
AN ABSTRACT OF THE DISSERTATION OF

Juneki Hong for the degree of Doctor of Philosophy in Computer Science presented on

June 7, 2022.

Title: Deep Learning for Human and Biological Languages

Abstract approved:

David Hendrix and Liang Huang

We explore the application of deep learning to the disparate fields of natural language processing

and computational biology. Both the sentences uttered by humans as well as the RNA and protein

sequences found within the cells of their bodies can be considered formal languages in computer

science, as sets of strings composed from an alphabet generated by grammar rules. To briefly

characterize these languages, words in natural language sentences have a large number of types

but a limited sequence of tokens, while nucleotides in biological contexts have limited types in

long sequences of tokens. A sentence has a possible vocabulary size greater than 100,000 but in

practice usually have less than 20-30 words; RNA sequences have 4 possible tokens but feature

sequences anywhere from less than 100 to greater than 10,000 nucleotides. Protein sequences

similarly have 20 possible amino acid tokens. The practical differences between these contexts

inform our modeling choices to make deep learning tractable and effective, and they further

influence what additional algorithms are needed to attain strong results.

These widely different domains presumably have their own forms of syntactic structure, and

their respective grammars dictate the relationships on how words, nucleotides, and amino acids

interact within themselves to form structures. With language this comes in the form of syntactic

parse tree diagrams, with RNA this becomes secondary structure base pairings, and with pro-

teins this becomes tertiary structure contact map pairings. We present a deep learning approach

for predicting syntactic structures for human languages (parsing), and dynamic programming

techniques that allow for fast linear-time decoding while maintaining close to state-of-the-art

accuracy. Converting the traditional O(n3) exhaustive cubic time CKY parsing algorithm into

having a left-to-right, bottom-up reordering allowed us to additionally apply inexact beam search

and then cube-pruning to attain linear O(n ·b log(b)) runtime complexity. Despite being an inex-

act search, our model attained results (91.97 F1) better than the previous state-of-the-art model

(91.79 F1) which used an exhaustive decoding upon the same underlying neural network archi-

tecture.

Analogous to linguistic grammar rules, nucleotides in RNA sequences are also subject to

base pairing potentials, as Adenine (A) prefers to bind with Uracil (U) and Cytosine (C) prefers

to bind with Guanine (G). The secondary structure base pairing behavior of RNA often involves

interactions across the entire sequence. We present a deep learning approach for predicting sec-

ondary structure for RNA sequences (folding), and using self-attention-based Transformer mod-

els to visualize and correct errors made by other structure prediction algorithms called bpRNA-

Fix. We find that a simple architecture consisting of LSTM and Transformer layers succeed at

attaining a strong baseline, which then further improves when predictions made by another pro-

gram are made available as input. Visualizing the attention weights of our model, we find that

strong attention in the last layer is paid towards bracketed structural sections in the output.

We further show a connection to our human language parsing work, by presenting the Nussi-

nov dynamic programming decoding algorithm adapted for deep learning, that guarantees a bal-

anced and valid base pairing output. With cubic runtime complexity analogous to CKY, we

show on a dataset of RNA sequences limited to length 50 accuracies surpassing our bpRNA-Fix

models. We also discuss how to linearize the runtime which would allow us to scale to longer

sequence datasets.

Even more complex than RNA, protein sequences feature even more possible interactions

between the 20 different types of amino acids. A typical way to model how a protein sequence

will eventually fold into a 3D molecule is to first search for many similar or homologous se-

quences in a database, and then use the aligned multiple sequence alignment (MSA) as the

input, before predicting the distances between each amino acid to every other position, called a

contact map. We present a deep learning approach for predicting tertiary structure for protein

sequences (contact map prediction), and an algorithm that overall improves the input and output

simultaneously by iteratively realigning the former based on the alignment of the latter. Focus-

ing on the cases where little to no homologous sequences can be found for a given input protein

sequence (MSA size ≤ 10), we find that the iterative process of realigning the input sequences

and output structures results in improvement especially in short, but also in , medium, and long

range contacts.

©Copyright by Juneki Hong
June 7, 2022

All Rights Reserved

Deep Learning for Human and Biological Languages

by

Juneki Hong

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 7, 2022
Commencement June 2022

Doctor of Philosophy dissertation of Juneki Hong presented on June 7, 2022.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader
upon request.

Juneki Hong, Author

ACKNOWLEDGEMENTS

I would like to thank my advisors Professor David Hendrix and Professor Liang Huang for their

advice and guidance throughout my PhD and introducing me to Bioinformatics concepts when I

primarily had a different background in Natural Language Processing. They helped me develop

as an academic especially in better visualizing and explaining data and models, thinking deeply

about algorithms and dynamic programming, and identifying important connections in between

different fields.

I would like to thank my committee (In alphabetical order): Professors Alan Fern, Stephen

Ramsey, Prasad Tadepalli, and my Graduate Council Representative Professor Jimmy Yang, for

all of their questions, suggestions, and advice throughout my different PhD exams, helping me

develop sharper presentations and further read into related ideas.

I would like to thank my previous advisors at my past institutions. Professor Roni Rosenfeld

at Carnegie Mellon had many words of wisdom for me when I was a masters student and remains

one of the nicest people I have ever met. And Professor Jason Eisner at Johns Hopkins, who as

incredibly talented as he is still spent a lot of time with me when I was an undergrad, was very

supportive of me, and remains a role model that I look up to today.

I would also like to thank both sets of my colleagues at each of the Hendrix and Huang labs,

for all the conversations, advice, and support, in addition to ideas, contributions, and collab-

orations. From the Hendrix lab, this includes Jimmy Bell, Padideh Medisa Danaee, Dezhong

Deng, Rosalyn Fey, Patrick Morar, Lillian Padgitt-Cobb, Joseph Valencia, and Nathan Waugh.

From the Huang lab, this includes Junkun Chen, James Cross, Ning Dai, Sizhen Li, Kaibo Liu,

Mingbo Ma, Matthew Meyn, Göksu Öztürk Miraç, He Zhang, Liang Zhang, Kai Zhao, and

Renjie Zheng. I hope to see you all in the future.

TABLE OF CONTENTS
Page

1 Introduction 1

2 Deep Learning for Span-Based Constituency Parsing 4

2.1 Introduction . 4

2.2 Preliminaries . 5
2.2.1 Span-Based Shift-Reduce Parsing . 5
2.2.2 Bi-LSTM features . 6

2.3 Dynamic Programming . 7
2.3.1 Score Decomposition . 7
2.3.2 Graph-Struct. Stack w/o Bookkeeping 7
2.3.3 Action-Synchronous Beam Search 8
2.3.4 Cube Pruning . 8

2.4 Training . 9
2.4.1 Cross-Span Loss . 9
2.4.2 Max Violation Updates . 11

2.5 Experiments . 11
2.5.1 Penn Treebank . 11
2.5.2 Discourse Parsing . 12

2.6 Conclusions . 14

3 Deep Learning for Fixing RNA Secondary Structure Prediction 15

3.1 Introduction: bpRNA-Fix . 15

3.2 Methods . 17
3.2.1 Transformer Networks . 18
3.2.2 Architecture and Training . 18
3.2.3 Dataset and Preparation . 19

3.3 Results . 20
3.3.1 Positional Encodings vs LSTM . 20
3.3.2 F1-Score Evaluation of Secondary Structure 24

3.4 Model Interpretation . 29
3.4.1 Summed Attention Weights . 29
3.4.2 Individual Attention Weight Visualization 29
3.4.3 Differentiation of network layers . 30
3.4.4 Non-Uniformity: Information Content 30
3.4.5 bpRNA Structure Labels . 33

TABLE OF CONTENTS (Continued)
Page

3.5 Discussion . 35

4 Deep Learning for Dynamic Programming in RNA Structure Prediction 38

4.1 Introduction: Deep Nussinov . 38

4.2 Methods . 39
4.2.1 LSTM+Transformer Sequence Encoding 39
4.2.2 The Nussinov Algorithm . 39
4.2.3 Structured Perceptron Loss . 40
4.2.4 Dataset and Training Time . 41

4.3 Results . 42

4.4 Discussion . 42
4.4.1 Cubic Time Complexity and Possible Linearization 42
4.4.2 Conclusions . 43

5 Deep Learning for Improving Protein Tertiary Structure Prediction 45

5.1 Introduction . 45

5.2 Methods . 46
5.2.1 Distance Map Prediction . 46
5.2.2 Protein Distance Map Prediction Model 47
5.2.3 Match Score and Extrinsic Information 50
5.2.4 Dataset and Training . 50

5.3 Results . 51
5.3.1 Alignment Evaluation . 52

5.4 Discussion . 52

6 Summary 54

Bibliography 55

LIST OF FIGURES
Figure Page

2.1 Our shift-reduce deductive system. Here ℓ is the step index, c and v are prefix
and inside scores. Unlike Huang and Sagae (2010) [30] and Cross and Huang
(2016b) [7], ξ and σ are not shift/reduce scores; instead, they are the (best) label
scores of the resulting span: ξ = maxX s(j, j+1, X) and σ = maxX s(k, j,X)

where X is a nonterminal symbol (could be ∅). Here ℓ′ = ℓ− 2(j − i) + 1. . 6

2.2 Runtime plots of decoding on the training set of the Penn Treebank. The differ-
ences between the different algorithms become evident after sentences of length
40. The regression curves have been empirically fitted. 10

2.3 Runtime plot of decoding the discourse treebank training set. The log-log plot on
the right shows the cubic complexity of baseline chart parsing. Whereas beam
search decoding maintains linear time even for sequences of thousands of words. 12

3.1 A: Architecture Diagram for the Basepair Fixing task. B: A simple example of
an input RNA sequence (bottom) becoming “fixed” by our model (top), with the
fixed positions highlighted in magenta. In this case the added base-pairs shift the
pairings of the entire stem. 17

3.2 Sequence-level F1 score performances with standard error bars for each of our
models evaluated on the test set. 21

3.3 Reverse-CDF of the number of unpaired brackets produced by bpRNA-Fix vs
Attentionfold on the test dataset. Further quantifying the performance difference
between the two models, Attentionfold tends to produce more unpaired brackets
in its output than bpRNA-Fix. 22

3.4 Histogram binning the number of brackets predicted by our models compared to
the labeled dataset. bpRNA-Fix tends to predict more even and less odd numbers
of basepairs compared to Attentionfold. 23

3.5 Treating Figure 3.4 histogram as time-series data, we apply a Fast-Fourier Trans-
formation to measure the parity of the model output predictions. The resulting
peaks at frequency 0.5 (corresponding to an even parity of base pair predic-
tions) are compared in this plot, showing that bpRNA-Fix predicts base pairs
with higher even parity than Attentionfold . 24

LIST OF FIGURES (Continued)
Figure Page

3.6 Histogram of bpRNA-Fix’s attention weights for a specific bpRNA sequence
(bpRNA CRW 43036). The summed attention weights outgoing from each po-
sition are binned. The first and last layers are shown. While the initial attention
weights in layer one look to be more uniform in nature, the weights become
more organized by the fourth layer, concentrating around regions with structure. 25

3.7 Arc plot of the same sequence as Figure 3.6, showing the statistically significant
attention values to fixed positions, of the first and last self-attention layers of
the model. The resulting arc plot shows that significant attentions are coming
from structured regions in this example, and that the significant attentions behave
differently from layer to layer. 26

3.8 Number of sequences of the test dataset binned by the number of fixed base-
pairs. We show an even parity, that many sequences tend to have an even number
of fixes, even though the model is not constrained to do so. For comparison, we
also show the subset of test sequences where our model perfectly predicted the
dotbracket structure. 27

3.9 Boxplots showing attentions to fixed positions across the test dataset, subdivided
by whether the output fixed position is a paired or unpaired fix (left or right col-
umn) and whether the attentions are coming from paired or unpaired input po-
sitions (left or right boxplot). Only sequences that our model get correct (100
F1) are considered. We see that both paired and unpaired fixes, attention weights
from paired positions across the input are higher than a uniform expected base-
line, especially in subsequent layers of the network. 28

3.10 Average incoming attention weight information content, for each modification
from Linearfold made by our model in the test data set. 31

3.11 Incoming information content of an example fixed sequence (bpRNA RFAM 1939),
for the Attention Weights to each index. We see the incoming information con-
tent at layer 4, is higher in paired and fixed regions. 32

3.12 Outgoing information content of the same sequence as Figure 3.11, for the Atten-
tion Weights leaving from each index. This example features prominent larger
outgoing information content at a fix (removed hairpin). 32

LIST OF FIGURES (Continued)
Figure Page

3.13 Average incoming information content in our model’s last layer for each type of
bpRNA structure label fix, going from Linearfold’s input to bpRNA-Fix’s pre-
dicted output. Fixes consisting of an end (E) to a hairpin (H) have high average
information Content. 34

3.14 Left: Example test sequence as paired by Linearfold with the fix position (E to
H) highlighted in magenta, and with the attention weights to this fix position
heatmapped in red. Right: The resulting predicted output sequence from our
model, with the same fix position highlighted and the same attention weights
to this position, showing that attention across the Linearfold input dotbracket
correspond to structures in the predicted output. Attentions between the hairpins
can also be seen, suggesting the modeling of pseudoknot structures. 35

3.15 M→I fixes in Figure 3.13 are an enriched category for information content, here
we show a more complex example also indicating that attention weights are dis-
tributed across stem structures in our predicted output. 36

4.1 Standard Error plot of Deep Nussinov’s performance on sequences up to length
50 in the bpRNA-Fix test set. 43

5.1 High level overview of the TurboProFold process. An input of k homologous
or similar sequences are provided to our Align and Folding modules. 1) The
alignment module consists of a match score computation and Probcons, in the
initial iteration without contact maps predictions, the input sequences are either
aligned with Probcons or in our case given as aligned. In subsequent iterations,
a set of contact maps would be made available and these are analyzed using a
match score computation before being input to Probcons. 2) The folding mod-
ule consists of a contact map prediction model that takes an MSA as input and
outputs a set of k contact maps. We utilize a publicly available deep learning
model based on Yang et al. 2020[74] for this purpose. 3) Our alignment module
uses the match scores to re-align the input sequences and compute an extrinsic
information, both of which get sent to the folding module to help improve its
contact map output predictions. 4) The folding module produces a set of contact
maps, which can be sent back to the alignment module for another iteration of
TurboProFold, or the contact map of the reference sequence can be submitted to
Rosetta (5) to finalize 3D structures. 47

LIST OF FIGURES (Continued)
Figure Page

5.2 Figure of Yang Jianyi’s baseline model[74] taken from their paper. Starting with
an input MSA, one-dimensnional and two-dimensional features are extracted and
concatenated together into a 2D matrix. This is then fed into several residual-
CNN layers before predicting distance and inter-angle maps, to be fed as con-
straints in trRosetta[13] for final 3D structure predictions. 48

