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In 2017, the cost of congestion in the United States was around 305 billion dollars,

and city-dwellers, on average, lost 1400 dollars while sitting 42 hours in traffic

jams1. Aiming for better mobility and more efficient utilization of the transporta-

tion network, emerging connected and autonomous vehicle (CAV) technologies and

their communication capabilities can produce well-coordinated and more efficient

routing behavior to dissipate the traffic rather uniformly throughout the network,

resulting in slower travel times. Vehicle routing is among the most critical and

challenging, yet unsolved, tasks in CAV research. Current routing strategies either

rely on a centralized control system which can fail in scaling, or employ decentral-

ized schemes that yield sub-optimal coordination and poor system performance.

In addition, it is of great importance for the deployment of CAV technologies to
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understand the transportation systems behavior in a mixed environment with var-

ious levels of communication complexity, where CAVs and Non-CAVs coexist and

interoperate. The routing problem in a multiagent system resembles a competitive

congestion game. The decisions of one agent (in this case, a CAV) directly impacts

the performance of the others. When the number of agents traversing the same

transportation facility at the same time exceeds a certain threshold, bottlenecks

may occur, and thus, higher travel times. Therefore, coordination between CAVs

is key to avoiding such circumstances. This dissertation answers how and to what

extent different routing optimization algorithms, under various levels of autonomy

and communication capabilities, can increase the mobility of the transportation

system. This work designs this system in a decentralized manner that scales lin-

early in achieving a social and system-level optimum. To realistically analyze this

system, we investigated the coordination behavior of CAVs under (1) No Commu-

nication, (2) Minimal Communication, and (3) Extensive Communication. In the

absence of connectivity between the CAVs, a learning-based approach has been

implemented where each CAV optimizes its own route using a reinforcement learn-

ing technique and based on its prior experiences. This competitive game quickly

overwhelms the system as the market penetration of CAVs surpasses the critical

threshold range (50% to 75%), where the mobility improvements are the most

significant, and beyond which the system performance degrades. Under minimal

communication level, we assumed the CAVs share information regarding their lo-

cation and speed with the rest of the CAVs in their communication cluster through

a multi-hop network. Then, a coordination scheme was implemented where each



CAV minimizes its travel time based on the limited information it receives. Re-

sults showed that this application can reduce system travel time by up to 20%.

Additionally, the emergence of mobility benefits are shown to correlate with the

CAV network characteristics through the lens of percolation theory. The results

revealed that, for the mobility benefits to surface, at least 70% of the CAVs are

required to form a communication cluster. Under an extensive communication

capability, where the CAVs not only share their location and speed but also their

preferred path to their destination, a reduction of up to 40% in system travel time

was achieved for high levels of CAV market penetration and communication radius.

Moreover, the improvement in mobility was proved to be highly associated with

the uniform dissipation of traffic onto the network. These findings provide solid

support to create evidence-driven frameworks to guide future CAV development

and deployment in a decentralized and coordinated manner.
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Chapter 1: Introduction

1.1 Background

The problem of congestion has been in the spotlight of most transportation mo-

bility research in the past decade. Prior studies have shown that this prob-

lem has worsened drastically over the past 40 years (Schrank et al., 2009, 2012;

David Schrank, 2015), despite efforts in expanding the capacity of the transporta-

tion facilities (Chen et al., 2001). The question, “Is it possible to reduce the total

travel time of transportation network with current road infrastructure?” remains

unanswered. Systematics (2005) showed that about 50% of the traffic congestion is

associated with the bottlenecks and work zone environments, which are not inher-

ently different than bottlenecks from the mobility perspective. Bottlenecks occur

where the demand is higher than the capacity that a transportation facility can sus-

tain. To alleviate such circumstances and in the realm of intelligent transportation

systems (ITS), rerouting vehicles more intelligently has been the center of conges-

tion avoidance applications (Wang, 2016; Pan et al., 2012). Now, with the advent

of Connected and Autonomous Vehicle (CAV) technologies, such applications have

emerged as part of CAV initiatives by US Department of Transportation (USDOT),

categorized under the umbrella of Dynamic Mobility Applications (DMA) (Chang

et al., 2015; USDOT, 2019a; McGurrin et al., 2012). As an example, EnableATIS
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is one of the core application of DMA, that focuses on improving the network-wide

performance of a transportation system. It aims to provide valuable route choice

insights that facilitate decision making for users, either human-driven connected

vehicles or autonomous vehicles (USDOT, 2019b; Burgess et al., 2012). Regardless

of the specifics of the application, the cornerstone of increasing network mobility

and reducing the network-wide travel time through DMAs is a sufficient multia-

gent routing algorithm that dissipates traffic uniformly onto the network (Rossi

et al., 2018; Pan et al., 2016). Similar to any other case of Congestion Games

(Helbing et al., 2005; Milchtaich, 1996; Christodoulou and Koutsoupias, 2005),

where the payoff of one player is negatively associated with the number of other

players who take the same action, the collective performance of vehicles travelling

in the network, and thus, the performance of the selected routing algorithm, is

widely dependent on coordination between vehicles (Wolpert et al., 1999; Tumer

and Wolpert, 2004). In other words, to avoid vehicles from traversing the same

transportation facility at the same time, which increases network travel time, a

successful routing (or rerouting) algorithm and procedure necessitate higher levels

of collaboration between vehicles (Rossi et al., 2018; Wedel et al., 2009). Prior

studies have also shown that non-collaborative (or as some would label “selfish”)

routing behavior can result in many vehicles choosing the same route at the same

time, which was initially perceived to be the shortest path to their destination

(Mostafizi et al., 2017; Lim, 2012). Only if the vehicles are able to communicate

the preferred route they are taking and are able to use this information efficiently,

can they effectively bypass congested (or predictably congested) routes. Now, the
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needed coordination between the vehicles relies on,

• A robust and resilient communication network

• Appropriate information at hand for each vehicle to optimize their route

• A collaborative algorithm that can sufficiently predict traffic patterns and

compute the optimal route for each vehicle to their destination

• Efficient computing infrastructure

All of these components can be achieved by the introduction of CAVs in the

transportation system. Figure 1.1 shows the possible communication links, either

through Dedicated Short Range Communication (DSRC), Wifi, or LTE network,

that can facilitate the creation of a vehicular network, and consequently, the avail-

able data cloud that can be used to inform navigational and routing decisions

(Amadeo et al., 2016; Abboud et al., 2016).

Figure 1.1: CAV Communication Capabilities (V2X) (Martin and Ivanov, 2018)

Besides, the Onboard Unit (OBU) of these vehicles can be a source of com-

putational power (Evans et al., 2014) that processes the shared information in
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a decentralized manner and suggests the optimal route to the vehicle or driver

(Mostafizi et al., 2017).

This dissertation focuses on addressing how we can leverage the emergent CAV

technologies, and their communication capabilities, through Vehicle-to-Vehicle (V2V)

connections, to achieve a fully utilized transportation network through a more in-

telligent, coordinated, and decentralized routing behavior. This work provides

insights on development, implementation, and deployment of CAV technologies to

increase mobility of transportation networks as they currently stand by dissipating

the traffic more uniformly onto the network. We also analyze the potential mobil-

ity benefits of these technologies under various levels of infrastructure complexity,

communication capability, and market penetration of equipped vehicles. Moreover,

special attention has been given in designing these systems with a decentralized

and distributed architecture that scales well.

1.2 Problem Definition

Imagine an urban transportation network at rush hour, when the demand is highly

directional from residential areas to the Central Business District (CBD) or vice

versa. This commonality in demand between the majority of users results in high

levels of traffic on certain transportation facilities at the same time, hence con-

gestion and higher travel times (Arnott et al., 1993; Evans et al., 2002). There

have been many efforts to solve rush hour congestion through different types of

incentives and rewards (Nie and Yin, 2013; Ben-Elia and Ettema, 2011; Hu et al.,
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2015), however, one important factor that is missing in most of the prior research

is that the concept and importance of arrival time are not sufficiently considered.

This motivates us to approach this issue from a different perspective that not only

reduces the travel time of the network but also takes the arrival time of trips into

consideration. As mentioned earlier, collaborative routing, where vehicles com-

municate certain information regarding their location, speed, and path with each

other, can alleviate rush hour traffic patterns (Mostafizi et al., 2017; Lim and Rus,

2012; Moran and Pollack, 2016).

(a) Sample Grid Network (b) Background Traffic

Figure 1.2: Grid Transportation Network and Traffic Pattern under uniform OD
pair distribution.

In this work, the transportation network and the rush hour travel demand has

been simplified to a grid network (Figure 1.2a) where the origins and destinations

are on opposite nodes of the grid. If the OD pairs of the vehicles are distributed uni-

formly, under a pre-defined routing algorithm, Figure 1.2b shows the non-uniform

background traffic pattern where the edges of the grid are relatively less congested
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than the middle links. That is to say, the network is not uniformly and fully

utilized (Mostafizi et al., 2017; Zhang et al., 2017).

As for any network, there will be numerous different routes that can take a

vehicle from origin A to destination B. However, not all of these routes have the

same travel time. Noting the computational capabilities of CAVs and their ability

to send and receive information from the other CAVs as well as the infrastruc-

ture (Lu et al., 2014), we assume that in the foreseeable future CAVs comprise a

considerable portion of our transportation systems (Bansal and Kockelman, 2017).

Therefore, the ultimate research question for this work is how can the CAVs choose

a route and reroute more intelligently to avoid congestion, reduce their own travel

time, and most importantly, to minimize network travel time in a coordinated and

decentralized fashion? More specifically, what information needs to be shared over

the CAV network with the other vehicles in the cluster? How this information

should be used and what decentralized algorithms need to be in place to achieve

a social optimal for the network, as opposed to local minimal travel time for each

individual vehicle? We formulate these questions in the form of a multiagent co-

ordination problem under different levels of communication similar to Bowman

et al. (2016). More specifically, we consider three communication levels within

CAV clusters, and accordingly, an appropriate decentralized algorithm has been

implemented to study the effects of coordination on system travel time.

1. No Communication: At this level, it is assumed that the CAVs are not

capable of any sort of communication. Therefore, they aim to optimize their

path to their destination through their individual past experience. A Re-
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inforcement Learning environment and algorithm is set up for this scenario

(Watkins and Dayan, 1992) where the CAVs learn from their previous ac-

tions at every trip they make and aim to improve their performance after

each iteration.

2. Minimal Communication: Under this scenario, the CAVs communicate

their current location and travelling speed with the other CAVs within their

cluster through multi-hop wireless communication scheme (Kosch et al.,

2002). This information is utilized by each CAV to build an online ab-

straction of the network and the travel time of each link. Later, an Online

A∗ Algorithm (Hart et al., 1968) is implemented to update the path for each

CAV as they traverse in the network, and corresponding to their dynamic

clustering attributes.

3. Extensive Communication: With this level of communication, CAVs not

only communicate their current location and speed but also share their pro-

posed path with the other CAVs in their cluster. With this information,

CAVs can predict the state of the network at any point the future and plan

in a way to avoid congestion. This dissertation proposes a Decentralized Col-

laborative Time-dependent Shortest Path (Dec-CTDSP) algorithm which is

an extension of regular TDSP proposed by Dreyfus (1969), extending the

original algorithm of Dijkstra (1959). In this algorithm, the time dependency

of the link in the network comes from the location, speed, and the proposed

path of other CAVs that have communicated their information with the CAV



8

at hand, and hence, the term “collaborative.”

It is assumed that the information has been shared through a multi-hop wireless

communication system within each CAV cluster (Kosch et al., 2002). In addition,

to realistically analyze the impacts and benefits of such technologies, we also took

into consideration the following key factors:

• Mixed environment at which both CAVs and Non-CAVs interoperate with a

varying market penetration of CAVs from 0 to 100%,

• Varying communication radius, and

• Communication degradation in urban environments.

The formulation of each problem is further elaborated under each chapter and

for each scenario in this dissertation.

1.3 Significance

Congestion is a world-wide problem that exacerbates year by year due to the ever-

increasing demand (Cookson and Pishue, 2017; David Schrank, 2015). Figure 1.3

shows the extent and the cost of delays created by the congestion, as well as the

inclining trend of the problem.

Studies have shown that the cost of congestion, in the US alone, was around

305 billion dollars collectively (Cookson and Pishue, 2017), making an average

commuter spend 42 hours in traffic per year, equivalent to $1,400 (David Schrank,



9

(a) Congestion Ranking1 (b) Congestion is increasing2

Figure 1.3: Congestion Scoreboard (Cookson and Pishue, 2017; David Schrank,
2015)

2015). This is also when 72% of the cost of congestion is associated with the

opportunity cost of the travellers, meaning that the only solution to reduce this cost

is to facilitate the travel (Economics, 2009). As 50% of this congestion is caused by

bottleneck and work zones (Systematics, 2005), our solution can address half the

cost of congestion, that is associated with where demand is higher than capacity,

potentially reducing the cost of congestion by up to 20% with well-coordinated

routing behavior.

In addition, in the context of CAVs, not only mobility-related applications, such

as EnableATIS (USDOT, 2019b) have been listed as the most beneficial application

that has to be prioritized by DOTs for deployment and readiness (Bertini et al.,

1https://www.economist.com/graphic-detail/2018/02/28/the-hidden-cost-of-congestion
2https://abcnews.go.com/US/time-americans-waste-traffic/story?id=33313765
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2017), but also they have been in the top 5 features that 69% of the users look

for in future CAVs (Cookson and Pishue, 2017). Figure 1.4 shows that different

applications in Traffic Network and Traveler Information fields are generally found

to be the most beneficial from experts’ point of view (Bertini and Wang, 2016).

Figure 1.4: Most beneficial CAV applications, according to a survey done by Bertini
and Wang (2016)

From the perspective of problem complexity, transportation networks are highly

dynamic and stochastic in both space and time. Several studies have attempted

to quantify these dynamics (Cascetta, 1989; Cantarella and Cascetta, 1995; Ran

and Boyce, 2012). Predicting traffic congestion is an inherently complex problem,

as it directly correlates to the joint decisions of all the vehicles in the network

(Chiu et al., 2011). Hence, the multiagent coordination to minimize system travel

time soon becomes a daunting task as the number of agents grows (Scerri et al.,

2006). This makes this problem, albeit simple in definition, complex to solve in
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a decentralized manner, to avoid scaling issues that arise in centralized systems

(Yang et al., 2008). This is where the use of communications for coordination

comes into play (Roth et al., 2005) which necessitates considering different levels

of communication capability as well as communication degradation, both of which

are given special attention in this research. Besides, to analyze scaling, it is crucial

to study such systems under different levels of CAV market penetration, that is

an underlying factor in all components of this dissertation. The solution to this

problem can be directly applied to CAV routing behavior, yielding network-wide

optimal performance, and ultimately, can help exploit the current transportation

infrastructure to its fullest.

1.4 Contribution and Objectives

This dissertation contributes to the existing CAV routing knowledge by developing

a decentralized and coordinated routing optimization framework, algorithm, and

procedure that yield a socially optimal state, beyond which the performance of the

transportation network cannot be improved through routing behavior. To achieve

this, the objectives of this dissertation are laid out and categorized as follows,

1. Communication: This dissertation extensively analyzes the impact of dif-

ferent levels of communication capabilities for the CAVs on their network-

wide mobility benefits and multiagent coordination. As a result, this research

sheds light on the necessity and the extent to which CAVs are required to

communicate for the mobility benefits to emerge. In addition, the communi-
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cation radius that OBUs can accommodate has been taken into consideration.

2. CAV Network: This research further connects the CAV network charac-

teristics to expected mobility benefits. An integrated approach is formulated

by combining network science, percolation theory, and communication in a

multiagent system to characterize a CAV network and achieve this objective.

3. CAV Market Penetration: This research is motivated by the prevalent

uncertainties with the benefits of deploying CAVs in a transportation net-

work with competing goals of cost (e.g., market penetration and the required

communication radius) and benefits (e.g., mobility) (Chang et al., 2015).

Therefore, this work focuses on system performance in terms of the average

travel time in a mixed environment where the market penetration of CAVs

varies from 0% to 100%.

4. Design, Algorithm, and Procedure: This work provides the details and

specifics with which CAV development and deployment are analyzed with

the lens of multiagent coordination. That is to say, how CAVs need to

communicate, what needs to be communicated, and how the information

can be used to minimize system travel time are discussed. These details are

provided in the form of procedures and algorithms that should be considered

in the design and deployment of these technologies both from the private and

public sector.

5. Open-source contribution: A secondary contribution of this work is to

introduce an open-source and agent-based modeling platform to analyze dif-
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ferent coordinated routing algorithms for connected and autonomous vehicles

in a grid network.

The results of this work inform CAV network design to achieve significant mo-

bility benefits under different CAV adoption rates. Also, this dissertation bridges

the gap between network-wide CAV impact analysis and multiagent coordination

and robotics concepts that need to be further analyzed for successful large-scale

technology deployment.

1.5 Dissertation Organization

The rest of this manuscript is organized as follows. Chapter 2 reviews relevant lit-

erature discussing CAV networks and the concept of intelligent routing, specifically

in the context of CAVs. Chapter 3 introduces the CAVs’ car-following behavior

implemented in this work, which governs the vehicle interactions in the simulations

conducted throughout the dissertation. This chapter also presents the macroscopic

behavior of the micro-level cross interactions of CAVs and Non-CAVs on a high-

way segment. Under the “No Communication” condition, Chapter 4 presents a

reinforcement learning method that has been used to optimize the routing be-

havior of multiple CAVs in a mixed and competitive environment, and discusses

the challenges arising from multiagent learning when there is no communication

between the CAVs. Increasing the communication level to “Minimal Communi-

cation,” Chapter 5 introduces a routing optimization method using the informa-

tion shared (i.e., speed and location) within the CAV clusters. In addition, this
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chapter characterizes the dynamics of the CAV network through percolation the-

ory. Enhancing the communication capabilities to “Extended Communication,”,

Chapter 6 introduces a novel negotiation-based routing algorithm, Decentralized

Collaborative Time-dependent Shortest Path (Dec-CTDSP), and demonstrates its

performance on system travel time, speed, and network utilization. Given this

routing scheme and communication level, speed, location, and the proposed path

of each CAV is shared within its own cluster. This information is further utilized

in routing optimization for each CAV. Finally, Chapter 7 concludes the disser-

tation with major findings and discusses the expected system-level performances

considering different communication levels, different market penetrations of CAVs,

and different algorithms. In addition, possible future directions are listed in this

chapter.
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Chapter 2: Literature Review

To identify the knowledge gaps and to establish the relevance of the existing work

to this research, a comprehensive literature review is conducted. There is a spec-

trum of studies focusing on the benefit assessment and implementation of Con-

nected and/or Autonomous vehicle technologies (Gay and Kniss, 2015; Olia et al.,

2016; Chang et al., 2015) on (1) work zone safety (Genders and Razavi, 2015);

(2) intersection operation efficiency (Guler et al., 2014); (3) mobility and mode

choice (Minelli et al., 2015); (4) highway capacity (Ni et al., 2012); (5) variable

speed limit control (Khondaker and Kattan, 2015); (6) roadmap for CV deployment

scenarios and infrastructure readiness (Bertini et al., 2016a,b); (7) optimal speed

advisory (Wan et al., 2016); (8) basic safety messages (BSM) (Liu et al., 2016); (9)

platoon based cooperative driving (Jia and Ngoduy, 2016) and designing platoon

trajectory (Zhou et al., 2016; Ma et al., 2016); and (10) dynamic automated lane

change maneuver (Luo et al., 2016). Figure 2.1 presents a summary of relevant CV

studies. This summary is not intended to be complete in any sense, but a review

of the most recent and relevant efforts.

