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Simplicial complexes may be viewed as a high dimensional generalization of graphs; a

graph is a 1-dimensional simplicial complex. Despite their similarities, generalizing graph

theoretic problems to simplicial complexes can be quite challenging; many combinatorial

approaches to graphs do not have natural generalizations to simplicial complexes. In order

to make graph theoretic problems generalizable to higher dimensions we translate them to

the language of simplicial homology which is an algebraic tool for reasoning about high

dimensional cycles. In this thesis we use simplicial homology to generalize the following

problems to simplicial complexes: shortest st-path, max-flow, min-cut, and st-connectivity.

The shortest path problem in graphs generalizes to the minimum bounding chain prob-

lem in sipmlicial complexes. For this problem we prove APX-hardness, and assuming the

unique games conjecture that no polynomial-time constant factor approximation exists.

Our hardness results hold even in the special case when the complex is a manifold em-

bedded in R3. For d-dimensional simplicial complexes embedded in Rd+1 we design both

fixed-parameter tractable and O(
√

log n)-approximation algorithms. We prove nearly iden-

tical results for the closeley related minimum homologous chain problem.

We then generalize the notions of flows and cuts in graphs to simplicial complexes and

show that a generalization of the max-flow/min-cut theorem holds in dimensions d ≥ 1. We

show that max-flows and min-cuts can be found with linear programming; however, unlike

graphs, finding integral solutions is NP-hard. We investigate a combinatorial generalization

of min-cut and show that it leads to an NP-hard problem. Finally, we provide a variant of



the Ford-Fulkerson algorithm that halts in dimensions d > 1 despite running in exponential

time.

The graph theoretic notions of effective resistance and capacitance have natural topo-

logical definitions arising from the high dimensional definitions of flows and cuts. In graphs

these quantities are associated with a pair of edges, and in simplicial complexes they are

associated with a null-homologous cycle. In graphs the effective resistance and capacitance

are polynomial with respect to the size of the graph. However, the quantities may be ex-

ponential in simplicial complexes. This arises from the existence of torsion in the relative

homology groups of the complex. We prove upper bounds on resistance and capacitance

that are polynomial in the size of the complex and the size of the torsion subgroups of the

relative homology groups. We note that the size of the torsion subgroup may be exponen-

tial with respect to the size of the complex. Finally, we provide a quantum algorithm that

decides if a cycle is null-homologous in a simplicial complex. This problem generalizes st-

connectivity in graphs. The query complexity of the quantum algorithm is parameterized

by the cycle’s effective resistance and capacitance.
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Chapter 1: Introduction

Simplicial complexes can be thought of as a collection of simple polytopes of varying

dimension, called simplices, attached to one another in a nice way. The d-dimensional

polytopes are called d-simplices; the 0-simplices are vertices, 1-simplices are edges, 2-

simplices are triangles, 3-simplices are tetrahedron, and so on. Within a simplicial complex

the simplices are attached to one another such that the intersection of any two simplices is

a simplex of lower dimensionality. Simplicial complexes serve as a generalization of graphs;

a graph may be viewed as a 1-dimensional simplicial complex.

Many graph theoretic problems have interesting generalizations to simplicial complexes.

However, the typical combinatorial arguments used on graphs do not generalize to simplicial

complexes and one must use tools from algebraic topology to solve these problems. As a

result many polynomial-time solvable problems on graphs become NP-hard for simplicial

complexes of dimension d ≥ 2, and some problems even become undecidable.

Homology, an algebraic tool describing high dimensional cycles, may be used to trans-

late graph theoretic problems to simplicial complexes of higher dimensions. Homology is

an algebraic construction arising from the boundary operator of a simplicial complex. We

will give formal definitions in Chapter 2, but for now we will provide intuition to motivate

the concept. Vertices have no boundary, the boundary of an edge is a pair of vertices, the

boundary of a triangle is three edges forming a cycle, the boundary of a tetrahedron is its

collection of faces. In general the boundary of a d-dimensional simplex is homeomorphic

to a (d− 1)-dimensional sphere. It is important to note that once we consider formal sums

of simplices the simplicial boundary operator may no longer return a geometric bound-

ary. An interesting observation is that the edge is the only simplex whose boundary is

disconnected. The consequence is that some combinatorial techniques on graphs such as

divide and conquer via vertex separators do not have natural generalizations to simplicial

homology.

The boundary operator extends linearly to formal sums of simplices with coefficients

over any abelian group. A cycle is a collection of simplices whose sum lies in the kernel

of the boundary operator. In the case of a simple cycle in a graph each vertex appears

in the boundary of two edges, and as a result the second copy of the vertex cancels out



2

the first. Every boundary is a cycle; this is the key property that makes the theory of

simplicial homology work. The d-dimensional homology group of a simplicial complex is a

collection of equivalence classes where each class contains cycles (elements of the kernel of

the d-dimensional boundary operator) that are not boundaries (elements of the image of the

(d+1)-dimensional boundary operator). The homology classes are the “interesting” cycles

in a simplicial complex. The d-dimensional homology classes represent the d-dimensional

“holes” in the simplicial complex, the cycles in the homology class can be thought to go

“around” the hole. The d-dimensional homology group is the abelian group generated by

the homology classes. If a graph theoretic problem can be expressed in terms of boundaries

and cycles there is a good chance that it has a natural generalization to simplicial homology.

For example, the shortest st-path problem asks to find the smallest collection of edges

whose boundary is s and t. This generalizes to the minimum bounding chain problem,

which given a (d− 1)-dimensional cycle γ asks to find the smallest collection of d-simplices

whose boundary is γ. We will discuss this problem in detail in Chapter 4.

Using homology, several interesting generalizations of graph theoretic problems can be

solved in simplicial complexes. Delfinado and Edelsbrunner show that the problem of com-

puting the dth Betti number βd can be solved in polynomial time [27]. The Betti number

βd is the rank of the d-dimensional homology group. The rank is the number of linearly

independent generators of the group. In a graph β0 is the number of connected components

and β1 is the dimension of the cycle space. The homology groups of a simplicial complex

are a generalization of the cycle space of a graph; the first homology group of a graph is

its cycle space. In general computing some basis for the d-dimensional homology group

of a simplicial complex can be done in polynomial time using standard matrix reduction

techniques [37, Section 4.2]. However, for d > 1, Chen and Freedman show computing a

minimum weight basis for the d-dimensional homology group is NP-hard [23]. Chen and

Freedman actually prove a stronger result showing that it is NP-hard to approximate a

minimum homology basis within any constant factor. Dey, Li, and Wang show that com-

puting a minimum basis of the first homology group can be done in polynomial time [32];

Erickson and Whittlesey improve the running time when the simplicial complex is a sur-

face [41]. These results rely on polynomial-time algorithms for solving the minimum cycle

basis problems in graphs originally due to Horton [54] and improved up by Kavitha et

al [62]. Their techniques were used by Borradaile et al. to compute minimum cycle and

homology bases of surface embedded graphs [11]. For complexes embedded in R3, Dey pro-

vides an algorithm computing a basis for the first homology group in near linear time [28].
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Computing a minimum spanning tree in a graph can be restated as computing a minimum

subgraph whose first homology group is trivial. The generalization for a d-dimensional

simplicial complex is to find a subcomplex whose dth homology group is trivial; we call

such complexes acyclic. Skraba, Thoppe, and Yogeshwran show acyclic complexes can be

computed in polynomial time by adapting Kruskal’s algorithm [90].

Cycles can be added to one another as formal sums with coefficients coming from any

abelian group. In this thesis we will primarily use coefficients from the fields Z2 and R, and

occasionally from the ring Z. Choosing coefficients over a field lets us treat the homology

groups as vector spaces allowing us to utilize tools from linear algebra. The different

choices of coefficients result in different interpretations of the resulting homology theory.

For graphs, a cycle over Z2 is an Eulerian subgraph, and a cycle over R is a circulation.

Over Z2, a graph is viewed as undirected, however over R we consider directed graphs

since since the sign on a real number allows us to distinguish an orientation on an edge.

In Chapter 4, we consider the minimum bounding chain problem with coefficients over Z2,

however in Chapter 5, we formulate the max-flow min-cut problem with coefficients over

R. For the minimum bounding chain problem, we compute the size of a chain to be the

number of simplices contained in it. This makes Z2 a natural choice since chains over Z2

are equivalent to their underlying sets and addition over Z2 corresponds to the symmetric

difference of the underlying sets.

For finite simplicial complexes the boundary operator can be expressed as a matrix,

so we are able to reduce problems about homology to the domain of linear algebra. As a

result it is fairly easy to obtain polynomial-time algorithms running in time O(nω) where

ω ≤ 2.3728596 [5] is the exponent for matrix multiplication. While a superquadradic

running time may still be fairly slow in practice for large simplicial complexes, assuming

more structure on the complex may allow for quadratic or even faster running times. In

this thesis, we obtain faster running times on complexes which admit dual graphs similar to

planar duality in graphs. We can then use a high dimensional analog of cycle/cut duality

to obtain faster algorithms by operating on the dual graph.

One natural class of complexes which we study in this thesis are the d-dimensional

complexes which admit an embedding into Rd+1. These complexes generalize planar graphs.

As a consequence of the Alexander duality theorem there is a dual graph associated with

every embedded complex. An embedded complex partitions Euclidean space into βd + 1

connected components. One of these connected components is unbounded and corresponds

to the unbounded face of a planar graph. The dual graph is the graph whose vertices are
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the connected components of the partition where two vertices are adjacent if and only if

their corresponding connected components intersect along their boundary. In the case of

graphs β1 is the dimension of the cycle space of the graph, and the situation reduces to

the fact that a planar graph partitions the plane into β1 + 1 connected components. This

is a consequence of the Jordan curve theorem, and Alexander duality may be viewed as a

high dimensional generalization of the Jordan curve theorem.

Deciding planarity, which takes linear time [53], generalizes to deciding whether or not

a d-dimensional simplical complex admits an embedding in Rd+1. When d = 1 we have the

problem of deciding planarity. Mesmay et al. show this problem is NP-hard for d = 2 [26].

Matoušek et al. show the problem to be NP-hard for d = 3 and to be undecidable for

d ≥ 4 [75]. This undecidability result comes from a result of Nabutovsky showing that for

d ≥ 5 determining whether or not a d-dimensional simplicial complex is homeomorphic to

the d-dimensional sphere is undecidable [78]; Volodin, Kuznetsov, and Fomenko provide

a more modern exposition of the result [95]. For d = 1 the sphere is a simple cycle

and determining if a graph is a simple cycle is decidable in linear time. More generally,

Chernavsky and Leksine show that determining if a d-dimensional simplicial complex is a

manifold is undecidable [24]; 1-dimensional manifolds are simple cycles.

Another class of complexes that admit dual graphs are the weak pseudomanifolds.

These are the complexes such that every (d − 1)-simplex is incident to at most two d-

simplices. In the dual graph the d-simplices are the vertices and the (d−1)-simplices are the

edges. The dual graph of a weak pseudomanifold generalizes the dual of a surface embedded

graph. Weak pseudomanifolds generalize manifolds and retain the properties needed to

perform algorithms operating on the dual graph. Unlike manifolds, weak pseudomanifolds

can be recognized in linear time by checking the degree of each (d− 1)-simplex.

1.1 Contributions

In this thesis we investigate two types of problems. The first is the minimum bounding

chain problem which serves as a generalization of the shortest paths problem, or more

generally, the minimum T -join problem. Additionally, we study the more general problem

of deciding whether or not a cycle is null-homologous. This generalizes the question of

deciding whether or not a path exists between two vertices. The second type of problem is

a generalization of the max-flow min-cut theorem. For both types of problems, we obtain

both algorithmic and hardness result. The remainder of this section will be dedicated



5

to summarizing the major contributions of this thesis. The definitions and assumptions

necessary to state the results can be found either in the preliminaries in Chapter 2 or in

the chapter containing the results.

Embeddings and Duality In this section we give a detailed description of Alexander

duality and the resulting dual graph. The results in this section are not new, but it seems

that they have yet to be written in this context. We show that Alexander duality leads to

a higher dimensional analog of cycle/cut duality in planar graphs. Mac Lane’s planarity

criterion states that a graph is planar if and only if there exists a cycle basis such that

every edge appears in at most two cycles [72]. Such a basis is called a 2-basis. When the

graph is 2-connected and the 2-basis is expressed as a matrix; it forms the incident matrix

of the dual graph. The cycles in the basis are the vertices, and the edges of the cycles

are the edges of the dual graph. For embedded complexes, we show a similar result. If a

d-dimensional simplicial complex admits an embedding in Rd+1, then the boundaries of the

connected components obtained from Alexander duality form a 2-basis for the Z2-homology

group. We observe that the converse is not true; there exist non-embeddable complexes

which admit a 2-basis for their Z2-homology. This implies that there exist non-embeddable

complexes with a dual graph, so any algorithm operating on the dual graph can accept as

input a class of complexes that is larger than the class of embeddable complexes. In general,

deciding whether or not a complex is embeddable is undecidable. However, we show that

there exists a polynomial-time algorithm to construct a 2-basis. Given a Z2-homology basis

as input one can apply Tutte’s algorithm for recognizing cographic matroids to obtain a

dual graph if one exists. It turns out that a simplicial complex admits a dual graph if and

only if its Z2-homology space forms a cographic matroid.

The Minimum Bounded and Homologous Chain Problems We investigate two

related problems: the minimum bounding chain problem and the minimum homologous

chain problem. Both problems are formulated with coefficients over Z2. Both problems

take as input a d-dimensional simplicial complex K. The minimum bounding chain problem

asks: given a (d− 1)-cycle γ find the smallest d-chain whose boundary is γ. The minimum

homologous chain problem asks: given a (d − 1)-chain γ find the smallest (d − 1)-chain τ

such that γ ⊕ τ is in the image of the boundary operator; here ⊕ denotes addition over

Z2. Chains over Z2 are equivalent to their underlying sets of simplices. A minimum chain

is one that minimizes the cardinality of its underlying set of simplices. For both problems
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we prove APX-hardness and design both O(
√

log n)-approximation algorithms and fixed-

parameter tractable algorithms operating on the dual graph of the complex. Our hardness

results hold even when K is an orientable manifold embedded in R3. Assuming the unique

games conjecture our hardness results are strengthened as no polynomial-time constant

factor approximation can exist for either problem. Our algorithmic results operate on the

dual graph of K. In the case of the minimum bounding chain problem we assume that K is

a d-complex embedded in Rd+1 and in the case of the minimum homologous chain problem

we assume that K is a (d+1)-dimensional weak pseudomanifold. Finally, we present a result

originally due to Kirsanov and Gortler showing that under certain conditions the minimum

bounding chain problem can be solved in polynomial time in embedded complexes [66].

Their algorithm reduces the problem to a minimum cut problem on the dual graph and

is similar to finding the minimum st-path in a planar graph with s and t appearing on

the same face. Our analysis is much simpler than the original and our presentation is

combinatorial, making it more accessible to an audience of computer scientists.

Generalized Flows and Cuts We consider high-dimensional variants of the maximum

flow and minimum cut problems in the setting of simplicial complexes and provide both

algorithmic and hardness results. By viewing flows and cuts topologically in terms of

the simplicial (co)boundary operator we can state these problems as linear programs and

show that they are dual to one another. Unlike graphs, complexes with integral capacity

constraints may have fractional max-flows. We show that computing a maximum integral

flow is NP-hard. Moreover, we give a combinatorial definition of a simplicial cut that seems

more natural in the context of optimization problems and show that computing such a cut

is NP-hard. However, we provide conditions on the simplicial complex for when the cut

found by the linear program is a combinatorial cut. For d-dimensional simplicial complexes

embedded into Rd+1 we provide algorithms operating on the dual graph: computing a

maximum flow is dual to computing a shortest path and computing a minimum cut is

dual to computing a minimum-cost circulation. Finally, we investigate the Ford-Fulkerson

algorithm on simplicial complexes, prove its correctness for d ≥ 1, and provide a heuristic

which guarantees it to halt. In graphs with integral capacity constraints, Ford-Fulkerson

is guaranteed to halt since all flows are integral. Since simplicial complexes may have

fractional flows the fact that Ford-Fulkerson halts is not immediate.
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Resistance and Capacitance Effective resistance and effective capacitance are quanti-

ties associated with a graph originally motivated by the study of electrical networks. Both

quantities can be expressed in terms of homology which allows them to be generalized to

higher dimensions. In graphs the effective resistance between two vertices s and t is the

size of the smallest unit st-flow. Similarly, the effective capacitance between s and t is

the size of the smallest st-cut. Here the word “size” refers to the `2-norm of the vectors

representing the flow and cut. Using our high dimensional generalizations of flows and cuts

we can extend the notions of effective resistance and capacitance to higher dimensions.

We provide upper bounds on the effective resistance in a simplicial complex. In graphs

the effective resistance is O(n) and the effective capacitance is O(n2) where n is the number

of vertices. However, one can construct simplicial complexes with cycles whose effective

resistance and capacitance is Θ(22n). We show that the exponential upper bounds are

purely a result of torsion in the (d−1)-dimensional relative homology groups of the complex.

We provide an upper bound of O(n2t2) on effective resistance and O(n3t2) on effective

capacitance. Here t denotes the cardinality of a torsion subgroup of a relative homology

group of the complex whose number of elements is maximized. When the simplicial complex

is relative torsion-free and the cycle under consideration is the boundary of a simplex we

match the upper bounds known for graphs.

We provide a quantum algorithm for the following problem: given a d-dimensional

simplicial complex K, a (d− 1)-dimensional null-homologous cycle γ, and a d-dimensional

subcomplex L ⊆ K decide whether or not γ is null-homologous in L. Our algorithm is

based on the span program model and is a generalization of the span program deciding st-

connectivity devised by Belovs and Reinhardt [8]. Their algorithm is parameterized by the

effective resistance and capacitance of the pair of vertices and has query complexityO(n3/2).

Our algorithm has query complexity O
(√
Rmax(γ)Cmax(γ)

)
where Rmax(γ) and Cmax(γ)

are the maximum effective resistance and capacitance of γ over all subcomplexes. Applying

our upper bounds on effective resistance and capacitance this reduces to O(n5/2t2). Under

the assumptions that K is relative torsion-free, d is fixed, and that γ is the boundary of a d-

simplex we match the query complexity of O(n3/2). In higher dimensions the requirement

that K is relative torsion-free is quite restrictive, however for d = 2 it is equivalent to

forbidding a class of Möbius subcomplexes [30].
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Chapter 2: Preliminaries

2.1 Simplicial Homology

We give a brief overview of some basic concepts from simplicial (co)homology that will

be used throughout the paper. We recommend the book by Hatcher [52] for a more complete

exposition. In this paper K will always be a finite d-dimensional simplicial complex which

we now define. Given a finite set of vertices V we define a d-dimensional simplex, or

d-simplex, to be a subset of d + 1 vertices of V . We define an abstract simplicial

complex K to be a finite collection of simplices meeting the condition that for every

σ ∈ K if τ ⊂ σ then τ ∈ K. Every algorithmic problem we consider will take an abstract

simplicial complex as input, but sometimes we will assume the existence of a geometric

realization of the complex. Hence, we will refer to 0-simplices as vertices, 1-simplices as

edges, 2-simplices as triangles, and so on. We will formally define the geometric realization

of a complex in the next chapter.

We call the subsets of a simplex the faces of the simplex. The dimension of K is

dimension of its largest simplex. Further, we define an orientation on K by fixing a

linear ordering on the vertices in V and treating simplices as ordered sets. An oriented

simplex is a simplex along with a permutation of its vertices, and the orientation of the

simplex is the parity of the permutation with respect to the fixed linear ordering on V . We

call oriented simplices that agree with the linear ordering positively oriented otherwise

we call them negatively oriented.

We define a d-chain to be a formal sum of d-simplices with coefficients over a group

G. In this thesis we will consider coefficients over Z,Z2, and R. By Kd we denote the d-

skeleton of the simplicial complex K which is the set of all d-simplices in K and we denote

its cardinality by nd. Additionally, we may assign a weight function on the d-skeleton of

K denoted w : Kd → R. It will sometimes be convenient to view the weight function as a

diagonal matrix W indexed by the d-simplices.

Given a simplicial complex K we define the dth chain group Cd(K, G) to be the free

abelian group generated by Kd with coefficients in G. When G is a field, such as Z2 or

R, the chain group forms finite dimensional vector space since we assume K to be finite.
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When the context is clear we will drop G from the notation and write the chain group as

Cd(K). Let σ = [v0, . . . , vd] be a d-simplex with each vi a vertex. We define the simplicial

boundary operator ∂d[K] : Cd+1(K, G)→ Cd(K, G) by

∂d[K](σ) =

d∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vd],

where [v0, . . . , v̂i, . . . , vd] denotes the (d−1)-simplex obtained by removing vi from σ. Often

we will shorten the notation to ∂d or ∂ when the context is clear. The boundary operator

extends linearly over G in the natural way. Since we assume K to be finite the chain group

Cd(K) is finite dimensional and we can represent the boundary operator as the nd−1 × nd
matrix such that the entry ∂i,j is equal to 1 or −1 (depending on the orientation) if the ith

(d−1)-simplex is a face of the jth d-simplex, and 0 otherwise. With the boundary operator

we define the chain complex on K to be the following sequence of groups connected by

their boundary operators.

. . .
∂d+1−−−→ Cd(K)

∂d−→ Cd−1(K)
∂d−1−−−→ . . .

∂2−→ C1(K)
∂1−→ C0(K)→ 0

The group of d-cycles Zd(K) is defined to be ker(∂d) and the group of d-boundaries

Bd(K) is defined to be im(∂d+1). We call any d-cycle γ ∈ Bd(K) a null-homologous

cycle. Since ∂d ◦ ∂d+1 = 0 the quotient group Hd(K) := Zd(K)/Bd(K) is well-defined, and

we call Hd(K) the dth homology group of K. By βd we denote the dth Betti number of

K which is defined to be βd = rankHd(K).

We obtain the dth cochain group by dualizing Cd(K) in the following way. The dth

cochain group Cd(K) is defined to be the dual space of Cd(K), that is, the space of all

linear functions f : Cd(K) → G. We call f a cochain and we define the coboundary

operator δd : Cd−1(K)→ Cd(K) on cochains as the composition of functions δdf = f ◦ ∂d.
The cochain complex is the following sequence of cochain spaces.

. . .
δd+1←−−− Cd(K)

δd←− Cd−1(K)
δd−1←−−− . . . δ2←− C1(K)

δ1←− C0(K)← 0

The group of d-cocycles Zd(K) is defined to be ker(δd+1) and the group of d-coboundaries

Bd(K) is defined to be im(δd). Again, since δd+1 ◦ δd = 0 the quotient group Hd(K) :=

Zd(K)/Bd(K) is well-defined and we call Hd(K) the dth cohomology group of K.

When G is a field Cd(K) and Cd(K) are finite dimensional vector spaces we have the
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isomorphisms Cd(K) ∼= Cd(K) and Hd(K) ∼= Hd(K). The first isomorphism is the fact from

linear algebra that a finite dimensional vector space is isomorphic to its dual, and the second

is derived from the universal coefficient theorem. We can represent a cochain f ∈ Cd(K, G)

as a row vector f = [g1, g2, . . . , gnd ] where f(σi) = gi and then the composition f ◦ ∂ is

obtained by the matrix multiplication f∂ which is another row vector. Hence, for any

chain Σ we have that (f ◦ ∂)(Σ) is represented by the inner product 〈∂T fT ,Σ〉. Under

the isomorphism Cd(K, G) ∼= Cd(K, G) it follows that we may represent the coboundary

operator δd as the transpose of the boundary operator: δd = ∂Td .

We will view d-(co)chains as both d-dimensional vectors and as linear functions Cd(K)→
R whenever it is convenient to do so. However, we will refer to flows as d-chains and cuts as

d-cochains unless explicitly stated otherwise. We will often want to talk about the under-

lying set of simplices of the (co)chain and refer to this set as the support of the (co)chain;

the support of a chain σ =
∑
αiσi is defined as the set supp(σ) = {σi ∈ Kd | αi 6= 0}.

We will need to define the notion of relative homology in order to cite known re-

sults about the boundary matrix of a simplicial complex. Let K0 ⊆ K be a subcomplex

of K. We call the quotient group Cd(K,K0) = Cd(K)/Cd(K0) the of d-dimensional rel-

ative chain group and call an element of it a relative chain. There is an induced

mapping ∂d[K,K0] : Cd(K,K0) → Cd−1(K,K0). From the induced mapping we define the

groups of relative d-cycles Zd(K,K0), relative d-boundaries Bd(K,K0), and rela-

tive d-dimensional homology Hd(K,K0) as Zd(K,K0) := ker ∂d[K,K0], Bd(K,K0) :=

im ∂d[K,K0], and Hd(K,K0) := Zd(K,K0)/Bd(K,K0) respectively. Further, let L ⊆ K
be a pure d-dimensional subcomplex; that is, every (d − 1)-simplex in L is incident to

some d-simplex in L. Let L0 ⊆ L be a pure (d − 1)-dimensional subcomplex of L. The

induced map on relative homology ∂d[L,L0] : Cd(L,L0) → Cd−1(L,L0) has a natural ma-

trix representation. We construct the matrix ∂d[L,L0] by starting with ∂d and including

the columns corresponding to d-simplices in L while excluding the rows corresponding to

(d− 1)-simplices in L0.