5.3 Distance map visualization produced by our baseline model, on a validation se-
quence example. The predicted distance bins are converted back into Angstroms
and compared with the labeled structure, and distances ≥ 20 Angstroms are
binned together. Contacts closer to the diagonal of this plot are more local in
scope, and contacts towards the bottom left and upper right corners are more
global in scope. Alpha helices (contacts close and parallel to the diagonal) and
beta sheets (contacts close and perpendicular to the diagonal) can be seen vi-
sualized. The Yang Jianyi model is primarily built upon stacked Resnet CNN
layers, which does well at modeling local structures, but struggles with identify-
ing global contacts, which remains sparse compared to the label. 49

LIST OF TABLES
Table Page

2.1 Comparison of PTB development set results, with the time measured in seconds-
per-sentence. The baseline chart parser is from Stern et al.[61], with null-label
scores unconstrained to be nonzero, replicating their paper. 13

2.2 Final PTB Test Results. We compare our models with other (neural) single-
model end-to-end trained systems, trained on WSJ only. 13

2.3 Overall test accuracies for PTB-RST discourse treebank. Starred⋆ rows indicate
a run that was decoded from the beam 200 model. 14

2.4 F1 scores comparing discourse systems. Results correspond to the accuracies in
Table 2.3, broken down to focus on the discourse labels. 14

3.1 Confusion matrix summarizing the performative accuracy of our Linearfold+bpRNAfix
model on our held-out test set, with our overall site-wise accuracy shown in the
bottom right-hand corner. 20

3.2 Evaluated test results for our models. Precision, recall, and F1 are calculated
across all base pairs in the test set. Sequence average test F1 refers to the average
F1 score across all evaluated sequences. Figure 3.2 plots the sequence average
F1 with standard error bars. 22

4.1 Evaluation results for our models, on the bpRNA-Fix test set, filtered down for
sequences of length ≤ 50. Precision, recall, and F1 measure the overall score
across all base pair predictions in the test dataset. The sequence average F1
Score is the average F1 across each sequence. The Attentionfold and bpRNA-
Fix models were originally trained on the full length 200 bpRNA-Fix dataset.
Deep Nussinov was trained on the same dataset filtered down to sequences up to
length 50, not making this an exact comparison. 42

LIST OF TABLES (Continued)
Table Page

5.1 Evaluation experiment done with the CAMEO-L dataset, with input MSA size
≤ 10. The precision of the Top-L most confident predictions are listed, along
with the overall precision for each distance category. The MSA realignment and
extrinsic information generated from the TurboProFold model improves contacts
at each distance, most benefiting very short contacts. Short, medium, and long
range contacts converge by one round of the joint folding and aligning process,
while very short contacts continue to improve from iteration to iteration. We also
show results from running AlphaFold2, modified to prevent it from searching for
additional homologous sequences to augment its input. AlphaFold2 outputs a
3D structure, that we convert to a contact map for our evaluation. Since we only
have the contact predictions, we do not have a notion of its top-L most confident
predictions, and so we only show its overall precision. 51

5.2 Our alignment result improvements after using one round of TurboProFold, on
the OXBench[51] dataset. Using ProbCons[11] by itself to perform alignments
versus additionally adding our computed match scores shows improvements
across the different sequence identity categories. When the sequence identity
is very low (less than 30%) is when our match score most improves ProbCons’s
ability to align. 53

LIST OF ALGORITHMS
Algorithm Page

1 DEEP NUSSINOV . 40

To my parents Sungchul and Hyukran Hong, for their love and support.

To my grandparents who always said that I would become a great person and do great things.

To my sweetheart Ayoung Kang who encourages me to do my best every day.

Chapter 1: Introduction

In this thesis, we explore the application of deep learning in the fields of natural language pro-

cessing (NLP) and bioinformatics, each of which further have traditional roots in the fields of

linguistics and biology. We show relations between language and biological contexts by consid-

ering these as formal languages or less formally as sequence problems; various domain specific

issues also arise in our work, and we also discuss these issues. As we relate linguistics and

biology1, we additionally present decoding algorithms, visualization, and explanation methods

related to deep learning and used to contribute towards long-standing problems. While in the

future machine learning may progress and current deep learning and neural network-based ap-

proaches may become obsolete or take on other names, the decoding methods used on top of their

outputs and how these models are visualized and interpreted would still remain in relevance.

Both the sentences uttered by humans as well as the RNA and protein sequences found

within their cells can be considered as sets of strings composed from an alphabet generated by

grammar rules. To briefly characterize these languages, words in natural language sentences

have a large number of types but a limited sequence of tokens, while nucleotides in biological

contexts have limited types in long sequences of tokens. A sentence has a possible vocabulary

size greater than 100,000 but in practice usually have less than 20-30 words2; RNA sequences

have 4 possible tokens but feature sequences anywhere from less than 100 to greater than 10,000

nucleotides. Protein sequences similarly only have 20 possible amino acid tokens. This leads

to researchers in NLP benefitting from encoding words as high dimensional vector embeddings,

whereas in biology it typically suffices to encode an RNA nucleotide as a simple categorical

one-hot. This is one example of practical differences between contexts that inform modeling

choices in order to make deep learning tractable and effective.

These widely different domains presumably have their own forms of syntactic structure,

and their respective grammars dictate the relationships on how words, nucleotides, and amino
1Alan Turing’s contributions include solving German cryptography[69], and later in his life he analyzed the ran-

dom patterns in nature that arise starting from uniformity[68]. Computer scientists have been addressing problems in
both language and biology since the beginning of computer science.

2A recent study says an average 20 year old recognizes about 42,000 words[3]. There are many more English
words than this, Michel et al. 2011 estimates the English lexicon at well over 1 million[44]

2

acids interact within themselves to form structures. With language this comes in the form of

syntactic parse tree diagrams, just like with RNA that this becomes secondary structure base

pairings, or for proteins this becomes tertiary structure contact map pairings. We present a deep

learning approach for predicting syntactic structures for human languages (parsing), and dy-

namic programming techniques that allow for fast linear-time decoding while maintaining close

to state-of-the-art accuracy. Converting the traditional O(n3) exhaustive cubic time CKY pars-

ing algorithm into having a left-to-right, bottom-up reordering allowed us to additionally apply

inexact beam search and then cube-pruning to attain linear O(n · b log(b)) runtime complexity3.

Despite being a linear inexact search, our model attained accuracies better than the previous

state-of-the-art model which used a slow exhaustive decoding upon the same underlying neural

network architecture.

Analogous to linguistic grammar rules, nucleotides in RNA sequences are also subject to

base pairing potentials, as Adenine (A) prefers to bind with Uracil (U) and Cytosine (C) prefers

to bind with Guanine (G). The secondary structure base pairing behavior of RNA often involves

interactions across the entire sequence. We present a deep learning approach for predicting sec-

ondary structure for RNA sequences (folding), and using self-attention-based Transformer mod-

els to visualize and correct errors made by other structure prediction algorithms called bpRNA-

Fix. We find that a simple architecture consisting of LSTM and Transformer layers succeed at

attaining a strong baseline, which then further improves when predictions made by another pro-

gram are made available as input. Visualizing the attention weights of our model, we find that

strong attention in the last layer is paid towards bracketed structural sections in the output.

We further show a connection to our human language parsing work, by presenting the Nussi-

nov dynamic programming decoding algorithm adapted for deep learning, that guarantees a bal-

anced and valid base pairing output. With cubic runtime complexity analogous to CKY, we

show on a dataset of RNA sequences limited to length 50 accuracies surpassing our bpRNA-Fix

models. We also discuss how to linearize the runtime which would allow us to scale to longer

sequence datasets.

Even more complex than RNA, protein sequences feature even more possible interactions

between the 20 different types of amino acids. A standard way to model how a protein sequence

would fold into a 3D molecule is to first search for many similar or homologous sequences in a

database, and then use the aligned multiple sequence alignment (MSA) as the input, before pre-
3With n being the length of the sequence, and b being the beam size during beam search.

3

dicting the distances between each amino acid to every other position, called a contact map. We

present a deep learning approach for predicting tertiary structure for protein sequences (contact

map prediction), and an algorithm that overall improves the input and output simultaneously by

iteratively realigning the former based on the alignment of the latter. Focusing on the cases where

little to no homologous sequences can be found for a given input protein sequence (MSA size

≤ 10), we find that the iterative process of realigning the input sequences and output structures

results in overall improvement.

4

Chapter 2: Deep Learning for Span-Based Constituency Parsing

2.1 Introduction

Span-based neural constituency parsing [7, 60] has attracted attention due to its high accuracy

and extreme simplicity. Compared with other recent neural constituency parsers [15, 41, 14]

which use neural networks to model tree structures, the span-based framework is considerably

simpler, only using bidirectional RNNs to model the input sequence and not the output tree.

Because of this factorization, the output space is decomposable which enables efficient dynamic

programming algorithm such as CKY. But existing span-based parsers suffer from a crucial lim-

itation in terms of search: on the one hand, a greedy span parser [7] is fast (linear-time) but only

explores one single path in the exponentially large search space, and on the other hand, a chart-

based span parser [60] performs exact search and achieves state-of-the-art accuracy, but in cubic

time, which is too slow for longer sentences and for applications that go beyond sentence bound-

aries such as end-to-end discourse parsing [23, 78] and integrated sentence boundary detection

and parsing [2].

We propose to combine the merits of both greedy and chart-based approaches and design

a linear-time span-based neural parser that searches over exponentially large space. Following

Huang and Sagae (2010) [30], we perform left-to-right dynamic programming in an action-

synchronous style, with (2n− 1) actions (i.e., steps) for a sentence of n words. While previous

non-neural work in this area requires sophisticated features [30, 43] and thus high time complex-

ity such as O(n11), our states are as simple as ℓ : (i, j) where ℓ is the step index and (i, j) is the

span, modeled using bidirectional RNNs without any syntactic features. This gives a running

time of O(n4), with the extra O(n) for step index. We further employ beam search to have a

practical runtime of O(nb2) at the cost of exact search where b is the beam size. However, on

the Penn Treebank, most sentences are less than 40 words (n < 40), and even with a small

beam size of b = 10, the observed complexity of an O(nb2) parser is not exactly linear in n

(see Experiments). To solve this problem, we apply cube pruning [4, 28] to improve the run-

time to O(nb log b) which renders an observed complexity that is linear in n (with minor extra

inexactness).

5

We make the following contributions:

• We design the first neural parser that is both linear time and capable of searching over

exponentially large space.1

• We are the first to apply cube pruning to incremental parsing, and achieves, for the first

time, the complexity of O(nb log b), i.e., linear in sentence length and (almost) linear in

beam size. This leads to an observed complexity strictly linear in sentence length n.

• We devise a novel loss function which penalizes wrong spans that cross gold-tree spans,

and employ max-violation update [29] to train this parser with structured SVM and beam

search.

• Compared with chart parsing baselines, our parser is substantially faster for long sentences

on the Penn Treebank, and orders of magnitude faster for end-to-end discourse parsing. It

also achieves the highest F1 score on the Penn Treebank among single model end-to-end

systems.

• We devise a new formulation of graph-structured stack [66] which requires no extra book-

keeping, proving a new theorem that gives deep insight into GSS.

2.2 Preliminaries

2.2.1 Span-Based Shift-Reduce Parsing

A span-based shift-reduce constituency parser [7] maintains a stack of spans (i, j), and progres-

sively adds a new span each time it takes a shift or reduce action. With (i, j) on top of the stack,

the parser can either shift to push the next singleton span (j, j + 1) on the stack, or it can re-

duce to combine the top two spans, (k, i) and (i, j), forming the larger span (k, j). After each

shift/reduce action, the top-most span is labeled as either a constituent or with a null label ∅,

which means that the subsequence is not a subtree in the final decoded parse. Parsing initializes

with an empty stack and continues until (0, n) is formed, representing the entire sentence.

1https://github.com/junekihong/beam-span-parser

6

input w0 . . . wn−1

state ℓ : ⟨i, j⟩ : (c, v)

init 0 : ⟨0, 0⟩ : (0, 0)

goal 2n− 1 : ⟨0, n⟩ : (c, c)

shift
ℓ : ⟨ , j⟩ : (c,)

ℓ+ 1 : ⟨j, j + 1⟩ : (c+ ξ, ξ)
j < n

reduce
ℓ′ : ⟨k, i⟩ : (c′, v′) ℓ : ⟨i, j⟩ : (, v)

ℓ+ 1 : ⟨k, j⟩ : (c′ + v + σ, v′ + v + σ)

Figure 2.1: Our shift-reduce deductive system. Here ℓ is the step index, c and v are prefix
and inside scores. Unlike Huang and Sagae (2010) [30] and Cross and Huang (2016b) [7], ξ
and σ are not shift/reduce scores; instead, they are the (best) label scores of the resulting span:
ξ = maxX s(j, j+1, X) and σ = maxX s(k, j,X) where X is a nonterminal symbol (could be
∅). Here ℓ′ = ℓ− 2(j − i) + 1.

2.2.2 Bi-LSTM features

To get the feature representation of a span (i, j), we use the output sequence of a bi-directional

LSTM [7, 60]. The LSTM produces f0, ..., fn forwards and bn, ...,b0 backwards outputs, which

we concatenate the differences of (fj − fi) and (bi − bj) as the representation for span (i, j).

This eliminates the need for complex feature engineering, and can be stored for efficient querying

during decoding.

7

2.3 Dynamic Programming

2.3.1 Score Decomposition

Like Stern et al. (2017a) [60], we also decompose the score of a tree t to be the sum of the span

scores:

s(t) =
∑

(i,j,X)∈t

s(i, j,X) (2.1)

=
∑

(i,j)∈t

max
X

s((fj − fi;bi − bj), X) (2.2)

Note that X is a nonterminal label, a unary chain (e.g., S-VP), or null label ∅.2 In a shift-reduce

setting, there are 2n − 1 steps (n shifts and n − 1 reduces) and after each step we take the best

label for the resulting span; therefore there are exactly 2n − 1 such (labeled) spans (i, j,X) in

tree t. Also note that the choice of the label for any span (i, j) is only dependent on (i, j) itself

(and not depending on any subtree information), thus the max over label X is independent of

other spans, which is a nice property of span-based parsing [7, 60].

2.3.2 Graph-Struct. Stack w/o Bookkeeping

We now reformulate this DP parser in the above section as a shift-reduce parser. We maintain a

step index ℓ in order to perform action-synchronous beam search (see below). Figure 2.1 shows

how to represent a parsing stack using only the top span (i, j). If the top span (i, j) shifts, it

produces (j, j + 1), but if it reduces, it needs to know the second last span on the stack, (k, i),

which is not represented in the current state. This problem can be solved by graph-structure stack

[66, 30], which maintains, for each state p, a set of predecessor states π(p) that p can combine

with on the left.