Connected Vehicles (CV) are the leading edge of disruptive forces that will

upend the traditional traffic composition, usher in new operation models, change

the nature of traffic flow fundamentals and management (Viereckl et al., 2015;

Mahmassani, 2016), and further reshape the future of safety and mobility manage-



16

CV

Simulation

Analytical

Others

LeBrun et al. (2005)
Priemer and Friedrich (2009)
Kafsi et al. (2009)
Guler et al. (2014)
Osman and Ishak (2015)
Minelli et al. (2015)
Khondaker and Kattan (2015)
Guériau et al. (2016)
Goodall et al. (2016)
Genders and Razavi (2015)
Dey et al. (2016)
Bertini et al. (2016a)
Olia et al. (2016)
Talebpour and Mahmassani (2016)

Talebpour et al. (2016)
Ukkusuri and Du (2008)
Xiong et al. (2016)
Zhou et al. (2016)
Jin et al. (2011b)
Martinez et al. (2011)
Ni et al. (2012)
Talebpour et al. (2015)

Communication protocol
Adaptive traffic signal control
VANET Connectivity
Intersection efficiency
Network-level connectivity
Mobility and mode choice
Variable speed limit
Assessing CV benefits
Freeway vehicle position
Work zone safety
Assessing CV benefits
CV deployment roadmap
Potential impacts of CVs
Traffic flow stability

Driver behavior
VANET Geometric Connectivity
Node degree distribution
Platoon trajectory design
VANET connectivity

VANETs
Highway capacity
Lane-change behavior

Approach Studies Focus & Application

Figure 2.1: A summary of relevant connected vehicle studies

ment (Newman, 2014). According to the Texas Transportation Institute mobility

report (David Schrank, 2015), U.S. highway users wasted 6.9 billion hours stuck

in traffic congestion in 2014. It is believed that CV technology has great potential

to ease traffic congestion through the creation of a safe and interoperable con-

nected vehicle network (Ubiergo and Jin, 2016). Within this network, vehicles can

exchange information regarding speed, position, and individual route as well as
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their surrounding vehicles, which helps drivers navigate the roads more efficiently.

It also enables the system operators to improve the operation of the transporta-

tion system, reducing congestion, travel delay, and improving the overall mobility.

Multiple CV application development efforts and studies have demonstrated the

potential for significant mobility benefits from the V2X (vehicle-to-x) applications

(Dey et al., 2016; Luo et al., 2016; Jia and Ngoduy, 2016). Existing studies have

shown combinations of V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure)

applications can potentially reduce travel time on freeways up to the range from

27 to 42% (Chang et al., 2015). The magnitude of the CV benefits depends on

the varying level of market penetration in technology deployment, as well as the

characteristics of the technology itself.

The growing innovation of CV technologies accelerates the market adoption

and gradual implementation of mature CV applications (Gay and Kniss, 2015).

However, the market will not be occupied by CV over a night. The CV market

penetration in the United States is at 9.33% in 2016 and is expected to hit 27.66%

in 20201, and around 98% of U.S.’s vehicle-fleet is likely to have connectivity in

year 2030 (Bansal and Kockelman, 2016). Although the definition of CV might

vary depending on the context, the market penetration of CVs that are able to

perform a reasonable range of applications is expected to increase exponentially

in the foreseeable future. The increasing market adoption of connected vehicles

to the conventional traffic flow adds additional complexity since the interaction

mechanism between vehicles alters (Guériau et al., 2016; Abdulsattar et al., 2017).

1https://www.statista.com/outlook/320/109/connected-car/united-states
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The CVs on the highway would use dedicated short-range communication system

(DSRC) or 5G LTE network (Murry, 2015) to communicate with each other, so

that every vehicle on the road is aware of where other nearby vehicles are. This

information can potentially be used to perform driving maneuvers. Nonetheless,

there has been a lack of research focusing on the overall network performance in the

transition regime. Further, at what market penetration of CVs after deployment

of the technology, and how the greatest benefits can be achieved is a significant

question yet to be addressed (Guériau et al., 2016). In addition, the technology

evolves rapidly over time, opening windows to new opportunities and challenges in

this area. This necessitates the study of how the advancements in technology affect

the outcomes of the application. This work is largely motivated by the urgent need

for transportation authorities, industries, and government agencies to understand

the extent to which the mobility benefits of CVs will be, and how we can possibly

maximize the opportunities that they will bring in order to better manage the

increasing CV networks today and in the future (Global, 2016).

2.1 Vehicular Network

Instead of only considering the information exchange between neighboring CVs,

Vehicle Cloud Networking (VCN) (Lee et al., 2014) allows us to delve into the CV

networks from a larger scale. A vehicle cloud can facilitate collaborations among

the vehicles within the cloud to perform an advanced vehicular task that an indi-

vidual vehicle cannot achieve in isolation. Two computing and networking models
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supporting the VCN are vehicular cloud computing (VCC) and information-centric

networking (ICN) respectively (Lee et al., 2014). Contrary to the Internet cloud,

the vehicle cloud is temporarily created by interconnecting resources in vehicles or

the roadside units (RSUs). In VCN, vehicles are interconnected and they can nego-

tiate the level of resource sharing. Once the cloud is formed, travel information such

as speed, density, and signal timing can be retrieved from the connected clusters.

This information would help the driver’s decision-making and eventually enhance

the mobility benefits of CV in terms of travel time. Also, vehicles can freely join

and leave the vehicular cloud as they move, which adds to the intriguing dynamics

of the network. The enormous data collected in VCN will also contribute to the

development of applications such as EnableATIS (USDOT, 2012) to improve the

overall transportation system mobility and safety. The integration of data would

also facilitate the development of dynamic and transformative applications (Chang

et al., 2015).

The benefits of VCN-related CV applications are primarily dependent on the

communication range that the vehicles can accommodate and the market pene-

tration of the technology. These two elements can be modeled by the percolation

theory. This study also shows the existence of critical percolation phase transi-

tion properties that appear in the dynamic CV network with time-correlated link

and node dynamics (Basu et al., 2012). The results of the analysis show that

percolation phase transition phenomenon exists in (1) the impacts of both mar-

ket penetration and the communication range of CVs on system-wide mobility

benefits measured by mean travel time of the vehicles; (2) the impacts of mar-
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ket penetration and communication range on CV network characteristics, studied

from giant component size perspective, as widely used in percolation theory con-

text. Although there are existing studies adopted percolation methods in VANET

network (Jin et al., 2011a,b), the applications are mainly focused on the inter-

section grid network connectivity. This research proposes a novel application of

percolation theory to understand the dynamics of CV network as well as resultant

mobility benefits, with varying market penetration and communication range.

2.1.1 CAV Clusters as complex Network

CAV technologies allow vehicles to communicate with each other by forming con-

nected vehicle clusters with varying sizes (Li et al., 2011). It is a rapidly emerging

paradigm designed with direct access to the Internet (Murry, 2015) or dedicated

short-range communication (DSRC) (Shakshuki et al., 2014), enabling vehicle links

to all other connected objects, including cars, buses, trucks, smartphones, traffic

lights, and other tracking devices (Viereckl et al., 2015). Each vehicle in the con-

nected vehicle network, known as Vehicular Ad-Hoc Network (VANET) in com-

puter science community (Martinez et al., 2011; Kafsi et al., 2009), is a mobile

node with diverse nodal dynamics; therefore, the CAV network is a mobile dy-

namic network (Li et al., 2011). Dynamic network analysis is one of the most

intriguing branches of network science and theory (Basu et al., 2012). It is an

emerging field that applies our knowledge or simulated statistics of link and node

dynamics to derive and validate varying aspects of network behavior such as perco-
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lation phenomena under random Markovian dynamics (Basu et al., 2012), network

pattern evolution (Zhou and Lipowsky, 2005), dynamic graph properties of mobile

network (Birand et al., 2011), asymptotic properties of stochastic dynamic net-

work (Britton et al., 2011), and tracking group formation and group mobility in

connected networks (Aung et al., 2015; Backstrom et al., 2006). It has applications

ranging across social networks, information networks and various strata of commu-

nication networks (Basu et al., 2012). Although significant progress has been made

in understanding how vehicles communicate with each other (Kerley and Mallin,

2014; Lavrinc, 2014) and with users or infrastructure (Shakshuki et al., 2014), al-

most all existing work so far has focused on adoption and deployment through

pilot studies and testbeds (Gay and Kniss, 2015) led by industries and government

collaboration; while academics focus on the evaluation of the safety, mobility and

environmental impacts of connected vehicles through scenario simulations (Chang

et al., 2015; Olia et al., 2016).

2.1.2 CAV Network Connectivity

The inter-vehicle connectivity between CVs is dependent on a combination of sev-

eral factors such as temporal and spatial dynamics of moving vehicles (vehicle speed

and vehicle density), traffic speed variance, distribution of roadside units, CR, and

MP (Coon et al., 2012b), which might lead to unwanted network connectivity fail-

ure (Jin et al., 2011b). The connectivity between vehicles form the links among

vehicles where the link up-down dynamics is governed by a time-varying stochas-
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tic process which exhibits critical phase-transition (percolation) phenomenon as

a function of the MP and CR (Basu et al., 2012). Where the phase transition

happens is called a critical value denoted by a threshold pc (Coon et al., 2012b).

Jin et al. (2011b) analyzed the connectivity of VANETs through a percolation

theoretical framework. In their study, each intersection was considered as a node,

and the connections between the nodes were formulated into a bond percolation

problem. With the given p = 0.5, a percolation transition is found in average

cluster size and number of clusters with various CRs. Jin et al. (2011a,b) mainly

focuses on the VANET properties without considering the parameters’ impact on

network mobility. In addition, the experiment is conducted with an emphasis on

bond open probability p = 0.5, it should be thoroughly investigated in the later

study. Based on the theory proposed by Dousse et al. (2002), the quantitative re-

lationship among network connectivity, vehicle density, and transmission range in

grid network were discovered, and a jump in the connectivity was observed when

vehicle density and transmission range were large. Basu et al. (2012) studied the

behavior of end-to-end message latency in stochastic time-varying networks. Each

link’s dynamics was governed by a stationary but arbitrary time-correlated stochas-

tic process (Basu et al., 2012). The simulation demonstrated a critical threshold

that the message cannot be delivered within the deadline, while above which the

message can be delivered within a proper time frame. Talebpour et al. (2016)

presented a comprehensive simulation framework to model the drivers’ behavior in

a connected driving environment. The FHWA Next Generation Simulation: US-

101 Highway data set was used to replicate the vehicular movement in a highway
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environment. The paper points out that to ensure full connectivity, the minimum

effective communication range decreases as the market penetration increases. Em-

ploying the giant component concept, the result suggests that at an 80% MP, the

operation of a V2V communication network is similar to 100% MP.

Kafsi et al. (2009) studied the impact of characteristics such as vehicle density,

the proportion of equipped vehicles, radio communication radius, roadside units,

and traffic lights on the connectivity of VANETs. The results revealed that there

is a critical vehicle density, above which the connectivity significantly improves.

They also suggested that accumulation of vehicles at red traffic lights creates a

meeting point for vehicles. On the other hand, clustering increases the distance

between CVs, which leads to low giant cluster sizes. Artimy et al. (2004) used

a micro traffic simulator to evaluate VANETs connectivity for both highway and

simple road configurations. Vehicle density, relative velocity, and the number of

lanes were found to have a significant influence on connectivity. Artimy et al.

(2005) investigated the effect of vehicle density on the minimum transmission range

required to maintain the connectivity in the vehicle ad-hoc network. Ubiergo

and Jin (2016) studied advisory speed limit (ASL) control strategies based on

vehicle to infrastructure communication to smooth vehicle trajectories in stop-and-

go traffic on urban streets. Moreover, they quantified the mobility and environment

improvements of the green driving strategy with respect to the market penetration

rate of CV, traffic conditions, communication characteristics etc., both in isolated

and non-isolated intersections. The results show a saving of 15% in travel delays

and 8% in fuel consumption and greenhouse gas emission.
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Message forwarding is also critical for connected vehicle connectivity. The rout-

ing protocols can be categorized into two distinct groups: topology-based protocols

and position-based protocols. Greedy routing normally forwards the packet to a

node closest to the destination (Pirzada and McDonald, 2007). However, greedy

routing will result in unconnected V2V communication network because vehicles

might not be evenly distributed in the network (Li and Wang, 2007; Talebpour

et al., 2016). Liu et al. (2004) proposed anchor-based street- and traffic-aware

routing to strengthen greedy algorithm’s weakness. LeBrun et al. (2005) compared

five different opportunistic forwarding schemes. In their designed experiment, the

results suggest that the location-based routing algorithm outperforms other algo-

rithms.

2.2 Percolation Phase Transition

Percolation is a phase transition phenomenon in large random networks where a

critical value pc controls when the transition occurs (Coon et al., 2012b). The

giant connected component (cluster) of the system experiences a sudden change

from p < pc to p > pc (Coon et al., 2012b,a). Percolation model was introduced

by Broadbent and Hammersley (1957), and it has been utilized ever since to ana-

lyze various phase transition phenomenon in VANET connectivity analysis (Dousse

et al., 2002; Jin et al., 2011b,a) and random networks/graphs (Basu et al., 2012).

Although the applications of percolation theory in transportation research is still

relatively rare (Li et al., 2015b), accurate predictions of the network connectivity
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can be made using percolation theory, describing the behavior of connected clusters

in a random graph (Kafsi et al., 2009). However, the exact relationship of net-

work connectivity with transportation-related measurements of effectiveness (e.g.

travel time or travel delay) still necessitates the significant further investigation.

Extending the findings of Dousse et al. (2002) for ad-hoc and hybrid networks, Jin

et al. (2011a,b) assessed the connectivity of VANET both theoretically and using

simulations. Ammari and Das (2008) studied the sensing-converge and network-

connectivity in wireless sensor networks using percolation theory. A probabilistic

approach is created to compute the covered area fraction at the critical percolation

threshold. Critical density and radius of the covered components are identified un-

der various scenarios and the phase transitions are revealed. Similarly, Khanjary

et al. (2015) conducted percolation study in the two-dimensional fixed-orientation

directional sensor network. The critical density of the nodes can be analytically

computed from the framework. Further, Talebpour et al. (2017) investigated the

effect of information availability on the stability of traffic flow through continuum

percolation theory. The percolation theory is used to determine the impact of the

connected vehicles density and the communication range on the connectivity of the

network. The results show that as communication range increases, the system be-

comes more stable. Among all the related research presented in this section, there

however still remains a lack of incorporation of transportation application-oriented

performance measures (e.g. mobility). Therefore, one of the main objectives of this

study is to analyze the correlation of CV network characteristics to the resultant

mobility benefits of the corresponding network.
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2.3 Routing Behavior in Congested Networks

There are methods in the literature that aim to model the route choice behavior of

drivers. Most of these models, under the umbrella of Dynamic Traffic Assignment

(DTA) models, aim to reach Nash Equilibrium, where changes in the route of any

agent degrade the system and the agent’s performance (Merchant and Nemhauser,

1978; Janson, 1991; Chiu et al., 2011). The most applicable version of these mod-

els to our problem is simulation-based DTA where the controller iteratively routes

and reroutes the vehicles to find the optimal states of the system (Florian et al.,

2008). However, most of these approaches are entirely relying on a centralized con-

troller. Rossi et al. (2018) looked at routing (and rebalancing) of the Autonomous

Mobility on-Demand (AMoD) system by transforming the problem into a linear

programming problem. Their approach leads to an optimal solution that minimizes

the travel time of the system as well as the congestion and provides the optimal

path for individual agents. However, it relies heavily on a centralized controller

with complete travel demand information for the entire transportation network.

The same applies to Wilkie et al. (2011) where the centralized controller optimizes

the route for each agent in a sequential manner, taking into account the impact

of previously routed agents on the current traffic conditions and the congestion

evolution patterns of the system.

Towards a less centralized system, Maciejewski Micha land Nagel (2011) imple-

mented an extension to Multiagent Transport Simulation (MATSim) (Horni et al.,

2016) for Dynamic Vehicle Routing Problem (DVRP) which dynamically optimizes
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the fastest route to destinations for certain vehicles. However, this system still as-

sumes full observability and predictability of traffic conditions from origin to desti-

nation. Besides, the optimality of the solution it yields has not been benchmarked.

Inspired by swarm intelligence methods, Moran and Pollack (2016) implemented

a communication environment where the agents broadcast their paths to another

agent with the same origin-destination pair at each episode. As the frequency of

the broadcast is associated with the travel time of the path, the shorter trips are

broadcasted more often and thus the population moves toward these paths. The

algorithm converges where all agents are taking paths with relatively same travel

time, and accordingly, broadcasted roughly the same number of times. Their re-

sults have shown impressive learning behavior in a multiagent system. Mostafizi

et al. (2017) implemented a communication environment for CAVs where they can

utilize the travel time information from other vehicles in their connected cluster to

optimize their route with A∗ algorithm. However, their method largely depends on

proper and robust communications within each CAV cluster. Similarly, CARAVAN

(Desai et al., 2013) leveraged communication between adjacent cars in negotiating

the route preference between the cars, and accordingly, reducing the traffic. Their

results showed 21-43% increase in the performance compared to a shortest-path-

update algorithm for the cases where the demand is lower than the capacity. Claes

et al. (2011) implemented a heterogeneous environment, in which, on top of vehi-

cle agents, there are congestion forecast agents that can detect and communicate

the congestion to the vehicle agents for them to reroute to a less congested route.

Congestion-aware Traffic Routing (Lim, 2012) has also been proposed in the liter-
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ature as a distributed routing algorithm that uses local information, however, it is

capable of reaching social optima, minimizing the aggregated travel times.

It is of note that similar congestion problems have been addressed in robotics

in the field of path planning. For instance, MAPP (Wang and Botea, 2011) offers

a decentralized and scalable path planning algorithm for multiagent systems that

guarantees optimality. Planning the routes of each agent can be done using a

decentralized path planning algorithm based on cost negotiations. Initially, agents

will share information about requested and reserved areas. To find the optimal

path, agents need to know the most recent information about the state of other

agents. From there, possible future states can be analyzed, and potential conflicts

can be resolved based on a cost-reduction algorithm similar to that presented

in (Purwin et al., 2008). Each agent, after it has chosen its next location, will

generate a cost value for this action. Should the reserved area conflict with another

reserved area, the lower cost agent will be allowed to overrule the higher cost agent,

effectively taking control of the desired space out from under them. Decentralized

algorithms such as these allow the system to scale freely, not slowing down with

increased agent counts (Purwin et al., 2008). Additionally, this algorithm can be

bolstered to allow agents to account for the unpredictable action of non-networked

agents. This would be done by allowing agents to calculate the probability that

a non-networked agent might decide to occupy the space they intend to reserve

during the next time step, in a similar fashion to the algorithm presented in (Lim

and Rus, 2012). CAV agents would essentially navigate around the agents that

they are not communicating with as if they were moving obstacles.
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2.3.1 CAV Routing Optimization Algorithms

Multiple traffic control approaches have been investigated around building frame-

works for CAV coordination. Networks of linked traffic lights that are optimized

through a central controller have been a popular approach (Zhao and Tang, 2009;

Balaji and Srinivasan, 2010; El-Tantawy and Abdulhai, 2017; Wiering, 2000), but a

centralized controller can quickly become overwhelmed as agent numbers increase.

Furthermore, it is unrealistic to have traffic lights at every intersection as it would

be cost-prohibitive. To the best of our knowledge, this problem has been minimally

analyzed from the agent-level perspective with a decentralized controller (Mostafizi

et al., 2017), and the literature is still lacking an efficient coordination-based rout-

ing approach for CAVs. Along the same lines, Monte Carlo Tree Search has been

used for CAV planning in the past studies (Lenz et al., 2016; Kurzer et al., 2018).

This approach focuses on single-vehicle interactions and relatively short planning

horizons. Furthermore, those approaches focused on knowing the exact path of the

CAVs. Monte Carlo Tree Search (MCTS) makes use of the random sampling tech-

niques of Monte Carlo methods (Hammersley and Handscomb, 1964) by applying

them to a tree search problem for a specific domain (Browne et al., 2012). It has

proven to be a very powerful technique for Artificial Intelligence (AI), particularly

in competitive deterministic games such as Go which has a large branching factor

(Browne et al., 2012; Marcolino and Matsubara, 2011). One of MCTS’s most use-

ful properties is its ability to solve sequential decision problems given a finite state

and action space.
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Although others have used Monte Carlo Tree Search for CAV planning (Lenz

et al., 2016; Kurzer et al., 2018), their approaches focused on single-vehicle in-

teractions and relatively short planning horizons. Furthermore, those approaches

focused on knowing the exact path of the CAVs. Therefore, Best et al. (2018)

proposed an approach to utilize joint-action probabilities which are sampled from

a combination of the CAVs possible paths and the potential path distributions of

other CAVs that are in communication. The action plans are represented by a

probability distribution over an action sequence.

2.3.2 Collaborative Routing

Collaborative routing aims to utilize communications of preferred agent paths to

decrease travel time and reduce congestion by avoiding other agents routes, or

by routing traffic intelligently. Communicating individual priority of a vehicle on

a route, based on emergencies or task importance such as running late, was in-

troduced by Kala (2016). This approach utilized cooperative traffic lights and

inter-vehicle communication to optimize for priority vehicles. Although it may be

wise to implement a priority queue for emergency service vehicles, the temptation

for everyone to cheat in order to arrive quickly to their destination would be diffi-

cult to manage. Several approaches have utilized optimization techniques inside a

multiagent framework. Kishimoto and Sturtevant (2008) combined classical path

planning algorithm A∗ and Dijkstra’s algorithm with auction-based methods to

determine bids on shortest paths in multiagent teams. Silver (2005) created Co-
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operative A∗ which showed impressive results even for environments of 100 agents.