Throughout this paper we utilize discrete Hodge theory and recommend the survey by

Lim [71] as an introduction to the topic. In particular, we use the Hodge decomposition

which can be stated as a result on real valued matrices A and B satisfying AB = 0.

Theorem 1 (Hodge decomposition [71]). Let A ∈ Rm×n and B ∈ Rn×p be matrices

satisfying AB = 0. We can decompose Rn into the orthogonal direct sum,

Rn = im(AT )⊕ ker(ATA+BBT )⊕ im(B).
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Representing the (co)boundary operators as matrices and setting A = ∂d and B =

∂d+1 yields the Hodge decomposition for simplicial complexes. The middle term of the

direct sum becomes ker(δd+1∂d+1 + ∂dδd). The linear operator δd+1∂d+1 + ∂dδd is known

as the combinatorial Laplacian of K which is a generalization of the graph Laplacian.

Moreover, it can be shown that ker(δd+1∂d+1 +∂dδd) ∼= Hd(K,R). We now state the Hodge

decomposition on simplicial complexes as the following isomorphism:

Cd(K,R) ∼= im(δd)⊕Hd(K,R)⊕ im(∂d+1).

2.2 Total Unimodularity

When working with coefficients over Z the homology groups are not vector spaces but

finitely generated abelian groups. The fundamental theorem of finitely generated abelian

groups gives us the decomposition Hd(K,Z) ∼= Zk⊕Zt1⊕· · ·⊕Ztn for some k ∈ N. We call

the subgroup Zt1 ⊕ · · · ⊕ Ztn the torsion subgroup of Hd(K,Z) and when this subgroup

is trivial we call the complex torsion-free. We say K is relative-torsion free in dimension

d if Hd(L,L0,Z) is torsion-free for all subcomplexes L and L0. There exist complexes that

are torsion-free but are not relatively torsion-free; see [30] for examples.

Let A be an integral matrix; we say that A is totally unimodular if every square

submatrix A′ of A has det(A′) ∈ {−1, 0, 1}. Totally unimodular matrices are important

in combinatorial optimization because linear programs with totally unimodular constraint

matrices are guaranteed to have integral solutions [42]. Dey, Hirani, and Krishnamoorthy

have provided topological conditions on when a simplicial complex has a totally unimodular

boundary matrix [30] stated below. We call a simplicial complex meeting the criteria of

Theorem 2 relative torsion-free in dimension d− 1.

Theorem 2 (Dey et al. [30], Theorem 5.2). Let K be a d-dimensional simplicial com-

plex. The boundary matrix ∂ : Cd(K) → Cd−1(K) is totally unimodular if and only if

Hd−1(L,L0,Z) is torsion-free for all pure subcomplexes L0,L of K of dimensions d−1 and

d where L0 ⊂ L.

We note that for a 2-dimensional simplicial complex K being relative torsion-free is

equivalent to K not containing any Möbius subcomplex [30, Theorem 5.13].
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Chapter 3: Embedability and Duality

We say a d-dimensional simplicial complex K is embeddable if it admits an embedding

into Rd+1, which we will now characterize. First, we recall the notion of the geometric

realization |K| of K. A d-dimensional simplex σ can be geometrically realized as the

convex hull of d + 1 affinely independent points in Rd, and we denote the realization as

|σ|. The faces of σ appear as the hyperplanes on the boundary of |σ|. The convex hull

|σ| is homeomorphic to the d-dimensional ball. We construct |K| as a quotient space by

identifying the geometric realizations of the faces of each d-simplex |σ| with the geometric

realizations of the (d−1)-simplices on the boundary of σ. Now, we say that K is embeddable

if there exists a continuous injective function f : |K| → Rd+1 and we call f an embedding.

We can give an alternative combinatorial definition of an embeddable simplicial com-

plex. We say that a d-dimensional simplicial complex K is embeddable if and only if there

exists a triangulation of Rd+1 that contains K as a subcomplex. This is equivalent to the

existence of a triangulation of the (d − 1)-sphere containing K as a subcomplex. This

definition is more convenient in the context of algorithms since the triangulation contains

very useful combinatorial information about the complex.

Embeddable complexes are very important as they admit a natural dual graph struc-

ture which allows us to reduce problems about simplicial complexes to graph theoretic

ones. In Chapter 4 we use the dual graph structure to obtain fixed-parameter tractable

and O(
√

log n)-approximation algorithms for the minimum bounding chain and minimum

homologous chain problems. We also utilize the dual graph structure to prove hardness of

approximation for both problems. In Chapter 5 we use the dual graph to solve max-flow

and min-cut in simplicial complexes with a running time faster than linear programming.

In Section 3.1 we give an introduction to the Alexander duality theorem which is cru-

cial for defining the dual graph of an embedded complex. We will show that embedded

complexes and their dual graphs admit a cycle/cut duality similar to planar graphs. The

ideas in Section 3.1 are not new, but the author is unaware of any text presenting them

in this context. In Section 3.2 we characterize the existence of a dual graph in a way

similar to Mac Lane’s planarity criterion [72]. We show that, unlike graphs, there exist

non-embeddable simplicial complexes that admit a dual graph. This characterization leads
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to an algorithm to compute the dual graph of a simplicial complex. Throughout the entire

chapter we will assume all (co)homology coefficents to be coming from the field Z2.

3.1 Alexander duality

The Jordan curve theorem implies that a planar graph G separates the plane into

β1 + 1 connected components. Recall that β1 is the dimension of the first homology group

H1(G,Z2) which is the cycle space of the graph; this follows from the fact that graphs

contain no 2-simplices. The Alexander duality theorem is a generalization of the Jordan

curve theorem to simplicial complexes. For a d-dimensional simplicial complex K embedded

in Rd+1 the Alexander duality theorem implies that K separates Rd+1 into βd+1 connected

components. Alexander duality relates the reduced d-dimensional homology H̃d(K) to the

reduced 0-dimensional cohomology H̃0(Rd+1 \ K). We state a version of the theorem that

holds in the setting of finite simplicial complexes.

Theorem 3 (Alexander Duality [4]). Let K be a finite d-dimensional simplicial complex

embedded in Rd+1. We have the isomorphism H̃k(Rd+1 \ K) ∼= H̃d−k(K) where the coeffi-

cients of the reduced (co)homology groups are taken from any abelian group.

In the case of finite simplicial complexes with coefficients over a field Hk(K) is a finitely

generated vector space and Hk(K) is its dual space, so we obtain Hk(K) ∼= Hk(K). From

Alexander duality we obtain the important isomorphism Hd(K) ∼= H̃0(Rd+1 \ K) which

almost places the d-dimensional cycles of K in bijection with subsets of the connected

components of Rd+1 \ K since the rank of H̃0(Rd+1 \ K) is one less than the number of

connected components. The extra connected component is analogous to the outer face

of a planar graph. This isomorphism will be very important for deriving one half of the

cycle/cut duality between K and its dual graph and we will describe it in more detail later.

We will now define the dual graph formally.

Let K be a d-dimensional simplicial complex embedded in Rd+1. We define its dual

graph G to be the graph whose vertices correspond to the βd + 1 connected components of

Rd+1 \K and whose edges are in bijection with the d-simplices of K. We call the connected

components of K\Rd+1 voids and note that each d-simplex is on the boundary of at most

two voids [25, Corollary 7.1.2], so two vertices in the dual graph share an edge if and only

if their corresponding voids contain a d-simplex in the intersection of their boundaries.

Exactly one of the voids is unbounded. We refer to the vertex dual to the unbounded void
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as v∞. It’s important to note that Alexander duality actually gives us a d-dimensional

simplicial complex dual to K. Almost always we will only care about the 1-skeleton of this

dual complex; which is the dual graph that we have just defined. However in Chapter 5

we will require the 2-skeleton of the dual complex for one duality theorem.

Before describing cycle/cut duality for simplicial complexes we will give a brief expla-

nation of cycle/cut duality in planar graphs. Recall that the edge space of a graph G is

actually the 1-dimensional chain group C1(G,Z2). It is well known that the cycle space

and the cut space of a graph are orthogonal complements in the edge space; observe that a

cycle intersects a cut an even number of times. This fact coincides with the Hodge decom-

position of the edge space C1(G,Z2) ∼= H1(G,Z2)⊕ im δ1[G]. Consider the dual graph G∗,

by Alexander duality we have the isomorphism H1(G) ∼= H̃0(R2 \G). Since H̃0(R2 \G) is

equal to the number of vertices of G∗ minus one we have H1(G) ∼= C0(G∗\v∞). Recall that

a cut in a graph is given by a partition of the vertices which is a function from the vertices

to {0, 1}. The edges in the cut correspond to the coboundary of the vertices given the

label 1. So, im δ1 is generated by the coboundaries of formal sums of vertices over Z2. A

basis for im δ1 is given by the coboundaries of |C0(G)|−1 vertices, since the coboundary of

the missing vertex can be obtained by summing up the coboundaries of all other vertices.

Hence, the isomorphism H1(G) ∼= C0(G∗ \ v∞) implies that H1(G) ∼= im δ1, which says

that the cycle space of G is isomorphic to the cut space of G∗. We obtain the converse

H1(G∗) ∼= C0(G \ v∗∞) by the observation that for connected graphs (G∗)∗ = G.

Now, we return to describing cycle/cut duality for simplicial complexes. For a d-

dimensional simplicial complex K with dual graph G it is straightforward to show that

Hd(K) ∼= im δ1[G]. The reasoning is identical to the proof in planar graphs which follows

directly from the construction of the dual graph. The second half of the duality, showing

that H1(G) ∼= im δd[K] is more difficult. Unlike for connected graphs, we cannot use the

fact that dual of the dual is the primal complex. Moreover, we need a definition a cut in a

simplicial complex. We will define a cut to be an element of the image of the coboundary

operator, and we will refer to the image of the d-dimensional coboundary operator as the

d-dimensional cut space. In Chapter 5 we will describe cuts in greater detail. For any

cochain σ ∈ im δ[K] we have dimHd−1(K) < dimHd−1(K \ supp(σ)). This follows directly

from the definitions of the (co)homology groups and the isomorphism Hd−1(K) ∼= Hd−1(K).

In graphs this inequality is equivalent to the statement that removing a coboundary in-

creases the number of connected components in the graph. That is, coboundaries are cuts.

To prove the second half of cycle/cut duality, that the cycle space of the dual graph is
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isomorphic to the d-dimensional homology space of the primal complex, we will prove two

lemmas. The first shows that any “minimal” collection of d-simplices whose removal in-

creases the dimension of the (d − 1)-homology group corresponds to a coboundary. The

second shows that a cycle in the dual graph is dual to such a collection of simplices. The

first lemma only requires an abstract simplicial complex, but the second lemma requires

an embedding.

Lemma 1. Let K be a d-dimensional simplicial complex and let C be a collection of d-

simplices such that dimHd−1(K) < dimHd−1(K \ C). Further, assume that C is minimal

in the sense that for all C ′ ⊂ C we have dimHd−1(K\C ′) < dimHd−1(K\C). Then there

exists a (d− 1)-cochain p such that supp(δ(p)) = C.

Proof. Recall that Hd−1(K) = ker(∂d−1)/ im(∂d), H
d−1(K) = ker(δd+1)/ im(δd), and we

have the isomorphism Hd−1(K) ∼= Hd−1(K). Removing the set of d-simplices C from K
does not affect ker(∂d−1) or im(δd−1). However, by our assumption it must decrease the

dimension of im(∂d) and increase the dimension of ker(δd). It follows that there must exist

some (d− 1)-cochain p such that δd[K](p) 6= 0 but δd[K \C](p) = 0. Hence, supp(δd(p)) ⊆
C. Without loss of generality we choose p such that | supp(δd(p))| is maximized. Define

C ′ := C \ | supp(δd(p))|. By minimality we have dimHd−1(K \ C ′) < dimHd−1(K \ C). It

follows that there exists some (d− 1)-cochain p′ with δd[K\C ′](p′) 6= 0 but δp[K\C](p′) =

0. Note that by construction supp(δd(p)) and supp(δ(p′)) are disjoint. It follows that

δd[K\C](p+p′) = 0 but δd[K](p+p′) 6= 0 in K, so supp(δd(p+p′)) ⊆ C. Since supp(δd(p))

and supp(δd(p
′)) are disjoint we have | supp(δd(p))| < | supp(δd(p+ p′))|, contradicting our

assumption that p maximizes | supp(δd(p))|.

Lemma 1 gives us a way to identify sets of d-simplices with coboundaries, which we

have defined to be cuts. In Lemma 21 we will show that simple cycles in the dual graph

are dual to sets of d-simplices meeting the assumptions of Lemma 1.

Lemma 2. Let K be a d-dimensional simplicial complex embedded in Rd+1 and let G be

its dual graph. Let C be a simple cycle in G and let C∗ be the set of d-simplices dual to C.

We have the equality dimHd−1(K \ C∗) = dimHd−1(K) + 1.

Proof. Let {V1, . . . , Vβd+1} be the closures of the voids of Rd+1 \ K viewed as subspaces

of Rd+1. We consider each pair Vi, Vj as if they were disjoint, and we we view them as

1The author would like to acknowledge an anonymous MathOverflow user for providing the proof [48].
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(d+ 1)-complexes whose boundary d-cycles generate Hd(K). Each d-simplex of K appears

on the boundary of at most two of these subspaces. Removing a d-simplex, whose dual

edge has endpoints vi and vj , is equivalent to glueing Vi and Vj together along that simplex.

We use the Mayer-Vietoris sequence for reduced homology to compute the homology after

glueing Vi and Vj together.

· · · → Hk(Vi ∩ Vj)→ Hk(Vi)⊕Hk(Vj)→ Hk(Vi ∪ Vj)→ Hk−1(Vi ∩ Vj)→ . . .

Since Vi ∩ Vj is a single d-simplex its reduced homology is trivial in all dimensions; we

have H1(Vi ∪ Vj) ∼= H1(Vi)⊕H1(Vj). It follows that for any tree T in the dual graph, the

space created after glueing together its corresponding voids has first homology H1(T ) ∼=⊕
vi∈T H1(Vi).

Now consider some simple cycle C in G. Order the vertices of C by v1, . . . , vk which

induces an order on the edges e1 = (v1, v2), . . . , ek−1 = (vk−1, vk), ek = (vk, v1). We remove

the d-simplices in K according to this order, that is at vi we remove the d-simplex dual to

the edge ei−1.

Let V be space created by glueing the components in {V1, . . . , Vk−1} according to the

ordering. We use the reduced Mayer-Vietoris sequence to compute the homology after

removing the d-simplex corresponding to the edge ek.

· · · → H1(Vk ∩ V )→ H1(Vk)⊕H1(V )
ψ−→ H1(Vk ∪ V )→ H̃0(Vk ∩ V )

φ−→ H̃0(Vk)⊕ H̃0(V )

The intersection Vk ∩ V consists of two disjoint d-simplices which are dual to the edges

ek−1 and ek. It follows that H1(Vk ∩ V ) ∼= 0 and H̃0(Vk ∩ V ) ∼= Z2, hence ψ is injective.

Further, we see that φ is the zero map since both Vk and V consist of a single connected

component. We can compute the dimension of H1(Vk ∪ V ) by the rank nullity theorem:

dimH1(Vk ∪ V ) = dimZ2 + dimH1(Vk)⊕H1(V )

= 1 + dimH1(Vk) + dimH1(V ).

To conclude we argue that removing C∗ from K increases the (d− 1)-homology group

of the complex by exactly one. We construct the simplicial complex K \ C∗ be removing

one d-simplex from C∗ = {e∗1, . . . , e∗k} at a time, and following the linear ordering assigned

to the edges in cycle C = {e1, . . . , ek}. Removing the d-simplices {e∗1, . . . , e∗k−1} does not

change the (d − 1)-homology group, since their dual edges form a tree. However, upon
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removing e∗k the (d − 1)-homology group is increased by the argument in the preceding

paragraph.

For an illustration of the proof of Lemma 2 see Figure 3.1. Now we will wrap things

up by using Lemmas 1 and 2 to prove that cycle space of the dual graph is isomorphic to

the image of δd[K].

Theorem 4. Let K be a d-dimensional simplicial complex embedded in Rd+1 and let G be

its dual graph. The cycle space of G is isomorphic to the (d − 1)-cut space of K; that is,

H1(G) ∼= im δd[K]. Moreover, every cycle basis of G is dual to a basis for im δd[K].

Proof. First, we note that the dimension of H1(G) is given by dimH1(G) = nd− βd where

nd is the number of d-simplices in K. By the Hodge decomposition we have Cd(K) ∼=
Hd(K) ⊕ im δd, from which it follows that dim im δd = nd − βd. Hence, H1(G) ∼= im δd.

Moreover, by Lemma 2 every cycle in G is dual to a minimal set of d-simplices whose

removal increases the dimension of Hd−1(K), so by Lemma 1 is dual to a coboundary.

Hence, every cycle basis of G is dual to a basis for Hd−1(K).

Figure 3.1: The blue spheres represent the closures of connected components in R3 \ K
for some 2-complex K. In black we have a cycle in the dual graph whose edges are the
triangles in K contained in the intersection of two spheres. By Lemma 2 removing these
triangles increases the rank of H1(K) by one.
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3.2 Constructing the Dual Graph

Several of the algorithmic results in this thesis assume that a dual graph is given as

input to the algorithm. Hence, it is very important to show that we can construct the

dual graph from the embedding in polynomial time. Dey, Hou, and Mandal provide an

algorithm computing the dual graph from an embedding in O(n log n) time [31]. The dual

graphs that we compute in this section are different from the dual graphs arising from

an embedding as defined in the previous section. However, we still refer to them as dual

graphs since they retain the cycle/cut duality property. In this section we use a more

general definition of a dual graph. We define a dual graph of a simplicial complex K to

be any graph G such that Zd(K) ∼= im δ1[G]; that is, the d-dimensional cycles of K are in

bijection with the cuts of G. For d-dimensional complexes Zd(K) ∼= Hd(K). Clearly, the

dual graphs defined in the previous section meet this definition.

In this section we provide an alternative algorithm which computes a dual graph, if one

exists, even when an embedding is not given. In most cases our approach is slower than

O(n log n) time but it is interesting from a theoretical perspective. We show that there

exist non-embeddable complexes that admit a dual graph; the d-cycles in the complex are

in bijection with the cuts of the graph. Further, for a d-dimensional simplicial complex K
we show that given a basis for Hd(K,Z2) there exists an algorithm that acts as a change of

basis on Hd(K,Z2) whose output is a basis that can be interpreted as the incidence matrix

of a dual graph for K. By showing that the class of complexes admitting dual graphs is

larger than the class of embeddable complexes we strengthen previous algorithmic results

operating on dual graphs; the class of complexes that may be given as input to these

algorithms is larger than previously thought. These problems include computing Betti

numbers [27], the homology localization problem [23], and computing minimal persistent

cycles [31].

For planar graphs computing the dual is the same as computing an embedding in the

plane; every embedding yields a dual graph and every dual graph defines an embedding.

Hence, computing the dual of a planar graph can be done in linear time with graph drawing

algorithms. Unfortunately, this technique does not work in higher dimensions. Finding an

embedding of a 2-complex in R3 is NP-hard [26]. Even worse, determining whether or not

a (d− 1)-complex embeds in Rd is undecidable for d ≥ 5 [75]. At first it may appear that

this implies computing the dual graph is undecidable, but this is not the case. Fortunately,

computing the dual graph of an embedded simplicial complex is not equivalent to computing
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an embedding. The dual graph of an embedded d-complex tells us how the d-cycles intersect

one another, but it does not characterize the d-cycles up to homeomorphism. It seems likely

that constructing an embedding from the dual graph would require an algorithm solving

the homeomorphism problem, which is undecidable [74]. This problem does not arise in

planar graphs as every face of a planar graph is homeomorphic to a disk. Moreover, the

issue can be avoided in R3 by using Fox’s reimbedding theorem [43] which states that if

a 3-manifold M admits an embedding in R3 then it admits an embedding such that the

complement R3 \M is homeomorphic to a union of handlebodies2. Note that this result

applies to 2-complexes as in polynomial time any embeddable 2-complex can be thickened

to an embeddable 3-manifold that is homotopic to the original complex [29]. Given these

limitations we seek algebraic methods for computing the dual graph.

Mac Lane’s planarity criterion gives us an algebraic condition equivalent to planarity [72].

It states that a graph G is planar if and only if there exists a basis B of H1(G,Z2) such

that every edge of G is contained in at most two cycles of B. We call such a basis a

2-basis. The faces of a planar embedding clearly give rise to a 2-basis; the converse can

be proved combinatorially by showing that any graph containing K5 or K3,3 cannot have a

2-basis [80]. When viewing B as a matrix the columns are indexed by the cycle basis and

the rows are indexed by the edges. Each row of B contains at most two non-zero entries.

Hence, a 2-basis for a planar graph is the incidence matrix of the dual graph minus the

vertex corresponding to the outer face. We can compute the column associated with the

outer face by simply taking the sum of the columns in B. We note that the dual graph

obtained will be missing any loops. Bridges, edges that do not appear in any cycle, in a

graph do not appear in the cycle basis, so we obtain the full dual graph if and only if G is

2-connected. However, we can always add the bridges to the dual graph in linear time.

The notion of a 2-basis easily extends to d-dimensional simplicial complexes. Let K
be a d-complex that is not necessarily embeddable into Rd+1. A 2-basis for Hd(K,Z2) is

a homology basis B such that each d-simplex is contained in at most two basis elements.

A 2-basis need not be unique, for example every embedding of a complex gives rise to a

different 2-basis. As before we can view B as a matrix whose columns are d-cycles and

whose rows are d-simplices. This matrix gives us the incidence matrix of a dual graph.

The coboundary of every vertex in the graph is dual to a d-cycle in K so we immediately

obtain a bijection between d-cycles in the complex and cuts in the graph.

2In the case of 3-manifolds a handlebody of genus g is a 3-manifold whose boundary is a surface of genus
g.
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When K is a d-complex embedded in Rd+1 Alexander duality implies the existence

of a 2-basis for Hd(K,Z2). The boundaries of the connected components of Rd+1 \ K
generate Hd(K,Z2), and every d-simplex is contained in at most two of these boundaries.

Surprisingly, there exist non-embeddable complexes that admit 2-bases. For example, a

Klein bottle taken as a 2-complex does not embed into R3, but as a 2-basis since it only

contains one 2-cycle. Using this observation we can construct non-embeddable complexes

with non-trivial 2-bases. See Figure 3.2. This means that the class of simplicial complexes

for which duality based algorithms work is larger than the class of embeddable simplicial

complexes. Moreover, we will show that we can compute a dual graph for this class of

complexes, the only input needed for these algorithms is the simplicial complex itself.

Figure 3.2: A simplicial complex consisting of a sphere and Klein bottle glued together
along a common triangle. This 2-complex does not embed into R3, but has a dual graph.

Given a basis for Hd(K,Z2) we want an algorithm to compute a 2-basis if one exists.

In this section we will phrase the problem in the language of matroid theory, and then use

a known matroid algorithm to compute a 2-basis. The study of matroids originated with

Whitney who used them as a way to generalize the notion of linear dependence [96]. There

are many equivalent definitions of a matroid, however we use the circuit definition as it

most naturally describes our situation. A matroid is a pair M = (X,C) where X is a set

and C ⊆ P (X) is a collection of subsets of X called circuits such that the following two

properties hold. For all A ∈ C no proper subset of A is contained in C. If A,B ∈ C and

there exists an x ∈ A ∩B then (A ∪B) \ {x} contains a circuit.

In a graph G the cut space im δ forms a vector space over Z2 hence they form a

matroid. This fact can also be easily seen from properties of the cut space. A coboundary
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is a minimal set of edges whose removal disconnects the graph. By definition no subset

of a minimal edge cut is an edge cut, so the first property of the circuit definition of a

matroid holds. If ES and ET are minimal edge cuts and e ∈ ES ∩ ET then by properties

of the symmetric difference we obtain ES ⊕ET ⊂ (ES ∪ET ) \ {e}, but minimal edge cuts

are coboundaries and hence are closed under symmetric difference, so the second property

of the circuit definition of a matroid also holds.

The matroid of edge cuts of a graph G is called the bond matroid of G. Any matroid

isomorphic to a bond matroid is called a cographic matroid. Since the cut space of a

graph is a vector space over Z2 it follows that all cographic matroids can be represented by

some vector space over Z2. Any vector space over Z2 with a 2-basis is the bond matroid

of some graph. The 2-basis gives rise to the incidence matrix of the graph for which it is

the bond matroid of. It follows that deciding whether or not Hd(K,Z2) has a 2-basis is

equivalent to decided if Hd(K,Z2) is a cographic matroid.

Tutte’s algorithm for recognizing cographic3 matroids [93] can be used to compute a

dual graph of a simplicial complex with a 2-basis in polynomial time. The algorithm takes

as input a basis to a vector space over Z2. If the vector space represents a cographic matroid,

the algorithm outputs the incidence matrix of a graph whose bond matroid is isomorphic

to the input vector space. Hence, when given a homology basis as input Tutte’s algorithm

returns a dual graph. We note that computing the initial homology basis can be performed

in polynomial time [37, Section 4.2]. The runtime analysis of Tutte’s algorithm given by

Qu [84] gives us the following theorem.

Theorem 5. Let K be a d-dimensional simplicial complex such that Hd(K) has a 2-basis.

A dual graph of K can be computed in O(β2
d · nd) time.

