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Abstract 

Data science is a rapidly growing industry permeating throughout every aspect of society.  
Everything collects data these days, and people use this data to find meaningful patterns 
leading to benefits ranging from more intuitive marketing to better cancer detection.  
However, increased data collection also leads to increased complexity, and data science 
works to manage this complexity through various techniques and machine 
learning/artificial intelligence models.  But data science faces two significant issues: too 
many features in a dataset and long model training times.  To help combat these issues, the 
author developed a tool called Ensemble Feature Importance Ranker (EFIR).  This paper 
analyzes the accuracies and limitations of this innovative tool through a series of 
experiments on linear regression datasets.  Preliminary results and metrics show high 
accuracy in finding the most impactful features, overall proving that EFIR identifies the key 
features in linear regression datasets.  In short, EFIR leads to better data and faster model 
training times under various conditions.  
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1 Introduction 

The world has exploded with information, and we are collecting and analyzing this 
information at an unprecedented scale.  Known as Big Data, this growing industry is worth 
over $70 billion and produces around 2 exabytes of information daily (that’s 2,000 trillion 
bytes)[1].  Data accumulation is everywhere: computers, phones, cookies, social media, 
newsfeeds, emails, at-home assistants, wearables, etc. all gather information [2].  Even new 
dishwashers come with data collection capabilities [3]. 
 
The sheer amount of data generated every day is unfathomable, bringing with it intricate 
and insightful trends hidden within the noise.  Because the human mind simply cannot 
comprehend or understand nuances within this sea of data, we created complex and 
“intelligent” computers to understand it for us.  This is the birthplace of machine learning 
(ML) and artificial intelligence (AI)[4].  By possessing all this data, we hold the potential to 
estimate trends and manage predictions, but accurately finding meaningful conclusions 
from data is difficult.  To tackle these challenges, an emerging industry using ML/AI models 
rapidly grew into mainstream technology.  Today, we call this industry data science.   
 
Data science faces two main problems: too many features within a dataset and long model 
training times [5], [6].  The first problem manifests in a myriad of ways.  A dataset “feature” 
refers to a column in a dataset, which can be almost anything: height, weight, median 
income, etc. (as opposed to the rows, or “observations”, of a dataset).  More features lead to 
less understanding because complexity inherently increases.  Though ML models assist in 
analyzing these complex problems, a tradeoff exists between a model’s complexity and 
interpretability, leading to all sorts of real-world problems [7]–[10].  In other words, the 
more complex a dataset, the less likely a model will find meaningful trends within the 
dataset, leading to mediocre performance.  Furthermore, including too many features 
causes models to become unsolvable.  Known as the “curse of dimensionality”, this 
phenomena causes model and numerical instabilities, causing unusable models [11].  The 
feature problem is also exacerbated because most collected data contains noisy, dirty, 
irrelevant, or redundant features, causing further drops in performance [12]. 
 
The second problem data science faces is long model training times, which directly 
correlates to the problem of too many features due to simple physics.  Because of finite 
hardware capacity, ML models can only analyze a certain amount of data at a time.  The 
more data fed to a ML model, the longer it takes to learn the data.  Though there are many 
companies in the space working to optimize and increase hardware and computational 
capacity, data accumulation is exponentially increasing while continued optimization yields 
diminishing returns [13].  Furthermore, increased model times lead to delays in results and 
increase the drain on limited energy resources. 
 
While companies focused on making bigger and faster models, data scientists turned 
towards making the data itself cleaner and leaner using various “feature selection” 
techniques.  Feature selection encompasses a family of methods geared towards reducing 
the dimensionality of the feature space.  In other words, they attempt to decrease the 
number of features necessary to train a model.  Though useful, these processes often fall 
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short of expectations and only work in certain situations.  The Background section of this 
paper covers this topic in more detail. 
 
For now, know that many feature selection processes are too specialized and limited in 
their capacity to find the key features in a dataset.  A new data science tool known as 
Ensemble Feature Important Ranking (EFIR) aims to change that.  The author developed 
EFIR to better understand how certain features contributed to the outcomes of a model.  
This tool uses an ensemble approach to help users identify the most important features in a 
dataset and therefore discard irrelevant features.  These insights alleviate the issues 
associated with high dimensional feature spaces (i.e., too many features in a dataset), 
leading to more effective datasets and faster model training times.  As such, EFIR addresses 
the above data science problems by facilitating leaner, more understandable datasets, and 
therefore better ML models with faster training times. 
 
