, we comment on the limitations of the slaughterhouse model and 

the uncertainty introduced by varying specimen quality. Overall, we have described an 

experimental framework that can be applied to the toxicity cost function at the organ 

level. 

 

4.3 Methods and Materials 

4.3.1 Solution Preparation 

The base solution used in all experiments comes from Hauet et al [66] who proposed 

an isotonic extracellular-like hypothermic preservation solution for porcine kidneys. 

We adopted the solution due to its reported success [53,66] and simplicity. As the 

tonicity of the solution is our primary manipulation variable of interest, it is easiest to 

use a simple solution, and its composition can be found in Table 4.1. Given that the 

solution makes use of a bicarbonate buffer, solutions were prepared within a 24-hour 

timeframe before an experiment took place. Solutions were stored in vessels with a 

small head space and refrigerated until the time of the experiment, at which time they 

were warmed to room temperature. 

 

Table 4.1. Composition of the isotonic extracellular-like base solution [66]. 

 

 

 

 

 

 

 

 

aPolyethylene glycol 

 

Constituent Concentration Vendor 

NaCl 118 mmol/L 
EMD Millipore, Burlington, MA 

VWR Chemicals BDH, Radnor, PA 

KCl 5 mmol/L EMD Millipore, Burlington, MA 

NaHCO3 25 mmol/L EMD Millipore, Burlington, MA 

MgCl2 1.2 mmol/L VWR Chemicals BDH, Radnor, PA 

CaCl2 1.75 mmol/L Fisher Chemical, Waltham, MA 

20 kDa PEGa 30 g/L 
Alfa Aesar, Haverhill, MA 

Bean Town Chemical, Hudson, NH 

7.3 ± 0.1 pH 

330 ± 20 mOsm 
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In each experiment, we tested two different versions of the solution listed in Table 4.1. 

The first is the isotonic version of the solution which was unmodified and the second 

is a hypotonic version. The hypotonic version only includes the buffer (bicarbonate) 

and oncotic agent (PEG), and the solution was measured at ~50 mOsm on an Advanced 

Micro Osmometer Model 3300 (Advanced Instruments, Norwood, MA).  

 

For our physical change data experiments where we measured kidney mass and effluent 

flowrate, we perfused kidneys with 10% (m/v) ethylene glycol (EG) (Macron Fine 

Chemicals, Radnor, PA) in either the isotonic or hypotonic versions of the buffer 

solution. For CT experiments, we perfused kidneys with 15% (m/v) Me2SO (Fisher 

Chemical, Waltham, MA) in either buffer. Moving to LDH experiments, we added a 

Triton X-100 solution to the end of our perfusions. The solution was made with 10% 

(v/v) Triton X-100 (EMD Millipore, Burlington, MA) in isotonic buffer. For all 

solutions, the concentration is reported on a solvent basis (e.g. 10% by mass EG and 

90% by mass water for a given volume). The volume of mixing was considered 

negligible for all solutions with the largest change in volume being 3%, and extra 

solutes (constituents of Table 4.1) were added to all solutions to counteract the dilutive 

effects of either CPA or Triton X-100 to obtain the concentrations in Table 4.1. 

 

4.3.2 Kidney Acquisition 

Kidneys were obtained from three different sources. Porcine kidneys were obtained 

from two different slaughterhouses, and we also obtained human kidneys that were 

transplant rejects. Table 4.2 shows the physical details of kidneys obtained from each 

different source. In conjunction with the different kidney sources, Table 4.2 also shows 

the three different experiments we conducted and where the kidneys were obtained 

from for each experiment. 
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Table 4.2. Physical details of kidneys obtained from one of three sources. The 

experiments conducted with each kidney source are also shown. 

 

 Porcine Source 1a Porcine Source 2b Human Sourcec 

Breed Red Duroc Unknown Mix N/A 

Sex Female Female Unknown 

Weight 200-250 lbs 250-350 lbs Unknown 

Age Unknownd Unknownd Unknown 

Physical Change Experiment X Xe X 

   Warm Ischemia Time 20 min 25-40 min Unknown 

   Cold Ischemia Time 3-5 hr 2-4 hr or ~5 d ~3 d 

CT Experiment  X  

   Warm Ischemia Time  25-40 min  

   Cold Ischemia Time  ~18 hr  

LDH Experiment  X  

   Warm Ischemia Time  25-40 min  

   Cold Ischemia Time  3.5-5.5 hr or 19-21 hr  
aPorcine kidneys obtained from Stanton’s Slaughter House (Albany, OR). 
bPorcine kidneys obtained from Mohawk Valley Meats (Springfield, OR). 
cHuman kidneys obtained as transplant rejects from the Pacific Northwest Transplant 

Bank (Portland, OR). 
dAges of the pigs are not precisely known but best estimates are ~6 mo. 
eFor some physical change experiments, LDH experiments were conducted as well.  

 

We obtained all porcine kidneys at the time of slaughter and obtained all human 

kidneys after rejection from the Pacific Northwest Transplant Bank, rendering little 

information for their warm ischemia time. For porcine source 1 in Table 4.2, we 

resected one kidney per animal, but for porcine source 2, we resected both kidneys per 

animal which led to a longer warm ischemia time. For all kidneys obtained, the initial 

10-15 min of the warm ischemia time was due to the kidneys remaining in the animal 

during initial slaughterhouse processing. After an animal had been initially processed 

by the slaughterhouse, the kidney(s) were resected from the renal fascia, such that the 

renal capsule was not punctured, and as much of the adipose capsule was removed as 

possible, except in the immediate vicinity of the renal hilum. Approximately two inches 

of the renal artery was kept with a specimen, as measured from the renal hilum, for 

perfusion setup purposes. After resection, the renal artery was cannulated, and the 

kidney was cold-flushed with 500 mL of the isotonic extracellular-like solution of 

Table 4.1, and the flush represents the remainder of the warm ischemia time. Overall, 

our warm ischemia times are comparable to warm ischemia times reported in the 

literature [33,63,126]. After the cold flush, the kidneys were placed in a cooler and 
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brought to the laboratory where they were kept at 4 oC until they were used for a 

particular experiment. For porcine source 2 kidneys with a cold ischemia time of 5 d 

used for the physical change experiment (see Table 4.2), we augmented the flush 

solution with 200 IU/mL penicillin (Alfa Aesar, Haverhill, MA). At the time of an 

experiment, the kidneys were removed from the 4 oC environment and brought to room 

temperature.  

 

4.3.3 Perfusion Apparatus  

A gravity-fed perfusion apparatus was fabricated to conduct all experiments. The 

system was designed to maintain a constant hydrostatic pressure head of 100 mmHg at 

the arterial inlet. This pressure is at the upper range of inlet arterial pressures listed in 

the literature [47,63,108,126]. We chose a higher pressure due to potential pressure 

drops in the perfusion system upstream of the kidney, and to overcome a higher than 

physiological pressure drop in the kidney due to hypothesized random coagulation 

patterns in the capillary beds. With our slaughterhouse model, we were not able to 

heparinize the animal and some clots were part of the experiment as we will discuss 

later. As such, most of the flow resistance was in the kidney, which decreases the 

pressure drop across the perfusion system.  

 

For all experiments, there were at least two perfusates introduced to the kidney. As 

such, the design of a gravity-fed system incorporated dedicated solution reservoirs for 

each unique perfusate. The general design is to raise each solution reservoir above the 

arterial inlet to some height, much like that of an IV, as to obtain the pressure head of 

interest. The fluid level in each reservoir was maintained at a constant height by 

pumping in fluid to the reservoir and having a constant overflow. Each experiment 

required a quick change between perfusates, which required the effluent line of each 

dedicated reservoir to be connected. This connection was made through a series of Y 

joints until all effluent lines were condensed into one line, which could then be 

connected to the arterial cannula. Upstream of each Y joint, a check valve was placed 

on each effluent line. With a valve on each line, the type of perfusate could be quickly 

switched.  



97 
 

 

The physical change data sought for some experiments was the time dependent mass 

of the kidney and the effluent flowrate from the kidney. The mass of the kidney gives 

us an indication of the internal mass transfer as it serves as a proxy for volume, and the 

effluent flowrate gives us an indication of the change of vasculature geometry, namely 

vascular resistance. To obtain the data, a kidney platform was fabricated that rested on 

a scale (Ohaus, Model V11P3, Parsippany, NJ), which allowed for the time dependent 

mass measurement to be taken. For the effluent flowrate measurement, the top of the 

kidney platform consisted of a grate which the kidney rested on. The grate allowed the 

effluent to quickly pass through the platform from which it could be collected. 

Perfusate was collected every minute and its mass was measured, giving an estimate to 

the effluent flowrate under the assumption that its density was equal to that of water. 

Figure 4.1 shows a schematic of the perfusion apparatus and kidney platform. The 

schematic shows a two-reservoir setup, but the system can be generalized to any 

number of reservoirs through the inclusion of more Y joints.  
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Figure 4.1. A schematic of the gravity-fed perfusion system used, including the kidney 

platform. In this system variant, two separate solution reservoirs can be seen, but the 

system can be generalized to any number of reservoirs. The system is connected to the 

renal artery of the kidney, and a hydrostatic pressure head of 100 mmHg is maintained. 