This is the way our actual code works (π(p) is implemented as a list of pointers, or “left

pointers”), but here for simplicity of presentation we devise a novel but easier-to-understand

formulation in Fig. 2.1, where we explicitly represent the set of predecessor states that state

ℓ : (i, j) can combine with as ℓ′ : (k, i) where ℓ′ = ℓ − 2(j − i) + 1, i.e., (i, j) at step ℓ can

2The actual code base of Stern et al. (2017a) [61] forces s(i, j,∅) to be 0, which simplifies their CKY parser and
slightly improves their parsing accuracy. However, in our incremental parser, this change favors shift over reduce and
degrades accuracy, so our parser keeps a learned score for ∅.

8

combine with any (k, i) for any k at step ℓ′. The rationale behind this new formulation is the

following theorem:

Theorem 1 The predecessor states π(ℓ : (i, j)) are all in the same step ℓ′ = ℓ− 2(j − i) + 1.

Proof. By induction.

This Theorem bring new and deep insights and suggests an alternative implementation that

does not require any extra bookkeeping. The time complexity of this algorithm is O(n4) with

the extra O(n) due to step index.3

2.3.3 Action-Synchronous Beam Search

The incremental nature of our parser allows us to further lower the runtime complexity at the

cost of inexact search. At each time step, we maintain the top b parsing states, pruning off the

rest. Thus, a candidate parse that made it to the end of decoding had to survive within the top

b at every step. With O(n) parsing actions our time complexity becomes linear in the length of

the sentence.

2.3.4 Cube Pruning

However, Theorem 1 suggests that a parsing state p can have up to b predecessor states (“left

pointers”), i.e., |π(p)| ≤ b because π(p) are all in the same step, a reduce action can produce up

to b subsequent new reduced states. With b items on a beam and O(n) actions to take, this gives

us an overall complexity of O(nb2). Even though b2 is a constant, even modest values of b can

make b2 dominate the length of the sentence. 4

To improve this at the cost of additional inexactness, we introduce cube pruning to our beam

search, where we put candidate actions into a heap and retrieve the top b states to be considered

in the next time-step. We heapify the top b shift-merged states and the top b reduced states.

To avoid inserting all b2 reduced states from the previous beam, we only consider each state’s
3The word-synchronous alternative does not need the step index ℓ and enjoys a cubic time complexity, being

almost identical to CKY. However, beam search becomes very tricky.
4The average length of a sentence in the Penn Treebank training set is about 24. Even with a beam size of 10, we

already have b2 = 100, which would be a significant factor in our runtime. In practice, each parsing state will rarely
have the maximum b left pointers so this ends up being a loose upper-bound. Nevertheless, the beam search should
be performed with the input length in mind, or else as b increases we risk losing a linear runtime.

9

highest scoring left pointer,5 and whenever we pop a reduced state from the heap, we iterate

down its left pointers to insert the next non-duplicate reduced state back into the heap. This

process finishes when we pop b items from the heap. The initialization of the heap takes O(b)

and popping b items takes O(b log b), giving us an overall improved runtime of O(nb log b).

2.4 Training

We use a Structured SVM approach for training [60, 57]. We want the model to score the gold

tree t∗ higher than any other tree t by at least a margin ∆(t, t∗):

∀t, s(t∗)− s(t) ≥ ∆(t, t∗).

Note that ∆(t, t) = 0 for any t and ∆(t, t∗) > 0 for any t ̸= t∗. At training time we perform

loss-augmented decoding:

t̂ = argmax
t

s∆(t) = argmax
t

s(t) + ∆(t, t∗).

where s∆(·) is the loss-augmented score. If t̂ = t∗, then all constraints are satisfied (which

implies argmaxt s(t) = t∗), otherwise we perform an update by backpropagating from s∆(t̂)−
s(t∗).

2.4.1 Cross-Span Loss

The baseline loss function from Stern et al. (2017a) [60] counts the incorrect labels (i, j,X) in

the predicted tree:

∆base(t, t
∗) =

∑
(i,j,X)∈t

1
(
X ̸= t∗(i,j)

)
.

Note that X can be null ∅, and t∗(i,j) denotes the gold label for span (i, j), which could also be

∅.6 However, there are two cases where t∗(i,j) = ∅: a subspan (i, j) due to binarization (e.g., a

span combining the first two subtrees in a ternary branching node), or an invalid span in t that
5If each previous beam is sorted, and if the beam search is conducted by going top-to-bottom, then each state’s

left pointers will implicitly be kept in sorted order.
6Note that the predicted tree t has exactly 2n− 1 spans but t∗ has much fewer spans (only labeled spans without

∅).

10

20 40 60 80 100 120 140

Sentence Length

0.0

0.5

1.0

1.5

2.0
T
im

e
 (

se
c)

Chart Parsing: O(n2. 26)

Beam 20 No Cube-Pruning: O(n1. 26)

Beam 20 Cube Pruned: O(n1. 08)

Beam 5 Cube Pruned: O(n0. 97)

Figure 2.2: Runtime plots of decoding on the training set of the Penn Treebank. The differences
between the different algorithms become evident after sentences of length 40. The regression
curves have been empirically fitted.

crosses a gold span in t∗. In the baseline function above, these two cases are treated equivalently;

for example, a span (3, 5,∅) ∈ t is not penalized even if there is a gold span (4, 6,VP) ∈ t∗. So

11

we revise our loss function as:

∆new(t, t
∗) =

∑
(i,j,X)∈t

1
(
X ̸= t∗(i,j) ∨ cross(i, j, t∗)

)

where cross(i, j, t∗) = ∃ (k, l) ∈ t∗, and i < k < j < l or k < i < l < j.

2.4.2 Max Violation Updates

Given that we maintain loss-augmented scores even for partial trees, we can perform a training

update on a given example sentence by choosing to take the loss where it is the greatest along

the parse trajectory. At each parsing time-step ℓ, the violation is the difference between the

highest augmented-scoring parse trajectory up to that point and the gold trajectory [29, 75].

Note that computing the violation gives us the max-margin loss described above. Taking the

largest violation from all time-steps gives us the max-violation loss.

2.5 Experiments

We present experiments on the Penn Treebank [42] and the PTB-RST discourse treebank [78].

In both cases, the training set is shuffled before each epoch, and dropout [24] is employed with

probability 0.4 to the recurrent outputs for regularization. Updates with minibatches of size 10

and 1 are used for PTB and the PTB-RST respectively. We use Adam [35] with default settings

to schedule learning rates for all the weights. To address unknown words during training, we

adopt the strategy described by Kiperwasser and Goldberg [37]; words in the training set are

replaced with the unknown word symbol UNK with probability punk = 1
1+f(w) , with f(w) being

the number of occurrences of word w in the training corpus. Our system is implemented in

Python using the DyNet neural network library [45].

2.5.1 Penn Treebank

We use the Wall Street Journal portion of the Penn Treebank, with the standard split of sections

2-21 for training, 22 for development, and 23 for testing. Tags are provided using the Stanford

tagger with 10-way jackknifing.

Table 2.1 shows our development results and overall speeds, while Table 2.2 compares our

12

500 1000 1500 2000

Discourse Length (words)

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

se
c)

C
h
a
rt

 P
a
rs

in
g

This Work Beam 10

102 103

Discourse Length (words)

10-1

100

101

102

103

T
im

e
 (

se
c)

This
W

ork
 B

eam
 1

0

C
h
a
rt

 P
a
rs

in
g

Figure 2.3: Runtime plot of decoding the discourse treebank training set. The log-log plot on
the right shows the cubic complexity of baseline chart parsing. Whereas beam search decoding
maintains linear time even for sequences of thousands of words.

test results. We show that a beam size of 20 can be fast while still achieving state-of-the-art

performances.

2.5.2 Discourse Parsing

To measure the tractability of parsing on longer sequences, we also consider experiments on the

PTB-RST discourse Treebank, a joint discourse and constituency dataset with a combined rep-

resentation, allowing for parsing at either level [78]. We compare our runtimes out-of-the-box in

Figure 2.3. Without any pre-processing, and by treating discourse examples as constituency trees

with thousands of words, our trained models represent end-to-end discourse parsing systems.

For our overall constituency results in Table 2.3, and for discourse results in Table 2.4, we

13

Development Set 22 (F1)
Baseline +cross-span Time

This Work Beam 1 89.41 89.93 0.042
This Work Beam 5 91.27 91.91 0.050
This Work Beam 10 91.56 92.09 0.058
This Work Beam 15 91.74 92.16 0.062
This Work Beam 20 91.65 92.20 0.066
Chart 92.02 92.21 0.076

Table 2.1: Comparison of PTB development set results, with the time measured in seconds-per-
sentence. The baseline chart parser is from Stern et al.[61], with null-label scores unconstrained
to be nonzero, replicating their paper.

Test Set 23
End-to-End & Single Model LR LP F1
Socher et al. (2013) [59] 90.4
Durrett and Klein (2015) [14] 91.1
Cross and Huang (2016) [7] 90.5 92.1 91.3
Liu and Zhang (2016) [41] 91.3 92.1 91.7
Dyer et al. (2016) (discrim.) [15] 91.7
Stern et al. (2017a) [60] 90.63 92.98 91.79
Stern et al. (2017a) +cross-span [60] 91.67 91.94 91.81
Stern et al. (2017b) [61] 91.35 92.38 91.86
This Work Beam 10 91.44 91.91 91.67
This Work Beam 15 91.64 92.04 91.84
This Work Beam 20 91.49 92.45 91.97
Reranking/Ensemble/Separate Decoding/Aug Data
Vinyals et al. (2015) (ensem) [71] 90.5
Dyer et al. (2016) (gen., rerank) [15] 93.3
Choe and Charniak (2016) (rerank) [5] 93.8
Stern et al. (2017c) (sep. decoding) [62] 92.57 92.56 92.56
Fried et al. (2017) (ensem/rerank) [18] 94.25

Table 2.2: Final PTB Test Results. We compare our models with other (neural) single-model
end-to-end trained systems, trained on WSJ only.

14

LR LP F1
Zhao and Huang (2017) [78] 81.6 83.5 82.5
This Work Beam 10 80.47 80.61 80.54
This Work Beam 20 80.86 80.73 80.79
This Work Beam 200 81.51 80.84 81.18
This Work Beam 500⋆ 81.50 80.81 81.16
This Work Beam 1000⋆ 81.55 80.85 81.20

Table 2.3: Overall test accuracies for PTB-RST discourse treebank. Starred⋆ rows indicate a run
that was decoded from the beam 200 model.

segment structure +nuclearity +relation
Bach et al (2012) [1] 95.1 - - -
Hernault et al. (2010) [23] 94.0 72.3 59.1 47.3
Zhao and Huang (2017) [78] 95.4 78.8 65.0 52.2
This Work Beam 200 91.20 73.36 58.87 46.38
This Work Beam 500⋆ 93.52 74.93 60.16 47.03
This Work Beam 1000⋆ 94.06 75.60 60.61 47.37

Table 2.4: F1 scores comparing discourse systems. Results correspond to the accuracies in
Table 2.3, broken down to focus on the discourse labels.

adapt the split-point feature described in [78] in addition to the base parser. We find that larger

beamsizes are required to achieve good discourse scores.

2.6 Conclusions

We have developed a new neural parser that maintains linear time, while still searching over

an exponentially large space. We also use cube pruning to further improve the runtime to

O(nb log b). For training, we introduce a new loss function, and achieve state-of-the-art results

among single-model end-to-end systems.

15

Chapter 3: Deep Learning for Fixing RNA Secondary Structure Prediction

3.1 Introduction: bpRNA-Fix

Ribonucleic acids (RNA) are a ubiquitous and essential molecule for life, and the structures

of RNA molecules are widely understood to inform their function. Much research is devoted

to the fascinating aspect of their structure preserving properties, in that RNA sequences can

vary widely in a myriad of different examples but can still all fold into similar structures. The

task of predicting the secondary structure of RNA sequences were traditionally approached

with thermodynamics-based dynamic programming algorithms[25] and machine learning de-

rived parameters[12, 31]. However, recent advances in the application of deep learning have

demonstrated progress in RNA structure prediction performances in accuracy while still main-

taining tractability[19, 67, 56].

More broadly, there has been interest in utilizing recent advanced deep learning models, such

as using the attention-based Transformer model[70], which was original designed for trans-

lation between languages. This network has been applied to a wide variety of tasks within

biological domains including protein structure[32], drug-target interaction[27], DNA enhancer

prediction[38], and DNA sequence classification[22]. Transformers utilize self-attention, which

describe relationships between elements of the input, and can be integrated to compute the ele-

ments of an output. This combination of information is not necessarily uniform in distribution,

and is instead weighted differently for each part of the input sequence depending its importance

deemed by the neural network. Thus the term “self-attention” comes from representing a ele-

ment from the input sequence in relation to all elements including itself and the neural network’s

model weights.

While thermodynamic models of secondary structure prediction have readily interpretable

parameters, deep learning models generally require additional tools for interpretation [58, 47,

77]. Attention weights when applied to RNA secondary structure suggest an attractive means

of network interpretation because one can visualize the relevant parts of the input nucleotide se-

quence that inform the network’s decision on forming a base pair. However, a notable theoretical

limitation of self-attention based neural networks is the inability to pair an arbitrary number of

16

brackets[21], an important property common in biological sequence related tasks, including the

prediction of base pairing. In fact, common representations of RNA secondary structures include

“dot bracket” sequences, which represent base pairs as a pair of matched parentheses.

To partially alleviate a part of what Transformers may find difficult about RNA folding, we

use the output of the thermodynamic models as part of the input, which already have matching

base pair brackets. Allowing this additional input to form a “scaffolding”, we aid the network in

providing an already well-formed base pair bracketing such that during training its learning ef-

forts would focus on other aspects in the secondary structure prediction (RNA folding) task. We

call this task base pair fixing, where a previous model’s predictions (e.g. using the output of Lin-

earfold or RNAfold) are input in addition to the nucleotide sequence and the output dotbracket

positions that differ from the input are considered fixes to the input.

Base pair fixing offers an additional way towards neural network explanation and visualiza-

tion, compared to sequence-only prediction approaches. That is, self-attention weights have an

inherent directionality to them, and one can specifically focus on and visualize the attention to

positions that are corrected in the output, and even categorized across different types of fixes to

be analyzed. We explore whether our model’s attention weights are directly interpretable in this

way.

A machine learning advantage of this approach is that the usage of another structure predic-

tion program indirectly makes use of their previously designed thermodynamic models, standing

on their proverbial shoulders in order to simplify our task and expedite training. In addition, the

input models were designed for more general RNA folding task use cases. Whereas almost any

given RNA dataset may have biases towards certain particular types or families or RNAs, away

from what the input programs were originally designed for.

