
AN ABSTRACT OF THE THESIS OF

Mohamad Hosein Danesh for the degree of Master of Science in Computer Science

presented on June 9, 2021.

Title: Re-understanding Finite-State Representations of Recurrent Policy Networks

Abstract approved:

Alan P. Fern

We propose an approach for understanding control policies represented as recurrent neu-

ral networks. Recent work has approached this problem by transforming such recurrent

policy networks into finite-state machines (FSM) and then analyzing the equivalent min-

imized FSM. While this led to interesting insights, the minimization process can obscure

a deeper understanding of a machine’s operation by merging states that are semanti-

cally distinct. To address this issue, we introduce an analysis approach that starts with

an unminimized FSM and applies more-interpretable reductions that preserve the key

decision points of the policy. We also contribute an attention tool to attain a deeper

understanding of the role of observations in the decisions. Our case studies on 7 Atari

games and 3 control benchmarks demonstrate that the approach can reveal insights that

have not been previously noticed.

©Copyright by Mohamad Hosein Danesh
June 9, 2021

All Rights Reserved

Re-understanding Finite-State Representations of Recurrent Policy
Networks

by

Mohamad Hosein Danesh

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 9, 2021

Commencement June 2021

Master of Science thesis of Mohamad Hosein Danesh presented on June 9, 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Mohamad Hosein Danesh, Author

ACKNOWLEDGEMENTS

I would like to sincerely thank my family for their unconditional love and support

throughout this journey. I would also like to thank my advisor, Professor Alan Fern,

for his constructive mentoring during my presence at Oregon State University. Further,

I would like to thank Anurag Koul and Saeed Khorram for the joint discussions and

collaborations.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 1

2 Related Works 3

2.1 Interpretability in Reinforcement Learning 3

2.1.1 Attention maps . 3

2.1.2 Hybrid Architectures . 3

2.2 Extracting Finite-State Machine . 4

3 Re-understanding Finite-State Representations of Recurrent Policy Networks 5

3.1 Introduction . 5

3.2 Recurrent Networks to Moore Machines . 8

3.2.1 Recurrent Policy Networks (RPNs) 8

3.2.2 Moore Machines . 8

3.2.3 Quantized Bottleneck Insertion (QBN Insertion) 9

3.3 Analyzing non-minimal Moore Machines . 9

3.3.1 Interpretable Reductions . 10

3.3.2 Differential Attention for Decision Points 12

3.3.3 Functional Pruning . 14

3.4 Experiments and Results . 17

3.4.1 Training Details . 18

3.4.2 Pre-processing . 19

3.4.3 Quantitative analyses . 19

3.4.4 Atari: Case Studies . 20

3.4.5 Stochastic Classic Control Tasks 32

3.5 Summary . 34

4 Conclusion 38

4.1 Future work . 38

Bibliography 38

LIST OF FIGURES
Figure Page

3.1 Overall approach for Pong. a) QBN Insertion (Section 3.2) discretizes ob-

servations and memory of the original RNN (top). b) Resulting MM with

finite states and observations. c) Interpretable reductions (Section 3.3.1)

are applied to the MM, yielding a single decision point s197 conditioning on

observations. Differential attention (Section 3.3.2) is used to understand

decisions in terms of observations. d) Functional pruning (Section 3.3.3)

removes unnecessary branches, leaving an open-loop policy. 6

3.2 Differential Attention Pipeline. The pair of images under comparison re-

sult in discrete representations that differ on the highlighted features. We

produce an attention map for each of those features using the Integrated

Gradient (IG) approach and average the magnitude of the maps for an

overall differential attention map. 10

3.3 a) An example of an MM with 7 memory states and 9 observations. The

initial state is S0, and based on the input observation, it goes to the next

state until it reaches to the state S5, then it loops back to S2. In this

example, MM has a decision point at S2. b) Interpretable reductions

applied to the MM. 11

3.4 a) Pong minimal MM, b) Bowling minimal MM, c) Bowling pruned MM,

d) Acrobot minimal MM. 14

3.5 Four observations that enter a state in the corresponding minimal MM.

a) Frames of Pong for in-going observations to S2, b) Frames of Bowling

for in-going observations to S0. 22

3.6 MsPacman: a) Differential saliency for a sample decision point. The first

row shows a sample observation that occurs for each branch. The sec-

ond row gives differential saliency for pairs of observations (dotted arrows

indicate the baseline), b) pruned MM, c) minimal MM. 25

3.7 Different observations as branches of decision point S3 in minimal MM. . 26

3.8 Different observations as branches of decision point S9 in minimal MM. . 26

3.9 Breakout: a) pruned MM, b) minimal MM. 27

3.10 Boxing: a) pruned MM, b) minimal MM. 28

3.11 Different observations as branches of decision point S5 in minimal MM. . 29

LIST OF FIGURES (Continued)
Figure Page

3.12 SeaQuest: a) pruned MM, b) minimal MM. 29

3.13 Different observations as branches of decision point S6 in minimal MM. . 30

3.14 SeaQuest: a) pruned MM, b) minimal MM. 30

3.15 Different observations as branches of decision point S6 in minimal MM. . 31

3.16 Pruned MMs for control tasks. a) CartPole, and b) Acrobot. In each

case, we show attention of features for decision points. Also, we show

scatter plots of continuous observations during an episode at each decision

point for the two most salient features, where color indicates the discrete

machine observation. 36

3.17 Pruned MMs for LunarLander. Next to the pruned MM it the saliency of

features for first decision point. For each saliency map, input image and

baseline image are shown. 37

LIST OF TABLES
Table Page

3.1 MM results for control tasks and Atari environments. 21

LIST OF ALGORITHMS
Algorithm Page

1 Functional Pruning . 17

Chapter 1: Introduction

1.1 Motivation

With the emergence of deep neural networks in reinforcement learning, problems were

solved that previously were thought to be intractable, like playing video games directly

from pixel inputs. Besides all the attention deep reinforcement learning is getting, there

is an important concern regarding its explainability. Due to the black-box nature of

deep neural networks, it is difficult to interpret and understand what governs agents’

decisions. Since deep networks became popular, researchers have tried to demystify the

inner workings of them. For example, the saliency method, which is mainly used in com-

puter vision, is an approach to achieve that goal. It highlights parts of input data that

are most salient to the model. Similar approaches have been applied to deep reinforce-

ment learning settings. However, there are a few significant differences between deep

reinforcement learning and computer vision, among which are the presence of memory

in deep RL. Since saliency maps do not take the role of memory into account, then the

explanations provided by them could be easily deceptive. An important insight of this

could be that deep reinforcement learning methods are not always best served by directly

importing techniques from other applications.

1.2 Contribution

First, we argue that minimization is not always the best approach in order to gain insights

into recurrent policy networks. Minimization merges states that are not semantically

related, which removes the interpretable structure and the ability to prune the individual

non-merged decision points. Next, we introduce interpretable reductions to preserve

the key features of the representation of the policy while not affecting the underlying

behavior. This leaves us only decision points that are states in which the future behavior

of the agent depends on the given observation. Then, we contribute an attention tool

based on the Integrated Gradient [21] approach to obtain a deeper understanding of

2

the role of observations in decision points. Finally, we focus on decision points and

functionally prune branches. The goal is for functional pruning to reveal redundant

paths (hence unnecessary decision points in the machine). This is what leads to the

insight that the policies are essentially open-loop.

