
 

An XML-based migration from Digital Commons to Open Journal Systems 
 
The Oregon Library Association has produced its peer-reviewed journal, the OLA Quarterly 
(OLAQ), since 1995, and OLAQ was published in Digital Commons beginning in 2014. When 
the host institution undertook to move away from Bepress, their new repository solution was no 
longer a good match for OLAQ. Oregon State University and University of Oregon agreed to 
move the journal into their joint instance of Open Journal Systems (OJS), and a small team from 
OSU Libraries carried out the migration project. The OSU project team declined to use PKP’s 
existing migration plugin for a number of reasons, instead pursuing a metadata-centered 
migration pipeline from Digital Commons to OJS. We used custom XSLT to convert tabular data 
exported from Bepress into PKP’s Native XML schema, which we imported using the OJS 
Native XML Plugin. This approach provided a high degree of control over the journal’s metadata 
and a robust ability to test and make adjustments along the way. The article discusses the 
development of the transformation stylesheet, the metadata mapping and cleanup work 
involved, as well as advantages and limitations of using this migration strategy.  
 
By Cara M. Key 
 
 
Introduction 
 
Content migrations are a fact of life for library technologists. For a variety of reasons, things 
need to get moved from old systems to new systems. In between the old and new systems is 
often where the interesting work takes place. In that space between, great pains may be taken 
to make sure that what one ends up with is essentially the same as what one started with - that 
everything looks at least as good and functions at least as well, and hopefully better.  
 
It isn’t just the digital assets that are relocated; whatever descriptions they possess that allow 
users to find and understand them must also be brought along. A PDF migrated from one 
repository to another may not require much special care, but differences in platform-specific 
metadata schemas can make it quite challenging to preserve the meaning of the accompanying 
description. Migration solutions that try to serve all use cases may not give sufficient attention to 
the transformation or even inclusion of metadata, or the preservation of its meaning. This article 
describes a migration project in which the available tools did not meet our needs, so a custom 
solution was built from scratch. In this project we focused on moving the metadata to the new 
system, and brought the content along as well.  
 
Background 
 
The OLA Quarterly (OLAQ) is the journal of the Oregon Library Association. First published in 
1995, the journal had been hosted and managed by Pacific University within their 
CommonKnowledge repository since 2014. The full archival run of OLAQ was available digitally. 
At the time of the migration, there were 93 published issues.  
 



 

CommonKnowledge is Pacific University’s institutional repository, hosted on Bepress’ Digital 
Commons software until 2020. OLAQ was a slightly odd fit within CommonKnowledge since it 
was not a product of the university, but in Digital Commons the journal had a functionally 
standalone space separate from the rest of the repository. Pacific decided they would migrate 
their institutional repository from Bepress to Hyku, a turnkey version of the open source Hyrax 
repository platform (Meetz and Laird 2020). They recognized in the planning phase that OLAQ 
would not be able to keep its dedicated space on the new platform.  
 
The OLA Board contacted various universities in search of a new host institution, and Oregon 
State University’s bid was the preferred choice. Oregon State University Libraries (OSUL) 
maintains a long-established Open Journal Systems (OJS) site, in partnership with the 
University of Oregon Library under the name “OJS at OregonDigital.org.” OJS is a widely used 
open source software product from Public Knowledge Project (PKP) for publishing open access 
scholarly journals. It would be able to provide a dedicated site for OLAQ, and costs would be 
minimal. At the time, OJS at OregonDigital.org was operating on an older version of OJS 
(2.4.8), with plans to upgrade but resources not yet allocated. The adoption of OLAQ into OJS 
at OregonDigital.org would be just the nudge needed to complete the upgrade.  
 