The following paper details how EFIR helps solve these major problems and assesses the 
true efficacy of the tool on linear regression datasets.  First, the Background provides a 
brief overview of feature selection methods and explains the origins of EFIR.  Then, the 
Methods section goes over the datasets and processes used to evaluate the thesis.  Finally, 
the paper concludes with an analysis of the results and a conclusion on the effectiveness of 
the tool. 

2 Background 

Before diving into the specifics of EFIR, let us look at similar methods and understand why 
innovation in the space is necessary. 

2.1 Feature Selection 

As previously stated, creating faster ML/AI models is becoming increasingly difficult while 
ML/AI chip advances only gain marginal returns due to hardware limits [13].  The rate of 
data growth is simply outpacing hardware innovation and how much data can flow through 
the physical components of a computer.  Because of these physical constraints, datasets 
became another target in reducing long model learning times.   Plus, dirty datasets lead to 
poor model performance regardless [14].  Therefore, efficiently leaning and analyzing 
datasets is critical to the data science industry.   
 
The inherent problem with dataset analysis is determining which features are important to 
an ML model.  In other words, given a target label (the goal a model learns), a user wants to 
know which features correlate most strongly with the target.  For instance, imagine a 
dataset on lung cancer where each row contains data about a patient and the target label 
shows whether the patient has cancer.  Doctors would like to know which features, such as 
height, weight, smoking amount, etc. are most strongly linked with a positive cancer 
outcome.  In this case, height is probably unimportant, while the amount the patient 
smokes is likely indicative of cancer.  As such, features that do not correlate to the target 
(i.e., “noisy” features) are removeable.  In general, this improves model accuracy, lowers 
training time, and increases model generalizability [15]. 
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The main method of identifying contributing features in a dataset is called feature selection 
[16]–[18].  Many ML methods/approaches come with the ability to perform feature 
selection, including Lasso/Ridge Regression [19], Information Gain [20], Relief [21], Fisher 
Score [22], Elastic Net [23], and many more.  There are many studies emphasizing the use 
of feature selection methods for improving models for a variety of different problems [24]–
[27].   

2.2 Too Many Solutions 

Though detailing each of the mentioned techniques goes beyond the scope of this paper, it 
is important to acknowledge each method works in a specific domain.  For example, linear 
regression models use Lasso Regression.  Though it is very adept at this job, Lasso 
Regression falls short in solving problems where no linear relationship exists between the 
input features and the target label.  As another example, decision trees such as Information 
Gain suffer from feature selection bias where features with many values are favored over 
those with few values [28].  In other words, a feature such as height, with varying values, 
would gain precedence over a binary feature, which only has two possible options, simply 
because height has more variety.  
 
In short, there are many different ways of selecting features, even within one single 
algorithm [29].  However, though no single method works for all problems (see the “no free 
lunch theorem” [30]), data science champions generalizability.  Current feature selection 
methods cannot meet this task, but a new method would work by choosing important 
features from any given range of datasets with varying trends and features.  One possible 
solution is an ensemble approach [31].  The ensemble method relies on the idea of 
“majority rules,” where many inputs are considered and weighed for an overall voted 
output.  Many ensemble methods show model prediction improvement and solve an array 
of challenges [32]–[35]. 
 
Through an ensemble feature selection program, features could be ranked in order of 
importance.  A feature is important if it highly relates to the target label and unimportant if 
no relation exists.  Though other studies and methods explore various feature importance 
and ranking techniques [36]–[38], no study or tool combines different, opposing methods 
of feature selection in an ensemble fashion.  As such, EFIR was created under the 
assumption that including multiple feature selection approaches would allow coverage 
across a variety of models, capturing different decision boundaries into one single, more 
accurate solution. 

