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An intersection without a traffic light could be a potentially dangerous place to travel 

through depending on the mindsets of the of the travelers within it.  When travelers are 

traversing an intersection, they generally have one of two different mindsets that 

influence the actions they do.  One mindset they could have is being focused on saving 

time as they travel the intersection, causing them to take actions that speed them 

through while the other is being focused on one’s own safety and taking actions that 

follow the rules of the intersection to keep themselves and others around them out of 

accidents.  Which mindset a traveler has as they travel through the intersection depends 

largely on how full the intersection is with other cars and pedestrians.  This thesis 

creates an agent-based model to simulate an intersection found on Monroe Ave. on the 

Oregon State University campus.  This model is then used in a series of tests that fills 

the model with various numbers of agents to test how the intersection runs under 

various intersection densities.  Data is recorded from each test and fitted onto line 

graphs which are then compared to each other to look for the approximate density 

where the mindset of a traveler should switch from being focused on saving time to 

being focused on personal safety.  A conclusion was reached after testing the model 

under five different density levels and comparing the line graphs from the data gathered 

from those tests to look for the ideal behavior that the target density would have 

exhibited. 
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Chapter 1.  Introduction 

 

1.1 Background 

Within the United States, it is a common occurrence when pedestrians must cross at an 

intersection with no lights to govern car traffic.  Sometimes, pedestrians may be so fixated 

on getting to their next destination that they do not focus on their current circumstances.  

Other times, they may think a lot about where they currently are and follow the rules of 

safety when crossing the road.  How much a pedestrian or a driver pays attention to the 

rules of the road as they navigate an intersection can vary depending on several different 

factors, but one thing that is common among all of them is that they are not operating in a 

vacuum.  Each pedestrian and driver navigating an intersection must be mindful of the 

other people that are crossing the intersection at the same time they are.  The more people 

in the intersection at the same time, the more mindful of safety each individual needs to be 

to navigate without an accident.  The point where the greatest shift in mindset occurs is 

dependent on an unknown number of pedestrians and vehicles that needs to be investigated. 

 

1.2 Problem Statement 

Many travelers at Oregon State University navigate a certain intersection on Monroe 

Avenue that is at the top of the campus.  A lot of these travelers navigate it every day and 

all of them share the same goal of not crashing as they traverse the intersection.  However, 

there exists a variety of factors like weather or time of day that can cause those entities to 
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have different priorities and may affect their mindset as they cross the intersection.  

Ultimately, these factors can cause the entity in question to have their priorities set on one 

of two variables as they cross.  Do they prioritize acting in a safe manner as they cross, or 

do they value shorter times when crossing in a way that they may lessen their own safety 

to shorten their traversal time?  One of the most important factors that may influence their 

priorities is the density of the intersection at the moment an entity arrives to it.  Therefore, 

just how dense does the intersection have to be to get an entity’s priorities to shift from 

prioritizing their traversal time to prioritizing their safety? 

 

1.3 Research Question 

When first researching the topic for this paper, the question to answer was “When were 

travelers safe enough to focus on saving time when crossing the intersection and when did 

they need to pay more attention to the rules to stay safe?”  The main factor that was 

investigated to answer this question was density of the intersection, and just how full of 

other travelers it had to be to invoke these changes in mindsets.  As the procedure for the 

study developed, it was decided upon that a model would be created to simulate the Monroe 

intersection based on intersection density.  The research question evolved into “At what 

density would the intersection be at so that travelers within them switch from a time-saving 

oriented mindset to a safety-focused mindset?”  This way, the model could use intersection 

density specifically to solve the question rather than focus on naming specific time frames 

or a general set of intersection conditions. 
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1.4 General Hypotheses 

To answer the research question, an objective way of measuring density needed to be 

created for this study.  This way, the answer could be given in a quantifiable form without 

any subjective descriptors that could be interpreted in different ways.  The study will go 

into more detail about what these terms means later, but the hypothesis for this study is that 

the model will have a model density of around 40% with an agent composition of 8 parts 

cars and 16 parts pedestrians when it is at the model density where travelers will switch 

their mindsets.  This translates to the intersection being about 40% full of travelers, when 

they decide to switch their mindsets.  The composition of the travelers that are in the 

intersection will be roughly 33% cars and 67% pedestrians.   

 

1.5 Research Purpose 

Currently there are numerous studies that study how various intersection factors affect the 

people who travel through them.  However, there are far fewer studies that look at specific 

tipping points where the behavior of the people drastically in response to one of the 

intersection factors changing.  The purpose of this study is to provide the framework for 

studying one of these tipping points so that other factors can be observed and researched 

in different studies in a similar manner.  Aside from providing an example for other types 

of research, finding an answer to the research question in this study will help in identifying 

scenarios where intersection travelers should focus staying safe over saving time.  
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1.6 Research Objective 

The objectives of this research are as follows: 

1. Find the tipping point in terms of intersection density where a traveler’s mindset 

switches from prioritizing saving time to focusing on personal safety. 

2. Create a model that can be adapted to other types of intersections to find their 

tipping points in switching mindsets. 

 

1.7 Limitations and Assumptions of the Model 

Below is a list of the limitations of the model that was created as well as some assumptions 

the model is working under: 

• The individual agents in the model have no free will and are bound by the code they 

are programmed with.  They cannot dynamically change their behavior like a real 

human would. 

• The model is taking place in a neutral environment where the only factor affecting 

agent behavior is intersection density.  This is unlike real life where there are a 

variety of other factors that can affect agent behavior. 

• The only entity types that are programmed into the model are cars and pedestrians.  

There are other types of entities that could cross the intersection in real life like 

buses or bicycles. 

• Each test is run at a static density level where the density of the intersection is kept 

at a constant level.  It cannot change densities mid test like the intersection in real 

life could. 
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1.8 Relevance of this Study 

As long as roads are used to serve as transportation routes from one location to another, 

intersections between two or more roads will be formed.  It is impractical and costly to set 

up traffic lights at every single intersection that is formed in the world, so there will be a 

ton of intersections that will be without an external regulator.  Finding the density of the 

Monroe intersection where traveler’s mindsets switch priorities will produce a procedure 

that can be used to find the densities of other similar intersections.  If roads are still used 

and intersections are formed, this study will produce results that will still be relevant.  The 

results will be useful in facilitating research into intersection behavior and the conditions 

that cause them. 
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Chapter 2.  Literature Review 

 

2.1 Literature Review Introduction 

The use of cars is an everyday occurrence in the lives of many people, and thousands of 

people drive through the same intersection on any given day.  Likewise, pedestrians 

walking to their destination is another common occurrence and leads them to travel though 

the same intersections that cars travel through at often the same or near the same times.  

With the interaction between these two occurring regularly at intersections, the likelihood 

of an accident occurring at an intersection is high.  Within the US alone, there were 33,654 

fatal crashes that occurred in 2018 (keeping in mind that this includes all United States car 

crashes) (Administration, 2020). Using already published papers about these intersection 

interactions, it is possible to form inferences on how pedestrians and cars behave under 

different environmental, circumstantial, or personal characteristics.  These inferences could 

be implemented into plans to lessen the number of crashes that occur each year. The 

following sections provide an overview of the most relevant interactions within 

intersections. 

 

2.2 Intersections and pedestrian vs. car density tradeoff 

Before the 2020 COVID-19 pandemic, it was possible to observe patterns of behavior at 

intersections directly.  It was possible to observe pedestrians and cars becoming more 

cautious or more brazen based on the increasing or decreasing number of cars and 

pedestrians travelling through the intersection.  This pattern of behavior seemed to indicate 
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that a less dense intersection lets crossing pedestrians and cars prioritize crossing the 

intersection as quickly as possible while a denser intersection encourages entities to 

prioritize their own safety.  Of the published studies that focus on street intersections, many 

are focused on the interactions between pedestrians and cars while others looked to see if 

the layout of the intersection itself had any effect on entity behavior. However, the nature 

of these interactions can be explained by the rules of a bartering system. 

 

2.2.1 Studies of Pedestrian vs. Car behavior 

One common subtopic for published studies about intersection behavior to focus on is 

about how specific physical and circumstantial characteristics influence the behavior of 

crossing pedestrians and cars.  Some studies focus on driver behavior specifically and try 

to form algorithms that can predict crash risks based on the pathing of the cars traveling 

through an intersection.  Studies like this one examine driver behavior and try to form 

inferences about how driver pathing relates to their behavior (Lefevre, 2012).  Other studies 

focus on how both the physical characteristics of the pedestrians and the environmental 

conditions they are in affect their behavior.  One study in particular try to conclude how 

these factors affect the tendency of pedestrians to either press or ignore a walk button at a 

signalized intersection (Bradbury, 2012).  Every human being is different in terms of 

circumstance and physical characteristics, which may influence their actions in different 

ways.  By making the connections between what characteristic a pedestrian or driver has 

or what situation they seem to be in, it becomes easier to predict their behavior. 
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2.2.2 Studies of intersections 

Though a less common subtopic than characteristic/circumstantial influences, some 

published studies focused on intersections themselves to try and find their influence on 

behavior.  These studies tend to focus on either the physical layout of the intersection 

themselves or look at the differences in driving customs that intersections located in 

different nations may have.  For example, a driving custom that cars in Japan have is that 

they drive on the left side of the road, which contrasts with the US’s custom of cars 

traveling on the right side.  The difference between the cars’ travel path results in different 

turning radii for the cars when they attempt to turn in the same direction (i.e. both cars 

turning left from their respective travel lanes).  These differences influence the 

intersections to be built slightly different and alter the behavior of car and pedestrian 

interactions by changing the general area where pedestrians and vehicles commonly 

intersect (can potentially occupy the same space) (Park, 2015).   