However these approaches do not incorporate time, are centralized, and require

perfect observability of the system.

2.4 Reinforcement Learning in Traffic Control

Connected and Autonomous Vehicle (CAV) systems coupled with vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) information exchange may introduce far-

reaching impacts on several levels on the current transportation arena such as de-

mand and behavior side, traffic mobility, as well as environmental relevant issues,

and consequently, have attracted significant attention from both academia and in-

dustry. Actual performance at the network level will echo these new changes and

will be greatly affected by the specific routing and scheduling algorithms developed

for both individual autonomous vehicles and vehicle fleets. To address the above

notion, Du et al. (2015a) developed a coordinated routing mechanism that allows

smart vehicles to talk to each other so that they can make online routing decisions

in real-time; this strategy may aid in avoiding probable traffic congestion to some

degree. Later, Du et al. (2015b) extended the work and developed a coordinated

online in-vehicle routing mechanism that also accommodates information pertur-

bation. This work has some attractive features such that: (1) CAV vehicles make

a routing coordination group based on their route choice; each smart vehicle in

each group shares traffic information including its route choice with other mem-

bers; and (2) a control center that collects and processes real-time information
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including general traffic condition, vehicles’ tentative route choice, and travel time

prediction among vehicles in a connected environment. Chapter 4 introduces a re-

inforcement learning (RL) approach to define the quickest path for the intelligent

agents traveling along the transportation network. RL is a technique for learning

control strategies for autonomous agents from trial and error (Kaelbling et al.,

1996; Sutton and Barto, 2018). The agents interact with the environment to ob-

tain information and use resulting feedback (reward and the consecutive state) to

reinforce behavior that results in desired conclusions. A lot of research (Boyan and

Littman, 2013; Baruah et al., 2004; Peshkin and Savova, 2002) have successfully

applied RL algorithm in the context of vehicle routing; however, this is the first

attempt, to the best my knowledge, to implement RL algorithm in a multiagent

connected and autonomous vehicle routing.
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Chapter 3: Connected and Autonomous Vehicle Traffic Flow in

Mixed Environments

3.1 Introduction

Understanding and improving flows of material, energy, and information has been

a fundamental endeavor of science throughout history, and much of the develop-

ment of modern society can be attributed to improvements in these flows. The

flow of vehicles along a road network, likewise, has a long history of analysis and

improvement, starting from Greenshields et al. (1934) and continuing to improve to

this date (Tang et al., 2019). Now, with the advent of CAV technologies and their

rapid developments, some of the most interesting and least understood opportuni-

ties for improving traffic flow are forming as part of CAV applications (Talebpour

and Mahmassani, 2016; Delis et al., 2015; Amoozadeh et al., 2015). Dedicated

Short Range Communication (DSRC) and sensory inputs of CAVs paves the way

for these vehicles to see their surroundings more accurately than a human driver

would, and thus, make smarter decisions faster (Lefevre et al., 2015; Wen-Xing

and Li-Dong, 2018). There are high hopes for improvements across the entire

transportation system with the evolving CAV technologies (Harding et al., 2014).

Improvements to safety, sustainability, mobility, and comfort are the main objec-

tives to which these applications aspire, but this chapter will focus on the possible
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effects to efficiency and mobility enabled by the implementation of a CAV appli-

cation known as Cooperative Adaptive Cruise Control (CACC) (Van Arem et al.,

2006; Milanés et al., 2013; Shladover et al., 2012). The current understanding of

the CACC application is that CAV technology equipped vehicles will exchange

status and location information in small data packets, similar to Basic Safety Mes-

sage (BSM) (Liu et al., 2016), and subsequently, each will automatically adjust its

speed to allow for synchronous speeds and small headways (Milanés et al., 2013).

It is thought that CACC enabled platooning can increase flow and reduce back

propagation of congestion (Shladover and Gettman, 2015). However, it has to be

noted that the market penetration of the equipped vehicles is expected to have

great impact on overall improvements resulting from these technologies (Harding

et al., 2014).

This chapter presents the CACC application of CAVs, which is the underlying

and core car-following behavior throughout all the simulations conducted in the

next chapters of this dissertation. Moreover, the effects of the proposed CACC

application on traffic flow in a highway environment, with various CAV market

penetration, were analyzed and the results are presented in forms of highway av-

erage travel time, throughput, and shockwave backpropagation time. Further, the

benefits of having CAVs in the system will be compared to the baseline scenarios

where all vehicles are neither connected nor automated. Alternately, a “best-case”

scenario, where all vehicles are CAVs, is of interest to set a hypothetical upper

bound on possible effects. Of primary interest to transportation agencies and

private industry may be critical thresholds of CAV market penetration, that is,
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when effects may begin to be noticeable, and when impacts may begin to be of

significance (Shladover and Gettman, 2015).

3.2 Simulation and Experiment Design

To implement and test the car-following behavior of the CAVs, a highway segment

in an agent-based simulation environment (Bernhardt, 2007) was created, and

were used to perform repeated monte-carlo simulations experiments. The simu-

lated agents represented vehicles entering the highway segment, and the system

behavior was observed as the vehicles interacted with each other and the simulated

highway environment. The simulation was then run with repetitions for various

levels of CAV technology adoption with CACC application in place. A zero per-

cent adoption rate (i.e., no equipped vehicles) was used to represent the baseline

scenario, and to check for anticipated system behavior. The open source agent-

based simulation software, NetLogo (Wilensky and others, 1999), was used to run

all scenarios. Figure 3.2 shows a snapshot of the simulation domain.

3.2.1 Highway Model

In the hopes of isolating the effect of the CACC application on traffic flow, charac-

teristics the simulated highway environment was purposefully kept simple. To this

end, a single lane of a 3.5-mile segment of straight highway was modeled. There

were no on- or off-ramps included, to conserve the number of vehicles along the
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segment, and there was no passing allowed to preserve the order of vehicles in the

flow. A one-mile bottleneck section was included in the middle of the highway

segment (i.e., a speed-drop zone starting at 1.25 miles and ending at 2.25 miles)

to induce acceleration and deceleration and stop-and-go situation in the flow (Yeo

and Skabardonis, 2009). This bottleneck was intended to be generic in nature,

but could be seen to have a practical interpretation as a highway work zone or

residential areas where speeds must be lowered. Practical speed limits of 70 mph

for the highway and 10 mph for the bottleneck (i.e., work zone) were assigned to

the simulated highway segment. An extremely low speed limit has been chosen for

the speed-drop zone to simulate the extreme case of shockwave backpropogation

and analyze the benefits of CAV technologies in the worst-case scenario. Figure

3.1 shows the a schematic view of the simulated highway corridor. In addition,

Figure 3.1 shows the platooning behavior CAV clusters that arises as a result of

CACC application (Segata et al., 2012). This phenomenon is later discusses in the

Section 3.3.

Figure 3.1: Schematic view of the simulated highway segment
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3.2.2 Vehicle Generation

The simulation was coded to generate vehicles with inter-arrival times following

an negative exponential distribution with a mean of 4 seconds, implying Poisson

distributed arrivals (Vandaele et al., 2000). This mean is set in a way that highway

operates at its 50% capacity (900veh/hr) (Manual, 2000). This value also seemed

to be the best choice for both avoiding congestion development towards the be-

ginning of the segment before the bottleneck, and for displaying expected baseline

shockwave behavior in reasonable simulation time. Additional randomness was

introduced through the initial speed of each vehicle upon generation, entering the

experimental highway segment (Medina and Tarko, 2005). This method was also

employed to mimic expectations on a real highway. These initial speeds were de-

signed to vary uniformly between 40 mph and 60 mph. This could be seen to

represent a scenario where vehicles are entering a segment with a higher speed

limit than the upstream segment and are accelerating up to match the new, higher

speed limit. Some vehicles will still be traveling around the lower speed limit

and other will have already begun accelerating in anticipation of approaching the

higher speed limit segment. The final aspect of vehicle generation deals with the

attribute of each vehicle as being modeled to be CAV technology equipped or not.

The market penetrations levels of CAV technology adoption were modeled through

the generation of vehicles. In each scenario, the desired market penetration was

modeled by the probability of the entering car being equipped or not (Wadsworth,

1960).
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3.2.3 Car-Following Behavior

The behavior of the vehicle agents was modeled using either traditional car-following

models (Chandler et al., 1958) for non-CAVs or through a time headway maintain-

ing rule (Zhao and Sun, 2013) for CAVs. For a leading vehicle, if there is no vehicle

within 500 ft. downstream, and for all CAVs, acceleration behavior is modeled as

the constant values below in Table 3.1, that are also well below comfortable rates

according to Fambro et al. (1997). That is to say that these vehicles will use those

constant acceleration and deceleration values in order to reach their desired speed.

For leading vehicles, the desired speed is the speed limit of the roadway section

they are traveling in, and for CAVs, this speed is determined by a time-headway-

maintaining rule to follow.

Table 3.1: Acceleration/Deceleration parameters

Rate
Acceleration 3.3ft/s2

Deceleration 7.9ft/s2

3.2.3.1 Non-CAV Car-following

The acceleration behavior for following Non-CAVs was set using the 5th generation

of General Motors car-following model (Gazis et al., 1961):

at+∆t
n+1 = α

V t
n+1

m

[X t
n −X t

n+1]l
[V t
n − V t

n+1] (3.1)
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Where at+∆t
n+1 is the acceleration of the following vehicle at t + t, V t

n+1; V t
n are

the speed of the following and the leading vehicle respectively; and X t
n+1 and X t

n

are the location of the following and the leading vehicle respectively. The rest of

the parameters are presented in Table 3.2.

Table 3.2: GM5 Model Parameters

Parameter Notation Value
Distance Headway Exponent l 2

Speed Exponent m 0
Sensitivity Coef. α 0.35mi2/hr
Reaction Time ∆t 0

From macroscopic point of view, these sets of parameters lead to the Green-

shileds Model (CHUNG et al., 2005). For simplicity, it was assumed that the

reaction time of drivers is minimal and can be estimated to be equal to zero. In

fact, this assumption results in comparing the CAVs with the best of Non-CAVs

(with reaction time 0), which in turn gives a lower-bound threshold for the im-

provements in mobility that are to follow the introduction of CAVs into the traffic

flow. In addition, α can be estimated as following:

at+∆t
n+1 = α

V t
n+1

m

[X t
n −X t

n+1]l
[V t
n − V t

n+1]

Ẍ t
n+1 = α

1

[X t
n −X t

n+1]2
[V t
n − V t

n+1]

Let’s say [X t
n −X t

n+1] = h. then we have,
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Ẍ t
n+1 = α

1

h2

dh

dt

dV

dt
= α

1

h2

dh

dt

dV = α
1

h2
dh

∫
dV =

∫
α

1

h2
dh

V =
−α
h

+ c

Now, in jam condition we have,

K = Kj or h =
1

Kj

and V = 0

Therefore we can say αKj = c. In free flow condition we have,

K = 0 or h =∞ and V = Vf

Thus, we can conclude c = Vf . Putting these two equations together, and if we

assume Vf = 70mph and Kj = 200vpm, the α will be,
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α =
Vf
Kj

=
70

200
= 0.35mi2/hr (3.2)

The above assumptions for Vf and Kj are selected as reasonable under the

circumstances of the simulation scenario, where speed limit is 70 mph and the

length of car and the space headway between vehicles is assumed to be 26ft (Kj ≈

5280/26) (Mannering et al., 2007).

3.2.3.2 CAV Car-following

For CAVs, the car-following behavior has been modeled to follow a simple rule to

maintain a desired time headway. The logic of this method of modeling follows

the anticipated implementation of the CACC application (Zhao and Sun, 2013;

Nowakowski et al., 2011). As, CACC depends on the packets of Basic Mobility

Message (BMM) (Stowe et al., 2017) to be delivered to the vehicles in the platoon,

it is reasoned that only adjacent vehicles in the traffic flow will be able to com-

municate and coordinate under the CACC application. In other words, CAVs will

not communicate if a non-CAV is between them. Given two adjacent CAV, the

following CAV receives location information of the leading car, and accordingly

calculates its desired speed using the following formula to maintain a reasonable

time headway:

DesiredSpeed =
SpaceHeadway

DesiredT imeHeadway
(3.3)
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The following car then uses a constant acceleration, presented in Table 3.1,

to reach this desired speed. Interestingly, our experiments have showed that even

maintaining 7 seconds time headway for CAVs, which is well above the comfortable

time headway of 1 second (Ayres et al., 2001), CAVs can reduce the shockwave

backpropagation, and also decrease travel time of the segment. Therefore, a realis-

tic and yet conservative time headway of 1.5 seconds has been chosen for the rest of

the simulations in this dissertation among adjacent CAVs. Actual implementation

of the CACC application may use an even smaller value for this setting (Ploeg

et al., 2011). Figure 3.2 shows the snapshot of the simulation platform where you

can adjust acceleration and deceleration rate, vehicle intervals, desired headways

for connected vehicles, and market penetration. As a result, the travel trajectories

and other macroscopic traffic quality measurements (e.g., travel time and speed)

are then outputted from the simulator.

Figure 3.2: Snapshot of the simulation platform
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3.3 Results

The results of this chapter shows a strong correlation between the macroscopic

traffic characteristics of the highway segment, such as mean travel time, through-

put, and backpropagation time of congestion caused by the bottleneck, with the

market penetration rate of CAVs. Figure 3.3 shows the impacts of the CACC

technology associated with the introduction of CAVs into the traffic flow, on the

mobility of the highway, as a function of CAV Market Penetration. These impacts

are translated into percentage of travel time decrease, percentage of throughput in-

crease, and the percentage of shockwave backpropagation time increase, compared

to the base scenario where there are no CAVs in the system (MP = 0).

3.3.1 Mean Travel Time

As shown in Figure 3.3a, mean travel time of the vehicles in a 2-hour time period,

entering and exiting the corridor, decreases significantly for high market penetra-

tion of CAVs. It is also interesting that for market penetration levels lower than

75%, the mean travel time is relatively constant. However, with an increase in the

percentage of connected vehicles over 75%, it changes rapidly to the extent that

mean travel time for the fully CAV penetrated traffic flow is roughly 50% of mean

travel time for 75% and lower market penetration levels.

Another point to notice is that the mean travel time variability starts increasing

at around 30% and reaches its maximum at 95% market penetration, beyond which

it rapidly decreases to a reliable fully connected environment. This shows that for
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high levels of CAV market penetration, the presence of a few non-CAVs exposes

the entire system to a strong uncertainty that emerges as travel time unreliability,

which can be avoided by replacing them with CAVs.

3.3.2 Throughput

Similar to the mean travel times, the throughput of the corridor varies with changes

in CAV market penetration over a critical value which is estimated to be around

50%, based on Figure 3.3b. It can also be noted that throughput increases by 80%

with the change in market penetration from 50% to 100%. These results are fairly

consistent with previous studies (Talebpour and Mahmassani, 2016). However,

our simulations show that the uncertainty in the added throuput is much less

than that of mean travel time. And interestingly, the uncertainty increases almost

monotonically as the CAV market penetration increases, starting from 10% MP,

even before the actual benefits in throughput emerge (at about 50%). Comparing

Figures 3.3a and 3.3b, a fully CAV penetrated traffic flow, although very reliable

in terms of travel time, is not as certain from the perspective of throughput.

3.3.3 Shockwave Backpropagation Time

Looking at Figure 3.3c which shows the time that the shockwave propagates back

to the start of the corridor, it can be stated that this backpropagation time in-

creases, or in other words, the speed of shockwave decreases once the percentage
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(a) Mean Travel Time

(b) Throughput

(c) Shockwave Backpropagation

Figure 3.3: Traffic Characteristics with change in the CAV Market Penetration
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of connected vehicles hits 60%. Interestingly, with 100% market penetration, the

shockwave never reaches the upstream during the simulation time window, which

was set to 3 hours. This is the results of CAV platooning and CACC application

that damps the chain effect of stop-and-go condition in congestion (Stern et al.,

2018). The reliability in this aspect also follows a similar pattern as travel time.

3.3.4 Trajectory Analysis

In addition to the findings above, looking at travel trajectories of the vehicles

under different market penetration of CAVs unearths an emergent platooning phe-

nomenon in CAV clusters (Liu et al., 2018). Figure 3.4 shows travel trajectories

for different market penetration levels. The increase in the cluster of trajectories

is easy to recognize as the CAV market penetration goes up. These platoons get

larger and denser as the percentage of CAVs in the system goes up. It has to

be noted that this behavior is an artifact of the simple car-following model that

was implemented for the CAVs, which only works towards maintaining a constant

headway between them (Uhlemann, 2016). Another point to notice is that as

shown in Figure 3.3c, the shockwave backpropagation time increases with increase

in CAV market penetration, to the point that the shockwave never backpropagates

to the upstream under 100% market penetration.
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(a) 0% MP

(b) 40% MP

(c) 60% MP

(d) 80% MP

(e) 100% MP

Figure 3.4: Travel Trajectories for different Market Penetrations



48

3.4 Conclusions

From the simulation experiments and the vehicle trajectories in this chapter, it can

be concluded that the CACC application can have a noticeable impact on traffic

flow, and that this impact increases along with increasing market penetration of

this technology. The vast difference in results from the baseline scenario (0% CAV)

vs. the “best case” scenario (100% connectivity) make this conclusion readily ap-

parent. This chapter also demonstrates the ability to obtain realistic and expected

results through the agent-based simulation method. An interesting finding of this

study is that significant effects are not seen until the market penetration exceeds

a critical threshold at around 50%. This may correspond to a real phenomenon

which will be duplicated in real-world scenarios. Another interesting result of these

simulations is the conclusion that at some level of market penetration the conges-

tion caused by the bottleneck no long propagates backwards. In other words, the

shockwave speed is zero. This implies that upstream congestion, far removed from

the location of the cause, may be able to be completely avoided. This can be seen

in comparing results from 90% and 100% market penetration rates where the ever

shallowing slope of the shockwave become effectively flat at 100%.
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Chapter 4: Connected and Autonomous Vehicle Routing

Optimization under No Communication: A Reinforcement Learning

Application in a Competitive Environment

4.1 Introduction

The escalating advancement of information and communications technology, the

internet of things (IoT) and vehicular data cloud (He et al., 2014), and the automa-

tion have had a significant influence on the landscape of transportation (Guerrero-

Ibanez et al., 2015). These technologies have given rise to the prospect of connected

and autonomous vehicle technologies which aim to improve traffic performance in

terms of safety, mobility, and environmental impacts (Genders and Razavi, 2015).

The idea of driverless vehicles has been in existence for decades (Nelson and Cox,

1990; Frazzoli et al., 2002); however, the exorbitant costs and the lack of proper

technological advancements in the past have been stalled its large-scale produc-

tion (Fagnant and Kockelman, 2015). Nevertheless, an acceleration in the research

and development efforts in the last decade has brought the idea of the CAV to

realization (Kato et al., 2015; Poczter and Jankovic, 2014). For example, the in-

troduction of the Google car brought CAVs to the spotlight (Guizzo, 2011). How-

ever, the existing literature does not document the approaches by which CAVs

find and determine their routes in the road networks (Bagloee et al., 2016), espe-
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cially when there is no communication between the vehicles (Aoki and Fujii, 1996;

Hussain and Zeadally, 2018). Current strategies heavily rely on real-time traffic

information to be communicated to the drivers or vehicles in order to make an

informed navigational and routing decision (Wedel et al., 2009; Pan et al., 2016,

2012). Although this real-time communication is known to be beneficial to the ve-

hicles’ directionality abilities, leading to more efficient and intelligent route-finding

algorithms (Mostafizi et al., 2017), it is of great significance to study CAV systems

where there is no communication capabilities (Willke et al., 2009). As a result, the

future of autonomous vehicles, and routing behavior in particular, to some extent

relies on a decentralized control system that scales easily in order to fully utilize

the transportation network capacity, and does not fail in absence of communication

capabilities.