2.3 Ensemble Feature Important Ranker (EFIR) 

If ensemble methods improve model performance [31], it is natural to assume a similar 
outcome for feature selection.  This line of thinking led to the creation of EFIR, an ensemble 
feature ranking program.  By leveraging existing ML models, EFIR takes in a dataset and 
outputs a list of features ranked in importance.   
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Figure 1: An overview of the EFIR process 

The models used in EFIR are Random Forest [39], XGBoost [40], and Linear/Logistic 
Regression [41], [42].  Both Random Forest and XGBoost are types of decision trees.  
Random forest is a simpler model robust against overfitting, building its trees 
independently (parallel) of each other in a bagging technique.  XGBoost is more complex 
and handles unbalanced datasets well, building its trees sequentially through gradient 
boosting.  Linear regression uses ordinary least squares to fit the equation and is used in 
regression tasks, while logistic regression uses maximum likelihood estimation and is used 
for classification tasks.  Like previously mentioned, they fail when the relationship between 
features and the target is not linear/logistic. 
 
Each model also runs through a series of feature selection methods, which are permutation 
importance [43], drop column [44], error analysis [45], and sequential feature selection 
[46].  See Table 1 for a brief overview of each method. 
 
 

Table 1: Descriptions of the feature selection methods used in EFIR 

Method Description 

Permutation 

Calculates the importance of each feature by permuting the 
values of a single feature, running the altered dataset through 
the model, and comparing the difference in accuracy (or another 
metric) between this outcome and a baseline result. 

Drop Column 
Works similarly to Permutation by dropping an entire column 
and running this altered dataset, rather than altering the values 
within a column. 

Big/Small Error 
Finds the highest and lowest accuracy (or another metric) for 
observations the model predicted.  In other words, find the 
observation with the best guess and the worst guess.  The 
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internal feature coefficients used to make the best and worst 
predictions are pulled for use in EFIR. 

Forwards Sequential 
Selection 

Begins by choosing one feature at a time and evaluating 
performance, going through all n features of the dataset.  FSS 
chooses the feature with the best performance and adds it to the 
dataset.  Then it begins on two-feature subsets, adding the next 
best feature.  FSS repeats this cycle with n-feature subsets until 
outcome improvements cease. 

Backwards Sequential 
Selection 

Works similarly to FSS, albeit by starting with all n features and 
removing features one at a time. 

 
 
Internally, this ensemble of models and methods runs through the dataset.  Each model in 
EFIR contains an internal ranking of features which can be pulled out after training.  For 
example, Random Forest contains a method called “feature_importances_”, and Linear 
Regression has “coef_”.  These methods show which features the model deems important to 
the outcome.   
 
The heart of EFIR lies in the subsequent ranking system, which “normalizes” these model 
rankings into one overall score.  Because each model maintains a unique internal ranking 
system, the results from one model cannot be directly compared against a different model.  
So, EFIR converts each internal ranking into a general score, which is comparable against 
every other model’s internal feature ranking.  The result is a list of feature importance 
scores detailing which features are most highly correlated to the target label.   
 
This paper sets out to prove that EFIR will correctly identify relevant features under a 
variety of conditions in linear regression datasets. 

3 Methods 

EFIR takes in a dataset, runs the ensemble on the dataset, and outputs a list of features 
ranked from most important to least important.  To verify this functionality, the tool must 
be tested on datasets where the most important features are already known.  Then, by 
possessing the answer to each dataset, the efficacy of EFIR can be assessed using custom 
metrics that compare the results with the correct dataset answers. 

3.1 Data 

As real-world datasets are complicated and rarely possess certain important features (thus 
highlighting the need for innovative feature selection tools), they are not useful in 
evaluating the accuracy of EFIR.  Synthetic datasets, however, provide an easy and clear-cut 
way to assess the tool.  By creating a diverse set of data with known important features, 
different boundaries of EFIR can be explored and measured. 
 
All the synthetic datasets were generated using Scikit-Learn’s make_regression method, 
which generates datasets using a Linear Regression model [47].  The number of features 
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used, the ratio of important features to unimportant features, and the number of dataset 
observations were varied to create a range of datasets.  Overall, two experiments with two 
different sets of variables were run and analyzed.  See Tables 2 and 3 for a detailed list of 
the values used in each experiment. 
 