3.3 Weak pseudomanifolds

A (d + 1)-weak pseudomanifold is a (d + 1)-dimensional simplicial complex such that

every d-simplex is incident to at most two (d + 1)-simplices. Weak pseudomanifolds are

a generalization of combinatorial manifolds. Like manifolds they admit a dual graph.

However, recognizing weak pseudomanifolds can be done in linear time while recognizing

manifolds is undecidable [24]. We choose the notation (d+ 1)-weak because the problems

we solve on them will be formulated on the d-chains.
3Confusingly, Tutte used the reverse of modern terminology and used the term graphic matroid to refer

to what is commonly known as a cographic matroid today.
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We now formally define the dual graph G of a (d + 1)-weak pseudomanifold. In G we

have a vertex σ∗ for each (d + 1)-simplex σ and one additional vertex vb The edges of G

are in bijection with the d-simplices. If two (d+ 1)-simplices share a common d-simplex as

a face then there is an edge between their dual vertices. If a d-simplex is incident to one

(d+1)-simplex σ then there is an edge (σ∗, vb). We will prove a weaker version of cycle/cut

duality. We will show that there is a bijection between null-homologous cycles in a weak

psuedomanifold and cuts in its dual graph.

Theorem 6. Let M be a (d + 1)-dimensional weak psuedomanifold with dual graph G =

(V,E). There is an isomorphism im ∂d+1[M] ∼= im δ1[G].

Proof. We show a one-to-one correspondence between null-homologous d-cycles in M and

cuts in G. Let γ be a null-homologous d-cycle inM, then there exists some (d+1)-chain Γ

such that ∂Γ = γ. This yields a partition of the (d+1)-skeletonMd+1 into Γ andMd+1\Γ.

Hence we have a partition of the vertices in G: Γ∗ and V \ Γ∗. By the construction of the

dual graph the coboundary of Γ∗ (or equivalently of V \ Γ∗) is dual to the boundary of Γ

which is equal to γ.

Conversely, let S and V \ S partition V , and let ES be the edges on the coboundary

of the partition. Without loss of generality we assume that vb ∈ V \ S. By duality S∗ is a

(d+ 1)-chain with boundary E∗S .

Similar to the case of embedded complexes, the dual graph construction for weak pseu-

domanifolds actually extends to a larger class of graphs. Any simplicial complex such that

im ∂d admits a 2-basis gives rise to a dual graph by the construction outlined in this section.

For an example we can consider any 2-complex with the property that the 1-skeleton is a

planar graph. Then im ∂ is a subspace of the cycle space, which is planar, and admits a

2-basis. Hence, we can use Tutte’s cographic matroid detection algorithm to compute a

dual graph, if one exists, even if the input is not a weak pseudomanifold.
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Chapter 4: The Minimum Bounded and Homologous Chain Problems

In this section we present two optimzation problems over Z2-homology: the minimum

bounded chain problem and the minimum homologous chain problem. Both problems are

minimization problems asking for a minimum sized chain meeting some constraints. By

the size of a d-chain σ we mean the cardinality of its support | supp(σ)|, or equivalently the

number of d-simplices in the chain when viewed as a set. Throughout the entirity of this

chapter we assume coefficients over Z2 and we will use the symbol ⊕ to denote addition

over Z2; this is to emphasize the fact that addition of chains over Z2 is equivalent to taking

the symmetric difference of the underlying sets. We begin with the formal definitions of

both problems.

Definition 1 (Minimum Bounded Chain Problem). Given a d-dimensional simplicial com-

plex K and a null-homologous (d − 1)-cycle γ, the minimum bounded chain problem

asks to find a d-chain Γ such that ∂Γ = γ and | sup(Γ)| is minimized.

The minimum bounded chain problem asks to find the smallest d-chain whose boundary

is γ. The minimum homologous chain problem is similar which asks to find the smallest

(d− 1)-chain that is homologous with a given (d− 1)-chain.

Definition 2 (Minimum Homologous Chain Problem). Given a d-dimensional simplicial

complex K and a (d − 1)-chain τ , the minimum homologous chain problem asks to

find a (d−1)-chain σ such that there exists a d-chain Γ with ∂Γ = τ⊕σ and that | supp(σ)|
is minimized.

The minimum bounded chain problem has been previously studied with homology

coefficients over Z and R where linear programming techniques can be utilized. Sullivan

described the problem as a discretation of the minimal spanning surface problem [92] on

the closely related cellular complexes, but with the restriction that the complex admits an

embedding into Euclidean space. Kirsanov and Gortler reduce the problem to a minimum

cut problem in the dual graph under the assumption that K embeds into Rd+1 and that

there exists a bounding chain contained in the boundary of the unbounded void V∞ of

Rd+1 \ K [66]. This assumption makes the problem an analog of the shortest st-path
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problem in a planar graph when s and t appear on the same face. In Section 4.4 we

provide a combinatorial proof of their result.

The linear programming approach was then applied to the minimum bounded chain

problem (over Z) by Dunfield and Hirani [34]. Moreover, they show the minimum bounded

chain problem is NP-complete via a reduction from 1-in-3 SAT. The gadget they use was

originally used by Agol, Hass and Thurston to show that the minimal spanning area prob-

lem is NP-complete [2]. Linear programming techniques have also been used by Chambers

and Vejdemo-Johansson to solve the minimum bounded chain problem in the context of

R-homology [20]. In R-homology Carvalho et al provide an algorithm finding a (not neces-

sarily minimum) bounded chain in a manifold by searching the dual graph of the manifold

[16].

Research on minimum homologous chain has largely worked in Z-homology. Dey, Hi-

rani and Krishnamoorthy formulate the minimum homologous chain problem over Z as

an integer linear program and describe topological conditions for the linear program to

be totally unimodular, and so polynomial-time solvable [30]. Of course, integer linear

programming approaches do not extend to Z2-homology.

Special cases of the minimum homologous chain problem have been studied in Z2-

homology. The homology localization problem is the case when the input chain is a cycle.

The homology localization problem over Z2 in surface-embedded graphs is known to be

NP-hard via a reduction from maximum cut by Chambers et al. [17]; our reduction is from

the complement problem minimum uncut. On the algorithmic side, Erickson and Nayyeri

provide a 2O(g)n log n time algorithm where g is the genus of the surface [39]. Using the idea

of annotated simplices, Busaryev et al. generalize this algorithm for homology localization

of 1-cycles in simplicial complexes; the algorithm runs in O(nω) + 2O(g)n2 log n time where

ω is the exponent of matrix multiplication, and g is the dimension of the first homology

group of the complex [14].

Using a reduction from the nearest codeword problem Chen and Freedman showed

that homology localization with coefficients over Z2 is not only NP-hard, but it cannot

be approximated within any constant factor in polynomial time [23]. These hardness

results hold for a 2-dimensional simplicial complex, but not necessarily for 2-dimensional

complexes embedded in R3. They also give a polynomial-time algorithm for the special

case of d-dimensional simplicial complex that is embedded in Rd. This is different from

our setting of a d-dimensional simplicial complex that is embedded in Rd+1; however the

algorithm also reduces to a minimum cut problem in a dual graph, much like that of
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Kirsanov and Gortler.

The minimum bounded chain problem over Z2 can be stated as a linear algebra problem,

but this has little algorithmic use since the resulting problems are intractable. The algebraic

formulation is to find a vector x of minimum Hamming weight that solves an appropriately

defined linear system Ax = b. It is possible to reduce in the reverse direction, but the

resulting complex is not embeddable in general, and so provides no new results.

In coding theory this algebraic problem is a well-studied decoding problem known as

maximum likelihood decoding, and it was shown to be NP-hard by Berlekamp, McEliece

and van Tilborg [9, 94]. Downey, Fellows, Vardy and Whittle show that maximum likeli-

hood decoding is W[1]-hard [33]. Further, Austrin and Khot show that maximum likeli-

hood decoding is hard to approximate within a factor of 2(logn)1−ε under the assumption

that NP * DTIME
(

2(logn)O(1)
)

[7]. This work was continued by Bhattacharyya, Gadekar,

Ghosal and Saket who showed that maximum likelihood decoding is still W[1]-hard when

the problem is restricted to O(k log n)×O(k log n) sized matrices for some constant k [10].

4.1 Summary of main results

We prove similar results for both problems. Algorithmically we show the existence of

both approximation and exact fixed-parameter algorithms which are summarized in the

following four theorems.

Theorem 7. There exists an O(
√

log βd)-approximation algorithm for the minimum bounded

chain problem for a simplicial complex K embedded in Rd+1, with dth Betti number βd.

Theorem 8. There exists an O(15k ·k ·n3
d) time exact algorithm for the minimum bounded

chain problem for simplicial complexes embedded in Rd+1, where k is the number of d-

simplices in the optimal solution.

Theorem 9. There exists an O(
√

log nd+1)-approximation algorithm for the minimum

homologous chain problem for d-chains in (d+ 1)-manifolds.

Theorem 10. There exists an O(15k ·k ·n3
d) time exact algorithm for the minimum homol-

ogous chain problem for d-chains in (d + 1)-manifolds, where k is the size of the optimal

solution.

The running times for the first two theorems is computed assuming that the dual graph

of the complex in Rd+1 is available. The last two theorems hold, more generally, for weak

pseudomanifolds studied by Dey et al. in [31].
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Our hardness results show that both problems are APX-hard and that constant factor

approximations are unlikely. The hardness of constant factor approximation is dependent

upon the unique games conjecture which is an assumption necessary is many interesting

results in computational topology [47].

Theorem 11. The minimum bounded chain problem is

(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and

(ii) hard to approximate within any constant factor assuming the unique games conjec-

ture,

even if K is a 2-dimensional simplicial complex embedded in R3 with input cycle γ embedded

on the boundary of the unbounded volume in R3 \ K.

The condition that γ be on the unbounded volume of R3\K is important. In Section 4.4

we will see that the problem becomes polynomial-time solvable when γ has a bounded chain

on the unbounded volume (note that this implies γ is on the unbounded volume as well).

Theorem 12. The minimum homologous chain problem is

(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and

(ii) hard to approximate within any constant factor assuming the unique games conjec-

ture,

even when the input chain is a 1-cycle on an orientable 2-manifold.

For the sake of completeness, we also give a more general presentation of the result of

Kirsanov and Gortler [66], that minimum bounded chain is polynomial-time solvable for a

d-dimensional simplicial complex K embedded in Rd+1 and input chain γ null-homologous

on the boundary of the unbounded region in Rd+1 \ K. This can be found in Section 4.4.

This algorithmic result is likely to be the most general possible, given Theorem 11.

4.2 Approximation algorithm and fixed-parameter tractability

In this section, we describe approximation algorithms and parameterized algorithms for

both minimum bounded chain and minimum homologous chain problems. Our algorithms

work with the dual graph of the input space. In order to simplify our presentation we
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assume that the dual graph of the input complex contains no loops. The following lemma

shows that we can make this assumption without any loss of generality.

Lemma 3. In polynomial time we can preprocess an instance of the minimum bounded

chain problem (K, γ) into a new instance (K′, γ′) such that (i) the dual graph (K′)∗ contains

no loops and (ii) an α-approximation algorithm for (K′, γ′) implies an α-approximation

algorithm for (K′, γ′).

Proof. Let F be the set of d-simplices corresponding to the loops in K∗. By cycle/cut

duality we see that no d-simplex f ∈ F can be on a d-cycle; as a loop cannot be on any cut

in the dual graph. Therefore, for any X,Y with boundary γ, f is either on both of them,

or on neither of them. This follows because X ⊕ Y is a d-cycle. Thus, each f ∈ F is either

on all d-chains with boundary γ, or none of them. Let Fall ⊆ F be the d-simplices that

are on all d-chains X with boundary γ, and let Fnone ⊆ F be the d-simplices that are on

no X with boundary γ, we have Fall ∪ Fnone = F .

Now, we compute a feasible solution Y with ∂Y = γ by solving the linear system using

standard methods [56]. Using Y we can partition F into Fall and Fnone: a d-simplex f ∈ F
is in Fall if it is in Y , and in Fnone otherwise. We can remove Fnone from K without

changing the optimal solution. Further, any chain X with boundary γ contains Fall. That

is, we can write X = X ′ ⊕ Fall. It follows that

∂X = ∂X ′ ⊕ ∂Fall = γ ⇒ ∂X ′ = γ ⊕ ∂Fall = γ′.

Hence, we can find the minimum chain X ′opt in K′ = K \ ∂Fall with boundary γ′. Then,

Xopt = X ′opt ⊕ Fall is the minimum bounding chain for γ in K. Furthermore, any ap-

proximation algorithm for (K′, γ′) implies an approximation algorithm with the same ra-

tio for (K, γ). To see that, let X ′apx be an approximation of X ′opt in (K′, γ), and let

Xapx = X ′apx ⊕ Fall. So, we have:

|Xapx|
|Xopt|

=
|X ′apx ⊕ Fall|
|X ′opt ⊕ Fall|

=
|X ′apx ∪ Fall|
|X ′opt ∪ Fall|

=
|X ′apx|+ |Fall|
|X ′opt|+ |Fall|

≤
|X ′apx|
|X ′opt|

.

The second equality holds as X ′apx and X ′opt are disjoint from Fall; as they are solutions

in K′ that does not contain F . The last equality holds as |X ′apx|, |X ′apx|, and |Fall| are

non-negative and |X ′apx| ≥ |X ′opt|.
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4.2.1 Reductions to the minimum cut completion problem

Given a graph G = (V,E) and edge set E′ ⊆ E, the minimum cut completion

problem asks for a cut (S, S) with edge set ES that minimizes the symmetric difference

|ES ⊕ E′|. Essentially, the minimum cut completion problem asks for the cheapest (S, S)

cut such that the edges in E′ are free. In the next lemma we show that the minimum

cut completion problem generalizes the minimum bounded chain problem for embedded

complexes.

Lemma 4. For any d-dimensional instance of the minimum bounded chain problem, (K, γ),

there exists an instance of the minimum cut completion problem (G = (V,E), E′) that can

be computed in polynomial time, and a one-to-one correspondence between cuts in G and d-

chains with boundary γ in K. Moreover, if the cut (S, S) with edge set ES in G corresponds

to the d-chain Q in K then |ES ⊕ E′| = |Q|.

Proof. Let F be a feasible solution to the linear system ∂F = γ, such a solution can be

computed in polynomial time. We construct the minimum cut completion instance by

setting G = K∗ and E′ = F ∗.

Let Q be any other d-chain with ∂Q = γ, so ∂(Q⊕F ) = 0. By Alexander duality Q⊕F
partitions Rd+1 into an interior and exterior. Let (S, S) be the corresponding dual cut in

K∗ and let ES be the edge set of this cut. We have |ES ⊕ E′| = |ES ⊕ F ∗| = |Q∗| = |Q|.
Conversely, let (S, S) be a cut in K∗ with edge set ES . By cycle/cut duality ∂E∗S = 0.

Now, let Q = E∗S ⊕ F . Hence, ∂Q = γ. Finally, we have |Q| = |E∗S ⊕ F | = |ES ⊕ F ∗| =

|ES ⊕ E′|.

To make the bijection in the above proof explicit we summarize it as the following

composition of bijections

d-chain in K −⊕F←−−→ d-cycle in K Duality←−−−→ edge cut in K∗.

Next, we show via a similar argument that the cut completion problem also generalizes the

minimum homologous chain problem when the input complex is a weak pseudomanifold.

Lemma 5. For any d-dimensional instance of the minimum homologous chain problem

(M, D), where M is a weak pseudomanifold, there exists an instance of the minimum cut

completion problem (G = (V,E), E′) that can be computed in polynomial time, and a one-

to-one correspondence between cuts in G and d-chains in M that are homologous to D.
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Moreover, if the cut (S, S) with edge set ES in G corresponds to the d-chain Q in K then

|ES ⊕ E′| = |Q|.

Proof. We construct an instance (G,E′) of minimum cut completion as follows. For each

(d+1)-simplex v∗ inM we have a dual vertex v in G. V (G) contains one additional vertex,

vB. For each d-simplex e∗ if it is a face of two (d+ 1)-simplices u∗ and v∗ we add the edge

(u, v) to E(G). Otherwise, if e∗ is a face of only one (d + 1)-simplex u∗ we add the edge

(u, vB) to E(G). Finally, let E′ be the set of edges dual to γ.

Let Q be any d-chain homologous with γ, so Q⊕ γ is null-homologous. That is, there

exists a (d+ 1)-chain S∗ with ∂S∗ = Q⊕ γ. The cut (S, S) in G has cost |ES ⊕ E′| = |Q|
since E′ is dual to γ and ES is dual to Q ⊕ γ. Conversely, let (S, S) be a cut in G with

edge set ES . It follows that E∗S is null-homologous, so Q = E∗S ⊕ γ is homologous with γ

and its cost is |ES ⊕ E′|.

Again, we summarize the bijection in the proof of the preceding lemma. We start with

a d-chain homologous to γ, solve the linear system to obtain a (d+ 1)-chain, and then use

duality to obtain an edge cut. This corresponds to the following diagram

d-chain in M −⊕Q←−−→ d-cycle in M ∂−1

←−→ (d+ 1)-chain in M
Duality←−−−→ edge cut in M∗.

The operator ∂−1 is not a well-defined function as there exist up to two (d + 1)-chains

bounding every null-homologous cycle γ in a weak pseudomanifold. However, these (d+1)-

chains uniquely determine γ and we may view ∂−1 as a function mapping a d-cycle to a

partition of the (d+ 1)-simplices.

4.2.2 Algorithms for the minimum cut completion problem

In this section we obtain our approximation and fixed-parameter tractable algorithms

by reducing minimum cut completion to 2CNF deletion. The 2CNF deletion problem asks:

given an instance of 2SAT find the minimum number of clauses whose deletion makes the

instance satisfiable. We apply the following two lemmas to obtain our results. In in the

statements of the following lemmas n is the number of variables and m is the number of

clauses.
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Lemma 6 (Agarwal et al. [1]). There is a polynomial time algorithm for finding an

O(
√

log n)-approximation for the 2CNF deletion problem.

Lemma 7 (Razgon and O’Sullivan [85]). For an instance of 2CNF deletion that admits a

solution of size k there is an O(15k · k ·m3) time algorithm solving the instance.

It is worth noting that the algorithm in Lemma 6 is randomized as it relies on a

randomized semidefinite relaxation presented by Arora, Rao, and Vazirani [6]. We are now

ready to show our reduction.

Lemma 8. For the cut completion problem (G = (V,E), E′),

1. there is a polynomial time O(
√

log |V |)-approximation algorithm, and

2. there is an O(15k · k · |E|3) time exact algorithm, where k is the size of the optimal

solution.

Proof. Given a cut completion instance (G = (V,E), E′) we construct a 2CNF deletion

instance BG in polynomial time. Moreover for any cut (S, S) with edge set ES the number

of unsatisfied clauses in BG is |ES ⊕ E′|. The result follows from Lemmas 6 and 7.

We construct our 2CNF deletion instance BG from (G,E′) as follows. For each vertex

v ∈ V we have a variable b(v). For each edge (u, v) ∈ E we consider two cases. If (u, v) ∈ E′

we add the clauses b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v) to BG. If (u, v) /∈ E′ we add the clauses

b(u) ∨ ¬b(v) and ¬b(u) ∨ b(v) to BG. In both cases any truth assignment satisfies at least

one of the clauses, moreover there exists truth assignments of b(u) and b(v) that satisfy

both clauses.

Let (S, S) be a cut with edge set ES . Let bS be the indicator vector, indexed by v ∈ V
where bS(v) = 1 if and only if v ∈ S. Note that BS is a truth assignment for BG. We will

show that |ES ⊕ E′| is equal to the number of clauses that are not satisfied by bS in BG.

Specifically we show that for each edge (u, v) ∈ ES ⊕ E′ exactly one of its corresponding

clauses is satisfied and for each (u, v) /∈ ES ⊕ E′ both of its corresponding clauses are

satisfied.

If (u, v) ∈ ES ⊕E′ there are two cases to consider. In the first case we have (u, v) ∈ ES
and (u, v) /∈ E′, so we have the clauses b(u)∨¬b(v) and ¬b(u)∨b(v) in BG. Given any truth

assignment for b(u) and b(v) exactly one of these clauses is satisfied. In the second case

we have (u, v) /∈ ES and (u, v) ∈ E′, so we have the clauses b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v).
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Since (u, v) ∈ ES both b(u) and b(v) have the same truth assignment, hence only one of

the clauses is satisfied.

When (u, v) /∈ ES ⊕ E′ there are also two cases to consider. In the first case we have

(u, v) ∈ ES and (u, v) ∈ E′, so we have clauses b(u)∨ b(v) and (¬b(u)∨¬b(v) in BG. Since

(u, v) ∈ ES we have that b(u) and b(v) are given opposite assignments, so both clauses

are satisfied. Finally, when (u, v) /∈ ES and (u, v) /∈ E′ we have clauses b(u) ∨ ¬b(v) and

¬b(u) ∨ b(v). In this case b(u) and b(v) are given the same truth assignment, hence both

clauses are satisfied.

Theorems 7, 8, 9, and 10 follow from the observation that the dual graph of an em-

bedded d-complex has βd + 1 vertices and nd edges, and the dual graph of a (d+ 1)-weak

pseudomanifold has nd+1 + 1 vertices and nd edges.

4.3 Hardness of approximation

In this section we show hardness of approximation results for both minimum bounded

chain and minimum homologous chain. Our hardness results hold for low dimensions; d = 2

for minimum bounded chain and d = 1 for minimum homologous chain. In our result for

minimum bounded chain we point out that the problem is still hard even when the input

cycle in contained in the boundary of V∞. This restriction on the cycle is notable as it

closely resembles the assumption made for the polynomial time special case discussed in

Section 4.4. Our result for the minimum homologous chain problem shows hardness of

approximation for the homology localization problem on an orientable manifold.

In Sections 4.3.1 and 4.3.2 we reduce the minimum bounded chain and minimum ho-

mologous chain problems to the minimum cut completion problem defined in 4.2.1. We

show hardness of approximation results for the minimum cut completion problem in Section

4.3.3.

4.3.1 Minimum bounded chain to minimum cut completion

We show that the minimum cut completion problem reduces to a 2-dimensional instance

of the minimum bounded chain problem (K, γ), where the boundary of V∞ is in fact a

manifold and γ is a (possibly not connected) cycle on the boundary of V∞. Our hardness

of approximation result for the minimum bounded chain problem is based on this reduction.
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The high level idea motivating our reduction is rather simple. Given a graph G = (V,E)

we construct a 2-complex as follows. For each each vertex v ∈ V we have a topological

sphere v̂ punctured with deg(v) boundary components, and for each e ∈ E we have a topo-

logical sphere ê punctured with two boundary components. Finally, we glue the boundary

components of each ê to the boundary components corresponding to the endpoints of e.

The resulting topological space is a surface with genus equal to the dimension of H1(G).

In the reduction we will geometrically construct each v̂ as a cube and each ê as a tube

connecting two cubes. Finally, inside each tube ê we insert a wall dividing the tube into

two halves and call the resulting complex K. We have that dim(H2(K)) = |V |, and each

generator of H2(K) is a cube along with its attached half-tubes. Moreover, the dual graph

K∗ is isomorphic to G along with the extra vertex v∞. Our reduction naturally follows by

identifying a subset E′ ⊆ E with the cycle consisting of all boundaries of dividers on tubes

corresponding with E′. See Figure 4.1 for an illustration (up to homeomorphism) of our

construction. We are now ready to give our formal construction.

(a) The edges marked in green correspond
to the set E′ in the cut completion problem.
The edges marked in red are chosen to com-
plete the cut.

(b) The graph transformed into a surface.
The cut is represented by the green and red
cycles whose symmetric difference is null-
homologous.

Figure 4.1

Lemma 9. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.

There exists an instance of the 2-dimensional minimum bounded chain problem (K, γ) with

γ on the boundary of V∞ that can be computed in polynomial time, and a one-to-one

correspondence between cuts in G and 2-chains with boundary γ in K. Moreover, if the cut

(S, S) with edge set ES in G corresponds to the 2-chain Q in K then

|Q|
τ
− 1 ≤ |ES ⊕ E′| ≤

|Q|
τ
,
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where τ = 58m+ 2 and m is the number of edges in G.

Proof. Our construction is simple in high-level. We start from any embedding of G in R3,

and we thicken it to obtain a space, in which each edge corresponds to a tube. We insert a

disk in the middle of each tube; we call these disks edge disks. Then we triangulate all of

the 2-dimensional pieces. The dual graph of the complex that we build is almost G, except

for one extra vertex corresponding to V∞, and a set of extra edges, all incident to the extra

vertex v∞. We give our detailed construction below.

We consider the following piecewise linear embedding of G in R3; let n and m be

the number of vertices and edges of G, respectively. First, map the vertices of G into

{1, 2, . . . , n} on the x-axis. Now, consider m+ 2 planes h0, h1, . . . , hm+1 all containing the

x-axis with normals being evenly spaced vectors ranging from (0, 1, 1) to (0, 1,−1). We use

h1, . . . , hm for drawing the edges G. We arbitrarily assign edges of G to these plane, so each

plane will contain exactly one edge. Each edge is drawn on its plane as a three-segment

curve; the first and the last segment are orthogonal to x-axis and the middle one is parallel.

All edges are drawn in the upper half-space of R3. See Figure 4.5, left1.