3

Chapter 2: Related Works

2.1 Interpretability in Reinforcement Learning

The explainable reinforcement learning literature is vast, with a variety of approaches

trying to understand the decision making process of an agent. For instance, [17] ex-

plains policy outputs by visualizations and t-SNE embeddings, [24] utilizes a high-level

programming language, and [11] demonstrates how investigating important states in a

trajectory can improve the trust for end-users. Although these works provide interesting

insights into how RL agents decide, but they fail to show how they utilize their memory.

2.1.1 Attention maps

Attention maps have been used as a tool to identify the most relevant parts of the

input with respect to the agent’s decision [6, 12, 7, 1]. Perturbation-based attention

methods have been investigated to gain insight into learned Atari policies [6, 12, 7],

but have been criticized for relying on the application of networks to potentially non-

sensical perturbed states [1]. This has been partly addressed by using more advanced

counterfactual state generation [19]. In general, attention approaches produce a “local

explanation” for the decisions made at specific states, which is in contrast to “global

explanations” we primarily focus on in this work. Attention methods are also limited in

the type of insights they can provide. For example, while they are applied to recurrent

policies, they provide no insight into how memory is used and the strategic role of salient

inputs. As we will show, our results suggest that a human’s intuition about the role of

salient inputs can be highly misleading.

2.1.2 Hybrid Architectures

There have been efforts to induce explanations components in the architecture to make

agents implicitly explainable [28, 18]. For example, soft attention modules have been used

in a recurrent architecture to gain insight into the “attention” of an agent [18]. While

4

attention has been used in several context for explanation, the soundness of this approach

is not clear. In particular, the attention weights are computed from the raw observations

and memory, which is ignored in the explanation process. Thus, it is difficult to determine

whether the attention patterns carry key strategic information based on other parts of

the raw observation, or whether, indeed, it is only the information highlighted by the

attention that is key to decisions. Investigating ways to distinguish these two cases is

interesting future work.

2.2 Extracting Finite-State Machine

There has been significant prior work on extracting FSMs from RNNs in the context

of formal language learning of fixed finite alphabets [22, 3, 26, 27]. Only recently have

there been attempts to learn FSMs for complex reinforcement learning problems [13]

where machine minimization was used to extract high-level insights. Our work builds

on [13] and aims to significantly advance the depth of understanding that such methods

can provide.

5

Chapter 3: Re-understanding Finite-State Representations of

Recurrent Policy Networks

3.1 Introduction

What roles do observations and memory play in the decision making of deep policy

networks for complex control tasks? While such networks have yielded state-of-the-art

performance in reinforcement and imitation learning (e.g. [16, 8, 25, 23, 9]), there are

limited tools and approaches for giving insight into this question. This is particularly

the case for policies represented as recurrent networks, e.g. LSTMs and GRUs [10, 5, 4],

which condition on high-dimensional memory vectors with no preconceived semantics.

Prior works have attempted to gain insight via attention maps over the network input,

e.g. [6, 12, 7, 1], however, this ultimately involves subjective human interpretation of

the underlying “strategic role” of the attended-to elements. In this thesis, we develop

an analysis approach that reveals such human interpretations can sometimes be highly

misleading.

Our work builds on a recent approach for understanding recurrent policy networks

by quantizing memory and observations within an RNN [13]. A quantized RNN is a type

of FSM, known as a Moore Machine (MM), which can be visualized and analyzed. In

particular, the originally large MMs were algorithmically minimized, resulting in small

machines for a variety of domains, which yielded high-level insights. For example, the

minimal MM for Atari Pong showed that memory was not actually needed (i.e. a state-

action mapping), while for Atari Bowling the MM was an open-loop strategy that ignored

observations.

While analyzing minimal MMs allows for determining global properties, such as mem-

ory/observation use or not, we have found it difficult to gain more in-depth insight from

minimal MMs. To see this, Figure 3.4 (a) and (b) show minimal MMs for Pong and

Bowling and Figure 3.5 shows a set of frames/observations for each MM that all map

to a single state in the corresponding MM. For a human, the frames are semantically

distinct, whereas the minimization process was able to merge them all into a single state.

6

Figure 3.1: Overall approach for Pong. a) QBN Insertion (Section 3.2) discretizes ob-
servations and memory of the original RNN (top). b) Resulting MM with finite states
and observations. c) Interpretable reductions (Section 3.3.1) are applied to the MM,
yielding a single decision point s197 conditioning on observations. Differential attention
(Section 3.3.2) is used to understand decisions in terms of observations. d) Functional
pruning (Section 3.3.3) removes unnecessary branches, leaving an open-loop policy.

This is due to the minimization focusing on maintaining logically equivalence to the un-

minimized MM policy, rather than maintaining any semantic meaning of states. Thus,

we have found it very difficult to understand the strategic role of different states in such

MMs to gain deeper insight into their decision logic. This experience has led us to the

view that minimal MMs are unlikely to be a good starting point for gaining a deeper

understanding of recurrent policies.

Our main contribution is to develop a new approach for reinforcement learning re-

searchers and advanced practitioners to analyze MM policy representations. We demon-

strate that this approach can yield significantly more insight into the decision making of

recurrent policies. Rather than start with a minimal MM after quantization, we start

7

with the unminimized MM, which is often quite large, and apply “interpretable reduc-

tions” in order to reduce the visual complexity. The reductions are intentionally simple

in order to preserve the inherent decision structure in the machine while effective at com-

pressing the visual representation. For example, one reduction operation replaces a fixed

series of non-branching memory states (i.e. a macro) with a single abstract transition.

The result is a simplified machine with a fixed set of “branching states” where the flow

of the machine depends on observations.

In order to help understand the decisions made at branching states, we further de-

velop a new differential attention tool, aiming to identify parts of observations that are

most important for selecting one branch over another. Using the tool, we found that

often, especially in Atari, the attention was unintuitive from a strategic point of view,

which led us to question whether observations were used for strategically important

reasons, or whether they were “arbitrary” branches. This led us to consider the “func-

tional pruning” reduction to assess that issue. In particular, this operation eliminates all

but one branch at a decision point to test whether the observation-conditioned decision

among multiple branches was strategically important, or just an artifact of learning a

non-compact policy.

We explore this approach by studying of 7 deterministic Atari games and 3 contin-

uous control environments. For the control tasks, the approach identifies interpretable

machines, whose decision points are understandable and strategically meaningful. In

contrast, for Atari, the analysis reveals new and surprising insights. Prior works have

attempted to understand the most salient pixels for policy decisions in Atari games

[6, 12, 7], however, little insight was gained into how that information was used. Our

approach reveals that for the Atari policies, observations were not used for “strategi-

cally useful” purposes. In particular, at each state that branches on observations, it

was possible to remove all branches, except for one, resulting in an open-loop policy

that ignores observations, while maintaining performance. We call such policies, pruned

open-loop policies, and observe that all of our Atari policies are of this type. Finally,

we identify limits of the current approach as problems become more stochastic, which

suggests important avenues of future work.