Thus, an alternate perspective on base pair fixing considers our models to be trained to

fine-tune upon fixing the “errors” that Linearfold or RNAfold may make on our dataset. Fine-

tuning from a previous model is by no means a novel approach and is already a widespread

method in deep learning related tasks, such as in tasks related to Natural Language Processing

and Computer Vision leveraging the BERT[9] and Resnet[64] pretrained deep learning models

respectively. Where these fine-tuning methods rely on very large deep learning models trained

an extremely large datasets and having greatly in excess of millions of parameters, our approach

utilizes much smaller and faster to compute base programs. We show that the existence of a

cheaper or simpler model to query can still effectively serve to reduce time and effort needed

to train a neural network. For parity tasks such as RNA secondary structure prediction, the

17

already basepair-matched input obviates part of the burden of learning to maintain balanced

dotbracket pairing. This idea can be applied beyond RNA Secondary Structure Prediction or

even in Biological problem domains; information from another possibly “simpler” model can

still be incorporated or ensembled for higher accuracy performances. We also compare a version

of our model relying only on the underlying neural network model without additional input

predictions, that we call “AttentionFold”.

3.2 Methods

z'1 z'2 z'3 z'4 z'5 z'n

GCGGACUUUCCGC
.((((...)))).

0
0

0
1

0
1

0
0

1

0
0

0
0

0
1

1

0
0

1
0

0
0

1

0
0

0
1

0
0

0
0

1
0

0

1
0

0
0

1
0

0

1
0

0
0

1
0

0

1
0

0
1

0
0

0
1

0
0

0
0

0
1

0
1

0
0

1

0
0

One-Hot
Encoding

z1 z2 z3 z4 z5 zn...

Transformer Encoder

bi-LSTM

(((((...)))))

Feed-Forward

predicted
corrected
structure

Input RNA
Input structure

...

(4 layers)

(2 layers)

0

1
0

0
1
0

0
1
0

0
1
0

0
1
0

0

1
0

0
0

0
1

A B

A
C

C

UGGGU

U
C

A

A
A

U C C C A

G

C
G A

G

U

C

C

A

C
C

A
C

C
U

G
G

G

U
U

C

A

A

A U

C
C

C
A

G

C

G
A G

U

C

C

A

C
C

Figure 3.1: A: Architecture Diagram for the Basepair Fixing task. B: A simple example of an
input RNA sequence (bottom) becoming “fixed” by our model (top), with the fixed positions
highlighted in magenta. In this case the added base-pairs shift the pairings of the entire stem.

18

3.2.1 Transformer Networks

Transformer[70] Networks are a Deep Learning model that utilize self-attention to model se-

quential data[9] or otherwise structured data, such as images or graphs[48, 76]. In biological

sequential data such as RNA, each nucleotide is represented by a rich multi-dimensional vector,

and to procedurally apply a “layer” of a Transformer Network would be to update each nu-

cleotide vector representation using a series of matrix multiplications involving all nucleotides

in the sequence.

More formally, xi is the d-sized vector embedding of the nucleotide at position i, and x

represents the entire RNA sequence; an instance of the Transformer model learns three weight

matrices WQ (query weights), WK (key weights), and WV (value weights), then the resulting

matrices:

Q = xWQ,K = xWK , V = xWV

Are combined together, divided by
√
dk the square root of the dimension-size of WK , and uti-

lizing the softmax function, in the following way:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

The resulting output amounts to updating every xi to an enriched version x′i, which incorporates

information from every position. These attention units are typically stacked in multiple “layers”,

and the final sequence representation is utilized for a downstream task, for example such as

site-wide classifications of whether each nucleotide is paired or unpaired, or sequence-wide

predictions such as for an existence of a pseudoknot. Transformer Networks additionally have

encoder and decoder components, that both utilize the self-attention mechanism detailed above.

For our purposes, we utilize only encoder layers, as our decoder is a simple feed-forward network

to make site-wide predictions.

3.2.2 Architecture and Training

Reading in the sequence and input structure represented as a one-hot encoding, the input is

richly encoded with the use of a two-layer bi-LSTM, followed by four layers of Transformer

self-attention encoders. The final output is then predicted with a simple feed forward network,

such that each position of the sequence independently has three possible outputs (left-paired,

19

right-paired, unpaired). This description is summarized in Figure 3.1.

To note, this decoding scheme is unconstrained, in that it is entirely possible to output non-

sensical, mismatching, or unbalanced base pairs; the model is relied upon to output matching

base pairs on its own without a formal guarantee that will only produce perfectly valid outputs.

A myriad of solutions could exist to address this, from simple post-processing of the output to

ensure basepair balance1, to running a compatible version of the Nussinov algorithm on the out-

put embeddings2 to find the highest model-scoring valid basepairing, we instead limit the scope

of this paper to a simple decoding method for pedagogical reasons and to explore and discuss

the model’s explainability.

Our Deep Learning model and training was coded using the Pytorch library, with a Cross-

Entropy training loss and the Adam[36] optimizer3. Since the network can predict every position

of a sequence as well as every sequence in a minibatch in parallel, the training loss can all be

computed with vector notation within a GPU for efficiency.

3.2.3 Dataset and Preparation

Starting with the sequences in the bpRNA 1M dataset[8], sequences with lengths between 20

and 200 were kept. The remaining sequences were further filtered for diversity using CD HIT-

EST[40]. This data was split randomly using an 80-10-10 training, validation, and testing split.

This consideration addresses over-fitting, for the potential issue of training examples to be very

similar to those found in the validation and test, as well as an indirect way to address separating

RNA sequence types and families within the data.

As a way to increase the number of training examples, some of the sequences excluded dur-

ing the diversity filtering were added back into the training data. Using the EMBOSS Needleman-

Wunsch global alignment program, the selected sequences had to have had at least 90% similarity
1For example, adding or deleting mismatched outside basepairs until the overall structure is balanced. Or reading

the structure from left to right using a stack, pushing and popping the stack based on whether left or right brackets
are read, and then deleting any right-brackets that would cause the stack to be popped while empty or any remaining
left-brackets that remain on the stack by the end of the sequence.

2This would require a scoring function that takes two embeddings representing nucleotides and returns a score for
how well they would pair. This could easily be a simple feedforward network either learned jointly while training the
rest of the network (which would offer the best final results but could be very slow to train), or by holding the weights
of the rest of the network frozen after it has already been trained using our baseline decoding (as a machine learning
engineering compromise).

3The Adam hyperparameter were all default values from the Pytorch library other than the learning rate (0.001),
betas values (0.9, 0.98), and epsilon value (1e-09).

20

Symbol () . Label
(46521 461 5553 52535
) 385 46616 5534 52535
. 4371 4304 125706 134381
Predicted 51277 51381 136793 239451
Precision 90.7% 90.7% 91.9% 91.4%

Table 3.1: Confusion matrix summarizing the performative accuracy of our Linear-
fold+bpRNAfix model on our held-out test set, with our overall site-wise accuracy shown in
the bottom right-hand corner.

with at least one of the training sequences but with none of the validation and testing sequences.

The final resulting process resulted in a split consisting of 42,859, 2,344, and 2,345 training,

validation, and testing sequence examples respectively.

3.3 Results

3.3.1 Positional Encodings vs LSTM

There is also a notable design shortcoming in Transformer network architectures in that atten-

tions are computed without natural notions of position. Thus all x′i resulting output embeddings

incorporate information from inputs xj from all positions j without even considering whether

i < j for example. This is typically addressed with the addition of a positional encoding, usually

a trigonometric function with a long period, to encode every position index. The positional en-

coding is then combined with the input embedding, allowing the model to differentiate between

nucleotides occurring at different positions.

Instead of using a positional encoding, we instead turn to another common neural network

architecture in the Bidirectional Long-Short Term Memory (bi-LSTM), designed to model se-

quential information. Using an LSTM as the first encoding layer of our network, we forgo the

usage of Positional Encodings, and instead allow the network to model relative sequential in-

formation as a part of its learning. We find that this leads to an overall improvement in final

evaluation performance in Figure 2A.

21

Attn
fol

d

(+
Po

s-E
nc)

RNAfol
d

Lin
ea

rfo
ld

Attn
fol

d

(+
LST

M)

RNAfol
d+

bp
RNAfix

Lin
ea

rfo
ld+

bp
RNAfix

0.50

0.52

0.54

0.56

0.58

0.60

Ba
se

-P
ai

r F
1

(w
ith

 S
td

. E
rr)

Figure 3.2: Sequence-level F1 score performances with standard error bars for each of our mod-
els evaluated on the test set.

22

Model Precision Recall F1 Seq Avg F1
RNAfold 45.97 62.50 52.97 51.52
Linearfold 54.96 57.68 56.29 51.72
Attentionfold (+Pos Enc) 47.32 45.64 46.47 50.35
Attentionfold (+LSTM) 49.92 48.57 49.24 53.73
bpRNA-Fix (+RNAfold) 57.16 55.11 56.12 59.34
bpRNA-Fix (+Linearfold) 57.58 54.96 56.24 59.52

Table 3.2: Evaluated test results for our models. Precision, recall, and F1 are calculated across
all base pairs in the test set. Sequence average test F1 refers to the average F1 score across all
evaluated sequences. Figure 3.2 plots the sequence average F1 with standard error bars.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of Unpaired Brackets

100

101

102

103

Nu
m

be
r o

f R
NA

 S
eq

ue
nc

es

Linearfold+RNAfix
Attentionfold

Figure 3.3: Reverse-CDF of the number of unpaired brackets produced by bpRNA-Fix vs At-
tentionfold on the test dataset. Further quantifying the performance difference between the two
models, Attentionfold tends to produce more unpaired brackets in its output than bpRNA-Fix.

23

0 20 40 60 80 100 120 140 160
Number of Brackets

0

50

100

150

200

250

Nu
m

be
r o

f R
NA

 S
eq

ue
nc

es

Linearfold+RNAfix
Attentionfold
Label Dotbracket

Figure 3.4: Histogram binning the number of brackets predicted by our models compared to
the labeled dataset. bpRNA-Fix tends to predict more even and less odd numbers of basepairs
compared to Attentionfold.

24

Label Dotbracket Attentionfold Linearfold+RNAfix

54

56

58

60

62

64

66

Fo
ur

ie
r P

ow
er

 S
pe

ct
ru

m
of

 F
re

qu
en

cy
 0

.5
 (d

B)

Figure 3.5: Treating Figure 3.4 histogram as time-series data, we apply a Fast-Fourier Transfor-
mation to measure the parity of the model output predictions. The resulting peaks at frequency
0.5 (corresponding to an even parity of base pair predictions) are compared in this plot, showing
that bpRNA-Fix predicts base pairs with higher even parity than Attentionfold

3.3.2 F1-Score Evaluation of Secondary Structure

In order to further compare the performances of RNAfold and Linearfold to our bpRNA-Fix

methods, the first-pass approach for evaluation would be to calculate the site-wise confusion

matrix and accuracy. Indeed, Table 3.1 shows a robust overall accuracy greater than 91%. How-

ever, due to the unconstrained nature of our dotbracket predictions, it is still possible to do well

on this metric while still having inconsistent on nonsensical base pairings.

In order to more directly take RNA secondary structure base pairings into account, we use an

evaluation metric based on the precision and recall of the (i, j) base pairs in the labeled structure.

To compute the basepairings, we use a simple program that reads a dotbracket from left to right

using a stack data structure. Left brackets are pushed on to the stack and right brackets pop

from the stack, forming a series of (i, j) pairs as a result. In the case of invalid or mismatched

brackets, right brackets that try to pop from an empty stack are ignored as well as remaining

left brackets on the stack after the entire dotbracket has been processed. In this way, we can

extract the corresponding series of base pairs from the predicted output even if the prediction is

unbalanced, and use this to compare with the labeled structure.

For each test sequence we calculate the resulting F1-Score, which is the harmonic mean of

25

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d
A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

0

2

4

6

LAYER: 1

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d
A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

0

1

2

3

LAYER: 4

Figure 3.6: Histogram of bpRNA-Fix’s attention weights for a specific bpRNA sequence
(bpRNA CRW 43036). The summed attention weights outgoing from each position are binned.
The first and last layers are shown. While the initial attention weights in layer one look to be
more uniform in nature, the weights become more organized by the fourth layer, concentrating
around regions with structure.

the precision and recall, and the average and standard error of this evaluation what we show

in Figure 3.2. This evaluation is pessimistic in that a single missed or added base pair can

mismatch an entire set of index pairings, and thus potentially ruin the subsequent evaluated

F1-Score; it’s especially pessimistic for our unconstrained model because we predict each po-

sition independently potentially making invalid or unbalanced bracket outputs possible. Even

though this potentially advantages the always balanced outputs of RNAfold and Linearfold we

still show a surprisingly strong performance in that the trained Attentionfold baseline model with

LSTM+Transformer network layers still outperforms the thermodynamic models, and then im-

proves even further as the RNAFix model upon incorporating the thermodynamic model outputs.

Linearfold and RNAfold were not designed to fold the sequences in the bpRNA 1M dataset, but

these results still show that deep learning based approaches can improve upon off-the-shelf struc-

ture prediction programs.

26

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

A
(
(
(

G
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

U
(
(
(

G
(
(
(

U
.
.
.

G
.
.
.

A
(
(
(

C
(
(
(

G
(
(
(

C
(
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

G
)
)
)

C
)
)
)

G
)
)
)

U
)
)
)

G
.
(
(

C
(
(
(

G
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

C
.
.
.

U
.
.
.

C
.
.
.

A
.
.
.

U
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

C
)
)
)

G
)
)
)

A
.
)
)

A
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

C
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

G
(
(
(

A
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

C
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

G
)
)
)

C
)
)
)

A
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

U
)
)
)

A
.
.
.

Figure 3.7: Arc plot of the same sequence as Figure 3.6, showing the statistically significant
attention values to fixed positions, of the first and last self-attention layers of the model. The
resulting arc plot shows that significant attentions are coming from structured regions in this
example, and that the significant attentions behave differently from layer to layer.

27

0 20 40 60 80 100
Fixed Base-Pairs

0

20

40

60

80

Nu
m

be
r o

f S
eq

ue
nc

es All Test Sequences
100 F1 Sequences

Figure 3.8: Number of sequences of the test dataset binned by the number of fixed base-pairs.
We show an even parity, that many sequences tend to have an even number of fixes, even though
the model is not constrained to do so. For comparison, we also show the subset of test sequences
where our model perfectly predicted the dotbracket structure.