Next, we place an axis parallel cube around each vertex. The size of the cubes must be

so that they do not intersect, fix the width of each cube to be 1/10. We refer to these cubes

as vertex cubes Then, we replace the part of each edge outside the cubes with a cubical

tube, called edge tube. We choose the thickness of these tubes sufficiently small so that

they are disjoint. We also puncture the cubes so that the union of all vertex cubes and

edges tubes form a surface; see Figure 4.5, left. (This surface will have genus m−n+ 1 by

Euler’s formula, which is the dimension of the cycle space of G)

Next, we subdivide each tube by placing a square in its middle; see Figure 4.5, right.

We refer to these squares as edge squares. Edge squares partition the inside of the surface

into n volumes. We observe that each of these volumes contains exactly one vertex of the

drawing of G, thus, we call them vertex volumes.

For our reduction to work, we need the weight of each 2-cycle to be dominated by the

weight of its edge squares. To achieve that we finely triangulate each edge square. For an

edge tube, we first subdivide its surface to 16 quadrangles as shown in Figure 4.3, left. Then,

we obtain a triangulation with 32 triangles by splitting each quadrangle into two triangles.

For a vertex cube, note that all the punctures are on the top face by our construction.

1Thanks to Amir Nayyeri for Figures 4.5, 4.3, and 4.4 in this chapter, which appeared in the published
version of this work [13].
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Figure 4.2: Left: an embedding of K3 in R3, and the thickened surface composed of blue
vertex cubes and pink edge tubes, right: an edge tube subdivided by an edge square.

We split all the other faces by dividing each of them into two triangles. For the top face,

we can obtain a triangulation in polynomial time; this triangulation will have 4 deg(v) + 8

triangles by Euler’s formula, where deg(v) is the degree of the vertex corresponding to the

cube. Therefore, the triangulation of each vertex cube will have 4 deg(v)+18 triangles, see

Figure 4.3, right. Therefore, there are
(∑

v∈V 4 deg(v) + 18
)

+ 32m ≤ 58m triangles that

are not part of edge squares. Finally, we triangulate each edge square into 58m+2 triangles

so that the cost of one edge square is greater than the sum of all triangles not contained

in edge squares. This triangulation can be done efficiently by subdividing triangles. The

subdivision is performed by inserting a vertex into the interior of the triangle and connecting

it with an edge to each vertex on the boundary of the triangle. The result is a new complex,

homeomorphic to the original, with two additional triangles. Overall, our complex K has

O(m2) triangles.

Figure 4.3: Left: subdividing the surface of an edge-tube to quadrangles, right: triangu-
lating the surface of a vertex cube.
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We are now done with the construction of K. Let B be the set of all triangles in edge

squares that correspond to edges in E′. Then, let γ = ∂B. We show an (almost) cost

preserving one-to-one correspondence between cuts in the cut completion problem in G

and chains with boundary γ in K.

Let (S, S) be a cut with edge set ES , note that the cost of this cut is |ES⊕E′| in the cut

completion problem (G,E′). In K, let VS be the symmetric difference of the vertex volumes

that correspond to vertices of S. The total weight of VS is between |ES | · (58m + 2) and

|ES | ·(58m+2)+58m. Similarly, the total weight of VS⊕B is between |ES⊕E′| ·(58m+2)

and |ES ⊕ E′| · (58m + 2) + 58m. Since we cannot get an exact count on the number of

edges in the subgraph induced by S we have a range of values for the weight of VS instead

of an exact weight. However, if ES and ES′ are two cuts with |ES | < |ES′ | then the weight

of VS is strictly less than the weight of VS′ by the construction of the edge squares.

On the other hand, let Q be a 2-chain with boundary γ in K. As γ does not intersect

the interior of any edge square, for each edge square either Q contains all of its triangles

or none of them. Also, Q ⊕ B has no boundary, thus its complement R3 \ (Q ⊕ B) is

disconnected. The interior of each vertex volume is completely inside one of the connected

components of R3 \ (Q⊕B), as by the construction Q⊕B must either contain the entire

vertex volume or none of it. Now, let S be the set of all vertices whose corresponding vertex

volumes are in the unbounded connected component of R3 \ (Q⊕B). The edges of the cut

(S, S) correspond to edge squares in Qs ⊕ B, where Qs is the set of edge square triangles

of Q. As B is in one-to-one correspondence to E′, it follows that the cut completion cost

of (S, S) is |Qs|
58m+2 . We have |Q| = |Qs| + |Qr| where Qr is the set of triangles in Q not

contained in edge squares. The size of |Qs| is 58m+ 2 per edge square, and |Qr| ≤ 58m by

construction. It follows that we have our desired inequality,

Q

58m+ 2
− 1 ≤ |ES ⊕ E′| ≤

Q

58m+ 2
.

The next lemma shows that an approximation algorithm for the minimum bounded

chain problem implies an approximation algorithm with almost the same quality for the

minimum cut completion problem.

Lemma 10. Let (G = (V,E), E′) be any instance of the minimum cut completion prob-

lem. For any α ≥ 1 and any ε > 0, there exists an instance of the 2-dimensional min-
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imum bounded chain problem (K, γ) that can be computed in polynomial time, such that

an α-approximation algorithm for (K, γ) implies a ((1 + ε)α)-approximation algorithm for

(G,E′), and γ is on the boundary of V∞.

Proof. Let ε > 0. Given an α-approximation algorithm for the minimum bounded chain

problem, we describe an ((1+ε)α)-approximation algorithm for the cut completion problem.

Let G = (V,E), and E′ ⊆ E be any instance of the cut completion problem, and let

(Sopt, Sopt) with edge set be an optimal solution for this instance. Our algorithm considers

two cases, based on whether |ESopt ⊕ E′| < 1/ε or not. It solves the problem under each

assumption and outputs the best solution it obtains in the end.

If |ESopt ⊕ E′| < 1/ε, then our algorithm finds the optimal solution in O(n1/ε+O(1))

time by considering all subsets of edges E′′ of size at most 1/ε as candidates for ESopt⊕E′.
From all candidates, we return the minimum E′′ such that E′′ ⊕ E′ is a cut. Note this is

an exact algorithm, so in this case we find the optimal solution.

Otherwise, if |ESopt ⊕ E′| ≥ 1/ε, we use the given α-approximation algorithm for the

minimum bounded chain problem for a simplicial complex K, and chain γ that corresponds

to (G,E′) by Lemma 9. Note that K is an unweighted simplicial complex piecewise linearly

embedded in R3 and γ is a cycle contained in the boundary of V∞.

Let Qopt be the corresponding 2-chain to (Sopt, Sopt) in K. Thus,
Qopt
τ − 1 ≤ |ESopt ⊕

E′| ≤ |Qopt|τ . In addition, let Q be the surface with boundary γ that the α-approximation

algorithm finds, so |Q| ≤ α · |Qopt|. Finally, let (S, S) be the cut corresponding to Q in

G via the one-to-one correspondence of Lemma 9. Therefore, Q
τ − 1 ≤ |ES ⊕ E′| ≤ |Q|

τ .

Putting everything together,

|ES ⊕ E′| ≤
|Q|
τ
≤ α · |Qopt|

τ
≤ α ·

(
|ESopt ⊕ E′|+ 1

)
. (4.1)

Since |ESopt ⊕ E′| ≥ 1/ε, we have: |ESopt ⊕ E′|+ 1 ≤ (1 + ε) · |ESopt ⊕ E′|. Therefore,

together with (4.1), we have a ((1 + ε)α)-approximation algorithm, as desired.

4.3.2 Minimum homologous cycle to minimum cut completion

We show a similar reduction from the cut completion problem to the minimum ho-

mologous cycle problem for 1-dimensional cycles on orientable 2-manifolds. The minimum

homologous cycle problem is the special case of the minimum homologous chain problem

when the input chain is required to be a cycle, so showing hardness of approximation
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for it implies hardness of approximation for the more general minimum homologous chain

problem.

Lemma 11. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.

For any α ≥ 1, there exists an instance of the 1-dimensional minimum homologous cycle

problem (M, γ) that can be computed in polynomial time such that an α-approximation for

(M, γ) implies an α-approximation for (G,E′).

Proof. We construct a 2-manifold M as in the proof of Lemma 9, but we omit the edge

squares. Each edge of G corresponds to a cycle with 4 edges in M; these cycles are the

boundaries of the omitted edge squares. We call these cycles edge rings. The connected

components of M after removing the edge rings correspond to the vertices of G, we call

these connected components vertex regions. We set γ to be equal to the set of edge rings

corresponding to E′. Intuitively, if τ is the minimum cycle homologous to γ we do not

want τ ⊕ γ to intersect the interior of any vertex region. That is, τ ⊕ γ is a collection of

edge rings and corresponds to a cut in G. To achieve this, we subdivide each edge not

contained in an edge ring into a long path. The result is an embedded graph with non-

triangular faces, which is not a simplicial complex. To fix this, we triangulate the inside of

each non-triangular face such that the shortest path between any two vertices on the face

remains the shortest path after the triangulation. Given any α-approximation of the new

complex we can obtain a smaller solution using only the edge rings, which corresponds to

a cut in G. Our formal construction follows.

Let τ = 4dαe|E| + 1; we subdivide each edge not contained in an edge ring τ times.

For each face of length ` > 3 we triangulate by adding `+ 1 concentric cycles, each with `

vertices, labeled γ0, . . . , γ`, where γ0 is the original face from the subdivided version ofM.

By vi,j we denote the jth vertex in γi. We add the edges (vi,j , vi+1,j and (vi,j , vi,j+1 mod `).

To complete the triangulation we add one additional vertex v at the center of γ` and add

an edge between it and each vertex on γ`. We call the new simplicial complex M′. See

Figure 4.4 for an example.

Let (Sopt, Sopt) be an optimal solution to the minimum cut completion instance (G,E′).

Suppose we can compute an α-approximation τapx of the minimum homologous cycle in-

stance (M′, γ), hence |τapx| ≤ α|τopt|. By our construction an optimal solution to (M′, γ)

has the same size as an optimal solution to (M, γ). As τapx is a cycle, if τapx crosses a cycle

γ0 it must cross it an even number of times. For any two consecutive vertices u, v ∈ γ0 in

τapx we replace the path between them with the shortest path contained in γ0. We call the
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Figure 4.4: Subdividing a face of length five; the outer face with white vertices is the
original face.

new cycle τ ′apx, since τ ′apx ≤ τapx we have that τ ′apx is also an α-approximation for (M′, γ).

Note that τ ′apx is a union of edge rings, otherwise |τ ′apx| > α|τopt|. It follows that τ ′apx cor-

responds to a cut ES′ with |τ ′apx| = 4|ES′ ⊕E′|. Hence, we have |ES′ ⊕E′| ≤ α|ESopt ⊕E′|.
Thus, ES′ is an α-approximation for (G,E′).

4.3.3 Hardness of minimum cut completion

It remains to show that the cut completion problem is hard to approximate. We

show this via a straightforward reduction from the minimum uncut problem: given a graph

G = (V,E), find a cut with minimum number of uncut edges. Note that the optimal cuts for

the minimum uncut problem and the maximum cut problem coincide, yet, approximation

algorithms for one problem do not necessarily imply approximation algorithm for the other

one.

Lemma 12. The minimum uncut problem is a special case of the minimum cut completion

problem.

Proof. Consider the cut completion problem for G = (V,E), and let E′ = E. Let (S, S) be

any cut with edge set ES . The cut completion cost of this cut is

|ES ⊕ E′| = |ES ⊕ E| = |E \ ES |,

which is the number of uncut edges by (S, S).

Now, we are ready to prove our hardness results.
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Proof of Theorem 11 and 12. The minimum uncut problem is hard to approximate within

a factor of (1+ε) for some ε > 0 [83]. In addition, it is hard to approximate within any con-

stant factor assuming the unique games conjecture [73, 63, 22, 64]. By Lemma 12, the cut

completion problem generalizes the minimum uncut problem. Finally, by Lemma 11 and

10, for any α > 1 and ε > 0, an α-approximation algorithm for the minimum bounded chain

problem or the minimum homologous cycle problem implies a ((1 + ε)α)-approximation

algorithm for the cut completion problem.

4.4 A polynomial time special case

We have shown hardness results, approximation algorithms and parameterized algo-

rithms for the minimum bounded chain problem. We showed that the problem is hard

to approximate even when the input cycle γ is on the boundary of V∞ of an unweighted

2-manifold embedded in R3. If γ is null-homologous on the boundary of V∞ there is an

exact polynomial time algorithm to find the minimum chain bound by γ. The assumption

that γ is null-homologous on the boundary of V∞ allows us to treat the problem as a gen-

eralization of the shortest st-path problem in planar graphs when s and t are contained

on the boundary of the unbounded face. Hence, we can generalize the duality between

shortest paths and minimum cuts in planar graphs to d-complexes embedded in Rd+1. The

algorithm was first found by Kirsanov and Gortler in the context of continuous variational

problems [66]. We provide a combinatorial proof of their theorem which is more useful in

the context of algorithms. Before describing the algorithm we prove the following lemma

about graph cuts, which will be useful in the proof of correctness of the algorithm.

Lemma 13. Let (S, S) and (S′, S′) be two (s, t)-cuts of a graph G with edge sets ES and

ES′, respectively. The symmetric difference ES ⊕ ES′ is the set of edges of a cut that has

s and t on the same side.

Proof. We show the edge set of the cut (S⊕S′, S ⊕ S′) is ES⊕ES′ . The statement follows

as s, t ∈ S ⊕ S′.
Let e = (u, v) ∈ ES ⊕ ES′ . Either, e ∈ ES and e /∈ ES′ or e /∈ ES and e ∈ ES′ .
In the first case, there are two possibilities up to symmetry of (u, v). Either u ∈ S ∩ S′

and v ∈ S ∩ S′, which implies u ∈ S ⊕ S′ and v ∈ S ⊕ S′, or u ∈ S ∩ S′ and v ∈ S ∩ S′,
which implies u ∈ S ⊕ S′ and v ∈ S ⊕ S′.

In the second case, there are again two possibilities up to symmetry of (u, v). Either
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u ∈ S ∩ S′ and v ∈ S ∩ S′, which implies u ∈ S ⊕ S′ and v ∈ S ⊕ S′, or u ∈ S ∩ S′ and

v ∈ S ∩ S′, which implies u ∈ S ⊕ S′ and v ∈ S ⊕ S′.

By Bd(V∞) we denote the set of d-simplices on the boundary of V∞. Let F ⊆ Bd(V∞)

be a d-chain such that ∂F = γ. Such an F exists by the assumption of this section. We

define a cut problem based on F . Let K∗ be the dual graph of the complex K. By the

definition of Bd(V∞), each edge of Bd(V∞)∗ is adjacent to v∞. We build the graph H from

K∗ by splitting v∞ as follows. We replace v∞ with two vertices v+
∞ and v−∞. We replace

the incident edges to v∞ as follows:

(i) A loop that is dual to a face in F is replaced by a (v−∞, v
+
∞) edge.

(ii) A loop that is dual to a face not in F is replaced by v+
∞-loops.

(iii) A non-loop edge (v∞, u) that is dual to a face in F is replaced by a (v−∞, u)-edge.

(iv) A non-loop edge (v∞, u) that is dual to a face not in F is replaced by a (v+
∞, u)-edge.

Figure 4.5: The modified dual graph of a simplicial complex whose outer shell is a triangu-
lated sphere. The vertical line represents the boundary input boundary γ which partitions
Bd(V∞) into two regions.

Note that all of the faces of F correspond to edges that are incident to v−∞. We are

now ready to prove the main theorem of the section.

Theorem 13. Let K be a simplicial complex embedded in Rd+1 and γ be a null-homologous

(d − 1)-cycle in Bd(V∞). A d-chain Γ is a minimum d-chain bounded by γ if and only if

Γ∗ is a minimum (v+
∞, v

−
∞)-cut in H.
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Proof. We show a one-to-one correspondence between d-chains with boundary γ in K and

(v−∞, v
+
∞)-cuts in H that preserves the cost. Let Γ be a d-chain with ∂Γ = γ. Since γ is

null-homologous in Bd(V∞), there exists F ⊆ Bd(V∞) such that ∂F = γ. It follows that

∂(Γ⊕ F ) = ∂Γ⊕ ∂F = 0, that is D ⊕ F is a d-cycle. Thus, by cycle/cut duality Γ∗ ⊕ F ∗

is a cut in K∗ that partitions the vertices into two sets X and Y . Assume, without loss of

generality, that v∞ ∈ X, and note that by splitting v∞ we obtain a (X\{v∞}∪{v−∞, v+
∞}, Y )-

cut. Hence, Γ∗ ⊕ F ∗ is a cut in both K∗ and H.

We show that any simple v−∞v
+
∞-path of H crosses Γ∗, therefore Γ∗ is a v−∞v

+
∞-cut. Let

β = (v−∞ = v0, v1, . . . , vk = v+
∞) be a simple v−∞v

+
∞-path in H. Let α be the closed simple

cycle in K∗ obtained by identifying v0 and vk in β. Since α is a closed cycle and Γ∗ ⊕ F ∗

is a cut in K∗, α crosses Γ∗ ⊕ F ∗ an even number of times. Therefore, β crosses Γ∗ ⊕ F ∗

in H an even number of times; as each edge of β is in Γ∗ ⊕ F ∗ in H if and only if the

corresponding edge of it in α is in Γ∗ ⊕ F ∗ in K∗. On the other hand, v0 = v−∞ is only

incident to edges from F ∗. In particular, (v0, v1) ∈ F ∗. If (v0, v1) ∈ Γ∗, then β crosses Γ∗

and so the statement holds. Otherwise, if (v0, v1) /∈ Γ∗, then the path (v1, . . . , vk) must

cross Γ∗ ⊕ F ∗ at least once. Since all F -edges are incident to v0 and β is simple we have

vi 6= v0 for any 0 < i ≤ k. Therefore, (v1, . . . , vk) must cross Γ∗ and so the statement

holds.

Conversely, let Γ∗ be a v−∞v
+
∞-cut in H. Since F ∗ is composed of all edges incident to

v−∞, it is a v−∞v
+
∞-cut as well. It follows that Γ∗ ⊕F ∗ is a cut in H that has v−∞ and v+

∞ on

the same side by Lemma 13. Therefore, Γ∗ ⊕ F ∗ is a cut in K∗; obtained after identifying

v−∞ and v+
∞. Now, by cycle/cut duality, Γ ⊕ F is a cycle in K, that is ∂(Γ ⊕ F ) = 0. As

∂F = γ, we have ∂Γ = γ and the proof is complete.

Now we compute the runtime of the presented algorithm. The time required to perform

the minimum cut computation dominates the preprocessing we perform on the dual graph.

A minimum st-cut in a graph with n vertices and m edges can be computed in O(nm) time

via the maximum flow algorithm of Orlin [81]. If K has m facets then the dual graph K∗

will have m edges. The number of vertices in H is equal to βd + 2. Hence, we can compute

the cut in O(βd ·m) time.
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Chapter 5: Generalized Flows and Cuts

Computing flows and cuts are fundamental algorithmic problems in graphs. In this

chapter we explore generalizations of these algorithmic problems in higher dimensional

simplicial complexes. Flows and cuts in simplicial complexes have natural algebraic defini-

tions arising from the theory of simplicial (co)homology. A flow is an element of the kernel

of the simplicial boundary operator, and a cut is an element of the image of the simplicial

coboundary operator. Note that when working with flows we assume coefficients over the

field R. These subspaces serve as generalizations of the cycle and cut spaces of a graph.

Note that when working with flows we assume coefficients over the field R. This generaliza-

tion has been studied by Duval, Klivans, and Martin in the setting of CW complexes [35].

We formulate the algorithmic problems of computing max-flows and min-cuts algebraically.

By forgetting about the underlying graph structure and focusing on the (co)boundary op-

erators, we obtain methods that naturally generalize to high dimensions. The topological

study of max-flows and min-cuts has been done by Ghrist and Krishnan [45]. They prove

a max-flow min-cut theorem for graphs using the directed homology theory; which is a

way to formalize the intuitive idea of “homology over the natural numbers”. Of course,

the natural numbers do not form a group and the intuitive idea is not well-defined. In

contrast, we work with the standard notion of homology and provide our max-flow min-cut

theorem in the context of linear programming.

In a graph an st-flow is an assignment of real values to the edges satisfying the conser-

vation of flow constraints: the net flow out of any vertex other than s and t is zero, and,

thus, the net flow that leaves s is equal to the net flow that enters t. Therefore, each st-flow

can be viewed as a circulation in another graph with an extra edge that connects t to s.

Circulations are elements of the cycle space of the graph with coefficients taken over R. In a

d-dimensional simplicial complex K the d-dimensional cycles are the formal sums (over R)

of d-dimensional simplices whose boundary is zero. Because there are no (d+ 1)-simplices

flows are the elements of the dth homology group Hd(K,R). The maximum flow problem

in a simplicial complex asks to find an optimal element of Hd(K,R) subject to capacity

constraints.

The max-flow min-cut theorem states that in a graph the value of a maximum st-flow is
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equal to the value of a minimum st-cut. This result is a special case of linear programming

duality. By rewriting the linear program in terms of the (co)boundary operator we obtain

a similar result for simplicial complexes. The question of whether or not a similar max-

flow min-cut theorem holds for simplicial complexes was asked, and left open, in a paper

by Latorre [70]. We give a positive answer to this question, but with a caveat. When

viewing flows and cuts from a topological point of view their linear programs are dual to

one another. However, we also provide a combinatorial definition of a cut which feels more

natural for a minimization problem. Topological and combinatorial cuts are equivalent

for graphs, but they become different in dimensions d > 1. Flows in higher dimension,

are dual to topological cuts, but not combinatorial cuts in general. From a computational

complexity viewpoint the two notions of cuts are very different. We show that computing

a minimum topological cut can be solved via linear programming, but that computing a

minimum combinatorial cut is NP-hard.

A closely related problem is the problem of computing a max-flow in a graph which

admits an embedding into some topological space. The most well-studied cases are planar

graphs and the more general case when the graph embeds into a surface [12, 18, 19, 40,

44, 50, 51, 57, 58, 76, 88]. Max-flows and min-cuts are computationally easier to solve in

surface embedded graphs, especially planar graphs. We consider this problem generalized

to simplicial complexes. Planar graphs are 1-dimensional complexes embedded in R2, in

Section 5.3 we consider the special case when a d-dimensional simplicial complex admits

an embedding into Rd+1. These complexes naturally admit a dual graph which we use

to compute maximum flows and minimum cuts (both topological and combinatorial). We

show that a maximum flow in a simplicial complex can be found by solving a shortest

paths problem in its dual graph. This idea was used by Hassin to solve the maximum

flow problem in planar graphs [50]. Further, we show that finding a minimum topological

cut can be done by finding a minimum cost circulation in its dual graph. By setting the

demand equal to one in the minimum cost circulation problem we obtain an algorithm

computing a minimum combinatorial cut.

Maximum flows in graphs can be computed using the Ford-Fulkerson algorithm. More-

over, the fact that the Ford-Fulkerson algorithm halts serves as a proof that there exists

a maximum integral flow when the graph has integral capacity constraints. In dimensions

d > 1 the maximum flow may be fractional, even with integral capacity constraints. The

problem arises due to the existence of torsion in simplicial complexes of dimension d > 1.

We show that despite the maximum flow being fractional the Ford-Fulkerson algorithm
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halts on simplicial complexes. However, in order for it to halt a special heuristic on picking

the high dimensional analog of an augmenting path must be implemented. Despite the

algorithm halting it could we could not prove a polynomial upper bound on the number of

iterations it takes.

5.1 Flows and cuts

In this section we give an overview of our generalizations of flows and cuts from graphs

to simplicial complexes. Flows and cuts in higher dimensional settings have been studied

previously. Duval, Klivans, and Martin have generalized cuts and flows to the setting of

CW complexes [35]. Their definitions are algebraic; defining cuts to be elements of im(δ)

and flows to be elements of ker(∂). Our definitions are closely related, but are motivated by

the algorithmic problems of computing maximum flows and minimum cuts. In Section 5.1.1

we give definitions of flows and cuts from from the perspective of algebraic topology, and

in Section 5.1.2 we give a combinatorial definition of a cut in a simplicial complex. The

distinction between the two types of cuts will be important when formulating the minimum

cut problem on simplicial complexes.

5.1.1 Topological flows and cuts

First we briefly recall the definition of an st-flow in a directed graph G = (V,E). An

st-flow f is a function f : E → R satisfying the conservation of flow constraint: for all

v ∈ V \ {s, t} we have
∑

(u,v)∈E f(u, v) =
∑

(v,u)∈E f(v, u). That is, the amount of flow

entering the vertex equals the amount of flow leaving the vertex. The value of f is equal

to the amount of flow leaving s (or equivalently, entering t). Alternatively, we may view

f as a 1-chain and we have ∂f = k(t − s) where k is the value of f . Note that t − s is a

null-homologous 0-cycle. More generally, for any null-homologous (d− 1)-cycle γ we call a

d-chain f with ∂f = kγ a γ-flow of value k. Note that under our naming convention an

“st-flow” in a graph would be called a (t− s)-flow. However, in the case of graphs we use

the traditional naming convention and call a flow from s to t an st-flow.