8

3.2 Recurrent Networks to Moore Machines

In this section we review recurrent policy networks (RPNs) and how they can be con-

verted to MMs as illustrated in Figure 3.1a. This work is agnostic about how a policy

is learned, which, for example, could be via RL, imitation learning, or other training

approaches.

3.2.1 Recurrent Policy Networks (RPNs)

An RPN is an RNN policy that, at each time step, is given an observation ot and outputs

an action at. As illustrated in Figure 3.1a top, during execution, an RPN maintains a

continuous-valued hidden memory state ht, which is updated on each transition and

influences the action choice at. Specifically, given current observation ot and current

state ht, an RPN outputs an action at = π(ht) where π may be a feed-forward network.

Then, it updates the state according to ht+1 = δ(ft, ht), where ft is a set of features

extracted from ot, for example, using a CNN when observations are images. δ is the

transition function, which is often implemented via different types of gating networks

such as LSTMs or GRUs.

3.2.2 Moore Machines

Understanding action choices of an RPN is complicated by the memory’s high-dimensionality

and lack of predefined semantics. Recent work [13] has attempted to address this issue

by transforming RPNs to MMs, which allows for visualization and analysis of a finite

system. An MM is a finite-state machine defined by a finite set of labeled hidden states

H, a distinguished initial state h0 ∈ H, a finite set of observation symbols O, and a

transition function ∆ : H × O → H, which returns the next state ht+1 = ∆(ht, ot),

given the current state and observation symbol. The label associated with each state

corresponds to an action. An MM policy initializes the state to h0 and then updates the

state as observations arrive and outputs the action associated with each state.

9

3.2.3 Quantized Bottleneck Insertion (QBN Insertion)

We now overview the approach of Quantized Bottleneck Insertion [13] for transforming

an RPN to an MM policy, which is illustrated in Figure 3.1a bottom. Full details of this

approach can be found in the original paper and are not critical to the contributions

of this thesis. The key components of the approach are Quantized Bottleneck Networks

(QBNs), which are simply auto-encoders, for which the encoder produces a quantized

latent representation. In this work, bottleneck representation is composed of discrete

units with output values in {−1, 0, 1}. Given a trained RPN, a representative set of

RPN trajectories is produced and the resulting sets of hidden states {ht} and observation

features {ft} are collected. Next, a hidden-state QBN Qh and observation QBN Qo are

trained to minimize reconstruction error on the data sets. The encoders of Qh and

Qo can be viewed as discretizing the state and observation spaces. The trained QBNs

are then inserted into the RPN in place of the “wires” that propagate the continuous

memory vector ht and observation features ft (see Figure 3.1a). This creates a discrete

representation of the hidden states ĥt and observation features f̂t in the RPN. In practice,

QBNs have reconstruction errors, which may impact the RPN performance. Supervised

fine-tuning of the discretized RPN can be used to improve performance via imitation

learning with respect to the original RPN.

Trajectories of the discretized RPN are then run to collect a representative transition

set {(ĥt, at, f̂t, ĥt+1)}, indicating that action at was taken in discrete state ĥt and a tran-

sition to ĥt+1 was observed when the discrete observation was f̂t. The MM is constructed

by creating a transition graph edge for each data tuple. The key parameters relevant to

this thesis are sizes of the bottlenecks of Qh and Qo, denoted Nh and No respectively.

Larger values give more potential to produce finer grained quantization and in turn more

states.

3.3 Analyzing non-minimal Moore Machines

RPNs learned for complex problems can result in MMs with large numbers of discrete

states and observations. In order to aid understanding, previous work [13] used a stan-

dard minimization algorithm [20] to produce equivalent minimal state MMs. As de-

scribed in Section 3.1, the minimal machines allowed for interesting global insights into

10

Figure 3.2: Differential Attention Pipeline. The pair of images under comparison result in
discrete representations that differ on the highlighted features. We produce an attention
map for each of those features using the Integrated Gradient (IG) approach and average
the magnitude of the maps for an overall differential attention map.

the general use of states and observations. However, as also described in Section 3.1,

we have found that minimal MMs obscure the decision making behavior, since they

compress the original MM structure with no regard for interpretability. For example,

the observations mapped to single states often appear to be semantically very different

(Figure 3.5), making it difficult to understand the role of states and how observations

influence their choices. Thus, in this work, we start with the unminimized MMs with the

aim to gain a more detailed understanding. Below, we describe the steps of our analysis

approach.

3.3.1 Interpretable Reductions

Figure 3.3a shows an example MM, which illustrates the main structures we observed in

the learned MMs we analyzed. These structures provide several opportunities for simple

interpretable reductions, which simplify the visualization of an MM without obscuring

decision structure. The reductions are very simple by design and one of our contributions

is to notice that this simple set can be effective for interpreting very large MMs. The

first stage of our approach applies the following interpretable reductions.

11

(a)

(b)

Figure 3.3: a) An example of an MM with 7 memory states and 9 observations. The
initial state is S0, and based on the input observation, it goes to the next state until it
reaches to the state S5, then it loops back to S2. In this example, MM has a decision
point at S2. b) Interpretable reductions applied to the MM.

3.3.1.1 Sequence Reduction

It is common to see long sequences of states with a single observation between consecutive

states (e.g. S0 to S2 in Figure 3.3a). These sequences are open open-loop macros that

simply execute a fixed sequence of actions whenever encountered. Examples are S0 and

S1 in the sequence of state-transitions from state S0 to S2 that have no branching states.

We reduce these sequences to a single “macro arc” represented as a dotted line with a

number indicating its length.

3.3.1.2 Loop Unrolling Reduction

There are many loops attached to sequences that are only traversed once when the

sequence is visited. These loops increase the visual complexity of the MMs and make

it appear as if there is a decision that controls loop exit, when there is not. Thus, we

12

simply unroll such loops before applying sequence reduction.

3.3.1.3 Parallel Reduction

There are often multiple transition arcs between two states with different observation

labels (e.g. between S5 and S6 in Figure 3.3a). This can also occur for self-transitions.

We merge these arcs into an abstract arc labeled by the number of observations.

3.3.1.4 Startup and Termination Reduction

In some MMs, there is a period of state transitions that corresponds to a warm-up

or a termination period in the environment where actions have no impact. If desired,

these parts of an MM can be replaced with a macro arc represented by two parallel

lines with the number of transitions in that period. This reduction requires minimal

human annotation of the steps where episodes “meaningfully” begin and end, which is

usually straightforward. For example, in Atari games, there is usually a warm-up period

before actions impact the game and the machines can have arbitrary structure that is

not important to the game playing behavior. It is straightforward for a human to mark

the time when this warm-up period ends.