28

0.5

0.0

0.5
Paired to Unpaired Fixed Position

0.5

0.0

0.5

La
ye

r 1

Unpaired to Paired Fixed Position

0.5

0.0

0.5

0.5

0.0

0.5

La
ye

r 2

0.5

0.0

0.5

0.5

0.0

0.5

La
ye

r 3

Paired Unpaired
0.5

0.0

0.5

Paired Unpaired
0.5

0.0

0.5

La
ye

r 4

Av
er

ag
e

At
te

nt
io

n
fro

m
 In

pu
t P

os
iti

on
s m

in
us

 E
xp

ec
te

d

Figure 3.9: Boxplots showing attentions to fixed positions across the test dataset, subdivided by
whether the output fixed position is a paired or unpaired fix (left or right column) and whether
the attentions are coming from paired or unpaired input positions (left or right boxplot). Only
sequences that our model get correct (100 F1) are considered. We see that both paired and
unpaired fixes, attention weights from paired positions across the input are higher than a uniform
expected baseline, especially in subsequent layers of the network.

29

3.4 Model Interpretation

In addition to better folding performances, the task of bpRNA fixing has an added benefit of hav-

ing additional avenues for model interpretation via introspection of attention weights at positions

where the thermodynamic inputs differ from the predicted outputs (fixed positions).

Focusing on fixed positions in the output, we show that attention weights are stronger coming

from paired regions of the input compared to a uniform baseline, as seen in Figure 3.9. Looking

at particular predicted sequence examples, such as in Figure 3.6, where the summed attention

weights emanating from each position as well as Figure 3.7 where strong individual attentions

going towards a fixed position are visualized, we see overall stronger attention weights coming

from input paired positions.

3.4.1 Summed Attention Weights

Attention weights in neural networks are typically normalized, allowing for a distributional in-

terpretation across the input sequence. Thus, attention weights from all positions towards a

particular position sums to one. A first approach towards attention weight interpretation sim-

ply reversing this summation, binning the attention weights emanating from each position. An

example of this can be seen in Figure 3.6 where we see the summed attention weights become

more organized around paired regions in subsequent layers of the network.

3.4.2 Individual Attention Weight Visualization

To start delving into the summed attention weights to find which individual attention weights are

more significant than others, a notion of statistical significance via a Z-Score4 can be devised

from the distribution of attentions from all other positions. Looking at the attentions to a fixed

position, we can show results such as in Figure 3.7, where only arcs that have Z-Score greater

than one are considered.
4Z-Score is computed by taking the mean µ and standard deviation σ from all the attention weights xi across all

positions i. The Z-Score of a particular attention weight is thus z = x−µ
σ

30

3.4.3 Differentiation of network layers

The summed attention weights and individual arc visualizations show evidence that the layers

in our self-attention model tend to specialize or differentiate in roles. These individual cases

are also substantiated as overall trends in Figure 3.10, where the distributional nature of the

attention weights are quantified and then plotted layer-by-layer as a heatmap, showing that in-

deed subsequent layers distributionally behave differently than previous ones. Neural Networks

have been shown to specialize by layer in many different problem domains[50, 49], and we also

demonstrate this property in our model as well.

3.4.4 Non-Uniformity: Information Content

Exploring individually strong attention weights leads to a discussion of non-uniformity in that

attention weights to a position with one or more significant individual weights should tend away

from a uniform distribution. We quantify this notion of non-uniformity by utilizing information

content. Summarized in Figure 3.10, the information Content heatmap measured at each layer

of our Transformer attention network shows differentiation across layers in fix cases, as well as

strong peaked attentions when fixing left brackets into unpaired, while not nearly as much as

fixing the corresponding right brackets into unpaired. This suggests that the decision-making

process involving removing base pairs is not symmetrical over the base pair itself.

We define information content as the following. For an n × n weight matrix W, for ∀i, j ∈
[0, n] the weight wij ∈W indicates the weight of the attention from indices j to i. The attention

weights to a given index are softmax normalized from the Transformer Network, thus
∑

j wij =

1.

information content is calculated in terms of a baseline (expected) entropy minus an entropy

calculated from an observed distribution. So the information content of a given index i is:

ICi = H̄i − Ĥi

If we invoke the commonly used uniform baseline, the expected entropy at that index becomes:

H̄i = −
n∑

j=0

(
1

n
· log2

1

n

)
= log2 n

31

. ()

.

(

)

Lin
ea

rfo
ld

0.74 0.78 0.73

0.81 0.76 0.85

0.76 0.87 0.72

LAYER: 1

. ()

.

(

)

0.13 0.13 0.12

0.14 0.13 0.14

0.13 0.14 0.12

LAYER: 2

. ()
Model Output

.

(

)

Lin
ea

rfo
ld

0.37 0.44 0.32

0.46 0.42 0.41

0.34 0.41 0.31

LAYER: 3

. ()
Model Output

.

(

)

0.37 0.41 0.32

0.44 0.41 0.39

0.35 0.38 0.32

LAYER: 4

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.1200

0.1225

0.1250

0.1275

0.1300

0.1325

0.1350

0.1375

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.32

0.34

0.36

0.38

0.40

0.42

Average Attention Weight
Information Content

Figure 3.10: Average incoming attention weight information content, for each modification from
Linearfold made by our model in the test data set.

32

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

G
(
.
.

A
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

C
(
(
(

G
(
(
(

U
.
.
.

A
.
.
.

G
(
(
(

C
(
(
(

A
.
(
(

A
.
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

U
.
.
.

A
.
.
.

A
.
)
)

U
.
)
)

G
.
)
)

C
.
)
)

G
(
.
.

U
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

A
(
(
(

C
.
.
.

U
.
.
.

A
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

U
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

A
)
)
)

U
)
.
.

C
(
.
.

C
(
.
.

C
(
.
.

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

G
)
.
.

G
)
.
.

G
)
.
.

G
)
.
.

C
)
.
.

G
(
(
(

C
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

C
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

C
)
)
)

G
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

U
)
)
)

C
)
.
.

G
.
.
.

0.0

0.2

0.4

0.6

0.8

1.0 LAYER: 1

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

G
(
.
.

A
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

C
(
(
(

G
(
(
(

U
.
.
.

A
.
.
.

G
(
(
(

C
(
(
(

A
.
(
(

A
.
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

U
.
.
.

A
.
.
.

A
.
)
)

U
.
)
)

G
.
)
)

C
.
)
)

G
(
.
.

U
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

A
(
(
(

C
.
.
.

U
.
.
.

A
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

U
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

A
)
)
)

U
)
.
.

C
(
.
.

C
(
.
.

C
(
.
.

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

G
)
.
.

G
)
.
.

G
)
.
.

G
)
.
.

C
)
.
.

G
(
(
(

C
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

C
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

C
)
)
)

G
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

U
)
)
)

C
)
.
.

G
.
.
.

0.0

0.1

0.2

0.3

0.4

0.5

0.6
LAYER: 4

Incoming Attention Weight Information Content

Figure 3.11: Incoming information content of an example fixed sequence
(bpRNA RFAM 1939), for the Attention Weights to each index. We see the incoming
information content at layer 4, is higher in paired and fixed regions.

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

G
(
.
.

A
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

C
(
(
(

G
(
(
(

U
.
.
.

A
.
.
.

G
(
(
(

C
(
(
(

A
.
(
(

A
.
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

U
.
.
.

A
.
.
.

A
.
)
)

U
.
)
)

G
.
)
)

C
.
)
)

G
(
.
.

U
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

A
(
(
(

C
.
.
.

U
.
.
.

A
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

U
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

A
)
)
)

U
)
.
.

C
(
.
.

C
(
.
.

C
(
.
.

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

G
)
.
.

G
)
.
.

G
)
.
.

G
)
.
.

C
)
.
.

G
(
(
(

C
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

C
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

C
)
)
)

G
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

U
)
)
)

C
)
.
.

G
.
.
.

0.0

0.2

0.4

0.6

0.8

1.0

1.2 LAYER: 1

s
l
p
l

e
i
r
a

q
n
e
b

u
e
d
e

e
a
i
l

n
r
c

c
f
t

e
o
e

l
d

d

G
(
.
.

A
(
(
(

C
(
(
(

A
(
(
(

U
(
(
(

C
(
(
(

G
(
(
(

U
.
.
.

A
.
.
.

G
(
(
(

C
(
(
(

A
.
(
(

A
.
(
(

A
.
.
.

G
.
.
.

U
.
.
.

G
.
.
.

G
.
.
.

U
.
.
.

C
.
.
.

U
.
.
.

A
.
.
.

A
.
)
)

U
.
)
)

G
.
)
)

C
.
)
)

G
(
.
.

U
(
(
(

C
(
(
(

U
(
(
(

G
(
(
(

A
(
(
(

C
.
.
.

U
.
.
.

A
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

A
.
.
.

U
)
)
)

C
)
)
)

A
)
)
)

G
)
)
)

A
)
)
)

U
)
.
.

C
(
.
.

C
(
.
.

C
(
.
.

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

G
)
.
.

G
)
.
.

G
)
.
.

G
)
.
.

C
)
.
.

G
(
(
(

C
(
(
(

A
(
(
(

G
(
(
(

G
(
(
(

U
.
.
.

U
.
.
.

C
.
.
.

G
.
.
.

A
.
.
.

A
.
.
.

C
.
.
.

C
)
)
)

C
)
)
)

U
)
)
)

G
)
)
)

C
)
)
)

C
)
)
)

G
)
)
)

A
)
)
)

U
)
)
)

G
)
)
)

U
)
)
)

C
)
.
.

G
.
.
.

0.00

0.05

0.10

0.15
LAYER: 4

Outgoing Attention Weight Information Content

Figure 3.12: Outgoing information content of the same sequence as Figure 3.11, for the Attention
Weights leaving from each index. This example features prominent larger outgoing information
content at a fix (removed hairpin).

33

And with the observed entropy:

Ĥi = −
n∑

j=0

wij · log2(wij)

We have:

ICi = log2 n+

n∑
j=0

wij · log2(wij)

This is the information content for all of the attention weights going to each index, next we also

calculate the information content of all of the attention weights coming from each index.

3.4.4.1 Outgoing Attention Weight information content

The Transformer Network softmax normalizes the attention weights going to each index, and so

in order to compute the outgoing information content, we can normalize the outgoing weights.

Zj =
n∑

i=0

wij

The normalizing constant Zj is the sum of the attention weights to the position j, which can be

found plotted in Figure 3.6. Our observed outgoing entropy becomes:

Ĥj = −
n∑

i=0

wij

Zj
· log2(

wij

Zj
)

And thus

ICj = log2 n+
n∑

i=0

wij

Zj
· log2(

wij

Zj
)

3.4.5 bpRNA Structure Labels

bpRNA offers programs in addition to their dataset that analyzes RNA sequences and dotbracket

data. This includes programs that annotate regions of structure types including hairpin, loops,

and multi-loops. To further extend our own information content-based analysis, we incorpo-

rate the use of these structure types, labeling both the Linearfold input and bpRNA-Fix output

predictions. Computing the incoming information content at each position across the test data

34

B E H I M X L R
Linearfold Input Structure (To Positions)

B

E

H

I

M

X

L

R

Pr
ed

ict
ed

 S
tru

ct
ur

e
(To

 P
os

iti
on

s)
0.292 0.332 0.368 0.315 0.337 0.389 0.391 0.384

0.351 0.332 0.539 0.396 0.408 0.567 0.433 0.401

0.460 0.585 0.321 0.442 0.341 0.470 0.486 0.496

0.333 0.367 0.358 0.300 0.391 0.341 0.385 0.374

0.338 0.319 0.355 0.345 0.268 0.344 0.400 0.402

0.335 0.377 0.376 0.346 0.404 0.339 0.405 0.425

0.330 0.419 0.377 0.332 0.380 0.364 0.330 0.374

0.371 0.443 0.359 0.336 0.397 0.414 0.377 0.338

Averaged Attention Information Content
Last Layer, Across All Indices of Test Sequences

0.30

0.35

0.40

0.45

0.50

0.55

Figure 3.13: Average incoming information content in our model’s last layer for each type of
bpRNA structure label fix, going from Linearfold’s input to bpRNA-Fix’s predicted output. Fixes
consisting of an end (E) to a hairpin (H) have high average information Content.

and binning them according to Linearfold input and bpRNA-Fix output structures, gives us the

heatmap at Figure 3.13. Here we see what types of fixes causes the attention weights of our

model to be the most non-uniform.

Filtering for examples featuring E→H fixes (from an end to a hairpin loop) we visualize the

structure of a Linearfold input in 5B and the corresponding model output in 5C. The attention

weights to the fixed position in the last layer 4 of our model were found to be enriched around

the model output structures. We do the same for a longer example showcasing an example of an

M→I fix (multiloop to internal loop), which also show the attention weights to the fix position

are enriched around the output structure regions in Figure 3.15.

35

bpRNA_CRW_45440.E2H.i:32.layer:4.fix-heatmap.structure.linearfold

G
U

C

A

G

G

A

U

A

G
C

U
C

AG

G

U

G

G U

A

G
A

G
C

A

A

A

G
G

A C
U

G

A

A

A

A

U

C

C

U

C

G

U

G
U

C

10

20

30

40

bpRNA_CRW_45440.E2H.i:32.layer:4.fix-heatmap.structure.bpRNA

G
U

C

A

G

G

A

U
A

G

C

U

C

A

G

G U

G

G

U

AG

A

G

C

A
A

A
G

G
A

C
U

G

A

A

AA

U
C

C
U

C
G

U

G

U
C

10

20

30

40

Figure 3.14: Left: Example test sequence as paired by Linearfold with the fix position (E to
H) highlighted in magenta, and with the attention weights to this fix position heatmapped in
red. Right: The resulting predicted output sequence from our model, with the same fix position
highlighted and the same attention weights to this position, showing that attention across the
Linearfold input dotbracket correspond to structures in the predicted output. Attentions between
the hairpins can also be seen, suggesting the modeling of pseudoknot structures.

3.5 Discussion

We have shown that the introduction of a well-formed base pairing annotation output from an-

other structure prediction program helps improve the performance of our own Transformer self-

attention based network, adding parity information which our model ”scaffolds“ off of. This

results in our bpRNA-Fix model making predictions that are better balanced than our baseline

Attentionfold model without this additional input, and better overall performance than Linear-

fold and RNAfold, which provided our annotated inputs.

The RNA fixing task allows us to focus our analysis and visualization efforts on fixed po-

sitions, where our model output differs from the input dotbracket. Analysis of our model’s

attention weights using information content shows differentiation of roles between subsequent

layers of the network, going from being more uniform to organizing around paired regions. We

further show that stronger attentions at fixed positions are paid towards paired output regions. In

this way, the model may not be ”thinking“ about the final output in a human sense, but still gives

final output consideration in how it distributes its attention weights. There is even some evidence

of pseudoknot structure modeling, which is beyond the scope of our secondary structure task,

but likely does so in order to better perform its own task.