Definition 3 (γ-flow). Let K be a d-dimensional simplicial complex and γ be a null-

homologous (d − 1)-cycle in K. A γ-flow is a d-chain f with ∂f = kγ where k ∈ R. We

call k the value of the flow f and denote the value of f by ‖f‖. We say that f is feasible

with respect to a capacity function c : Kd → R+ if 0 ≤ f(σ) ≤ c(σ) for all σ ∈ Kd.
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Our definition of a γ-flow is very close to the algebraic definition which is element

of ker(∂). Given a simplicial complex K and a γ-flow f of value k we convert f into a

circulation, where a circulation is defined to be an element of ker(∂). To convert f into

a circulation we add an additional basis element to Cd(K), call it Σ, whose boundary

is ∂Σ = −γ. This operation is purely algebraic; we should think of it as operating on

the chain complex rather than the underlying topological space. Now we construct the

circulation f ′ = f+kΣ. We call any circulation built from a γ-flow a γ-circulation. Clearly,

f ′ ∈ ker(∂) in the new chain complex. Moreover, there is a clear bijection between γ-flows

and γ-circulations. The value of the circulation is the value of f ′(Σ), so this bijection

preserves the value.

We now shift our focus to the generalization of cuts to a simplicial complex. The

algebraic definition, elements of im(δ), is natural. The cut space of a graph is commonly

defined to be the space spanned by the coboundaries of each vertex. In a simplicial complex

K, removing the support of a d-chain in im(δ) increases dimHd−1(K). In a graph G,

removing the support of any 1-chain in im(δ) increases dimH0(G) which is equivalent to

increasing the number of connected components of G.

The above definition implies that a cut is a d-chain in a d-dimensional simplicial com-

plex. However, for our purposes we will define a cut to be a (d− 1)-cochain. To motivate

our definition we recall the notion of an st-cut in a graph. An st-cut in a graph is a parti-

tion of the vertices into sets S and T such that s ∈ S and t ∈ T . Define p : V (G)→ {0, 1}
such that p(v) = 1 if v ∈ S and p(v) = 0 if v ∈ T . The support of the coboundary of p is a

set of edges whose removal destroys all st-paths. That is, upon removing the support, the

0-cycle t− s is no longer null-homologous. Moreover, p is a 0-cochain with p(t− s) = −1.

The sign of p(t− s) will be important when we consider directed cuts. With this in mind

we define our notion of a γ-cut.

Definition 4 (γ-cut). Let K be a d-dimensional simplicial complex with weight function

c : Kd → R+ and γ be a null-homologous (d− 1)-cycle in K. A γ-cut is a (d− 1)-cochain

p such that p(γ) = −1. Denote the coboundary of p as the formal sum δ(p) =
∑
αiσi, we

define the size of a γ-cut to be ‖p‖ =
∑
|αic(σi)|.

Because of the requirement that p(γ) = −1 we call p a unit γ-cut. By relaxing this

requirement to p(γ) < 0 the cochain p still behaves as a γ-cut, but its size can become

arbitrarily small by multiplying by some small value ε > 0. We justify our definition with

the following proposition which shows that removing the support of the coboundary of a
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γ-cut prevents γ from being null-homologous.

Proposition 1. Let K be d-dimensional simplicial complex and p be a γ-cut. The cycle γ

is not null-homologous in the subcomplex K \ supp(δ(p)).

Proof. By way of contradiction let Γ be a d-chain in K \ supp(δ(p)) such that ∂Γ = γ.

Since δ(p) = 0 in K \ supp(δ(p)), we have that 〈Γ, δ(p)〉 = 0 in K \ supp(δ(p)). However,

this implies that 0 = 〈Γ, δ(p)〉 = 〈∂Γ, p〉 = 〈γ, p〉 = p(γ) = 0, a contradiction as p is a γ-cut

and p(γ) = −1.

5.1.2 Combinatorial cuts

Alternatively, we can view a γ-cut as a discrete set of d-simplices rather than a d-chain.

In the case of graphs a combinatorial st-cut is just a set of edges whose removal disconnects

s from t. This distinction will become important when we consider the minimization

problem of finding a minimum cost set of d-simplices whose removal prevents γ from being

null-homologous.

Definition 5 (Combinatorial γ-cut). Let K be a d-dimensional simplicial complex with

weight function c : Kd → R+ and γ be a null-homologous (d − 1)-cycle in K. A com-

binatorial γ-cut is a set of d-simplices C ⊆ Kd such that γ is not null-homologous in

K \ supp(C). The size of a combinatorial γ-cut is defined by the sum of the weights of the

d-simplices ‖C‖ =
∑

σ∈C c(σ).

Lemma 1 in Chapter 3 shows a relationship between γ-cuts and combinatorial γ-cuts.

Removing a combinatorial γ-cut C from K increases dimHd−1(K). This is because re-

moving C must decrease the rank of ∂d and by duality this also decreases the rank of δd

which increases the dimension of Hd−1(K) ∼= Hd−1(K). It follows that C must contain the

support of some coboundary. Given an additional minimality condition on C we show that

C is equal to the support of some coboundary.

In graphs the linear program solving the minimum st-cut problem takes as input a

directed graph and returns a set of directed edges whose removal destroys all directed

st-paths. This is called a directed cut. After removing the directed cut the 0-cycle t − s
may still be null-homologous; we can find a 1-chain with boundary t − s using negative

coefficients to traverse an edge in the backwards direction. In order to generalize the

minimum cut linear program to simplicial complexes we will need to define a directed
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combinatorial γ-cut, which requires the additional assumption that the d-simplices of K
are oriented.

Definition 6 (Directed combinatorial γ-cut). Let K be an oriented d-dimensional sim-

plicial complex with weight function c : Kd → R and γ be a null-homologous (d − 1)-cycle

in K. A directed combinatorial γ-cut is a set of d-simplices C ⊂ Kd such that in

K\ supp(C) there exists no d-chain Γ with non-negative coefficients such that ∂Γ = γ. The

size of a directed combinatorial γ-cut is defined by the sum of the weights of the d-simplices

‖C‖ =
∑

σ∈C c(σ).

Given a directed graph consider an st-cut given by the cochain definition. That is, a

0-cochain p : V (G)→ {0, 1} with p(s) = 1 and p(t) = 0 partitioning V into S and T . The

support of δ(p) consists of two types of edges: edges leaving S and entering T , and edges

leaving T and entering S. If e ∈ E leaves S and enters T we have (p ◦ ∂)(e) = −1 and if

e leaves T and enters S we have (p ◦ ∂)(e) = 1. To construct a directed st-cut we simply

take all of the edges mapped to −1. The following proposition shows that we can build a

directed combinatorial γ-cut from a coboundary just like in the case of directed graphs.

Proposition 2. Let p be a γ-cut with coboundary δ(p) =
∑
αiσi. The set of d-simplices

C = {σi | αi < 0} is a directed combinatorial γ-cut.

Proof. By way of contradiction let Γ be a non-negative d-chain in K \ C with ∂Γ = γ.

By the definition of C we have 〈Γ, δ(p)〉 ≥ 0 in K \ C. Construct a new chain complex

by adding an additional basis element Σ to Cd(K) such that ∂Σ = −γ. By construction

〈Σ, δ(p)〉 = −p(γ) = 1, hence we have 〈Γ + Σ, δ(p)〉 > 0. However, Γ + Σ is a d-cycle

and δ(p) is a d-coboundary, so the Hodge decomposition ensures that they are orthogonal.

Hence, 〈Γ + Σ, δ(p)〉 = 0, a contradiction.

To conclude the section we will show that computing a minimum combinatorial γ-cut

is NP-hard. As we will see in Section 5.2 minimum topological γ-cuts can be computed

with linear programming. Our hardness result holds for both the directed and undirected

cases. Our hardness result is a reduction from the well-known NP-hard hitting set problem

which we will now define. Given a set S and a collection of subsets Σ = (S1, . . . , Sn) where

Si ⊆ S the hitting set problem asks to find the smallest subset S′ ⊆ S such that S′∩Si 6= ∅
for all Si. We call such a subset S′ a hitting set for (S,Σ).

Theorem 14. Let K be a d-dimensional simplicial complex and γ be a null-homologous

(d− 1)-cycle. Computing a minimum combinatorial γ-cut is NP-hard for d ≥ 2.
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Proof. Our proof is a reduction from the hitting set problem. First we consider the case

when d = 2 then we generalize to any d ≥ 2. Let S be a set and Σ = (S1, . . . , Sn) where

each Si ⊆ S. We construct a 2-dimensional simplicial complex K from S and Σ in the

following way. For each Si ∈ Σ construct a triangulated disk Di such that ∂Di = γ. That

is, each Di shares the common boundary γ. To accomplish this we construct each Di by

beginning with a single triangle t with ∂t = γ and repeatedly adding a new vertex in

the center of some triangle with edges connecting it to every vertex in that triangle. By

this process we can construct a disk containing any odd number of triangles as each step

increments the number of triangles in the disk by two. Moreover, at each step the boundary

of the disk is always γ. We construct each disk Di such that Di consists of one triangle ti,s

for each element s ∈ Si and potentially one extra triangle t′i in the case that |Si| is even.

Next, for each s ∈ S and Si with s ∈ Si, we construct the quotient space by identifying

each ti,s into a single triangle. A minimum combinatorial γ-cut C must contain exactly

one triangle from each Di and without loss of generality we can assume C does not contain

any t′i. If t′i ∈ C then by minimality it is the only triangle in C∩ supp(Di) and we can swap

it with any other triangle in Di without increasing the size of the cut. By construction C

is a hitting set for (S,Σ) since each C ∩ supp(Di) 6= ∅ for all Di.
To perform the above construction in higher dimensions we simply start with a sin-

gle d-simplex σ = [v1, . . . , vd+1] with boundary ∂σ = γ. We subdivide σ in the fol-

lowing way: add an additional vertex vd+2 and replace σ with the d-simplices σi :=

[v1, . . . , vi−1, vd+2, vi+1, . . . , vd+1] for each 1 ≤ i ≤ d + 1. At each step we increase the

number of d-simplices by d; moreover, at each step the complex remains homeomorphic to

a d-dimensional disk. Our final complex will have at most d extra d-simplices so for any

fixed dimension d the size of the complex is within a constant factor of the size of the given

hitting set instance. It remains to show that the subdivision process does not change the

boundary of the disk. To accomplish this we will show that ∂σ =
∑d+1

i=1 ∂σi.

For each σi the boundary ∂σi has d terms in its sum; each term is a (d − 1)-simplex

which consists of d vertices. Consider the matrix A such that the entry Ai,j contains the

jth term of ∂σi. Note that no term in the jth column will contain the vertex vj . Also note
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that the sum of the diagonal of A is equal to ∂σ. Below is an example for d = 3.
v2v3v4 −v5v3v4 v5v2v4 −v5v2v3

v5v3v4 −v1v3v4 v1v5v4 −v1v5v3

v2v5v4 −v1v5v4 v1v2v4 −v1v2v5

v2v3v5 −v1v3v5 v1v2v5 −v1v2v3


The matrix A is almost symmetric. The entries Ai,j and Aj,i contain the same vertices

but possibly differ up to a sign or a permutation of the vertices. We want to show that

Ai,j = −Aj,i so that the sum
∑d+1

i=1 ∂σi only contains diagonal which is equal to ∂σ.

The ordering of vertices in Ai,j differs from Aj,i by the placement of vd+2, which we now

characterize. Let vi,j denote the vertex in σi that is not included in the term Ai,j . Without

loss of generality assume Ai,j is in the upper triangle. Then vd+2 is in the ith position of

Ai,j because vi,j appears after it in the ordering of σi. It follows that vd+2 is in the (j−1)th

position in the term Aj,i since vj,i must appear before vd+2 in the ordering of σj . So, the

position of vd+2 in Ai,j and Aj,i differs by |i−j+1| and this is the number of transpositions

needed to permute Ai,j into Aj,i. When i ≡ j mod 2 the terms Ai,j and Aj,i have the same

sign, but differ by an odd permutation so Ai,j = −Aj,i. Similarly, when i 6≡ j mod 2 the

terms Ai,j and Aj,i have opposite signs, but differ by an even permutation so Ai,j = −Aj,i
which concludes the proof.

5.2 Linear programming

In this section we model max-flow and min-cut for simplicial complexes as linear pro-

gramming problems. In Section 5.2.1 we prove a duality theorem reminiscent of the well-

known theorem for graphs. However, our theorem comes with a caveat. A max-flow is dual

to a directed combinatorial cut arising from a topological cut. That is, a max-flow is dual

to a coboundary δ(p) =
∑nd

i=1 αiσi minimizing the quantity ‖δ−(p)‖ =
∑

αi<0 |αi|. This is

the coboundary, or topological cut, which minimizes the absolute value its negative coeffi-

cients. In the case of graphs this is equivalent to a min-cut. This is due to the fact that

the boundary matrix of a graph is always totally unimodular. If we restrict our domain

to topological cuts the linear program finds a minimum directed cut. However, this is not

the case for combinatorial cuts.

In Section 5.2.2 we show that there exist simplicial complexes with integral capaci-
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ties whose maximum flow value is fractional. This is unsurprising given that Theorem 2

tells us that the boundary matrix any simplicial complex with relative torsion cannot be

totally unimodular. However, the explicit example we construct is useful in the proof of

Theorem 16 which states that computing an integral max-flow is NP-hard.

In Section 5.2.3 we show that there may exist combinatorial cuts of smaller magnitude

than what is returned by the linear program. Note that in this case we are viewing

the output of the linear program as a combinatorial cut. This statement should also

be unsurprising given the lack of total unimodularity in the boundary matrix. In the

unweighted case the size of a combinatorial cut of a cycle is upper bound by the number of

chains bounding the cycle, which is integral. However, in the presence of relative torsion

the linear program may find a coboundary with fractional coefficients which allows for

the possibility of a coboundary whose support exceeds the number of bounding chains of

the cycle. We show an explicit example where this happens. Finally, in Theorem 17 we

show that when the complex is relative torsion-free the linear program returns a minimum

combinatorial cut, which gives us the same duality as the case for graphs.

5.2.1 Max-flow min-cut

A simplicial flow network is a tuple (K, c, γ) where K is an oriented d-dimensional

simplicial complex, c is the capacity function which is a non-negative function c : Kd →
R, and γ is a null-homologous (d− 1)-cycle. In a simplicial flow network we work with real

coefficients; that is, we consider the chain groups Ck(K,R). In order to utilize the Hodge

decomposition (Theorem 1) we modify Cd(K) by adding an additional basis element Σ

such that ∂Σ = −γ. Moreover, we extend the capacity function such that c(Σ) =∞. This

allows us to work with circulations instead of flows while leaving the solution unchanged.

The notation nd will refer to the number of basis elements in Cd(K,R) which is now one

more than the number of d-simplices in the underlying simplicial complex.

The goal of the maximum flow problem is to find a d-chain f obeying the capacity

constraints such that ∂f = kγ where k ∈ R is maximized. Equivalently, we find a d-cycle f

which maximizes f(Σ). The linear program for the max-flow problem in a simplicial flow

network is identical to the familiar linear program for graphs, but expressed in terms of

the coboundary operator. In a graph, conservation of flow at a vertex v is the constraint

δ1(v) · f = 0; to formulate the linear program in higher dimensions we simply replace

vertices with (d−1)-simplices. The Hodge decomposition states that cycles are orthogonal
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to coboundaries, so conservation of flow ensures that f is indeed a cycle. We now state the

linear program for max-flow in a simplicial flow network.

maximize f(Σ)

subject to δ(τ) · f = 0 for each τ ∈ Kd−1

0 ≤ f(σ) ≤ c(σ) for each σ ∈ Kd

(LP1)

We dualize LP1 to obtain a generalization of the minimum cut problem in directed

graphs. To make the dualization more explicit we will write out LP1 in matrix form:

maximize s · f subject to Af ≤ b and f ≥ 0, where we have

A =

 ∂

−∂
Ind

 , b =

0nd−1

0nd−1

c

 , s =

[
0nd−1

1

]
.

The matrix A has dimension (2nd−1 + nd) × nd. In our notation Ik is the k × k identity

matrix and 0k is the k× 1 column vector consisting of all zeros. Since the value of the flow

is equal to f(Σ) the vector s is all zeros except for the final entry which is indexed by Σ

and receives an entry equal to one. Further, c is the nd× 1 capacity vector indexed by the

d-simplices such that the entry indexed by σ has value equal to c(σ).

We can now state the dual program in matrix form: minimize y · b subject to yTA ≥ s
and y ≥ 0. The vector y is a (2nd−1 + nd)× 1 column vector indexed by both the (d− 1)-

simplices and the d-simplices. However, only the entries indexed by d-simplices contribute

to the objective function since b is zero everywhere outside of the capacity constraints.

We will denote the truncated vector consisting of entries indexed by d-simplices by yd and

the entry corresponding to the d-simplex σ ∈ Kd will be denoted by yd(σ). Similarly we

have two truncated vectors y1
d−1 and y2

d−1 corresponding to the entries indexed by the

(d− 1)-simplices. Moreover, the rows of yTA ≥ s are in the form

(y1
d−1 − y2

d−1)T∂ + yd ≥ s.

For simplicity we define yd−1 = y1
d−1− y2

d−1 and write yd−1(τ) for the entry indexed by the

(d− 1)-simplex τ . Putting this together, we state the dual linear program as follows.
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minimize
∑
σ∈Kd

yd(σ)c(σ)

subject to yd−1 · ∂σ + yd(σ) ≥ 0 for each σ ∈ Kd

yd−1 · ∂Σ + yd(Σ) = 1

yd ≥ 0

(LP2)

Note the strict equality in the second constraint does not follow from the duality. However,

we can assume a strict equality since if yd−1 · ∂Σ + yd(Σ) > 1 we can multiply [yd−1, yd]
T

by some scalar ε < 1 to make the inequality tight. This multiplication only decreases the

value of
∑
yd(σ)c(σ) so it does not change the optimal solution.

In the case of graphs LP2 has dual variables for vertices and edges. Moreover, there

exists an integral solution such that each vertex is either assigned a 0 or a 1 since a graph

cut is a partition of the vertices. The second inequality requires y0(s) = 1 and y0(t) = 0. To

see this, when solving an st-cut on a graph, the basis element Σ is an edge with ∂Σ = s− t,
and y1(Σ) = 0 otherwise the solution is infinite. This naturally defines a partition of the

vertices: S containing vertices assigned a 1, and T containing vertices assigned a 0. The

constraints force an edge to be assigned a 1 if it leaves S and enters T , otherwise it is

assigned a 0. This solution can be interpreted as a 0-cochain p with p(st) = 1, or in the

notation of our definition of a simplicial cut: p(t − s) = −1. Further, y1(e) = 1 for every

edge e that is negative on δ(p) and a 0 otherwise, hence y1 fits our definition of a directed

st-cut in a 1-complex. We will show the same result holds in higher dimensions; that is,

yd is a directed γ-cut arising from the (d− 1)-cochain yd−1.

Lemma 14. Let y = [yd−1, yd]
T be an optimal solution to LP2. The set supp(yd) is a

directed combinatorial γ-cut.

Proof. Note that yd−1 can be interpreted as a (d − 1)-cochain. Since c(Σ) = ∞ we have

yd(Σ) = 0, otherwise the solution is infinite. It follows from the second constraint that

−yd−1(γ) = yd−1(−γ) = yd−1 · ∂Σ = 1, hence yd−1(γ) = −1 making yd−1 a γ-cut. Expand-

ing δ(yd−1) into a linear combination of d-simplices
∑
αiσi and applying the first inequality

constraint gives us the set equality supp(yd) = {σi | αi < 0} since yd(σi) = 0 precisely

when αi > 0. Thus, the result follows from Lemma 1.

Lemma 15. Let p be a γ-cut with coboundary δ(p) =
∑
αiσi and let δ(p)− =

∑
αi<0 αiσi.

The vector [p,−δ(p)−]T is a finite feasible solution to LP2.
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Proof. We view the cochains p and −δ(p)− as vectors and let them take the roles of

yd−1 and yd, respectively. The first constraint is satisfied since for all σ ∈ Kd we have

−δ(p)−(σ) = −p ·∂(σ) when p ·∂(σ) is negative, and −δ(p)−(σ) = 0 otherwise. The second

constraint and the finiteness of the solution is satisfied by the fact that p(γ) = −1.

Lemma 14 tells us that a solution to LP2 yields a directed combinatorial γ-cut. Re-

call, by Proposition 2 every γ-cut p yields a directed combinatorial γ-cut by taking the

coboundary δ(p) =
∑
αiσi and considering the negative components δ(p)− = {σi | αi < 0}.

By Lemma 15 δ(p)− is a feasible solution to LP2; the cost of this solution is c · δ(p)−. The

coefficients αi need not always equal one; hence in general we have ‖C‖ 6= c · δ(p)−. It

follows that LP2 need not return a minimum directed combinatorial γ-cut. In Theorem 17

we will give conditions describing when LP2 returns a directed combinatorial γ-cut. To

conclude the section we state our main theorem about LP2 whose proof is immediate from

Lemmas 14 and 15.

Theorem 15. Let y = [yd−1, yd]
T be an optimal solution to LP2. The set supp(yd) is a

directed combinatorial γ-cut such that yd = δ(yd−1)−. Moreover, yd minimizes c · δ(p)−

where p ranges over all γ-cuts.

5.2.2 Integral solutions

In this section we provide an example of a simplicial flow network with integral capacity

constraints and fractional maximum flow. By Theorem 2 such a network must contain

some relative torsion. This is achieved by the inclusion of a Möbius strip in our simplicial

flow network. Our example will be used later in Theorem 16 showing that computing a

maximum integral flow in a simplicial flow network is NP-hard.

Fractional maximum flow We will now explicitly describe a simplicial flow network

with integral capacities whose maximum flow value is fractional. LetM be a triangulated

Möbius strip with boundary ∂M = 2α+ γ such that two vertices in α have been identified

making α a simple cycle. This identification makes γ a figure-eight. Now let D be a

triangulated disk oriented such that ∂D = −α. See Figure 5.1 for an illustration. Call

the resulting complex MD. The capacity function c has c(t) = 1 for each triangle t ∈
MD. Now we solve the max-flow problem on (MD, c, γ). Note that for any flow f we

have f(t1) = f(t2) for all triangles t1, t2 ∈ M; moreover, for all t1, t2 ∈ D we also have
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Figure 5.1: A triangulated disk D (left) and Möbius stripM (right). The Möbius strip has
two points on its boundary identified forming the vertex u. In red we have the input cycle
(a figure-eight) γ and we set α = uwvu. We orient the complex such that ∂M = γ + 2α
and ∂D = −α. The capacity on each simplex in both the disk and Möbius strip is one.

f(t1) = f(t2). The value of any flow f on (MD, c, γ) is equal to its value on M, and in

order to maintain conservation of flow we must have f(D) = 2f(M). Now, the capacity

constraints imply that the maximum flow f has f(M) = 1/2 and f(D) = 1 . We have

∂f = 1
2∂M+ ∂D = 1

2γ + α− α. Hence, the value of f is equal to 1/2.

Maximum integral flow Given a simplicial flow network (K, c, γ) with integral capac-

ities we consider the problem of finding the maximum integral flow. That is, a d-chain

f ∈ Cd(K,Z) obeying the capacity constraints such that ∂f = kγ where k ∈ Z is max-

imized. We show the problem is NP-hard by a reduction from graph 3-coloring. Our

reduction is inspired by a MathOverflow post from Sergei Ivanov showing that finding a

subcomplex homeomorphic to the 2-sphere is NP-hard [55]. In the appendix we adapt the

proof to show that the high dimensional generalization of computing a directed path in

a graph is also NP-hard. Given a graph G we construct a 2-dimensional simplicial flow

network whose maximum flow is integral if and only if G is 3-colorable.

Theorem 16. Let (K, c, γ) be a simplicial flow network where K is a 2-complex and c is

integral. Computing a maximum integral flow of (K, c, γ) is NP-hard.

Proof. Let G = (V,E) be a graph. We will construct a simplicial flow network (K, c, γ)

such that its maximum flow is integral if and only if G is 3-colorable.

We start our construction with a punctured sphere S containing |V | + 1 boundary

components called γ and βv for each v ∈ V . For each boundary component βv we construct

three disks Rv, Bv, Gv each with boundary −βv. These disks represent the three colors in

our coloring: red, blue, and green. We refer to these disks as color disks and use Cv to

denote an arbitrary color disk associated with v and use k ∈ {r, b, g} to denote an arbitrary
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color. On each color disk Cv we add a boundary component for each edge e = (u, v) incident

to v. By βv,e,k we denote the boundary component corresponding to the vertex v, edge

e, and color k. For each edge e = (u, v) and each pair of boundary components βu,e,ku

and βv,e,kv with ku 6= kv we construct a tube with boundary components −βu,e,ku and

−βv,e,kv denoted Te,ku,kv . When ku = kv = k we construct a tube Te,k,k and puncture it

with a third boundary component α and construct a negatively oriented real projective

plane RPe,k with boundary ∂RPe,k = −2α. We call the resulting complex K and assign a

capacity c(σ) = 1 for every triangle σ in K.

We will show that a maximum integral flow f of K has value equal to 1 if and only if

G is 3-colorable. The following four properties of a maximum integral flow f imply that G

is 3-colorable.

• f must assign exactly one unit of flow to each triangle in S since the value of f is

equal to f(S).

• For each vertex v ∈ V exactly one color disk Cv is assigned one unit of flow while the

other two color disks associated with v are assigned zero units of flow. Otherwise,

either conservation of flow is violated or some color disk is assigned a fractional flow

value.

