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1 Introduction

This is a two part honors thesis written by Jo O’Harrow, with the tremendous support of Dr.

Tevian Dray, at Oregon State University. My work in this thesis builds on both my training as

a geometer, as well as a feminist philosopher. In many ways these two areas have informed each

other; a piece of that will be presented through this thesis. The first part of this thesis will be more

mathematically technical.

The mathematically-oriented chapter of this thesis includes an introduction to Minkowski Space,

an argument to orient the cube in Minkowski Space, and finally a discussion and computation of

curvature on the Hyperboloid in Minkowski Space. A result of this work is that the scope of

applicability for existing vector calculus machinery, such that any engineer would possess, will be

expanded into Minkowski Space. Our computation of curvature on the Hyperboloid is done using

differential forms, however, using vector calculus machinery one can expect the same result and as

such, this is a provided example for the applications of our orientation proof.

The second major chapter of this thesis discusses the potential for feminist philosophy of science

lensing in qualitative inquiry for projects geared toward the overarching goal of humanizing math-

ematics. This lensing overlaps in significant ways with humanist philosophy of mathematics, but

also enhances the project in novel ways that are discussed in the chapter. We end with a discussion

of research questions which apply a feminist philosophy of science lens to inquire on the subjectivity

and humanity of mathematics.
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2 Orienting the Cube in Minkowski Space

“There’s a very subtle sign involved”

– Tevian Dray (out of context)
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2.1 Roadmap

In this paper, we will begin with a discussion of the history of Minkowski Space and hyperbolic

geometry. Then, we will more technically introduce Minkowski Space and the tools needed to

generalize vector calculus machinery to this setting. Next, we will present an argument to orient

the cube in Euclidean space using the Euclidean divergence theorem. Then, we will generalize that

argument by first extending the cross product, Hodge Dual operator, and divergence to Minkowski

Space and, using those tools, orient the cube in Minkowski Space.

After our orientation of the cube, we move to a computation of curvature on the hyperboloid

using differential forms. In completing those computations, we begin with the hyperboloid itself,

which is embedded within Minkowski Space. We will provide a computation of the Gaussian

curvature of the upper half of the Hyperboloid in Minkowski Space using differential forms. The

form-based computation of curvature, which we complete for two isometries of the hyperboloid,

ultimately provides an “answer-sheet” to verify a computation of curvature using our orientation,

and we will give it thorough attention to verify its correctness.

Next will be a discussion of the stereographic projection from the Hyperboloid that results in

the Poincaré Disk. This discussion will set us up with the tools necessary to investigate curvature in

the Poincaré Disk. Because the Poincaré Disk models hyperbolic geometry, we expect its curvature

to be a negative constant, and equal to the curvature seen in the hyperboloid. This result will be

confirmed in the section on curvature in the Poincaré Disk.

An intrinsic geometric property is something that is preserved under geometric equivalence

(defined through the concept of an isometry). The Theorema Egregium, proven by Gauss, tells us

that curvature is one such intrinsic geometric property [22]. We will end this section with a brief

discussion of why these models are equivalent. Because of that equivalence these two computations

are ultimately verifying each other’s correctness.

Finally, we will briefly discuss potential applications of this work, including a follow-up compu-

tation of curvature for the Hyperboloid embedded in Minkowski Space using the shape operator.

To put our goals into a list, we aim to accomplish the following:
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1. Introduce Minkowski Space, the Divergence and General Stokes’ Theorem, and the Hyper-

boloid.

2. Orient “the cube” in Euclidean Space using the divergence theorem

3. Extend the cube orientation argument from Euclidean Space to orient “the cube” in Minkowski

Space. This will effectively extend the scope of applicability for various tools from vector

calculus, including the shape operator.

4. Compute Curvature on the Hyperboloid using differential forms. Complete this computation

using two isometries of the hyperboloid to double-check that we have the correct result.

5. Use our orientated cube to compute curvature on the Hyperboloid using vector calculus. This

provides one example of a vector calculus computation in Minkowski Space for which the

oriented cube can be used for.

Our last goal will not be accomplished in this thesis, but instead will motivate our discussion of

future work.
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2.2 Introduction

2.2.1 History and Context

Minkowski 3-Space (M3) is intuitively the points in R3 with a non-Euclidean distance function. It

is common in relativity to use Euclidean space, and the topology and smooth structure induced by

the Euclidean metric, while using a possibly quite different metric. This is the case for Minkowski

Space. Thus, the open sets in Minkowski 3-Space are the same open sets from R3 that we know

and love. The unique line element for Minkowski Space allows for a non-Euclidean model used by

physicists to describe special relativity, in which time and space are measured using the same units.

Furthermore, the metric for Minkowski Space enables the existence of “lightlike”, zero magnitude

but non-zero, vectors.

“The cube”, illustrated in figure (1) for both Euclidean Space and Minkowski Space, is a cube

at a given point that has arbitrary length ∆. Our orientation of the cube will involve orienting each

face of the cube so that the overall orientation is consistent with a generalized Divergence Theorem

in Minkowski Space. Because we are using the same differential structure as for Euclidean Space,

this orientation for the boundary of our box will match the orientation for the box in Euclidean

Space in the language of differential forms. That said, when mapping differential forms to normal

vectors, we will end up with a different result than the orientation for the Euclidean case mapped

to normal vectors.

(x0, y0, t0)

(x0 +∆, y0 +∆, t0 +∆)

(x0, y0, z0)

(x0 +∆, y0 +∆, z0 +∆)

Figure 1: The Box in Euclidean space (right) and Minkowski space (left)

The ability to measure time and space with the same units, and the existence of zero magnitude

vectors, are two properties of Minkowski Space that are fundamental to the theory of special

relativity. In special relativity, notions of distance to a point are relative to the observer, but can

be related to another observer’s distance to that point through a rotation. Minkowski 4-space is
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Figure 2: The Hyperboloid

the mathematical structure underlying special relativity, and Minkowski 3-space can be thought of

as a “toy model” for this more general case. In considering Minkowski Space as a model for our

universe, the upper Hyperboloid, seen in figure (2) represents the points that a traveler could reach

in a constant unit of time (and when ρ = 1, one year) into the future [8, 25].

p1

p2

Figure 3: Poincaré Disk

The Hyperboloid in Minkowski 3-space is a model for hyperbolic geometry. The Poincaré Disk,

seen in figure (3), is an equivalent model for hyperbolic geometry. The Poincaré Disk is the unit

disk in R2, without boundary, with a different, non-Euclidean, metric.