The result of these reductions is shown in Figure 3.3b and often result in orders of

magnitude smaller visualizations, e.g., going from Figure 3.1b to Figure 3.1c. Note that

interpretable reductions do not change the behavior of the agent, nor the control flow,

but are only for improved visualization. The states remaining in the reduced diagram are

decision points (e.g. state S2 is the single decision point in Figure 3.3b), where the next

state, and hence future behavior, depends on the observation. The decision points are

the key states in the machine that dictate how its behavior is influenced by observations.

It is these points where we can gain the most insight about an MM.

3.3.2 Differential Attention for Decision Points

Given an MM decision point, we are interested in understanding how the raw observations

(e.g. image pixels) influence its decisions. In particular, for a pair of outgoing branches

labeled by discrete observation ô1 and ô2, we would like to answer the question: “What

13

features of the raw observations are most influential to selecting the ô1 branch versus

ô2?”. To help answer this, we consider pairs of raw observations o1 and o2 that occur

at the decision point during MM execution (e.g. o342 and o267 in Figure 3.1c), such

that ôi = Eo(oi). That is, o1 and o2 are example observations that cause the machine

to differentiate between the branches. We then produce a differential attention map

S(o1, o2) that highlights the parts of o1 and o2 that are most responsible for preferring

branch ô1 over ô2. To compute S(o1, o2), we focus on the set F (o1, o2) of discrete features

produced by Eo that differ between o1 and o2. As described below, for each f ∈ F (o1, o2),

we first produce an attention map S[f](o1, o2) that highlights the parts of o1 and o2 that

“explain” the difference in value of f . S(o1, o2) is then just the average of the individual

maps.

We compute each S[f](o1, o2) via a straightforward, but novel, adaptation of the

Integrated Gradient (IG) attention approach [21]. Originally, IG was used to compute

attention maps that explain the decision of a classifier on a single image/observation o.

Fundamental to the approach is the notion of a baseline image ob, which is used as a

reference that is assumed to not excite the classifier. In an image domain, the baseline

is often a constant or noise image. Let f(o) be the classifier response for observation

o (usually the largest class-specific input to the softmax layer), noting that f(ob) will

be small, and let IGi[f](o, ob) be the corresponding attention value produced by IG for

feature/pixel i. The key property of IG, which makes it a meaningful notion of attention,

is the relation
∑

i IGi[f](o, ob) = f(o) − f(ob). Thus, the attention value of pixel i can

be viewed as its additive contribution to the difference in classification responses for O

over Ob. For space reasons we refer the reader to the original paper [21] for details of

the IG computation.

Figure 3.2 shows how we adapt IG to compute a differential attention map S[f](o1, o2)

by treating o2 as the baseline and letting the response function f ∈ F (o1, o2) be the

continuous features computed by the encoder just before the discretization step. That is,

differential attention is given by S[f](o1, o2) = IG[f](o1, o2). This means that differential

attention satisfies
∑

i Si[f](o1, o2) = f(o1) − f(o2), which has the interpretation that

each attention value Sj [f] can be viewed as an additive contribution to the difference in

response for o1 and o2, i.e. the preference of o1 over o2.

14

(a) (b) (c)

(d)

Figure 3.4: a) Pong minimal MM, b) Bowling minimal MM, c) Bowling pruned MM, d)
Acrobot minimal MM.

3.3.3 Functional Pruning

After exploring the reduced MM graphs and attentions in Atari, we made two high-

level observations. First, as shown in our experiments the differential attention results

often indicated that observations were not being used in a strategically meaningful way,

e.g., branching on observations that were extremely similar. Second, the graphs beyond

different branches at a decision point were often very similar and appeared to address

similar situations. We hypothesized that many decision points may not be strategically

meaningful, but rather just an artifact of learning. That is, even if a branching decision is

not required at a certain point in a game, the inclusion of a decision point that conditions

on an arbitrary part of the observation will not hurt the performance as long as good

behavior is learned for each of the resulting branches. In such situations, the choice of

15

which branch to traverse may be arbitrary and any one of them may work. Note that

the usual attention-based tools [6, 12, 7] will simply indicate the agent’s attention and

can lead a human to incorrectly infer strategic relevance.

Detecting unnecessary decision points cannot be done by just graph analysis—rather,

empirical analysis of modified machines is required. To do this, we conduct a simple

form of functional pruning (described in detail in Section 3.3.3.1), to identify and prune

unnecessary branches at decision points. Our approach considers each MM decision

point, and prunes each of the branches one at a time, in order of the least to most

frequently visited based on multiple MM runs. When a branch is pruned, we empirically

estimate the performance of the resulting MM, noting that when the machine would have

previously taken the pruned branch, we force it to take the most frequent branch. If the

empirical performance does not degrade beyond a threshold, we permanently remove the

branch and move on to the next pruning step. The intent of function pruning is not

to preserve logical equivalence. Rather, the intent is to test whether observations were

strategically important or just an artifact of learning. After gaining the insights, one

could decide to use the original machine or attempt to improve it.

We found greedy pruning to be effective for the MMs considered in this work. For

example, in Figure 3.1 we see that functional pruning resulted in pruning all but one

branch from the single decision point in the MM, leaving an open-loop policy. In such

cases, when an MM can be functionally pruned to the point of removing all decision

points and leaving an open loop policy, we say that the MM is a pruned open-loop policy,

which generalizes the notion of open-loop policy to include machines that condition on

observations, but in ways that are not strategically necessary. As an analogy, consider

a pruned open-loop policy for a human driving to a store along one of two equally

good routes. The human may measure the temperature and decide between the routes

depending on whether the temperature was an even or odd value. The observation had

no real impact on the quality of the policy, since a fixed route could have been selected,

but behavior is still seen to depend on observations.

3.3.3.1 Details on functional pruning

In this method, we perform forward parsing of the MM from the start-state to the final

state. During parsing, we only consider outgoing transactions from a decision point

16

for the purpose of pruning. Over here, each transition is weighted as per its visitation

frequency which is empirically estimated by multiple runs of the MM. At each decision

point, we consider each transition for pruning in the least to most frequency order. Once

a transition is pruned, the overall MM is evaluated for decay in performance. During

evaluation, if we encounter the pruned observation transaction, we transact through

the most frequent branch of the decision point. If there is a decay in performance,

the transition is restored and other candidates are considered. This simple and greedy

functional pruning method is able to keep the performance, while removing unnecessary

branches from the MM. Since sequence of actions at two branch may be identical, or

different than one another, this type of MM minimization may change the behavior of

the agent, after functional pruning. Algorithm 1 shows the pseudo-code of functional

pruning.

17

Algorithm 1 Functional Pruning

Output: Pruned MM

DecisionPoints = []

PrunedBranches = []

for node in (Nodes in MM) do

if node is decision point then

DecisionPoints.append(node and frequency)

end if

end for

for DP in DecisionPoints do

leastFreqBranch = the least frequent branch

mostFreqBranch = the most frequent branch

new MM = prune leastFreqDP from MM

for node in new MM do

if node is in leastFreqBranch then

node = mostFreqBranch

end if

end for

performance = record the performance of new MM

if performance unchanged then

PrunedBranches.append(leastFreqBranch)

end if

end for

for PB in PrunedBranches do

remove PB from MM

end for

Return MM

3.4 Experiments and Results

The only prior approach to compare against is the recent MM minimization approach for

analysis of MMs [13]. As described earlier, we have found it very difficult to gain insights

from minimized MMs. To further illustrate this point, we provide more qualitative

18

comparisons of the minimization approach to our approach in Atari games. Overall, the

minimization approach does not reveal the insights of our new approach.