In this chapter, to simulate routing optimization in absence of communica-

tion between CAVs, a decentralized learning environment is replicated to find the

shortest path for the CAVs travelling through a grid transportation network using

a Q-learning algorithm (Watkins and Dayan, 1992). The objectives of this chap-

ter are two-folded. In the first part, I focused on replicating the behavior of the

controller in terms of learning the shortest path for a single CAV in a simplified

transportation grid network with a background traffic. Later, transitioning from

a single-agent to a multiagent system (Wolpert et al., 1999; Tumer et al., 2002;

Buşoniu et al., 2010), I studied how different percentage of CAVs impacts the

learning behavior as well as total mobility of the system as a whole, measured by

the average of travel times. In addition, this chapter discusses how reinforcement



51

learning yields sub optimal policies in the case that there are a large number of

CAVs trying to minimize their travel times simultaneously (Chang et al., 2004).

The Q-learning algorithm with a reverse order Q Matrix is updated (Singh and

Sutton, 1996) to reach the optimal path within a grid network, during which dif-

ferent coefficients have been evaluated and analyzed based on their impact on the

algorithm’s performance. The reinforcement learning algorithm is then applied to

the multiagent system with different market penetration of CAVs. The results re-

vealed that as the percentage of CAVs increases, convergence to the optimal joint

policy gets more complex, as shown in previous multiagent coordination studies

on loosely coupled tasks (Yu et al., 2015; Brafman and Domshlak, 2008), similar

to the route planning task at hand. A physical interpretation is that when all of

the agents are trying to maximize their own utility in a congestion game (Milch-

taich, 1996) where the agents have conflicted interests with each other, the system

does not converge to a global optima (Helbing et al., 2005). The results of this

study reveals that the critical CAV market penetration where the final converged

total travel time reaches its minimum lies between 50% and 75%, above which the

system performance degrades with learning.

4.2 Learning Environment

This dissertation considers a network grid where nodes represent intersections and

edges represent travel links. Nodes at the farthest left of the grid are the origins

and the other side nodes are representing the destinations (See Figure 1.2a). In
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each origin, there are 50 vehicles whose destination is randomly assigned to one of

the destination nodes. Each vehicle can either be a CAV or a Non-CAV, depending

on the market penetration. Non-CAVs are assumed to have no learning ability, and

therefore choose their route based on a so-called diagonal shortest path, calculated

with the following pattern.

DiagonalShortestRoute =



⌊
6−Dy

2

⌋
dy

⌊
6−Dy

2

⌋
︷︸︸︷
R..R

︷ ︸︸ ︷
RDRD..RDRD

︷︸︸︷
R..R dy < 0

R..R︸︷︷︸ RURU..RURU︸ ︷︷ ︸ R..R︸︷︷︸ dy ≥ 0⌊
6−Dy

2

⌋
dy

⌊
6−Dy

2

⌋
(4.1)

where dy = Ydestination − Yorigin, R represents Right action, D represents Down

action, and U represents Up action. This behavior is put in place to replicate the

predictability in commuting route of the drivers that are not provided with any

real-time information or any navigational intelligence of any sort (Evans et al.,

2002; Ponieman et al., 2013). On the other hand, CAVs learn from their past

action sequences and intend to optimize their routing policy (Han et al., 2016).

For each agent travelling through this network, the route would be a combination

of certain number of “Right” and “Up” or “Down” actions, based on the sign of

dy. In lines with the objectives of this chapter, two scenarios were simulated here,

• Single CAV Learning : How a CAV, that is characterized as a reinforcement

learning agent, can learn the optimal shortest route by itself and without any

external source of information? For this scenario, I assumed that the CAV
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travels from one corner to the opposing one in the grid.

• Mult-CAV Learning : How multiple CAVs learn their optimal routes, without

any external source of information or any intent communication between

them, and just by learning from their own experiences and state-action space,

to yield minimum system travel time?

This environment with one single CAV learner has been used to tune the learner

in order to be deployed in the Multiagent setting. The performance of the algorithm

in this scenario is discussed and tuned in Section 4.3. The performance of the tuned

learning algorithm in a multiagent setting is presented in Section 4.5 in terms of

mean travel time of the system.

4.2.1 Learning Procedure

The general approach to optimize the route for the CAVs in this study is to exploit

the Q-learning algorithm (Watkins and Dayan, 1992) with reverse updates, known

as eligibility trace in the literature (Singh and Sutton, 1996; Precup, 2000), to speed

up convergence in the goal based domains. The simulator was built in Netlogo

(Wilensky and others, 1999) with the car-following model presented in Chapter 3

in place. It also has to be noted that since traffic congestions are simulated in the

model and incorporated in the process of learning, the travel times were stochastic

to the extent that impact the optimized route (Laporte et al., 1992). Therefore,

each trajectory for a vehicle was run 10 times and the average travel time were
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used to calculate the reward and update the Q matrix consequently. Algorithm 1

presents the general learning work-flow of a CAV.

Algorithm 1 Learning Algorithm

procedure LEARN
Input: Agent r : Origin & Destination

Output: Optimal Route (in form of a sequence of actions - Policy)
Q← 0
for LearningHorizon iterations do

ActionSet← []

Rewards← []

state← origin
while state 6= destination do

Action← ε-greedy Action

Add Action to ActionSet

Collect reward

Rewards(state)← Rewards(state) + reward

update state
end

Rerun ActionSet 10 times

Average the Rewards for each state

Q(s,a)← Q(s, a) + α(R(s) + βMaxa′Q(s′, a′)−Q(s, a))
end

return argmaxa[Q
r(s, a)]

The specifics on how the state-action is defined and how time-based rewards

are calculated are elaborated in the following sections.
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4.2.2 State, Action, and Reward

In addition, to formulate this problem, three key features of reinforcement learning

are defined as following,

• States: Each intersection is defined as a state, where CAVs take action at.

• Actions: For the Single CAV learning scenario, possible actions are R and

D, considering the network constraints and not moving beyond the network

boundaries. For the Multi-CAV learning scenario, possible actions are R and

either D or U (based on the sign of dy), and again, considering the constraint

that a CAV cannot move outside the network. Also, a CAV cannot pass

its destination vertically. This means that any sets of possible actions will

certainly take an agent to its own destination. This constraint is put in place

so the CAVs focus on learning the shortest path, and not just a path. In

simple words, to learn what matters (Dayan and Balleine, 2002; Berridge,

2000).

• Rewards: Since the objective is to find the quickest path, reward of each

state is based on the time to get to that state from previous states,

Reward(state) = (MaxTraveltime − Traveltime(state)) ∗ 103

where MaxTraveltime is calculated based on the link length and the minimum

speed of the vehicles. There also is a significant reward for the destination,
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based on the time it takes to get to the destination from the origin, formulated

as the following,

FinalReward = (MaxTotalTraveltime − TotalTraveltime) ∗ 103

Where MaxTotalTraveltime is calculated based on Manhattan distance between

origin and destination and the minimum speed of the agents.

4.2.3 Single CAV Learning

For this study two different network sizes were considered, 3X3 and 6X6, to reduce

the amount of computational needs, and to prove the concept. For a Single-

CAV learning scenario, all vehicles are Non-CAVs, except one CAV at the top

left intersection of the grid, heading to bottom right intersection. Based on the

travel pattern proposed earlier and the diagonal shortest path algorithm defined,

the expected background traffic resembles Figure 4.1.

It can be seen that as the simulation progresses beyond 50%, the middle of

the network becomes heavily congested, and thus, the quickest path should avoid

these links as much as possible. Therefore, the shortest path from the top left

to the bottom right is not the diagonal path, and it is more likely to be inclined

to the bottom left of the grid. Also, since vertical links are less congested in

the beginning, it is expected that the shortest path will be more vertical in the

beginning and after that, it tries to get to the destination by moving horizontally.
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Figure 4.1: Background traffic pattern

This scenario has been mainly used to tune the learning parameters in order to

deploy the algorithm in the Milti-CAV scenario.

4.2.4 Multi-CAV Learning

In this scenario, I the performance a system where multiple CAVs learn the shortest

path at the same time is analyzed. As mentioned earlier, there are 50 vehicles in

each origin, and a specific percentage of them are set as CAVs, with learning

capability, based on the CAV market penetration. The destinations are assigned

randomly and uniformly for each vehicle. The definition of States and rewards are
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exactly the same as the first scenario. However, possible actions are defined as the

following,

PossibeActions =


RU dy > 0

R D dy < 0

R dy = 0

(4.2)

It is assumed that a CAV cannot travel outside the network. Also, an agent

cannot pass its destination vertically. Since the objective is to identify the optimal

shortest path, logical constraints are applied to ensure possible actions in a way

that a CAV reaches its destination for sure, and to ensure that the simulation

realizes the learning potential for finding the shortest path (Mataric, 1994). The

next section presents the results from both scenarios. In addition, to compare the

impact of different coefficients, the learning environment is set for two different

network sizes, and for deferent values for learning parameters, i.e., , α, and ε for

the epsilon-greedy exploration exploitation policy.

4.3 Hyperparameter Tuning

The objective of the first scenario is to fine-tune the learning algorithm to ulti-

mately deploy it in the multiagent system with many CAVs learning simultane-

ously. Therefore, the following sections discuss distinctive performances of the

learning algorithm, with varying coefficients, for a single CAV, travelling from top

left corner to the bottom right corner of the 3X3 grid network. Travel time in-
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crease, compared to the minimum and optimal route travel time, has been utilized

as a performance measurement.

4.3.1 Exploration vs. Exploitation

In this study, the reinforcement learning agent (CAV) utilizes an ε-greedy approach

to balance between exploitation of the already found good policy (route) and the

exploration of new routes (Gomes and Kowalczyk, 2009; Wunder et al., 2010).

With this approach, at each state, the so-far best action will be explored by the

probability of ε, and any of other actions with the probability of 1 − ε. Figure

4.2 shows the algorithm’s performance for diverse values of ε. Note the y axis of

the plot that shows the increase in travel time, compared to the minimum value.

Therefore, 100% means that the algorithm has converged to the optimal policy.

Figure 4.2: Learning curve for various ε (α = 0.1 and β = 0.99).
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The results show that ε = 0.9 has a more constant behavior and it converges

to the optimal route eventually. This is due to the nature of grid networks where

exploring the corner states are less likely, and thus, takes longer. Remember that,

keeping the background traffic shown in Figure 4.1 in mind, the optimal route

would be the one that passes the bottom left intersection, and thus, less likely to

be travelled. On the other hand, setting ε to be 0.1 makes the learning curve very

noisy, and a reliable convergence to the optimal route is achieved almost at the

same time as 0.9-greedy policy. In this study, as convergence to the optimal policy

is more important than the way of convergence and the algorithm’s performance,

ε is set to be 0.5, to avoid the noises associated with a low ε (Fox et al., 2015)

and the likelihood of not converging to the optimal route that minimizes the travel

time with a high ε. Also, Figure 4.2 shows that the final performance of ε = 0.5 is

not drastically different that the other cases.

4.3.2 Discount Factor

Figure 4.3 represents how different discount factors affect the performance of the

algorithm. Since the rewards of each state are factored with the final reward,

having a large β, that transports most of the final reward backwards, makes the

learning curves to be noisy (Precup, 2000).

As it can be seen in Figure 4.3, all three curves show that the algorithm con-

verged to the near-optimal route. However, β = 0.99 seems to ensure proper

backpropagation in the rewards in a way for the 0.5-greedy policy to swipe the
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Figure 4.3: Learning curve for various β (α = 0.1 and ε = 0.5)

entire network looking for the shortest path. Plus, the final converged route is

comparable to the other cases in terms of the travel time. Therefore, to ensure

that the algorithm converges to the shortest route, β is set to 0.99 for the rest of

simulations. Low β of 0.1 or 0.5, although converging to the optimal route early

on does not seem to be exploring other routes enough.

4.3.2.1 Learning Rate

Figure 4.4 presents the impact of different values of α on the algorithm’s perfor-

mance. As expected, the smaller the α is, the smoother the learning process would

be (Even-Dar and Mansour, 2003). However, for this special case, it appears that

the learner, perhaps randomly, was locked in the optimal route at the beginning

of the process, and due to low learning rate, barely explored any other policies.
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Figure 4.4: Learning curve for various α (β = 0.5 and ε = 0.5)

All considered, for deployment of this algorithm to the Multi-CAV scenario, I

chose the learning rate of 0.1 that is not low enough to hinder the exploration of

other states and policies and is not too high that diverges from the optimal policy.

Based on the tuning analysis, the coefficients are set to the following values for

Multi-CAV scenario.

Table 4.1: Q-Learning Hyperparameters

Parameter
Exploration
Exploitation

ε

Discount
Factor
β

Learning
Rate
α

Value 0.5 0.99 0.1
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4.4 Scaling

The algorithm was tested in a 6X6 network to inspect how the algorithm scales for

a larger state-action space. Figure 4.5 shows the experiments with different values

of ε. The results show that, similar to the smaller network, ε of 0.5 converges

faster to the optimal route, compared to the other two cases tested. Moreover,

reducing ε directly impacts the noisiness of the convergence. The final route that

came from each algorithms, after 200 training epochs, is shown in Figure 4.6. As

expected, the optimal route is inclined to the bottom left part of the network for

all three cases, indicating that the learning algorithm is behaving correctly for a

single reinforcement learning CAV. However, as shown in the expected travel time

of the final converged route in Figure 4.5, ε = 0.9 yields an slightly sub-optimal

route, compared to the other two cases.

Figure 4.5: Learning curve for various ε (α = 0.1 and β = 0.99).
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One other point to notice is the longer convergence time. Comparing Figures

4.5 and 4.2 shows that 0.5-greedy algorithm converged almost 80% faster for the

smaller network. In other words, doubling the size of the network, as it exponen-

tially enlarges the state-action space (Santamaŕıa et al., 1997), results in 4 times

longer convergence time.

(a) 0.1-Greedy (b) 0.5-Greedy (c) 0.9-Greedy

Figure 4.6: Final optimal routes

4.5 Multi-CAV Learning Results

To assess the performance of the Multi-CAV learning process, we analyzed the av-

erage system travel time as a function of learning procedure (epoch) for different

CAV market penetration. Figure 4.7 shows the average system travel time increase

(%), over the minimum system travel time observed over the course of simulation,

which incorporates all the vehicles in the network (CAV and Non-CAV). To assess

the impact of network size and how the system scales, we presented this perfor-

mance for two network sizes of 3X3 and 6X6. Interestingly, looking at the results

for a 3X3 network shown in Figure 4.7a, the system performance converges to the
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minimum average travel time when the MP = 75%. The fact that MP = 100%

does not improve the system performance under this learning environment shows

the deficiency of the learning-based methods in multiagent domains with high num-

ber of agents. Moreover, it can be seen that the learning deteriorates the system

performance for MP of 75% and 100%, as the system travel time increases with

learning. This suggests that the random routing behavior that is practically the

start of learning yields a lower overall network travel time. On the other hand,

the system performance for a MP of 25% or 50% intelligent agents improves over

simulation time. Therefore, it is reasonable to conclude that there exists a critical

threshold between 50% and 75%, above which the system performance deteriorate,

and below which the system performance improve over the simulation horizon.

Previous studies have attempted to alleviate the issue of learning without com-

municating (Sen et al., 1994; Schaerf et al., 1994), however, most of these studies

work with low number of agents, often less than 10 (Bu et al., 2008). In addition,

this suggests that as the number of intelligent agents increase, a convergence to the

optimal solution becomes harder or even impossible. This is due to the fact that

when all of the agents are trying to optimize their utility function with conflicting

interests, reaching an optimal solution is becoming infeasible (Claus and Boutilier,

1998; Panait and Luke, 2005). In this case, having 100% of intelligent agents is

even worse than all other three different scenarios (25 ≤ MP ≤ 75). However, it

has to be noted that this does not mean that introduction CAVs into the system

is not beneficial. Note the difference between the average system travel time when

MP = 100% (118% Travel Time Increase) and MP = 25% (106% TTI).
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(a) 3X3 network

(b) 6X6 network

Figure 4.7: Average travel times for different percentage of intelligent agents
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Similar patterns are observed from the experiment with higher network size,

6X6, shown in Figure 4.7b. It can be seen that the performance of a fully CAV

penetrate system deteriorates as learning goes on, to the point that it even gets

worse than the system with MP = 25%. The results also show that it takes about

4 times longer for a larger system to converge, as the state-space action increases

exponentially with increase in the network size. This longer convergence time is

also partially due to complexities added as a result of the stochasticity in the

policies that depend on the policy of the other agents (Scerri et al., 2006). One

other interesting observation is the substantial improvement in the 6X6 network

travel time compared to the case with no CAV (382%) which is significantly more

than the same impact in a smaller network. This suggests that in the effects of

CAVs are more discernible in large-scale deployment.

4.6 Conclusion

In this chapter, a CAV learning algorithm is proposed to optimize the shortest path

for the these vehicles and to optimize the system travel time under the limitation

that CAVs are unable to communicate with each other or the infrastructure at

any capacity. It is assumed that CAVs are smart in the sense that they can learn

the shortest path to their destinations, only based on their previous experiences.

Non-CAVs on the other hand do not change their route throughout the simulation

horizon. A Q-learning algorithm with eligibility trace is applied for the CAVs to

learn the optimal shortest path within a grid network. At first, the algorithm was
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applied to a single CAV learning environment, during which different coefficients

have been evaluated, analyzed, and tuned based on their impact on the algorithm’s

performance. Secondly, the learning algorithm is implemented in the Multi-CAV

systems with different CAV market penetration. Although significant improve-

ments were observed in terms of system travel time with the introduction of CAVs

into the transportation network, the results revealed that as the percentage of

CAVs increases, it is more difficult to converge to the optimal solutions (Yu et al.,

2015). It can be explained that when all of the agents are trying to optimize their

utility function in a competitive system with competing goals, reaching an optimal

solution is not feasible. This theory is in line with previous studies on similar sub-

jects (Bu et al., 2008; Tumer et al., 2002). In addition, this study found that the

there is a critical threshold of market penetration at which the final converged total

travel times reaches its minimum. The results of competitive learning environment

in this study suggest that the scope of the threshold would lie between 50% and

75%, above which the system deteriorates with learning, while below which the

system improves over the simulation horizon. This further validates the fact that

increasing percentage of CAVs does not necessarily improves the performance of

the system, and to our surprises, the system travel time converges to the minimum

observed value at market penetration of 75%.

The findings of this chapter reveals that proper coordination between the CAVs

relies on a robust communication system and proper information sharing capabil-

ities for this ever-changing technology. This chapter is a motivation to study

such systems under different levels of communication capabilities and to develop
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algorithms and procedures to reach a social optimal state and minimize the trans-

portation network travel time, which will be the focus of the next two chapters of

this dissertation.



70

Chapter 5: On the Impacts of Minimal Information Sharing on

Connected and Autonomous Vehicle Routing Optimization:

Percolation Phenomenon in CAV Networks

5.1 Introduction

This chapter introduces a multiagent approach, coupled with percolation theory

and network science, to measure the mobility impacts (i.e., mean travel time of

the system) of minimal information sharing over the connected and autonomous

vehicle (CAV) network at varying levels of CAV market penetration. It is assumed

that CAVs share their location and travelling speed with the other CAVs in their

communication cluster, and this information is used by the CAVs to find the

current shortest path to their destination at each stage in the trip and reroute

accordingly. The characteristics of a CAV network, i.e., node degree distribution,

vehicular clustering, and giant component size were captured to verify the existence

of percolation phenomenon, and further connect the emergence of mobility benefits

to the percolation phase transition in the CAV network. The results show that the

percolation phase transition properties appear in a dynamic CAV network with

time-correlated link and node dynamics. An analytical framework was developed

to evaluate the CAV network attributes with varying market penetrations (MP)

and connection ranges (CR) to identify percolation phenomenon in a mixed CAV



71

and Non-CAV environment. In addition, a multiagent CAV simulation platform

was created to further measure (1) how varying MPs and CRs affect the network-

wide mobility measured by the mean travel time of the network; and (2) when

percolation transition occurs in CAV network to capture the critical MP and CR.

Percolation phenomenon in CAV network was further validated with the analytical

assessments. The results show that (1) percolation phase transition phenomenon is

a function of both market penetration and communication range; (2) percolation

phase transitions in both mobility and CAV network are highly correlated; (3)

the application can reduce the average travel time of the system by up to 20%

with reasonable market penetration and communication range; (4) critical market

penetration is sensitive to communication range, and vice versa; (5) at least 70%

of the CAVs on the network are required to show in the same cluster for mobility

benefits to appear; and (6) for high levels of MP or CR, a low probability of

connectivity (PC) does not dramatically change the mean travel time. These

results provide solid supports to create evidence-driven frameworks to guide future

CAV deployment and CAV network analysis.