Hyperbolic geometry is a neutral geometry, meaning it satisfies the School Mathematics Study
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Group’s postulates for Euclidean Geometry numbers one through fifteen [25]. Hyperbolic geometry’s

violation of the Euclidean parallel postulate makes it necessarily a non-Euclidean geometry: in

hyperbolic geometry, for each point not on a given line, there are infinitely many lines parallel to

that line which go through the given point. While hyperbolic geometry is often associated to the

study of relativity, it has its beginnings earlier, becomming pertinent to the study of special relativity

in physics in the early 1900’s. Hyperbolic geometry has constant and negative Gaussian curvature

at each point [25]. We will compute this explicitly for an arbitrary point on the Hyperboloid, and

for an arbitrary point in the Poincaré Disk.

9



2.3 Background

2.3.1 Minkowski Space

Here we rigorously introduce three-dimensional Minkowski Space (M3). We will use the following

definition adapted from Lee [18]:

Definition 2.1 (Pseudo-Riemannian Manifold). A Pseudo-Riemannian Manifold is a pair (M, g)

where M is a smooth manifold and g is a pseudo-Riemannian metric on M .

Let M be R3 with the metric topology and smooth structure consistent with the Euclidean

distance function. Because our underlying space is R3, this gives us an inner product for vectors in

Minkowski space. Here, we adopt the convention of relativists and relax the definition of an inner

product to require, in the place of positive definiteness, that our map is non-degenerate. Three-

dimensional Minkowski space is a pseudo-Riemannian manifold (M, g), with g an inner product

defined as follows [8, 18]:

g
(
a1 x̂+ a2 ŷ + a3 t̂, b1 x̂+ b2 ŷ + b3 t̂

)
= a1b1 + a2b2 − a3b3 ∀p ∈ R3.

We will equivalently denote g via:

g
(
a1 x̂+ a2 ŷ + a3 t̂, b1 x̂+ b2 ŷ + b3 t̂

)
= (a1x̂+ a2ŷ + a3t̂) · (b1x̂+ b2ŷ + b3t̂)

We are using the fact that Tp(R3) has a known orthonormal basis {x̂, ŷ, ẑ} and we are relabeling

ẑ as t̂ due to the surprising fact that

g
(
t̂, t̂

)
= −1 ∀p ∈ R3.
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Because we are using the smooth structure induced from the Euclidean norm, the derivatives for

functions will be the same as they are in the Euclidean case. Thus, we can differentiate functions

in Minkowski space by treating them as functions in Euclidean space. On the other hand, tools

that are defined relative to the cross product or dot product in Euclidean space must be generalized

according to the Minkowski metric, because they are computed according to the inner product on

the tangent space at each point of our manifold.

A Riemannian metric is not the same thing as the “metric” used in topology for metric spaces.

A Riemannian metric is a smooth, symmetric, covariant 2-tensor field on M , that is, a map from

TpM × TpM → R that is positive definite at each point. Similarly, a pseudo-Riemannian metric is

a smooth, symmetric, 2-tensor field on M that is non-degenerate at each point.

In Minkowski space, we are working with an indefinite distance function, so-named because of

the possibility that squared distance is negative. Because of the close association to relativity, we

consider negative distances to be time-like and positive distances to be space-like. Distances of zero

are considered light-like [8].

Now, let

dr⃗ = dx x̂+ dy ŷ + dt t̂

be the vector differential. In the algebraic context, our vector differential is the following 1-1 tensor,

dr⃗ = dx⊗ x̂+ dy ⊗ ŷ + dt⊗ t̂.

In this context, we can consider our vector differential to be a map:

dx⊗ x̂+ dy ⊗ ŷ + dt⊗ t̂ : TpM3 ×Alt1(TpM3) → R

(b1x̂+ b2ŷ + b3t̂, a1dx+ a2dy + a3dt) 7→ (a1b1 + a2b2 + a3b3).

We can also, and from here on will, opt to express the vector differential through the language of
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differential form-valued vectors as:

dr⃗ = dx x̂+ dy ŷ + dt t̂

In considering our vector differential as a differential form-valued vector, the inner product of dr⃗

with other differential form-valued vectors in the tangent space is well defined via:

g(σx x̂+ σy ŷ + σt t̂, αx x̂+ αy ŷ + αt t̂)

= σxαx g(x̂, x̂) + σyαy g(ŷ, ŷ) + σtαt g(t̂, t̂)

= σxαx + σyαy − σtαt,

where the σi, αi coefficients are differential forms. Now we have a dot product well defined for our

vector differential, and we are prepared to compute the line element for M3 as:

ds2 = dr⃗ · dr⃗

= dx2 + dy2 − dt2.

We can classify geometries based on the signature of their metric (in this case, a pseudo-Riemannian

metric). Due to the single negative sign in our line element, Minkowski space is classified as having

signature −1. Signature profoundly impacts the Hodge Dual operator, and for our case, we have

that:

∗ ∗ (1) = −1.

The Hyperboloid lives in Minkowski space, and is defined as the set

H = {(x, y, t) | x2 + y2 − t2 = −ρ2}

where ρ ̸= 0 ∈ R is a constant. Alternatively, we could define the Hyperboloid to be the set of
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roots for the polynomial x2 + y2 − z2 + ρ2 [8]. We characterize the Hyperboloid as an analog to

the sphere in Minkowski space. Remarkably, despite appearances, every point on the Hyperboloid

is the same distance away from the origin in Minkowski Space.

Despite the fact that distance in Minkowski Space is indefinite, when we restrict ourselves to the

“upper” half of the Hyperboloid (t > 0), we obtain a positive definite notion of distance between

points. Given two points, p1, p2 on the Hyperboloid, the line between two points on the Hyperboloid

is the intersection of the plane between each point and the origin in Euclidean 3-space, and the

Hyperboloid. The distance between the two points is the arc length of the segment of that line

between those two points using the restriction of the Minkowski line element.

This conversation about line elements is relevant to our eventual computation of curvature on

both the Hyperboloid and the Poincaré Disk. Because both the Hyperboloid and Poincaré Disk

are two-dimensional surfaces, we may parametrize them with two variables. In so doing, we rewrite

our line element for Minkowski Space in terms of our new variables, and in both cases we will be

left with a positive definite notion of distance on our surface. What’s more, once we are working

with a positive definite distance function, our line element gives us an orthonormal basis for our

surface that we can use to compute curvature. Before completing those computations, however, we

will begin with an orientation of the cube in Minkowski Space.