• For each edge e = (u, v) ∈ E exactly one tube Te,ku,kv with ku 6= kv must be assigned

one unit of flow with all other tubes associated with e assigned zero units of flow.

The tube Te,ku,kv assigned one unit of flow is the tube connecting the color disks Cv
and Cu that are assigned one unit of flow by the previous property.

• f assigns zero flow to every Te,k,k and RPe,k since otherwise the triangles in RPe,k
would need to have 1/2 units of flow assigned to them to maintain conservation of

flow.

These four properties imply that the set of color disks {Cv | f(σ) = 1, ∀σ ∈ Cv} corresponds

to a 3-coloring of G. Conversely, given a 3-coloring of G we assign a flow value of one to

each color disk corresponding to the 3-coloring. We extend this assignment to a γ-flow

of value one by assigning a flow value of one to S and the tubes corresponding to the

3-coloring.
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5.2.3 Integral cuts

The goal of this section is to show that for simplicial complexes relative torsion-free

in dimension d − 1 there exists optimal solutions to LP2 whose support is a minimum

combinatorial γ-cut. Note that by Theorem 2 a simplicial complex that is relative torsion-

free in dimension d−1 has a totally unimodular d-dimensional boundary matrix. The total

unimodularity is key to our proof. However, we first provide an example of a complex (with

relative torsion) whose optimal solution’s support does not form a minimum combinatorial

γ-cut. Our construction is a slight modification of MD defined in Section 5.2.2.

Figure 5.2: The simplicial complex MD with a wedge sum of two disks W identified to
the figure-eight γ. In red we have a 1-cochain which assigns a value of −1/2 to each red
edge. The coboundary of the red cochain assigns a value of −1/2 to one triangle in D and
a value of −1/2 to two triangles in W. The value of the red cochain coincides with the
value of the maximum γ-flow. However, its support is not a minimum combinatorial γ-cut.
A minimum combinatorial γ-cut picks one triangle from D and one triangle from W.

Consider the simplicial complex constructed by taking MD and glueing a wedge sum

of two disks W along the figure-eight γ. That is, ∂W = γ. We give every triangle in the

resulting complex a capacity equal to one. A maximum γ-flow has value 3/2, so the dual

program finds a γ-cut of the same value. One potential optimal solution is a (d−1)-cochain

whose coboundary assigns a value of −1/2 to two triangles in W and a value of −1/2 to

one triangle in D. The support of this coboundary has weight equal to three, however a

minimal combinatorial γ-cut has weight two by taking only one triangle from W and one

from D. See Figure 5.2 for an illustration.

Now, we show that when K is relative torsion-free in dimension d−1 LP2 has an optimal
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solution whose support is a minimum directed combinatorial γ-cut. Specifically, we show

that a solution existing on a vertex of the polytope defined by the constraints of LP2 is a

cochain yd−1 with negative coboundary yd such that yd(σ) ∈ {0, 1} for all σ ∈ Kd hence∑
yd(σ)c(σ) = ‖ supp(yd)‖. That is, the value of a vertex solution to LP2 is equal to the

cost of supp(yd) as a directed combinatorial γ-cut.

Theorem 17. Let K be d-dimensional simplicial complex that is relative torsion-free in

dimension d−1 and y = [yd−1, yd]
T be an optimal vertex solution to the dual program. The

set supp(yd) is a minimum directed combinatorial γ-cut.

Proof. We can write the constraint matrix of LP2 as the 2nd × (nd + nd−1) block matrix

A =

[
δ Ind

0nd Ind

]
.

Since K is relative torsion-free in dimension d − 1 Theorem 2 tells us that ∂d is totally

unimodular; further, we have that ∂T = δ is also totally unimodular. Total unimodularity

is preserved under the operation of adding a row or column consisting of exactly one com-

ponent equal to 1 and the remaining components equal to 0, so A is totally unimodular [89,

Section 19.4]. We write LP2 as the linear system Ax ≥ b where b is a nd + nd−1 dimen-

sional vector with exactly one component equal to 1 and the remaining components equal

to 0. Let y = [yd−1, yd]
T be an optimal vertex solution to LP2. For every (d− 1)-simplex

τ ∈ Kd−1 we either have yd−1(τ) ≥ 0 or yd−1(τ) ≤ 0. Let I ′nd−1
be the matrix whose

rows correspond to these inequalities. Note that I ′nd−1
is a diagonal matrix with entries

in {−1, 1}. Now we consider the (2nd + nd−1) × (nd + nd−1) dimensional linear system

A′x ≥ b′ where

A′ =

 δ Ind
0 Ind

I ′nd−1
0


and b′ is constructed by appending extra zeros to b. We construct y′ from y similarly. Note

that A′ is totally unimodular and y′ is a vertex solution of the system. There exists a vertex

v of the polyhedron P ⊆ Rnd+nd−1 corresponding to the linear system such that A′y′ =

v ≥ b′ such that nd−1 + nd constraints are linearly independent and tight. Hence, there is

an (nd−1 + nd)× (nd−1 + nd) square submatrix A′′ with A′′y′ = b′′ where b′′ is b′ restricted

to the tight constraints. We will use Cramer’s rule to show that the vertex solution y has
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components coming from the set {−1, 0, 1}. Let A′′i,b′′ be the matrix obtained by replacing

the ith column of A′′ with b′′. By Cramer’s rule we compute the ith component of y as

yi =
det(A′′

i,b′′ )

det(A′′) . Since both A′′i,b′′ and A′′ are totally unimodular we have vi ∈ {−1, 0, 1}.
Further, we know that A′′ is non-singular because it corresponds to linearly independent

constraints.

By the above argument we know that an optimal solution y to LP2 has all of its

components contained in the set {−1, 0, 1}. The constraint yd ≥ 0 means that for all d-

simplices σ we have yd(σ) ∈ {0, 1} and
∑

σ∈Kd yd(σ)c(σ) = ‖ supp(yd)‖. Hence, supp(yd)

is a minimum directed combinatorial γ-cut.

5.3 Embedded simplicial complexes

In this section we consider a simplicial flow network (K, c, γ) where K is a d-dimensional

simplicial complex with an embedding into Rd+1. Alexander duality implies that Rd+1 \K
consists of βd + 1 connected components. We call these connected components voids;

exactly one void is unbounded and we denote the voids by Vi for 1 ≤ i ≤ βd+1. Given

an embedding into Rd+1, computing the voids of K can be done in polynomial time [31].

Further, we assume that the d-simplices are consistently oriented with respect to the voids.

The embedding guarantees that every d-simplex σ appears on the boundary of at most

two voids; by our assumption if σ appears on the boundary of two voids then it most be

oriented positively on one and negatively on the other. We denote the boundary of the

void Vi by Bd(Vi). Every d-simplex contained in the support of some d-cycle is on the

boundaries of exactly two voids; it follows that the boundaries of any set of βd voids is a

basis of Hd(K).

In order to state our theorems we need one additional assumption on K. We as-

sume there exists some void Vi containing two unit γ-flows Γ1,Γ2 whose supports partition

Bd(Vi): supp(Γ1) ∩ supp(Γ2) = ∅ and supp(Γ1) ∪ supp(Γ2) = Bd(Vi). This assumption

makes our problem analogous to an st-flow network in a planar graph such that s and t

appear on the same face. The existence of two unit γ-flows partitioning the boundary is

analogous to the two disjoint st-paths on the boundary of the face. It will be convenient

to take the negation of Γ1 and treat it as a unit (−γ)-flow; otherwise the assumption con-

flicts with the assumed consistent orientation. This is equivalent as it does not change the

support of the flow, so for the rest of the section we will take Γ1 to be a unit (−γ)-flow.

From K we construct its directed dual graph K∗ as follows. Each void becomes a vertex
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of K∗. Each d-simplex on the boundary of two voids becomes an edge; since we assumed the

d-simplices are consistently oriented we direct the dual edge from the negatively oriented

void to the positively oriented void. The remaining d-simplices only appear on one void

and become loops in K∗. For a d-simplex σ on the boundary of voids u and v we denote its

corresponding dual edge σ∗ = (u∗, v∗) and we weight the edges by the capacity function:

c∗(σ∗) = c(σ). Let v∗i be the vertex dual to the void whose boundary is partitioned by

supp(Γ1) and supp(Γ2). We split v∗i into two new vertices denoted s∗ and t∗. The edges

incident to v∗i whose dual d-simplices were contained in supp(Γ1) become incident to s∗,

and the edges whose dual d-simplices were contained in supp(Γ2) become incident to t∗. We

add the directed edge (t∗, s∗) and set its capacity to infinity; c∗((t∗, s∗)) = ∞. Returning

to the analogy of a planar graph with s and t on the same face, splitting v∗i is analogous to

adding an additional edge from t to s which splits their common face into two. However,

for our purposes we are only concerned with the algebraic properties of the construction

and do not actually need to modify the simplicial complex.

We need to update the chain complex associated with K to account for the voids and

the splitting of v∗i . We add an additional basis element Σ to Cd(K) such that ∂Σ = γ and

give it infinite capacity; c(Σ) = ∞. In our construction Σ is dual to the edge (t∗, s∗). In

our planar graph analogy Σ plays the role of an edge from t to s drawn entirely in the

outer face; to make this precise we will need to add an additional chain group Cd+1(K).

We add each void Vj with j 6= i as a basis element of Cd+1(K) and define the boundary

operator as ∂d+1Vj =
∑

σ∈Bd(v)(−1)kσσ where kσ = 0 if σ is oriented positively on Vj and

kσ = 1 if σ is oriented negatively on Vj . Next we add additional basis elements S and T

whose boundaries are defined by ∂d+1S = Γ1 + Σ and ∂d+1T = Γ2 − Σ. The inclusion of

Cd+1(K) results in a valid chain complex since by definition the image of ∂d+1 under each

basis element is a d-cycle. Moreover, in the new complex we have Hd(K) ∼= 0 since the

boundaries of the voids generate Hd(K).

Given our new chain complex we can extend the dual graph K∗ to a dual complex;

this construction is reminiscent of the dual of a polyhedron. We define the dual complex

by the isomorphism of chain groups Ck(K∗) ∼= Cd−k+1(K). The dual boundary operator

∂∗k : Ck(K∗) → Ck−1(K∗) is the coboundary operator δd−k+2, and the dual coboundary

operator δ∗k : Ck−1(K∗) → Ck(K∗) is the boundary operator ∂d−k+2. The primal bound-

ary operator commutes with the dual coboundary operator, and the primal coboundary

operator commutes with the dual boundary operator. We summarize the duality in the

following diagram.
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Cd+1(K) Cd(K) . . . C0(K)

C0(K∗) C1(K∗) . . . Cd+1(K∗)

∼=

∂d+1

∼=

∂d

δd+1

∂1

δd δ1

∼=
δ∗1

∂∗1

δ∗2

∂∗2

δ∗d+1

∂∗d+1

We now have enough structure to state our duality theorems. In Section 5.3.1 we show

that computing a max-flow for (K, c, γ) is equivalent to computing a shortest path from s∗

to t∗ in K∗. In Section 5.3.2 we show that computing a minimum cost γ-cut p is equivalent

to computing a minimum cost unit s∗t∗-flow in K∗.

5.3.1 Max-flow / shortest path duality

We compute a shortest path from s∗ to t∗ in K∗ using a well-known shortest paths

linear program. Details on the linear program can be found in [38].

maximize dist(t∗)

subject to dist(s∗) = 0

dist(v∗)− dist(u∗) ≤ c∗((u∗, v∗)) ∀ (u∗, v∗) ∈ E

(LP3)

The solution to LP3 is a function dist : V (K∗) → R which maps a vertex to its distance

from s∗ under the weight function c. By duality, dist is a (d + 1)-cochain mapping the

voids to R. In the following theorem we will show that dist is equivalent to a γ-flow with

value equal to dist(t∗).

Theorem 18. Let (K, c, γ) be a simplicial flow network where K is a d-dimensional simpli-

cial complex embedded into Rd+1 with two unit γ-flows whose supports partition the bound-

ary of some void Bd(Vi). There is a bijection between γ-flows of (K, c, γ) and s∗t∗-paths in

K∗ such that the value of a γ-flow equals the length of its corresponding s∗t∗-path.

Proof. Recall, by our discussion in Section 5.1 there is a value-preserving bijection between

γ-flows and γ-circulations in K and the value of a γ-circulation f is given by f(Σ). We

can write f as a linear combination of d-cycles and by our construction there is a basis

for the d-cycle space given by βd elements of im ∂d+1. To form our basis we pick every

element of im ∂d+1 except ∂d+1S. Hence, f can be written as a linear combination f =∑βd−1
i=0 αiBi + αTBT where ∂d+1Vi = Bi and ∂d+1BT = T . We construct a (d + 1)-

cochain P by the mapping P (Vi) = αi, P (S) = 0, P (T ) = αT . Dual to P is a 0-cochain
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on the vertices of K∗ which we call dist. By construction we have dist(s∗) = 0. Since

K is consistently oriented on the voids and f obeys the capacity constraints we have

dist(v∗) − dist(u∗) ≤ c∗((u∗, v∗)) for every edge (u∗, v∗). Finally, we have dist(t∗) = f(Σ)

since f(Σ) = P (T )− P (S) = αT .

Conversely, let dist be some vector satisfying the constraints of LP3. As dist is a cochain

on the vertices of K∗ by duality we may view dist as an element of Cd+1(K) hence ∂(dist) is

a circulation in K obeying the capacity constraints. Further, we have that the component

of ∂(dist) indexed by Σ is equal to dist(t∗)−dist(s∗) = dist(t∗). Hence, ‖∂(dist)‖ = dist(t∗)

which completes the proof.

5.3.2 Min-cut / min-cost flow duality

We begin this section by stating the minimum cost flow problem in graphs. The mini-

mum cost flow problem asks to find the cheapest way to send k units of flow from s to t.

An instance of the minimum cost flow problem is a tuple (G,w, c, k) where G = (V,E) is a

directed graph, w, c ∈ C1(G), and k ∈ R. The 1-chains represent the weight and capacity

of each edge, and k is the demand of the network. The goal of the minimum cost flow

problem is to find an st-flow obeying the following constraints.

minimize
∑
e∈E

w(e)f(e)

subject to δ(v) · f = 0 ∀v ∈ V \ {s, t}

0 ≤ f(e) ≤ c(e)

δ(s) · f = −k

δ(t) · f = k

The first two constraints are conservation of flow and capacity constraints. The third and

fourth are the demand constraints which say f must send exactly k units of flow from s to t;

note that only one of these constraints is necessary. We will compute a minimum directed

γ-cut in K by solving the minimum cost flow problem with k = 1 in K∗. We assume there

is a weight function w : Kd → R+ on the d-skeleton of K, which after dualizing becomes a

weight function w∗ on the edges of K∗. In the following theorem the capacity function is

not needed, so we will assume each edge in K∗ has infinite capacity.
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Theorem 19. Let K be a d-dimensional simplicial complex embedded into Rd+1 with two

unit γ-flows whose supports partitions the boundary of some void Bd(Vi). There is a bijec-

tion between γ-cuts p in K and unit s∗t∗-flows f in K∗ such that ‖p‖ =
∑
w∗(e)f(e).

Proof. Let p be a γ-cut in K and let p̄ be its negation; that is, p̄ is a (d − 1)-cochain

with p̄(γ) = 1. By construction we have δ(p̄)(Σ) = p̄((∂Σ) = 1. We define f to be the

image of δ(p̄) under the duality isomorphism. Since p̄∗ is a 2-chain in K∗ and f = ∂∗(p̄∗)

we see that f is a 1-circulation in K∗. By removing the edge Σ∗ = (t∗, s∗) from f we

see that f is an s∗t∗-flow with ‖f‖ = 1 since f(Σ∗) = δ(p̄)(Σ) = 1. Finally, we have

‖p‖ = ‖p′‖ =
∑
w(σ)δ(p)(σ) =

∑
w(σ∗)f(σ∗).

Conversely, let f∗ be a 1-circulation in K∗ with f(Σ∗) = 1. By assumption we have

Hd(K) ∼= 0 and by duality H1(K∗) ∼= 0. It follows that f∗ can be written as a linear

combination of boundaries f∗ =
∑
αiB

∗
i where B∗i ∈ im ∂∗2 . Let p∗ be a 2-chain with

∂∗2p
∗ = f∗. Dual to f∗ is a d-coboundary f =

∑
αiBi where Bi ∈ im(δd) and dual to p∗

is a (d − 1)-cochain p with δ(p) = f . We have that p̄ is a γ-cut since p̄(γ) = p̄(∂Σ) =

δ(p̄)(Σ) = −f(Σ) = −f∗(Σ∗) = −1. Finally, we have
∑
w∗(e)f∗(e) =

∑
|w(σ)δ(p)(σ)| =

‖p‖ = ‖p̄‖.

Corollary 1. Let K be a d-dimensional simplicial complex embedded in Rd+1 with two

unit γ-flows partitioning some Bd(Vi). There is a polynomial time algorithm computing a

minimum directed combinatorial γ-cut.

Proof. We solve the minimum cost circulation problem in K∗ setting the demand and every

capacity constraint equal to one. The resulting flow is dual to a γ-cut p in K. Since the

minimum cost circulation is integral we have ‖ supp(δ(p))‖ = ‖p‖. That is, the cost of p as

a γ-cut equals the cost of supp(δ(p)) as a combinatorial γ-cut.

5.4 Ford-Fulkerson algorithm

In this section we show how the Ford-Fulkerson algorithm can be used to compute a

maximum flow of simplicial flow network (K, c, γ). In a simplicial flow network the Ford-

Fulkerson algorithm picks out a augmenting chain at every iteration which is a high

dimensional generalization of an augmenting path. As shown in Section 5.2.2 a maximum

flow of a simplicial flow network with integral capacities may not be integral, so it is not

immediate that Ford-Fulkerson is guaranteed to halt. To remedy this, our implementation
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of Ford-Fulkerson contains a heuristic reminiscent of the network simplex algorithm. Our

heuristic guarantees that at every iteration of Ford-Fulkerson the flow is a solution on

a vertex of the polytope defined by the linear program. Hence, our heuristic makes our

implementation of Ford-Fulkerson into a special case of the simplex algorithm. It follows

that Ford-Fulkerson does halt on a simplicial flow network, but the running time may

be exponential. Our heuristic for picking augmenting chains takes O(nω+1) time since it

requires solving O(n) linear systems, each taking O(nω) time using standard methods [56].

In Section 5.4.3 we show that solving a particular type of linear system reduces to finding an

augmenting chain, giving us an imprecise lower bound on the complexity of our heuristic.

We begin this section by defining the concepts of the residual complex and of aug-

menting chains which serve as high dimensional generalizations of the residual graph and

augmenting paths used in the Ford-Fulkerson algorithm for graphs. We show that a flow is

maximum if and only if its residual complex contains no augmenting chains, generalizing

the well-known graph theoretic result. This work is an extension of previous work done by

Latorre who showed one direction of the theorem and leaving the other open [70].

5.4.1 The residual complex

We now present our definitions of the residual complex and an augmenting chain.

Definition 7 (Residual complex). Let (K, c, γ) be a simplicial flow network and f be a

feasible flow on the network. We define a new simplicial flow network called the residual

complex to be the tuple (Kf , cf , γ) constructed in the following way. The d-skeleton of Kf
is the union Kd∪−Kd, that is, for each d-simplex σ in K we add an additional d-simplex −σ
whose orientation is opposite of σ. (Kf )d′ = (K)d′ for dimensions d′ < d. The residual

capacity function cf : (Kf )d → R is given by

cf (σ) =

c(σ)− f(σ) σ ∈ Kd,

f(σ) −σ ∈ Kd.

Definition 8 (Augmenting chain). Let Kf be a residual complex for the simplicial flow

network (K, c, γ). An augmenting chain is a d-chain Γ ∈ Cd(Kf ) such that Γ =
∑
αiσi

and ∂Γ = γ with αi ≥ 0.

Note that an augmenting chain need not obey the residual capacity constraint cf . This
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is because after finding an augmenting chain the amount of flow sent through the chain

will be normalized by the coefficients αi producing a new chain respecting the capacity

constraints. The following two lemmas prove the main result of the section. The first of

which was observed by Latorre [70].

Lemma 16 (Latorre [70]). Let (K, c, γ) be a simplicial flow network. If f is a maximum

flow then Kf contains no augmenting chains.

Proof. Let Γ =
∑
αiσi be an augmenting chain in Kf and let α = min{ 1

αi
cf (σi)}. Define

the new flow as follows

f ′(σ) =

f(σ) + α · αi σ = σi,

f(σ)− α · αi −σ = σi.

We have f(σi) + α · αi ≤ f(σi) + cf (σi) = c(σi) and f(σi)− α · αi ≥ f(σi)− cf (σi) = 0 so

f ′ obeys the capacity constraints. To show that f ′ obeys conservation of flow we compute

the following equality∑
σ∈Kd

f ′(σ)∂(σ) =
∑

σ∈Kd\supp(Γ)

f(σ)∂(σ) +
∑

σi∈supp(Γ)

(f(σi)± α · αi)∂(σi)

= α · ∂

 ∑
σi∈supp(Γ)

αiσi


= 0.

Lemma 17. Let (K, c, γ) be a simplicial flow network. If f is a flow such that Kf contains

no augmenting chains then f is a maximum flow.

Proof. By way of contradiction assume that f is not a maximum flow and g is some other

flow with higher value than f . We show that the d-chain g − f is an augmenting chain in

Kf . First, we note that the boundary of g − f is equal to (‖g‖ − ‖f‖)γ implying g − f
obeys conservation of flow, so all that remains is to check that g − f obeys the capacity

constraints in Kf . Let σ be a d-simplex in K, there are two cases to consider. First, if

f(σ) ≤ g(σ) we have g(σ) − f(σ) ≤ c(σ) − f(σ) = cf (σ) and the capacity constraint is

obeyed. Second, if g(σ) < f(σ) we interpret this as applying |g(σ) − f(σ)| flow to −σ.

Hence, |g(σ)− f(σ)| = f(σ)− g(σ) < f(σ) = cf (σ) which concludes the proof.
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Lemmas 16 and 17 give us the main theorem of the section.

Theorem 20. Let (K, c, γ) be a simplicial flow network. A flow f is a maximum flow if

and only if Kf contains no augmenting chains.

5.4.2 Augmenting chain heuristic

In this section we provide a heuristic for the Ford-Fulkerson algorithm that is guaranteed

to halt on a simplicial flow network. Our example in Section 5.2.2 shows that a maximum

flow may have fractional value, so it’s not immediately clear that Ford-Fulkerson halts on

all simplicial flow networks. To remedy this our heuristic ensures that at each step the flow

corresponds to a vertex of the flow polytope (defined in the next paragraph). As there are

a finite number of vertices, and the value of the flow increases at every step, it follows that

under this heuristic Ford-Fulkerson must halt. Under our heuristic Ford-Fulkerson becomes

a special case of the simplex algorithm. Our heuristic is reminiscent of the network simplex

algorithm which maintains a tree at every iteration. See the book by Ahuja, Magnanti,

and Orlin for an overview of the network simplex algorithm [3].

We define the flow polytope of (K, c, γ) to be the polytope P ⊂ Rnd defined by

the constraints of the maximum flow linear program LP1. A vertex of the polytope P

is any feasible solution to LP1 with at least nd tight linearly independent constraints.

We will ensure that at every step of Ford-Fulkerson our flow f is a vertex of P . To

do this we will make sure that the d-simplices corresponding to non-tight constraints of

LP1 form an acyclic complex. Some straightforward algebra implies that this condition is

enough to make at least nd constraints tight. Let Hf be the subcomplex of d-simplices

“half-saturated” by f ; that is, σ ∈ Hf if and only if its capacity constraint is a strict

inequality: 0 < f(σ) < c(σ). The half-saturated simplices do not make either of their

two corresponding constraints tight, while d-simplices not in Hf make exactly one of their

corresponding constraints tight. We require that Hf be an acyclic complex at each step

of Ford-Fulkerson. In the case of graphs, this just means that Hf is a forest. For a d-

dimensional complex it means that Hd(Hf ) = 0. Acyclic complexes have been studied by

Duval, Klivans, and Martin who show that they share many properties with forests and

trees in graphs [36]. The following lemma shows that if Hf is acyclic then f is a vertex of

the flow polytope.

Lemma 18. Let f be a feasible flow for the d-dimensional simplicial flow network (K, c, γ).



66

If the subcomplex of half-saturated d-simplices Hf is acyclic then f is a vertex of the flow

polytope P .

Proof. In order for f to be a vertex of P we need to show that at least nd of the constraints

of LP1 are tight, and that these nd tight constraints are linearly independent. As f is a

flow the 2nd−1 constraints ensuring conservation of flow are always tight. It follows that

we have nd − βd tight linearly independent conservation of flow constraints corresponding

to a basis for im δd. As Hf is acyclic we have that | supp(Hf )| ≤ nd − βd since at least

one d-simplex from each basis element of Hd(K) must be missing from Hf . This implies

that at most 2(nd− βd) of the 2nd capacity constraints are not tight; equivalently, at least

2nd−2(nd−βd) = 2βd of the capacity constraints are tight. Since Hf is acyclic we can pick

a set of βd d-simplices Σ such that dimHd(K\Σ) = 0 and dimHd−1(K\Σ) = dimHd−1(K).