The kidney rests on a grate from which the effluent can be readily collected. The 

platform rests on a scale from which the mass of the kidney can be recorded.  

 

To fully characterize the pressure drop of the perfusion system, we obtained a 

correlation for the pressure drop as a function of flowrate for each perfusate and system 

variant tested. As we have several minor losses from fluid network features such as 

step-down connectors and valves, we decided to simplify the calculation rather than 

obtain a minor loss coefficient for each feature. Given the complex flow path of the 

system, the pressure drop is not proportional to the flowrate (laminar) nor to the square 

of flowrate (turbulent). Instead, there is a middle ground between the two flow regimes, 

and the pressure drop can be described as a power law in flowrate with an exponent 

between 1 and 2. With the pressure drop correlation and using the effluent flowrate and 

Kidney 

300.0 g 

Solution 1 Solution 2 

Effluent 

Collection 
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kidney mass change to find the influent flowrate, the inlet arterial pressure was 

calculated using Bernoulli’s equation. For all kidneys, excluding the Triton X-100 

perfusion times, the lowest pressure calculated was about 60 mmHg. Looking at just 

the Triton X-100 perfusion times, we did have some instances where the pressure 

dipped to about 40 mmHg. For Triton X-100, we found a linear correlation between 

pressure drop and flowrate.  

 

4.3.4 Physical Change Experiment 

Given the success of the optimization strategy presented in Davidson et al [29] at the 

single cell level, we wanted to explore applicability of the strategy to the organ regime. 

Specifically, we wanted to see if the use of hypotonic buffer for CPA loading led to 

reduced toxicity. To do so, we compared a one-step loading procedure of 10% (m/v) 

EG in either isotonic or hypotonic buffer and measured the kidney mass and effluent 

flowrate throughout the entire experiment. The kidney’s mass was measured every 30 

seconds and the effluent flowrate was approximated by taking the mass of the volume 

of effluent collected every minute. Such an experimental setup also provides data that 

can help to inform a future organ mass transport model for the toxicity cost function 

approach. 

 

Before EG was introduced to the kidney, the kidney was first equilibrated on a mass 

basis with isotonic buffer. Although the buffer is isotonic, there is still some swelling 

imparted, as the buffer is hypotonic in regards to a global kidney tonicity—some areas 

of the kidney are quite hypertonic due to the kidney’s physiology. Equilibrating the 

kidney on a mass basis established a consistent reference point at which CPA could be 

introduced. The metric used to switch to a CPA solution was the appearance of the 

asymptotic approach of the kidney mass to some steady state value. Specifically, we 

looked for three consecutive mass values to be equal (or one value to be only slightly 

different) before a switch was made. The time scale for such a steady state approach 

was found to vary among the kidneys of porcine source 1 (see Table 4.2), varying from 

12 to 27 min. As a result, for all other physical change experiments, we used a 30 min 

equilibration period. During the equilibration period, the isotonic buffer was recycled, 
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where the kidney effluent was placed back in the isotonic buffer reservoir of the 

perfusion system as to reduce the amount of solution needed. For all isotonic 

equilibration periods, 2 L of solution was used and recycled.  

 

At the time of the solution switch, the EG valve was opened and then the isotonic buffer 

valve was closed, as to maintain the pressure head throughout the transition period of 

less than 5 s. Unlike the isotonic buffer perfusion, we ran the EG perfusion until we 

captured the classic shrink-swell phenomenon when a specimen is introduced to CPA. 

It was found that a time frame of 10 min captured the EG loading kinetics of interest 

for the kidneys of porcine source 1 (see Table 4.2), and the 10 min time frame was used 

for all other physical change experiments. Unlike the experiments using kidneys from 

porcine source 1, both kidneys from the same animal were used for experiments using 

porcine source 2.   

 

4.3.5 CT Experiment 

To assess the CPA distribution within the kidney to inform a future organ mass 

transport model and to address CPA distribution concerns raised from an increase in 

vascular resistance due to the use of hypotonic buffer (as will be described later), we 

turned to medical imaging in the form of CT. To do so, we adopted a CT method from 

the literature found in the work of Corral et al [23]. In their paper they show a linear 

relationship between X-ray attenuation and Me2SO concentration. In one experiment, 

they submerge rabbit kidneys in varying concentrations of Me2SO and watch the 

kidney’s equilibration with the solution over the timescale of days. For our purposes, 

we are interested in the shorter time scales of perfusion. 

 

To achieve a CT perfusion, we turned to the radiology department in the College of 

Veterinary Medicine at Oregon State University. They have an Aquilion 64 CT scanner 

(Toshiba, Tokyo, JP) and the voltage of the scanner was lowered as much as possible 

as suggested by Corral et al [23], and a final value of 100 kV was used compared to 75 

kV in Corral et al [23]. The voltage could not be lowered any more due to field of view 

constraints. The use of a lower voltage has also been reported in the work of Bleisinger 
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et al [15]. The current used was 200 mA with a scan time of 0.5 s and an image analysis 

spatial resolution of 2 mm.  

 

As with Corral et al [23], we established a linear trend between X-ray attenuation and 

Me2SO concentration through the development of a standard curve. We tested varying 

concentrations of Me2SO in three different solutions: water, isotonic buffer, and 

hypotonic buffer. The linear range extended to about a 25% (m/v) Me2SO solution for 

our particular setup. To make the measurements for the standard curve, 2 mL of each 

solution was placed in a well of a 24-well plate. We varied the concentration of Me2SO 

by 5% in each well, with one well plate being dedicated to each background solution. 

In total, we imaged 9 different well plates for the 3 different solutions tested in triplicate 

at the varying Me2SO concentrations. To make the standard curve, we measured the 

average grayscale value of the top cross-section of each well from the obtained CT 

images. Before the images were taken, each well plate was well mixed. 

 

For the perfusion experiment, we used our base perfusion methodology as in our 

physical change experiment, where we equilibrated the kidney for 30 min with isotonic 

buffer and recycled the buffer as before. However, the CPA we switched to was 15% 

(m/v) Me2SO in either isotonic or hypotonic buffer. We increased the concentration of 

the CPA over the physical change experiment to 15% (m/v) after looking over the range 

of attenuation of our standard curve. We did not want to obtain maximum attenuation 

with a high concentration of Me2SO in addition to background tissue attenuation. 

However, we also wanted to obtain the largest range of attenuation between 

background tissue and maximum Me2SO concentration in that tissue, while still staying 

in the range of a realistic concentration used for a first step of CPA addition.  

 

The perfusion itself was slightly different than the physical change experiment in that 

two kidneys were perfused in parallel in the CT scanner. Two of the three CT 

experiments conducted used both kidneys from the same animal, where one kidney 

received an isotonic Me2SO perfusion and the other kidney received a hypotonic 

Me2SO perfusion. In the third experiment, kidneys from different animals were used 
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due to acquisition constraints. For all experiments, one left kidney and one right kidney 

was used, with the isotonic and hypotonic treatments being randomly assigned to the 

right or left kidney for each experiment. With a parallel perfusion setup, both kidneys 

were captured in the CT field of view for each scan conducted and were at the same 

time point of their respective perfusions. For two of the CT experiments, we perfused 

the kidneys for 20 min with Me2SO (slightly longer than the time scale identified in the 

physical change experiment), but for the third CT experiment, we perfused the kidneys 

for 60 min with Me2SO in the hope of capturing steady-state within the kidneys. The 

time points imaged were: 0 min (initial scan), 30 min (scan after isotonic equilibration), 

31 min, 32 min, 33 min, 34 min, 35 min, 40 min, 45 min, 50 min, 60 min (for one 

experiment), and 90 min (for one experiment).  

 

For image analysis, we broke the kidney down into two coarse spatial regions 

designated as the cortex and medulla. The medulla has been difficult to reach with CPA 

as discussed by Fahy [47,49]. As such, as a first pass analysis, we wanted to investigate 

a coarse designation between the more easily reached cortex versus the medulla. At 

every time point and for each kidney, we manually segmented the cortical and 

medullary regions. All image analysis was conducted using MATLAB, and we limited 

our analysis to only the coronal plane of the kidney—the simplest plane to determine 

the boundaries of the cortex, medulla, and pelvis by inspection. For each kidney, the 

three middle image slices were analyzed and averaged. The use of three slices creates 

a larger sample size of both the cortex and medulla. In a coronal plane analysis, the 

designation between cortex and medulla for far anterior and far posterior slices is not 

as apparent. 

 

As a first step in image analysis, the boundaries of each kidney were found using 

appropriate thresholding beforehand to remove any periphery adipose tissue (low 

attenuation) in the image and to separate both kidneys into separate objects. Another 

round of thresholding was also used to remove any air bubbles (zero attenuation) in the 

kidney. Once a kidney had been isolated, the void space of the pelvis was manually 

segmented out, and then the cortex and medulla were manually segmented. The void 
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space of the pelvis is easily segmented out by inspection due to its low attenuation. 