The rest of this chapter is organized as follows. Section 5.2 shows the devel-

opment of the multiagent CAV simulation platform in NetLogo (Wilensky and

others, 1999), and describes the simulation settings and modeling procedures. In

Section 5.3, the different components and the details of the analytical formulation

is discussed. Section 5.4 presents the analytical and simulation results, and com-

pares the outcomes of two methods. Section 5.5 and 5.6 provide a discussion and

conclude with the major findings. Throughout this chapter, I used abbreviations
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for frequently used variables as summarized in Table 5.1.

Table 5.1: List of abbreviations

Variable Notation Explanation
Market Penetration MP The percentage of the CAVs
Communication Range CR The radius that a CAV’s connection can reach
Mean Travel Time MTT The average travel times of all the vehicle
Giant Component Size GCS The relative size of the largest cluster

5.2 Multiagent CAV simulation platform

This section presents the development of a CAV modeling and simulation platform

through an agent-based modeling environment. The simulation setting, algorithm,

and behavior of CAVs are further discussed to explain the system dynamics through

an iterative Monte Carlo simulation framework.

5.2.1 Simulation network setting

A 4× 4 square lattice with 400 vehicles were considered in this chapter, in which

the MP of CAVs is increased from 0% to 100%. On top of the MP, the CR also

varies, which governs the dynamics of CAV clustering, and the shared information

cloud that CAVs will use to optimize their routes to destinations. The information

cloud is formed via DSRC system with the flooding-type information transmis-

sion strategy as experimented by Talebpour et al. (2016). It is worth noting that

it is not the main focus of this study to analyze different communication and
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networking protocols, as the main contribution is to assess the impacts of vehicle-

to-vehicle communication on mobility benefits. It is expected that advancements

in network technology or new communication protocol will overcome the commu-

nication interference in the near future. Despite this, since there have been studies

suggesting that physical barrier and frequency interference would lead to signal and

information loss (Talebpour et al., 2016), a scenario considering the probability of

connectivity (PC) is also conducted in this chapter.

The scenario replicates a morning peak commute in a small network with the

size of 6000ft × 6000ft where origins and the destinations of the vehicles are uni-

formly distributed to the arrival and departure intersections on both sides of the

network, as shown in Figure 5.1. There are 100 agents in each origin heading to one

of the destinations. The simulation reflects a transportation network in between

residential area and central business district. Thus, the origins and destinations

are in fact pseudo ODs, mimicking where vehicles enter and exit the portion of

the network that is being simulated. Therefore, this grid network can also be con-

sidered as a subnetwork of a larger regional transportation network. Accordingly,

the assumption of origins and destinations on either side of the network leads to

an approximation of a real scenario. The north-south links are bi-directional, and

the east-west links are uni-directional towards the destinations.

Based on the origins, destinations, uniformly distributed travels, and given the

routing algorithm for the conventional vehicles show in figure 5.1, the traffic is

concentrated towards the middle right side of the network. As shown in black

color, almost 40% of the vehicles use the east-west links on the right side of the
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Figure 5.1: Schematic transportation network and routing behavior.

network. On the other hand, north-south links, especially on the left side of the

network are used less often, knowing that less than 2% of the vehicles travel on

them.

A small lattice network is chosen primarily to reduce the computational inten-

siveness in the agent-based modeling platform. Specifically in the case of rout-

ing optimization, allowing all the agents running on the network with a realistic

car-following model is computationally expensive. Replicating a large network in-

creases the routing algorithm runtime exponentially to a point that the simulation

is no longer computationally feasible based on the accessible resources. Using a

small network made it possible to replicate the congestion dynamics of the mixed

traffic flow. In addition, the simulation replicates an arterial grid network with a

block size of 2000ft. Although larger network would be preferred, and adds ad-

ditional validity to the simulation results, It was found that the dependency of
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the CAV network on the transportation network size and shape will not shift the

magnitude of simulation results dramatically. Thus, changes in the transportation

network size will have minimal impacts on the CAV network and its associated

attributes. The CAV network size is mostly governed by the MP of CAVs and

CR which is explained as a fraction of the block size. Thus, based on the afore-

mentioned reasoning, I believe that a larger transportation network will result in

similar outcomes from the CAV Network point of view.

5.2.2 Simulation environment and parameters

The simulation environment was coded in NetLogo (Wilensky and others, 1999),

which is a widely used agent-based modeling and simulation platform (Wang et al.,

2016). Vehicle movements are bounded by a maximum driving speed of v = 35

mph. The speed of each vehicle is governed by 5th generation general motors car-

following model with the parameters presented in Table 5.2 and the formula shown

in Equation 5.1, which would lead to a realistic model of congestion propagation

over the network.

at+δtn+1 = [
αl,m(vtn+1)m

(xtn − xtn+1)l
](vtn − vtn+1) (5.1)

Parameters described in Table 5.2 lead to the Greenshield’s speed-density rela-

tionship. The α is estimated with the assumption of Kj = 210vpm (jam density)

and Vf = 30mph (free-flow speed). Vehicle arrival in the network follows a Poisson

distribution with parameter λ = 720 veh/hour. As a result, the vehicle headway
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Table 5.2: Car-following model parameters

Parameter Notation Value
Distance Headway Exp. l 2
Speed Exp. m 0
Perception-Reaction Time δt 0
Sensitivity Coef. α 0.14

follows a negative exponential distribution with µ = 5 seconds.

5.2.3 Routing algorithm and behavior

Routing decision is the major task of communication in the CAV network. Each

equipped vehicle optimizes the fastest route using the A∗ algorithm (Hart et al.,

1968), with regard to the travel time information of the CAVs in its communication

cluster. While all the non-CAVs follow the predefined diagonal route to their

destinations, mainly due to the fact that the commuters that are traveling within

the same OD pair, are most likely to choose the same route. The routing algorithms

for both CAVs and non-CAVs are discussed hereafter.

5.2.3.1 Non-CAV routing behavior

As the non-CAVs have no information regarding the travel time of the links in

the network, either congested or uncongested state will not change an individual

routing, even if they will use the fastest path algorithm, since in the lattice there

are multiple routes with the same Manhattan distance between each pair. There-
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fore, all the non-CAVs, choose their routes depending on only their origin and

designation based on the following equation:

Shortest Route =



(4− dy) dy︷ ︸︸ ︷
R....R

︷ ︸︸ ︷
RU..RU dy ≥ 0

R....R︸ ︷︷ ︸RD..RD︸ ︷︷ ︸ dy < 0

(4− |dy|) |dy|

(5.2)

Where dy = YDesination − YOrigin and R, D, and U represent the direction of

movement in sequence.

Considering the routing behavior for Non-CAVs, formulated above, Figure 5.1

shows the traffic demand exposed to the transportation network in a scenario when

there is no CAV in the network. It can be seen that the traffic is more concentrated

towards the middle right of the network. At the same time, there exist quite a

few links that are highly underutilized. Therefore, the route distribution in the

hypothetical network is extensively insufficient, mostly due to the concentration of

traffic as it happens in a real transportation network with similar demand patterns

as well.

5.2.3.2 CAV routing behavior

The exchange of travel time information within connected CAV clusters through

V2V communication will inform an individual routing decision-making behavior
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and facilitate the use of available road network capacity (Jia and Ngoduy, 2016).

The formation of CAV clusters is highly dependent on the CR and geo-location

of the CAVs over the network, which is mainly governed by MP and the demand

pattern. Therefore, different combinations of MP and CR result in distinct network

dynamics and clustering behavior (i.e., cluster size and distribution). Figure 5.2

and 5.3 schematically show the formation of clusters under varying combinations

of CR and MP. To measure the benefits of connectivity and information-sharing

among CAV clusters, it was assumed that CAVs share their individual speed and

travel time information within their CAV cluster. The average speed of CAVs

traveling on the same link is used to estimate the travel time of that link, which

is ultimately used for route optimization by the CAVs in the cluster. Although

estimating the link travel time solely based on the average speed of CAVs on the

link might not be accurate due to the presence of congestion pockets, the results of

this study show that this is not necessarily true, as mobility benefits were emerged

in the results even with this simplistic prediction model.

However, it is rather common that the travel time of some roadway links are

unknown, namely partial information of the network are provided. Therefore, the

problem of optimization under partial information arises. The results from this

study have shown that partial information lattice path optimization will not gen-

erate significant mobility benefits or travel time decrease. The reason is that there

is hardly any reliable way to predict the travel time of the missing link. For in-

stance, it can be either fully congested with non-CAVs, or empty. In both cases,

there will not be any information regarding the link travel time. However, the
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speed of the link is zero and free-flow speed respectively. These uncertainties lead

to failure in proper fastest path optimization. In other words, fastest path algo-

rithm under partial information does not practically produce an optimal solution,

even with the use of heuristic methods to estimate the travel time of the missing

link. Figure 5.2 presents two hypothetical cases of partial and complete informa-

tion. Low market penetration or short connection range tends to yield partial

information scenarios in a network.

(a) Partial information (b) Complete information

Figure 5.2: Partial information vs. Complete information.

Figure 5.2 explains the difference between partial and complete information

cases. For example, in this case, and based on these set of origin and destination,

the entire network travel time information is desired for a CAV to make an informed

routing decision. Green dots represent the CAVs and red dots show the non-
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CAVs. Highlighted roadways are the ones that are covered by the CAV cluster,

and therefore the travel time information will be shared with the cluster members.

(a) replicates the case that MP = 30%, and although a CAV is connected to a

cluster of CAVs, the cloud does not cover the area of interest, and thus, it is less

beneficial in terms of route optimization. On the other hand, (b) shows a rich CAV

network, where MP = 50%, that covers all of the links. The shared information

among this cluster will be used for routing decisions.

In the simulation setting, each CAV updates its route using A∗ algorithm at

every intersection based on the available information (i.e., current location, desti-

nation, and the cluster information cloud) to find the fastest path. Therefore, the

dynamics of the clusters and information cloud enable CAVs to update and search

for the fastest route at each intersection. It is of note that the modeling of the

message communication protocols was not the focus of this work, and thus sim-

plified. It was assumed that messages can be uploaded to the information cloud,

and be circulated through the cluster in minimal or negligible time. However, as

mentioned before, in order to demonstrate the impacts of signal loss on mobility, a

case study is conducted to illustrate the impact of the probability of connectivity.

Moreover, since the information is used for route choice when a CAV reaches an

intersection, the usage of the information is thus not very frequent.
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5.2.4 CAV network connectivity

MP and CR are the two major variables that characterize the network connectivity

of CAVs. As discussed, the presence of CAVs in the network does not generate

mobility benefits by itself. Travel time benefits of CAVs is largely driven by rich

connectivity that facilitate prevalent information sharing required for route op-

timization. Figure 5.3 shows the dependency of the number of CAVs that have

complete information on MP and CR. It was found that higher MP or larger

CR alone are not particularly effective to generate a CAV network with sufficient

amount of information coverage. Instead, the combination of both is required

to achieve the desired benefits. In other words, only when MP is high and CR

is large, the CAV network will be richly connected, and that’s when significant

mobility benefits appear.

In Figure 5.3, the orange dots represent the Non-CAVs, and the blue dots show

CAVs with partial or no information. Green dots on the other hand show CAVs

that have complete and necessary information to optimize the fastest route to

their destinations. The connectivity between two vehicles is represented by a light

magenta-colored link, depending on the corresponding CR. When CR = 0.25, it

can be observed that even with MP = 100%, the number of cars with complete

needed travel time information is minimal. Therefore, market penetration cannot

achieve desired mobility benefits by itself. Analogously, when MP = 20%, even

CR = 1.0 does not lead to great increase of CAVs with proper information. As

both MP and CR go higher, high percentages of fully informed CAVs will start to
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Figure 5.3: The impact of CR and MP on connectivity.

appear, which lead to optimal route decision, and thus lower travel times.

5.2.5 System dynamics

An integrated agent-based modeling, using NetLogo, and Monte Carlo simulation

approach, through RNetLogo (Thiele, 2014), is used in this study to evaluate the
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emergent collective behaviors and patterns, and to capture stochasticity of the

simulation. Varying MP from 0 to 100 and CR from 0.25 to 1.0 block size (1 block

= 2000 ft), each simulation setting has been iterated for 100 times. At the end of

each run, the following information have been recorded for further assessment.

• Mean travel time of the system

• Degree distribution of the CAV Network

• CAV cluster size distribution

• Giant component size of the CAV Network

The aforementioned data is used to interpret the relativity of CAV Network

characteristics to mobility benefits in terms of the MTT of the system. In addi-

tion, CAV network characteristics are dynamic throughout each simulation run.

As shown in Figure 6.3, the network attributes vary dramatically from the be-

ginning of the simulation when the vehicles enter the network to the end when

vehicles leave the network. In order to provide an accurate estimation of the ve-

hicle connection, the first and last 5 minutes are eliminated. That is to say, the

data is collected through a fully-loaded network, truncating loading and unload-

ing phases. The average of the truncated attributes (e.g., mean cluster size and

giant component size) over the simulation period is used to estimate reliable CAV

network characteristics that are static representatives of the underlying dynamic

network. Next section is dedicated to analytically deploy percolation theory on
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the simulated CAV network to have a benchmark to validate simulation results

further in the chapter.

Figure 5.4: Simulation dynamics.

As observed in the Figure 6.3, in the first row, the blue curve represents the

number of clusters, and orange curve delineates the size of the giant component

(cluster). In the second row, the blue curve shows the mean degree (average

number of communication links) of the CAVs on network at each second, and

orange curve describes the mean cluster size of the simulation. At MP = 100%,

different simulation behaviors exist under different CRs. Comparing the number

of clusters between CR = 0.25 and CR = 1.0, the number of clusters fluctuates

around 10 and giant component size never goes up to 1. As CR gets higher,
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the number of clusters get lower and giant component size stays at 1. That is

because when the CR is larger, vehicles are more connected, and they form a giant

component. Similarly, as CR increases, a CAV can reach out to more other CAVs,

which leads to the larger mean degree and mean cluster size. It also suggests

that throughout the simulation, mean degree and mean cluster size are constantly

changing. As the network is loading, they both increase, and after the network is

fully loaded, around 500 seconds, they both decrease while unloading the network.

5.3 Analytical formulation

This section presents the essential components of the proposed integrated approach

combining network science (Gao et al., 2013, 2015), percolation theory (Grimmett,

1999), and percolation in a dynamic connected vehicle network (Jin et al., 2011b,a).

5.3.1 Degree Distribution

The mixed driving environment can be viewed as a graph containing two types

of nodes: CAV and non-CAV. Within the connection range CR, CAVs can detect

other equipped vehicles and exchange the essential travel information, while the

non-CAVs are separated. In Figure 5.5, the histogram represents the collected

simulation data on the distribution of node degrees in the CAV network. The red

curve is estimated Negative Binomial distribution plotted by using the estimated

r, p. The blue curve is estimated Poisson distribution plotted by estimated λ.
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(a) MP = 20%,CR = 0.25 (b) MP = 60%,CR = 0.5

(c) MP = 100%,CR = 1.0

Figure 5.5: Degree Distribution Fitting Comparison.

Existing research have investigated the degree distribution of connected vehicle

networks in highway settings. For example, Nagel (2010) investigated the degree

distribution under different following distances. Akhtar et al. (2015) characterized

the VANET topology over time and space for a highway scenario, and presented the

node degree in different channel models. However, degree distribution in network

scenarios is inadequate. Therefore, in this research, a simulation based technique is

adopted to capture the degree distribution on a grid transportation network. The

degree distribution of three sampled CAV networks throughout the simulation with

different MPs and CRs are summarized. Different discrete distributions are fitted

to the empirical data and plotted in Figure 5.5. The shape of the node degree
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distributions is similar to the results in Meireles et al. (2009). Fiore and Härri

(2008) also tested the impact of road layout on activity patterns. It was found

that the node degree distribution from Fiore and Härri (2008) also resembles a

bimodal distribution as shown in the Figure 5.5. Clearly, Negative Binomial dis-

tribution fits the empirical data the best. This can also be concluded by comparing

the Akaike information criterion (AIC), Bayesian information criterion (BIC), and

Negative Log likelihood. In addition, the fitted and estimated Negative Binomial

distributions are plotted in Figure 5.6. Fitted curve is directly generated from the

simulation data, while the estimated curve is plotted through the distribution with

the estimated (r, p) based on the simulation data. Through the investigation of the

fitted (red) curve, among discrete distributions, namely Poisson and Binomial dis-

tributions, it was found that the degree distribution of the CAV network follows a

Negative Binomial distribution NB(r, p). In order to estimate the distribution pa-

rameter with empirical data, degree information, i.e. mean (µ) and variance (σ2),

are collected throughout the simulation at different simulation settings. Based

on the theoretical formulation µ = r(1−p)
p

and σ2 = r(1−p)
p

, for each MP and CR,

the corresponding (r, p) can be therefore estimated. The green curve shows the

estimated NB distribution, and it can be seen that the result fits the fitted curve

well at high MP and wide CR scenarios. That is because NB distribution can

describe the degree distribution when the sample variance (σ2) is larger than the

mean (µ). When the MP is low, the standard deviation of degrees is low (Figure

5.8b). Despite NB distribution is limited in the case of low variance, it is still the

best fit among various discrete distribution. In addition, when MP is lower, the
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degree range is narrower, and thus, the mean will be smaller as well. This gener-

ates a variance which is less likely to be greater than the mean. However, when

the degree range goes up to 80 (MP = 100, CR = 1.0), variance will be larger than

mean. This yields a better approximation of the NB in higher MPs. In Figure

5.6, the histogram represents the collected simulation data. The red curve is fitted

negative binomial distribution based on the shape of the histogram. The green

curve is plotted by using the parameters estimated via the mean and variance of

node degree.

(a) MP = 20%,CR = 0.25 (b) MP = 60%,CR = 0.5

(c) MP = 100%,CR = 1.0

Figure 5.6: Degree Distribution.

Therefore, the probability that a randomly chosen CAV connects to k other

CAV follows a negative binomial distribution as below,
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pk =

 r + k − 1

k

 pr(1− p)k (5.3)

Empirically, k can be interpreted as the number of successes, r is the number of

failures (r ∈ R. In theoretical sense, they can be real numbers to more accurately

carve the distribution), and p is the probability of success. In this complex problem,

the empirical data was utilized to identify the best-fit distribution. Therefore,

in the context of percolation in connected vehicle network, (r, p) serves as shape

parameters to describe the degree distribution information of the different clusters.

5.3.2 Generating function

Given a network, the probability that a randomly chosen node from the network

that has degree k is pk. The generating function for this probability distribution

pk is,

G0(x) = p0 + p1x+ p2x
2 + p3x

3 + · · · =
∞∑
k=0

pkx
k (5.4)

The average degree z of a node can be calculated by,

z = 〈k〉 =
∑
k

kpk = G
′

0(1) (5.5)

The G0(x) encapsulates all the information contained in the probability distri-

bution pk. Say G0(x) “generates” the probability distribution pk (Newman, 2010).
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Following by a randomly chosen edge, the node at either end of the edge has degree

k with a probability proportional to kpk. It is because there are k times as many

edges connected to a node of degree k than to a node of degree 1. This is called

the excess degree of the node. The probability qk of having excess degree k is,

qk =
(k + 1)pk+1∑

k kpk
=

(k + 1)pk+1

z
(5.6)

Therefore, another generating function G1(x) can be represented as,

G1(x) =
∞∑
k=0

qkx
k =

1

〈k〉

∞∑
k=0

(k + 1)pk+1x
k =

G
′
0(x)

G
′
0(1)

=
G

′
0(x)

z
(5.7)

Suppose k follows the negative binomial distribution with parameter (r, p), the

corresponding generating function would be,

G0(x) =
∞∑
k=0

pkx
k = pr(1− (1− p)x)−r = (

p

1− (1− p)x
)r (5.8)

According to the generating function’s feature,

G1(x) =
G

′
0(1)

z
=

rpr(1− p)
[1− (1− p)x]r+1

× p

r(1− p)
=

(
p

1− (1− p)x

)r+1

(5.9)

G0(x) and G1(x) are used to calculate the mean degree distribution of the net-

work and the GCS. The empirical results suggest the degree distribution of dynamic

CAV network follows a negative binomial distribution. Derivation of G0(x) and

G1(x) allow us to obtain the giant component size analytically. Different degree

distributions have distinctive forms of G0(x) and G1(x), Equations 5.8 through 5.9
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are detailed procedures to derive the generating function. The same procedure can

be applied to calculate generating functions for other types of degree distribution

such as Poisson distribution.