Each d-simplex σ ∈ Σ corresponds to some tight capacity constraint, and since removing

σ does not change the dimension of Hd−1 it is not contained in im δd. It follows that

the tight capacity constraint corresponding to σ is linearly independent from the nd − βd
conservation of flow constraints. Finally, since each tight capacity constraint corresponds

to a unique σ they are all linearly independent from each other.

At each iteration of Ford-Fulkerson we want to pick an augmenting chain such that

the resulting flow leaves Hf acyclic. It’s not clear how to pick such an augmenting chain.

However, no matter what augmenting chain we pick we can always repair the flow in a way

that the resulting flow leaves Hf acyclic. We describe our method for repairing the flow in

the following lemma.

Lemma 19. Let f be a feasible flow for the d-dimensional simplicial flow network (K, c, γ).

If the subcomplex of half-saturated d-simplices Hf is not acyclic then in O(nω+1) time we

can construct a new flow f ′ such that Hf ′ is acyclic and ‖f‖ = ‖f ′‖.

Proof. Let f be a feasible flow such thatHf is not acyclic. In polynomial time we compute a

basis for Hd(Hf ). Let Σ =
∑
αiσi be a basis element of Hd(Hf ) and let α = min{ 1

αi
cf (σi)}.

As in Lemma 16 we construct the new flow f ′ by

f ′ =

f(σ) + α · αi σ = σi

f(σ)− α · αi −σ = σi
.

The new flow f ′ saturates some d-simplex in Σ and does not introduce any new d-cycles to

Hf as it only affects the half-saturated edges. We call the new subcomplex of half-saturated



67

simplices Hf ′ and observe that dimHd(Hf ′) < dimHd(Hf ). Since f ′ is constructed by

adding a d-cycle to f we have that ‖f‖ = ‖f ′‖. We repeat the process of computing a

homology basis for Hf ′ and saturating some basis element until Hf ′ is acyclic.

It remains to compute the running time of the above procedure. Computing a homology

basis takes O(nω) time . To repair the flow we need to make at most O(n) homology basis

computations, hence the total running time is O(nω+1).

To wrap up the section, we state our main theorem whose proof is immediate from

Lemmas 18 and 19.

Theorem 21. Given a simplicial flow network (K, c, γ) we can compute a maximum flow

f by using the Ford-Fulkerson algorithm with the following heuristic: at every iteration pick

an augmenting chain such that the subcomplex of half-saturated d-simplices Hf is acyclic.

5.4.3 Lower bounds

We have shown a heuristic for which given a simplicial flow network (K, c, γ) Ford-

Fulkerson is guaranteed to halt with a maximum flow. In the worst case our algorithm

runs in exponential time. In this section we focus our attention on the time required

to find an augmenting chain. The running time of our heuristic is determined by the

time it takes to compute the augmenting chain and repair the flow at each iteration of

the algorithm. Computing the augmenting chain takes O(nω) time by solving the linear

system. Repairing the flow takes O(nω+1) time since it requires O(n) homology basis

computations which each take time O(nω). We show that it is unlikely that this running

time can be substantially improved. More specifically, we show that finding a non-negative

solution to a linear system Ax = b when A has entries in {−1, 0, 1} reduces to computing

an augmenting chain for (K, c, γ), hence the complexity of solving a linear system in this

form serves as a lower bound on computing an augmenting chain. Given a linear system

we construct a 2-complex with a 1-cycle γ such that finding a 2-chain Γ with non-negative

coefficients and ∂Γ = γ is equivalent to finding a non-negative feasible solution to the linear

system. Further, the complex K used in the reduction is relatively torsion-free, so the total

unimodularity of its boundary matrix cannot be used to speed up the computation. Our

reduction is essentially the same as one used by Chen and Freedman to show homology

localization over Z2 is NP-hard [23]. However, we modify it slightly since we consider

coefficients over R. We only give a proof sketch as our reduction is almost identical to that
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of Chen and Freedman’s.

Theorem 22. Let Ax = b be a linear system where A has entries in {−1, 0, 1}. In poly-

nomial time we can construct a 2-dimensional, relatively torsion-free, simplicial complex

K and a 1-cycle γ such that if a 2-chain Γ is an augmenting chain for γ then it is a

non-negative solution to Ax = b.

Proof. We construct a cell complex K from A as follows. For each of the m rows we

construct a 1-cycle Ci. For each column vector vj we construct a punctured sphere Tj

with boundary components Ci,j , for each vi,j = 1 and −Ci,j for each vi,j = −1. Define the

1-cycle γ to be b with respect to the basis given by the boundary components of K. By

our construction a vector x = (x1, . . . , xn) is a feasible solution to Ax = b if and only if the

2-chain
∑
xiTi has boundary γ. Hence, computing an augmenting chain for γ is equivalent

to computing a non-negative solution to the linear system. It remains to show that K can

be triangulated into a simplicial complex. We refer the reader to [23] for a triangulation.

To see that K is relatively torsion-free we refer to reader to [30] which characterizes relative

torsion in 2-complexes by forbidding certain Möbius subcomplexes.
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Chapter 6: Resistance and Capacitance

In this section we introduce the concepts of effective resistance and effective capac-

itance of a cycle γ in a simplicial complex. These concepts are topological generalizations

of graph theoretic notions that were originally studied in the context of electrical net-

works [65]. Intuitively, in a graph the effective resistance between s and t is a measure

of “how connected” s and t are to one another, and there are several interesting applica-

tions illustrating this. Effective resistance forms a metric on the vertices of graph [68]. It

is proportional to the expected length of a random walk beginning and ending at s and

including t [21]. It is proportional to the probability that an edge {s, t} is included in a

random spanning tree [65]. The random subgraph of a graph obtained by keeping an edge

{s, t} with probability proportional to the effective resistance between s and t approximates

the spectrum of the Laplacian of the original graph [91]. Effective capacitance has been

defined to be used as a parameter for a quantum algorithm deciding st-connectivity [59].

The concept of effective resistance in simplicial complexes has been studied in previous

work, but it seems our treatment of effective capacitance in simplicial complexes is new.

Previously there have been two competing definitions for effective resistance in simplicial

complexes. Kook and Lee [69] as well as Osting, Palande, and Wang [82] define the effective

resistance as a quantity associated with the boundary of a d-simplex. This is consistent

with the view that the effective resistance is a quantity associated with a pair of vertices s

and t. Note that the d-simplex is not required to exist in the complex; only the boundary

is required to be present. Hasen and Ghrist define the effective resistance to be a quantity

associated with a null-homologous cycle [49] which is a more general than the previous

definition since the boundary of a d-simplex can be made null-homologous by including

the d-simplex in the complex. Our definition of effective resistance is equivalent to that of

Hasen and Ghrist.

A few results about effective resistance in graphs have been generalized to simplicial

complexes. Kook and Lee show that the probability a d-simplex appears in a spanning

acyclic subcomplex is proportional to the effective resistance of its boundary [69]. A span-

ning acyclic subcomplex is a high dimensional generalization of a spanning tree, sometimes

called a hypertree, and shares many of the same properties as a spanning tree [36]. Osting,
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Palande, and Wang show that the random subcomplex obtained by keeping a d-simplex

with probability proportional to its boundary’s effective resistance results in a complex

which approximates the spectrum of the (d− 1)-up Laplacian [82].

Our definitions of effective resistance and capacitance heavily rely upon our study of

generalized flows and cuts presented in Chapter 5. The effective resistance and capacitance

of a cycle γ are the sizes of the minimum unit γ-flow and the minimum γ-cut. However,

we minimize the flow and cut with respect to the `2-norm rather than the `1-norm. In this

Section 6.2 we will provie upper bounds on effective resistance and capacitance that are

polynomial in both the number of d-simplices and the size of the relative torsion subgroups

of the complex. In general the size of a relative torsion subgroup can be exponential in

the number of d-simplices. In Section 6.2.1 we provide explict examples of complexes with

effective resistance and capacitance that is exponential with respect to the number of d-

simplices. In Section 6.3 we show that effective resistance and capacitance can be used to

parameterize the query complexity of a quantum algorithm that decides whether or not a

cycle is null-homologous in a simplicial complex.

6.1 Definitions of Effective Resistance and Capacitance

We now begin with our definitions of effective resistance and capacitance. Our definition

of effective resistance requires the notion of a γ-flow defined in Chapter 5. We recall the

definition of a unit γ-flow. Throughout this section we work with weighted simplicial

complexes and assume there is a weight function w : Kd → R+. By W we denote the

diagonal matrix whose entries are the weights of the d-simplices. Intuitively, these weights

represent the capacitance of an electrical network which has an inverse relationship with

the resistance.

Definition 9. Given a d-dimensional simplicial complex K with weight function w : Kd →
R and a (d−1)-dimensional null-homologous cycle γ, a unit γ-flow is a d-chain f ∈ Cd(K)

such that ∂f = γ.

Recall that the definition of a γ-flows in Chapter 5 included any d-chain f such that

∂f = kγ. In this chapter we only consider the case when k = 1, hence the name unit γ

flow. Next, we define the flow energy of a unit γ-flow which is almost equivalent to the

definition of ‖f‖2 but accounts for the weight function.

Definition 10. Given a d-dimensional simplicial complex K with weight function w :
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Cd(K)→ R+ and a unit γ-flow f , the flow energy of f on K is

J(f) = fTW−1f =
∑
σ∈Kd

f(σ)2

w(σ)
.

Finally, we define the effective resistance of γ which just minimizes over the flow

energy of each unit γ-flow.

Definition 11. Given a d-dimensional simplicial complex K and a (d − 1)-dimensional

cycle γ in K if γ is null-homologous in K the effective resistance of γ in K is given by

the size of the minimum energy unit γ-flow,

Rγ(K) = min
f∈Cd(K) : ∂f=γ

J(f).

If γ is not null-homologous in K we have Rγ(K) =∞.

Our definition of effective resistance is equivalent but different than the original. Tra-

ditionally, the effective resistance of γ is defined as the quadratic form γTL+γ where

L = ∂d+1Wδd is the d-dimensional weighted up-Laplacian; W denotes the nd × nd matrix

whose diagonal contains the weights of the d-simplices. By L+ we denote the Moore-

Penrose pseudoinverse of L. In the following theorem we show that the two definitions are

equivalent. The equivalence is well-known folklore in graphs, and the proof relies on the

fact that L+γ is a minimum energy unit γ-flow.

Theorem 23. Let K be a d-dimensional simplicial complex and let γ be a null-homologous

(d− 1)-cycle. The effective resistance of γ in K has the equality Rγ(K) = γTL+γ.

Proof. We use two well-known properties of the Moore-Penrose pseudoinverse. For any ma-

trix B = AAT we have B+ = (AT )+A+, and for any matrix B we have B+v = arg min{u |
Bu = v}. We proceed with the following calculation:

L = ∂d+1Wδd

= ∂d+1W
1/2W 1/2δd

= (∂d+1W
1/2)(∂d+1W

1/2)T ,

from which we conclude that L+ = (∂d+1W
1/2)T )+(∂d+1W

1/2)+. Using the fact that for
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any matrix (BT )+ = (B+)T we can express the quadratic form as

γTL+γ = 〈(∂d+1W
1/2)+γ, (∂d+1W

1/2)+γ〉,

which is the magnitude of the smallest vector f with ∂d+1W
1/2f = γ; we choose f to be

the vector minimizing this quantity. By our construction we have that W 1/2f is a unit

γ-flow. We will prove that W 1/2f minimizes the flow energy. From the definition of flow

energy we have

J(W 1/2f) = (W 1/2f)TW−1(W 1/2f) = ‖f‖2.

For any unit γ-flow f we have

J(f) = fTW−1f = (W−1/2f)T (W−1/2f),

so if f is a unit γ-flow of minimum energy then f minimizes ‖W−1/2f‖ and f ′ = W−1/2f

must be the minimum norm vector such that ∂d+1W
1/2f ′ = γ.

Before providing the definition of a unit γ-potential in a simplicial complex we will

begin by reviewing the definition of a unit st-potential a graph, which can be found in [59].

Let G be a graph such that s and t are connected in G, and let H ⊆ G be a subgraph

such that s and t are not connected. A unit st-potential is function p : V (G) → R such

that p(s) = 0, p(t) = 1 and for any two vertices u, v in the same connected component we

have p(u) = p(v). Viewing p as a cochain we see that its coboundary is zero in H. In a

sense the size of its coboundary in G is a measure of “how disconnected” s is from t in

H. Intuitively, our definition of a unit γ-potential measures “how far” a cycle γ is from

null-homologous in a subcomplex L of K. We are now ready to present our definitions.

Definition 12. Let L ⊂ K be simplicial complexes, and let γ ∈ Cd−1(L) be a (d− 1)-cycle

such that γ is null-homologous in K but not L. A unit γ-potential in L is a (d−1)-cochain

p such that δ[L]p = 0 and p(γ) = 1.

Now we define the notion of potential energy which is used to measure the size of a

unit γ-potential.

Definition 13. Given simplicial complexes L ⊂ K with weight function w : Cd(K) → R
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and a γ-potential p in L, the potential energy of p on K is

J (p) = (δd(p))
TWδd(p) =

∑
σ∈Kd

〈δ[K](p), σ〉2w(σ).

Just like effective resistance minimizes over flow energy, the effective capacitance of γ

is minimized over the potential energy.

Definition 14. Let L ⊂ K be simplicial complexes, and let γ ∈ Cd−1(L) be a (d− 1)-cycle

that is null-homologous in K. If γ is not null-homologous in L, the effective capacitance

of γ in L is Cγ(L) = minp J (p) where p is a γ-potential. If γ is null-homologous in L, then

Cγ(L) =∞.

Unlike unit γ-flows, it is not obvious from the definition that a unit γ-potential even

exists. In the following theorem we show that it is indeed the case that they exist.

Theorem 24. Let L ⊂ K be d-dimensional simplicial complexes whose (d−1)-skeletons are

equal. Let γ be a (d−1)-cycle that is null-homologous in K. There exists a unit γ-potential

in L if and only if γ is not null-homologous in L.

Proof. First we note that ker δd[L] is the orthogonal complement of im δd[L] in Cd−1(L,R).

Assume that there exists a unit γ-potential p in L, so p ∈ ker δd[L] = (im ∂d[L])⊥. Since

〈p, γ〉 = 1 we see that γ has a non-zero component in (im ∂d[L])⊥, so γ /∈ im ∂d[L].

Conversely, assume that γ is not null-homologous in L. Then γ has some non-zero

component coming from (im ∂d[L])⊥ = ker δd[L]. Let q = Πker δdγ be the projection of γ

onto ker δd[L], so 〈q, γ〉 6= 0 and δd[L] = 0. It follows that q
〈q,γ〉 is a unit γ-potential in

L.

6.2 Bounds on Effective Resistance and Capacitance

In this section, we provide upper bounds on the resistance and capacitance of a cycle γ in

a simplicial complex K. Our upper bounds are polynomial in the number of d-simplices and

the cardinality of the largest torsion subgroup of a relative homology group. In particular,

our bounds on resistance and capacitance are dependent on the maximum cardinality of

the torsion subgroup of the relative homology group Hd−1(L,L0,Z), where L ⊂ K is a

d-dimensional subcomplex and L0 ⊂ L is a (d−1)-dimensional subcomplex. In the worst

case, our upper bounds are exponential with respect to the number of d-simplices. There
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exist simplicial complexes such that the torsion subgroup of Hd−1(K,Z) has cardinality

n while K only has O(log1/d n) vertices [79] note that such a complex contains at most

O(log n) d-simplices.

In Theorems 28 and 29 we provide explicit examples of simplicial complexes containing a

cycle γ whose effective resistance and capacitance is exponential in the number of simplices

in the complex. It is important to reiterate that our bounds are in terms of the torsion

of the relative homology groups. There exist simplicial complexes with no torsion in their

homology groups but that do have torsion in their relative homology groups. An example

of this is the Möbius strip. The Möbius strip has no torsion, but it has torsion relative to

its boundary [30].

Our results rely on a change of basis on the boundary matrix called the normal form

which reveals information about the torsion subgroup of Hd−1(K,Z). We state the normal

form theorem below.

Theorem 25 (Munkres, Chapter 1 Section 11 [77]). There are bases for Cd(K) and

Cd−1(K) such that the matrix for the boundary operator ∂d : Cd(K,Z) → Cd−1(K,Z) can

be expressed in these bases yielding the normal form of the matrix,

∂̃d =

[
D 0

0 0

]

where D is a diagonal matrix with entries d1, . . . , dm such that each di divides di+1 and

each 0 is a zero matrix of appropriate dimensionality. The normal form of ∂d satisfies the

following properties:

1. The entries d1, . . . , dm correspond to the torsion coefficients of Hd−1(K,Z) ∼= Zβd−1⊕
Zd1 ⊕ · · · ⊕ Zdm,

2. The number of zero columns is equal to the dimension of ker(∂d).

Moreover, the boundary matrix ∂ in the standard basis can be transformed to ∂̃ by a set of

elementary row and column operations. If ∂ is square, these operations multiply det ∂ by

±1.

Using Theorem 25, we obtain an upper bound on the determinants of the square sub-

matrices of the boundary matrix ∂d[K] in terms of the relative homology groups of K.

Let L be d-dimensional subcomplex of K, and let L0 be a (d−1)-dimensional subcomplex of
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K. The relative boundary matrix ∂d[L,L0] is the submatrix of ∂d obtained by including

the columns of the d-simplices in L and excluding the rows of the (d−1)-simplices in L0.

With the relative boundary matrices, one can define the relative homology groups as

Hk(L,L0,Z) = ker ∂k[L,L0]/ im ∂k+1[L,L0]. More information on the relative boundary

matrix can be found in [30]. We denote the cardinality of the torsion subgroup of the rel-

ative homology group Hd−1(L,L0,Z) by t(L,L0). By t we denote the maximum t(L,L0)

over all relative homology groups.

Lemma 20. Let ∂d[L,L0] be a k × k relative boundary matrix of K. The magnitude of

the determinant of ∂d[L,L0] is bounded above by the cardinality of the torsion subgroup of

Hd−1(L,L0,Z),

| det (∂d[L,L0]) | ≤ t(L,L0).

Proof. Without loss of generality, we assume that det(∂d[L,L0]) 6= 0; if det(∂d[L,L0]) = 0,

the bound is trivial. Since ∂d[L,L0] is a non-singular square matrix, its normal form

∂̃d[L,L0] is a diagonal matrix D = diag(d1, . . . , dk). The determinant is equal to ±
∏k
i=1 di

and by Theorem 25 the torsion subgroup of Hd−1(L,L0) is Zd1 ⊕ · · · ⊕ Zdk which has

cardinality t(L,L0) =
∏k
i=1 di.

Before proving our upper bounds on effective resistance and capacitance we need to

state some assumptions on the cycle. Let K be a d-dimensional simplicial complex with

weight function w : Kd → R+ and let γ be a null-homologous (d−1)-cycle in K. The weight

function appears in our definitions of flow energy and potential energy, which implies that

the effective resistance and capacitance is dependent on the weight function. In general the

weights can be arbitrarily large, which means that the effective resistance and capacitance

can also be arbitrarily large. To remedy this we must assume that w(σ) = Θ(1) for

each σ ∈ Kd. In our analysis we will treat the treat the simplicial complexes as if they

were unweighted; under our assumption on the weights this does not affect the asymptotic

analysis.

We need one assumption on the input cycle γ. Recall that γ =
∑nd−1

i=1 αiσi for σi ∈ Kd−1

where each αi ∈ R. There are two problems with this representation. Our proof for the

upper bound on effective capacitance breaks if a pair of coefficients can become arbitrarily

close to one another; that is, |αi − αj | < ε for some arbitrarily small ε. To remedy this

we make the assumption that γ ∈ Cd−1(K,Z) such that each αi = Θ(1). Under this

assumption we can still test the null-homology of any bounded cycle in Cd−1(K,Q) by
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multiplying the cycle by an integer. Since our algorithm tests null-homology over the reals

multiplying by a scalar does not affect the homology of γ.

The second issue is that the magnitude of γ could be arbitrarily large, which implies

that the effective resistance and capacitance could also be arbitrarily large. To remedy this

we normalize γ as a preprocessing step to obtain a cycle whose magnitude is one. Let γ̂

be the input cycle, so γ̂ =
∑nd−1

i=1 αiσi for αi ∈ Z and σi ∈ Kd−1. After preprocessing we

obtain the cycle γ =
∑nd−1

i=1
αi
‖γ̂‖σi which is a cycle in Cd−1(K,Q). In Theorems 26 and 27

we will assume γ is in this form. We are now ready to upper bound the effective resistance

of a cycle γ in a simplicial complex K.

Theorem 26. Let K be a d-dimensional simplicial complex and γ a null-homologous (d−1)-

cycle in K. The effective resistance of γ is bounded above by Rγ(K) = O
(
n2t2

)
.

Proof. We consider the subcomplex H obtained by removing βd d-simplices from K such

that ker(∂d[H]) = 0; in other words H is a hypertree. Since the effective resistance mini-

mizes over the energy of all unit γ-flows we have Rγ(K) ≤ Rγ(H). Further, since H is a

hypertree there exists a unique unit γ-flow f ∈ Cd(H) hence Rγ(H) = ‖f‖2.

The matrix ∂d[H] has full column rank, so there exists a non-singular nd×nd submatrix

of ∂d[H]. We can express this submatrix as a relative boundary matrix ∂d[H,H0] where

H0 is the (d− 1)-subcomplex corresponding to the rows excluded from the submatrix. We

have ∂d[H,H0]f = γ′ where γ′ is the restriction of γ to the rows of ∂d[H,H0]. We have the

inequality ‖γ′‖ ≤ ‖γ‖ = 1.

We will apply Cramer’s rule to upper bound the size of f . Let f(σ) denote the com-

ponent of f indexed by the d-simplex σ. By Cramer’s rule we have the equality

f(σ) =
det(∂d[H,H0]σ,γ′)

det(∂d[H,H0])

where ∂d[H,H0]σ,γ′ is the matrix obtained by replacing the column of ∂d[H,H0] indexed

by σ with the vector γ′. Since det(∂d[H,H0]) is integral |det(∂d[H,H0])| ≥ 1 so we drop

the denominator and focus on the inequality |f(σ)| ≤ | det(∂d[H,H0]σ,γ′)|. We bound
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|det(∂d[H,H0]σ,γ′)| by its cofactor expansion,

| det(∂d[H,H0]σ,γi)| =

∣∣∣∣∣
nd−1∑
i=1

(−1)i · γ′i · det(∂d[H,H0]γ
′,i
σ,γ′)

∣∣∣∣∣
≤

nd−1∑
i=1

|γ′i| · t

= O
(√
n · t

)
where ∂d[H,H0]γ

′,i
σ,γ′ denotes the submatrix obtained by removing the column c and remov-

ing the ith row and ci denotes the ith component of c. The first inequality comes from

Lemma 20, as ∂d[H,H0]γ
′,i
σ,γ′ is the relative boundary matrix ∂[H \ {σ},H0 ∪ σi], where σi

is the (d− 1)-simplex corresponding to the ith row of ∂d[H,H0]. The factor of
√
n comes

from the inequality ‖γ′‖ ≤ 1 and the fact that ‖γ′‖1 ≤
√
n‖γ′‖2, which can be shown using

the Cauchy-Schwarz inequality. Finally, we compute the flow energy of f as

J(f) =
∑
σ∈Kd

f(σ)2

≤
nd∑
i=1

nt2

= O
(
n2t2

)
.

The effective resistance of γ is the flow energy of f , so the result follows.

The same argument also applies for any subcomplex L ⊂ K where γ is null-homologous

in L which gives us the following corollary.

Corollary 2. Let L ⊂ K be a d-dimensional simplicial complex and γ a null-homologous

(d−1)-cycle in L. The effective resistance of γ in L is bounded above by Rγ(L) = O
(
n2t2

)
.

When γ is the boundary of a d-simplex we only sum over at most d non-zero components

of γ′ when computing the determinant. This reduces the effective resistance to O
(
nt2
)
,

and to O(n) when K is relative torsion-free. This matches the upper bound of O(n) on the

effective resistance of a pair of edges in a graph. The upper bound in graphs can easily be

realized by an st-path of length O(n).

Before obtaining our upper bound on the effective capacitance of a cycle we need to
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prove one lemma. In the following lemma, we provide an upper bound on the largest

singular value of the coboundary matrix.

Lemma 21. The largest singular value of the coboundary matrix δd−1 is σmax(δd−1) =

O(
√
dn).

Proof. The squared singular values of δd−1 are the eigenvalues of δTd−1δd−1 = L. Thus,

σmax(δd−1)2 ≤
∑

i σi(δd−1)2 = trace(L), where the σi(δd−1) are the singular values of δd−1.

We can obtain an upper bound on σmax(δd−1) by computing the trace of L. The diagonal

elements of L are the degrees of the (d − 1)-simplices [46, Proposition 3.3.2]. Each d-

simplex is the coface of d + 1 (d−1)-simplices, so summing up the diagonal of L, we find

trace(L) = O(dn). Thus, σmax(δd−1) = O(
√
dn).

We now proceed with our upper bound on effective capacitance, which is a similar

argument by Cramer’s rule.

Theorem 27. Let L ⊂ K be d-dimensional simplicial complexes, and let γ be a (d − 1)-

dimensional cycle that is null-homologous in K but not in L. The effective capacitance of

γ in L is bounded above by Cγ(L) = O
(
dn3t2

)
.

Proof. Let p be a γ-potential. By definition, δ[L]p = 0 and p(γ) = 1. These constraints

can be expressed in the linear systemδ[L]

γT

 p =


0

0
...