Different layouts for intersections have been studied as well, with many studies 

observing how these intersection layouts affect the people who travel through them.  One 

study that created a model of an unsignalized T-intersection used it to and predict accident 

probability based on vehicle approach speed on the priority road of the T-intersection (road 

making up top of the T). This probability assessment was then used to draw some 

conclusions about vehicular behavior and what drivers should logically do when turning 

onto the “stem” of the T-intersection (Spek, 2005).  What layout an intersection has and 

what customs the traveling pedestrians and cars follow will alter what behavior they exhibit 

as they navigate. 
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2.2.3 Bartering system psychology 

Within every car and pedestrian in an intersection, there exists two possible priorities that 

each could be focused on and are related to crossing the intersection.  These two priorities 

are: 1) the person in question should travel through the intersection as quickly as possible, 

and 2) the person in question should travel through the intersection as safely as possible. 

This decision between prioritizing time vs. safety can be better understood if viewed from 

a bartering system perspective.   

A common strategy within a bartering system involves two or more parties trading 

resources between each other and each party trying to establish a deal which benefits 

themselves.  The resources being traded can vary wildly, but there are several factors that 

can make resources more desirable to specific parties involved.  Factors for raising or 

lowering desirability include scarcity of the resource, usefulness to party, acquisition 

difficulty, and novelty among other potential factors.  There are no set guidelines that 

dictate how the flow of a bartering deal goes, but the factors determining resource 

desirability remain constant (Chun, 2003). 

Connecting the concept of the priority shift to the dynamics of a bartering system 

can yield better understanding on how the dynamics and interactions in any given 

intersection work. Doing this can provide an initial set of guidelines to manage traffic flow 

in an intersection.  The two types of priority, time and safety, act as resources to trade.  The 

desirability towards each “resource” for each person in the intersection dynamically 

changes in response to the density of the intersection (though other personal factors affect 
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desirability as well).  Pedestrians and cars that see less crowded intersection will lead them 

to believe that they can get away with traveling through the intersection quicker, showing 

an increase in desirability toward time.  By contrast, more crowded intersections may cause 

people in the intersection to care about their own safety more as they attempt to cross, 

which shows an increase in desirability towards safety.  This constant shift in priorities 

leads to a dynamically changing bartering model between the resources of time and safety 

occurring within the mind of each person at the intersection. 

 

2.2.4 Gap in Literature 

The studies brought up in the past subsections highlighted how intersection behavior has 

already been explored, while the bartering system terminology was meant to be a lens to 

examine shifting priorities.  Whether it is the circumstances surrounding the person or the 

intersection layout itself, both seem to have an effect on the behavior of the people traveling 

through the intersection.  The behavior exhibited by the people affects whether they 

prioritize time or safety when crossing the intersection, which could be more easily 

understood when viewed through the lens of a bartering system.  Published studies focus 

on identifying what factors causes these shifts in behavior, but there is a deficit of research 

focusing on how changing the intensity of these factors could affect overall response.  

 The focus of intersection studies often lay in investigating what factors cause 

certain changes in behavior.  Whether these factors are environmental, locational, 

circumstantial, or characteristic, the goal of studies is usually to identify correlational 

relationships between what factor causes what change.  What published intersection studies 
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(see sections 2.2.1 – 2.2.3) do not pay as much attention to is the relationship between 

factor intensity and the subsequent effects.  This leaves a gap where more studies can focus 

on how the intensity of a factor determines how heavily weighted the effect of that factor 

is.  For this study, the density of an intersection and how it influenced priority behavior 

shifts was examined. 

 

2.3 Examining Intersections Using Agent-Based Modelling 

The COVID-19 pandemic caused the U.S. to go into a nationwide lockdown, causing the 

Monroe intersection to exist in a perpetually near-empty state.  To study the intersection 

when it was behaving normally, it was decided to create a model that emulated the 

intersection.  To create the model, a free agent-based modelling software called NetLogo 

was selected. NetLogo offers the ability to customize different entities (like cars and 

pedestrians) as well as code them to run in specific areas (allowing intersections to be made 

based on these paths), both of which made for a good fit for the objectives of this research. 

The NetLogo model made for this study is based on a four-leg intersection with 

three of the legs acting as two-way streets while the fourth leg is a one-way street (legs in 

this instance are the different roads branching out from the intersection).  A customizable 

number of pedestrians and cars can be spawned from any of the four legs and are 

programmed to mimic the behavior of their real-world counterparts, while ensuring that 

the total number of pedestrians and cars never changes.  This way, multiple runs of the 

model at different static density levels can be performed to observe behavior at these 

different levels.   
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 All cars and pedestrians (also referred to as entities) within the model are assigned 

a random value of a variable called “patience,” representing its namesake within each 

entity.  This patience value is used to help determine how long an entity waits at a turn 

point and is comprised of two parts.  Part of the patience value is determined randomly 

every time an entity resets its position, while the other part of the patience value is based 

on a moving average of previous wait times.  This way, the patience value mirrors the way 

actual patience of an entity’s real-world counterpart works (being affected by past events).  

These two parts of the patience value allows the patience of each entity to be partly 

randomized and partly affected by previous events already happening in the intersection, a 

parallel to how patience works in the real world (see Figure 1). 

 When arriving at a turn point, each entity waits a set amount of wait time based on 

the value of patience that entity has.  While stopped at the turn point, the entity will check 

several different spaces to see if another entity is on them.  If another entity is present on 

those squares, more wait time is added to the total amount that the entity must wait.  This 

procedure mirrors how cars and pedestrians will end up waiting more time if they see an 

incoming pedestrian or car in their path of travel (see Figure 1). 



13 

 

 

 

Figure 1. Diagram between Entities, and their Patience and Wait-Time Values. 

 On every patch (geometric position in model) comprising the center of the 

intersection and the crosswalks are checks to see if two or more entities are occupying the 

same patch.  If more than one entity is in the same patch, then the model will mark on a 

graph that a collision has occurred.  Through the various graphs on the dashboard, the 

model can keep track of how many collisions occur and at what times (see Figure 2).  These 

collisions represent when a pedestrian or a driver should logically shift their priority from 

saving time to being safer, to avoid the collisions depicted in the model.  Through various 

runs at different intersection densities, the relationship between the intersection density and 

when the shift in priorities should take place will become easier to understand. 
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Figure 2. Diagram showing logic behind the intersection patches and collision tracking. 

 The model is coded so that the patience values, wait-times, and inter-arrival times 

for each entity type are recorded onto line graphs (see Figures 3 & 4).  The number of 

collisions that occurred as well as when a collision has occurred are also recorded onto line 

graphs.  These line graphs are separated by entity type and recorded information, so that 

there are three sections of twelve line-graphs, with each graph in each section recording a 

certain type of data for a certain entity type.  All these line graphs are able to be exported 

in a CVS format so that they can be analyzed in Microsoft Excel.  This way, analyses and 

conclusions about the data from various intersection density trials can be made. 
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Figure 3. Diagram showing logic behind the patience and wait-time line graphs and how they record 

information. 

 

Figure 4. Diagram showing logic behind the Inter-Arrival Time Value line graphs and how they record 

information. 

 

2.3.1 Agent-Based Modeling over Discrete Event Simulation 

A discrete event simulation is a different method of simulating the behavior and 

performance of a real-life process than an agent-based modeling system.  Discrete event 

simulations depict the system they are simulating as a series of events and assumes there 

is no change in the system between the events.  Each entity is considered independent and 

coded with a series of parameters that influences what choices they make whenever the 

series of events has a split path.  The information of each entity can be changed as they 

move through the system and the simulation can account for resources (Allen, 2015).  
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Despite all these features, an agent-based modeling system is still the better choice to model 

the Monroe intersection with. 