More generally, the idea that a previous program’s output can improve the performance of

36

bpRNA_RFAM_9341.M2I.i:77.layer:4.fix-heatmap.structure.linearfoldAA
A

U

A

A

U

A
A

A A

C

A

U

C

U

A

G

G

G

U

AC
C

A

A

GCGGUU

U
AA

A

A

G
G

G
AA

CUCCGG
UG

A

A

A
G U

C C G G G G
C U

G

C
C

C
A G

C

A A C C G U

A

A

C

C

G

G

G
GACG

A
A

A

U

C

C

A

C

A

A

A
A

U

G

C

CA

CUGGGAAU

U
U

U U C C U G G
G A

A

G

G

C

G

U
G G A G

A
G

U

A

G

G

U

U

G

A
U

C

C

G

G
G A G

C
C

G

G

G

A

G

A
C

CU

G

C

C

U

U

A

G

A

U

G

U A
U

G

G

A

C

U
C

CA

10

20

30

40
50

60

70

80

90

100

110

120

130

140

150

160

170

180

bpRNA_RFAM_9341.M2I.i:77.layer:4.fix-heatmap.structure.bpRNA

AA
A

U

A

A

U

A

A

A

A

C

A
U

C U

A

G

G

G

U
A

C
C

AA

G

C G
G

U

U

U
A

A

A

A
G

G

G
A A C

U C
C

G
G

U
G A

A

A

GU
C

C
G

G
G

G

C

U
G

C C

C
A

G
C

A

A
C

C

G
U

A

A

C

C

G

G G G
A

C

G

A

A

A
U

C
C

A
C A

A

A

A
UG

C

C

A

C

U

G

G

G

A

A

U
U

U

U

U

C

C

U

G

G

G

A

A G

G

C

G
U

G
G

A
G

A
GUA

G

G

U

U

G

A

U
C

C

G

GG

A

G

C
C

G

GG
A

G

A

C
C

U
G

C

C

U

U

A G
A

U

G

U

A

U

G

G

A

C

U
C

CA

10

20

30
40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

Figure 3.15: M→I fixes in Figure 3.13 are an enriched category for information content, here we
show a more complex example also indicating that attention weights are distributed across stem
structures in our predicted output.

37

deep learning based models can be readily applicable to other problem domains, especially those

that utilize Transformer models on paired structure prediction tasks.

38

Chapter 4: Deep Learning for Dynamic Programming in RNA Structure

Prediction

4.1 Introduction: Deep Nussinov

The secondary structure prediction of Ribonucleic acid (RNA) has been a long standing task in

Bioinformatics, with several off-the-shelf programs such as CONTRAfold[12] or Linearfold[31]

being available, which utilize thermodynamics-based model weights or energy parameters along

with dynamic programming. Recently, models utilizing deep learning methods such as the self-

attention Transformer model[70] have achieved great accuracy performances across Bioinfor-

matics domains, from protein sequence structures[32] to DNA sequence classification[22] as

examples.

Deep learning has also successfully been applied to RNA structure prediction[19, 67], getting

current state-of-the-art results. However, one quirk often associated with deep learning based ap-

proaches is that their models may not necessarily output correctly balanced and matching base

pairs or otherwise might not produce biologically plausible outputs (such as having base pair

brackets being too close together). This is usually addressed with some form of post-processing

after the model makes it’s primary prediction1. This issue is not featured in previous dynamic

programming approaches to RNA structure prediction, whose decision spaces avoid invalid out-

puts entirely. We combine the modeling benefits of the current deep learning models such as the

Transformer, with an updated version of a classic dynamic programming algorithm for base pair

matching in the Nussinov algorithm[46].
1For example by correcting the errors in the final output by running a simple parsing program that pushes to stack

whenever a left bracket is read, pops the stack whenever a right bracket is read, and then disregards any right bracket
that pops from an empty stack and any left bracket remaining on the stack at the end.

39

4.2 Methods

4.2.1 LSTM+Transformer Sequence Encoding

Utilizing the LSTM+Transformer baseline ”Attentionfold“ architecture from bpRNA-Fix, an

RNA sequence input starting as a one-hot encoding is converted into a rich embedded represen-

tation using two bi-LSTM layers followed by four Transformer encoder layers. If the sequence

length is n and our model embedding dimension size is d, then the output representation be-

comes a tensor of size n× d. To measure how well two nucleotides in the sequence would pair

together, we further introduce a simple feed-forward network that takes a 2d input and outputs

two values representing paired and unpaired energy scores.2 Thus, during decoding, whenever

we want to query the pairing potential of two positions i and j, we would concatenate their

d-sized embeddings together and run it through this feed-forward network.

For expediency at the cost of space, we can compute all pairings in parallel by stacking

the n× d embedding row-wise and column-wise before concatenating them into an n× n× 2d

tensor representing all pairs of concatenations, before feeding this through the final feed-forward

to get all n× n× 2 possible pairing scores. In practice, our model processes mini-batches of 16

sequences of up to length 200 nucleotides still fitting without issue on a 10GB GPU core, which

helps speeds up our training and decoding.

4.2.2 The Nussinov Algorithm

The Nussinov dynamic programming algorithm[46] was presented in the late 1960’s originally as

a means to maximize base pair matches. Instead of counting base pair matches, we can instead

use the Nussinov algorithm to provide the set of base pair matches that maximize an energy

score, provided an energy function that returns a score when queried for any two nucleotides.

This is what we provide in our LSTM+Transformer pair scoring model, with energies being

interpreted from neural network score values. This modified version of Nussinov’s algorithm is
2This could be simplified to a single score, if we were to let the “unpaired” score be zero. Currently, the unpaired

score can have low or even negative values from our model.

40

thus shown here as Algorithm 1 below.34

Algorithm 1 DEEP NUSSINOV

Require: Model m: matrix of size n× n× 2 with paired/unpaired energy energy scores
Ensure: Score of highest scoring bracket structure according to model m

1: for i, j ← 0 to n do
2: S[i, j]← 0
3: end for
4: for span← 1 to n do
5: for i← 0 to (n− span) do
6: j ← i+ span

7:

S[i, j]← max

(
S[i, j − 1] +m[i, j, 0],

max
k∈[i..(j−2)]

(S[i, k − 1] + S[k + 1, j − 1] +m[k, j, 1])

)
8: end for
9: end for

10: return S[n− 1, n− 1]

4.2.3 Structured Perceptron Loss

During training, the model structure output is compared with the label and a site-wise Structured-

Perceptron loss is accumulated across a mini-batch of sequences. That is, for the different pos-

sible outputs yi at each position i in the sequence, and with s being a scoring function (the value

output by the network for each output), we encourage the model to score the correct label output

y∗i higher than any other output yi.

∀yi, s(y∗i)− s(yi) ≥ 0

3To note, this only includes the forward decoding portion of the dynamic programming algorithm, in order to
retrieve the output base pairs, we would need to maintain back pointers for every decision made by the algorithm and
then backtrace.

4The algorithm’s indices shown in Algorithm 1 are in base-0 indices, with inclusive-exclusive index start and stop
positions respectively. This corresponds directly to the index semantics of many programming languages such as in
Python.

41

During training and decoding the predicted output is selected by:

ŷi = argmax
yi

s∆(yi)

4.2.3.1 Structured SVM Loss and Loss-Augmented Decoding

To note, if we additionally enforced that the score of the correct label be higher than all other

outputs by a margin ∆(yi, y
∗
i), then we would have a Structured SVM loss, and our training

would thus be:

∀yi, s(y∗i)− s(yi) ≥ ∆(yi, y
∗
i)

During training time, we would predict outputs using the extra ∆ margin:

ŷi = argmax
yi

s∆(yi) + ∆(yi, y
∗
i)

The margin function ∆ is designed to quantify the severity of incorrect predictions, with the

end result being that the network would be encouraged to score correct predictions higher than

incorrect predictions by at least this margin. The margin ∆ is currently 0 for this work, but could

be incorporated in the future. A simple loss-augmented decoding scheme could be utilized,

increasing the margin of all incorrect predictions by one.5

4.2.4 Dataset and Training Time

The dataset from bpRNA-Fix provides an example train-validation-test dataset split for RNA

secondary structure prediction. Because of our cubic time complexity in decoding runtime, we

filter this dataset down to sequences of lengths up to 50, resulting in a split of (2897, 103, 90)

train, validation, and test sequences respectively. The short sequences reduced our training time,

allowing us to train 10 epochs with 20 evaluations to the validation per epoch (processing 28,970

training, 20,600 validation examples) in less than 21 hours. For initialization during training, we

load a set of pretrained LSTM+Transformer model weights from a trained Attentionfold model,
5At the potential cost of computational expedience, much more complicated structured margin functions could be

introduced instead for the goal of even better prediction accuracies. One idea would be to calculate how many label
brackets would be violated or disturbed from an incorrect dotbracket prediction at each position. For example, mis-
predicting a paired position as unpaired could shift an entire stem in the labeled dotbracket structure, or mispredicting
a left-paired position as right-paired would affect at least two other different positions elsewhere in the sequence.

42

Model Precision Recall F1 Seq Avg F1
RNAfold 54.26 66.31 59.69 53.85
Linearfold 69.31 59.37 63.95 51.09
Attentionfold (+Pos Enc) 36.63 20.69 26.45 19.79
Attentionfold (+LSTM) 40.84 45.47 43.03 43.47
bpRNA-Fix (+Linearfold) 52.16 49.24 50.66 47.81
bpRNA-Fix (+RNAfold) 65.13 62.08 63.57 58.44
Deep Nussinov 69.52 63.75 66.51 58.97

Table 4.1: Evaluation results for our models, on the bpRNA-Fix test set, filtered down for se-
quences of length ≤ 50. Precision, recall, and F1 measure the overall score across all base pair
predictions in the test dataset. The sequence average F1 Score is the average F1 across each se-
quence. The Attentionfold and bpRNA-Fix models were originally trained on the full length 200
bpRNA-Fix dataset. Deep Nussinov was trained on the same dataset filtered down to sequences
up to length 50, not making this an exact comparison.

which was originally trained on full bpRNA-Fix dataset.

4.3 Results

Table 4.1 shows our results on the test data, showing an overall improvement over off-the-shelf

structure prediction programs and the bpRNA-Fix models. While Deep Nussinov is trained on a

filtered version of the training set (filtering out sequences of length greater than 50), the bpRNA-

Fix models were originally trained on the full unfiltered length-200 version of the training set,

not making this an exact comparison. Figure 4.1 additionally shows corresponding error bars.

Our Deep Nussinov model features the same encoder as the Attentionfold(+LSTM) model, but

using dynamic programming producing structured outputs greatly helps our accuracy.6

4.4 Discussion

4.4.1 Cubic Time Complexity and Possible Linearization

The Nussinov algorithm runs in O(n3) time, utilizing O(n2) space in a scoring matrix. Because

of this cubic time complexity, we have to limit ourselves to sequences up to length 50 in our
6Further performance improvements could be possible by incorporating RNAfold or Linearfold inputs such as in

bpRNA-Fix.

43

Attn
fol

d

(+
Po

s-E
nc)

Attn
fol

d

(+
LST

M)
RNAfol

d

Lin
ea

rfo
ld

Dee
pN

uss
ino

v

0.2

0.3

0.4

0.5

0.6

Ba
se

-P
ai

r F
1

(w
ith

 S
td

. E
rr)

Figure 4.1: Standard Error plot of Deep Nussinov’s performance on sequences up to length 50
in the bpRNA-Fix test set.

dataset. However, there exists literature with regards to inexact search within dynamic program-

ming, mainly by changing the order of iteration of this algorithm to be bottom-up left-to-right,

which then allows the use of beam search. This would end up being similar to a deep learning

version Linearfold[31]. With b being the beam size constant, the linearized version would be an

algorithm that runs in O(n · b2), which could be further sped up to O(n · b log(b)), following

Hong and Huang’s[26] cube-pruning method.

4.4.2 Conclusions

We have shown that a deep learning architecture used for encoding a sequence into embeddings,

followed by a dynamic programming decoding process allows us to constrain a model to only

possibly produce valid dotbracket structures. This obviates the need to post-process the output

or otherwise constrain the model to ensure balanced base pairings, and allows the model to focus

it’s training and learning efforts into improving its energy pairing model, without worrying about

output base pair parities. Furthermore, the dynamic programming algorithm can be tuned to

prevent pairings of certain close distances, as close base pair distances of one or two are very

rare in real life biological contexts.

We show strong initial results by training our model on a filtered down version of bpRNA-

Fix’s dataset, and we compare to bpRNA-Fix models showing an improvement. However, as

those models were trained on the full training set, this makes our comparison not quite exact.

44

Further evaluation work is needed, training comparative bpRNA-Fix models also on the length

50 dataset.

This work additionally features avenues for continued improvements, whether it is lineariz-

ing the algorithmic runtime to practically handle scaling up to longer sequences, larger neural

network sizes, or loss-augmented decoding for improved training. There is also a question of

visualizing the deep Nussinov model similar to work done in bpRNA-Fix, of what the model

learns about RNA structure and base pairing. Dynamic programming decoding approaches such

as deep Nussinov represent a principled approach to incorporating structure to deep learning.

45

Chapter 5: Deep Learning for Improving Protein Tertiary Structure

Prediction

5.1 Introduction

Protein structure prediction is a longstanding and challenging problem in computational biol-

ogy, involving the prediction of three-dimensional macromolecule structures from folding linear

chains of amino acid sequences[6]. Like RNA, the structure of the sequence determines its over-

all function, and determining this structure can be challenging as heavily mutated sequences

can still fold into the same structures. This task among many others in bioinformatics has gained

renewed interest with increasing computational power and the usage of deep learning techniques.

In this and other biological sequential domains, a common utilized method is the leverag-

ing of similar protein sequences whenever available, and aligning them together as a Multiple

Sequence Alignment (MSA), which is used as the input to the program. This helps in part be-

cause homologous sequences will have similar characteristics and behavior, and mutations will

occur largely in either unimportant regions or otherwise in structure preserving ways. An MSA

would thus help a program identify important regions of the reference input sequence as well as

co-occurring mutations. To maximize this information, protein structure prediction approaches

incorporate the use of large MSAs[53, 32] (e.g. of sizes greater than 1,000) formed as a result

of a database search and alignment, utilizing programs such as hhblits[54]. The quality and size

of this MSA input has great effect on their downstream performance[20, 33], but it is precisely

protein families with numerous database entries (for example in pdb[63]) that already have much

research attention; a given protein sequence that has many homologous database entries is thus

more likely to have known 3D structures. A novel or under-researched protein sequence with

few existing database entries would not work as well with the current protein structure prediction

paradigm. In this context, improving the alignment quality of a given shallow MSA would be

important to help maximize performance in a predictive model.