However, the border between the cortex and medulla is more difficult to visualize. As 

a uniform approach to manual segmentation, the final time point image for each kidney 

was visualized at the time of segmentation. Given that the medulla is harder to be 

reached with CPA, we can observe this with a contrast agent (Me2SO) at longer 

perfusion times. The edge of the renal pyramids with the cortex starts to become distinct 

as they have a lower attenuation than the neighboring cortex. Using the last time point 

image for each kidney, we can estimate the medulla/cortex border of earlier time points. 

Figure 4.2 shows a typical segmentation of a kidney in the coronal plane.  

 

 

 

 

 

 

 

 

 

Figure 4.2. A standard image collected with the borders of both the cortex and medulla 

superimposed on the image after segmentation for the left kidney in the image. The red 

border indicates the medullary region, and the blue border indicates the cortical region. 

 

For one kidney analyzed, specifically the right kidney of Figure 4.2, the alignment of 

the kidney was such that we did not obtain a clear coronal plane. Instead we obtained 

a slight rotation out of the coronal plane about a sagittal line, resulting in an oblique 

plane. However, the same segmenting technique was still able to be used. The only 

difference was that the pelvis was not segmented out as it was difficult to determine its 

border and was deemed negligible to the slices analyzed. Figure 4.3 shows a standard 

segmentation of a kidney in an oblique plane. On that kidney, there was also a lower 

attenuating abnormality in the cortical region, which was segmented out. 
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Figure 4.3. A standard image collected with segmentation of a kidney in an oblique 

plane. Within the red medullary border, it can be seen that there is perhaps some pelvis 

within the plane at the very center of the image, but this region was deemed 

insignificant to the analysis. The darker region in the blue cortical border was identified 

as an abnormality and was segmented out according to the smaller blue border. 

 

Once all images were segmented, the grayscale value of every pixel in a given spatial 

region for a time point could be averaged, giving a spatial and temporal distribution of 

X-ray attenuation. By using the standard curve generated, we converted attenuation 

values to Me2SO concentration. However, the solids content of each spatial region 

needs to be known in order to use a fluid phase standard curve. Equation 4.1 shows the 

individual contributions to the total attenuation in grayscale of a given voxel, assuming 

additive contributions from each component: 

 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =  𝑥𝑠𝜀𝑠𝑐𝑠 + (1 − 𝑥𝑠)𝜀𝑀𝑒2𝑆𝑂𝑐𝑀𝑒2𝑆𝑂 + (1 − 𝑥𝑠)𝜀𝑓𝑏𝑐𝑓𝑏 4.1 

 

where 𝑥 is the volume fraction, 𝜀 is the mass attenuation coefficient, 𝑐 is the mass 

concentration, subscript 𝑠 represents the solids, and subscript 𝑓𝑏 represents the fluid 

background. The attenuation coefficient of Me2SO can be found through the standard 

curve made when the fluid background attenuation is subtracted off at a Me2SO 

concentration of zero. For a given kidney voxel attenuation measurement, the volume 

fraction of solids is unknown. Of course, the solids will be a function of space as well 

as evolve throughout a given treatment. For the analysis, we assumed those variations 

to be negligible, thus assuming a constant average volume fraction of solids in the 

medulla and cortex. To prime the analysis, we used a value of 15% solids in the 
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medullary region as an estimate based on the range reported in Gardner and Vierling 

[60] for the papillary region of the rat kidney on a volume basis. This value is 

reasonable when considering the solids mass fraction estimates in the medulla of 

Bulger [19] (10% at the inner and outer medullary border of the rat medulla) and 

Levitin et al [89] (~15% for the dog medulla). Also, this value is reasonable 

considering the solids mass fraction estimate of an entire porcine kidney from Blum et 

al [17] (13%-19%), and the estimates of entire rat, rabbit, and human kidneys (19%-

29%) [54,88,109]. From this 15% medullary value, we can then estimate the solids 

content of the cortex based on the difference in background attenuation before Me2SO 

addition. Specifically, the ratio of background attenuation of the cortex to the medulla 

is equal to the ratio of the solids volume fraction of the cortex to the medulla, and we 

find a value of 15.5% for this particular analysis. The mass attenuation coefficient of 

the solids is a constant as well as the mass concentration of solids, since in this context 

the mass concentration of solids is estimated as the pure component density. In the end, 

based on background attenuation before Me2SO addition, the fluid phase standard 

curve, and an estimate of solids from the literature, we can estimate the concentration 

of Me2SO in the fluid phase as a function of space and time.  

 

4.3.6 LDH Experiment 

To establish osmotic tolerance limits for use in an organ level toxicity cost function 

and to characterize osmotic damage induced by the hypotonic buffer, we turned to 

assaying the kidney’s effluent during perfusion. Osmotic damage in an organ is a 

multifaceted concept that is not well defined. In our mathematical framework, we 

would like to describe it as the combination of mechanical damage at both the cell and 

tissue level. To start, we sought to address the osmotic damage incurred by cells. To do 

so, we augmented our established base perfusion methodology. We still equilibrated 

kidneys with isotonic buffer for the first 30 min before switching solutions. However, 

we did not switch to a CPA solution. Instead, the solution was switched to either 

hypotonic or isotonic buffer for 10 min. Switching to pure hypotonic buffer without a 

permeating CPA provides an upper limit on the osmotic damage that can be incurred. 

The switch to an isotonic buffer provided a baseline control as with switching to CPA 
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in isotonic buffer in previous experiments. As with our CT experiment, we conducted 

an isotonic and hypotonic experiment by using both kidneys from the same animal. 

One side note of the LDH experiment is that we conducted an LDH analysis for the 

physical change experiments of porcine source 2 as well (see Table 4.2). These 

experiments gave insight into osmotic damage but also tested the assay for potential to 

be used as a cytotoxicity assay as will be described later. 

 

To estimate the cellular osmotic damage, we introduced another perfusate switch after 

the pure buffer perfusion period. In both perfusion experiments, we introduced 10% 

(v/v) Triton X-100 (positive control for cell death) in isotonic buffer for 10 min. The 

switch to Triton X-100 acted as an internal control for each kidney, where any 

remaining viable cells after buffer treatment were lysed, at least viable cells that could 

be affected by a perfusate on our time scale of interest. A relatively high Triton X-100 

concentration was used above standard concentrations in LDH protocols as to 

maximize the driving force for Triton X-100 transport into the interstitium in the hope 

that the Triton X-100 would reach the same interstitial space as with a CPA within the 

time scale of interest. We conducted endothelial cell experiments that showed the same 

amount of LDH was released from single cell cultures when exposed from 1% (v/v) 

Triton X-100 to 10% (v/v) Triton X-100 (data not shown). To assess osmotic damage, 

the effluent was collected from each perfusion period and assayed for LDH content 

(BioAssay Systems, Catalog No. D2DH-100, Hayward, CA). It is hypothesized that 

the sum of all LDH released throughout an experiment equals the total LDH that can 

be released during a perfusion on the time scale of about 10 min. As such, cell death 

can then be estimated by the LDH released during the pure buffer perfusion. The cell 

death estimate is calculated by dividing the LDH released during the pure buffer 

perfusion by the total LDH released in the experiment.  

 

For the hypotonic perfusion, one slight change was made. As the swelling from the 

hypotonic buffer reduces flowrate, we hypothesized that some LDH might still be 

trapped in the kidney after the hypotonic perfusion period. As such, we added a 5 min 

isotonic perfusion period after the 10 min hypotonic perfusion period to increase the 
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flowrate and allow us to capture any trapped LDH from the hypotonic perfusion and 

not underestimate the damage incurred by the hypotonic treatment. The switch also 

showcases the ability to recover flowrate after hypotonic treatment as will be described 

later. Figure 4.4 shows a schematic of the timeline of each experiment. 

 

Figure 4.4. A schematic detailing the timing of each experiment. The top bar represents 

the timing of the isotonic buffer perfusion, and the bottom bar represents the timing of 

the hypotonic buffer perfusion. There is an additional isotonic perfusion period after 

the hypotonic perfusion period to allow the flowrate to recover and for any trapped 

LDH to be recovered. 

 

4.4 Results and Discussion 

4.4.1 Kidney Physical Change Data 

4.4.1.1 Mass Change 

One of the two main physical change variables that we measured during perfusion was 

the change in mass of a kidney. The change in mass is a good proxy for the change in 

volume of the kidney and is an easier experimental measurement to make. Upon 

addition of CPA to the kidney, we expect a transient decrease in mass, much like the 

classic osmotic response of a single cell [16,78]. In Figure 4.5, we show the mass 

change data for all four groups of kidneys perfused with 10% (m/v) EG in both isotonic 

and hypotonic buffer.  
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Figure 4.5. The normalized mass change of the four different kidney groups perfused 

with 10% (m/v) EG. Each group was perfused with EG in both isotonic and hypotonic 

buffer. All kidneys were equilibrated on a mass basis with the isotonic buffer for 30 

min, and EG addition is represented by time = 0 min. The four different kidney groups 

are as follows: Panel A – porcine kidneys with an approximate warm ischemia time of 

20 min and a cold ischemia time of 3-5 hr (n = 3 for each tonicity); Panel B – porcine 

kidneys with a warm ischemia time of 25-40 min and a cold ischemia time of 2-4 hr (n 

= 4 for each tonicity); Panel C – porcine kidneys with a warm ischemia time of 25-40 

min and a cold ischemia time of 5 d (n = 3 for each tonicity); Panel D – human kidneys 

with an unknown warm ischemia time and a cold ischemia time of 3 d (n = 2 for each 

tonicity). 