We consider 7 deterministic Atari environments: Bowling, Boxing, Breakout, MsPac-

man, Pong, SeaQuest and SpaceInvaders, and 3 stochastic discrete-action classic control

tasks: Acrobot, CartPole, and LunarLander. For each experiment, we follow the choices

of prior discretization work [13] for pre-processing, RPN architecture, QBN architec-

tures, and training via A3C [15] reinforcement learning. Detailed information on these

choices along with hyperparameter choices are provided in Section 3.4.1 and Section

3.4.2. We considered two sets of QBN sizes for each environment, shown in Table 3.1.

From the table we see that the agent performance remains the same after reductions

for all domains, except for Acrobot and LunarLander, where functional pruning reduced

performance within the specified tolerance. The table also gives the number of states

and observations, Nh and No, after the reductions. Interestingly, in Atari games, no

decision points are left after functional pruning, i.e. all of the policies were “pruned

open-loop” policies. The following case studies illustrate how our approach is useful for

gaining insights and revealing unexpected properties of the decision logic.

3.4.1 Training Details

We used A3C with Adam optimizer (lr = 1e − 4) to train our Recurrent Policy Net-

work(RPN). Also, we used discount= 0.99 and calculated policy loss using Generalized

Advantage Estimation (GAE)(λ = 1.0).

3.4.1.1 Atari

In this case, RPN comprises of 4 convolutional layers (kernel size 3, strides 2, padding

1, and 32, 32, 16, 8 filters respectively) with intermediate ReLU activations. The last

convolutional layer has ReLU6. This is followed by a GRU Cell having 32 hidden units.

The output of GRU is consumed by a ”policy” and ”value” linear network having ’action-

space’ and ’1’ unit, respectively.

19

3.4.1.2 Continuous Control Tasks

RPN is composed of 2 linear layers having 16 and 8 units, respectively. First layer’s

activation function is ELU and second layer’s is ReLU6. Rest of the architecture is same

as for Atari.

3.4.1.3 Quantized Bottleneck Networks

Each QBN comprises of ’n’ layer encoder and ’n’ layer decoder. At the bottleneck, we

used the same TernaryTanh operator to quantize the encoded representation as done

in prior work. This quantized representation is fed to the decoder. Also, We used Tanh

as intermediate activation’s for encoder and decoder. We used n = 2 and n = 3 and

apply RelU6, Tanh activation to last layers of Qo and Qh, respectively. In each QBN’s

encoder, for the first layer there are 8 × QBN SIZE neurons, and for the second layer

there are 4 × QBN SIZE neurons. In the final layer there are QBN SIZE neurons. For

QBN’s decoder, the order is reversed. We use Adam optimizer (lr = 1e − 4) and max

norm of the gradients was set to 5.

3.4.2 Pre-processing

In Atari games, input images are pre-processed. This has been done by applying a

wrapper over OpenAI gym environments which gray-scales and resizes input images

from 210 × 160 to 80 × 80 shape. Also, We use deterministic Atari environments with

frameskip = 4. For Pong and SpaceInvaders, we changed the action space to [Noop,

RightFire, LeftFire] and [Noop, Fire, Right, Left],respectively. These pre-processing

steps are done in order to ease policy training and interpretation.

In classic control tasks, we do not exert any pre-processing on input features and

action spaces.

3.4.3 Quantitative analyses

Table 3.1 provides the results of original MM, minimal MM, and our approach, for two

QBN pairs. For either pair, our results are consistent, and agent with the pruned MM

performs the same as the original agent, except for Acrobot and LunarLander. In those

20

two environments, we have a small drop in performance, but agent is still able to solve

the problem. We have not included the detailed information about each interpretable

reduction step (Section 3.3.1), since their purpose is to make visualization simpler. The

underlying MM would not change by applying interpretable reductions, and basically,

everything is the same as the original MM. Thus, there is no point in providing details

such as the ones presented in Table 3.1.

According to Table 3.1, in minimal MM, except for one case, CartPole(4,4), the

number of decision points and number of states are equal. Also, the number of decision

points increases in many cases comparing to the original MM, which makes explainability

capability more complex. As pointed out in the Section 3.4.4, it is because minimal MMs

integrate the decision points with unrelated states. This strongly obscures the ability to

interpret agent’s decision making process.

3.4.4 Atari: Case Studies

3.4.4.1 Pong and Bowling

The RPN for Pong achieved a maximum score of 21. The policy displays repetitive

behavior by performing a “kill shot” against the opponent to win each point, though

the behavior is not exactly the same across all shots. Figure 3.1b shows a view of the

original large MM. Figure 3.1c shows the graph after the interpretable reductions, which

is quite small with only one decision point at state S197. This key decision point is the

starting point of 3 possible loops, depending on the branch taken, and is entered once

per round (each round is one point). This raised the questions of “What basis is the

machine using to decide which loop to enter?” and “Is there a strategic reason for the

branching decision?”.

To investigate, we computed the differential attention for the decision of choosing S275

over S352, as shown in Figure 3.2. It is striking that the sample observations associated

with the branches are almost identical. The differential attention indicates that the

ball region and tips of the paddles are the most critical factors in deciding between

the branches. Close inspection reveals that the appearance and location of the ball in

the two observations are subtly different. To understand this, we observed that these

differences are due to the fact that at the beginning of each round the starting position

21

T
a
b

le
3.

1:
M

M
re

su
lt

s
fo

r
co

n
tr

ol
ta

sk
s

an
d

A
ta

ri
en

v
ir

on
m

en
ts

.

G
am

e
Q

B
N

S
iz

es
O

ri
gi

n
al

M
M

A
ft

er
P

ru
n

in
g

A
ft

er
M

in
im

iz
at

io
n

N
h

N
o

D
ec
is
.

P
o
in
ts

S
ta
te
s

O
b
s.

P
er
f.

D
ec
is
.

P
o
in
ts

S
ta
te
s

O
b
s.

P
er
f.

D
ec
is
.

P
o
in
ts

S
ta
te
s

O
b
s.

P
er
f.

A
cr

ob
o
t

4
4

9
12

38
-7

7.
1

2
4

3
-8

0
.7

3
3

1
1

-8
0

8
8

79
42

20
0

-7
7.

1
2

4
5

-7
9
.9

3
3

7
-8

6

C
ar

tP
ol

e
4

4
6

7
18

50
0

2
4

5
5
0
0

2
3

8
5
00

8
8

7
8

58
50

0
2

4
5

5
0
0

3
3

1
1

5
00

L
u

n
ar

L
an

d
er

32
32

1
95

14
26

11
50

18
0.