5.3.3 Percolation process

Consider the mixed CAV network in which some fraction of the nodes are CAV

and the rest of them are non-CAV. The percolation process is parameterized by

the fraction of the CAV present in the network. When more CAVs are present,

the network tends to be more connected. The giant component was defined as the

cluster that has the maximum number of connected vehicles. When the percent-

age of CAV decreases, there exists a transition point where the giant component

breaks apart. The point at which the percolation transition occurs is of our central

interest, called the critical percolation threshold (pc). The logic behind this is that

although small cluster can form in the network, they will not create significant im-

pact to the mobility due to the scarce information they obtained from the network.

Only when the cluster size reaches a critical point, namely, percolation threshold,

the benefits start to appear. Therefore, the relative size of the giant component

to the size of the whole network was used. In order to connect to the giant com-

ponent, CAV A must be connected to the giant component via at least one of its

neighbors. That is to say, A does not belong to the giant component if (and only if)

it is not connected to the giant component via any of its neighbors. Define u as the

average probability that a CAV is not connected to the giant component through
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its neighbors. If CAV A has degree k, then the probability that it is not connected

to the giant component via any neighbors is uk. Hence, the average probability

that a node is not in the giant component is
∑

k pku
k = G0(u) =

∑∞
k=0 pku

k. This

probability also equals to the 1−S, where S is the fraction of the CAV that belongs

to the giant component (Newman, 2010). Therefore, we have,

S = 1−G0(u) (5.10)

Again, the probability that a CAV is not connected to the giant component

via a particular neighboring CAV is equal to the probability that this CAV is not

connected to the giant component through any of its neighbors. If there are k

of these neighbors, then the probability is uk. Since it connects to a neighboring

CAV through an edge, k is following the excess degree distribution qk. Thus, it is

formulated as,

u =
∞∑
k=0

qku
k = G1(u) (5.11)

Equations 5.10 and 5.11 provide a complete solution procedure to identify the

size of giant component in a CAV network. Analytical giant component size with

respect to theoretical NB(r, p) is illustrated in Figure 5.7.

Through the collected simulation node degree data, i.e., mean and variance,

we can estimate the (r, p) for each degree distribution as a function of MP and

CR as explained in earlier Section 5.3.1. This enables us to generate theoretical

percolation phenomenon on CAV network associated with different MPs and CRs,
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Figure 5.7: Giant component size with theoretical (r, p)

and compare the theory with the simulated results, as is shown in Figure 5.14. The

next section elaborates on the dependency of CAV network degree distribution on

MP and CR as a dynamic network.

5.3.4 Dynamic connected vehicle network

Conventional percolation research mainly focuses on empirical networks such as the

Internet, power grid etc., and the theoretical network such as ER network (Gao

et al., 2013, 2015), random network with power-law or Poisson degree distribution

etc (Callaway et al., 2000). However, in a vehicular network, the degree of each

node is varying over time. A vehicle network is featured by the movement of

vehicles, which creates challenges in modeling the degree distribution of the CAV
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network. Due to the different destination assignments, a CAV may leave the cluster

at the intersection, while others can join the cluster. This behavior further adds

complexity to the nodes’ degree modeling. Although it is challenging to apply

percolation theory to a dynamic network structure, percolation has been applied

to dynamical transportation network to detect the bottlenecks on the network (Li

et al., 2015a). Furthermore, it can depict the network evolution in the scenario

where traffic state is largely static. For example, percolation can be used for

planning purpose to create a resilient network under extreme events (Latora and

Marchiori, 2005). In this study, a multiagent platform was created to approximate

the behavior of the vehicles, and the degree of each node at each simulation step

was constantly recorded, and the descriptive statistics are presented in Figure 5.8a

and 5.8b. The results show that the mean degree of a CAV is controlled by the

corresponding MP and CR. As discussed in Section 5.3.1, the degree distribution is

found to follow a negative binomial distribution with parameter (r, p) which can be

estimated by the mean and standard deviation of the sample. Figure 5.8 shows the

increasing trend in both mean and standard deviation of the degree distribution

with the increase in both MP and CR.

CAVs who belong to the giant component are more likely to exchange infor-

mation to optimize their travel performance. However, there are small clusters of

connected vehicles that are not connected to the giant component, but they can

still benefit the mobility in varying degrees. This motivates us to study the cluster

size and its distribution. As shown in Figure 5.9a, the mean cluster size grows as

MP and CR increase. Between 0.3 to 0.5 of CR, the mean cluster size exhibits a
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(a) Mean Degree Distribution (b) Std of Degree Distribution

Figure 5.8: Degree Distribution Parameters

big jump. As the MP and CR both reach the higher end, the mean cluster size

tends to be more steady. Figure 5.9b demonstrates the standard deviation of the

cluster size. It shows that at the lower and higher ends of CR and MP, the mean

cluster size tends to be steady, while the variation is high in the middle.

(a) Mean Cluster Size Distribution (b) St.d of Cluster Size Distribution

Figure 5.9: Cluster Size Distribution Parameters
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To summarize the approach, Figure 5.10 presents the integrated multiagent and

percolation theory framework that was created to address this intriguing research

question striking the balance between mobility benefits and market penetration.

This innovative framework involves verification of GCS observed from simulation

with the analytical results. Specifically, the degree distribution computed from the

simulation was used to analytically calculate the GCS based on the estimations of

CR and MP. Then, the results of GCS from the simulation were verified with the

same results from analytical procedure to validate the accuracy of the simulation.

Next, the mobility results were drawn from the simulation for further discussion

and investigation.

Figure 5.10: Experiment procedure

5.4 Results Analysis

This section presents the impacts of market penetration (MP) and communication

range (CR) of CAVs on mobility. The results will be coupled with the CAV network
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characteristics from both simulation and theoretical points of view. Although the

results are expected to be robust to changes in size and shape of the transportation

network and demand, this work intends to prove the concept that mobility benefits

driven by CAV technologies are highly dependent on the CAV network connectivity

and its characteristics. Therefore, generalizations should be used with caution.

The numbers are presented to better measure the scale in the graphs and results

in a quantitative way, not necessarily to define specific threshold values as varying

parameters and settings can shift the magnitude of the results. It is of note that

the critical percolation threshold could vary when the assumptions and simulation

scenarios differ.

5.4.1 Mobility Impacts of Market Penetration (MP)

As mentioned earlier, the mobility benefits of CAVs are primarily dependent on

both MP of CAVs and CR that they can accommodate. Figure 5.11 shows the

variation of mean travel time (MTT) of the system alongside with giant com-

ponent size (GCS) of the CAV network with changes in MP, for different CRs.

These measurements are calculated from the simulation results with the following

formula.

MTT =

∑N
i=1 Travel Time

N
(5.12)
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GCS =
max

j ∈ CAV Clusters
Nj

NCAV

(5.13)

Where N is the number of cars in the entire simulation window, 400 in this

study. Nj is the size of the cluster j, and NCAV is the number of CAVs on the

network at the time of recording as explained in Section 5.2.5. As shown in the

Figure 5.11, for lower CRs (e.g., CR = 0.3), there is hardly any decrease in MTT,

even when MP goes up to 100%. As CR reaches 0.4, MTT starts decreasing when

MP goes greater than 70%. The MP that beyond which mobility benefits start to

reveal and MTT begins to decrease is defined as the critical market penetration

from a mobility perspective, MPMob
Critical. For instance, when CR = 0.5, MPMob

Critical =

50%, and for CR = 0.6, MPMob
Critical = 30%. As results show, MPMob

Critical decreases as

CR increases, and it gets fairly close to 0 % when CR = 1.0.

Figure 5.11: MTT and GCS with varying MP under each CR

The blue dots in Figure 5.11 represent the travel time at each run under spec-
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ified MP and CR. To capture stochasticity, each combination of CR and MP has

been run for 100 times, and the average of the MTT is calculated and plotted in

blue curve. Analogously, the red dots are the giant component size at each simu-

lation with specific MP and CR, and the red curve represents the mean GCS over

the simulation horizon.

At the same time, GCS grows when MP increases, regardless of CR. However,

GCS will not reach 1.0 for CRs lower than 0.5, even if MP is 100%. Above CR =

0.5, GCS reaches to 1.0 at a certain point with increasing MP, indicating that all the

CAVs on the network have created a giant cluster. In addition, the MP required to

achieve the mentioned state, decreases from 100% for CR = 0.5, to 40% for CR =

1.0. The MP at which GCS reaches 1.0 is defined as the critical MP from a network

science perspective, MPGC
Critical. It was found that, for every CR, MPMob

Critical is lower

than MPGC
Critical. The physical interpretation is that the emergence of mobility

benefits does not necessarily demand a fully connected network. Rather, a partially

connected network can still generate effective information sharing through the

cloud. As a result, the exchange and sharing of travel information are central to

identify optimal routes and reduce average travel time in the network. Moreover,

from Figure 5.11, it was found MTT continues to decrease even after GCS reaches

1.0 while CR is greater than 0.6. This shows that more travel time information is

generated and shared in a richly connected CAV network. A significant coverage

of the majority of links in a transportation network will enable informative routing

decisions.
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5.4.2 Mobility impact of communication range (CR)

Measuring the impact of CR on both GCS and mobility in terms of MTT is of

great significance since it directly corresponds to the design of the technology.

Figure 5.12 clarifies the dependency of MTT and GCS on CR, for different levels

of MP. For low levels of MP (i.e., under 20%), an increase in CR barely affects

the MTT. This is mainly due to the fact that, increasing CR will help farther

vehicles to connect to each other. However, what makes a difference in mobility is

the travel time information that is circulating in the information cloud. Without

sufficient MP, the travel time information is inadequate, and thus, optimal decision

is unlikely to be made. As MP reaches 20%, the decrease and the dropping point in

MTT starts to appear at a specific MP which is defined as critical CR with respect

to mobility in this work, CRMob
Critical. For example, CRMob

Critical = 0.50 for MP = 20%,

and CRMob
Critical = 0.40 for MP = 40%, and it keeps decreasing to 0.30 as MP goes

up to 100%.

Figure 5.12: MTT and GCS with changing CR under different MPs



101

In Figure 5.12, the blue dots represent MTT recorded from 100 simulation runs

at specified MP and CR, and the blue curve depicts the average of the repetitions.

Similarly, the red dots are the calculated GCS at each run under selected MP and

CR, and the red curve stands for the mean GCS over multiple runs.

Interestingly enough, it is hypothesized that the GCS increases when CR goes

higher from the CAV Network perspective. However, the results show the GCS

does not necessarily go up to 1 for all the MP levels. It was found that for MPs

lower than 40%, GCS hardly reached 1, even when CR equals to 1 block size. On

the contrary, for MP levels above 40%, beyond a specific CR, the giant component

will cover all the CAVs on the network. This CR is called critical CR from the

percolation transition perspective, CRGC
Critical. For instance, this value for MP =

40% is 1.0, and for MP = 60% is 0.75. CRGC
Critical decreases as MP increases, to the

extent that for MP = 100%, it reaches 0.50. One of the major findings here is that

CRGC
critical is often greater than CRMob

Critical. In other words, a giant component that

includes every single CAV in the network is not required for the mobility benefits to

emerge. Practically, even if the giant component partially covers the CAVs on the

network, they still benefit from message communication and shared information

system within the cluster to some extent. In addition, the minimum MTT occurs

when GCS reaches 1, beyond which, increasing CR does not affect either GCS or

MTT. This has been verified for MPs greater than 60%. This happens because

for a fixed MP, increasing CR beyond the point where the giant component has

already established will only create connections that do not bring new information

into the shared cloud.
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5.4.3 Mobility Impacts of Probability of Connectivity (PC)

CAVs are assumed to be communicating through DSRC technologies or WiFi net-

works in this study. Therefore, physical barriers (e.g., other vehicles, buildings, and

power lines etc.) and frequency interference (e.g., microwave, wireless devices, and

other WiFi networks) would interfere with the signal (Talebpour et al., 2016). Due

to the signal interference, the communication may not be established even when

the distance between CAVs falls into the CR. Therefore, the concept of probability

of connectivity was incorporated to replicate the real scenario. In the simulation,

CAVs can transfer information if and only if they are connected, corresponding to

the probability of connectivity (PC).

(a) CR=.5, MP=20 (b) CR=.5, MP=100 (c) CR=1, MP=20 (d) CR=1, MP=100

Figure 5.13: Probability of Connectivity Impact on Mobility

Figure 5.13 presents the mean travel time comparison under different MPs, CRs

and PCs. The green dot represents the mean of the MTT to the corresponding MP
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and CR. Four extreme cases with varying levels of CR and MP were tested. From

all four figures, it can be concluded that as PC increases, the mean travel time

generally decreases. This makes sense because when more vehicles are connected,

the cluster will have more information to optimize the routing, which further leads

to the reduction of travel time. The results show that in case of high levels of MP

or CR, even if the PC is as low as 0.5, there will not be any significant difference

in MTT comparing to the case where PC = 1.0. This is mostly due to the fact

that under these settings, the network is densely connected that even removing

half of the links does not impact the clustering behavior, and thus the impact on

shared information among the members of the cluster is minimal. It is also worth

mentioning that when PC is as low as 0.1, although that the network might be

filled with CAVs, the information is not shared adequately. Thus, the mobility is at

very lower performance, compared to the cases with PC ≥ 0.5. These experiments

illustrate that even though signal interference deteriorates the network connectivity

on high MP or high CR, where the transmissions are highly frequent, the results

of this study with the assumption of PC = 1.0 are still valid.

5.4.4 Comparison of simulation and theoretical results

The theoretical and empirical giant component sizes are plotted in Figure 5.14.

As shown in the Figure, when MP is high, theoretical discrepancy match the

empirical data very well. As MP decreases, theoretical GCS shows a sharp decline,

while the empirical results cover between [0.3, 0.5]. This is because, at low MP,
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NB distribution is limited in describing the degree distribution as discussed in

Section 5.3.1, which leads to the unsatisfied approximation. This issue stems

from the differences between dynamic and static networks. However, for higher

MPs (approximately when GCS is above 0.4) the analytical framework fits the

empirical results very well. From Figures 5.11 and 5.12, it was proved that the

mobility benefits start to appear when the GCS falls in [0.4, 0.6] range, where the

theoretical and empirical results match. In figure 5.14, different colors represents

the giant component size under different CR and MP. Dashed line describes the

empirical giant component size obtained from the simulation, and the solid line

represents the theoretically calculated giant component size.

Figure 5.14: Comparison between empirical and theoretical GCS analysis
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5.5 Discussion

In the previous section, the impact of MP and CR on mobility and the formation

of giant components were presented. However, the combined effect of MP and CR

remains elusive. Figure 5.15 combines and summarizes the results presented in the

previous section. The top two figures show the variation of GCS with respect to

CR and MP. Generally, GCS increases with increase in MP and CR respectively.

It is also worth mentioning that not all the GCS goes up to 1. On the top right

of the figures, it was discovered that the GCS grows from 0.2 to 0.5, which differs

from analytical and mathematical percolation models. This is largely due to the

fact that theoretical percolation models exhibit distinctive features when applied

to static, random, or large networks. Despite stochastic nature of this problem, it

was shown that the CAV Network in low CRs and MPs is far from random and

large network mostly due to the low number of nodes. Therefore, it is reasonable

that for low CRs and MPs, the results do not perfectly match the theory. The

bottom two figures show the decreasing trend of MTT with increase in CR and

MP. When CR = 1 and MP = 100%, MTT is reduced by almost 20% from 460 to

360 seconds. On the contrary, when CR < 0.30 or MP < 20%, the mobility change

is minor. Similarly to GCS, the marginal decrease in MTT climbs as either MP or

CR increase. The transition between subcritical and supercritical state is clearly

displayed in all four graphs. This transition in the context of complex network

and giant component size is well-known in percolation theory (Gao et al., 2013,

2015; Li et al., 2015b). Moreover, in terms of mobility, this transition in a CAV
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network corresponds to the emergence of the decrease in travel time and increase in

travel time reliability. In the subcritical state, routing optimization under partial

information has marginal benefits. On the other hand, in the supercritical state,

V2V communication is prevalent in the CAV network that leads to a fully-informed

decision on the choice of routes, beyond which increasing the MP will not decrease

the MTT in the network.

Figure 5.15: GCS and MTT vs. CR and MP

Figure 5.16 presents a 3D representation of the relationship of MTT and GCS

versus CR and MP. Top two figures show the variation of GCS versus CR and

MP. Generally, with increase in MP and CR the GCS increases, and goes up to

1 for high CR and MP combinations. Similarly, the bottom two figures show the

variation of MTT versus CR and MP. It can be seen as the GCS goes up, MTT

decreases. It is obvious that GCS is correlated with MTT. High MPs and long

CRs create richly connected and dense network which is likely to cover a larger
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transportation network. Therefore, CAVs will have the travel time information of

the entire network to optimize their routes. Red color in Figure 5.16b and blue

color in Figure 5.16a reflects these cases where GCS equals to 1 and MTT is at its

minimum. On the other hand, low MPs and short CRs do not generate a proper

network for travel information collection. Blue color in Figure 5.16b and yellow

color in Figure 5.16a corresponds to the aforementioned state where MTT is at its

maximum and GCS is at its minimum. Note that in the other two cases (High MP

and Short CR - Low MP and Long CR), they do not generate either larger GCS

or lower MTT. This further verified the results in Section 5.4 that it requires both

MP and CR to grow to result in desired outcomes.

(a) Mean Travel Time (b) Giant Component Size

Figure 5.16: 3-D representation of MTT and GCS with varying MP and CR

It is obvious that there is a reverse correlation between MTT and GCS shown

in Figure 5.16. Obviously, when GCS is at its minimum (low MP and short CR -

right side of the surfaces) MTT is at its maximum. Conversely, for the MPs and

CRs that GCS reaches to 1 (high MP and Long CR - left side of the surfaces)

MTT goes to its minimum.
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(a) Mean Travel Time Contour (b) Giant Component Size Contour

Figure 5.17: MTT and GCS contour line with varying MP and CR

In Figure 5.17, the contour lines shows the ranges of MP and CR that mark the

transition area for both MTT and GCS. The dense cluster of contour lines reflects

the transition area where slight changes in either MP or CR results in significant

change in MTT or GCS. For instance, looking at (a), CR ∈ [0.30, 0.50] and

MP ∈ [20%, 60%] marks the transition area of MTT for the cases thatMP = 100%

and CR = 1.0 respectively. Similarly, (b) shows that the transition area of GCS

is marked by CR ∈ [0, 0.50] and MP ∈ [0%, 40%].

Another important task of this study is to capture the critical MP and CR

when MTT starts dropping, defined earlier as MPMob
Critical and CRMob

Critical respectively.

Figure 5.17a shows that when MP = 100%, at a CR range of [0.3, 0.5], cluster

of contour lines which marks the transition regime, a small increase of CR would

yield a rapid decrease of MTT. In this case, at the start of a phase transition

or the critical threshold is at CRMob
Critical = 0.25 which corresponds to contour line



109

of 450 seconds. Similarly, when CR = 1.0, slight increase in MP within range of

[20%, 60%] would result in large decline in MTT. In this case, the critical threshold

is at MPMob
Critical = 20%. Again, the critical threshold is located on the contour line

of 450 seconds. Therefore, contour line of MTT = 450s, shows the 2-tuples of

(CRMob
Critical, MPMob

Critical) that practically is the critical transition in MTT. Mapping

these coordinates onto Figure 5.17b, this contour overlaps with the GCS contour

line at GCS = 0.7. The physical interpretation is that a market penetration of

70% of CAVs in the network are demanded to form a giant CAV cluster to produce

significant mobility benefits regardless of the value of MP and CR. This finding lays

the foundation of CAV network design and a critical step in the CAV deployment

roadmap for varying CAV applications.

In addition, from Figure 5.17a, when MP is in range of [80%, 100%], an increase

of CR from 0.7 to 1 does not significantly change MTT. This indicates that at a

certain MP, CAVs will all be connected, and increasing CR has negligible benefits.