 

From Figure 4.5, we notice that the tonicity impact on the mass change is not consistent 

across kidney groups. We hypothesize that ischemia time influences the osmotic 

response of the kidney. In Panel A, we note a remarkably similar osmotic response of 

the kidney to that of the single cell. We see a mass decrease with both tonicities and a 

faster mass recovery with the hypotonic case in conjunction with swelling. This 
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indicates that a hypotonic buffer could be leveraged to load more CPA in a shorter 

amount of time. However, this discernable trend becomes muddled as we move to Panel 

B.  

 

In Panel B, we note some similar osmotic trends as with Panel A. Some isotonic 

replicates of Panel B show the same osmotic response as with Panel A, and some 

hypotonic replicates show greater swelling than their isotonic counterparts. However, 

some replicates show unexpected osmotic responses and do not deviate much in mass 

throughput the perfusion. For Panel B, we hypothesize that we are within a transition 

zone of warm ischemia time in regards to obtaining a kidney that shows expected 

osmotic behavior versus one that does not. As we move to Panels C and D, we note no 

real distinctive impact of the tonicity of a treatment. Again, we hypothesize that the 

ischemia time is a key contributor to this, as we note that Panels C and D have a much 

longer cold ischemia time than the normal transplantation window [33]. Overall, the 

results from Panel A are promising when considering the effectiveness of loading a 

kidney with CPA in a hypotonic buffer. The effectiveness of hypotonic loading though 

does seem to be dependent on the quality of the specimen, and later on we will comment 

on the precision of using a slaughterhouse model.   

 

4.4.1.2 Volumetric Flowrate 

The second physical change variable that we measured during perfusion was effluent 

flowrate from the kidney. This effluent flowrate is the sum of flowrates from both the 

renal vein and ureter. By measuring the flowrate as a function of time during the 

perfusion, we begin to understand the change in flow path geometry. As flowrate 

decreases, flow resistance in the kidney increases. If resistance is increasing, we can 

infer that the diameter of the capillaries in the kidney is most likely decreasing. In 

Figure 4.6, the effluent flowrate change data is shown for all four groups of kidneys 

perfused with 10% (m/v) EG in both isotonic and hypotonic buffer. 
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Figure 4.6. The normalized effluent flowrate change of the four different kidney 

groups perfused with 10% (m/v) EG. Each group was perfused with EG in both isotonic 

and hypotonic buffer. All kidneys were equilibrated on a mass basis with the isotonic 

buffer for 30 min, and EG addition is represented by time = 0 min. The four different 

kidney groups are as follows: Panel A – porcine kidneys with an approximate warm 

ischemia time of 20 min and a cold ischemia time of 3-5 hr (n = 3 for each tonicity); 

Panel B – porcine kidneys with a warm ischemia time of 25-40 min and a cold ischemia 

time of 2-4 hr (n = 4 for each tonicity); Panel C – porcine kidneys with a warm ischemia 

time of 25-40 min and a cold ischemia time of 5 d (n = 3 for each tonicity); Panel D – 

human kidneys with an unknown warm ischemia time and a cold ischemia time of 3 d 

(n = 2 for each tonicity). 

 

From Figure 4.6, the transient flowrate period right after time = 0 for the isotonic case 

is somewhat difficult to decipher. When a CPA is introduced to the vasculature, we 

expect fluid from the tissue to move into the vasculature, analogous to the osmotic 

response of a single cell. From an initial inspection of the situation, it is reasonable to 

expect an increase in the effluent flowrate to accommodate the flux of fluid from the 
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tissue to the vasculature due to an increase in the osmotic driving force. Also, the 

capillary radius has been suggested to increase due to the presence of CPA in the 

vasculature from the classic Krogh cylinder model of an organ [104,114]. In Figure 

4.6, we do notice an increase in flowrate in some kidney groups. However, in Panel A, 

we see an initial decrease in flowrate for a couple replicates. This is somewhat puzzling 

and makes for the overall interpretation of the transient flowrate period muddled. First, 

we have kidneys of varying quality, and second, it is difficult to develop a full intuition 

about the problem when size changes of the tissue are not considered along with 

vasculature size changes as in the classic Krogh cylinder model [104,114]. 

Nevertheless, flowrate changes of the isotonic case either return to about their original 

values or stay elevated. Such a trend does not pose a challenge for perfusing the entire 

kidney, unlike what is seen for the hypotonic case.  

 

In Figure 4.6, the transient flowrate response for the hypotonic case is minimal, with 

some cases of an increase in flowrate being seen. If we do expect the dominant trend 

during the transient period to be an increase in flowrate, then the hypotonic buffer 

should lessen that increase due to a reduction in the osmotic driving force from tissue 

to vasculature. Looking past the transient period though, all flowrates dramatically 

reduce to a fraction of their original value before CPA addition. As such, this is an 

important phenomenon to understand, as the resistance to flow is increasing with the 

capillary diameter presumably decreasing. We know that the decrease in flowrate is in 

part due to an increase in resistance and not only solution accumulation in the kidney, 

as solution accumulation only accounts for about 30% of the influent flowrate using 

the data of Panel A as an example (data not shown). As such, we can plot the resistance 

to flow over the course of the perfusion. Figure 4.7 shows the change in resistance for 

the perfusion using the data from Panel A again as an example.  
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Figure 4.7. The normalized resistance to flow for porcine kidneys perfused with 10% 

(m/v) EG in either isotonic or hypotonic buffer. All kidneys were equilibrated on a 

mass basis with the isotonic buffer for 30 min, and EG addition is represented by time 

= 0 min. The kidneys have an approximate warm ischemia time of 20 min and a cold 

ischemia time of 3-5 hr (n = 3 for each tonicity). Resistance is calculated as per the 

definition in Pegg et al [104], and we are using both the influent and effluent flowrates 

to calculate resistance. Error bars represent the standard error of the mean. 

 

Figure 4.7 indicates that we need to be aware of the increased vascular resistance to 

flow induced by a hypotonic buffer. Although a hypotonic buffer could load more CPA 

in a shorter amount of time as seen with Figure 4.5 in principle, certain regions of the 

kidney might not be effectively reached with CPA due to the increase in resistance, and 

these regions would have to rely on CPA diffusion in the tissue to reach a desired CPA 

concentration. To address this potential limitation of a hypotonic buffer and understand 

the CPA distribution within a kidney in general, we assessed both the spatial and 

temporal distribution of Me2SO using CT, as will be discussed in the following section. 

Before we address the distribution, it should be noted that hypotonic buffer does not 

have to be used for the entire CPA loading protocol. In our previous work at the single 

cell level, hypotonicity of the buffer was varied across the two steps of the CPA loading 

protocol [29]. As such, the hypotonicity used at the organ level could be leveraged for 

certain steps while perhaps avoiding a large increase in vascular resistance. Swelling 

has often been overlooked during CPA addition due to the desire of vitrifying cells in 
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their shrunken state and not diluting intracellular solutes and thus increase the 

probability of ice nuclei formation [51]. However, as we have mentioned, swelling is 

just one step of our single cell CPA loading strategy, and we did increase the tonicity 

of the buffer to shrink our cells down before vitrification [29]. The same strategy could 

be applied at the organ level and the first step to accomplishing this would be to show 

flowrate recovery after hypotonic loading by increasing the buffer tonicity. In Figure 

4.8, we do show that we can obtain flowrate recovery after a flowrate decrease by 

switching the buffer tonicity from hypotonic to isotonic. Figure 4.8 details that edema 

does not have to be a detriment in protocols by only increasing vascular resistance 

[103], but it could potentially be leveraged during certain steps of a protocol and 

flowrate recovery is possible.  
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Figure 4.8. The normalized effluent flowrate change of two different kidney groups 

perfused with 10% (m/v) EG in hypotonic buffer. All kidneys were equilibrated on a 

mass basis with the isotonic buffer for 30 min, and EG addition is represented by time 

= 0 min. At time = 10 min, the perfusate was switched from EG in hypotonic buffer to 

EG in isotonic buffer. The two different kidney groups are as follows: Panel A – porcine 

kidneys with a warm ischemia time of 25-40 min and a cold ischemia time of 2-4 hr (n 

= 4 for each tonicity); Panel B – porcine kidneys with a warm ischemia time of 25-40 

min and a cold ischemia time of 5 d (n = 3 for each tonicity). The data presented up 

until time = 10 min can be found in Figure 4.6 as well. 