We predict low resource protein structures by utilizing a joint folding and alignment algo-

rithmic approach based on Turbofold II[65] and LinearTurboFold[39], which were originally

inspired from Sankoff’s algorithm[55]. This iterative approach computes match scores from the

46

structures produced by the model to realign the input MSA as well as to compute an external

information; this external information and realigned MSA is fed back into the model to produce

refined output structures.

In order to produce multiple structures for alignment, an initial approach would be to re-run

the model in its entirety to predict each input MSA sequence. However as this is computationally

expensive, we additionally present a model that can output multiple structure predictions in

parallel corresponding to the input sequences in the MSA. This makes computationally feasible

our entire approach of jointly folding and aligning a shallow MSA (≤ 10 sequences) refined over

several iterations.

5.2 Methods

5.2.1 Distance Map Prediction

Protein Folding is commonly formulated as a contact map prediction task[10] as a coarse inter-

mediary prediction to be refined by a downstream program into a final 3D structure. For a protein

sequence of length L, a predicted contact map is an L×L matrix holding binary contact or non-

contact predictions. Each cell at position (i, j) represents whether the amino acids at i and j are

in contact. Recently, this has been task has been generalized to the prediction of binned distance

values[73, 74], in which each cell of the contact map now predicts between a set of distance

values; this granularity has been found to improve downstream 3D modeling. Yang Jianyi et al.

defines these starting from a minimum bin of 2.0 Angstrom, and each subsequent bin represent-

ing 0.5 Angstrom increments until a final bin of “no contact” representing distances beyond 20

Angstroms, resulting in 37 possible predicted values being stored in the distance map. They also

go further and additionally use their model to predict inter-residue angles as well, which also take

the form of an n×n matrix for every pair of positions in the sequence. These predicted distance

maps and angle maps are then later used as constraints in physics optimization packages such as

trRosetta[13], to produce 3D structures. To constrain the scope of this paper we will focus on

improving the predictions of distance maps instead of handling the full 3D structures, with the

understanding that improved distance map accuracies correlates with improved final structures.

We will also use the phrase distance map and contact map interchangeably, as any given distance

map can always be binarized back into a contact map.

47

Figure 5.1: High level overview of the TurboProFold process. An input of k homologous or
similar sequences are provided to our Align and Folding modules. 1) The alignment module
consists of a match score computation and Probcons, in the initial iteration without contact maps
predictions, the input sequences are either aligned with Probcons or in our case given as aligned.
In subsequent iterations, a set of contact maps would be made available and these are analyzed
using a match score computation before being input to Probcons. 2) The folding module consists
of a contact map prediction model that takes an MSA as input and outputs a set of k contact
maps. We utilize a publicly available deep learning model based on Yang et al. 2020[74] for
this purpose. 3) Our alignment module uses the match scores to re-align the input sequences and
compute an extrinsic information, both of which get sent to the folding module to help improve
its contact map output predictions. 4) The folding module produces a set of contact maps, which
can be sent back to the alignment module for another iteration of TurboProFold, or the contact
map of the reference sequence can be submitted to Rosetta (5) to finalize 3D structures.

5.2.2 Protein Distance Map Prediction Model

We utilize the TAPE Proteins Library[52], which provides a PyTorch implementation of Yang

Jianyi’s protein folding model[74] as well as their training and test dataset. This model receives

an MSA as input but was originally designed to assume that the first sequence of the MSA was

the input query sequence, called the reference sequence. The model extracts one-dimensional

sequence features from the reference sequence, which are then concatenated row and column-

wise to the extracted two-dimensional MSA features taken from the inverse of the covariance

matrix computed from the co-occurrence statistics of the MSA. These features are fed through

60 layers of ResNet[64] residual CNN layers, before a final set of convolutions for distance and

angle predictions.

We begin with this baseline model and modify what kind of inputs it reads as well as what

48

Figure 5.2: Figure of Yang Jianyi’s baseline model[74] taken from their paper. Starting with
an input MSA, one-dimensnional and two-dimensional features are extracted and concatenated
together into a 2D matrix. This is then fed into several residual-CNN layers before predicting
distance and inter-angle maps, to be fed as constraints in trRosetta[13] for final 3D structure
predictions.

kind of outputs it produces. We first allow the reading of gaps in the reference sequence of the

MSA, which may get added as the MSA becomes realigned. We also output a contact map pre-

diction for every sequence in the MSA, allowing us to expediently produce structure alignments

49

0 50 100 150 200 250 300 350 400

PREDICTED
0

50

100

150

200

250

300

350

400

LA
B
EL

2

4

6

8

10

12

14

16

18

20

Figure 5.3: Distance map visualization produced by our baseline model, on a validation sequence
example. The predicted distance bins are converted back into Angstroms and compared with
the labeled structure, and distances ≥ 20 Angstroms are binned together. Contacts closer to the
diagonal of this plot are more local in scope, and contacts towards the bottom left and upper right
corners are more global in scope. Alpha helices (contacts close and parallel to the diagonal) and
beta sheets (contacts close and perpendicular to the diagonal) can be seen visualized. The Yang
Jianyi model is primarily built upon stacked Resnet CNN layers, which does well at modeling
local structures, but struggles with identifying global contacts, which remains sparse compared
to the label.

50

among the outputs, by taking the second-to-last rich embedded output of the model 1 and keep

the corresponding rows and columns for each sequence’s non-gap character positions. This can

be done just with bookkeeping and in-place indexing using PyTorch, without requiring any ad-

ditional space. For each sequence of the MSA, this produces corresponding two-dimensional

embeddings and subsequent distance and angle map predictions.2

5.2.3 Match Score and Extrinsic Information

The output distance maps are aligned, first by using a series of computed sequence-pair match

scores, which measures structural similarity for position pairs between a pair of sequences. The

sequence-pair match scores are then input into Probcons[11], producing pairwise alignments

of sequences within the MSA as well as an overall realignment of the MSA itself. The pair-

wise alignments are then used to compute an extrinsic information, modeling the proclivity for

base pairing induced from the other sequences in the MSA. Both the match score and extrinsic

information are detailed in LinearTurboFold[39].

This extrinsic information is incorporated into the model by concatenating it with the second-

to-last layer. As extrinsic information is a set of scalar values, the concatenation step increases

the dimensionality of the model’s embedding by one, before a feed-forward network is applied

turning this embedding back to model dimension size. The TurboProFold joint folding and

aligning process thus utilizes both this extrinsic information and the realigned input MSA as

refined inputs in the next iteration.

5.2.4 Dataset and Training

We utilize the same TAPE training and validation dataset that the baseline model was trained on.

Starting with a trained instance of the original model, we process the MSAs in the training set,

producing the first up to 100 distance maps and corresponding first-round extrinsic information.

We then apply one epoch of training with this training set and extrinsic information, producing
1From Figure 5.2 this is the output right after the final ELU, before the last 2D Convolution layers output the

different distance and angle map predictions.
2Informally comparing this method to running the entire model for each sequence of the MSA, done by swapping

each sequence of the MSA with the first reference sequence before rerunning, we find a substantial speed up. In order
to produce 100 contact maps for each of the 15,000 MSAs from the TAPE dataset, what would take a projected two
months becomes about 4 hours to finish using a compute cluster.

51

Very Short [1, 6) Short [6, 12) Medium [12, 24) Long [24,) All [1,)
Top-L Overall Top-L Overall Top-L Overall Top-L Overall Top-L Overall

TurboProFold
Iteration 0 96.26 56.66 07.71 05.73 06.40 04.70 05.42 03.33 96.21 12.63
Iteration 1 96.32 56.62 07.98 05.80 06.87 04.92 06.10 03.50 96.30 12.51
Iteration 2 96.46 56.70 07.84 05.78 06.52 04.76 05.48 03.39 96.42 12.55
Iteration 3 96.46 56.66 07.85 05.79 06.52 04.77 05.46 03.39 96.43 12.58

...
Iteration 9 96.56 56.79 07.71 05.78 06.54 04.82 05.49 03.42 96.53 12.72

AlphaFold2* - 56.87 - 06.52 - 06.56 - 04.24 - 13.89

Table 5.1: Evaluation experiment done with the CAMEO-L dataset, with input MSA size ≤
10. The precision of the Top-L most confident predictions are listed, along with the overall
precision for each distance category. The MSA realignment and extrinsic information generated
from the TurboProFold model improves contacts at each distance, most benefiting very short
contacts. Short, medium, and long range contacts converge by one round of the joint folding and
aligning process, while very short contacts continue to improve from iteration to iteration. We
also show results from running AlphaFold2, modified to prevent it from searching for additional
homologous sequences to augment its input. AlphaFold2 outputs a 3D structure, that we convert
to a contact map for our evaluation. Since we only have the contact predictions, we do not have
a notion of its top-L most confident predictions, and so we only show its overall precision.

our fine-tuned model. Our subsequent test data for our experiments comes from a prepared

CAMEO dataset with downsampled MSAs, called CAMEO-L prepared by Wang et al 2022[72].

Table 5.1 shows our subsequent results.

5.3 Results

We use our TurboProFold method to predict the structures of the CAMEO-L dataset. We use

our joint fold-and-align pipeline to produce several iterations of these structures, and then do a

comparison across iterations. In order to evaluate the reference sequence contact map for each

test example, we divide up different distance categories (short, medium, long, etc) representing

the distance along the input sequence. For example, for the contact between two positions i and

j in the sequence, |i − j| would measure the distance between them. If this distance is 10, then

this would be a “short” contact, or if this distance is 30, then this would be a “long” contact.

Given L the length of a sequence, the Top-L precision represents the precision of the L most

confident contact predictions made by the model. We showcase this evaluation along with the

overall precision across every contact within a distance category.

52

When our model is run for the first time (using the given input MSA and an extrinsic infor-

mation set to zero values), this is called iteration 0. We show in Table 5.1 that iteration 1 yields

the most benefit for short, medium, and long contacts, and that subsequent iterations improve

very short contacts (i.e. contact distances less than 6). This suggests that our CNN-based model

ultimately improves the most on local secondary structures from iteration to iteration (alpha

helices and beta sheets).

For reference, our results are compared with AlphaFold2[32]. After inputting the shallow

MSA, we additionally disable its calls to hhblits[54], disallowing it from searching its accompa-

nying protein sequence databases for additional homologous sequences to augment to the MSA.

We limit AF2 in this way to try and simulate how it would perform in a shallow MSA context.

Since AlphaFold2 directly outputs a 3D structure, we then convert this back into a contact map

in order to compare with our outputs.3 Shown at the bottom of Table 5.1, AlphaFold2 yields a

very strong baseline that we do not surpass.

5.3.1 Alignment Evaluation

We additionally evaluate the improvement in our alignments after running one round of Turbo-

ProFold on the OXBench[51] dataset, which can be seen in Table 5.2. Taking a pair of sequences

to align, we first run our folding model to produce contact maps, for which we produce match

score information for. We then use ProbCons[11] from our alignment module as our aligner for

these sequences, and we compare using it as a baseline aligner versus additionally providing our

computed match scores. We find TurboProFold generally does improve our alignments, but we

show the most improvement when the sequences being aligned have low identity. For sequences

that look dissimilar with high sequence distance (having many structure preserving mutations),

the inclusion of match scores most improves ProbCons’s ability to align.

5.4 Discussion

We present a joint folding and aligning algorithm for protein distance map tertiary structure pre-

diction, where multiple predictions from an existing prediction model can be used to realign the

MSA and calculate an extrinsic information useful for iteratively improving performance. In
3AlphaFold2 has an additional advantage when converting its 3D structures into contact maps, since these contact

maps will naturally not violate any real-world constraints on distances.

53

Sequence
Identity

ProbCons
ppv

ProbCons
sen

+match score
ppv

+match score
sen

improvement
ppv

improvement
sen

>0.50 92.4 92.2 92.6 92.4 0.2 0.2
0.40 - 0.50 83.9 83.6 84.9 84.6 1.1 1.0
0.30 - 0.40 78.4 78.2 79.8 79.5 1.4 1.3

<0.30 43.0 43.1 46.8 46.4 3.8 3.3

Table 5.2: Our alignment result improvements after using one round of TurboProFold, on the
OXBench[51] dataset. Using ProbCons[11] by itself to perform alignments versus additionally
adding our computed match scores shows improvements across the different sequence identity
categories. When the sequence identity is very low (less than 30%) is when our match score
most improves ProbCons’s ability to align.

practice, predicting each contact map from an MSA can be computationally expensive, so we

also show a decoding method to cheaply produce several or even all contact maps from an MSA

using only the second-to-last embedded layer of the model. To showcase our idea we adapt an al-

ready existing protein folding model, demonstrating that the folding and alignment strategy can

be used to improve performance especially in a shallow MSA context, maximizing the available

information from homologous sequences. We show that our model benefits from this approach,

especially in very short local contacts, as well as medium and longer distance contacts as well.

Focusing on evaluating how well our alignments improve after one iteration of TurboProFold,

we find that by first folding then aligning, our alignments generally improve, and we show the

most improvement for aligning sequences with low sequence identity. Finally, the joint folding

and aligning approach is a general idea and can be applied to use other models. For example, Al-

phaFold2 could be used instead of our Resnet-based model, allowing the TurboProFold method

to improve AlphaFold2’s structure prediction results.

54

Chapter 6: Summary

We have presented deep learning approaches along with related methods for parsing languages

and folding RNA and Protein structures. A variety of deep learning architectures were ultimately

used from LSTMs modeling sequential information, to Transformers to directly encode inter-

sequence relationships1, to CNNs to model structures local in scope. But beyond this, we further

show how deep learning-related limitations interact with domain-specific challenges, and the

different methods we use to address these.

We have shown that direct unstructured decoding methods can be simple and computation-

ally expedient, but can suffer from incorrect or implausible predictions. This can be addressed

by some post processing, by enriching the input with more structured information (bpRNA-Fix),

or by using the prediction as an intermediary in a pipeline for a downstream final prediction

(protein contact map prediction). Furthermore, we have also shown that dynamic programming

algorithms can provide us the ability to directly output structured predictions ultimately giving

us better accuracies (span-parsing2 with CKY or shift-reduce, and deep nussinov). Instead of an

ad-hoc post processing, this represents a principled way to constrain a model to only generate

valid outputs. Furthermore, if certain trade-offs with search quality are willing to be made (slow

and exact vs fast and inexact), then our span parsing work with cube-pruned beam search demon-

strates how we can make dynamic programming methods achieve fast runtime complexity.