2.3.2 Vector Calculus in Minkowski Space

To explain what we mean by “vector calculus tools”, we must first distinguish between intrinsic

and extrinsic properties of a manifold. An intrinsic geometric property is a property of a manifold

that is independent of an embedding for that manifold. On the other hand, an extrinsic property is

relative to an embedding. Surprisingly, there are intrinsic properties, including Gaussian curvature,

that can be computed using extrinsic tools [22]. The cube is embedded in Minkowski Space, and

the underlying manifold for Minkowski Space is R3.

Because of this, we can generalize several important extrinsic tools from Euclidean vector cal-

culus to the Minkowski case. The main tools we aim to generalize are the dot product, the cross

product, and normal vectors for a surface.
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The dot product is immediately generalized using our inner product. The cross product and

normal vectors are a bit trickier: first, we will first compute a generalized cross product, then, we

will orient each face of the cube so that the orientations are consistent with a generalized Divergence

Theorem in Minkowski Space. Because of the close relationship between orientation and normal

vectors, this will go hand-in-hand with determining the normal vectors for each face on the cube.

This determines the normal vectors for an arbitrary surface by essentially telling us which Euclidean

normal vectors correspond to “flipped” normal vectors in Minkowski Space.

2.3.3 The General Form of Stokes’ Theorem

The Divergence Theorem is a famous theorem from vector calculus. In short, this theorem states

that if you have a compact subset X ⊆ R3 and a given vector field F⃗ , then the surface integral of the

flux of F⃗ out of X and the volume integral of the divergence of F⃗ must be equal. Similar theorems

from calculus, including the Fundamental Theorem of Calculus, relate boundary conditions to a

higher dimensional subset between the boundary. It turns out that both the Fundamental Theorem

of Calculus and the Divergence theorem are actually specific cases of a more general theorem, called

the General form of Stokes’ Theorem, which is articulated in the language of differential geometry.

We present the General Form of Stokes’ Theorem below. Notably, the Euclidean divergence theorem

can be derived from the general form of Stokes’ Theorem. Furthermore, the upcoming computation

to orient the box in Minkowski Space will rely on an application of the General form of Stokes’

Theorem in a context very similar to the Euclidean divergence theorem, but instead for Minkowski

Space.

Theorem 2.1 (General form of Stokes’ Theorem). Let X be a compact, oriented k-dimensional

manifold with boundary. Then ∂X is a (k− 1)-dimensional manifold with boundary orientation. If

ω is a smooth k − 1 form on X, then [18]

∫
∂X

ω =
∫
X
dω.

Notably, this will not be sufficient for our box argument because our box is not a smooth

manifold; the box has corners. That said, the General form of Stokes’ Theorem can still be carefully
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applied to our argument. As with most integral theorems, it is sufficient for the boundary to be

piecewise smooth. For the scope of this thesis, we will brush this technicality under the rug.
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2.4 Orienting the Box in Euclidean Space

This section presents an example of orienting the cube in Euclidean space, when we have a well-

established notion of the Hodge Dual operator, cross product, and dot product. For specifics on how

these act in Euclidean space, see [9]. We will not introduce these tools rigorously in this section,

but provide the computational structure and argument that motivates our next and more thorough

argument.

To begin, let F⃗ : R3 → R3 be a smooth vector field with components given by F⃗ (x, y, z) =

(Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)). Then there is a natural correspondence (see the tangent-cotangent

isomorphism in [18]) between F⃗ and a 1-form F = Fxdx+ Fydy + Fzdz. We define:

divF = ∗d∗F.
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Then,

∗d ∗ F = ∗(d(∗F )) by associativity of ∗

= ∗(d(∗(Fxdx+ Fydy + Fzdz)))

= ∗(d(Fx ∗ dx+ Fy ∗ dy + Fz ∗ dz)) by linearity of ∗

= ∗(d(Fxdy ∧ dz + Fydz ∧ dx+ Fzdx ∧ dy))

= ∗(d(Fxdy ∧ dz) + d(Fydz ∧ dx) + d(Fzdx ∧ dy))

= ∗

∂Fx

∂x
dx ∧ dy ∧ dz +

∂Fy

∂y
dy ∧ dz ∧ dx+

∂Fz

∂z
dz ∧ dx ∧ dy


= ∗

∂Fx

∂x
dx ∧ dy ∧ dz +

∂Fy

∂y
dx ∧ dy ∧ dz +

∂Fz

∂z
dx ∧ dy ∧ dz


=

∂Fx

∂x
∗ (dx ∧ dy ∧ dz) +

∂Fy

∂y
∗ (dx ∧ dy ∧ dz) +

∂Fz

∂z
∗ (dx ∧ dy ∧ dz)

=
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

= ∇⃗ · F⃗

(x0, y0, z0)

(x0 +∆, y0 +∆, z0 +∆)

Figure 4: The Euclidean Box

Now, let X be the box pictured in figure (4). Let dV = dx ∧ dy ∧ dz. In Euclidean space, because

of the signature, the Hodge Dual operator (see [9]) acts such that:

(∗d∗F )dV = d∗F. (1)
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According to the generalized Stokes’ Theorem we have

∫
X

d∗F =

∫
∂X

∗F. (2)

In Euclidean space, the vector differential is

dr⃗ = dxx̂+ dyŷ + dzẑ.

Then, using the fact that F = F⃗ · dr⃗ and dS⃗ = ∗dr⃗, equation (2) is equivalent to:

∫
X

divF⃗ dV =

∫
∂X

F⃗ · dS⃗.

Following the convention in ([11]), we define dS⃗ for each face individually. In the language of

vector calculus, we are restricting dS⃗ to each face. Starting with the top face, we have dz = 0 and

thus,

dr⃗1 = dxx̂

dr⃗2 = dyŷ

dS⃗ = dr⃗1 × dr⃗2

= (dx ∧ dy) ẑ.

For the right face, dx = 0 and thus,

dr⃗1 = dyŷ

dr⃗2 = dzẑ

dS⃗ = dr⃗1 × dr⃗2

= (dy ∧ dz) x̂
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Finally, on the back face dy = 0,

dr⃗1 = dzẑ

dr⃗2 = dxx̂

dS⃗ = dr⃗1 × dr⃗2

= (dz ∧ dx) ŷ.

We define dS⃗ on the bottom to be −1 times dS⃗ on the top, so

dS⃗ = −(dx ∧ dy) ẑ.

Similarly, on the left face

dS⃗ = −(dy ∧ dz) x̂.

Finally, on the front face

dS⃗ = −(dz ∧ dx) ŷ.