 While a discrete event simulation (DES) can model the intersection as a series of 

events, it is much better at modeling a single starting point that can branch out in several 

different directions.  There are four streets in the Monroe intersection and each street is a 

possible starting point for a DES, meaning four different starting points that can branch out 

into even more paths.  The DES also does not consider of how the individual entities affect 

each other, with them assuming the entities are independent.  An agent-based modeling 

system does not have these problems, focusing on the behavior of the agents themselves 

instead of depicting the intersection as a series of events.  That interaction between agents 

is especially important to this study since it is focusing on intersection density and how the 

number or lack of agents affects behavior of arriving agents.  An agent-based modeling 

system is superior in this area than a discrete event simulator, making it the preferred 

system to model the intersection with. 
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Chapter 3. Methodology 

 

3.1 Introducing Methodology 

This study revolves around the observation of the interactions between cars and 

pedestrians.  For data collection, a procedure would normally be made where the natural 

behavior of the target intersection would be observed under various conditions by 

researchers, and observations would be recorded for later analysis. While it would be ideal 

for changes in intersection density to be recorded as naturally occurring patterns, this study 

is being conducted at a time where the COVID-19 pandemic has caused most of the U.S. 

to undergo quarantine procedures and has lessened the amount of traffic on the streets 

nationwide.  As a result, direct observation would only result in data about the intersection 

in a perpetually abnormal state, with no way to raise the traffic levels to regular amounts.  

Instead, modelling the intersection and collecting data from the model would be the next 

best way to collect data. 

 Of the many computer simulation types that exist, the one that is appropriate for 

this study is one of an agent-based system.  An agent-based modelling system uses a 

collection of autonomous decision-making entities called agents to operate based on a set 

of programmed rules (Bonabeau, 2002).  It is possible to use general knowledge about 

intersection behavior to program agents in the model to act like their real-world 

counterparts.  Data collection could then be taken by observing the interactions between 

the agents in the model.   
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 To create the intersection model and collect data, NetLogo software was used.  

NetLogo is a free agent-based modelling simulation software that had several features 

needed for this study.  In addition to the basic functions needed to program agent behavior, 

NetLogo also contains several features that allow patch customization, both functionally 

and aesthetically.  This allowed for the intersection to be represented visually in the model 

and for the agents to acting upon it to bear a more similar representation to their real-world 

counterparts.  The aesthetic likeness of the model and the agents acting upon it allow 

making observations to be easier, and the fact that it is a model that is being observed where 

the number of agents can be adjusted means that the NetLogo model is the best alternative 

for data collection during the COVID-19 pandemic. 

 

3.1.1 Reasoning behind the Model 

Even if the COVID-19 was not occurring and data collection was being done through direct 

observation of the intersection, this study is taking an inductive approach to researching 

the topic.  Inductive reasoning is research approach that starts with a premise based on 

observations and regularities in experience.  After establishing the premise to study, 

researchers then collect data and identify patterns and relationships within the data.  These 

patterns and relationships are then used to generate theories from which conclusions can 

be made (Inductive).   

 Whether direct observations were being done or the model was used, both methods 

used the inductive approach to research.  Learning a bit about general intersection behavior 

through research and prior experiences made it easier to program the agents in the model 
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to reflect reality.  Any inference derived from the behavior of the model was made after 

data has been collected.  The process above aligns with the general process of inductive 

reasoning. 

 

3.2 NetLogo Model in Detail 

To create a model that could reflect the behavior of an intersection, NetLogo was chosen 

due to the numerous functions that could make this possible.  The customization features 

of the patches were extensive and met the aesthetic and functional needs of the model.  

Pedestrian and car agent programmability allowed the entities to better reflect their real-

world counterparts’ behavior in the model.  NetLogo’s method of tracking different data 

types also aided in the study conducted.  Finally, the ability for different agent types to be 

programmed in different ways was especially helpful in making the model reflect reality. 

All these points made NetLogo an excellent choice in software to use to model the 

intersection.   

 

3.2.1 Patches of the NetLogo Model 

The model is made up of patches that are roughly 19 x 19 pixels each and are put together 

to form a coordinate grid.  The center patch (also known as the origin) is labelled with the 

coordinates (0,0), with the other patches labelled about the origin.  The size of the model 

is a 25 x 25 patch square with coordinates of the x and y axis ranging from -12 to 12.  Each 

entity can fit in a single patch and their location is internally tracked by the software. The 

entities’ current location is based on the relative position of the entity to the center of each 
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individual patch (i.e.: location (3.3, -1) would be tracked as (3, -1) by the model).  Through 

these coordinates, the entities’ can be programmed based on their location on the model. 

 The patches are also programmed to change color to correspond to different 

intersection features upon setting up the model.  The various shades of dark gray represent 

the roads of the intersection, and the patches have been programmed to vary the shades of 

gray to make each individual patch stand out.  The yellow patches represent the dividing 

lines between road lanes, green represents sidewalks, and the light gray patches 

surrounding the center part represent the crosswalks.  The white patch in the center does 

not correspond to any real-life feature of the intersection and is instead used to mark the 

origin of the coordinate grid.   

 

3.2.2 Behavior of the Entities 

Before the COVID-19 pandemic caused the U.S. to go into lockdown in March 2020, 

observations of the Monroe intersection were recorded starting in January 2020.  These 

observations recorded the general actions of both cars and pedestrians, noted the conditions 

that the intersection was in, and any abnormal events that occurred during the observation 

period.  The behavior of the model agents is based on these observations, but only to the 

extent that the general behavior of the cars and pedestrian was informed by.  It was during 

the observation period that scope of this study was vague and still in the exploratory phase, 

noting down the possible conditions that caused the intersection to behave in the way that 

it did.  The observation records were useful in establishing what behavior the agents in the 
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model would have, but that is the extent of the influence of those records on the agent’s 

behavior. 

The agents representing cars and pedestrians are programmed to behave in similar 

ways despite how different they behave in real life.  Once an entity has reached one of the 

edges of the model, they are immediately inserted at the start of their travel path in the 

model and made to travel it again.  Both cars and pedestrians are programmed to maintain 

their speed in a cardinal direction unless they reach one of the stop-points or turn-points on 

the model.  A stop-point refers to the patch just before the crosswalk on the road or sidewalk 

where pedestrians and cars halt their movements before crossing. A turn-point refers to the 

patches where the entity has the chance to turn and move in a different cardinal direction.  

For cars, their turn-points are in different places within the center of the intersection, while 

the stop-points on the sidewalks double as turn-points for the pedestrians.  

 Coded into the behaviors of the entities are several lines trigger certain actions when 

the entity moves over a specific patch.  A lot of these actions are “preparatory” work, where 

patience values are reset, or flags are changed so that future behaviors are executed only 

once.  All these preparatory behaviors have no visible effect on the entities as they are 

enacted.  Other actions that visibly affect the entities usually involve them stopping, 

starting movement, or changing directions.  All the entities follow the same basic process 

regarding their behavior when traveling. 

 First, the entities will continue traveling in the same direction until they reach the 

stop-point before the crosswalk.  For cars, this means the patch right before the crosswalk 

while pedestrians stop at the corners of the sidewalks they are traveling on.  Once they are 
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stopped, they will wait however long their wait-time value is before each they decide on 

what direction they want to travel.  Both entities types decide on what direction they travel 

in through random chance, with some directions given a higher priority than others based 

on previous observations. Once an entity reaches one of the edges of the model, their 

position is reset to their starting point in the model as described earlier in this section.   

 

3.2.3 Values of the Individual Agents  

Every agent in the model has a separate patience value and a wait-time value assigned to 

them.  Each entities’ patience value is influenced by a combination of a value assigned to 

them after resetting positions and an average of the three previous wait-times that entity 

has experienced.  The part of the patience value that is assigned after resetting positions is 

random and is on a scale from 0 to 40.  The part of the patience value determined by the 

average of the previous three wait-times will continuously change as the oldest wait-time 

value is replaced by a new value at every stop-point.  The total range a patience value can 

be is between 0 and 100, with higher values representing that entity having more patience 

and vice versa for lower values. 

 Most of a wait-time value is largely dependent on that entity’s patience value, 

though there are two other parts that contribute to the wait-time value.  Two other 

components towards an entity’s wait-time include a base value that all entities are expected 

to have (except in cases where the patience of the entity is low), and additive value based 

on whether a collision occurred recently or not (Figure 5).  If an entity’s patience value is 

less than 50 (half of the max possible), then the base value is not added to that entity’s total 
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wait time value.  This mirrors how a person with low amounts of patience will not be 

willing to wait a lot at wait points while people with more patience are more willing to 

wait.  There is also a special pedestrian-only procedure where pedestrians who are at wait-

point will add time to their total wait-time value if a car agent moves to any patch on either 

side of the crosswalk that the pedestrian is waiting at.  This is supposed to emulate how 

pedestrians will generally look both ways before crossing a street and will wait for cars to 

pass by before moving. 

 

Figure 5. A diagram that explains the logic behind the different components of an entity’s wait-time value. 