While seemingly underutilized even when available, dynamic programming approaches for

a given structure prediction problem may not exist or be formulated as of yet, leaving space

for new research. In the case of TurboProFold’s contact map predictions for protein structure,

the output contact maps are still unconstrained, making it possible for the predicted distances

to suggest implausible 3D structures. Work for structured outputs for this problem might be

developed in the future, but in general researchers should try to consider a structured decoding if

possible. TurboProFold also represents a method to maximize the benefit of given information

from a dataset. Here, a protein folding model benefitted because we took the structure alignment
1The Transformer self-attention mechanism relates all pairs of sequence tokens in one layer of encoding. This

serves as a deep learning analog to a bilexical grammar[17].
2Span parsing is simple yet effective, such that more expressive and complex linguistic formalisms can be handled

beyond just syntactic constituency parsing, such as Combinatory Categorical Grammars[16, 34].

55

on its outputs, producing both an extrinsic information utilized as additional input back into the

model and a realigned input MSA. Although benefits can be measured after one iteration, this

process can be iterated arbitrarily many times until the outputs converge.

We also presented methods to visualize and interpret models once they achieve competitive

accuracy. For bpRNA-Fix, we showed that the parity (the “evenness”) of the dotbrackets output

by our model improved when an already paired input was added. The underlying Transformer

self-attention network evidently struggled less to output a matching set of base pairs when a

suggested pairing was provided. We could focus on fixes as the particular parts of a dotbracket

output by our model that differed from this input, and showed that in certain types of fix cases,

the model attends strongly to the eventual output structure. These are shown in addition to other

notable behaviors such as having differentiated behavior from layer to layer, being generally

more uniform in the initial layers and peakier around structures in the latter layers.

Finally, bpRNA-Fix represents a general idea that could be applied to problem domains not

just within biological or linguistic contexts, but whenever a cheap or easy-to-compute source of

annotation can be available.3 Utilizing a previous model as an input annotation source can be

seen essentially as a form of fine-tuning, but instead of just leveraging large established deep

learning models, enriched inputs can come from a wider variety of sources. Having indirect

access to a simple or fast prediction model can improve performance and additionally can allow

the training of smaller models upon less available data.

Both natural language processing and bioinformatics have had recent exciting developments

and progress with the advancement of deep learning, and this thesis is in part a document of this

era. Until future AI methods can output their own structured predictions and interpret their own

results, we predict that algorithms and computer scientists will still yet be needed.

3For example, a deep learning-based chess-playing AI system could still benefit from taking the move recommen-
dations from a simple chess program coded using a minimax algorithm run out to a shallow depth, incorporating its
rough set of recommendations. Or for another example, a deep learning-based weather prediction model could still
benefit from the output of traditional forecasting models which have already been produced by weather stations.

56

Bibliography

[1] Ngo Xuan Bach, Nguyen Le Minh, and Akira Shimazu. A reranking model for discourse
segmentation using subtree features. In Proceedings of the 13th Annual Meeting of the
Special Interest Group on Discourse and Dialogue, pages 160–168. Association for Com-
putational Linguistics, 2012.

[2] Anders Björkelund, Agnieszka Faleńska, Wolfgang Seeker, and Jonas Kuhn. How to train
dependency parsers with inexact search for joint sentence boundary detection and parsing
of entire documents. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1924–1934, 2016.

[3] Marc Brysbaert, Michaël Stevens, Paweł Mandera, and Emmanuel Keuleers. How many
words do we know? practical estimates of vocabulary size dependent on word definition,
the degree of language input and the participant’s age. Frontiers in Psychology, 7, 2016.

[4] David Chiang. Hierarchical phrase-based translation. Computational Linguistics,
33(2):201–208, 2007.

[5] Do Kook Choe and Eugene Charniak. Parsing as language modeling. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages 2331–2336,
2016.

[6] Thomas E Creighton. Protein folding. Biochemical journal, 270(1):1, 1990.

[7] James Cross and Liang Huang. Span-based constituency parsing with a structure-label
system and provably optimal dynamic oracles. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 1–11, Austin, Texas, November
2016. Association for Computational Linguistics.

[8] Padideh Danaee, Mason Rouches, Michelle Wiley, Dezhong Deng, Liang Huang, and
David Hendrix. bprna: large-scale automated annotation and analysis of rna secondary
structure. Nucleic acids research, 46(11):5381–5394, 2018.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[10] Pietro Di Lena, Ken Nagata, and Pierre Baldi. Deep architectures for protein contact map
prediction. Bioinformatics, 28(19):2449–2457, 2012.

57

[11] Chuong B Do, Mahathi SP Mahabhashyam, Michael Brudno, and Serafim Batzoglou.
Probcons: Probabilistic consistency-based multiple sequence alignment. Genome research,
15(2):330–340, 2005.

[12] Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinformatics, 22(14):e90–e98, 07
2006.

[13] Zongyang Du, Hong Su, Wenkai Wang, Lisha Ye, Hong Wei, Zhenling Peng, Ivan An-
ishchenko, David Baker, and Jianyi Yang. The trrosetta server for fast and accurate protein
structure prediction. Nature protocols, 16(12):5634–5651, 2021.

[14] Greg Durrett and Dan Klein. Neural CRF parsing. arXiv preprint arXiv:1507.03641, 2015.

[15] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural
network grammars. arXiv preprint arXiv:1602.07776, 2016.

[16] Jason Eisner. Efficient normal-form parsing for combinatory categorial grammar. arXiv
preprint cmp-lg/9605038, 1996.

[17] Jason Eisner. Bilexical grammars and their cubic-time parsing algorithms. In Advances in
probabilistic and other parsing technologies, pages 29–61. Springer, 2000.

[18] Daniel Fried, Mitchell Stern, and Dan Klein. Improving neural parsing by disentangling
model combination and reranking effects. In Proceedings of the Association for Computa-
tional Linguistics, 2017.

[19] Laiyi Fu, Yingxin Cao, Jie Wu, Qinke Peng, Qing Nie, and Xiaohui Xie. UFold: fast and
accurate RNA secondary structure prediction with deep learning. Nucleic Acids Research,
50(3):e14–e14, 11 2021.

[20] Hiroyuki Fukuda and Kentaro Tomii. Deepeca: an end-to-end learning framework for pro-
tein contact prediction from a multiple sequence alignment. BMC bioinformatics, 21(1):1–
15, 2020.

[21] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans-
actions of the Association for Computational Linguistics, 8:156–171, 2020.

[22] Shujun He, Baizhen Gao, Rushant Sabnis, and Qing Sun. Nucleic transformer: Deep
learning on nucleic acids with self-attention and convolutions. bioRxiv, 2021.

[23] Hugo Hernault, Helmut Prendinger, David A DuVerle, Mitsuru Ishizuka, and Tim Paek.
Hilda: a discourse parser using support vector machine classification. Dialogue and Dis-
course, 1(3):1–33, 2010.

58

[24] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. arXiv preprint arXiv:1207.0580, 2012.

[25] Ivo L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,
31(13):3429–3431, 07 2003.

[26] Juneki Hong and Liang Huang. Linear-time constituency parsing with rnns and dynamic
programming. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages 477–483, 2018.

[27] Kexin Huang, Cao Xiao, Lucas M Glass, and Jimeng Sun. MolTrans: Molecular Interac-
tion Transformer for drug–target interaction prediction. Bioinformatics, 37(6):830–836, 10
2020.

[28] Liang Huang and David Chiang. Forest rescoring: Fast decoding with integrated language
models. In Proceedings of ACL 2007, Prague, Czech Rep., 2007.

[29] Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact search.
In Proceedings of NAACL, 2012.

[30] Liang Huang and Kenji Sagae. Dynamic programming for linear-time incremental parsing.
In Proceedings of ACL 2010, Uppsala, Sweden, 2010.

[31] Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A Hendrix, and
David H Mathews. Linearfold: linear-time approximate rna folding by 5’-to-3’ dynamic
programming and beam search. Bioinformatics, 35(14):i295–i304, Jul 2019.

[32] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

[33] Shaun M Kandathil, Joe G Greener, and David T Jones. Prediction of interresidue con-
tacts with deepmetapsicov in casp13. Proteins: Structure, Function, and Bioinformatics,
87(12):1092–1099, 2019.

[34] Yoshihide Kato and Shigeki Matsubara. A new representation for span-based ccg pars-
ing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 10579–10584, 2021.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

59

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[37] Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using
bidirectional LSTM feature representations. CoRR, abs/1603.04351, 2016.

[38] Nguyen Quoc Khanh Le, Quang-Thai Ho, Trinh-Trung-Duong Nguyen, and Yu-Yen Ou. A
transformer architecture based on BERT and 2D convolutional neural network to identify
DNA enhancers from sequence information. Briefings in Bioinformatics, 22(5), 02 2021.
bbab005.

[39] Sizhen Li, He Zhang, Liang Zhang, Kaibo Liu, Boxiang Liu, David H Mathews, and Liang
Huang. Linearturbofold: Fast folding and alignment for rna homologs with applications to
coronavirus. bioRxiv, pages 2020–11, 2021.

[40] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

[41] Jiangming Liu and Yue Zhang. Shift-reduce constituent parsing with neural lookahead
features. arXiv preprint arXiv:1612.00567, 2016.

[42] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313–
330, 1993.

[43] Haitao Mi and Liang Huang. Shift-reduce constituency parsing with dynamic programming
and pos tag lattice. In Proceedings of NAACL 2015, 2015.

[44] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K
Gray, Google Books Team, Joseph P Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, et al.
Quantitative analysis of culture using millions of digitized books. science, 331(6014):176–
182, 2011.

[45] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhi-
guna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dy-
namic neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

[46] Ruth Nussinov and Ann B Jacobson. Fast algorithm for predicting the secondary structure
of single-stranded rna. Proceedings of the National Academy of Sciences, 77(11):6309–
6313, 1980.

60

[47] J. Padarian, A. B. McBratney, and B. Minasny. Game theory interpretation of digital soil
mapping convolutional neural networks. SOIL, 6(2):389–397, 2020.

[48] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexan-
der Ku, and Dustin Tran. Image transformer. In International Conference on Machine
Learning, pages 4055–4064. PMLR, 2018.

[49] Matthew E Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. Dissect-
ing contextual word embeddings: Architecture and representation. arXiv preprint
arXiv:1808.08949, 2018.

[50] Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen. How convolutional neural net-
work see the world-a survey of convolutional neural network visualization methods. arXiv
preprint arXiv:1804.11191, 2018.

[51] GPS Raghava, Stephen MJ Searle, Patrick C Audley, Jonathan D Barber, and Geoffrey J
Barton. Oxbench: a benchmark for evaluation of protein multiple sequence alignment
accuracy. BMC bioinformatics, 4(1):1–23, 2003.

[52] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny,
Pieter Abbeel, and Yun Song. Evaluating protein transfer learning with tape. Advances in
neural information processing systems, 32, 2019.

[53] Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom
Sercu, and Alexander Rives. Msa transformer. In International Conference on Machine
Learning, pages 8844–8856. PMLR, 2021.

[54] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. Hhblits:
lightning-fast iterative protein sequence searching by hmm-hmm alignment. Nature meth-
ods, 9(2):173–175, 2012.

[55] David Sankoff. Simultaneous solution of the rna folding, alignment and protosequence
problems. SIAM journal on applied mathematics, 45(5):810–825, 1985.

[56] Kengo Sato, Manato Akiyama, and Yasubumi Sakakibara. Rna secondary structure pre-
diction using deep learning with thermodynamic integration. Nature communications,
12(1):1–9, 2021.

[57] Tianze Shi, Liang Huang, and Lillian Lee. Fast(er) exact decoding and global training for
transition-based dependency parsing via a minimal feature set. In Proceedings of EMNLP
2017 (to appear), 2017.

[58] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. CoRR, abs/1704.02685, 2017.

61

[59] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Parsing with
compositional vector grammars. In Proceedings of the Association for Computational Lin-
guistics, volume 1, pages 455–465. Association for Computational Linguistics, 2013.

[60] Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-based neural constituency
parser. In Proceedings of the Association for Computational Linguistics, 2017.

[61] Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-based neu-
ral constituency parser (code base). https://github.com/mitchellstern/
minimal-span-parser, 2017.

[62] Mitchell Stern, Daniel Fried, and Dan Klein. Effective inference for generative neural
parsing. In Proceedings of Empirical Methods in Natural Language Processing, pages
1695–1700, 2017.

[63] Joel L Sussman, Dawei Lin, Jiansheng Jiang, Nancy O Manning, Jaime Prilusky, Otto Rit-
ter, and Enrique E Abola. Protein data bank (pdb): database of three-dimensional structural
information of biological macromolecules. Acta Crystallographica Section D: Biological
Crystallography, 54(6):1078–1084, 1998.

[64] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence, 2017.

[65] Zhen Tan, Yinghan Fu, Gaurav Sharma, and David H Mathews. Turbofold ii: Rna structural
alignment and secondary structure prediction informed by multiple homologs. Nucleic
acids research, 45(20):11570–11581, 2017.

[66] Masaru Tomita, editor. Generalized LR Parsing. Kluwer Academic Publishers, 1991.

[67] Raphael J. L. Townshend, Stephan Eismann, Andrew M. Watkins, Ramya Rangan, Maria
Karelina, Rhiju Das, and Ron O. Dror. Geometric deep learning of rna structure. Science,
373(6558):1047–1051, 2021.

[68] Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of mathematical
biology, 52(1):153–197, 1990.

[69] Alan Mathison Turing. The applications of probability to cryptography, c. 1941. UK
National Archives, HW, 25:37, 2012.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

62

[71] Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
Grammar as a foreign language. In Advances in Neural Information Processing Systems,
pages 2773–2781, 2015.

[72] Qin Wang, Jiayang Chen, Yuzhe Zhou, Yu Li, Liangzhen Zheng, Sheng Wang, Zhen Li, and
Shuguang Cui. Contact-distil: Boosting low homologous protein contact map prediction
by self-supervised distillation. 2022.

[73] Jinbo Xu. Distance-based protein folding powered by deep learning. Proceedings of the
National Academy of Sciences, 116(34):16856–16865, 2019.

[74] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and
David Baker. Improved protein structure prediction using predicted interresidue orienta-
tions. Proceedings of the National Academy of Sciences, 117(3):1496–1503, 2020.

[75] Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao. Max-violation perceptron and forced
decoding for scalable mt training. In Proceedings of EMNLP 2013, 2013.

[76] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph
transformer networks. Advances in neural information processing systems, 32, 2019.

[77] Zhongheng Zhang, Marcus W Beck, David A Winkler, Bin Huang, Wilbert Sibanda, He-
mant Goyal, et al. Opening the black box of neural networks: methods for interpreting
neural network models in clinical applications. Annals of translational medicine, 6(11),
2018.

[78] Kai Zhao and Liang Huang. Joint syntacto-discourse parsing and the syntacto-discourse
treebank. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2117–2123, 2017.