 

Table 2: Variables and corresponding values used to generate synthetic datasets in Experiment 1 

Variable Values 
Features 3, 5, 10, 15, 25, 50, 75, 100, 150 
Importance Ratio 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 
Observations 10, 100, 1000, 2000, 5000, 7500, 10000 

 

Table 3: Variables and corresponding values used to generate synthetic datasets in Experiment 2 

Variable Values 
Features 10, 30, 50, 70, 90, 110, 130 
Importance Ratio 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95 
Observations 100, 1600, 3100, 4600, 6100, 7600, 9100 

 
 
Experiment 1 set out to solve the main thesis statement: EFIR can identify the important 
features in linear regression datasets.  The first set of variables were used for general EFIR 
testing.  Based on the metrics, which are discussed in the following section, the useability of 
EFIR could be evaluated.   
 
Experiment 2 was created to make results more generalizable and robust towards real-
world situations.  Which dataset aspects would cause the most influence in the results: the 
number of features, the ratio of important features to unimportant features, or the number 
of observations?  To answer this question, the second set of variables follow a more rigid, 
equal step pattern so a Multiple Linear Regression (MLR) model could be run on the results 
and provide insights into the relationship between the variables and the outcome.  MLR is a 
statistical test that determines if a linear relationship exists between any of the features 
and the outcome variables.  Evaluating the impact of these three variables provides insight 
into the boundaries of EFIR. 
 
To ensure repeatability, all datasets were set with a seed of 42.  Note that the importance 
ratio rounds up when applied to features to get the total number of important features, 
since the make_regression method cannot take decimals as parameter values.  For example, 
3 features multiplied by an importance ratio of 0.01 equals 0.03, which rounds up to 1 
important feature.  The number 1 is then used in the function to set the total number of 
important features in the dataset. 
 
Furthermore, some generated datasets were removed due to obvious conflicts.  For 
example, datasets with more features than observations were withdrawn because of 
common data science practices (see the curse of dimensionality [48]).  Datasets with 100% 
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important features due to rounding were also removed, as the point of EFIR is rendered 
moot: if all features are important, there is no reason to run an algorithm to assess feature 
importance.   
 
Finally, since data science happens in the real-world, a dataset with relatively well-known 
important features will be used to assess EFIR.  The dataset chosen for this task is the 
California Housing dataset [49]. 

3.2 Metrics 

To evaluate EFIR, two different metrics called overlap and distance were created.  See 
Table 4 and Equations 1 and 2 for details about each metric. 
 
 

Table 4: Metrics used to evaluate EFIR 

Metric Description 

Overlap 

A percentage between 0-100% (where 100% is a perfect score) measuring how 
many important features are in the top rankings out of the total number of important 
features.  For example, if there are 3 important features and 10 features total, then 
those 3 features must show up in the top three spots of the rankings for a perfect 
100% overlap. 

Distance 

A value (where higher numbers equal further distances) measuring the difference 
between the mean of importance score for each feature cluster (important vs. 
unimportant).  In other words, measure how far apart the mean of important feature 
scores is from the mean of unimportant feature scores. 

 
 

Equation 1: Method for calculating the overlap metric 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =  
𝐼𝑚𝑝. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑝.  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

 
 

Equation 2: Method for calculating the distance metric 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑎𝑏𝑠(𝐼𝑚𝑝.  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑚𝑒𝑎𝑛 −  𝑈𝑛𝑖𝑚𝑝.  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑚𝑒𝑎𝑛)

𝑀𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 − 𝑀𝑖𝑛 𝑠𝑐𝑜𝑟𝑒
 

 
 
Used in conjunction with each other, overlap and distance provide a picture of EFIR’s 
accuracy.  Overlap informs the tool’s ability to properly select which features are 
important, considering the important features are already known.  Distance pairs nicely by 
further detailing how well EFIR separates important features from unimportant features.   

4 Results 

All scripts, datasets, and plots can be found at the associated GitHub link [50].   



Rubocki 16 
 

 

 
Note: EFIR may run with or without Sequential Feature Selection (the slowest method in 
the ensemble).  Due to time constraints, these experiments were run without SFS. 