A correct computation of the flux integral relies on, and in fact verifies, a correct orientation of

the cube. We proceed, breaking the flux integral up into each face:
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∫
∂X

F⃗ · dS⃗ =

∫
top face

F⃗ · dS⃗

+

∫
back face

F⃗ · dS⃗

+

∫
right face

F⃗ · dS⃗

+

∫
bottom face

F⃗ · dS⃗

+

∫
left face

F⃗ · dS⃗

+

∫
front face

F⃗ · dS⃗.

Starting with the top face,

∫
top face

F⃗ · dS⃗ =

∫ y0+∆

y0

∫ x0+∆

x0

F⃗ · dS⃗

=

∫ y0+∆

y0

∫ x0+∆

x0

Fz(x, y, z0 +∆) dx ∧ dy.

Similarly, the flux integral for the bottom face is given by

∫
bottom face

F⃗ · dS⃗ =

∫ y0+∆

y0

∫ x0+∆

x0

F⃗ · dS⃗

=

∫ y0+∆

y0

∫ x0+∆

x0

−Fz(x, y, z0) dx ∧ dy.

For the right face,

∫
right face

F⃗ · dS⃗ =

∫ z0+∆

z0

∫ y0+∆

y0

F⃗ · dS⃗

=

∫ z0+∆

z0

∫ y0+∆

y0

Fx(x0 +∆, y, z) dy ∧ dz.
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On the left face,

∫
right face

F⃗ · dS⃗ =

∫ z0+∆

z0

∫ y0+∆

y0

F⃗ · dS⃗

=

∫ z0+∆

z0

∫ y0+∆

y0

−Fx(x0, y, z) dy ∧ dz.

For the back face,

∫
back face

F⃗ · dS⃗ =

∫ x0+∆

x0

∫ z0+∆

z0

F⃗ · dS⃗

=

∫ x0+∆

x0

∫ z0+∆

z0

Fy(x, y0 +∆, z) dz ∧ dx.

For the front face,

∫
front face

F⃗ · dS⃗ =

∫ x0+∆

x0

∫ z0+∆

z0

F⃗ · dS⃗

=

∫ x0+∆

x0

∫ z0+∆

z0

Fy(x, y0, z) dz ∧ dx.

Combining the integrals with matching bounds, we have that:

∫
∂X

F⃗ · dS⃗ =

∫ y0+∆

y0

∫ x0+∆

x0

(Fz(x, y, z0 +∆)− Fz(x, y, z0)) dx ∧ dy

+

∫ x0+∆

x0

∫ z0+∆

z0

(Fy(x, y0 +∆, z)− Fy(x, y0, z)) dz ∧ dx

+

∫ z0+∆

z0

∫ y0+∆

y0

(Fx(x0 +∆, y, z)− Fx(x0, y, z)) dy ∧ dz.

(3)

Integration of differential forms is defined in terms of the usual multiple integral integration since

we are in the Euclidean case. Consequently, we can identify dx ∧ dy with dxdy and so on. Then,
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equation (3) is equivalent to:

∫
∂X

F⃗ · dS⃗ =

∫ y0+∆

y0

∫ x0+∆

x0

(Fz(x, y, z0 +∆)− Fz(x, y, z0)) dxdy

+

∫ x0+∆

x0

∫ z0+∆

z0

(Fy(x, y0 +∆, z)− Fy(x, y0, z)) dzdx

+

∫ z0+∆

z0

∫ y0+∆

y0

(Fx(x0 +∆, y, z)− Fx(x0, y, z)) dydz.

(4)

By the Fundamental Theorem of Calculus, we can rewrite equation (4) as

∫
∂X

F⃗ · dS⃗ =

∫ y0+∆

y0

∫ x0+∆

x0

∫ z0+∆

z0

∂Fz

∂x
dxdydz

+

∫ x0+∆

x0

∫ z0+∆

z0

∫ y0+∆

y0

∂Fy

∂y
dydzdx

+

∫ z0+∆

z0

∫ y0+∆

y0

∫ x0+∆

x0

∂Fx

∂x
dxdydz.

=

∫ z0+∆

z0

∫ y0+∆

y0

∫ x0+∆

x0

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

 dxdydz.

Up to the identification of dV with dxdydz, our flux integrand is equal to the divergence integrand.

Thus, we have confirmed our orientation of the cube in Euclidean space. The normal vectors are

the (unit-length) outward pointing vectors perpendicular to each face, and are given by the cross

products of tangent vectors as computed in this section. In the next section, we will ellaborate on

our computations as well as generalize the tools needed to complete this argument in Minkowski

Space.
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2.5 Orienting the Box in Minkowski Space

We can carefully use the coordinate patches for the cube as a submanifold with boundary of M3 to

correctly orient each face. That said, we can also save ourselves the headache of working in that

setting by using the Divergence theorem to carefully pick orientations, through trial and error, or

each face on our cube so that the flux and divergence integrals of an arbitrary vector field defined

over the cube are consistent. This means that our orientation will hold up to a flipping of normal

vectors; note that we would not get a stronger result were we to use the other approach because we

would still have to make a sign choice. Thus, our orientation of the cube is based on the Generalized

Stokes’ Theorem.

2.5.1 The correspondance between vectors and one forms in M3

Let F⃗ : M3 → R3 where

F⃗ = Fx x̂+ Fy ŷ + Ft t̂

Fx : M3 → R

Fy : M3 → R

Ft : M3 → R
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be a smooth vector field in Minkowski Space. There is a module isomorphism, φ, between 1-forms

and vector fields (called the tangent-cotangent ismorphism [18]) satisfying at each point p ∈ M3 [9]:

φ : TpM → T ∗
pM

φ(F⃗ (p)) = φ(Fx(p) x̂+ Fy(p) ŷ + Ft(p) t̂)

= dr⃗ · F⃗

= (dx x̂+ dy ŷ + dt t̂) · (F⃗ (p))

= (dx x̂+ dy ŷ + dt t̂) · (Fx(p) x̂+ Fy(p) ŷ + Ft(p) t̂)

= Fx(p) dx+ Fy(p) dy − Ft(p) dt.

2.5.2 Hodge Dual in M3

In this section, ∗ refers to the Hodge dual operator. We first review how a pseudo-Riemannian

metric extends to an inner product for arbitrary k-forms (with 1 ≤ k ≤ n). Then we will define the

Hodge Dual operator, and finally we will compute the Hodge Dual operator for Minkowski Space.