1

 .

We remove columns from the system until the system has full column rank. Columns in

the system correspond to (d−1)-simplices in L. Let L0 be the (d−1)-complex obtained by

excluding the dropped columns from the (d− 1)-skeleton of L. We can express the newly

obtained system by the relative coboundary operator δ[L,L0]. Removing the columns does

not change the image of the linear system, so there is still a solution p′. The newly obtained
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linear system is δ[L,L0]

γ′

 p′ =


0

0
...

1


where γ′ is the restriction of γT to the remaining columns. The vector p′ is not a γ-

potential since it is a vector in Cd−1(L \ L0), not Cd−1(L). However, we can extend p′ to

be a γ-potential by adding zeros in the entries indexed by L0. Adding zero-valued entries

preserves the length of p′.

The next step is to remove rows from the linear system until it has full row rank. This

corresponds to removing d-simplices from t he complex L to create a subcomplex L1. The

row γ′ must always be present since removing it would make p′ a non-zero solution to the

system, and then the system could not have full rank. We obtain the linear systemδ[L1,L0]

γ′

 p′ =


0

0
...

1

 .

Let A =
[
δ[L1,L0]T (γ′)T

]T
and b =

[
0 0 · · · 1

]T
. Note that A is an square matrix

and we denote its dimensionality by m×m. We now use Cramer’s rule to bound the size

of ‖p′‖. By Cramer’s rule, p′i, the ith entry of p′, is

p′i =
det(Ai,b)

det(A)
.

where Ai,b is the matrix obtained by replacing the ith column with b. We first lower bound

|det (A)|. We can express det (A) by its cofactor expansion on the row of γ′ as

det(A) =
m∑
i=1

(−1)i · γ′i · det(δ[L1,L0]i)

where δ[L1,L0]i is δ[L1,L0] without the ith column. Each term δ[L1,L0]i is integral as

δ[L1,L0] is an integral matrix. Moreover, each term γ′i = γji/‖γ‖ where γji = Θ(1) is an

integer. By our assumptions we have ‖γ‖ = O(
√
n), and using this fact we can then derive
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a lower bound on |det(A)|,

| det(A)| =

∣∣∣∣∣
m∑
i=1

(−1)i · γ′i · det(δ[L1,L0]i)

∣∣∣∣∣
=

1

‖γ‖

∣∣∣∣∣
m∑
i=1

(−1)i · γji · det(δ[L1,L0]i)

∣∣∣∣∣
≥ 1

‖γ‖

= Ω

(
1√
n

)
.

We now upper bound |det(Ai,b)|. We calculate det(Ai,b) with the cofactor expansion on

the column replaced by b. As b has 1 in its last entry and 0s everywhere else, the cofactor

expansion is det(Ai,b) = det(Ai,γ
′

i,b ) where Ai,γ
′

i,b is the matrix where we dropped the ith

column and the row γ′ from Ai,b. The matrix Ai,γ
′

i,b is a square submatrix of δ[K], so we

can bound | det(Ai,b)| ≤ t. Thus, p′i = det(Ai,b)/ det(A) ≤
√
n · t and

‖p′‖ =

√√√√ m∑
i=1

(p′)2
i

≤
√
n2t2

= nt

The potential energy of p′ is ‖δ[K]p′‖2. We can bound this using Lemma 21 to obtain

‖δ[K]p′‖2 = O
(
dn3t2

)
.

When γ is the boundary of a d-simplex we sum over at most d non-zero components in

the cofactor expansion which allows us to shave off a factor of O(n) from the upper bound.

Under the further assumption that K is relative torsion-free we obtain an upper bound of

O(n2) which matches the bound in graphs [8].

6.2.1 Lower Bounds

Recall that t could be exponential in the number of d-simplices in K. In this section we

prove that our bounds on effective resistance and capacitance are tight by providing ex-

amples of simplicial complexes containing cycles whose effective resistance and capacitance
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are exponential in the number of simplices.

Theorem 28. There exists a 2-dimensional simplicial complex with Θ(n) triangles con-

taining a cycle γ such that the effective resistance of γ is Θ(22n).

Proof. Let RPγ denote a simplicial complex homeomorphic to the real projective plane

with a disk removed. The boundary of the removed disk is the cycle γ. Hence, we have

that the boundary of the complex is ∂2RPγ = 2α+ γ for some 1-cycle α. We require RPγ
to be triangulated in such a way that | supp(α)| = | supp(γ)|, that is, α and γ contain the

same number of edges. Let the constant c denote the number of triangles in RPγ .

We consider a collection of complexes RPγ0 ,RPγ1 , . . . ,RPγn−1 ,Dγn . Each RPγi is

constructed in the same way was RPγ but with disjoint simplices, and Dγn triangulation

of a disk using c triangles with boundary γn such that | supp(γn)| = | supp(γ)|. Each RPγi
has boundary ∂2RPγi = 2αi + γi.

We consider the simplicial complex K constructed by taking the quotient space under

the identification αi ∼ γi+1. That is, we glue the boundary component αi along the

boundary component γi+1. The resulting complex contains a unique unit γ0-flow f . This

is because the value of f must be equal to 1 on RPγ0 (otherwise f is not a unit γ0-flow) and

this completely determines the assignments on each other RPγi and Dγn as the boundary

components must cancel each other out.

We now compute the effective resistance of γ0 by explicitly describing the unit γ0-flow

f . The flow will have the property that f(σi) = f(σj) for each σi, σj ∈ RPγk (and similarly

for Dγn). That is, f is uniform on each subcomplex in our original collection. For each σ

in the subcomplex indexed by γi we set f(σ) = (−1)i · 2i. To see that this is indeed a unit

γ0-flow we compute the boundary:

∂f =

(
n−1∑
i=0

(−1)i · 2i∂RPγi

)
+ (−1)n · 2n∂Dγn

=

(
n−1∑
i=0

(−1)i · 2i(γi + 2γi+1)

)
+ (−1)n · 2nγn

= γ0.
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Finally, we compute the flow energy of f :

J(f) =
n∑
i=0

c · (2i)2 =
c

3

(
22n+2 − 1

)
= Θ(22n).

Now we use a very similar construction to provide an example of a simplicial complex

with a cycle whose effective capacitance is exponential.

Theorem 29. There exists a 2-dimensional simplicial complex with Θ(n) triangles con-

taining a cycle γ and a subcomplex such that the effective capacitance of γ in the subcomplex

is Θ(22n).

Proof. As in Theorem 28 we let RPγ be a triangulation of the real projective plane with

a disk removed, we consider the same sequence RPγ0 ,RPγ1 , . . . ,RPγn−1 ,Dγn , but under

the identifications γi ∼ αi+1 and γn−1 ∼ γn. We denote the obtained quotient space by K.

Note that α0 is a null-homologous cycle with a unique unit γ-flow given by

f =

(
n−1∑
i=0

(−1)i · 1

2i+1
RPγi

)
+ (−1)n · 1

2n+1
Dγn ,

which can be verified similarly to Theorem 28.

Let T be a triangle in Dγn and let p be a unit α0-potential in K \ T . We will express

p as a collection of flows in graphs G1, . . . , Gn with each Gi being constructed the dual

graph of RPγi and Gn being constructed from the dual of Dγn \ T . Each Gi is the dual

graph of RPγi but with an additional vertex vγi representing the boundary component γi;

it is adjacent to each vertex dual to a triangle incident to γi. The graph Gn is constructed

the same way from Dγn .

We claim that when δ[K \ T ](p) is restricted to a single RPγi (or Dγn) it is dual to a

multi-source single-sink flow in Gi. The set of source vertices Si is the set of vertices dual

to the triangles incident to αi, and the sink is vγi . We denote this flow by pi, and further

we claim that the flow has value ‖pi‖ = 2i+1. Next, we will prove our claims by induction,

beginning with G0 as the base case.

Since p is a unit α0-potential we have p(α0) = 1, so δ(p)(S∗i ) = 2 since there are two

triangles incident to each edge in α0. Let
−→
S i denote the set of edges leaving Si; we have

pi(
−→
S∗i ) = 2 which is the amount of flow pi sends out of Si. For any vertex v /∈ Si ∪ {vγi}
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the net flow leaving v must be equal to zero, otherwise its dual triangle v∗ has δ(p)(v∗) 6= 0

contradicting the assumption that p is a unit α0-potential in K \ T . Thus, we conclude

that the amount of flow entering vγi is equal to 2 which proves the base case.

Next, we assume that pi−1 is a flow in Gi−1 from Si−1 to vγi of value 2i. Consider the

set of triangles S∗i which are dual to the source Si. The inductive hypothesis ensures that

p(αi) = 2i, but δ[K \ T ](p) = 0, so we must have that δ[RPγi ](p)(Si) = −2i+1 since each

edge in αi is incident to two triangles in RPγi . Hence, Si has a net flow of 2i+1 exiting it in

pi. By the same reasoning as the previous paragraph we see that any vertex v /∈ Si ∪ {vγi}
must have a net flow of zero exiting it. Thus, we have a flow from Si to γi of value 2i+1.

Note that the same reasoning proves the analogous result for Dγn . In particular, we have

that the net flow entering vγn is 2n+1.

The above argument shows that δ[K \ T ](p)(t) = 0 and that δ(p)(T ) = 2n+1. Hence,

the potential energy of p is J (p) = Θ(22n).

6.3 Applications to Quantum Algorithms

In this section we provide an example of an algorithm whose complexity can be param-

eterized by the effective resistance and capacitance of a cycle. We consider the following

problem: given a d-dimensional simplicial complex K, a (d − 1)-dimensional cycle γ that

is null-homologous in K, and a d-dimensional subcomplex L ⊆ K, decide whether or not

γ is null-homologous in L. This problem is a high dimensional generalization of testing

st-connectivity in a subgraph.

We present a quantum algorithm based on the span program model solving this prob-

lem. Our algorithm is an adaption of the quantum algorithm deciding st-connectivity of

Belovs and Reichardt [8] which has a query complexity of O(n3/2), which can be obtained

by parameterizing the query complexity in terms of the effective resistance and capacitance

of {s, t}.
Our algorithm has a query complexity of O

(√
Rmax(γ) · Cmax(γ)

)
where Rmax(γ) and

Cmax(γ) are the maximum effective resistance and capacitance of γ over all subcomplexes

of K. Our bounds on effective resistance and capacitance obtained in Theorems 26 and

27 hold for any subcomplex, so we obtain a query complexity of O
(
n5/2t2

)
. Under the

assumptions that γ is the boundary of a d-simplex and that K is relative torsion-free we

obtain the query complexity O(n3/2), matching the query complexity of st-connectivity.
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These assumptions always hold in the case of st-connectivity in graphs.

We will begin with a short introduction to span programs. We will present only the

necessary definitions and theorems needed to obtain our quantum query algorithm. Then

we will show that the problem of deciding whether or not γ is null-homologous fits into the

span program model which will imply the existence of our quantum query algorithm.

In the spirit of quantum computing we will adopt bra-ket notation for vectors. A

column vector v will be written as a ket denoted as |v〉. The corresponding row vector

vT will be written as a bra denoted as 〈v|. The inner product of two vectors u, v will be

denoted as 〈u|v〉.

6.3.1 A brief introduction to span programs

Span programs were first defined by Karchmer and Wigderson [61] and were first used

for quantum algorithms by Reichardt and Špalek [86]. Intuitively, a span program is

a model of computation which encodes a boolean function f : {0, 1}n → {0, 1} into the

geometry of two vector spaces and a linear operator between them. Encoding f into a span

program implies the existence of a quantum query algorithm evaluating f (Theorem 30.)

Definition 15. A span program P = (H,U , |τ〉, A) over the set of strings {0, 1}n is a

4-tuple consisting of:

1. A finite dimensional Hilbert space H = H1 ⊕ · · · ⊕ Hn where Hi = Hi,0 ⊕Hi,1,

2. a vector space U ,

3. a non-zero vector |τ〉 ∈ U , called the target vector

4. a linear operator A : H → U .

For every string x = (x1, . . . , xn) ∈ {0, 1}n we associate the Hilbert space H(x) = H1,x1 ⊕
· · · ⊕HN,xn and the linear operator A(x) = AΠH(x) : H → U where ΠH(x) is the projection

of H onto H(x).

The quantum query complexity of evaluating P depends on the sizes of the positive

and negative witnesses, which we now define. Let P be a span program and let x ∈ {0, 1}n

be a binary string. A positive witness for x is a vector |w〉 ∈ H(x) such that A|w〉 = |τ〉.
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The positive witness size of x is the size of the smallest positive witness of x given by

its `2 norm,

w+(x,P) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = |τ〉}.

If no positive witness exists for x, then w+(x,P) = ∞. If there is a positive witness for

x, then x is a positive instance. That is, there exists a solution to the linear system

contained entirely in the subspace H(x) if and only if there exists a positive witness for x.

A negative witness for x is a linear map 〈w| : U → R such that 〈w|AΠH(x) = 0 and

〈w|τ〉 = 1. Similarly, the negative witness size of x is the minimum size over all negative

witnesses given by the value ‖AT |w〉‖ or equivalently,

w−(x,P) = min{‖〈w|A‖2 : 〈w| : U → R, 〈w|AΠH(x) = 0, 〈w|τ〉 = 1}.

If no negative witness exists for x, then w−(x,P) = ∞. If there is a negative witness for

x, then x is a negative instance. If there exists a negative instance of x then there is

no solution to the linear system A|y〉 = |τ〉 with |y〉 ∈ H(x) since 〈w| is orthogonal to the

image of AΠH(x). Conversely, if there exists no solution to Ay = |τ〉 in H(x) then we can

write |τ〉 = |τ1〉+ |τ2〉 with |τ1〉 ∈ imAΠH(x) and |τ2〉 ∈ (imAΠH(x))
⊥ and, after scaling by

an appropriate constant, |τ2〉 is a negative witness.

A string x ∈ {0, 1}n will either be a positive or negative instance of P. A span program

P decides the function f : {0, 1}n → {0, 1} if f(x) = 1 when x is a positive instance

and f(x) = 0 when x is a negative instance. We define the positive and negative witness

sizes for the span program P with respect to the boolean function f to be W+(f,P) =

maxx∈f−1(1)w+(x,P) and W−(f,P) = maxx∈f−1(0)w−(x,P). Since we are maximizing

over the positive and negative witnesses the values of W+(f,P) and W−(f,P) are finite.

Reichardt [87] showed that the query complexity of a span program is a function of the

positive and negative witness sizes of the program.

Theorem 30 (Reichardt [87]). Let f : {0, 1}n → {0, 1}. Let P be a span program that

decides f . There is a bounded error quantum algorithm that decides f with query complexity

O
(√

W+(f,P)W−(f,P)
)

.

Reichardt’s algorithm in bounded error in the sense that it returns the correct answer

with probability 2/3. We will not go into details on the analysis of the complexity of a

span program, however we give a brief overview here following the work of Belovs and

Reichardt [8, Theorem 13]. The query model evaluates the complexity of a quantum
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algorithm by the number of times it queries an oracle. The oracle our quantum algorithm

will query is a unitary transformation U = RkerARH(x) where RkerA = 2ΠkerA − I and

RH(x) = 2ΠH(x) − I are reflections around the subspaces kerA and H(x). By ΠS we

denote the orthogonal projection onto the subspace S. To evaluate the span program

we perform phase estimation [67] on U with precision Θ
(

1/
√
W+(f,P)W−(f,P)

)
and

accept if and only if the measured phase is zero. The query complexity follows from the

fact that performing phase estimation to precision ε requires Θ(1/ε) queries to U . Time

efficient implementations of the algorithm can be obtained by constructing a polynomial

sized quantum circuits for U .

6.3.2 A span program for deciding null-homology

In this section we present a span program for testing if a cycle is null-homologous in

a simplicial complex. This span program is a generalization of the span program for st-

connectivity defined in [61] and used to develop quantum algorithms in [8, 15, 59, 60]. Let

K be a d-dimensional simplicial complex. Let |γ〉 ∈ Cd−1(K) be a (d − 1)-cycle. Let n be

the number of d-simplices in K. Order the d-simplices {σ1, . . . , σn}. Let 〈w| : Kd → R be

a weight function on the d-simplices. We define a span program over the strings {0, 1}n in

the following way.

1. H = Cd(K), with Hi,1 = span{σi} and Hi,0 = {0}.

2. U = Cd−1(K)

3. |τ〉 = |γ〉

4. A = ∂dW
1/2 : Cd(K)→ Cd−1(K)

We denote the above span program by PK. Let x ∈ {0, 1}N be a binary string. We

define the subcomplex K(x) := Kd−1∪{σi : xi = 1}. That is, K(x) contains the d-simplices

σi such that xi = 1. The subcomplex K(x) corresponds to the subspace H(x).

There exists a solution to the linear system ∂dW
1/2ΠK(x)|f〉 = |γ〉 if and only if the cycle

γ is null-homologous in K(x). If ∂d[K(x)]|f〉 = |γ〉 then W 1/2|f〉 is a solution. Conversely,

if ∂dW
1/2ΠK(x)|f〉 = γ then ∂dW

−1/2|f〉 = |γ〉. Hence, |γ〉 is null-homologous if and only

if x is a positive instance of PK. The span program PK decides the boolean function

f : {0, 1}n → {0, 1} where f(x) = 1 if and only if γ is a null-homologous cycle in the

subcomplex K(x).
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Given a string x ∈ {0, 1}n we show in the following two lemmas that w+(x,PK) =

Rγ(K(x)) and w−(x,PK) = Cγ(K(x)). The proofs are simple calculations following from

the definitions of effective resistance and capacitance.

Lemma 22. Let x ∈ {0, 1}N be a positive instance. There is a bijection between positive

witnesses |w+〉 for x and unit γ-flows |f〉 in K(x). Moreover, the positive witness size is

equal to the effective resistance of |γ〉 in K(x); that is, w+(x,PK) = Rγ(K(x)).

Proof. Let |w+〉 ∈ Cd(K) be a positive witness for x, so ∂dW
1/2|w+〉 = |γ〉. We construct

a unit γ-flow |f〉 in K(x) by |f〉 = W 1/2|w+〉; |f〉 is indeed a unit γ-flow as ∂d|f〉 =

∂dW
1/2|w+〉 = |γ〉. Moreover, |w+〉 = W−1/2|f〉. The flow energy of |f〉 is

J(f) = 〈f |W−1|f〉

= 〈W−1/2f |W−1/2f〉

= 〈w+|w+〉

= ‖|w+〉‖2.

Hence, the flow energy of |f〉 equals the witness size of x.

Conversely, let |f〉 be a unit γ-flow in K(x) and define the positive witness for x as

|w+〉 = W−1/2|f〉. The same computation in the above paragraph shows that the flow

energy of |f〉 equals the positive witness size of x.

Lemma 23. Let x ∈ {0, 1}N be a negative instance. There is a bijection between negative

witnesses 〈w−| for x and unit γ-potentials 〈p| in K(x). Moreover, the negative witness size

is equal to the effective capacitance of |γ〉 in K(x); that is, w−(x,PK) = Cγ(K(x)).

Proof. Let 〈w−| be a negative witness for x. As 〈w−| is a linear function from Cd−1(K) to R
we may view it as a (d− 1)-cochain; there exists some 〈p| ∈ Cd−1(K) such that 〈p| = 〈w−|.
Since 〈w−|γ〉 = 1 we immediately obtain the equality 〈p|γ〉 = 1. To show that 〈p| is a unit

γ-potential we must show that the coboundary of 〈p| is zero in K(x). By the definition of

a negative witness we have

0 = 〈w−|∂dW 1/2ΠK(x)

= 〈p|∂dW 1/2ΠK(x)

= 〈δd(p)|W 1/2ΠK(x).
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Since W 1/2 is a diagonal matrix and ΠK(x) restricts the coboundary to the subcomplex

K(x) we see that 〈δd(p)|σ〉 = 0 for any σ ∈ K(x)d. To show that the witness size of 〈w−|
is equal to the potential energy of 〈p| we have

‖〈w−|∂dW 1/2‖2 = 〈p∂dW 1/2|p∂dW 1/2〉

= 〈W 1/2δd(p)|W 1/2δd(p)〉

=
∑
σ∈Kd

〈δd(p)|σ〉2w(σ)

= J (p).

Conversely, let 〈p| be a unit γ-potential for K(x) we construct a negative witness for x

by setting 〈w−| := 〈p|. Since the coboundary of 〈p| is zero in K(x) we have 〈δp(p)|σ〉 = 0

for each σ ∈ K(x)d which implies 〈w−|∂dW 1/2ΠK(x) = 0 by the reasoning in the previous

paragraph. Also by the previous paragraph we have that the potential energy of 〈p| is

equal to the negative witness size of 〈w−| which concludes the proof.

From these two lemmas we obtain the main theorem of the section, the quantum query

complexity of γ.

Theorem 31. Given a d-dimensional simplicial complex K, a (d− 1)-dimensional cycle γ

that is null-homologous in K, a witness string x ∈ {0, 1}n, and a d-dimensional subcomplex

K(x) ⊆ K, there exists a quantum algorithm deciding whether or not γ is null-homologous

in K(x) whose quantum query complexity is O
(√
Rmax(γ)Cmax(γ)

)
, where Rmax is the

maximum effective resistance of γ in any subcomplex K(y) and Cmax is the maximum ef-

fective capacitance γ in any subcomplex L ⊆ K.

Proof. By Theorem 30, the span program PK can be converted into a quantum al-

gorithm whose query complexity is O
(√

W+(f,PK)W−(f,PK)
)

where W+(f,PK) =

maxx∈f−1(1)Rγ(K(x)) = Rmax(γ) and W−(f,PK) = maxx∈f−1(0) Cγ(K(x)) = Cmax(γ).

By Theorems 26 and 27 we obtain an upper bound on the query complexity parameter-

ized by the number of simplices and the cardinality of the torsion subgroups of the relative

homology groups.

Theorem 32. Let K be a d-dimensional simplicial complex, γ a (d− 1)-dimensional null-

homologous cycle in K, and K(x) a d-dimensional subcomplex K(x) ⊆ K. There exists a
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quantum algorithm deciding whether or not γ is null-homologous in K(x) whose quantum

query complexity is O
(
n5/2t2

)
.

Finally, we state the query complexity under some assumptions that arise in the case

of st-connectivity in graphs. In graphs we have that γ = t − s, hence the support of γ is

equal to 2. Under the assumption that the support of γ is bounded above by O(d) we can

shave off a factor of n from both the flow energy and potential energy of any unit γ-flow

and unit γ-potential. Further, graphs do not contain torsion, so we make the additional

assumption that K is relative torsion-free. Under these assumptions our query complexity

matches the query complexity arising from the span program deciding st-connectivity.

Corollary 3. Let K be a d-dimensional simplicial complex, γ be a (d − 1)-dimensional

cycle that is null-homologous in K, and K(x) ⊆ K be a d-dimensional subcomplex for a

fixed d. Further assume that K is relative torsion-free and that | supp(γ)| = O(d). There

exists a quantum algorithm deciding whether or not γ is null-homologous in K(x) whose

quantum query complexity is O
(
n3/2

)
.
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.1 Directed paths in simplicial complexes

In a directed graph an st-path is equivalent to an 1-chain P =
∑
αiei with ∂P = t− s

such that αi ∈ {0, 1}. The generalization to simplicial complexes is straightforward: we

define a d-dimensional directed γ-path in a d-complex K to be a d-chain P =
∑
αiσi such

that ∂P = γ and αi ∈ {0, 1} for all i. We will now show that computing a directed γ-path

is NP-complete for d ≥ 2. The reduction from graph 3-coloring is a slight adaptation of

the proof of Theorem 16.

Theorem 33. Computing a directed γ-path in a d-dimensional simplicial complex is NP-

complete for d ≥ 2.

Proof. First, to show that computing a directed γ-path is in NP we note that we can check

the coefficients and the boundary of a 2-chain in polynomial time. To prove NP-hardness

we give a reduction from graph 3-coloring.

Given a graph G = (V,E) we construct a 2-complex K with a boundary component γ

such that there exists a directed γ-path if and only if G is 3-colorable. First, construct a

punctured sphere with |V |+ 1 boundary components. One of these boundary components

is γ, the remaining |V | are in bijection with the vertices of G and we will denote the

component corresponding to the vertex v as γv. For each vertex v we construct three

additional punctured spheres vr, vb, vg each with deg(v) + 1 boundary components. These

punctured spheres correspond to the three potential colors of v: red, blue, and green and

we refer to them as the color surfaces of v. We glue vr, vb, vg to γv each along some

boundary component. For each edge e = (u, v) we construct nine tubes with two boundary

components. Each tube connects a color surface of u to a color surface of v, for example the

tube Tr,b connects the red color surface of u with the blue color surface of v. We orient the

complex such that each 2-chain with boundary γ and coefficients in {0, 1} is an oriented

manifold with boundary γ. For each tube connecting two color surfaces of the same color

(for example, Tr,r) we invert the orientation of one simplex, such that any bounding chain

for γ including the inverted simplex will have to assign it a coefficient of -1.

Any 2-chain with boundary γ and coefficients in {0, 1} is a surface as for each vertex it

must contain exactly one color surface and for each edge it must contain exactly one tube.

Moreover, if any tube connecting two color surfaces of the same color is contained in the

solution it must contain some simplex a negative coefficient and is not an directed γ-path.

It follows that G is 3-colorable if and only if there is some directed γ-path.
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