In another extreme case when CR < 0.25, increase of MP does not affect travel

time performance. This suggests when inter-vehicle transmission technology is

immature, even increasing CAVs on the network will not help improve the system

performance in terms of travel time. Comparing the two figures, it is also worth

noting that when travel time decreases rapidly, GCS climbs up. This further

validates the findings presented in section 5.4.1 and 5.4.2.
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5.6 Conclusion

This study evaluates the potential mobility benefits of multiagent coordination in

a group of Connected and Autonomous vehicles (CAV). In order to reduce the

network travel time, it examines mixed traffic flow environment where the CAVs

share minimal information regarding their location and travelling speed with other

CAVs within their communication cluster. Both analytical and simulation models

were developed to measure how varying market penetration (MP) and connection

range (CR) of CAVs affect the system-wide mean travel time (MTT) through an

information sharing system in vehicular cloud network (Lee et al., 2014). This

communication will inform the CAVs to optimize their choices of routes which

will affect the MTT and the network throughput. A 4x4 lattice transportation

network was simulated, reflecting a subnetwork of a larger transportation network

with similar traffic demands as morning peak hour travel pattern. Through the

multiagent coordination system implemented in this chapter, the results showed

that MTT of the system can be reduced by up to 20% for higher MPs and larger

CRs. In addition, the results reveled there exists a critical MP and a critical CR,

beyond which mobility benefits of CAVs start to emerge. Moreover, the percolation

phenomenon in CAV network was studied. The mobility benefits of communica-

tion and coordination between CAVs were further tied to the characteristics of the

CAV network such as the node degree distribution, cluster size distribution, and

giant component size (GCS) which can be analyzed and explained using percola-

tion theory. The findings of this study showed that percolation phase transitions
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CAV network is highly correlated with the mobility benefits. Through the multi-

agent connected vehicle simulation platform, it is found that the node degree of a

dynamic CAV network follows a negative binomial distribution. This is partially

attributed to the lattice grid transportation network, the distribution of the OD

pairs, the distribution of CAVs, and the vehicle arrival time assumption. The evo-

lution of the GCS change in the dynamic CAV network was captured throughout

the simulations and later compared to the the theoretical percolation analysis us-

ing the random network with degree distributions estimated from the simulated

CAV network characteristics. It was observed that the theoretical and simulation

results are consistent when MPs and CRs are both high. However, for lower MPs

and CRs, where clusters of CAVs are rare, the expected CAV network is not quite

compatible with analytical assumptions (e.g., static, random, and large), and hence

the discrepancy between analytical and simulation results. The final key finding

of this work is that mobility benefits do not necessitate the presence of a fully

connected network. In fact, the tipping point in MTT is associated with a GCS of

0.7. In other words, 70% of the CAVs need to form a cluster in order for mobility

benefits to reveal. Finally, the probability of connectivity (PC) is incorporated to

capture the impacts of signal interference. The results show that in the case of

high MP or CR, the PC has minor effects on the MTT. The findings of this re-

search will inform decision-makers and officials regarding the investment decisions

and resource allocations on the components to achieve the higher benefit-cost ra-

tio, as well as the design of the infrastructure to facilitate the future large-scale

deployment of CAV applications and CAV network.
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Chapter 6: Connected and Autonomous Vehicle Routing under

Extensive Communication: A Decentralized Collaborative

Time-dependent Shortest Path Algorithm

6.1 Introduction

The advent of Connected and Autonomous Vehicle (CAV) technology calls for bet-

ter and more intelligent routing behavior in transportation systems. Ultimately,

this would yield lower travel times, lower idle times, and a more efficient utilization

of the full transportation network by intelligent agents. As the overall transporta-

tion system tends toward a higher percentage of CAVs, however, individual CAVs

must be able to communicate and coordinate better. This will allow CAVs to avoid

competing goals, and more easily reach an optimal state. In this chapter, we study

the behavior of such systems under Extensive Communication capabilities. More

specifically, we introduce a Decentralized Collaborative Time-dependent Shortest

Path Algorithm (Dec-CTDSP) with which the CAVs optimize their route accord-

ing to the communicated mobility messages regarding the location, speed, and the

preferred path of the other CAVs within their cluster through a multi-hop wireless

network (Kosch et al., 2002). This algorithm is an extension of regular TDSP

proposed by Dreyfus (1969) and Dijkstra (1959) where the time-dependency of the

links are calculated based on the information communicated from the other CAVs
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in the cluster, which makes this algorithm both decentralized and collaborative.

Additionally, we analyzed the impacts of this optimization scheme under various

levels of CAV Market Penetration (MP) and communication radius (CR). Further-

more, the network utilization corresponding to the proposed routing algorithm is

analyzed.

The rest of this chapter is organized as follows. The domain, framework, and

the methodology used for this study are further elaborated in Section 6.2. The re-

sults of the experiments with CAV Market Penetration (MP) and Communication

Radius (CR) are presented in Section 6.3. Specifically, MSTT, MSS, and Net-

work Usage Distribution are studied along with their prediction reliability level.

Moreover, Dec-CTDSP performance and its runtime is benchmarked with a few

common routing algorithms in Section 6.4. And finally, Section 6.5 discusses the

major findings of this study and concludes with the key contribution.

6.2 Methodology

This study intends to investigate the behavior of a transportation system with a

varying percentage of CAV market penetration (MP) and Communication Range

(CR). We modeled a grid transportation network where the vehicles aim to travel

from one edge to the other in a continuous pattern (Fig. 1.2a). We assume that

basic mobility messages regarding the location, speed, and preferred path of each

CAV can be communicated to its own CAV cluster through multi-hop connections.

This communication and coordination between the CAVs, and consequently the
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distribution of traffic onto different links, in turn, can reduce the travel time and

congestion of the system significantly.

6.2.1 Domain

Figure 6.1a shows a snapshot the domain. Each red square shows an intersection

which is modeled as a four-way stop sign. All the north-south streets are two-way

and all the east-west streets are assumed to be one way towards the east and the

destinations. All the links have the same speed limit. The blue squares on the left

side show the origins, whereas the green squares on the right side show the desti-

nations. There are 100 vehicles uniformly distributed across 5 origins. Similarly,

their destinations are randomly and uniformly assigned to one of 5 destination

nodes. The proportion of CAVs and Non-CAVs are governed by MP. Blue agents

represent CAVs and the orange agents represent Non-CAVs. Each vehicle returns

to its origin after reaching the destination, making the problem domain sequential

and open-ended. CAV MP and CR can be adjusted in the simulation, and in turn,

the Mean System Travel Time (MSTT) and Mean System Speed (MSS) can be

monitored from the simulator, along with the number of the stopped cars, and the

average delay.

The domain of this study is coded in NetLogo, expanding the existing model in

NetLogo Library, “Traffic Grid” (Wilensky, 2003), and adding the CAV commu-

nication and coordination capabilities. NetLogo is a flexible agent-based modeling

platform and has been used in a wide range of fields for prototyping purposes
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(a) Domain

(b) Framework

Figure 6.1: Domain Snapshot and the Simulation Framework

(Wilensky and others, 1999). In addition, Figure 6.2 describes the speed-density

relationship in the simulator. This relationship is an artifact of the car-following

coded into the platform as explained by Mostafizi et al. (2017). The decentralized

controller for each CAV is coded independently in Python, bridging the gap with

PyNetLogo library (Jaxa-Rozen et al., 2018). At each point in time, system and

CAV states are transferred to the controller which processes the information for

each CAV independently and sends back the route updates to the simulator. Fig-

ure 6.1b shows the general optimization workflow. The System and Agent State
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Figure 6.2: Speed Density Relationship

refers to all the CAVs’ information that efficiently represents the entire environ-

ment (i.e., location, speed, and the preferred path of the CAVs). However, other

CAVs’ information is not readily available to any other CAV. The communication

is governed by the CR and the location of CAVs that governs the clustering be-

havior at any point in time. Our Dec-CTDSP algorithm uses this information to

reroute the CAV to an underutilized path, and thus, reduces the system travel time.

The details of the routing behavior for both Non-CAVs and CAVs are discussed

hereunder.

6.2.2 Routing Behavior for Non-CAVs

Routing behavior for Non-CAVs in this work follow the same pattern as Mostafizi

et al. (2017), as shown in the following equation,



117

Shortest Route =



(5− dy) dy︷ ︸︸ ︷
R....R

︷ ︸︸ ︷
RU..RU dy ≥ 0

R....R︸ ︷︷ ︸RD..RD︸ ︷︷ ︸ dy < 0

(5− |dy|) |dy|

(6.1)

Where dy = YDesination − YOrigin and R, D, and U represent the direction of

movement in sequence. This predetermined routing behavior is set to replicate

the predictability in the behavior of the vehicles in the rush hour and when they

are not provided with any navigational information (Evans et al., 2002; Ponieman

et al., 2013).

6.2.3 Decentralized Collaborative Time-dependent Shortest Path

The CAVs use the Dec-CTDSP Algorithm to find the shortest path with the fol-

lowing procedure. Each CAV at every intersection gathers the speed, location, and

the preferred path of the other CAVs in its communication cluster. This informa-

tion is used to to create a time-dependent abstraction of the network and the edge

travel times with Algorithm 2.

In this algorithm, CurrentTravelT ime is calculated based on the number of

vehicles predicted to be on a link at time step t and the speed-density relation-

ship presented in Figure 6.1a (bottom right). This relationship is also used to

SimulateV ehicleMovement abstractly. The results of Algorithm 2 is a time-



118

Algorithm 2 Building the Time-dependent Travel Time Network

Input: Graph G = (V,E) Directed Transportation Network,
List of Cars in the CAV Communication Cluster C ,
PlanningHorizon for the abstract time-dependent network

Result: Graph TDep-G = (V
′
, E

′
) Time Dependent Travel Time Network

foreach e ∈ E ′
do TravelT imeList = [];

if C is empty then
foreach e ∈E

′
do

TravelT imeList = [(0, F reeF lowTravelT ime),
P lanningHorizon, FreeF lowTravelT ime)]

end
Return TDep-G

end
for i← 0 to PlanningHorizon do

foreach c ∈ C do SimulateV ehicleMovement(c);

foreach e ∈ E ′
do

AppendToTravelT imeList(i, CurrentTravelT ime)
end

end
Return TDep-G

dependent network, representing travel time of each link at each point in time.

Therefore, the time-dependent shortest path can be calculated from Algorithm 3

as discussed in Dreyfus (1969), which is a modification of the original Dijkstra

shortest path algorithm (Dijkstra, 1959).

GetTravelT ime is the key function here that extracts the travel time of link

u − v at time t = f [u] from TDep-G. This results in f [i] being the least travel

time to node i from the Source. As the f value of the nodes are updated and

the destination has been reached, ReconstuctPath builds and returns the shortest

path in the time-dependent network that minimizes the arrival time to the Target.
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Algorithm 3 Optimizing the TDSP

Input: Graph TDep-G = (V
′
, E

′
) Time-dependent Travel Time Network,

Source The current intersection of the CAV
Target Destination of the CAV

Result: R Sequence of Intersections representing the optimal shortest path
V ertexSet = []
foreach v ∈ V ′

do
f [v] =∞
prev[v] = None
AppendToV ertexSet(v)

end
dist[Source] = 0
while Q not empty do

u = v in V ertexSet with minimum dist[v]
Remove u from V ertexSet
if u = Target then

R = ReconstructPath
Return R

end
foreach v ∈ Neighbors(u) do

if v /∈ V ertexSet then Skip;
duv(t) = GetTravelT ime(TDep-G, u, v, f [u])
alt = f [u] + duv(t)
if alt < f [v] then

f [v] = alt
prev[v] = u

end

end

end

Since the shortest path is calculated considering the decisions and the infor-

mation of the other CAVs, this algorithm is named collaborative time-dependent

shortest path. Note that this algorithm is based on general Bellman’s princi-
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ple that holds under the assumption of first-in-first-out (FIFO) (Dreyfus, 1969;

Ziliaskopoulos and Mahmassani, 1993) which is the case in transportation appli-

cations, specifically the way it is modeled in our platform.

6.2.4 Simulation Dynamics

As mentioned earlier, to compare the future results from the Dec-CTDSP method,

the authors performed tests on MSTT and MSS under different MP and CR levels.

MSTT is estimated by the number of time steps in the simulator, that it takes on

average for the vehicles to travel from their start point to destination. This value

later is compared to the base case with CAV MP of 0%. MSS was analyzed with the

same procedure. It has to be noted that as the domain is modeled in a continuous

format, where the vehicles continuously start at their origin upon reaching their

destination, the most recent trip time from origin to destination is considered

towards the calculation of MSTT. This results in MSTT and MSS to converge to

a final value, after a certain time, which depends on the routing behavior of the

vehicles, the MP of CAVs, and their CR. These dynamics are shown in Figure 6.3.

Note that for each scenario, the simulation is run until the MSTT of the system

converges. This event has been flagged by the standard deviation of the last 200

readings to drop below a certain threshold, less than 2%. From Figure 6.3 it can

be seen that different levels of CAV MP and CR converge to different MSTT and

MSS. In general, higher MP and higher CR yield lower travel times and higher

speeds. The highlighted area around each curve shows the standard deviation of
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Figure 6.3: Dynamics and Convergence of System Travel Time and Speed

numerous monte-carlo simulations. As it appears, higher MP and CR increase both

MSTT and MSS reliability. Also, under such circumstances, the system converges

to its final travel time state earlier. These findings are further discussed in later

sections.

6.3 Results

The performance of the Dec-CTDSP algorithm implemented in this work has been

assessed by analyzing the Mean System Travel Time (MSTT), Mean System Speed

(MSS), the reliability of the predicted values, as well as the distribution of the

link usage towards a more efficiently utilized transportation network. All of these

factors, under various levels of MP and CR, are discussed hereunder. Lastly,

the performance of the algorithm is benchmarked against other semi- and un-

coordinated Dijkstra-based and random routing algorithms.
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6.3.1 Mean Travel Time

Figure 6.4a shows the final converged MSTT of the system, compared to MP =

0%, as a function of MP and CR. The results show that the MSTT decreases rather

linearly with increase in MP. In addition, the reliability in MSTT increases as MP

increase. This reliability is characterized as the reverse of the standard deviation of

numerous monte-carlo simulations until the standard shows no significant change

with an increase in the sample size. Moreover, it can be seen that the performance

of the system does not change for CR ≤ 0.1 Block as well as CR ≥ 0.5 Block.

This suggests that the algorithm requires a sufficient amount of information being

circulated in the CAV communication cluster for the benefits to show. This thresh-

old is marked by CR = 0.1 Block, below which the benefits in terms of MSTT are

the same. Beyond this threshold, the CAV cluster enlarges, and the abundance of

information shared regarding the preferred path of the CAVs with each other leads

to lower travel time, until CR = 0.5 Block. Our simulation reveals that increasing

CR beyond this threshold does not drastically improve the CAV cluster. In other

words, CR = 0.5 Block yields a fully connected CAV network through multi-hop

connections, where each CAV is connected to any other CAV in the network. This

is an interesting finding, proving that for the Dec-CTDSP algorithm to yield its

optimal results, high levels of communication are not required. Also, it is note-

worthy that the reduction in MSTT is more drastic with the increase in CR for

higher levels of MP.

Moreover, it has to be noted that an increase in MP, even with insufficient



123

CR (CR ≤ 0.1 Block) still exhibits some benefits in terms of MSTT since it

adds randomness into the routing behavior of CAVs under limited information,

as opposed to the fixed predefined routing behavior of Non-CAVs, as defined in

Equation 6.1. In other words, the CAVs that do not have sufficiently sized CAV

cluster choose their path to their destination randomly, since they cannot have

any valid heuristic as to what the traffic level of different links is. This random

behavior inherently dissipates the traffic onto the network somewhat uniformly,

more than what predefined path for Non-CAVs does, leading to a reduction in

MSTT. Our results show maximum of 20% reduction in MSTT at Mp = 100%,

compared to MP = 0%, when CR is not large enough (CR ≤ 0.1Block). This

reduction goes up to 40% when CR is greater than 0.5 Block and for a fully CAV

penetrated system.

6.3.2 Average Speed

Figure 6.4b shows the increase in MSS, compared to the base case (MP = 0%).

Although MSS seems to generally follow the reverse trend of MSTT, however, look-

ing at the speeds along with the travel time uncovers interesting behavior for the

algorithm. The results show that the range of impact is noticeably more significant

on the MSTT, compared to the MSS. When CR is relatively low (CR ≤ 0.1 Block)

even with MP of 100%, the impact on the MSS is less than 10%, compared to 20%

reduction in MSTT. This shows that the reduction in MSTT is solely an artifact

of the random routing behavior of CAVs under lack of information, and not intel-
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Figure 6.4: Mobility Measures under different levels of MP and CR
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ligent routing behavior. However, for high levels of CR, greater than 0.5 Block,

the reduction in MSTT is comparable to the increase in MSS. The results reveal

that, although the increase in speed for lower MP levels (MP < 40%) is minimal

(less than 15%), for a fully CAV penetrated system, the increase in MSS can go

up to 45%.

6.3.3 Reliability in Mobility

We quantified the reliability in our estimations for MSTT and MSS with the av-

erage of the standard deviation of the travel time and the speed of all the vehicles

over the monte-carlo simulation runs. This shows how accurately MSTT and MSS

can be translated into each vehicle’s travel time and speed. Needless to say that

the lower the average standard deviation is, the more stable and transferable the

estimations are to each vehicle. Figure 6.4c shows this average standard deviation

both for the speeds and travel times of the vehicles, compared to the same statistics

of the base case (MP = 0%), as a function of MP and CR. Note that the curves

are averaged over all the tested CR levels in the left figure and all the MP levels

in the right figure.

The results show that reliability in travel time estimations (red curve) increases

monotonically with an increase in MP, as shown as a decrease in standard devia-

tion. However and surprisingly, the standard deviation of the speeds (blue curve)

increases minimally when the MP hits 10% and then start to decrease. This is

due to uncertainties in clustering behavior in a heterogeneous environment that is
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minimally CAV penetrated. Unlike the strong correlation between the reliability

and the MP, CR shows no strong association with the standard deviation of either

speeds or travel times, and accordingly, the reliability. The abstract interpretation

of this would be that a fully CAV penetrated system is more reliable in terms of

travel time and speed prediction, regardless of its CR level, than a system with

lower MP but with higher level of technology sophistication.

6.3.4 Network Usage Distribution

We calculate the expected network usage from the planned route of the vehicles

at the time of convergence. In other words, we monitor how many times a link

is to be used based on the current route of all the vehicles when the system is

converged to its final state (MSTT is converged). This measurement will provide

an accurate estimate of how the traffic is to be distributed onto the network with

the current routing behavior of the vehicles. Figure 6.5 shows various aspects of

this measure and its relationship with mobility and MSTT specifically, and how

it is impacted by MP and CR. The left panel shows how positively average link

usage is correlated with the MSTT (green line). Average link usage is defined

as the average of the link usage distribution, or in other words, it shows how

many times on average a link is to be traveled by the vehicles in the system. The

results show that higher MP levels (yellow) generally yield lower MSTT (C and

B), regardless of the average link usage of the network. This is partially due to

the random routing behavior of CAVs when the MP is high, but the CR is not
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sufficient enough (B). These circumstances, although resulting in somewhat low

MSTT, do not dissipate the traffic properly (mid to high average link usage), and

therefore do not reach minimal MSTT. However, it can be seen that the low end of

MSTT, that also has the lowest average link usage (C), corresponds with high MP

as well as high CR levels. This shows that high MP and high CR with the Dec-

CTDSP algorithm results in more efficient dissipation of traffic, hence low average

link usage, and accordingly lowest possible MSTT. This suggests that CR, the

information shared within the CAV cluster, and finally the use of this information

by Dec-CTDSP is the key factor in traffic dissipation. This is also shown with a

greater correlation between average link usage and MSTT when CR ≥ 0.5 Block

(orange line), compared to the opposite scenario where CR < 0.5 Block (blue line).

Moreover, on the other end of the spectrum, low MP, regardless of CR, yields high

MSTT with mid-level average link usage (A).

The right two panels in Figure 6.5 show the average histogram of the link usage

counts and the distribution of the average network usage for the three zones marked

in the left panel. Zone A represents low MP (≈ 25%) and low CR (0.24 Blocks)

levels that result in high average link usage (≈ 6), and therefore high MSTT. From

the histogram, it can be seen that a larger portion of links are scheduled to be used

by a high number of vehicles, according to their planned route. The imbalance in

the link usage can also be interpreted from the heatmap that shows extreme usage

of the middle and right side of the network, as opposed to the other links. This

pattern is fairly similar to that of MP = 0% shown in Figure 1.2b). Zone B, on the

other hand, represents high MP (≈ 90%) but rather low CR ((0.04 Block)) that
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Figure 6.5: Network Usage

does not lead to a high decrease in MSTT. The imbalance in the network usage

still persists, slightly less severe to the one with low levels of MP (A). At the other

end of spectrum, zone C with not necessarily very high MP level (≈ 80%), but

rather high CR (0.66 Block), shows low average link usage (≈ 4) where majority

of the links are only scheduled to be used by one vehicle, and there are no links

that are to be traveled by more than 18 vehicles. The balanced use of network

under these circumstances are shown in the heatmap, specifically in the ending
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links towards the right side of the network where the most congestion is expected.