Let g be a pseudo-Riemannian metric on an n-manifold M. We would like to extend g to be

an inner product on Altk(TpM) for 1 ≤ k ≤ n. We will follow the construction outlined in [9].

First, note that we can use the tangent-cotangent isomorphism φ to extend g to an inner product

on T ∗
pM (equivalently Alt1(TpM)). This inner product is defined by

g(α, β) = g
(
φ−1(α), φ−1(β)

)
,

Where φ is the isomorphism introduced in the previous section, and α, β ∈ T ∗
pM . Now, let α, β be

k-forms with k ≤ n on TpM for p ∈ M . Let {e1, · · · , en} be an orthonormal basis for TpM. Let

{σ1, · · · , σn} be the corresponding dual basis for T ∗
pM. Then the set

{σi1 ∧ . . . ∧ σik | 1 ≤ i1 < . . . < ik ≤ n}

is a basis for Altk(TpM). If we require that this basis is orthonormal relative to g and that g is an
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inner product, this completely defines g. In practice, using our basis we can express α and β as:

α =
∑

|1≤i1<...<ik≤n

(fαi1σi1) ∧ · · · ∧ σik

= α1 ∧ . . . ∧ αk

β =
∑

|1≤i1<...<ik≤n

(fβi1σi1) ∧ · · · ∧ σik

= β1 ∧ . . . ∧ βk

where fαj and fβj are 0-forms for each j. Then g(α, β) satisfies:

g(α, β) =

∣∣∣∣∣∣∣∣∣∣


g(α1, β1) · · · g(αk, β1)

...
. . .

...

g(α1, βk) · · · g(αk, βk)


∣∣∣∣∣∣∣∣∣∣
.

Now, let (h, U) be a smooth chart for M so that h : U ⊂ M → Rn, and let α, β be smooth

k−forms defined on U. For an n–manifold and 0 ≤ k ≤ n, The Hodge dual operator is the unique

map which takes k-forms on U to (n− k)-forms on U and satisfies:

α ∧ ∗β = g(α, β)ω

where ω is the pullback of the volume form in Rn under h. This property completely defines our

operator. For convenience, although the Hodge Dual operator is defined relative to each k, we

colloquially refer to any of them as “the Hodge Dual operator”. In relativity, where it is common to

use Euclidean Space as the manifold, we can loosely forget the pullback relative to our coordinate

charts and treat ω literally as the volume form.

To complete our calculation for divergence and the cross product in Minkowski space, we first

need to know where ∗ maps forms in Minkowski Space. Our generalized definitions for the cross

product, as well as divergence, use the Hodge Dual operator. From above, for p ∈ M3, we know
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that ∗ must satisfy:

∗ : Altk(TpM3) → Alt3−k(TpM3), k ∈ {0, 1, 2, 3}

α, β ∈ Λk(TpM3) 7→ ∗α s.t. α ∧ ∗β = g(α, β)ω where ω = dx ∧ dy ∧ dt

where g is the inner product on 1-forms induced by the metric tensor as described above. Note

that {dx, dy, dt} is an orthonormal basis for TpM3, p ∈ M3. Now, relabel these elements arbitrarily

as {σ1, σ2, σ3}. Because ∗σ1 is a 2−form, we know that

∗σ1 = a1 σ1 ∧ σ2 + a2 σ2 ∧ σ3 + a3 σ1 ∧ σ3,

where a1, a2, a3 are 0-forms. Now we use the defining property of the Hodge Dual operator to

conclude that

0 = g(σ2, σ1)ω

= σ2 ∧ ∗σ1

= σ2 ∧ (a1 σ1 ∧ σ2 + a2 σ2 ∧ σ3 + a3 σ1 ∧ σ3)

= a3 σ2 ∧ σ1 ∧ σ3,

and therefore a3 = 0. Repeating our logic from above,

0 = g(σ2, σ1)ω

= σ3 ∧ ∗σ1

= σ3 ∧ (a1 σ1 ∧ σ2 + a2 σ2 ∧ σ3 + a3 σ1 ∧ σ3)

= a1 σ3 ∧ σ1 ∧ σ2,
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and thus a1 = 0. This justifies the claim that

σ1 = a2 σ2 ∧ σ3.

We have used properties of the wedge product implicitly in our justification. The wedge product

is defined rigorously in [18]. Since our relabelling was arbitrary, we have shown that ∗σi does not

include any non-zero σi terms for each 1 ≤ i ≤ 3. Thus, proceeding in a simplified calculation to

determine ∗dx,

dx ∧ ∗dx = g(dx, dx)ω

= dx ∧ dy ∧ dt

so that

∗dx = dy ∧ dt. (5)

Similarly, we compute ∗dy:

dy ∧ ∗dy = g(dy, dy)ω

= dx ∧ dy ∧ dt

= −dy ∧ dx ∧ dt

which implies that

∗dy = −dx ∧ dt. (6)
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Finally,

dt ∧ ∗dt = g(dt, dt)ω

= −dx ∧ dy ∧ dt

= −dt ∧ dx ∧ dy

which proves that

∗dt = −dx ∧ dy. (7)

We now use those computations to see how ∗ acts on two forms. We apply ∗ to both sides of

equation (5), and find that

∗ ∗ dx = ∗(dy ∧ dt).

Now, because of the signature of our metric, for any k form α we must have ∗ ∗ α = −α [9]. Thus,

we find that the above equation simplifies to:

−dx = ∗(dy ∧ dt).

We now compute ∗(dx ∧ dt). We begin by applying the Hodge Dual operator to both sides of

equation (6):

∗ ∗ dy = − ∗ (dx ∧ dt).

We must have ∗ ∗ dy = −dy, and thus

−dy = − ∗ (dx ∧ dt).
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For convenience, we rewrite this as

dy = ∗(dx ∧ dt).

Finally, we procede in a computation of ∗(dx ∧ dy). We apply ∗ to both sides of equation (7) to

find that

∗ ∗ dt = − ∗ (dx ∧ dy).

As before, we have ∗ ∗ dt = −dt and consequently

−dt = − ∗ (dx ∧ dy)

which is equivalent to

dt = ∗(dx ∧ dy).

Finally, by convention we define ∗1 = ω. On the other hand, ∗ω = −1 for the same reason,

given in [9], that ∗ ∗ α = −α. Ultimately, the minus sign comes from the signature of our metric.

2.5.3 Divergence in M3

Let F⃗ be a vector in M3. That is,

F⃗ = Fxx̂+ Fy ŷ + Ftt̂.