48
18

4
13

87
98

0
1
72

.2
4
1

41
9
2

1
65

32
64

2
49

13
89

14
37

20
4.

93
23

0
13

21
13

27
19

7.
3
5

1
9

19
7
3

1
47

B
ow

li
n

g
32

50
5

60
8

52
5

60
0

53
0

43
7

6
0

5
5

1
9

60
64

10
0

5
63

0
55

2
60

0
54

6
48

8
6
0

3
4

1
2

60

B
ox

in
g

32
50

0
12

74
12

70
10

0
0

12
74

12
70

1
0
0

1
9

19
10

9
1
00

64
10

0
0

10
97

10
95

10
0

0
10

97
10

95
1
0
0

1
4

14
10

1
1
00

B
re

a
ko

u
t

32
50

4
24

79
24

66
40

4
0

23
65

23
45

4
0
4

8
8

2
8

4
04

64
10

0
5

16
59

16
08

40
4

0
15

98
15

40
4
0
4

1
1

11
4
3

4
04

M
sP

ac
m

an
32

50
43

72
8

71
6

30
60

0
61

2
59

7
3
0
6
0

2
1

21
7
0

30
60

64
10

0
34

89
5

87
6

30
60

0
77

6
75

8
3
0
8
0

9
9

4
5

30
60

P
o
n

g
32

50
0

38
3

36
9

21
0

38
3

36
9

2
1

3
3

1
2

21
64

10
0

2
38

4
36

9
21

0
27

1
26

8
2
1

4
4

1
0

21

S
ea

Q
u

es
t

32
50

46
21

67
22

33
25

80
0

16
79

15
77

2
5
8
0

1
6

16
14

0
25

80
64

10
0

18
22

44
22

61
25

80
0

18
34

18
83

2
5
8
0

1
7

17
13

5
25

80

S
p

ac
e

In
va

d
er

s
32

50
1
02

17
00

17
09

18
20

0
13

14
13

50
1
8
2
0

3
0

30
4
0

18
20

64
10

0
35

19
14

18
52

18
20

0
18

32
18

02
1
8
2
0

1
1

11
2
7

18
20

22

(a)

(b)

Figure 3.5: Four observations that enter a state in the corresponding minimal MM.
a) Frames of Pong for in-going observations to S2, b) Frames of Bowling for in-going
observations to S0.

of the ball is minutely different for even versus odd rounds, which translated to the small

difference observed at the decision point. Intuitively, this difference did not appear to

have a strategic value. Indeed, after functional pruning (Figure 3.1d), we see that all

branches were removed except for the one through S275, leaving an open-loop strategy

with no loss in performance. The even versus odd branching, was an unnecessary artifact

of the RNN learning process.

For Bowling, the original large MM had 630 discrete states and 552 discrete observa-

tions. Our interpretable reductions revealed only 5 of those states corresponded to true

decision points. Further, Figure 3.4c shows the result of functional pruning to get an

MM with no loss in performance. Similar to Pong we end up with a pruned open-loop

policy. Again the observations used at decision points were not strategically relevant

and rather artifacts of learning.

23

3.4.4.2 Comparison to Prior Work

We now compare to the minimization approach of [13]. For Pong, our approach was

able to isolate a single decision point (Figure 3.1d) where behavior depended on obser-

vations in an understandable way, which was ultimately determined to be non-strategic.

Meanwhile, Figure 3.4a shows the minimal MM produced by prior work for the same

initial MM. This minimal MM merges the key decision point with semantically unrelated

states (e.g. from multiple macros), obscures insights, and gives no understanding of how

memory and observations are used. To highlight this, Figure 3.5a demonstrates four

frames of Pong which enter S2 in the corresponding minimal MM. This is an evidence of

minimal MMs merging states that are semantically distinct. Further, it is unclear how

the equivalent of functional pruning could be done using the minimal MM, due to the

merging of decision points. Also, it is unclear how to uncover the key insight identified

by our approach by starting with the minimal MM.

A similar comparison holds for Bowling where our approach resulted in the open-

loop policy (Figure 3.4c). Rather, the minimal MM of the same initial policy is shown in

Figure 3.4b, which resembles the tightly coupled minimal MM of Pong. Figure 3.5b shows

frames that lead to decision point S0, which appear to be semantically very different from

a human perspective. This is also the case for other states, which makes it very difficult

to extract meaningful insights from the minimal MM. Again, it is completely unclear how

we could start with the minimal machine and gain the realization that the observations

play no significant strategic role, which our approach revealed.

3.4.4.3 MsPacman

The original MM for MsPacman with QBNs of size (64, 100) has 34 decision points

before accounting for the warm-up and termination periods. After the reduction for

warm-up and termination the MM is left with 19 decision points. We observed that

most of the branches in the MM are visited only once and any single state transition

is covered no more than 4 times during an episode. This indicates that little high-level

generalization of the strategy is occurring. We considered the differential saliency at all

decision points and show one example in Figure 3.6a. The saliency primarily focuses

on the middle of the map at a location which distinguishes the presence of Pacman

24

and less attention at a location distinguishing the presence of a ghost. By applying the

functional pruning, we are able to remove all “non-strategic” branches from all decision

points throughout the MM. This emphasizes that these salient features simply serve as

arbitrary landmarks with no strategic value. This left us with an open-loop controller

with no drop in performance. In fact, performance improved by 20 points.

The pruned MM, depicted in Figure 3.6b, gives the insight that agent’s policy is a

pruned open-loop policy. The edges with two parallel lines indicate the start-up and

termination phases of the game, which is an interpretable reduction introduced in the

paper. On the other hand, the minimal MM, shown in Figure 3.6c, gives no insights

about the agent’s behavior. Since semantically unrelated states are matched to each

other, complexity is even increased. Figure 3.7 shows an example of this introduced

complexity. All four frames in Figure 3.7 are outgoing observations of a decision point,

S3, in the minimal MM. As it can be seen, these observations are semantically distinct

to humans. Figure 3.7a shows a frame early in the game, where there are lots of rewards

available and ghosts are not out completely. Figure 3.7b and c show a frame in the

middle of the game. In b, Pacman is not being threatened by any ghosts, but in c there

is a very close ghost to it. Figure 3.7d shows a frame from almost end of the game where

rewards are sparse. Although these frames encode very different semantics, but minimal

MM treats them semantically related, which is misleading in terms of interpretation.

25

(a) (b)

(c)

Figure 3.6: MsPacman: a) Differential saliency for a sample decision point. The first
row shows a sample observation that occurs for each branch. The second row gives
differential saliency for pairs of observations (dotted arrows indicate the baseline), b)
pruned MM, c) minimal MM.

26

(a) (b) (c) (d)

Figure 3.7: Different observations as branches of decision point S3 in minimal MM.

3.4.4.4 Breakout

QBN pair of (64, 100) is considered in this game as well. In Figure 3.9a, pruned MM,

and in Figure 3.9b, minimal MM can be seen. Breakout’s policy turned out to be a

pruned open-loop policy, but this could not be possibly understood by looking at the

minimal MM. In fact, it is hard to get any explanation about policy based on minimal

MM.