4.1 Experiment 1 – General Analysis 

The first test of EFIR compares the results output from the tool with the true important 
features from each dataset.  To analyze the results, facet grids were created with 
importance ratio as the x-axis, overlap as the y-axis, observation numbers as the lines, and 
each feature number as a grid plot.  In essence, each individual plot shows a slice of the 
results from the perspective of the feature variable.  See Figure 2 for the overlap results of 
Experiment 1. 
 
 

 
Figure 2: Overlap results from Experiment 1 
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The overlap results tell an interesting story.  Each graph generally follows a parabolic 
pattern which grows more prominent as the number of features increases.  The dip of each 
parabola occurs when importance ratio is around 50%.  However, even in the dips, overlap 
scores are still around 65-85%.  This means EFIR is accurately identifying the impactful 
features, becoming better as datasets become more comparable to real world sizes.   
 
Intuitively, this makes sense – models need enough data to extrapolate meaningful results 
(though this varies among models and what problem they are solving [14]).  So, the results 
understandably show more unconventional patterns when there is not enough data to 
learn trends in these smaller datasets.  In this scenario, smaller datasets are those where 
observations are less than or equal to 1000. 
 
The parabolic patterns occur because more features cause individual feature importance to 
decrease.  Remember that overlap calculates how many important features are ranked at 
the top compared to all important features.  When there are fewer important features, EFIR 
picks them out with 85-100% accuracy.  As more are added, the overall importance of each 
feature decreases, decreasing EFIR’s accuracy.  This occurs because each internal feature 
ranking takes a larger slice of the “importance” cake.  There is a fixed amount of importance 
divided among features, so as the important ratio increases, each feature receives a smaller 
slice of the overall importance.   
 
This leads to another subtle trend – as the importance ratio increases, each feature 
becomes less important when viewed through EFIR.  The unimportance phenomenon 
relates to skipping datasets with 100% important features.  Viewed another way, imagine a 
basketball coach looking for the tallest people to play on the team.  The coach checks school 
height records and weeds out everyone under 5’8”.  Though the height of the tallest players 
does not change, the average height of the team increases.  Applied to these datasets, when 
all features are important, then each feature becomes less prominent overall, even though 
they remain good predictors of the target label. 
 
Finally, overlap increases again as importance ratio nears 100% due to simple statistics.  
When almost all features are important, receiving an almost perfect overlap score becomes 
easy.  For instance, if 9 out of 10 features are important, then at worst 8 important features 
are in the top 9 spots.  This gives a high overlap score of 88.89%.  As such, the overlap 
scores increase as the importance ratio increases. 
 
After considering the overlap results, EFIR can differentiate the importance of features 
under most conditions tested.  However, the tool should also be able to reasonably separate 
important features from unimportant features.  To see these results, facet grids are used to 
show the distance metric.  All axises remain the same as above except for the y-axis, which 
now shows distance.  See Figure 3 for the distance results of Experiment 1. 
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Figure 3: Distance results from Experiment 1 

 
Recall that distance measures the difference in average scores between each feature 
cluster.  Based on the graphs, distance decreases as the importance ratio increases.  
Referring to the importance cake analogy, the tool is again working as expected.  When the 
number of important features increases, each feature receives a smaller overall 
importance.  As such, the distance in importance scores would subsequently decrease, as 
each feature becomes closer in importance to every other feature.  EFIR accurately exposes 
this trend through its distance scores.  By seeing results such as these, a dataset is likely as 
lean as it should be when distance becomes small.  As distance decreases, EFIR confirms 
that a dataset contains important predictive features and is ready for model training. 
 
Note that these trends happen regardless of number of features or observations.  For 
example, every feature plot shows a general downward trend.  Within each plot, the 
number of observations does not have influence either – though the overall distance 
between observations changes, each line still trends downward.  Furthermore, exceedingly 
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small datasets once again tend to show more erratic behavior.  For instance, the Feats = 3-
10 plots show much larger differences between observations and show some spikes in the 
downwards trendline.  Another strange pattern shows up in the lower observations, such 
as 10, 100, and 1000.  These smaller datasets tend to perform the worst and jump around 
the most, such as in Feats = 75 plot.  
 
Overall, Experiment 1 confirms EFIR works.  Through various synthetic linear regression 
datasets, the tool accurately predicts which features are important and shows when 
datasets already possess highly impactful features.     