Because we start our computation with F⃗ , we will consider F⃗ to be our fundamental object, however

it is worth noting we would arrive at a different result if we began with a fundamental 1-form, say

G = Gxdx+Gydy +Gtdt,
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due to the differences in sign on coefficients through our isomorphism, φ. Recall from the previous

section that

φ(F⃗ ) = Fxdx+ Fydy − Ftdt.

We will again use the definition that

Div(F⃗ ) = ∗d∗F.

Then,

∗d∗F = ∗d∗(Fxdx+ Fydy − Ftdt)

= ∗d(Fx∗dx+ Fy∗dy − Ft∗dt)

= ∗d(Fx(dy ∧ dt) + Fy(−dx ∧ dt)− Ft(−dx ∧ dy))

= ∗(d(Fx) ∧ dy ∧ dt− d(Fy) ∧ dx ∧ dt+ d(Ft) ∧ dx ∧ dy)

= ∗

∂Fx

∂x
dx ∧ dy ∧ dt−

∂Fy

∂y
dy ∧ dx ∧ dt+

∂Ft

∂t
dt ∧ dx ∧ dy


= ∗

∂Fx

∂x
dx ∧ dy ∧ dt+

∂Fy

∂y
dx ∧ dy ∧ dt+

∂Ft

∂t
dx ∧ dy ∧ dt


= −

∂Fx

∂x
+

∂Fy

∂y
+

∂Ft

∂t


where the minus sign is due to the fact, discussed in Section 2.6.2, that ∗(dx ∧ dy ∧ dt) = −1.

2.5.4 Cross Product in M3

We define the generalized cross product via:

a⃗× b⃗ = φ−1
(
∗
(
φ(⃗a) ∧ φ(⃗b)

))
.
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Then, if

a⃗ = axx̂+ ay ŷ + att̂

b⃗ = bxx̂+ by ŷ + btt̂,

we have

a⃗× b⃗ = φ−1
(
∗
(
φ(axx̂+ ay ŷ + att̂) ∧ φ(bxx̂+ by ŷ + btt̂)

))
= φ−1 (∗ ((axdx+ aydy − atdt) ∧ (bxdx+ bydy − btdt)))

= φ−1(∗((axby − aybx)dx ∧ dy + (byat − aybt)dy ∧ dt+ (atbx − axbt)dx ∧ dt))

= φ−1((axby − aybx)dt− (byat − aybt)dx+ (atbx − axbt)dy)

= (aybt − atby)x̂+ (atbx − axbt)ŷ + (aybx − axby)t̂.

2.5.5 Orienting the Cube

Consider box illustrated in figure (5), which was introduced earlier under different labels for our

Euclidean argument, where x0, y0, t0,∆ ∈ R. Let this box be the submanifold X ⊂ M3.

(x0, y0, t0)

(x0 +∆, y0 +∆, t0 +∆)

Figure 5: Minkowski Box

Let F⃗ be a smooth vector field on M3,

F⃗ = Fxx̂+ Fy ŷ + Ftt̂.

We can extend the Hodge Dual operator ∗ to the vector differential by treating the vector

differential as a vector-valued one form. In that case, we then can define a general surface element,

dS⃗ as
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dS⃗ = ∗dr⃗

= ∗(dx x̂+ dy ŷ + dt t̂)

= (dy ∧ dt)x̂+ (−dx ∧ dt)ŷ + (−dx ∧ dy)t̂.

Now we consider a 2-form which is the Hodge dual of the corresponding 1-form F :

∗F = ∗(dr⃗ · F⃗ )

= ∗(Fxdx+ Fydy − Ftdt)

= Fx(dy ∧ dt) + Fy(−dx ∧ dt)− Ft(−dx ∧ dy)

= F⃗ · ∗dr⃗

= F⃗ · dS⃗.

Because F⃗ is a smooth vector field over X, F is a smooth 1-form over X. Furthermore, because F

is a smooth 1-form over the cube, ∗F is a smooth 2-form over the cube. Thus, we can use Stokes’

Theorem to assert that

∫
X

d(∗F ) =

∫
∂X

∗F (8)

Recall from before that

div(F⃗ ) = ∗(d∗F ).

If ω is the volume form, then

div(F⃗ )ω = −d(∗F ). (9)
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In that case, using equation (8) and equation (9), we have

∫
X

−div(F⃗ )dV =

∫
∂X

F⃗ · dS⃗. (10)

We will use this theorem to orient the cube, beginning with computing the integral
∫
∂X

F⃗ · dS⃗ for

an arbitrary vector field F⃗ . We will break up
∫
∂X

F⃗ · dS⃗ into integrals over each face of X, so that:

∫
∂X

F⃗ · dS⃗ =

∫
front face

F⃗ · dS⃗

+

∫
back face

F⃗ · dS⃗

+

∫
left face

F⃗ · dS⃗

+

∫
right face

F⃗ · dS⃗

+

∫
top face

F⃗ · dS⃗

+

∫
bottom face

F⃗ · dS⃗.

Starting with the top face, we have dt = 0. Using the vector differential for Minkowski Space,

dr⃗ = dxx̂+ dyŷ + dtt̂,

and restricting the vector differential to the top face, we have

dr⃗ = dxx̂+ dyŷ.

Since t = const on our face, a family of curves may be parametrized by either x or y. Because

x, y vary independently on our surface, the family that is parametrized by x and a family that is
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parametrized by y will be distinct. Thus,

dr⃗1 = dyŷ; dx = 0

dr⃗2 = dxx̂; dy = 0.

The definition of a general surface element from ([11]) agrees with the more general definition

provided above over our surface. We will use the definition for the surface element that is restricted

to a surface for our computation, preceding so that:

dS⃗ = dr⃗1 × dr⃗2

= dyŷ × dxx̂

= dxdyt̂.

Having computed the surface element for the top face, we express our first integral as:

∫
topface

ω =

∫
topface

−Ftdxdy

=

∫ x0+∆

x0

∫ y0+∆

y0

−Ft(x, y, t0 +∆)dxdy

We will define dS⃗ for the bottom face to be the same as for the top face, times minus one. Thus,

∫
bottomface

ω =

∫
bottomface

Ftdxdy

=

∫ x0+∆

x0

∫ y0+∆

y0

Ft(x, y, t0)dxdy.

Now we focus on the right face. Restricting the vector differential on this face, where x = const,

and again using the argument for distinct families of curves based on independent parametrization,
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we have:

dr⃗1 = dtt̂; dx, dy = 0,

dr⃗2 = dyŷ; dx, dt = 0,

which gives us a surface element such that

dS⃗ = dr⃗1 × dr⃗2

= dtt̂× dyŷ

= −dtdyx̂.