Project Planning 
 
The project plan was drafted and approved by the OLA Board in June 2019, and an initial 
project team was formed at OSU Libraries. Drafted to the team were OJS product owners for 
OSU and UO, the Scholarly Communication & Publishing Services Librarian at Pacific 
University, the Communications Coordinator for OLAQ, one OSU Libraries software developer, 
and two OSU library technicians, with potential student assistance if needed. The target 
completion date was September 2019, ahead of the deadline set by Pacific University’s 
expected completion date in November. The plan was uncomplicated: 

 
1. Upgrade OJS at OregonDigital to version 3.x; 
2. Decide on the design template for OLAQ; 
3. Use the existing Bepress to OJS plugin to migrate the content; 
4. Test the migration for completeness and accuracy; 
5. Update DOIs and indexing; 
6. Train editors to use the new software. 

 
The project reality did not, however, follow the project plan. In October, the OJS2 to OJS3 
upgrade had not measurably progressed, and early investigations had raised concerns about 
errors and data loss from the existing migration plugin offered by PKP. Several shortcomings 
with results of the plugin were clearly acknowledged in the plugin’s documentation, including 
articles being out of order, irregularities with sections, and cover art files not being imported 
(Felczak 2017; Felczak [updated 2020]). Additional problems were identified, which were 
amplified by the particulars of our content and situation: 
 

● OSU did not have administrator access to the source content in Digital Commons;  



 

● The CSV to XML conversion script recommended by PKP to prepare data for their plugin 
introduced more potential errors and data loss (Vilhuber … [updated 2018]); 

● We had missing and incomplete metadata in OJS required fields; 
● We had metadata, especially at the issue level, that did not align perfectly with OJS but 

which we wanted to somehow preserve.  
 
This paper’s author, OSU’s Metadata Librarian, had been very new to the job at the project’s 
inception, but was called in at this point to consult. We initially aimed to identify strategies for 
handling the fallout from an imperfect but extant solution, but we realized that we had all the 
tools we needed to try something entirely different. OJS 3.x includes an XML import tool, the 
Native XML Plugin, and the OJS/PKP Native XML schemas are publicly available online. We 
also had the exported metadata, and experience writing XSL transformations. We were already 
facing a time investment for correcting introduced errors and possibly modifying the code, so 
deciding to change course was not destabilizing. We formulated a new plan: to create custom 
XSLT, transform the Digital Commons data in-house, and import XML via the Native XML 
Plugin. The team was reduced to the metadata librarian and software developer, with oversight 
by our shared department head and consultations available with the journal stakeholders.  
 

 



 

Figure 1: Digital Commons to OJS migration workflow. 
 
Shortly after this pivot, we also concluded that migrating in tandem with upgrading our existing 
OJS 2.x system was too ambitious. The upgrade was more difficult than anticipated, and was 
unlikely to be completed before the Digital Commons repository was sunsetted. We resolved to 
launch OLAQ as a standalone journal, temporarily, on a separate OJS 3.x site while the existing 
OJS at OregonDigital site remained on OJS 2. This change did not have a significant negative 
impact on the outcome of the OLAQ migration, which would still be moved to OJS 3.x as 
intended, and it freed up the developer’s time for immediate needs. 

 
Data Preparation 
 
Pacific University provided an up-to-date export of OLAQ metadata from Digital Commons, 
delivered as an Excel spreadsheet. For ease of reviewing and collaborating, the OSU team 
used Google Sheets to work with the metadata. Some data cleanup, normalization, and 
enhancements were required before converting the data to XML format. Key spreadsheet 
cleanup tasks that impacted the rest of the migration process included: 
 

● Replacing XML reserved characters in the data with character references (`&amp;`, 
`&lt;`, `&gt;`); 

● Verifying the correct order of contents (the ordering of contents in OJS follows the order 
of the XML import files); 

● Correcting publication date formats to `YYYY-MM-DD`, and ensuring all items had 
publication dates (more on this later). 
 