4.2 Experiment 2 – Multiple Linear Regression  

The main intent behind EFIR is generalizability.  The idea is for the tool to work on any 
dataset, whether large or small, a classification or regression task, clean or noisy, etc.  The 
graphs from Experiment 1 suggest the number of features and observations had negligible 
impact on distance and overlap, with importance ratio being the driving force.  To 
understand and quantify the effect each dataset condition had on the target label (either 
overlap or distance), the results from Experiment 2 were run through a Multiple Linear 
Regression (MLR) model from Python’s statsmodels library [51].  This type of model 
outputs various statistics, such as feature coefficients and the R2 value, which are useful for 
evaluating the variable-outcome relationship. 
 
After accumulating all the results from Experiment 2 and adding a constant, the dataset ran 
through an MLR model.  Table 5 shows the coefficients and P values by running the model 
with overlap as the target value, and Table 6 is similar but with distance as the target value.   
 
 

Table 5: Multiple Linear Regression results from Experiment 2 for overlap 

Overall Model Feature Coefficients P>|t| 
R2 0.159 Constant 0.9028 0.000 
F-Statistic 20.04 Features -0.0006 0.000 
Prob (F-Stat) 6.28e-12 Import. Ratio -0.0019 0.893 
  Observations 0.00000866 0.000 

 

Table 6: Multiple Linear Regression results from Experiment 2 for distance 

Overall Model Feature Coefficients P>|t| 
R2 0.721 Constant 0.6215 0.000 
F-Statistic 274.3 Features -0.0014 0.000 
Prob (F-Stat) 7.26e-88 Import. Ratio -0.3075 0.000 
  Observations 0.00001101 0.000 

 
 
The overall regression was not statistically significant for overlap (R2 = 0.159, F(3, 318) = 
20.04, p = 6.28e-12) but was statistically significant for distance (R2 = 0.721, F(3, 318) = 
274.3, p = 7.26e-88).  The R2 from overlap indicates 15.9% of the variability of the target 



Rubocki 20 
 

 

was accounted for by the three features, while distance accounts for 72.1% of the 
variability.  This shows a much stronger linear correlation between the variables and 
distance compared to overlap. 
 
These results confirm the results shown in the facet grids.  The overlap grids showed a 
parabolic trendline in the plots.  Because the importance ratio had a high p-value of 0.893, 
it failed to reject the null hypothesis that no linear relationship existed.  Furthermore, the 
small coefficient values associated with each variable, especially compared to the constant, 
prove no linear correlation exists between the variables and overlap.   
 
However, a strong linear correlation exists between the variables and distance.  In 
particular, the importance ratio has the greatest absolute value among all the other 
coefficients, proving it has the highest influence on the target variable.  For every one value 
increment, the importance ratio produces a -0.3075 decrease in the target when all else is 
held constant, which is a much larger magnitude than the number of features (-0.0014) or 
observations (0.00001101).  Furthermore, the p-value for every variable is low, signifying 
an underlying pattern instead of chance randomness. 
 
This concludes that importance ratio is the largest driving factor to distance in relation to 
the other variables.  In other words, EFIR is robust against dataset size under these linear 
regression experiments.  Regardless of the number of features or observations, the tool will 
be able to distinguish the most impactful features.  Further testing will need to happen to 
determine the most important aspect for overlap, but based on the facet grids, importance 
ratio will still possess the most influence.   
 
Overall, Experiment 2 proves that EFIR can evaluate almost any linear regression dataset 
regardless of the number of features and observations through using an MLR model and 
the output statistics.   

4.3 California Housing Data 

Though synthetic data provides a clean way of testing EFIR, datasets come from the real 
world, where messy, irrelevant, and noisy features are inherent.  As such, knowing which 
features correlate to the target label becomes a much harder problem.    
 
To test EFIR in the wild, the California Housing dataset will be used [49].  This is a 
regression task dataset using housing related features to solve Median House Value for real 
estate in California.  See Table 7 for an overview of the dataset. 
 