 

4.4.2 CPA Distribution within the Kidney 

To assess the distribution of Me2SO within the kidney, we adopted a CT method in the 

literature [23] that was subsequently used to develop cryopreservation protocols for 

bovine ovarian tissue [24,25]. We can also see CT being used to track the Me2SO 
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distribution within rat hearts [15]. As Me2SO itself is radiopaque, a foreign contrast 

agent is not needed and the Me2SO distribution can be more accurately assessed. Also, 

since we are interested in buffer tonicity as a manipulation variable, a foreign contrast 

agent makes tonicity variable analysis more difficult. To begin our analysis, we first 

established a standard curve between X-ray attenuation and Me2SO concentration in 

the fluid phase, which is shown in Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. A standard curve established between X-ray attenuation represented as 

computer grayscale and the Me2SO concentration in the fluid phase. The attenuation is 

a subtracted value where the background attenuation of the buffer is subtracted off. 

Three different solutions were tested at each of the Me2SO concentrations: Me2SO in 

water, Me2SO in isotonic buffer, and Me2SO in hypotonic buffer. Each solution was 

tested in triplicate, and since we’re expressing the subtracted attenuation, all 

measurements can be combined at a given Me2SO concentration. Error bars represent 

the standard deviation of the nine measurements for each concentration. The grayscale 

circles are examples of 24-well plate wells of Me2SO in water for each Me2SO 

concentration. For our setup, the linear range ends at about 25% (m/v) Me2SO.  

 

With a standard curve established, we were able to estimate the Me2SO concentration 

of our perfusion experiments as a function of time and space. We perfused six kidneys 

total with 15% (m/v) Me2SO, with three kidneys perfused with Me2SO in isotonic 

buffer and three kidneys perfused with Me2SO in hypotonic buffer. We also were able 

to separate the kidney into two different spatial regions through time—the cortex and 
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the medulla. Overall, Figure 4.10 shows the Me2SO concentration estimates of all six 

kidneys perfused for both the cortex and medulla. 

 

Figure 4.10. The Me2SO concentration plotted as a function of time for porcine kidneys 

perfused with either 15% (m/v) Me2SO in isotonic (n = 3) or hypotonic buffer (n = 3). 

For the six kidneys perfused, the Me2SO concentration is plotted for both the cortical 

and medullary regions. Each kidney is represented by its own symbol, so both the 

cortical and medullary curves of the same kidney can be identified together. For the 

hypotonic curves, there is an uncertainty of ± 1.3% in the Me2SO concentration due to 

a difference in the background attenuation between the isotonic and hypotonic buffer, 

where the hypotonic buffer has a lesser attenuation. Me2SO was introduced after the 

standard 30 min equilibration period with isotonic buffer (time = 0 min). The kidneys 

have a warm ischemia time of 25-40 min and a cold ischemia time of approximately 

18 hr. 

 

From Figure 4.10, we can assess the impact of the tonicity variable but also the 

difference between the spatial regions of the cortex and medulla. Starting with the 

spatial variation, Fahy has described the difficulty of equilibrating the medullary region 

with CPA when compared to the cortex, and a leading explanation could be the 

difference in blood flow between the two regions with the cortex receiving about 90% 

of renal blood flow and the outer medulla about 10% [47,49]. In Figure 4.10, we note 
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that most medullary curves are below that of their cortical counterparts. However, one 

isotonic kidney perfusion appears to confound the results. The cortical and medullary 

curves for this kidney are the bottom two curves of Figure 4.10. The difference between 

these two curves is small in comparison with the other paired curves, though. As such, 

a paired t-test yields a statistically significant difference between the Me2SO 

concentration of the cortical and medullary regions for the 20 min timepoint with a p-

value of 0.027. Overall, Figure 4.10 shows empirical evidence that we can make a 

distinction in Me2SO concentration between different regions of the kidney and the 

majority of replicates indicate the historical reporting of the medullary region being 

more difficult to equilibrate. In addition, we see further evidence that specimen quality 

or the limitations of the slaughterhouse model could be at play for the confounding 

kidney in Figure 4.10, and we will discuss slaughterhouse model limitations later on, 

specifically drawing attention to the fact that the confounding kidney appeared to have 

more air bubbles from image inspection than the other kidneys. 

 

Moving on to the tonicity variable, again, one kidney perfusion has the potential to 

confound results. Unlike the spatial region analysis that showed a statistically 

significant difference between the cortical and medullary regions at the 20 min 

timepoint, a paired t-test yields a p-value of 0.94 for comparing the two tonicities at the 

20 min timepoint, yielding no statistical difference. However, if we set aside the 

confounding kidney, we note that most isotonic treatments yield a higher Me2SO 

concentration at the 20 min timepoint. As we’ve mentioned earlier, the increase in 

vascular resistance for the hypotonic treatment yielded concern that some regions of 

the kidney might not be perfused. From inspection of the CT images, no large dark 

regions on the images were noted, indicating that Me2SO appears to be reaching all 

regions to some extent and the extreme scenario of large regions not being perfused 

does not seem to be the case. Figure 4.10, however, indicates that the low flowrate 

induced by the hypotonic treatment could have a detrimental effect on the Me2SO 

concentration. Perhaps the lower flowrate induced by the hypotonic treatment creates 

a difference in the Me2SO concentration between the isotonic and hypotonic treatments 

that is analogous to the difference in cortical and medullary regions due to the 
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difference in blood flow of the two regions. Overall, the low flowrate induced by a 

hypotonic buffer does appear to be a challenge that needs to be overcome if a hypotonic 

buffer is to be leveraged during perfusion.  

 

Although no large regions on the CT images appeared dark, we still need to address the 

fact that the Me2SO concentration is not approaching 15% (m/v). Even over a longer 

perfusion time as seen for a 60 min perfusion in Figure 4.11, we still do not see any 

concentrations approaching 15% (m/v). In Figure 4.11, we note that the cortical region 

of a kidney perfused with Me2SO in isotonic buffer does appear to be at a steady-state 

Me2SO concentration of slightly over 12% (m/v). There are two explanations for why 

the concentration is below 15% (m/v). The first could be too low of a solids estimate. 

We are using a rat papillary solids estimate for the medulla at 15% and then using the 

CT data at time = 0 min to estimate the solids content for the cortex (15.5%). In order 

for the isotonic cortex curve of Figure 4.11 to reach 15% (m/v) Me2SO, we would need 

a medullary solids estimate of approximately 30%. Our solids estimate could be low, 

but this would not explain the low concentration predictions of the other curves, 

including the rest of the data from Figure 4.10. For example, in Figure 4.10, there is an 

isotonic cortex curve that appears to approach a steady-state concentration of 10% 

(m/v). Even if we considered a medullary solids content of 30%, we would not account 

for the lower than 15% (m/v) Me2SO steady-state concentration. In fact, we would need 

a medullary solids content estimate of approximately 42%, which is outside of the 

range we discussed in the Methods and Materials section. The more likely scenario is 

that we are having trouble reaching all regions of the kidney for both tonicities. There 

were no large dark regions on the CT images but some small regions could be excluded 

from being perfused or the time scale of Me2SO diffusing in the tissue to reach those 

regions is much longer than what we captured in our experiments. A potential 

explanation for this lower than expected Me2SO concentration could be due to some 

capillary beds being blocked due to coagulated blood that could not be flushed. As we 

will describe later, there are pitfalls to using the slaughterhouse model and we also 

chose to forego an anti-coagulant in the perfusate to keep our perfusate composition 

simple and better isolate the tonicity variable. Nevertheless, the slaughterhouse model 
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does seem to have an impact on the accuracy of results, but we have demonstrated a 

CT method including a unique spatial region analysis of the kidney that can be used to 

inform mass transfer models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. The Me2SO concentration plotted as a function of time for porcine kidneys 

perfused with either 15% (m/v) Me2SO in isotonic (n = 1) or hypotonic buffer (n = 1). 

For the two kidneys perfused, the Me2SO concentration is plotted for both the cortical 

and medullary regions. For the hypotonic curves, there is an uncertainty of ± 1.3% in 

the Me2SO concentration due to a difference in the background attenuation between 

the isotonic and hypotonic buffer, where the hypotonic buffer has a lesser attenuation. 

The data up until time = 20 min can also be found in Figure 4.10. Me2SO was 

introduced after the standard 30 min equilibration period with isotonic buffer (time = 0 

min). The kidneys have a warm ischemia time of 25-40 min and a cold ischemia time 

of approximately 18 hr. 