The cleaned metadata was exported from Google Sheets as a CSV file. We lightly modified a 
Python script found online to convert the CSV to flat XML (FB26 2010). The flat XML structure 
has a root element `<csv_data>`; each row of data is a record within a `<row>` element; and 
each item in the header row becomes an element name, as seen in this excerpt: 
 

``` 
<row> 
    <title>Communicating with Library Donors</title> 

<keywords>library, library marketing, library 
communications[...]</keywords> 

<disciplines>Archival Science; Cataloging and      
Metadata[...]</disciplines> 

    <document_type>article</document_type> 
    <doi>http://dx.doi.org/10.7710/1093-7374.1829</doi> 
    <volnum>21</volnum> 
    <issnum>4</issnum> 
    <vol_iss>21(4)</vol_iss> 
    <fpage>5</fpage> 
    <lpage>9</lpage> 



 

    <distribution_license></distribution_license> 
    [...] 
</row> 
``` 
Snippet 1: XML output from csv_to_xml.py. A row in the CSV source document is 
represented by the row container element, and the CSV column headers become 
individual child elements.  

 
This flat XML was used as the source data for the XSL transformation into the OJS/PKP Native 
schema.  
 
Metadata Mapping and XSLT Development 
 
In the next stage, the Digital Commons metadata fields were mapped to OJS elements 
according to the PKP/OJS Native XML schema, which could then be used to write XSLT that 
would produce a valid XML import file. Appendix A shows the fields that were present in the 
Digital Commons export, and the XPaths used for their element and attribute mappings in OJS. 
For unmapped fields, either no data was populated for that field in our dataset, there was no 
straightforward element match in the OJS schema, or the field is not meaningful in the OJS 
context (such as a Digital Commons system field). Some of the information contained in 
unmapped fields - specifically Publisher, ISSN, and Journal ID - is provided in the OJS’s journal-
level configuration. Over the course of the project, additional fields were added to the dataset to 
fill in gaps and facilitate processing, as more was learned and the transformation became more 
finely tuned. 
 
The Data Import and Export page of the PKP Administrator’s Guide lets intrepid readers know 
that the Native XML Plugin could be used for “[m]oving a large number of back issues and 
articles into OJS,” but cautions that one will need “[a] basic understanding of XML” (PKP [n.d.]). 
Links to the schema XSL files and sample XML files are provided, along with several tips. We 
were unable to find any publicly available supporting documentation for the schema beyond 
these resources. XSD files are readable enough to experienced XML practitioners, and the 
overall field mapping was not complicated. However, definitions and guidance detailing how 
XML data values connect to software functionality would have been tremendously appreciated 
(especially for brand new OJS 3.x users). As a basic example, the `published` attribute on the 
`<issue>` element is stated in the schema to have a type `integer`; but the schema does not 
state that an attribute value of `1` will publish the issue immediately upon import while a `0` 
value means the issue will be imported in an unpublished state. Furthermore, our testing 
revealed that the import plugin has stricter requirements for import files than the schema, and 
therefore XML files that validate may still fail to import.  
 
An XSLT stylesheet for converting the flat XML into OJS Native XML was built based on the 
field mapping. Oxygen XML Editor software was used to write the XSLT and run 
transformations. The style of the XSL code is somewhat explicit, naming each OJS destination 



 

element in order and pulling from the source data to populate the element, as seen in this 
excerpt populating the Keywords field. 
 

```  
<xsl:if test="keywords/text()"> 
    <keywords> 
        <xsl:for-each select="tokenize(keywords, ', ')"> 
            <keyword> 
                <xsl:value-of select="."/> 
            </keyword> 
        </xsl:for-each> 
    </keywords> 
</xsl:if> 
``` 
 
Snippet 2: Section of XSL stylesheet handling keywords.  

 
The mapping and XSLT development happened in tandem with the OJS 3 installation, and 
credentials for the development site were given out just in time for the first fully valid output to 
be produced. We proceeded with testing the XML output using the Native XML Plugin, 
experimenting to determine connections between metadata and system functionality, and 
iterating until we ultimately had results we wanted.  
 
Metadata Challenges  

 
Given the vast differences between the origin and destination systems and our spotty 
understanding of schema details, troubleshooting and revising were ongoing throughout the 
project. Of the larger metadata challenges to solve, some were caused by a lack of complete 
data, and others by an abundance of it. Still other frustrations arose out of the design choices 
within the Native XML schema and the logic of the import tool. A few notable cases are 
described below.  
 