Thus, the integral for flux over the right face is

∫
rightface

ω =

∫
rightface

−Fxdtdy

=

∫ t0+∆

t0

∫ y0+∆

y0

−Fx(x0 +∆, y, t)dtdy.

Using our previous reasoning,

∫
leftface

ω =

∫
leftface

−Fx(−dtdy)

=

∫
leftface

Fxdtdy

=

∫ t0+∆

t0

∫ y0+∆

y0

Fx(x0, y, t)dtdy.

Finally we consider the back face! Then

dr⃗1 = dxx̂; dy, dt = 0,

dr⃗2 = dtt̂; dy, dx = 0,
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which implies that we have the following general surface element:

dS⃗ = dr⃗1 × dr⃗2

= dxx̂× dtt̂

= −dxdtŷ.

Using the above surface element on the back face, we have

∫
back face

F⃗ · dS⃗ =

∫
back face

−Fydxdt

=

∫ t0+∆

t0

∫ x0+∆

x0

−Fy(x, y0 +∆, t)dxdt.

Alternatively, for the top face,

∫
top face

ω =

∫
top face

Fydxdt

=

∫ t0+∆

t0

∫ x0+∆

x0

Fy(x, y0, t)dxdt.

Putting all of these expressions together, we have

∫
∂X

F⃗ · dS⃗ =

∫ x0+∆

x0

∫ y0+∆

y0

Ft(x, y, t0)dxdy

−
∫ x0+∆

x0

∫ y0+∆

y0

Ft(x, y, t0 +∆)dxdy

+

∫ t0+∆

t0

∫ y0+∆

y0

Fx(x0, y, t)dtdy

−
∫ t0+∆

t0

∫ y0+∆

y0

Fx(x0 +∆, y, t)dtdy

+

∫ t0+∆

t0

∫ x0+∆

x0

Fy(x, y0, t)dxdt

−
∫ t0+∆

t0

∫ x0+∆

x0

Fy(x, y0 +∆, t)dxdt.

(11)
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When we combine integrals that agree on their bounds, (11) can be rewritten as

∫
∂X

F⃗ · dS⃗ =

∫ x0+∆

x0

∫ y0+∆

y0

Ft(x, y, t0)− Ft(x, y, t0 +∆)dxdy

+

∫ t0+∆

t0

∫ y0+∆

y0

Fx(x0, y, t)− Fx(x0 +∆, y, t)dtdy

+

∫ t0+∆

t0

∫ x0+∆

x0

Fy(x, y0, t)− Fy(x, y0 +∆, t)dxdt.

(12)

By the Fundamental Theorem of Calculus,

Ft(x, y, t0)− Ft(x, y, t0 +∆) =

∫ t0+∆

t0

∂Ft(x, y, t)

∂t
for fixed x, y

Fx(x0, y, t)− Fx(x0 +∆, y, t) =

∫ x0+∆

x0

Fx(x, y, t)

∂x
for fixed t, y

Fy(x, y0, t)− Fy(x, y0 +∆, t) =

∫ y0+∆

y0

∂Fy(x, y, t)

∂y
for fixed x, t.

(13)

Thus, (12) becomes:

∫
∂X

F⃗ · dS⃗ =

∫ x0+∆

x0

∫ y0+∆

y0

∫ t0+∆

t0

∂Ft(x, y, t)

∂t
dtdxdy

+

∫ t0+∆

t0

∫ y0+∆

y0

∫ x0+∆

x0

∂Fx(x, y, t)

∂x
dxdtdy

+

∫ t0+∆

t0

∫ x0+∆

x0

∫ y0+∆

y0

∂Fy(x, y, t)

∂y
dydxdt.

(14)

Because we are integrating over a box, we may switch our order of integration so that (14)

37



becomes: ∫
∂X

F⃗ · dS⃗

=

∫ x0+∆

x0

∫ y0+∆

y0

∫ t0+∆

t0

∂Ft(x, y, t)

∂t
+

∂Fx(x, y, t)

∂x
+

∂Fy(x, y, t)

∂y

 dV

=

∫
X

∂Ft

∂t
+

∂Fx

∂x
+

∂Fy

∂y

 dV

= −
∫
X

div(F⃗ )dV.

(15)

We can see that our integrands from (10) agree up to a sign, which means we have correctly chosen

orientations for our cube for the flux integral computation according to the equality of integrands

implied by Stokes theorem. Our chosen orientation thus gives us the following normal vectors for

the top, right, and back faces, displayed in figure (6):

n̂top = t̂

n̂right = −x̂

n̂back = −ŷ.

(x0, y0, t0)

(x0 +∆, y0 +∆, t0 +∆)

Figure 6: Oriented Minkowski Box
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2.6 A Differential Forms Computation for Curvature on the Hyperboloid

2.6.1 Curvature of the Hyperboloid

Defining Curvature

The curvature we consider in this paper is a specific type of curvature: Gaussian Curvature.

Gaussian curvature is an intrinsic property of a two-dimensional surface. That is, regardless of

the space such a surface is embedded in, its Gaussian curvature will remain unchanged. In fact,

Gaussian curvature is the only surface curvature with this property [9].

We assume familiarity of k-forms, and begin here with a discussion of connection forms. The

connection forms are 1-forms which uniquely define the exterior derivative operator on vectors. We

are working with the Levi-Civita connection forms, which exist and are determined uniquely by

assuming they are metric compatible and torsion free [9].

Let M be an n-dimensional Riemannian or pseudo-Riemannian manifold, and let {σi} be an

orthonormal basis for T ∗
pM for p ∈ M dual to a basis {êi} for TpM. A connection is a choice of

1-forms, {ωij | 1 ≤ i, j ≤ n}, which once selected characterize an exterior derivative on vectors via:

d(êj) =

n∑
i=1

ωji êi.

A connection, {ωij | 1 ≤ i, j ≤ n} is torsion free if it satisfies

dσi = −
n∑

j=1

ωij ∧ σj , (16)

and metric compatible if it satisfies

ωij = −ωji (17)

for each ωij .

Definition 2.2 (The Levi-Civita Connection). The Levi-Civita connection is the unique connection

that is torsion free and metric compatible.

From here on, we assume we are working with the Levi-Civita connection. The definition of a
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Levi-Civita connection immediately implies that ωij = 0 when i = j because of metric compatibility.