 

4.4.3 Osmotic Damage Assessment of the Kidney 

In addition to adopting a CT method to help inform a mass transfer model within the 

toxicity cost function framework, we also sought to develop a metric to assess osmotic 

tolerance limits. At the organ level during a CPA addition and removal protocol, 

volume excursions of both the tissue and cells are expected, and as such, those volume 

excursions can cause mechanical damage. Assessing the mechanical damage of the 

tissue independently of the cells is a difficult proposition. For this work, we focused on 
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the mechanical damage experienced by the cells. Specifically, we conducted a LDH 

assay on the effluent during perfusion and estimated the cell death from the results. We 

conducted the LDH assay for several different experiments. The first experiment purely 

looked to isolate osmotic damage. To do this, we did not include any CPA in our 

perfusate but specifically looked at the difference in LDH content between a kidney 

perfused with isotonic buffer versus one perfused with hypotonic buffer. This 

experiment gave us the maximum amount of osmotic damage that could be incurred 

from the use of our hypotonic buffer. The other two experiments were perfusions of 

two different kidney groups of varying cold ischemia time with 10% (m/v) EG in either 

isotonic or hypotonic buffer. Figure 4.12 shows the estimated cell death of all three 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. The estimated cell death between the isotonic and hypotonic buffer 

treatments for three different experiments. All kidneys were equilibrated on a mass 
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basis with the isotonic buffer for 30 min. After the equilibration, test solutions were 

introduced to the kidneys according to the strategy presented in Figure 4.4 for one 

experiment (Panel A). For the other two experiments (Panels B and C), we perfused 

the kidneys with 10% (m/v) EG in either buffer according to the strategy presented in 

Figure 4.4. The isotonic buffer equilibration and Triton X-100 introduction were kept 

the same as with the buffer only experiment. Panel A – porcine kidneys perfused with 

either isotonic or hypotonic buffer (see Fig. 4.4). The warm ischemia time was 25-40 

min and the cold ischemia time was 3.5-5.5 hr (n = 1 for each tonicity) or 19-21 hr (n 

= 2 for each tonicity). Replicates were combined to make n = 3 for each tonicity. Panel 

B – porcine kidneys perfused with 10% (m/v) EG in either buffer with a warm ischemia 

time of 25-40 min and a cold ischemia time of 2-4 hr (n = 4 for each tonicity). Panel C 

– porcine kidneys perfused with 10% (m/v) EG in either buffer with a warm ischemia 

time of 25-40 min and a cold ischemia time of 5 d (n = 3 for each tonicity). Error bars 

represent the standard error of the mean. 

 

From Figure 4.12, we see that the hypotonic treatment appears to be more damaging 

than the isotonic treatment. However, the magnitude of the estimated cell death of each 

treatment is fairly low, perhaps innocuous for a CPA addition and removal strategy that 

leverages either treatment. Focusing on Panel A where only buffer was perfused 

through the kidneys, we should theoretically obtain the most osmotic damage and not 

have any toxicity damage from a CPA that could confound results. The error bar for 

the hypotonic case is much larger than the isotonic case because one hypotonic kidney 

released much less LDH during the Triton X-100 exposure than its counterparts, which 

increases the estimated cell death. Nevertheless, there is no statistical difference 

between the isotonic and hypotonic cell death estimates using a 2-way ANOVA 

(without interaction) looking at the effect of tonicity and animal the kidneys were taken 

from (p-value of 0.28 for tonicity). Overall, we can use this LDH assay to find the 

hypotonicity at which cell death dramatically increases to set our upper osmotic 

tolerance limit. As we decrease the tonicity to find the osmotic tolerance limit, the 

swelling would become more of a problem. At some point, we would expect no effluent 

flowrate as we decrease tonicity. Perhaps flowrate becomes the limiting constraint 

rather than cell death when using a hypotonic buffer. If we do want to establish the 

limit in the future, we can use the technique as outlined in Figures 4.4 and 4.8 to recover 

the effluent flowrate and capture the LDH released during the hypotonic treatment. For 

very low tonicities, we might have to increase the isotonic perfusion time after the 

hypotonic treatment to recover the flowrate fully and capture the LDH released. 
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Overall, the LDH assay is a promising tool to establish osmotic tolerance limits at the 

organ level and limiting the CPA addition and removal protocol space to limit 

mechanical damage.  

 

Looking at Panels B and C where EG was perfused through the kidneys, we notice a 

similar trend as with the buffer only experiment of Panel A. The hypotonic buffer 

imparts a slightly greater cell death than the isotonic buffer. From this result, we see 

that EG does impart a signal reduction to the LDH assay (comparison of Panels A and 

B reveals a ~55% signal reduction for the isotonic case and a ~25% signal reduction 

for the hypotonic case, assuming minimal CPA toxicity), but this signal reduction does 

not confound the result of the experiment. We have also seen a maximum signal 

reduction of ~40% for LDH assays conducted on endothelial cells in the presence of 

EG (results not shown). This is important, as we could use this same LDH assay to 

assess CPA toxicity. To do this, we could potentially save effluent samples during CPA 

loading and removal but not introduce Triton X-100, conduct hypothermic storage of 

the kidney to allow for apoptosis to occur, and then conduct an isotonic buffer perfusion 

followed by Triton X-100 introduction. We would estimate cell death in a similar 

manner as described in the Methods section, but the LDH released during the isotonic 

buffer perfusion after hypothermic storage would be attributed to apoptosis and add to 

our cell death estimate. In conjunction with the potential of extending the LDH assay 

to CPA toxicity, we also notice in Panel C that we estimate greater cell death for both 

buffers when compared to Panel B. We attribute this difference to the fact that the cold 

ischemia time is much greater in Panel C than Panel B, and the kidneys of Panel C 

would be considered to be of lesser quality either from more background LDH in the 

effluent from cells dying over the course of the cold ischemia period or from more cells 

dying during the actual perfusion. Regardless, the LDH assay captures this 

phenomenon and could be extended to characterizing specimen quality as we will 

discuss in the following section.   
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4.4.4 Comments on Specimen Quality and the Slaughterhouse Model 

The slaughterhouse model is an attractive option for the researcher as it allows many 

specimens to be acquired for a low cost and it does not require the sacrifice of additional 

animals. However, in our experience using the slaughterhouse model for porcine 

kidney perfusions, we have encountered some pitfalls that can lead to less accurate and 

potentially confounding results. The first pitfall is potential variety in the specimens 

acquired as the animals can vary in sex, age, weight, and overall health. The researcher 

has potentially less background information on the animal before organ acquisition 

when compared to that of a research animal. As an example, we had one kidney 

confound our CT experiment, and we had one kidney exhibit a much smaller release of 

LDH during our osmotic damage experiment. With a slaughterhouse model, flagging 

outlier animals can be more difficult based on metrics of the animal’s history. Also, the 

timing of the experiments can have greater variation resulting in varying ischemia 

times, as the scheduling of experiments is a function of slaughterhouse processing 

times. As an example, the cold ischemia times for our CT experiment were longer at 

about 18 hours when compared to the times of our mass and flowrate change 

experiments. This was due to a fixed slaughterhouse processing time and a fixed time 

window to take CT images. If a research animal is used, the researcher can control the 

time of organ acquisition and subsequently the cold ischemia time. 

 

Regardless of the animal model used, we did develop some experimental techniques 

that can be used to probe the quality of the specimen. As mentioned previously, Figure 

4.12 indicated that more LDH is released as cold ischemia time increases, as more cells 

will die as cold ischemia time increases and there will be a greater buildup in the 

specimen before a perfusion. To leverage this principle, we compared the LDH content 

of the 30 min isotonic equilibration period of all available experiments. The results are 

presented in Figure 4.13 by showing the total LDH released for three different cold 

ischemia times.   
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Figure 4.13. A comparison of the LDH released as a function of increasing cold 

ischemia time during the initial isotonic equilibration period of 30 min. All kidneys 

have a warm ischemia time of 25-40 min. The cold ischemia time groups are less than 

or equal to 8 hr, approximately 20 hr, and approximately 5 d. The error bars represent 

the standard error of the mean. 

 

Figure 4.13 shows a large jump in LDH released between the 20 hr and 5 d cold 

ischemia time groups. Using this result alone, we would interpret both the 8 hr and 20 

hr groups to be comparable in quality. However, we have seen confounding results 

from specimens that have about a 20 hr cold ischemia time, and we have also seen some 

confounding results from specimens that have less than a 20 hr cold ischemia time but 

have a 25-40 min warm ischemia time compared to a 20 min warm ischemia time. As 

such, another metric would be useful to try to understand why some kidneys respond 

in a seemingly atypical fashion. A potential metric that we propose comes from the 30 

min isotonic equilibration period as well. During the 30 min equilibration period, we 

compared the difference between the effluent flowrate at the end and beginning of the 

equilibration period across experiments. Figure 4.14 presents the results of this 

comparison, and we found an interesting trend where kidneys with a greater ischemia 

time tended towards vasoconstriction (flowrate reduction), while kidneys with a shorter 

ischemia time tended towards vasodilation (flowrate increase). At normal physiological 

conditions, the kidney autoregulates blood flow through either vasoconstriction or 
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vasodilation through complex feedback loops [69]. As we’ve previously mentioned, 

during perfusion, avoiding an increase in vascular resistance (i.e. vasoconstriction) is 

desirable, and some common techniques to avoid vasoconstriction involve adding a 

vasodilator [103] or leveraging pulsatile machine perfusion [33]. In our case, we used 

a simple perfusate composition and perfusion setup which should not bias the kidney 

towards either vasoconstriction or vasodilation. Instead, the particular condition of the 

kidney being perfused should drive the change in vascular resistance. As such, the 

change in flowrate for our experimental setup appears to correlate with ischemia time. 