One compromise in the move to OJS was the loss of metadata granularity for journal issues. In 
Digital Commons, especially in more recent years, OLAQ editors had described issue-level 
objects similarly to article-level objects, and Digital Commons issue records included disciplines, 
keywords, and guest editor biographies. OJS issue-level metadata fields are limited to Issue 
Identification (Numeration, Year, and Title), Publication Date, and Description. We were 
interested in preserving the issue-level metadata, so we accommodated as well as possible by 
placing all of the above information into Description fields so that the information would be 
available, even if some of the utility was lost. In working to address the issue description 
problem, we found that, while valid per the schema, repeated descriptive XML elements are not 
preserved on import. So while we originally mapped several of the issue fields to multiple 
`<description>` elements, each successive instance of `<description>` appeared to overwrite 
the previous one when the file was imported. Re-exporting the issue confirmed that only the 



 

last-occurring instance of the element was saved. We revised the XSLT to combine multiple 
values in a single `<description>` element, adding HTML markup for headers and newlines 
within the field text to replicate the appearance of distinct fields for readers.  
 
Overall, OLAQ’s metadata was high quality, but there were a number of holes in the data 
including some that required consulting stakeholders to approve any solution. Two fields in 
particular were required for every OJS submission but incomplete in the Digital Commons 
dataset. (“Submission” is OJS terminology for an individual component of a journal issue, 
predominantly but not exclusively articles.) 
 

● The first was author(s), including subfields for first name, last name, and affiliation. 
Authorship was diligently noted for all articles except editorials, but OLAQ also had 
separate submission objects for tables of contents and back matter components, and 
these pieces did not have stated authorship. We agreed to assign the journal name as 
the default author if none was given. (Because OJS enforces a Given Name + Family 
Name rule that does not accommodate corporate authors well, we ended up with Given 
Name = “Oregon Library,” Family Name = “Association,” and Affiliation = “OLA”). This 
was handled within the XSLT script.  

 
● The second was a full `YYYY-MM-DD` publication date. In the source data prior to 2014, 

when OLAQ was moved into Digital Commons, dates were year-only. Issue titles 
indicated the season, as in Fall 2010. To fill in the gaps, we agreed to assign retroactive 
dates based on the season, where Fall issues were now recorded as being published on 
09-01, Winter on 12-01, Spring on 03-01, and Summer on 06-01 of their given year. We 
altered the dates in the spreadsheet using a Google Sheets function.  

 
Processing and Import 
 
The Native XML Plugin provides means to import XML journal content into OJS. It is included 
“out of the box” and does not require separate installation. There is a command-line import 
option, but in this project we exclusively imported through the admin dashboard user interface. 
XML import files may contain one or multiple issues and/or articles. File size limitations do apply 
to imported XML files, though these can be adjusted in the system configuration. For our use 
case, the ability to easily delete, edit, and re-import content was essential, so our XSLT was 
designed to process the complete dataset and output one XML file per issue. Content imported 
using the plugin results in fully structured journal issues, which may be either immediately 
published or set to pre-publication, depending on attribute values. Ideally, little to no additional 
work is needed post-import.  
 
We tested the transform-and-import workflow using three OLAQ issues representing distinct 
time periods and thus differing descriptive practices. This test set was sufficient to identify and 
resolve the metadata problems previously described. When the initial batch was successful, we 
generated three more issues and continued to review; then finally executed the XSLT across 
the full corpus to import all 93 issues. 



 