Figure 3.8 shows four semantically different observations that are turned into branches

of a state in the minimal MM. This set of various observations are the outgoing branches

of decision point S9 in the corresponding minimal MM.

(a) (b) (c) (d)

Figure 3.8: Different observations as branches of decision point S9 in minimal MM.

27

(a)

(b)

Figure 3.9: Breakout: a) pruned MM, b) minimal MM.

3.4.4.5 Boxing, SeaQuest, SpaceInvaders

Similar scenario happens in all other environments as well. As an example, we consider

Boxing. Figure 3.10 shows the pruned MM and minimal MM, where minimal MM looks

tangled and very hard to decode. Pruned MM looks like a straight path, which shows

that at key decision points, policy does not strategically rely on observations, instead it

relies on memory. Figure 3.11 shows four different observations as branches of S5 in the

minimal MM. Figure 3.11a is where agent is hitting the opponent, Figure 3.11b agent is

being hit, and in Figure 3.11c and d there is a distance between the two players. This

shows how different each observation is, in terms of interpretation. But minimal MM

counts them as semantically relevant states which is misleading. Figure 3.12 and Fig-

ure 3.13 demonstrate similar properties for SeaQuest. And Figure 3.14 and Figure 3.15

illustrate them for SpaceInvaders.

28

(a)

(b)

Figure 3.10: Boxing: a) pruned MM, b) minimal MM.

29

(a) (b) (c) (d)

Figure 3.11: Different observations as branches of decision point S5 in minimal MM.

(a)

(b)

Figure 3.12: SeaQuest: a) pruned MM, b) minimal MM.

30

(a) (b) (c) (d)

Figure 3.13: Different observations as branches of decision point S6 in minimal MM.

(a)

(b)

Figure 3.14: SeaQuest: a) pruned MM, b) minimal MM.

31

(a) (b) (c) (d)

Figure 3.15: Different observations as branches of decision point S6 in minimal MM.

32

3.4.4.6 Overall Results

From the qualitative comparisons of Atari games, one could see that they all provide

similar distinctions which shows our approach’s advantage over [13]. Table 3.1, gives

information about the MMs before and after functional pruning for each game. Note

that 0 decision points indicates an open-loop policy. We see that before functional

pruning there is only one case of open-loop policies: Boxing. All other MMs have at

least one decision point. This initially makes one to believe that observations are a key

part of the overall MM strategy. However, in each such case, we found that it was rare to

find a decision point where observations provide strategic values at a decision point. This

was confirmed by our most striking finding. After functional pruning, each of the games

resulted in open-loop MMs (i.e. zero decision points). Thus, in all cases, Atari RPNs

produced MMs that were pruned open-loop policies. Since Moore Machines are large,

we uploaded all of them here: https://tinyurl.com/y96d8jub for better accessibility and

understanding their details.

3.4.5 Stochastic Classic Control Tasks

3.4.5.1 Acrobot

This control task includes two joints and two links, where the joint between the two links

is actuated. Initially, the links are hanging downwards, and the goal is to swing the end

of the lower link up to a given height. The state vector gives the sin and cos of the two

rotational joint angles and the joint angular velocities. The actions involved are -1,0 or

+1 torque. We share pruned state machine for QBN sizes (4, 4) in Figure 3.16b. We

applied our differential attention approach to decision point S2 and found that the most

important observation features were ‘sin of joint angle 1” and “joint 2 velocity”. The

Figure 3.16b shows the scatter plot of the decisions at S2 versus these features. The plot

reveals that for positive sin values, a torque of -1 is applied by starting in S2 forcing link

1 and link 2 to rise against gravity. This torque is applied until it transitions to S3 via

O1 which corresponds to a positive velocity for joint 2 as shown in the scatter plot. This

happens when link 2 cannot go further up against gravity under the current momentum.

In this state, it applies +1 torque to supplement the momentum provided by the pull of

gravity. It transitions back to S2 via O0 only when the joint velocity of link 1 is positive,

https://tinyurl.com/y96d8jub

33

indicating that it cannot go further up. This loop between state S2 and S3 generates

enough momentum to eventually reach the goal.

In contrast, we compare against the minimal MM (Figure 3.4d) extracted via prior

work [13]. This MM, is fully connected and merges many different types of observations.

Through various previous attempts, we were unable to elicit a clear description of the

machines operation. Rather, our reduction approach was able to lead to the above

relatively clear understanding of the machine.

3.4.5.2 CartPole

We use the standard OpenAI CartPole environment with randomized initial states. Ta-

ble 3.1 shows that the number of decision points is 6 before functional pruning and

reduces to 2 after. The pruned MM is shown in Figure 3.16a, which has the same simple

structure as for Acrobot. The machine primarily transitions between S2 (left movement)

and S3 (right movement) with self-loops at those states between transitions. The fig-

ure shows the differential attention computed over the features at S2 and S3 with the

key features being “pole-velocity” followed by “pole-angle”. The scatter plots for the

decisions against these features show that at S2 there is a clear threshold of positive

pole-velocity that transitions to S3 to take the “right” action, and otherwise continues

with “left”. This is an intuitive strategy for reducing the velocity. Similar insights are

gained via the scatter plot at S3, but here both pole-velocity and pole-angle play a role

in the decision. Again, our approach was able to produce an MM that has meaningful

interpretation.

3.4.5.3 Lunar Lander

This task involves landing a rover using actions that fire one of three thrusters: main,

left, right, and no-op. The MMs for both QBN sizes were significantly larger than for the

above tasks, likely due to increased complexity and stochasticity. Functional pruning was

ineffective, leaving 184 and 230 decision points for the two QBN sizes, which indicates

the observations have a strong strategic role. We analyzed many of the decision points

and found that the “distance to the ground” is usually the most salient feature across

decision points. One exception is the initial decision point. At this decision point

34

there were three branches with different observations leading to states with different

fire actions main engine, right engine and left engine. The attention comparison of

these observations shows prime differences in x-velocity and y-velocity, thereby opposite

direction engines are fired to stabilized the rover. This decision point does not attend

to rover coordinates (x,y position) and leg-positions, which are more relevant when the

lander is closer to the ground. While it is difficult to articulate a concise description of

such a machine, we see that this analysis approach is able to provide insights about the

decisions that may help build confidence or identify concerns.

Regarding the minimal MM, due to its big size, it was not possible to be added

here. Minimizing MM adds a lot of unexpected and unfavorable complexities to the

MM, which makes it uninterpretable, while giving no information on agent’s behavior.

Functional pruning does not provide much insights into the MM of LunarLander, but

our proposed differential saliency tool gives very interesting insights. To the best of our

knowledge, this level of insight has not been given in any prior work.