 

3.2.4 Differences between Car and Pedestrian Entity Programming 
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The basic programming structure in car agents and pedestrian agents concerning behavior 

are similar with a few key differences between them.  One of these differences was that 

cars were programmed to accelerate and decelerate in response to the cars in front of them 

while pedestrians continued moving at a constant speed.  The cars were also programmed 

to avoid moving into patches occupied by other entities, slowing down, or stopping to do 

so.  This behavior is meant to symbolize the differences of how easy/hard it is for 

pedestrians/cars to move in the intersection.  Pedestrians have no trouble changing speeds 

and can easily navigate around oncoming pedestrians while cars must stop for similar 

situations. 

 Pedestrians are also programmed to look out for cars before they cross the 

intersection.  Whenever a pedestrian is waiting at a stop-point, they continuously check the 

patches in the road that are on both sides of the crosswalk during the duration of their wait-

time.  Should a car pass over one of those patches, the waiting pedestrians will add more 

time to their wait-time value.  Cars are not programmed to add any additional wait-time to 

their original value but are instead programmed to immediately stop if they detect an entity 

in the patch they are about to travel into.  This behavior of theirs is a part of the data 

collection process. 

 

3.3 Data Collection Process 

For this study, the model tracks four types of data internally and shows them externally on 

different line graphs on the model interface.  Patience and wait-time data are collected 

directly from the model.  Inter-arrival time data is not directly tracked by the model but is 
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instead derived after collecting data tracking the presence of an entity on certain patches. 

Collision occurrences of the car agents are tracked both cumulatively and in set intervals 

of time.  Data related to patience, wait-time, and inter-arrival values are further separated 

by entity type so that the set of data related to a specific entity type can be easily found.  

This way, it could lead to easier data analysis. 

 

3.3.1 Patience and Wait-Time Values 

The patience and wait-time values are entity specific (each entity has one) and are tracked 

in similar ways.  In the middle of the roads and sidewalks for each entity there are patches 

that are programmed to assign the random portion of the entity’s patience value and the 

past wait-time dependent value as an entity travels over them.  The patch that also assigns 

the patience component based on past wait-time values also records the new total patience 

value for the entity and displays it on the associated line graph.  The wait-time value is 

recorded in a similar way, but the location of where it is recorded differs.  It is recorded 

when the entity reaches a wait point, and before that value counts down.  This way, any 

last-minute adjustments to the entity’s wait-time will be recorded.     

 

3.3.2 Inter-Arrival Values 

The model also tracks the interarrival time between entities arriving to the intersection, but 

in a different manner to the previously two mentioned values.  For each agent type, a patch 

was selected and programmed to let the model know if an entity had passed over it.  Each 

chosen patch was in front of the area that entities spawned from after resetting their 
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position, and essentially let the model know when a new entity arrived at the intersection.  

Internally, the model recorded each time an entity passed over the patch, appearing as a 

binary set of 1’s and 0’s to represent cars on and off the patch respectively.  Discerning the 

actual interarrival time values is done in the analysis portion of the process. 

 

3.3.3 Collision Occurrences 

The final type of data that the model tracks is collision occurrences.  The patches forming 

the center of the intersection as well as the crosswalks are coded to watch for any car that 

slows below a specified speed.  Whenever a car agent slows or stops on these patches due 

to avoiding other entities, a collision occurrence is recorded by the model.  These 

occurrences are recorded both internally by the model as well as displayed on a line graph 

set aside for them.  The collisions are recorded both cumulatively and over set intervals 

where the count is set to 0 after a certain amount of time has passed 

 

3.4 Data Analysis 

Most of the analysis process for data includes taking the data from the model and 

“preparing” it before looking for any patterns or trends.  First, the data is exported and 

separated on different Microsoft Excel workbooks (the data for inter-arrival time needs a 

little extra preparation compared to the other two data types).  After the preparation, the 

data is fitted to several distributions to check the validity of the model in simulating the 

intersection at specified entity numbers.  Once the validity has been checked, line graphs 
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of the data are constructed and compared to a line graph of the cumulative total number of 

collisions.  This process is repeated for however many tests are run. 

 

3.4.1 Exportation and Preparation 

Once exported in a CSV format, the test data is opened in Microsoft Excel and saved as a 

Microsoft Excel file.  The exported file will have a single work page where all the data 

corresponding to line graphs is titled and separated from each other in a series of columns.  

All the data that corresponds to patience values are separated by entity type and transferred 

to work pages on a blank workbook.  The same process is repeated for the wait-time values, 

though they are saved in a separate workbook than the patience values.  The inter-arrival 

time data is similarly separated into a third workbook but requires a bit more preparation 

to analyze. 

 After the data has been separated, a new work page is opened next to one of the 

existing work pages (indicating the data from the existing page going onto the new page). 

On the original page, the y-axis data is filtered so that only 1’s show in the column, which 

means that a car or pedestrian was on the patch at that time.  Once filtered, the columns 

with the x and y-axis data are copied onto the new worksheet.  A third column on the new 

worksheet is then filled with cells calculating the differences between each y-value.  Due 

to the speed at which the entities can move, the model may catch an entity twice on the 

checking patch, which manifests as a bunch of extra 1’s in the third column.  Because of 

this, the third column is filtered again so that there are no 1’s left, and the resulting column 

holds the inter-arrival time data.  
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3.4.2 Checking Validity of Model Through Distribution Fits 

The next step in the analysis process is to fit the patience, wait-time, and inter-arrival data 

to different distributions to ascertain the validity of the model.  To do this, the data to be 

fitted is first pasted onto Notepad text documents (a separate file for each entity type/ data 

type combo).  Once in text documents, the input analyzer function of the ARENA software 

is used to fit the data to specified data distributions.  The square error value on the 

distribution summary measures how accurate these distributions fit the data, with values 

under 0.05 being ideal, though values under 0.1 indicate the fit is good.  How well the 

distributions fit the data indicates how well the model emulates the intersection under the 

chosen number of agents. 

 All three data types are fit to different distributions, but all data from single data 

type is fitted to a single distribution fit for the sake of consistency.  The data pertaining to 

inter-arrival time was fitted to an exponential curve after it was filtered twice on Excel. 

Patience value data was fitted to a normal distribution and was consistently the best fit for 

that data type among the other data types and their fits.  Wait-time data often had a gap in 

the center of the graphs when displayed in the input analyzer so triangular distributions 

were used to fit that data type.  After each entity/data combination has been fitted, a 

screenshot of the summary is saved. 
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3.4.3 Searching for Patterns and Trends 

Once all the combinations have been captured using screenshots, line graphs of each data 

type were constructed along with a line graph of the cumulative total of collisions that 

occurred during the test.  For the inter-arrival time data, the filtered data is used to make 

the line graph.  It is through these line graphs that any conclusions are to be made.  The 

line graphs of the data types will be compared to each other and the graph of the cumulative 

collisions to see if any trends or patterns are present.  After noting down any observations 

that are present, a new test with varying amounts of agents is to be conducted and the data 

analysis process repeats again. 
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Chapter 4.  Results 

 

4.1 Introduction and Results Setup 

The data gleaned from the model is visually presented on a series of line graphs that can 

allow conclusions to be made by simply observing and comparing those graphs.  Once the 

tests were completed, the resulting data was sorted by data type and presented on line 

graphs that would allow the full scale of each test to be easily visualized.  The created line 

graphs were then sorted onto Excel work pages in a way that allows observers to see how 

each data type changed for each entity type over the course of increasing agent density.  

Observers would also be able to note how each data type changes over the course of tests 

of increasing densities and draw conclusions from those observations.  With this setup, it 

will be relatively simple to figure out the approximate point where the priorities of people 

traveling through the intersection should switch from being time focused to safety focused. 

 

4.1.1 Ticks and their relation to the Tests 

To understand how the line graphs for the test data are created, the NetLogo specific time 

units known as “Ticks” needs to be explained.  A tick in NetLogo represents the model 

updating itself one time and the agents performing a programmed action during that update.  

In this model, an agent with a speed value of one will move one patch in the direction they 

are facing or turn itself if it arrives at a turn point during every tick.  The speed value of 

the agents represents how far that agent will move during one update (with a value of 1 

equaling 1 patch, a value of 0.5 equaling half a patch, and so on).  The model keeps track 
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of the number of times its updates using a tick counter, this counter is used as the basis for 

any time-related functions of the model.   

Since the rate at which the model can update is adjustable by users, there is no set 

conversion between real-world time units and the ticks used in the model.  The actual 

conversion of ticks to real-world time is not important, but relative lengths of time are.  An 

event or incident occurring for smaller or larger amounts of ticks translates to that event 

happening for shorter or longer lengths of time.  For ease of understanding, it could be 

thought that a tick equals one second of real-world time (though there is a big source of 

error with this way of thinking that will be described later in this chapter).  Each test ran 

for roughly 5000 ticks, after which the model was stopped and the data that was recorded 

by the model was saved and exported to Excel files. 