 
The OJS infrastructure allowed us to fetch the PDFs remotely from Digital Commons and insert 
them as article galley files with the simple usage of a `<href src=”{URL}”>` reference in the XML. 
These PDF URLs were not present in the Digital Commons export data - the field exists, but 
was blank in our dataset. We were not successful in retrieving them with the XSLT due to the 
Bepress HTML being reportedly ill-formed. However, Google Sheets was more permissive, so 
we used the IMPORTXML function to add the PDF URLs to the source data. This process 
worked very reliably for the 873 submission objects. However, for unclear reasons, while 
submission galley files can be fetched remotely, issue galley files may only be added via the 
XML import file if embedded in base-64 encoding. The same is true for cover art files. OLAQ 
had both full-issue PDFs and cover art for each of the 93 issues. We decided to create local 
copies of the full-issue PDFs and manually add them to the issue objects post-import. We took 
the opportunity to regenerate the cover art files from the PDFs to replace the lower-resolution 
GIFs used in Digital Commons; these were added manually post-import as well. If we had been 
working with a larger body of content, we would likely have investigated encoding the PDFs and 
adding them to the import files. In our case, the admittedly tedious UI-button-clicking time was 
almost certainly shorter than the development time would have been. This is an area for 
potential future work, if the XSLT tools are to be carried forward.  
 
Finishing Details 
 
We created custom CSS to apply on top of the default OJS theme, which mimics the look of the 
former OLAQ site at Pacific University, which in turn had been designed to resemble the print 
journal’s cover art style. Populating the static site content, such as about pages and policy 
information, was a manual copy-paste operation, in part because we only had normal public 
access to that static content in Digital Commons. Since our project had only a single journal to 
configure, this was not excessively laborious. With the content in place, we did a soft launch of 
the production site and invited the OLA stakeholders to review the work. While there were a few 
tweaks needed, happily no problems were found that required reprocessing any of the content. 
 
As they shut down their Digital Commons repository, Pacific University implemented a base 
redirect to our OJS site. Setting identifiers in the metadata that resembled the original paths 
allowed for a simple redirect rule on our end for all submission-level items, though issue objects 
and static pages needed explicit redirects.  
 
The bulk of the project work took place between November 2019 and February 2020; the early 
majority went toward installation of the software and development of the transform, while the 
execution of the final transformation and import of the full journal’s metadata and content - the 
“actual migration” - required less than a week. Pacific University’s timeline for sunsetting Digital 
Commons was extended at least twice, which was to our project team’s benefit as we were 
consistently operating behind schedule. The official launch suffered from unfortunate timing, 
taking place in March 2020 just as COVID-19 sent us all out of our offices, but the journal’s site 
has enjoyed strong readership and three new OLAQ issues have been published post-
migration.  



 

 
Reflections 
 
In addition to the previously described metadata solutions and the manual process for uploading 
issue files, the overall project encountered plenty of other challenges and made plenty of other 
compromises. The biggest overall challenge was that OSU’s upgrade from OJS 2 to OJS 3 
could not be completed before the deadline to move OLAQ, so we are running two separate 
OJS instances, which is not an ideal situation. Work on the upgrade has progressed, but carving 
out time and resources from an established workcycle rhythm with many competing projects is 
more difficult without the looming deadline of loss of access to the content. There were plenty of 
minor irritations along the way, too; for instance, discovering that DOIs imported with the XML 
metadata could only be saved in the system if the DOI plugin is turned on prior to import.   
 
While there is much to like about publishing in OJS, the move from Digital Commons meant 
some compromises for the journal as well. OLAQ’s usage statistics from Digital Commons were 
lost, and all items’ views were reset to zero in OJS. A few Digital Commons features are not 
available in OJS, such as the readership map and hidden keywords, and browsing functionality 
and analytics are less robust. 
 
The OJS 3.x software was new to the project team, and there was an associated learning curve. 
The lack of official documentation for trying to migrate journals from outside systems into OJS or 
for understanding the XML schema indicated this is not a process that the developer feels 
strongly about supporting - we often had the sense that we were not using it the way it was 
meant to be used. There was a great deal of trial and error and fixing and retrying; but that’s 
exactly the spirit of work that our approach fostered. Designing in-house transformation tools 
that were customized for our particular needs lent itself perfectly to a testing and iterating 
workflow. The metadata-forward approach meant we had precise control over the results, at 
least within the confines of the system. Output could be easily destroyed and remade with 
improvements. At the conclusion of the project, while the results might not have been perfect, 
we were able to feel confident that they were as close to perfect as we could reasonably have 
gotten. 
 