This simple metric could be leveraged in the future to screen specimens and give a 

prediction of expected osmotic response when compared to our experimental group of 

the smallest ischemia times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. A comparison of the difference in effluent flowrate between the end and 

beginning of the 30 min isotonic equilibration period. The first bar represents the base 

change as seen for our porcine kidney group with a warm ischemia time of 20 min and 

a cold ischemia time of 3-5 hr. Moving to the second bar, we have a porcine kidney 

group where the warm ischemia time is increased by 5-20 min and the cold ischemia 

time is comparable to the base group. Moving past the second bar, each subsequent bar 

has the same warm ischemia time as the second but with an additional amount of cold 

ischemia time. One caveat is that the fourth bar represents our human kidney group and 
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the warm ischemia time is an unknown. Error bars represent the standard error of the 

mean. 

 

Moving on from specimen quality, we did encounter some other pitfalls. Unlike some 

other porcine slaughterhouse studies [63,126] where they had complete control over 

the animal at the time of slaughter, we were only able to obtain kidneys in a way that 

did not change the timing of the slaughterhouse’s processing schedule. In the other 

slaughterhouse studies, they were able to harvest the kidneys via an en-bloc technique 

where a section of the abdominal aorta and inferior vena cava were removed with the 

kidneys. With our constraints, kidneys were resected individually as quickly as possible 

during the processing of the animal. Also, we did not include heparin within our flush 

solution unlike the other studies in order to better isolate the tonicity variable. Such an 

overall approach, when compared to the other studies, introduces some pitfalls, namely 

some coagulation within the kidney, introduction of air bubbles into the vasculature, 

and a cannula position that can be past the first arterial bifurcation. Even with flushing 

the kidneys with 500 mL of isotonic buffer after harvest (which is on the higher end of 

other studies [53,63,66,126]), we still saw blood in the effluent collected during the 30 

min isotonic buffer equilibration period. In Figure 4.15, we show evidence of air 

bubbles in our kidneys as well as a cannula position that appears to be past the first 

arterial bifurcation on a CT image. Overall, these pitfalls can decrease the accuracy of 

an experiment and increase the probability of confounding results. However, the 

slaughterhouse model proposed in this work has shown the ability to help guide 

experimental techniques in the future and has established a proof of concept for the use 

of leveraging buffer tonicity in a CPA addition and removal protocol. The experimental 

methods outlined in this work can be further refined with our quick and cost-effective 

slaughterhouse model before we transfer to a research animal model to acquire final 

data for the toxicity cost function approach.  
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Figure 4.15. A CT image of two kidneys before a perfusion took place. The left kidney 

of the image details a cannula position that appears to be past the first arterial 

bifurcation. Lighter pixels of the image indicate greater X-ray attenuation, and the 

cannula is clearly visible on the image since a Me2SO solution fills the cannula. The 

right kidney shows some pockets of air trapped in the vasculature, which will appear 

as black pixels. 

 

4.5 Conclusions and Future Directions 

In this work, we began to build a foundation of moving the toxicity cost function 

technique to the organ regime. To start, we assessed the idea of loading CPA in 

hypotonic buffer in porcine kidneys. In a previous study at the single cell level [29], 

the toxicity cost function approach identified loading CPA in hypotonic buffer as a less 

toxic method when compared to conventional protocols. At the organ level, we noted 

greater swelling of kidneys perfused with CPA in hypotonic buffer when compared 

with their isotonic counterparts for our porcine kidney group that had the lowest 

ischemia time. This is an encouraging sign, as greater swelling indicates loading more 

CPA in a shorter amount of time, at least at the single cell level. However, the delivery 

of CPA into an organ using perfusion is much different than exposing cells to an infinite 

reservoir of CPA. When looking at the use of a hypotonic buffer, we have to consider 

the increase in vascular resistance induced by swelling and the potential of not 

effectively perfusing the farthest downstream regions of the kidney due to lower 

flowrates. We saw a lower flowrate phenomenon in all kidneys perfused with a 

hypotonic buffer. As such, we conducted CT scans of perfused kidneys to assess the 
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difference in the CPA distribution between perfusing a kidney with CPA in hypotonic 

buffer versus perfusing a kidney in isotonic buffer.  

 

CT results indicated no statistical difference between the CPA distribution when using 

a hypotonic or isotonic buffer. However, one kidney appeared to produce outlier results 

and confounded the analysis. Nevertheless, we were able to identify several key 

takeaways from the study: 1) hypotonic buffer needs to be further evaluated as an 

effective method to load CPA at the organ level, 2) we can effectively quantify both 

the spatial and temporal CPA distribution within the kidney, and 3) the CT method can 

be leveraged to inform an organ level mass transport model that will serve as the 

cornerstone of our toxicity cost function approach. In conjunction with a hypotonic 

buffer increasing vascular resistance, we also considered the potential of osmotic 

damage. To assess osmotic damage, we performed a LDH assay on collected effluent. 

We also identified several key takeaways from the study: 1) there is no statistical 

difference between the estimated osmotic damage of the two buffer treatments, 2) the 

assay appears to be an effective technique to assess osmotic damage, and 3) the assay 

can be potentially expanded to assess CPA toxicity, which is another major component 

of the toxicity cost function approach. 

 

Altogether, our slaughterhouse study provided some key learnings that we can leverage 

moving forward. We identified experimental techniques that can fulfill the necessary 

measurements of CPA concentration distribution, osmotic damage, and perhaps CPA 

toxicity. All of these measurements are key to developing a toxicity cost function at the 

organ level. We also were able to take physical change data of perfused kidneys which 

can help to inform a future mass transport model as well. Although some pitfalls and 

limitations of our slaughterhouse model were identified, we were able to identify key 

trends in our experiments. In the end, we have developed a solid experimental base 

from which we can build off in the future. The slaughterhouse model can be used to 

refine experimental techniques and rule out potential protocols before moving to a 

research animal model to inform a final version of our toxicity cost function. 
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5. GENERAL CONCLUSION 

 

5.1 Summary 

Vitrification is a very exciting cryopreservation technique that completely suppresses 

ice formation and is one that could be applicable to complex biological specimens such 

as tissues and organs. The other cryopreservation technique of slow cooling allows 

extracellular ice to form and is thought to not be applicable to complex specimens, 

since they cannot tolerate extracellular ice formation. As such, vitrification is being 

pursued by the cryobiology field for complex specimen cryopreservation. The biggest 

obstacle for vitrification is toxicity, though, due to the large concentration of CPAs 

required. To minimize toxicity and allow the specimen to survive the cryopreservation 

process, there are many knobs of a CPA addition and removal protocol that can be 

turned. For example, we can manipulate the temperature and exposure time of a 

protocol in conjunction with the CPA type. One quickly realizes that there are so many 

different protocol combinations that it becomes impossible to test them all 

experimentally. To assess all possible combinations and find a global minimum of 

toxicity, a mathematical approach most likely needs to be employed. Our group has 

adopted a mathematical optimization strategy for the toxicity problem. We have 

proposed a toxicity cost function that can be minimized in order to find the least toxic 

vitrification protocol. However, the approach is still in its infancy and there are many 

research avenues to extend its applicability. In this work, we discussed research topics 

expanding on both the protocol complexity and specimen complexity of the toxicity 

cost function. 

 

5.1.1 Chapter 2 

In Chapter 2, we investigated the protocol complexity research front. Protocol variables 

such as temperature, exposure time, and CPA concentration are fairly well understood 

as far as general toxicity trends are concerned. However, CPA mixture type is a much 

vaster variable, since potentially any chemical could be a CPA. Finding the best CPA 

or combination of CPAs is then vary challenging. Even with our mathematical 

approach, we still need to characterize the toxicity of a vast chemical library to leverage 
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the CPA mixture type variable in the attempt of reducing toxicity. Also, many current 

vitrification protocols leverage multi-CPA solutions, increasing the number of CPA 

mixture types. Chapter 2 focused on characterizing the toxicity of five of the most 

common CPAs along with their binary and ternary mixtures. To accomplish this, we 

leveraged automated liquid handling to expose BPAEC to the various CPA solutions 

of interest. In doing so, we established the most comprehensive toxicity dataset in the 

cryobiology literature, while establishing a high-throughput CPA toxicity screening 

pipeline. 

 

5.1.2 Chapter 3 

In Chapter 3, we moved on from the protocol complexity research front and started to 

move up the specimen complexity ladder from our single cell investigations of BPAEC. 

Specifically, we turned our attention to the cryopreservation of tissues. At the tissue 

level, our primary research attention turns to an adequate mass transfer model. At the 

heart of the toxicity cost function are spatial and temporal CPA concentration 

predictions based on a mass transfer model. At the single cell level, we rely on the 

classic 2P membrane transport model, but at the tissue level, we have to contend with 

extracellular mass transfer as well. There are many transport complexities that arise at 

the tissue level and all should be considered to give the most accurate mass transfer 

predictions. If all tissue-based phenomena that influence transport can be accounted 

for, we hypothesize that we can craft a general tissue transport model, and this is what 

we pursued in Chapter 3. By augmenting a comprehensive acellular tissue model in the 

literature with cells, we were able to show a generality in the developed model. We 

showed that the model could give CPA concentration predictions for two very different 

tissues—articular cartilage and pancreatic islets.  