 

4.1.2 Setup of the Excel Line Graphs 

For this study, a test was conducted five times at different density levels, with each 

repetition representing the intersection at different levels of entity density.  The first 

repetition had one of each agent type on the model, the second repetition had two of each 

type, and this pattern repeated until the fifth repetition had five agents of each entity type 

on the model.  After a repetition was completed, the associated data was exported to an 

Excel file, and further sorted to different work pages by entity type.  The files containing 

the sorted data for a repetition consisted of three Excel files, with one file containing all 

the Inter-arrival time data, one containing all the wait-time data, and one containing all the 
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patience data.  Each file contained work pages for each of the agent types, with all the data 

concerning an agent type relegated to its corresponding work page.   

Once all the data for the five repetitions were sorted, line graphs for the patience, 

wait-time, and inter-arrival data were made.  For the wait-time and patience line graphs, 

both had their respective values as the y-axis and the time in ticks as the x-axis.  Observers 

can easily see how the values change as they are assigned when looking at the y-coordinates 

for these two graphs.  Since the test was conducted for about 5000 ticks for each repetition, 

the x-axes for all the graphs are relatively similar to each other and will not cause too many 

problems when compared to each other.  The inter-arrival time graphs, on the other hand, 

are a bit different than the graphs for the other two data types. 

 

Figure 6. The patience graph of the blue car agents during the low-density repetition. 

 

Figure 7. The wait-time graph of the blue car agents during the low-density repetition. 
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Because the inter-arrival time graphs were constructed using filtered data, their x-

axes instead track the number of values that have occurred in their respective tests.  The 

scale of the x-axis between tests varies wildly because of this and need to be kept in mind 

when making comparisons between inter-arrival graphs.  The y-axis of the inter-arrival 

graphs (as well as the graphs of the other two data types) is consistent throughout the Excel 

files (i.e., the y-axis for all of the graphs constructed in the inter-arrival Excel file range 

from 0 to 200).  This will make comparisons between graphs using the y-axis less 

complicated and easier to understand.  Once graphs for data from all the tests have been 

created, the graphs were then copied and further sorted into data comparison Excel files.  

 

Figure 8. The inter-arrival graph of the blue car agents during the low-density test. 

 

4.1.3 Setup of the Graph Comparison Files 

The data comparison files consist of three Excel files labeled for each of the three data 

types, and each file is separated into twelve work pages labeled for the twelve entity types 

in the model.  For the wait-time file, the line graphs from all the repetitions that were 

constructed with wait-time data were copied, pasted, and separated by entity type into 

different work pages.  The graphs were size-adjusted and lined up next to each other in 
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intensity-ascending order (graphs from left to right were from repetitions with very-low 

density to repetitions with very-dense intersections).  Below each wait-time graph was 

another line graph of the total collision amount corresponding to the repetition of the graph 

above it (i.e., total collisions for the mid repetition under the wait-time graph for the mid 

repetition , and so on).  This resulted in ten line-graphs per page, lined up in 5 x 2 arrays.  

The files for patience and inter-arrival time graphs were set-up in the exact same manner 

as the wait-time file.  

 

Figure 9. The wait-time comparison file of the blue car agents. 

 

4.2 General Observations from the Results of the Tests 

There are several noteworthy aspects about the graphs for all three data types because of 

both how the data types were tracked on the graph and how the line graphs were created.  

The different method by which the inter-arrival graphs were created results in those line 

graphs to be the most different of the three.  Conversely, the similar way in which the wait-

time and patience graphs were built left them very similar to each other.  By observing 

each of the line graphs on the comparison files, the changes that each graph undergoes as 
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the density of the repetition increases becomes more apparent. This allows conclusions 

about how density affects the various data types to be made based off those observations. 

 

4.2.1 Inter-Arrival Line Graphs 

Looking at the line graphs for both the car and pedestrian agent types reveals some 

interesting differences between the two.  For car agent types, low-density repetitions show 

that the average range of the inter-arrival (IA) values is on the low end of the y-axis 

(roughly between 40 and 100 ticks) with the values consistently remaining in that range.  

As the repetitions increase in density, the average range of the IA values also increases 

along with there being more instances of outlier values (points outside of the average 

range).   The changes in the values also becomes more erratic as the density increases, with 

there being periods where the IA values were consistently lower or higher than the average 

IA value.  It is also interesting to note that the total number of IA values for car agents does 

not linearly increase as the density of repetition increases, with the lowest number of values 

among the car agents being in the very low-density repetition and the highest number being 

in the low-density repetition. 

 

Figure 10. The inter-arrival comparison file for the yellow car agents. This set of inter-arrival graphs 

clearly demonstrates the decreasing consistency trend mentioned in the above paragraph. 
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 The line graphs for pedestrian agent types show very different behavior than the 

graphs for car agent types.  For repetitions with the lowest density, the range of the IA 

values are at their largest (generally between 60 and 190 ticks).  This range also shortens 

as the density of the test increases and lowers to the bottom of the y-axis, with graphs from 

the very-dense tests having ranges of 0 to 60 ticks (on average).  Increasing density also 

both increases the consistency of the IA values staying in the average range and decrease 

the frequency of outliers appearing.  Also, unlike the car agents, the number of IA values 

for the pedestrian agents increase linearly as the density of the tests increases. 

 

Figure 11. The inter-arrival comparison file for the upper right pedestrian agents. This set of inter-arrival 

graphs clearly demonstrates the increasing consistency trend mentioned in the above paragraph. 

 

4.2.2 Similarities and Differences between Patience and Wait-Time Graphs 

Due to how one of the components for the wait-time value of an entity is their patience 

value, the general shape between the graphs of the two data types are similar.  As an 

example (see below), the wait and patience graphs of the very-low density repetitions for 

the LeftD pedestrians are similar in shape with the main difference between the range of 

the values.  This pattern of similar shapes between the two graph types continues as the 

density of the repetitions increases, only breaking slightly on the graphs of the very-dense 
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repetitions.  There are some differences between the two graphs involving specific values 

(the part of the graph at time 2332 being one example), but the general shape of the graph 

remains similar between the two.  These similarities and differences between the wait-time 

and patience graphs can be explained by the fact that the wait-time value of an entity is 

partially dependent on their patience value.  The wait-time’s dependency on the patience 

value explains the similarities in the graph’s general shape while the differences could be 

chalked up to the other components of the wait-time (see Chapter 3, Figure 5). 

 

Figure 12. The wait-time and patience graphs for the down left pedestrian agents (vertical line inserted at 

tick 2332). 

 

4.2.3 Observations of the Patience and Wait-Time Graphs Across Tests 

In addition to the shape similarities, there exists a few other trends that the wait-time graphs 

and the patience graphs share.  One trend is that the total number of values being assigned 

to entities increases as density increases (indicated by how often the graph changes y-

values).  Another trend is that the range of both graph types increases as the density of the 

repetition increases. This is more apparent with the wait-time graphs due to the larger y-
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axis the wait-time graphs use compared to the patience graphs.  Both the car agents and 

pedestrian agents have the trends in both types of graphs so there does not seem to be a 

significant difference between them. 

 

Figure 13. The upper left pedestrian wait-time graphs that demonstrates the mentioned trends shared by 

both wait-time and patience graphs.  The total number of values being assigned along with the range 

increases as the density of the test increases. 

 

4.3 Analysis of the Observations 

Initially, the question that this study aimed to answer was “When are travelers safe enough 

to try to save time, and when does saving time put people at risk when navigating an 

intersection?”  For the purposes of this research paper, this question later became “At what 

level of density should travelers in the intersection switch from a time-saving focused 

mindset to one that prioritizes following the rules for their own safety?”  An answer to this 

question was found by interpreting both the observations made in the previous subsections 

as well as the obtained results of the graphs themselves.  These interpretations allowed for 

answer to be found that was not only plausible, but empirically sound. The following 

paragraphs detail the necessary steps taken to arrive at this conclusion. 
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4.3.1 Classification of the Answer Terms 

One thing that needs to be explained before delving into the analysis is how the density of 

the intersection will be classified for the sake of giving an understandable answer.  The 

density of the intersection will be explained in terms of “model density”, with the 

individual agent types being explained through the concept of “agent composition.”  Model 

density refers to the how many agents were used in the test out the total number of models 

that could be used (it is usually expressed as a percent value).  For instance, the maximum 

possible number of agents that could exist on the model at one time is five agents each 

from the twelve agent types, resulting in a maximum of 60 agents on the model at the same 

time.  The very-low density repetition uses only one agent from each of the twelve agent 

types, resulting in twelve agents in the model at the same time, or having a model density 

of 20%.  
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Figure 14. A more in-depth definition of model density and agent composition. 