 

Table 7: An overview of the California Housing dataset 

California Housing Dataset 
Observations 20640 
Missing Values None 
Target Label Median House Value 
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Features Median Income, House Age, Average Rooms, Average Bedrooms, 
Population, Average Occupants, Latitude, Longitude 

 
 
Two sources detailing different feature selection methods were chosen to illustrate how 
various methods lead to different results and how EFIR holds up against them.  The first 
source is an independent data scientist named Ivan Pupkin using this dataset [52].  The 
second is from the scikit-learn documentation, the Python package used throughout this 
paper [53].  See Table 8 for the comparison of results. 
 
 

Table 8: Comparison of important features between various sources 

Source Important Features 

Ivan Pupkin 

1. Median Income 
2. Latitude 
3. Average Rooms 
4. House Age 

Scikit-Learn 
• Longitude 
• Latitude 
• Median Income 

EFIR 

1. Median Income – 66 
2. House Age – 43 
3. Longitude – 40 
4. Latitude – 37 
5. Average Rooms – 34 
6. Average Occupancy – 32 
7. Average Rooms – 32 
8. Population – 25  

 
 
Pupkin is shown with numbers since he quantifies the feature importance, while Scikit-
Learn receives bullet points as order of importance is never clarified.  EFIR shows the 
entire result output from running the dataset.  As shown in the table, EFIR captures all the 
features the two sources conclude as important.  Median Income, Latitude, Longitude, 
Average Rooms, and House Age show up as the top five important features based on EFIR.   
 
This information can be used to clean out a dataset from the top-down or bottom-up.  For 
instance, a data scientist may remove the bottom 30% of the features shown in the EFIR 
rankings.  Then they can run this leaner dataset through a model and compare results to 
the original dataset, removing more features if accuracy (or another metric) keeps 
improving.  Alternatively, they may start with the top 30% of features and add features if 
accuracy (or another metric) keeps improving.  As Median Income maintains the highest 
ranking by 23 points compared to the differences between the other feature rankings, a 
top-down approach would likely be most beneficial for this dataset.  Either way, the dataset 
becomes leaner, and the data scientist possesses better dataset insight. 
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EFIR utilizes the ensemble method to ensure many different boundaries are considered 
when ranking features.  As such, the tool does not impose the same limitations as other 
feature selection methods.  Because of its robust nature, EFIR more accurately reports the 
important features in a dataset, as shown through the California Housing example.  This 
provides data scientists with better intuition when determining which features to remove 
from a dataset, leading to improved datasets and faster model training times. 

5 Conclusion 

Through this research, EFIR proved effective in determining the important features of 
linear regression datasets, showing robustness towards obtaining lean data and running 
faster models.  On these types of datasets, the tool works correctly, provides a broader view 
of feature importance compared to other feature selection methods, and shows value in 
reducing dataset complexity and model training times. 
 
Though successful at the datasets in the experiments, the tool is not a perfect solution 
towards feature selection: running results takes time, the internal models used are not 
always accurate, and further investigation of the tool is recommended.  There are multiple 
avenues for further testing and validating the efficacy of EFIR, such as 
 

• Finding a better model for overlap to statistically prove how the features, 
observations, and importance ratio affect overlap scores 

• Using other synthetic dataset generators to create and assess non-linear datasets 
• Starting with a clean dataset and adding dirty features at various levels to assess 

noise robustness 
• Analyzing the computational savings of reduced datasets on model training 
• Critical review of the efficacy of the evaluation metrics 
• Testing other real-world datasets 

 
Data science is a growing industry quickly running into bigger and more problematic 
limitations.  Two major problems faced by data scientists involve datasets with too many 
features and long model training times.  There are a multitude of algorithms created to 
solve the first problem and many companies actively work on new ways of creating faster 
hardware to solve the second, yet both problems persist today. 
 
EFIR was created to combat those challenges.  This paper explained how the tool solves 
these problems and proves its efficacy in finding the important features of regression 
datasets.  Through this process, a data scientist can identify key features in a dataset and 
remove the rest, both decreasing the complexity of the dataset and improving model 
training times.  More importantly, EFIR is not limited by the size or task of the dataset – the 
tool is robust and generalizable to most regression data.  These results provide a glimmer 
of hope towards improving the data science pipeline in the future. 
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