 

5.1.3 Chapter 4 

For the last chapter of this work, we moved to the most complex specimen regime of 

organs. Specifically, we looked at kidneys. Unlike tissues, organs have much more 

complex geometries and various functional compartments that most likely render a 

general model unlikely. However, previously discussed modeling strategies can be a 
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good starting point. In Chapter 4, though, we move away from the development of mass 

transfer models and take an overview look of how to apply the toxicity cost function to 

organs. The first step we took was to assess the osmotic response of the kidney using 

different perfusate compositions, drawing parallels with what we had seen in the past 

with single cells. At the single cell level, our toxicity cost function approach identified 

leveraging the osmotic response to reduce toxicity. After our initial osmotic response 

investigation, we turned to developing more model informing experimental methods. 

To accurately develop an organ level mass transfer model, we need to have some data 

to compare against the model predictions. As such, in Chapter 4, we developed a CT 

method to assess the distribution of DMSO within a kidney both spatially and 

temporally. We also developed an LDH assay to assess osmotic damage within the 

kidney. Developing osmotic tolerance limits outside of the single cell regime is a wide-

open research front. Along with these experimental methods, we also investigated the 

quality of kidneys that can be obtained from a slaughterhouse source. Obtaining 

kidneys from a slaughterhouse is the cheapest option and the one that can provide a 

high volume of supply for the many experiments that need to be conducted. However, 

the specimen quality can vary due to the lack of control the experimenter has at the 

slaughterhouse.  

 

5.2 Future Work Considerations and Conclusions 

The toxicity cost function is still a relatively new approach to vitrification but it has 

shown much promise. As such, there are many investigations that need to be conducted 

to further its applicability as we move to more complex protocols and specimens. In 

this work, we have touched on several different research fronts of the toxicity cost 

function and there are multiple investigations that can be spawned from each one. 

 

5.2.1 Chapter 2 

With the Chapter 2 investigation, we generated a large toxicity data set and developed 

a high-throughput method for toxicity screening. Both of these accomplishments can 

be built upon. To start, we can use the data set obtained to start generating more 

complex toxicity models. In the past, we considered the simplest form of toxicity 
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kinetics to describe the toxicity rate of a single CPA. However, with multi-CPA 

solutions, the toxicity kinetics are more complicated. As we have seen in Chapter 2, 

various multicomponent effects can be present, such as PG greatly increasing the 

toxicity of a mixture and Gly + FA solutions showing synergy. In a future work, we 

will build off of the simple toxicity kinetics described earlier to predict the toxicity 

rates of multi-CPA mixtures. Moving to the high-throughput method itself, our 

automated liquid handling methodology can continue to evolve. For a future work, we 

are designing a temperature-controlled platform that will allow us to conduct the same 

experiments discussed in this work but at varied temperature. With this capability, we 

can also consider performing complex CPA addition and removal protocols entirely 

with our automated liquid handler. Finally, we can use the method to screen vast 

chemical libraries (both single CPAs and mixtures) for toxicity—chemicals that are 

otherwise not considered conventional CPAs. Overall, we have developed a sound 

high-throughput pipeline that will further strengthen the toxicity kinetic modeling of 

the toxicity cost function. 

 

5.2.2 Chapter 3 

Chapter 3 provided a sound framework for future tissue modeling endeavors. The 

model we put forth for the tissue regime seems to have a general applicability to tissues, 

since we were able to model two very different tissues in articular cartilage and 

pancreatic islets. This model sets the stage for more investigations of different tissues, 

such as decellularized heart valve and ovarian tissue, among others. We can move past 

making predictions for many different tissues, though. The model can be directly 

applied to our toxicity cost function framework for tissues, and we can start making 

predictions for the least toxic CPA addition and removal protocols for many tissues. 

Also, since the model accounts for so many tissue-based phenomena, it could 

potentially be crafted into an organ-based model. Of course, each organ is uniquely 

complex, but we could start building complex geometries where transport in the organ’s 

tissue is governed by the model we have proposed. The model could be effectively 

linked with a vasculature model for perfusion applications. Altogether, our proposed 
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model could have a big impact on the vitrification protocols of many tissues, while 

providing learnings for even more complex specimens. 

 

5.2.3 Chapter 4 

In Chapter 4, we explored the most complex specimen regime of organs by 

investigating porcine kidneys obtained from a slaughterhouse. Organs are immensely 

complex, and we just wanted to probe the regime by looking at some basic trends and 

developing some experimental methods that could inform future models. That being 

said, we do have data that can be used to inform a potential model. We can either use 

our mass change and volumetric flowrate change data from our EG perfusions, or we 

can use the CT data from our DMSO perfusions. An initial starting point for modeling 

would be the classic Krogh cylinder model. The model is straightforward to implement 

and can be informed by the data we already have. An interesting aspect of the Krogh 

cylinder model is a variable vasculature diameter which can be directly informed by 

our volumetric flowrate change data. Moving past the Krogh cylinder model, we could 

consider more rigorous modeling approaches if needed, such as implementing the 

tissue model discussed in Chapter 3 for perfusion modeling. On more of the 

experimental side, we could investigate ways to measure the concentration of other 

CPAs within an organ. Outside of DMSO, and limiting our approach to CT, we would 

have to investigate the use of contrast agents in our perfusate. Also, we can further our 

LDH assay study. Our assay can give an indication of osmotic damage within the 

kidney, but to fully move the toxicity cost function approach to the organ regime, we 

need some endpoint metric for assessing toxicity. One possibility is using the LDH 

assay for measuring toxicity as well. Overall, we have established experimental 

methods at the organ level that can be built upon for future toxicity cost function 

applications.  
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A. Chapter 2: CPA Addition and Removal Step Design 

CPA addition and removal steps were designed in order to stay within the osmotic 

tolerance limits as defined in our previous study [29]. The osmotic tolerance limits 

established in that study were conservatively set at a normalized osmotically active 

volume of 0.2 for the lower limit and 2 for the upper limit. In this study, we designed 

multi-step CPA equilibration methods using even more conservative limits for the 

lower and upper limit at 0.25 and 1.8, respectively. As such, we slightly modified the 

steps established in our previous work [29] to account for the more conservative limits. 

The time for each step (excluding the peak CPA exposure step) was minimized to the 

nearest 0.5 min while making sure that the osmotic tolerance limits were not crossed.  

 

An osmotic tolerance limit refers to the normalized osmotically active volume of a cell 

that we do not want to cross, with the reference volume being that of the osmotically 

active volume of a cell in isotonic buffer. In order to calculate the normalized 

osmotically active volume of our cells through time, we used the classic two-parameter 

cell membrane transport model [29,79]: 

 

𝑑�̅�𝑤

𝑑𝑡
=

𝐿𝑝𝐴

𝑉𝑤0
𝜌𝑤𝑅𝑇(𝑀𝑠

𝑖 + 𝑀𝑛
𝑖 − 𝑀𝑠

𝑒 − 𝑀𝑛
𝑒), A1 

 

𝑑�̅�𝑠

𝑑𝑡
=

𝑃𝑠𝐴

𝑉𝑤0
𝜈𝑠𝜌𝑤(𝑀𝑠

𝑒 − 𝑀𝑠
𝑖), A2 

 

𝑀𝑛
𝑖 =

𝑀0

�̅�𝑤

, A3 

 

𝑀𝑠
𝑖 =

�̅�𝑠

𝜈𝑠𝜌𝑤�̅�𝑤

, A4 

 

where �̅�𝑤 and �̅�𝑠 are the normalized intracellular volumes of water and CPA, 

respectively, and the sum of the two gives the normalized osmotically active volume 

of a cell at time 𝑡. As such, we sought to satisfy the equation 0.25 ≤ �̅�𝑤 + �̅�𝑠 ≤ 1.8 for 
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all time. The effective water permeability (𝐿𝑝𝐴/𝑉𝑤0 = 4.36 x 10−8 [1/Pa/s]) and the 

effective glycerol permeability (𝑃𝑠𝐴/𝑉𝑤0 = 6.02 x 10−3 [1/s]) at 25 °C were found 

through a previous study [56]. Effective permeabilities were used for glycerol, as out 

of the five CPAs tested, glycerol has the lowest membrane permeability and causes the 

largest cell volume excursions. The remaining parameters in Equations A1-A4 are 

defined as follows: 𝜌𝑤 = 1 kg/L is the density of water, 𝑅 is the universal gas constant, 

𝑇 is the absolute temperature, 𝑀0 = 300 mOsm/kg is the isotonic reference 

osmolality, 𝜈𝑠 = 0.071 L/mol is the molar volume of glycerol, and 𝑀 is osmolality 

with subscripts 𝑠 and 𝑛 referring to glycerol and the nonpermeating solute, respectively, 

and superscripts 𝑖 and 𝑒 referring to the intracellular and extracellular space, 

respectively. 

 