 The agent composition of the very-low density repetition is four parts car and eight 

parts pedestrians, referring to the four car agents and the eight pedestrian agents that were 

currently on the model.  The cars can have a maximum of 20 parts (5 agents of each of the 

4 car agent types) and pedestrian can have a max of 40 parts (5 agents of each of the 8 

agent types).  The model density is used to refer to the overall density of the intersection 

while the agent composition distinguishes the exact make-up of the model density.  The 

very-low density repetition has a model density of 20% with an agent composition of cars 

to pedestrians to be 4-8, and each repetition of increasing density raises the model density 
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by 20% and the agent parts by 12 parts per repetition (4 cars and 8 pedestrians).  This 

pattern should end with the very-dense repetition having a model density of 100% and the 

agent composition being 20 parts cars and 40 parts pedestrians. 

 Another term that is used in describing graph behavior a lot is the term “erratic.”  

The previous subsections mention the range of the values a lot, and how the graph usually 

has wider ranges as the intersection density increases.  A graph is said to show erratic 

behavior if the range established in the graphs of a less dense repetition widens as density 

increases.  The higher the difference is between two graphs, the more erratic the behavior 

of the agents becomes.  The next couple of subsections look for behavior of graphs that 

borders on being erratic, meaning that the difference in ranges is there, but not too great. 

 

4.3.2 Inter-Arrival Behavior Analysis 

To start, looking at the inter-arrival graphs reveals that car agents and pedestrian agents 

seem to behave in an opposite fashion to each other, and the reason for this lies in their 

programming.  The cars are programmed to move faster than pedestrians normally, 

meaning that their inter-arrival values would be both lower and more consistent should the 

car agents move without interference.  However, the cars are also programmed to slow and 

stop in response to other agents in front of them, especially other car agents.  A denser 

intersection means that there are more cars that would get in each other’s way, causing 

them to stop more frequently and widen the range at which the inter-arrival values generate.  

This means that the IA value range of the car agents to be wider and the IA values being 

less consistent at higher intersection densities. 
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 Pedestrians, on the other hand, are not programmed to wait for other pedestrians 

and instead move forward at a more consistent speed regardless of whatever is in front of 

them (unless reaching a waiting point).  This means that they can ignore the effects that 

increased intersection density has on the progress of car agents and always move at their 

default speed.  The IA value range for the pedestrians reflects this behavior through the IA 

graphs of increasing intersection densities.  At the very-low density repetitions, the IA 

value range is wider than those on the car agents graphs due to the lower speeds that 

pedestrians travel compared to cars.  As the density of the intersection tests increases, the 

IA value range both narrows and relocates to the lower half of the graph due to the 

increased frequency at which pedestrians arrive to the intersection.   

If a repetition was done at the model density where intersection travelers should 

switch their mindsets from saving time to being safe, then the inter-arrival graphs from that 

repetition should exhibit the following behavior.  Graphs containing data about the IA 

values for car agents should contain a consistent but relatively wide range of IA values 

(around 80 to 90 ticks wide) whose average should be on the lower half of the graph’s y-

axis.  The reason for this is because a consistent range in the IA graphs translates to 

predictability in the frequency of cars entering the intersection in real life.  A predictable 

frequency in turn allows the other travelers already in the intersection to be able to adjust 

their actions if necessary and lessens the chance for a collision to occur.  The target model 

density should (when tested) produce IA graphs for the car agents where this consistent 

range is starting to widen, and outlier values are starting to appear. This signals that the 
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intersection is starting to become more unpredictable and a more safety-focused mindset is 

needed to avoid collisions. 

 As for graphs containing data about pedestrian agents, the IA value range should 

also be consistent (though it can be narrower than the car agent range, with around 60 ticks 

wide being the ideal range) and the average IA value should also be on the lower half of 

the graph’s y-axis.  Unlike the graphs for the car agents, the range should avoid the lowest 

values on the y-axis and instead aim to encompass the center of the lower half of the graphs.  

The reason why both car and pedestrian agents should have their ranges be on the lower 

half of the graphs is because the values there are signifies that the cars are starting to enter 

the intersection more frequently in real life.  This shift in frequency is a good indicator that 

the intersection is starting to fill up more and that a safety-focused mindset will be needed 

to avoid collisions.  As for the reason why ranges for the pedestrian agents need to avoid 

the bottom of their inter-arrival graphs is because those bottom values indicate that a 

continuous or near-continuous flow of pedestrians are entering the intersection, especially 

with the narrower range in IA values that the pedestrian agents have compared to the car 

agents. The switch in mindset needs to take place before a continuous pedestrian flow form. 

 

4.3.3 Patience and Wait-Time Behavior Analysis 

The similarity in the shapes between an entity’s patience graph and wait-time graph is 

because an entity’s wait-time is largely dependent on its patience value (see Chapter 3, 

Figure 5).   Since the patience value of an agent helps determine the wait-time, it can be 

said that the patience value has an indirect effect on the actions of its corresponding agent.  
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By contrast, the wait-time value of has a direct effect on an agent’s actions by causing it to 

physically stop and wait at the various turn points.  It is because of this indirect vs. direct 

effect of the two graphs that only the wait-time graph is used to make any observations 

about how the agents in the target model density should behave.  The patience graphs act 

as an indicator of the behavior of their corresponding wait-time graphs, while the wait-time 

graphs themselves serve as indicators of the agent’s behavior in the model (and thereby 

providing more information when observed). 

 At the target model density where travelers should make the switch in mindsets, the 

corresponding wait-time graph should have a consistent wait-time range that is bordering 

on becoming erratic.  Like the IA ranges in the inter-arrival time graphs, a consistent range 

of values in the wait-time graph translates to predictability of the intersection in real life.  

The predictability in this case refers to travelers being able to guess how long a car or 

pedestrian waits at their current location (at a corner) before crossing the intersection.  The 

range of the wait-time graphs should be slightly different for car and pedestrian agents (cars 

should be around 70 ticks wide and pedestrians should be around 50 ticks, both values 

based on observations of the wait-time graphs for each agent across the different tests).  

The graphs should be bordering on an erratic range since the target model density will be 

the intersection density where predictability starts to go down and collision chances start 

to rise. 

 Also like the inter-arrival graphs, the average wait-time value of the range should 

be located on the lower half of the graph’s y-axis, as well as avoid encompassing the bottom 

values of the wait-time graphs.  The values on the y-axis represent how long the agents 
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wait at the various wait points in the model before resuming their journey, reflecting how 

long pedestrians and cars wait at the corners of the intersection.  Having the agents wait 

less time at the wait points indicates that the intersection “flows” more smoothly, with there 

being less complications that cause the agents to wait longer than necessary.  However, the 

wait-time values at the very bottom of the wait-time graph are wait-times where the agents 

would barely pause at the wait-points or not even stop for them and continue through the 

intersection without stopping.  This translates in real life to cars and pedestrians crossing 

through the intersection without stopping and checking to see if anybody is already 

crossing.  Therefore, having a range with an average wait-time that is close to the 45th  

percentile is ideal since the average values of all the wait-time graphs is 44.856 and the 

switch point would likely be around the average. 

 

4.3.4 Answer to the Question 

The previous sub-sections (4.3.2 - 4.3.3) outlined the behavior of the inter-arrival and wait-

time graphs for the target model density if a repetition was taken and the data was arranged 

onto line graphs.  On the target’s inter-arrival graphs, the graphs for both cars and 

pedestrian agents should have a level of consistency to them that borders on becoming 

erratic.  The range of the IA values for the car agents should be wider than those of the 

pedestrian agents, while the range of the pedestrian agents should avoid the values at the 

bottom of the line graph.  For the target’s wait-time graphs, the consistency of both agent 

type’s graphs should be bordering on erratic (like the inter-arrival graphs) as well as have 

the average wait-time value around or lower than the 45th percentile.  None of the densities 
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that have been tested exhibit the mentioned behavior in their graphs, but the approximate 

model density can be estimated by looking at the existing graphs and deducing the density 

where this behavior could be exhibited. 

 When looking at the various inter-arrival and wait-time graphs, it seems like the 

two graphs that are the closest to the target behavior are the ones for the low-density 

repetition (40% model density) and the mid-density repetition (60% model density).  

Therefore, it seems that the model density that best exhibits the target behavior should be 

at around a model density of 50% with a composition of 8 parts cars and 22 parts 

pedestrians (totaling 30 parts out a possible 60 for the model).  Since the graphs for the 

40% low-density repetition and the 60% mid-density repetition are on either side of the 

behavior of the target density, it makes sense that a density of 50% would exhibit the target 

behaviors. The agent composition of the chosen density is based on the results of the inter-

arrival graphs for both low-density and mid-density tests. 

 Looking at the inter-arrival graphs for the car agents, the IA values tend to be lower 

when the density of the test is lower.  The graphs for the low-density tests already shows 

the IA values for the car agents starting to become inconsistent.  Having the same amount 

of car agents between the low and target model densities seems like the best way to preserve 

that “bordering-on-erratic” behavior already on the low-density test graphs.  Conversely, 

pedestrian IA values tend to be more consistent as the density of the test increases, which 

means that having more pedestrians in the agent comp than in the low-density test would 

bring the behavior of the graphs closer to the target behavior.  This agent composition will 

not have any particular effect on the wait-time graphs since both the car and pedestrian 
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agents share the same general trends in terms of consistency over increasing density.  The 

50% model density will cause the wait-time graphs to exhibit the target behavior while the 

inter-arrival graphs will be influenced by the specific agent composition.  