Our XSLT pipeline was not designed with the intent to cover every possible Digital Commons to 
OJS migration, but worked well for our own use case. The main advantage of the XML-based, 
metadata-forward approach is the degree of control it provides over the data. Other institutions 
working to migrate content from Digital Commons to OJS may be able to repurpose these tools; 
adjustments may be needed to the XSLT code, but the majority of the work is likely to be in data 
preparation.  
 
Since the OLAQ migration has concluded, OSU Libraries does not currently have a use case for 
further development of the Digital Commons to OJS migration tools. In addition to supporting 
OLAQ editors with the transition, we are continuing to work toward moving our existing OJS at 
OregonDigital.org journals from our OJS 2.x instance onto the OJS 3.x, alongside OLAQ. That 
said, the Digital Commons to OJS XSLT pipeline would benefit from additional stylesheet 



 

versions corresponding to XML schema updates in recent OJS releases, since adopters going 
forward are less likely to be installing OJS 3.1 versus a later version. Another possible 
enhancement, as previously mentioned, would be automating the incorporation of base-64 
encoded content files within the XML output, to avoid having to upload issue galleys post-
import; this would also provide flexibility for including article galleys without relying on a live 
remote source location. Potential adopters of this toolset may also have special circumstances 
that suggest other directions for development not anticipated here.  
 
The project to migrate OLAQ from Digital Commons to OJS involved building a custom solution 
despite the existence of established and tested tools. This was a bold decision, and we 
ultimately can’t measure how different the results would have been if we had used the existing 
tools instead. We can say with certainty that the migration was successful, and that we gained 
familiarity with OJS 3.x that will be useful as we continue to support OLAQ and other journals on 
the platform. 
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Read OLA Quarterly on OJS at https://journals3.oregondigital.org/olaq.  
Find the code on GitHub at https://github.com/osulp/bepress-ojs-xslt.  

 
Appendix A. Bepress Digital Commons to OJS 3.1 Field Mapping 
 
This table shows the fields included in the OLAQ metadata export from Digital Commons and 
the destination OJS fields to which they are mapped. For OLAQ, objects with document type 
“full_issue” became OJS Issues, and all other document types were migrated as OJS 
Submissions. 
 
Data transformations were applied to many of the fields during the course of both spreadsheet 
cleanup and XSL processing, which are not specified in the table. Readers are invited to visit 
this project’s Github repository for those details. It should also be noted that the XPaths given in 
this table are specific to OJS 3.1, and that more recent versions of the schema are known to 
deviate for some of these.  
 



 

Bepress Field OJS XPath - Submissions OJS XPath - Issues 

title //article/title //issue/issue_identification/title 

keywords //article/keywords //issue/description 

disciplines //article/disciplines //issue/description 

document_type //article/@section_ref  

doi //article/id[@type="doi"] //issue/id[@type="doi"] 

volnum  //issue/issue_identification/volume 

issnum  //issue/issue_identification/number 

fpage //article/pages  

lpage //article/pages  

distribution_license //article/licenseUrl  

abstract //article/abstract //issue/description 

comments   

fulltext_url   

peer_reviewed   

publication_date //article/@date_published 
//issue/date_published 
//issue/issue_identification/year 

rights 
//article/copyrightYear 
//article/copyrightHolder  

license_statement   

filename   

erratum   

publisher   

issn   

journal_id   

author[#1-5]_fname //article/authors/author/givenname  

author[#1-5]_mname //article/authors/author/givenname  

author[#1-5]_lname //article/authors/author/familyname  

author[#1-5]_suffix   

author[#1-5]_email //article/authors/author/email  



 

author[#1-
5]_institution //article/authors/author/affiliation  

calc_url //article/id[@type="public"]  

context_key   

issue  //issue/id[@type=”public”] 

ctmtime   
 
For unmapped fields, either no data was populated for that field in our dataset, there was no 
straightforward element match in the OJS schema, or the field is not meaningful in the OJS 
context (such as a Digital Commons system field). Some of the information contained in 
unmapped fields - specifically Publisher, ISSN, and Journal ID - is provided in the OJS’s journal-
level configuration. 
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