3.5 Summary

Our analysis is the first to provide such detailed insights into the decision making of RPNs

for deterministic Atari games. Indeed, the observation that all of the considered policies

resulted in pruned open-loop controllers was unexpected apriori and not apparent from

prior work. For example, prior work on attention analysis of Atari policies, even for the

deterministic setting, leaves one to believe that observations play key roles in decision

making. It is tempting to discount the above insights, due to the deterministic setting,

since 1) it is clear that there exist open-loop controllers for any deterministic domain,

and 2) prior work has shown that search is able to find effective open-loop plans for some

Atari games [2, 14]. However, these points do not imply that an RPN would necessarily

learn an open-loop controller and indeed we observed that they do not. It is reasonable

to expect that RPNs would meaningfully use observations to get a more general policy,

but we instead saw the role for observations was very different. This demonstrates the

importance of developing a variety of tools to reveal insights that rely less on human

assumptions and interpretation.

Our preliminary experience with larger and more complex environments shows that

sometimes our approach does not reveal easily analyzable MMs. This was apparent

35

in stochastic Atari experiments, where we observed that the discrete sequences pro-

duced across different episodes have some overlap, but are dominated by large numbers

of disjoint states. Some potential explanations for this are: 1) An inadequacy of our

approach–e.g., the quantization process and/or reduction steps/analysis may need to be

improved; 2) Our approach may be identifying the fundamental nature of the learned

RNN policies. That is, the policies may effectively use large numbers of trajectories to

encode large numbers of effectively (pruned) open-loop patterns. As new observations

are encountered the machines then map to encoded patterns in a nearest neighbor style.

This second possibility would suggest the need for improved RPN training approaches

to support data efficiency and interpretability.

36

(a)

(b)

Figure 3.16: Pruned MMs for control tasks. a) CartPole, and b) Acrobot. In each
case, we show attention of features for decision points. Also, we show scatter plots of
continuous observations during an episode at each decision point for the two most salient
features, where color indicates the discrete machine observation.

37

Figure 3.17: Pruned MMs for LunarLander. Next to the pruned MM it the saliency of
features for first decision point. For each saliency map, input image and baseline image
are shown.

38

Chapter 4: Conclusion

We have introduced an approach to extract pruned open-loop controllers from recurrent

policy networks in order to provide insights into how they utilize observations and mem-

ory. The pruned open-loop controllers show that observations do not play a strategically

important role to the intelligent agent. We test our approach on seven games from the

Atari 2600 environment and three classic continuous control tasks. In all case studies,

we demonstrate the effectiveness of our approach and how it contradicts prior works on

decision-making agents’ interpretability. Our results indicate that prior methods on un-

derstanding the behavior of memory-based agents could be misleading and false. Thus,

we need to be very careful about the explanations we provide for such intelligent agents.

Explanations should be well-defined and well-articulated because humans are very good

at misinterpreting them. The misinterpretation may come from many different sources,

for example, prior human knowledge on how a task should be done. Eventually, if we

want to build trust in such intelligent agents using provided explanations, they need to

be sound and trustworthy.

4.1 Future work

In the end, there are a few important questions unanswered with our approach that are

an open area of investigation. First, we would like to study how our method could be

extended to more complicated domains beyond Atari 2600 games and control tasks. As

a starting point, one could investigate the effectiveness of our method on environments

with higher stochasticity. It may not result in a pruned open-loop controller, but it gives

a very good understanding regarding the importance of given observations at decision

points. Also, the tools proposed and provided to analyze finite-state machines could be

helpful to extract more information and insight from such complex policies.

39

Bibliography

[1] Akanksha Atrey, Kaleigh Clary, and David Jensen. Exploratory not explanatory:
Counterfactual analysis of saliency maps for deep {rl}. In International Conference
on Learning Representations, 2020.

[2] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Arti-
ficial Intelligence Research, 47:253–279, 2013.

[3] A. L. Cechin, D. Regina, P. Simon, and K. Stertz. State automata extraction from
recurrent neural nets using k-means and fuzzy clustering. In 23rd International Con-
ference of the Chilean Computer Science Society, 2003. SCCC 2003. Proceedings.,
pages 73–78, Nov 2003.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using rnn encoder-decoder for statistical machine translation, 2014.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling, 2014.

[6] Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing
and understanding Atari agents. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1792–1801, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[7] Piyush Gupta, Nikaash Puri, Sukriti Verma, Dhruv Kayastha, Shripad Deshmukh,
Balaji Krishnamurthy, and Sameer Singh. Explain your move: Understanding agent
actions using focused feature saliency. In International Conference on Learning
Representations, 2020.

[8] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially ob-
servable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[9] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

40

[11] Sandy H Huang, Kush Bhatia, Pieter Abbeel, and Anca D Dragan. Establishing
appropriate trust via critical states. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3929–3936. IEEE, 2018.

[12] Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia P.
Sycara. Transparency and explanation in deep reinforcement learning neural net-
works. CoRR, abs/1809.06061, 2018.

[13] Anurag Koul, Alan Fern, and Sam Greydanus. Learning finite state representations
of recurrent policy networks. In International Conference on Learning Representa-
tions, 2019.

[14] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937, 2016.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[18] Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J.
Rezende. Towards interpretable reinforcement learning using attention augmented
agents. CoRR, abs/1906.02500, 2019.

[19] Matthew Olson, R. Khanna, Lawrence Neal, Fuxin Li, and Weng-Keen Wong. Coun-
terfactual state explanations for reinforcement learning agents via generative deep
learning. Artificial Intelligence, In Press, 2021.

[20] Marvin C Paull and Stephen H Unger. Minimizing the number of states in incom-
pletely specified sequential switching functions. IRE Transactions on Electronic
Computers, pages 356–367, 1959.

41

[21] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 3319–3328. JMLR. org, 2017.

[22] Peter Tiňo, Bill G Horne, C Lee Giles, and Pete C Collingwood. Finite state
machines and recurrent neural networks—automata and dynamical systems ap-
proaches. In Neural networks and pattern recognition, pages 171–219. Elsevier, 1998.

[23] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[24] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. Programmatically interpretable reinforcement learning. In In-
ternational Conference on Machine Learning, pages 5045–5054. PMLR, 2018.

[25] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

[26] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent
neural networks using queries and counterexamples, 2017.

[27] Gail Weiss, Yoav Goldberg, and Eran Yahav. Learning deterministic weighted au-
tomata with queries and counterexamples, 2019.

[28] Zhao Yang, Song Bai, Li Zhang, and Philip H. S. Torr. Learn to interpret atari
agents. CoRR, abs/1812.11276, 2018.

	Introduction
	Motivation
	Contribution

	Related Works
	Interpretability in Reinforcement Learning
	Attention maps
	Hybrid Architectures

	Extracting Finite-State Machine

	Re-understanding Finite-State Representations of Recurrent Policy Networks
	Introduction
	Recurrent Networks to Moore Machines
	Recurrent Policy Networks (RPNs)
	Moore Machines
	Quantized Bottleneck Insertion (QBN Insertion)

	Analyzing non-minimal Moore Machines
	Interpretable Reductions
	Differential Attention for Decision Points
	Functional Pruning

	Experiments and Results
	Training Details
	Pre-processing
	Quantitative analyses
	Atari: Case Studies
	Stochastic Classic Control Tasks

	Summary

	Conclusion
	Future work

	Bibliography