 

4.3.5 Validity of the Model at each Density Level 

After the repetitions were completed and all the data had been sorted, the data associated 

with each entity for each repetition was copied onto a text document to be fitted in the 

ARENA input analyzer.  The purpose of this was to figure out how well the model 

simulated the intersection at different densities by fitting the data to different distributions 

and seeing how well those distributions aligned with the data.  An exponential distribution 

was chosen to be fitted onto the inter-arrival time data, normal distributions were chosen 

for the patience data, and triangular distributions were chosen for the wait-time data.  These 

three fits were chosen because they had the lowest square error values (for each data type 

set) aside from beta and Weibull distribution fits.  Once the data was fitted, a screenshot of 

the fit was saved in another file and used to record further data about the square error values 

and p-values for the chi-square test and the Kolmogorov-Smirnov test. 
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Table 1. A table detailing the two p-values and the square error value for the fit of each data type (Larger 

Version provided in Appendix E). 

The lower the square error (SQE) values and the p-values are, the less chance there 

is that the corresponding data was outside of what they should have been normally and the 

more likely the model was accurate.  The chart above splits each entity types’ data into 

inter-arrival, patience, and wait-time fits, and gives the SQE and p-values for each 

repetition.  Some of the values are highlighted in orange to signify that the SQE or p-value 

in question is above 0.1 (or not-available due to an error) and may be an indicator that the 

data for the corresponding set was an irregularity.  The less orange values a repetition has, 

the more accurate the model has simulated the intersection under the corresponding 

density. The orange values currently on the distribution table shows some interesting 

trends. 

 All the orange highlighted values are Inter-Arrival values, which hints that the data 

for the inter-arrival values may be a bit inaccurate.  That may be true since the data had to 
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be filtered twice to get rid of extraneous data points.  The speed at which the cars and 

pedestrian agents were moving at caused them to linger on patches over the course of 2 to 

3 ticks.  This caused them to be counted twice on the patch that checks for new arrivals to 

the intersection and cause extra data values of 1 tick to be included in the data when inter-

arrival times were calculated.  The second filtering allowed those extra 1’s to be removed, 

but it also reduced the total number of data points entered into the distribution.   

 Other than some of the inter-arrival values, most other values (especially the 

patience and wait-time values) were under 0.1.  This argues that for patience and wait-time 

values, the model did a good job in gathering accurate data, while the inter-arrival methods 

were a bit hit-or-miss.  The dense and the very dense repetitions especially had a lot of 

orange values, meaning that the data those two repetitions collected were a bit questionable.  

However, that fact remains that all (save one) the square error values were under 0.1 which 

means that the fits for each data set are accurate to some extent.  That means that this data 

has some validity and may be considered reliable (albeit with some reservations as to the 

extent of its accuracy). 

 The distributions that were chosen for each data set were chosen because they were 

simple to understand and provided an easier way to analyze the data.  The problem that 

these fits were trying to solve was simple, and that was to determine the validity of the 

model under the various densities.  The triangular, exponential, and normal distribution fits 

were both simpler to understand and fulfilled the simple goal that the data set fitting was 

meant for.  Using a Weibull or Beta distribution would have resulted in needing more 

calculations to determine the validity of the model and needlessly complicating the validity 
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verification.  The three mentioned fits were both simpler to use and had error values that 

were low enough to indicate that the fits worked. 

 

4.3.6 Complex Behaviors Emerging from Simple Rules 

The coding of the agents caused them to perform basic actions like stopping, accelerating, 

and turning.  These actions are in accordance with the simple rules that are laid out by the 

model’s code, and each rule is not complex by themselves.  However, the series of agents 

acting at the same time causes complex behaviors to arise from those simple rules.  These 

complex behaviors can range from causing the pedestrian agents to act in a more 

“aggressive” manner when grouped up to having the car and pedestrian agents take turns 

in crossing the intersection.  These complex behaviors, though not explicitly coded in 

model, are the constructs of the simple rules outlined by the code. 

 However, the complex behaviors are not necessarily planned nor are they 

intentional.  Often, the analysis portion of studies with a model like this one includes 

identifying what complex behaviors arise from the code that was programmed into the 

model.  For a model like this one, what complex behaviors emerged was the result of both 

the rules that the coding dictated as well as what conditions the model was under.  In this 

model, it was intersection density that caused the agents to exhibit the more aggressive 

behavior that was akin to a mob mentality (even though no such behavior was explicitly 

coded).  It was these complex behaviors that ultimately caused the graphs to turn out the 

way they did. 
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4.4 Limitations and Sources of Error 

A major limitation of the model itself is that it can only simulate static density situations 

and cannot change the overall density mid test.  Reality does not work under the assumption 

that the density of an intersection stays constant, so the model cannot simulate reality to 

that extent.  That is why the series of tests are necessary, so that data between different 

densities can be compared.  Another limitation of the model is the lack of agents’ dynamic 

behavior.  Each agent can only follow their programming rigidly and cannot dynamically 

change their actions like a human in real life could.  The agents sticking rigidly to their 

programming may cause them to get into incidents that a real human would recognize and 

avoid by altering their approach. 

 One potential source of error (as seen in the previous section) was the data gathering 

and preparation methods for inter-arrival time data.  The greatest number of p-values over 

0.1 are from inter-arrival data and suggests that the method of collecting the data needs to 

be improved to get more accurate data.  The filtering of the data is necessary because 

without doing that, extra points that are technically not a part of the data get mixed into the 

data set.  Since filtering out extra points leaves less data points overall to analyze, one 

possible way of improving the gathering method is to extend the time at which the model 

is running, therefore increasing the number of inter-arrival points to analyze. 

 One problem with interpreting the data has to do with the conversion of ticks to 

real-world time units and how there is no set conversion.  If average wait-time of the target 

behavior were to be converted 1 to 1 with seconds, then the ideal wait-time would 

essentially be 25 to 30 seconds for each pedestrian and car before the switch in mindsets 
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were to take place.  This is an unrealistic scenario since realistically, both pedestrians and 

cars would wait less time than that if they were still in a time-saving focused mindset.  Prior 

observations of the intersection before the model were made saw that the cars would 

usually wait only 5 to 10 seconds while they were still in a time-focused mindset. The 

target wait-time should be waited out when the cars and pedestrians are still in this mindset 

and waiting only a little longer than the mentioned times.  Since the 1 to 1 conversion of 

ticks to seconds provides unrealistic answers, relative lengths should instead be used in 

interpreting the model and the real-life intersections. 

 The programming behind the model could potentially be the biggest source of error.  

The way data is collected, or the way agents behave, there are many ways that to code the 

kind of behavior that is currently in the model.  There could be quirks in the code that cause 

unforeseen errors, and there could exist ways to code those behaviors without those quirks.  

Without re-coding the model and redoing the tests, there is no way to know what the best 

method to code in the behaviors are.  Any future study should take note of the behaviors 

of the agents in this model and see if the ways to code them could be improved upon in any 

way. 
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Chapter 5.  Discussion and Conclusion 

 

5.1 Discussion of the Claims 

The answer that was given to the question “What is the level of density in an intersection 

where travelers should switch their mindsets from being time-focused to safety-focused?” 

was given in terms of model density and agent composition.  These two terms are specific 

to the model itself, but they can be translated to real world concepts that help answer the 

question realistically.  Model density can translate intersection density, which means how 

full of pedestrians and vehicles an intersection is compared to the maximum number of 

entities that can be in the intersection at the same time.  Intersection density is used rather 

than concrete numbers so that the answer given is not limited to any one intersection.  

Agent density can translate to the exact makeup of the entities currently in the intersection 

(exactly like how agent composition is with the model, only referring to actual people 

rather than agents).  Even if two intersections have the same intersection density, the 

compositions of both could be completely different from each other (at 100% density, one 

could be filled with a mix of cars and pedestrians while the other is completely full of 

pedestrians. 

The answer given in the previous claims that the point where travelers would 

change their mindsets from being focused on saving time to being focused on navigating 

safely was at 50% model density with an agent composition of 8 parts cars and 22 parts 
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pedestrians.  Translated, this would mean that travelers would change their mindsets when 

the intersection they are about to travel through is at half its total capacity and the entities 

within it consists around 27% cars and 73% pedestrians.  Travelers may not necessarily 

change their mindsets at this density level since there are several extraneous factors (like 

traveler disposition or weather) that could affect their decision.  However, it is at a 50% 

intersection density level where travelers SHOULD change their mindsets if they want to 

navigate the intersection without incident.  The exact makeup of this density level is also a 

bit flexible but should follow the trend of consisting of mostly pedestrians with a few cars 

in the makeup. 