Note the difference between the other two discussed cases and Figure 1.2b that

shows the base usage under naive routing.

6.4 Discussion

6.4.1 Benchmark

To benchmark the performance of Dec-CTDSP algorithm in terms of increase in

mobility, we tested it against a few simplistic routing behaviors as following,

• Static Random Routing : Each CAV calculates a random shortest path to

their destination at the beginning of the simulation and sticks to it until the

end in all iterations. This algorithm assumes no observability.

• Dynamic Random Route: Each CAV takes a different random shortest path

at each iteration. Note that there are multiple shortest paths between each

pair in a grid network. This algorithm assumes no observability.

• Dijkstra: Each CAV updates its route at each intersection with Dijkstra

algorithm to find the shortest path in time, based on the current state of

the network as shared through its own CAV cluster, similar to Mostafizi

et al. (2017) where their results showed approximately 20% improvement in

system travel time at 100% market penetration. Note that the path with

the shortest travel time is typically not the same as that with the shortest



130

distance. Also, as the state dynamically changes, the quickest path at t0 is

not necessarily the same at t0 + δt.

Dec
-C

TD
SP

Dijk
str

a

Dyn
am

ic 
Ran

do
m

St
at

ic 
Ran

do
m

50

55

60

65

70

75

80

85

90

Av
er

ag
e 

Tr
av

el
 T

im
e 

D
ec

re
as

e 
(%

)
Co

m
pa

re
d 

to
 t

he
 b

as
e 

ca
se

 M
P

=
0%

MP = 100%
MP = 50%

Figure 6.6: Benchmark

Figure 6.6 shows the performance of Dec-CTDSP algorithm compared to the

other algorithms under different MP levels (50% and 100%) and with sufficient CR

(≥ 0.5 Block). As expected, Statically and Dynamically random route assignment

algorithms perform almost the same under both levels of MP. However, dynamic

random assignment performs slightly better as it increases the randomness in rout-

ing behavior, and thus, more uniform dissipation of traffic.

Interestingly, the results show that although Dijkstra performs better than

random routing under low MP of 50%, as the number of CAVs increase, the per-
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formance drop even below random routing behavior. This is because under this

algorithm, CAVs choose the routes that they perceive to be underutilized at the

time of decision. However, as several CAVs do the same, the actual travel time is

higher than initially estimated. This is a classic issue arising in congestion games

(Helbing et al., 2005) and the coordination of multiagent systems with competing

goals. Lack of coordination between the agents and the fact that there is no traf-

fic dynamics prediction model taken into consideration results in multiple agents

heading towards a less congested route, and thus, increasing the travel time. This

issue is addressed to a great extent in the Dec-CTDSP algorithm with the notion

of collaboration (Wolpert et al., 1999; Tumer and Wolpert, 2004).

To our surprise, the Dec-CTDSP performs worse than the Dijkstra algorithm,

and almost similar to random routing behavior when the MP is as low as 50%. This

confirms that for the Dec-CTDSP algorithm to benefit the system, there needs to

be a properly connected CAV network that does not appear on low MP levels.

In the absence of this CAV network, the CAVs behave randomly which is the

underlying reason behind the similarity in performance with Static and Dynamic

Random routing behavior. However, when it matters the most, and under MP of

100%, as the CAV communication network is densely populated, the performance

of Dec-CTDSP is significantly better than the other tested algorithms.
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6.4.2 Runtime

A thorough analysis has been done on the runtime of the algorithm as a function of

MP and CR, that basically control the complexity of the optimization task at hand.

Besides, the runtime has been benchmarked with the other tested algorithms.

Figure 6.7 shows the results of this analysis. Looking at Figure 6.7a it can be seen

that the runtime increases exponentially with an increase in MP if the CR is large

enough for the CAV network to form. However, for CR ≤ 0.1, as the CAV network

is not dense enough, the runtime is the same regardless of the MP. Figure 6.7b and

6.7c compare how long and how many simulation steps respectively would take

the algorithms to converge to their final state. The results reveal that although

Dec-CTDSP converges earlier that the other tested algorithms when MP = 100%,

it takes almost 3 times longer in time to optimize the route for all the CAVs. This

difference is less sever for the case where MP = 50%. Note that the simulation

where conducted on a quadcore Intel Core i5 CPU @ 1.80GHz with 4GB RAM.

The results of this work will inform the CAV network design to achieve sig-

nificant mobility benefits under different CAV Market Penetration and Communi-

cation levels. In addition, this work bridges the gap between network-wide CAV

impact analysis and multiagent coordination and robotics concepts that need to

be further analyzed for successful large-scale deployment of the technology.
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6.5 Conclusion

This study introduces a decentralized and collaborative time-dependent shortest

path (Dec-CTDSP) routing algorithm implemented in heterogeneous Connected

and Autonomous Vehicle systems (CAV) to improve the mobility and the effi-

ciency in utilization of congested transportation networks. The communication

capabilities of the CAVs make it possible for these vehicles to share information

regarding their location, speed, and preferred route and accordingly avoid con-

gestion. This information is used towards more coordinated routing behavior for

CAVs by which traffic dissipates uniformly throughout the network, reducing the

average system travel time. Our algorithm expands the idea of time-dependent

shortest path where the dependency is governed by the joint state and action of

the other vehicles in the system. With this, each CAV can intelligently reroute to a

path that not only minimizes its own travel time but also reduces the system travel

time as a whole. This decentralized approach heavily relies on the communication

capabilities of the CAVs and the information shared over CAV network clusters.

To model a mixed CAV environment, we introduced our agent-based traffic simula-

tion domain as well as our decentralized routing controller framework. Our results

showed that Dec-CTDSP significantly enhances the system performance in terms

of travel time, and travel time reliability by up to 40% and 45% respectfully for

high CAV Market Penetrations. We also analyzed these benefits under different

levels of CAV communication radius. The result revealed that for moderate CAV

Market Penetration, 0.5 Block Communication Radius yield in fully connected
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CAV network beyond which the system performance does not observe significant

improvements. Moreover, our findings showed a great correlation between the mo-

bility and transportation network utilization, and the fact the Dec-CTDSP works

towards a more uniformly utilized network, not necessarily requiring high CAV

market penetration levels, but only sufficient communication levels. Lastly, we

benchmarked our results with Dijkstra-based and random routing algorithms. The

results revealed that Dec-CTDSP outperforms all other algorithms at high CAV

Market Penetration levels. The results of this work provide insights into future

development and deployment of CAV technologies and bridges the gap between

multiagent coordination concepts and transportation systems.
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Chapter 7: Concluding Remarks

This dissertation discusses the mobility benefits that emerging Connected and Au-

tonomous Vehicles (CAV) bring to increasingly congested networks. Particularly,

it focuses on how a transportation system and vehicles within can be coordinated

in a decentralized regime to reduce the travel time of the system. This work re-

veals the significance of vehicle coordination in the form of routing behavior and

its contribution to transportation system efficiency. As an example, a route that

is to be travelled by a large proportion of the vehicles at the same time can be

avoided by the vehicles communicating and collaborating with each other. This

dissertation reveals how and to what extent the communication capabilities of the

CAVs can be utilized to enable more efficient dissipation of traffic, and therefore,

lower system travel times. CAV Market Penetration (MP) and Communication

Radius (CR) are two key factors investigated to realistically inform routing behav-

ior and the expected mobility gain in the transition period. Besides, the benefits

of CAV technologies are mapped to the required CAV network that facilitates the

information-sharing infrastructure as well as the transportation network utiliza-

tion. This work analyzes CAV coordination under three levels of communication

between the CAVs as follows,

• No Communication : where the CAVs do not communicate with each

other to any capacity
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• Minimal Communication : where CAVs communicate regarding their

current location and speed with the other CAVs in their communication

cluster through a multi-hop network

• Extensive Communication : where the CAVs not only share their current

location and speed with the other CAVs in their cluster but also they share

their intent regarding the preferred path that they are about to traverse.

7.1 Research Summary

Chapter 3 discussed the core car-following behavior in a mixed environment where

CAVs and Non-CAVs interoperate. The characteristics of the traffic flow behavior,

such as average travel time, throughput, and shockwave backpropagation, are then

analyzed in a highway section with a speed reduction zone. Travel trajectories

and platooning behavior have also been inspected. The results revealed that the

benefits of CAV technologies, Cooperative Adaptive Cruise Control (CACC) in

particular, surface generally beyond CAV market penetration of 50-60%, yielding a

45% decrease in average highway travel time and an 80% increase in the throughput

for MP of 100%. On the other hand, the reliability in these estimates increases

rather monotonically with an increase in MP. Also, platooning of the CAVs appear

as they maintain relatively shorter headways in the highway section due to CACC

application. Moreover, the shockwave does not backpropagate in a fully CAV-

penetrated system. The traffic flow studied in this section is the core of the CAV

and Non-CAV interactions in the simulations conducted in this dissertation.
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Chapter 4 investigated the CAV coordination benefits where no communication

capability exists among the CAVs in the system. Under this circumstance, the

CAVs learn the optimal route to their destination through a reinforcement learning

algorithm based on only their previous route, actions, and travel times. A CAV

learns to avoid the routes that were previously found to be congested and gets a

reward if it chooses the route with low travel time, eventually optimizing its route.

The results revealed significant mobility improvements as a result of an increase in

the number of CAVs that add randomness to the routing behavior of the system.

However, this system works well under low levels of MP where only a small number

of CAVs try to optimize their route. As the MP exceeds 75%, convergence to the

optimal joint action policy for the CAVs become extremely complex. In other

words, in the absence of communication capabilities, a system with MP of 75%

yields the minimum system travel time.

Chapter 5 enhanced the communication to a minimal level where CAVs are

capable of sharing their location and speed with their CAV cluster through a multi-

hop connection network. CAVs share this information within their cluster, which

is further used to optimize their route to their destination. The results showed

that there is a critical joint threshold in MP and CR, beyond which the mobility

benefits emerge. The proposed routing scheme reduced the average travel time by

up to 20% for high levels of MP and CR. Furthermore, the mobility benefits were

mapped to the CAV network characteristics formulated as percolation theory, giant

component size, node degree distribution, and clustering behavior. The findings

showed a strong correlation between the characteristics of the CAV network to
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the mobility of the transportation system. In general, at least 70% of the CAVs

are needed to form a giant cluster so that sufficient information can circulate the

cluster in order to make more intelligent and accurate routing decisions. This

chapter also showed that communication degradation at high levels of MP and

CR, where this concern is at its extreme, has minimal effect on the clustering

behavior and the system mobility. Moreover, the comparison between analytical

percolation behavior and the simulation results showed fair compatibility under

densely populated CAV networks.

Chapter 6 introduces a novel Decentralized and Collaborative Time-dependent

Shortest Path (Dec-CTDSP) algorithm where the time-dependency comes from the

joint action of CAVs that are communicating with each other. In other words, the

CAVs share their location, speed, and preferred path with any other CAV within

their CAV cluster through multi-hop connections. Each informed CAV builds a

dynamic abstract representation of the network within its planning horizon that

reflects the travel time of each link at any time, through which a CAV optimizes

its route. This algorithm is designed with a decentralized perspective that scales

linearly. Similar to Chapter 5, the mobility of the transportation network was

analyzed as a function of MP and CR. The results show a 40% decrease and 45%

increase in travel time and its reliability respectively for high MP levels. More-

over, this chapter discussed the correlation between mobility and uniformity in the

dissipation of traffic onto the transportation network. The results revealed that

Dec-CTDSP distributes the traffic relatively uniformly onto the network, resulting

in an increase in average speed and decrease in system travel time.
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7.2 Future Work

This series of research provides invaluable insights into the CAVs routing behavior

and enormous opportunities for further development in terms of multiagent coor-

dination; yet, there remains some limitations to be improved in the future studies.

As previously stated, the model design mainly focuses on the proof-of-concept,

and is not tested in the real-world traffic conditions. A hypothetical transporta-

tion network is used throughout this work and in the multiagent simulations to

illustrate the proposed methodological coordination framework. Traffic configura-

tions, geometries, operating environments, traffic signals can all indirectly affects

the dynamics, shape, and degree distribution of the CAV network, and it is crucial

to further expand this research to a real transportation network with empirical

Origin-Destination travel matrix.

There is also a multitude of factors influencing wireless communications per-

formance that need to be further incorporated in the simulation platform. For

instance, the connectivity and message passing through the vehicular information

cloud need to follow proper protocols that were simplified in this work. On top

of these, signal interference, information loss in connections, and V2I communica-

tion system have to be incorporated in future models to capture authentic CAV

connectivity in urban environments.

In addition, the demand, the arrival time distribution of the CAVs, and their

spread over the network also influence the formation of the CAV network and

the mobility estimation. Therefore, expanding on the modeling perspective, and
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applying these components to more varied and diverse scenarios may yield more

insightful results or perhaps further evidence in support of the findings from this

study.

From the multiagent coordination perspective, there are also a few possibilities

that can further improve the performance of the system, such as Auction-based

or negotiation-based routing. In terms of multiagent learning, Cooperative Co-

evolutionary Algorithm, Swarm Intelligence, Potential-based reward Shaping, and

Difference Reward can be alternatives to what has been implemented in this work

that further need to be benchmarked against. These improvements can lead to

large scale simulation platform development similar to Flow (Kheterpal et al.,

2018)). However, the core findings of this work that the advent of CAVs will

drastically impact mobility characteristics remain unquestionable.



142

Bibliography

Abboud, K., Omar, H. A., Zhuang, W., 2016. Interworking of dsrc and cellular
network technologies for v2x communications: A survey. IEEE transactions on
vehicular technology 65 (12), 9457–9470.

Abdulsattar, H., Mostafizi, A., Wang, H., 2017. Assessing the impacts of connected
vehicle technology on work zone rear-end collisions: An agent-based modeling
approach. In: The 96th Transportation Research Board Annual Meeting.

Akhtar, N., Ergen, S. C., Ozkasap, O., 2015. Vehicle mobility and communication
channel models for realistic and efficient highway vanet simulation. IEEE Trans.
Vehicular Technol. 64.

Amadeo, M., Campolo, C., Molinaro, A., 2016. Information-centric networking for
connected vehicles: a survey and future perspectives. IEEE Communications
Magazine 54 (2), 98–104.

Ammari, H. M., Das, S. K., 2008. Integrated coverage and connectivity in wireless
sensor networks: A two-dimensional percolation problem. IEEE Transactions on
Computers 57 (10), 1423–1434.

Amoozadeh, M., Deng, H., Chuah, C.-N., Zhang, H. M., Ghosal, D., 2015. Pla-
toon management with cooperative adaptive cruise control enabled by vanet.
Vehicular communications 2 (2), 110–123.

Aoki, M., Fujii, H., 1996. Inter-vehicle communication: Technical issues on vehicle
control application. IEEE Communications Magazine 34 (10), 90–93.

Arnott, R., De Palma, A., Lindsey, R., 1993. A structural model of peak-period
congestion: A traffic bottleneck with elastic demand. The American Economic
Review, 161–179.

Artimy, M. M., Phillips, W. J., Robertson, W., 2005. Connectivity with static
transmission range in vehicular ad hoc networks. 3rd Annual Communication
Networks and Services Research Conference (CNSR’05), 237–242.



143

Artimy, M. M., Robertson, W., Phillips., W. J., 2004. Connectivity in inter-vehicle
ad hoc networks. Electrical and Computer Engineering, 2004. Canadian Confer-
ence on 1, 293–298.

Aung, C. Y., Seet, B. C., Zhang, M., Xie, L. F., Chong, P. H. J., 2015. A re-
view of group mobility models for mobile ad hoc networks. Wireless Personal
Communications 85 (3), 1317–1331.

Ayres, T., Li, L., Schleuning, D., Young, D., 2001. Preferred time-headway of
highway drivers. In: ITSC 2001. 2001 IEEE Intelligent Transportation Systems.
Proceedings (Cat. No. 01TH8585). IEEE, pp. 826–829.

Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X., 2006. Group formation in
large social networks: Membership, growth, and evolution. In: Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’06. ACM, New York, NY, USA, pp. 44–54.

Bagloee, S. A., Tavana, M., Asadi, M., Oliver, T., 2016. Autonomous vehicles:
challenges, opportunities, and future implications for transportation policies.
Journal of Modern Transportation 24 (4), 284–303.

Balaji, P. G., Srinivasan, D., 2010. Multi-agent system in urban traffic signal
control. IEEE Computational Intelligence Magazine.

Bansal, P., Kockelman, K. M., 2016. Forecasting americans’ long-term adoption
of connected and autonomous vehicle technologies. In: Transportation Research
Board 95th Annual Meeting. No. 16-1871.

Bansal, P., Kockelman, K. M., 2017. Forecasting americans’ long-term adoption of
connected and autonomous vehicle technologies. Transportation Research Part
A: Policy and Practice 95, 49 – 63.

Baruah, P., Urgaonkar, R., Krishnamachari, B., 2004. Learning-enforced time do-
main routing to mobile sinks in wireless sensor fields. In: Local Computer Net-
works, 2004. 29th Annual IEEE International Conference on. IEEE, pp. 525–532.

Basu, P., Guha, S., Swami, A., Towsley, D., Jan 2012. Percolation phenomena in
networks under random dynamics. In: Communication Systems and Networks
(COMSNETS), 2012 Fourth International Conference on. pp. 1–10.



144

Ben-Elia, E., Ettema, D., 2011. Rewarding rush-hour avoidance: A study of com-
muters’ travel behavior. Transportation Research Part A: Policy and Practice
45 (7), 567–582.

Bernhardt, K., 2007. Agent-based modeling in transportation. Artificial Intelli-
gence in Transportation 72.

Berridge, K. C., 2000. Reward learning: Reinforcement, incentives, and expecta-
tions. In: Psychology of learning and motivation. Vol. 40. Elsevier, pp. 223–278.

Bertini, R., Wang, H., Knudson, T., Carstens, K., 2016a. Preparing a roadmap for
connected vehicle/cooperative systems deployment scenarios: Case study of the
state of oregon, usa. Transportation Research Procedia 15, 447 – 458.

Bertini, R. L., Wang, H., 2016. Connected vehicle application roadmap for ore-
gon as part of preparing a possible oregon road map for connected vehi-
cle/cooperative systems deployment scenarios. Tech. rep.

Bertini, R. L., Wang, H., Carstens, K., 2017. Preparing oregon for connected
vehicle deployment: Application prioritization process. Transportation Research
Record 2615 (1), 1–10.

Bertini, R. L., Wang, H., Knudson, T., Carstens, K., 2016b. Toward assessing
state department of transportation readiness for connected vehicle/cooperative
system deployment scenarios: An oregon case study. Journal of Transportation
Research Record 2559.

Best, G., Cliff, O. M., Patten, T., Mettu, R. R., Fitch, R., 3 2018. Dec-MCTS: De-
centralized planning for multi-robot active perception. The International Journal
of Robotics Research, 027836491875592.

Birand, B., Zafer, M., Zussman, G., Lee, K.-W., 2011. Dynamic graph properties
of mobile networks under levy walk mobility. In: Proceedings of the 2011 IEEE
Eighth International Conference on Mobile Ad-Hoc and Sensor Systems. MASS
’11. IEEE Computer Society, Washington, DC, USA, pp. 292–301.

Bowman, S. L., Nowzari, C., Pappas, G. J., 2016. Coordination of multi-agent
systems via asynchronous cloud communication. In: 2016 IEEE 55th Conference
on Decision and Control (CDC). IEEE, pp. 2215–2220.



145

Boyan, J., Littman, M., 2013. A distributed reinforcement learning scheme for
network routing. In: Proceedings of the international workshop on applications
of neural networks to telecommunications. Psychology Press, pp. 55–61.

Brafman, R. I., Domshlak, C., 2008. From one to many: Planning for loosely
coupled multi-agent systems. In: ICAPS. pp. 28–35.

Britton, T., Lindholm, M., Turova, T., 2011. A dynamic network in a dynamic
population: Asymptotic properties. Journal of Applied Probability 48 (4), 1163–
1178.

Broadbent, S. R., Hammersley, J. M., 1957. Percolation processes. Mathematical
Proceedings of the Cambridge Philosophical Society 53 (3), 629–641.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Member, S., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S., 2012. A Sur-
vey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games 4 (1).

Bu, L., Babu, R., De Schutter, B., et al., 2008. A comprehensive survey of multi-
agent reinforcement learning. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 38 (2), 156–172.

Burgess, L., Toppen, A., Harris, M., 2012. Vision and operational concept for
enabling advanced traveler information systems (enableatis). Tech. rep.
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