 

5.1.1 Results over Multiple Intersection Types 

With the way that the answer was given through concepts that translate to intersection 

density and the makeup of that density, these results could apply to other intersection types 

as well.  The Monroe Street intersection used to reach this answer is a four-street 

intersection with three two-way streets and one one-way street leading to the intersection 

center.  It is not unreasonable to assume that other travelers in other intersections like the 

Monroe intersection behave in a similar manner.  This means that the answer from this 

study could apply to these intersections if they are not too different than the one used for 

this study.  Even if the density for these other intersections is different, then the answer 

given in this study can act as a starting point to research what these other target densities 

are. 
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 However, this type of study will not provide target densities for intersections that 

are regulated by traffic lights due to how there is an external force that regulates the 

intersection.  The intersection that the model was based off did not have a traffic light or 

any external traffic regulator other than static stop signs and existing intersection rules.  It 

was all up to the individual travelers to follow the rules and make decisions based about 

the intersection.  Having a traffic light that actively told when cars could and could not 

cross the intersection took a lot of the decision making out of the hands of the individuals 

and left it to an objective, impartial device.  Having pedestrian lights in an intersection does 

the same thing as the traffic lights, but for pedestrians instead. 

 The point of estimating the density in this study was to find the density of the 

intersection where most travelers would likely decide when they want to switch to a more 

safety-oriented mindset.  Having external regulators that tells every traveler when they 

should or should not act established objective periods of time that dictates the behaviors of 

others.  A switch in mindset for the travelers will not matter as much since the only things 

that a traveler has to do to safely cross the intersection is obey the traffic lights, which 

heavily encourages a safety-focused mindset. The only times a driver will cross the 

intersection with a time focused mindset is if they ignore the red lights at the intersection, 

arrive at the intersection as green lights pop up, or speed up to cross the intersection when 

the light is yellow.  Pedestrians will be even less likely to disobey traffic laws since if they 

get into an accident, they are often the ones that come out of it worst off. 

 

5.2 Possible Routes for Future Research 
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Using this study as a foundation, there are many other research routes that can investigate 

a variety of other topics related to research.  One route is rebuilding the model so that it 

depicts other intersection types can allow investigations of the target density of other 

intersection types with different street configurations.  Another route is coding the model 

in a way that can investigate the effects of weather on the switch in mindset (though this 

requires a lot of observation of car and pedestrian behavior under various types of weather).  

There is also the possibility of adding other types of other agent types to the model like 

bikes, trucks, or buses to see how those affect the density point.  Basically, there are many 

ways to improve upon the study to research various aspects of the target density point. 

 

5.2.1 Suggestions for Improving on This Study’s Procedure 

There are several ways in which the study for this procedure could be altered or improved 

upon to get a better result or more accurate result than what was already found.  For one 

thing, the way that agents enter and exit the intersection could be reworked to add a bit of 

dynamic elements to the number of agents in the model at once.  The way the model works 

now is that the users set the number of agents that they want on the model and when run, 

the model keeps the agent amount constant.  Instead of having the agents simply reset their 

positions when they travel, it could be possible to instead erase the agent after they finish 

and recreate them at their starting point after a bit of time passes.  This could let the user 

instead set agent limits and have the model never generate a number of agents that is over 

the limit at the same time.  Doing this would allow a degree of realism to the model and 
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depending on how the rate of agents spawning is coded, allow for study on how other 

external aspects affect the target density point. 

 Other than agent numbers, a lot of improvement could center around tweaking 

certain aspects of the code for a more accurate model overall.  The speeds of the various 

agents could be increased to avoid the problem with the inter-arrival patch checker 

counting the same agent twice.  The wait-time assignment could be readjusted so that the 

assignment and record of the wait-time could happen closer together.  The collision checker 

could be reworked so that it always checking the agents rather than just the agents in the 

center of the intersection.  The are many small and numerous ways to alter the code so that 

it can be improved for a more accurate experience. 

 

5.3 Conclusion 

According to the research done by this study, there exists a tipping point when travelers in 

an intersection (without traffic lights) should switch their mindsets from one that prioritizes 

saving time when to one that prioritizes following the rules to stay safe.  This tipping point 

is based on how full an intersection is of travelers at the time a new traveler enters or is 

about to enter an that intersection.  When the intersection in question is at a density of 50% 

and is comprised of a 27% to 73% ratio of cars to pedestrians, travelers should become 

more focused of following the rules for their own safety.  Though this density and ratio 

may not be the same in other intersections than the one studied in this paper, it could be 

close depending on how similar that intersection is to the Monroe Intersection used in this 

study. Keeping in mind that each intersection not regulated by a traffic light has a similar 
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turning point will help travelers in general keep safe should they attempt to cross a similar 

intersection when it is at the tipping point. 
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Appendix A: Model Screenshots 

 

Figure 15. The interface of the model that contained both the control panel for adjusting agent numbers and 

the various line graphs created to display the data. 

 

Figure 16. The intersection model that is currently has the number of agents equivalent to that for the mid-

density test. 
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Appendix B: Inter-Arrival Time Graphs 

Figures 17 presents all the inter-arrival time graphs of the blue car agents, Figure 18 

presents all the inter-arrival time graphs of the red car agents, and the pattern repeats until 

all the inter-arrival time graphs are presented.  Each graph is labeled with what test the data 

originates from. 
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Figure 17. Blue Car Inter-Arrival Time Graphs 
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Figure 18. Red Car Inter-Arrival Time Graphs 
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Figure 19. Yellow Car Inter-Arrival Time Graphs 
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Figure 20. White Car Inter-Arrival Time Graphs 
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Figure 21. Left (Up) Pedestrian Inter-Arrival Time Graphs 
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Figure 22. Left (Down) Pedestrian Inter-Arrival Time Graphs 
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Figure 23. Up (Left) Pedestrian Inter-Arrival Time Graphs 
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Figure 24. Up (Right) Pedestrian Inter-Arrival Time Graphs 
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Figure 25. Right (Up) Pedestrian Inter-Arrival Time Graphs 
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Figure 26. Right (Down) Pedestrian Inter-Arrival Time Graphs 
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Figure 27. Down (Left) Pedestrian Inter-Arrival Time Graphs 
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Figure 28. Down (Right) Pedestrian Inter-Arrival Time Graphs 
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Appendix C: Wait-Time Graphs 

Figures 29 presents all the wait-time graphs of the blue car agents, Figure 30 presents all 

the wait-time graphs of the red car agents, and the pattern repeats until all the wait-time 

graphs are presented.  Each graph is labeled with what test the data originates from. 
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Figure 29. Blue Car Wait-Time Graphs 
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Figure 30. Red Car Wait-Time Graphs 
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Figure 31. Yellow Car Wait-Time Graphs 
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Figure 32. White Car Wait-Time Graphs 
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Figure 33. Left (Upper) Pedestrian Wait-Time Graphs 
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Figure 34. Left (Down) Pedestrian Wait-Time Graphs 
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Figure 35. Up (Left) Pedestrian Wait-Time Graphs 

 

 



120 

 

 

 

 



121 

 

 

 

  



122 

 

 

Figure 36. Up (Right) Pedestrian Wait-Time Graphs 
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Figure 37. Right (Up) Pedestrian Wait-Time Graphs 
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Figure 38. Right (Down) Pedestrian Wait-Time Graphs 
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Figure 39. Down (Left) Pedestrian Wait-Time Graphs 
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Figure 40. Down (Right) Pedestrian Wait-Time Graphs 
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Appendix D: Patience Graphs 

Figure 41 presents all the patience graphs of the blue car agents, Figure 42 presents all the 

patience graphs of the red car agents, and the pattern repeats until all other patience graphs 

are presented.  Each graph is labeled with what test the data originates from. 
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Figure 41. Blue Car Patience Graphs 
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Figure 42. Red Car Patience Graphs 

 

 



142 

 

 

 

 



143 

 

 

 

  



144 

 

 

Figure 43. Yellow Car Patience Graphs 
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Figure 44. White Car Patience Graphs 
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Figure 45. Left (Upper) Pedestrian Patience Graphs 
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Figure 46. Left (Down) Pedestrian Patience Graphs 
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Figure 47. Up (Left) Pedestrian Patience Graphs 
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Figure 48. Up (Right) Pedestrian Patience Graphs 

 

 



160 

 

 

 

 



161 

 

 

 

  



162 

 

 

Figure 49. Right (Up) Pedestrian Patience Graphs 
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Figure 50. Right (Down) Pedestrian Patience Graphs 
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Figure 51. Down (Left) Pedestrian Patience Graphs 
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Figure 52. Down (Right) Pedestrian Patience Graphs 
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Appendix E: Enlarged Version of Table 1 

 

Table 1. A table detailing the two p-values and the square error value for the fit of each data type.  Enlarged 

from Section 4.3.5. 

 