To define curvature as an intrinsic property of our surface, we begin by defining it extrinsically,

and through substitution arrive at an intrinsic definition. If we include a third basis element, the

vector normal to our tangent plane at a given point which very notably depends on where we have

embedded our surface, we are able to define Gaussian curvature extrinsically as:

ω13 ∧ ω32 = −Kσ1 ∧ σ2 (18)

We introduce here something called the curvature 2-forms. In 3-dimensional space these have

the form

Ωij = dωij +

3∑
k=1

ωik ∧ ωkj , (19)

and in fact for this case,

Ωij = 0

for each i, j. From that we conclude

−dωij =

3∑
k=1

ωik ∧ ωkj . (20)

For ω12, by equation (20), we have

−dω12 = ω11 ∧ ω12 + ω12 ∧ ω22 + ω13 ∧ ω32

= ω13 ∧ ω32,

(21)

because ω11, ω22 = 0. Similarly, for ω21, by equation (20) and equation (21), we have

−dω21 = ω21 ∧ ω11 + ω22 ∧ ω21 + ω23 ∧ ω31

= ω32 ∧ ω13

= dω12.

(22)
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Combining equation (18) and (20), we arrive at an intrinsic formulation for curvature. In particular,

we have

−dω12 = −K σ1 ∧ σ2, (23)

or equivalently

dω12 = K σ1 ∧ σ2, (24)

where K is the Gaussian curvature of our surface. Equation (24) and equation (22) tell us that

dω21 = K σ2 ∧ σ1. (25)

For the remainder of our computations, we restrict our attention to the Hyperboloid and

Poincare disk as surfaces independent of an embedding. Both of these are 2-dimensional mani-

folds, and thus we can assume that we have an orthonormal dual basis {σ1, σ2}. Having done so,

there are ω12, ω21 that uniquely characterize the connection forms because of metric compatibility.

In that case, substituting equation (16) with our dual basis elements, we find that

dσ1 = −(ω11 ∧ σ1 + ω12 ∧ σ2)

= −ω12 ∧ σ2 ,

(26)

and similarly,

dσ2 = −ω21 ∧ σ1. (27)

2.6.2 Computing Curvature of the Hyperboloid

Now we begin our computation of curvature for the hyperboloid. We will restrict to the upper

bowl, and then use the patch given in [8]:

x⃗ = (ρ sinh(β) cos(ϕ), ρ sinh(β) sin(ϕ), ρ cosh(β))
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We may interpret this patch as a description of the t coordinate in terms of ρ and β, since for

each fixed value of t > ρ we have x2 + y2 = t2 − ρ2, which is a circle with squared radius t2 − ρ2

parametrized by ϕ. Using this patch, we have:

x = ρ sinh(β) cos(ϕ)

y = ρ sinh(β) sin(ϕ)

t = ρ cosh(β).

Applying the differential operator d on each side, we find that:

dx = ρ(− sinh(β) sin(ϕ)dϕ+ cos(ϕ) cosh(β)dβ)

dy = ρ(cos(ϕ) sinh(β)dϕ+ sin(ϕ) cosh(β)dβ)

dt = ρ sinh(β)dβ

Using the line element for Minkowski space given in [8], we substitue for dx, dy, and dt to find:

(ds)2 = dr⃗ · dr⃗

= dx2 + dy2 − dt2

= ρ2(− sinh(β) sin(ϕ)dϕ+ cos(ϕ) cosh(β)dβ)2 + ρ2(cos(ϕ) sinh(β)dϕ+ sin(ϕ) cosh(β)dβ)2 − (ρ sinh(β)dβ)2

= (ρ sinh(β)dϕ)2 + (ρdβ)2.

(28)

As described in [9], our line element gives us an orthonormal basis for 1-forms using the coordinates

from our patch, ϕ and β, where:

σ1 = ρdβ

σ2 = ρ sinh(β)dϕ.
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These are orthonormal in the following sense: they correspond to an orthonormal basis in the

tangent space of our surface at each point. The “dot product” induced by our metric ensures that

σ1 ·σ2 = 0 and each σi acts on a corresponding normal vector in the tangent space by sending it to

one. From here, we compute dσ2 and find that:

dσ2 = ρ cosh(β)dβ ∧ dϕ.

Next, we use equation (27) and substitute such that:

dσ2 = −ω21 ∧ σ1

ρ cosh(β)dβ ∧ dϕ = −ω21 ∧ ρdβ

(29)

From equation (29), we see that

ω21 = cosh(β)dϕ. (30)

Next, we compute dω21 and find that

dω21 = sinh(β)dβ ∧ dϕ

Finally, using equation (25), we find that

sinh(β)dβ ∧ dϕ = Kρ2 sinh(β)dϕ ∧ dβ. (31)

From equation (31), we can see that

K =
− 1

ρ2
.

Thus, we have found the Gaussian curvature of the hyperboloid to be negative and constant.

43



2.6.3 Stereographic Projection

The stereographic projection of the Hyperboloid to the open disk Dρ with radius ρ functions as

follows: let p0 be the point where x = y = 0 on the lower bowl. For each point on the upper bowl,

draw a line from that point to p0. Where this line intersects Dρ is where this point is mapped to

under the stereographic projection.

Because we are working in the disk, we can think about position in terms of two coordinates: ϕ

and R. Note that the angle out from the x-axis, ϕ, is preserved under our mapping. Then it is left

to determine R; using similar triangles, we find that

R

ρ
=

ρ sinh(β)

ρ+ ρ cosh(β)
,

so that

R =
ρ sinh(β)

1 + cosh(β)
. (32)

Then a point in the Poincaré Disk has coordinates:

(R cos(ϕ), R sin(ϕ), 0)

Assuming the coordinates for the Poincaré Disk, we would like to rewrite the line element for

the hyperboloid in terms of R and ϕ. As a spoiler for the reader who would like to skip the detailed

computation, we will find that the line element in the Poincaré Disk is given by:

(ds)2 =

 2ρ2R

ρ2 −R2
dϕ


2

+

 2ρ2

ρ2 −R2
dR


2

.
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2.6.4 Computation of Line Element

Using [8] as a guide, we will prove that

(ds)2 =

 2ρ2R

ρ2 −R2
dϕ


2

+

 2ρ2

ρ2 −R2
dR


2

(33)

is equivalent in the Poincaré Disk to the line element from equation (28) in the Hyperboloid.

Because ϕ maps to ϕ, we begin with a verification that

2ρ2R

ρ2 −R2
= ρ sinh(β),

or equivalently,

2ρR

ρ2 −R2
= sinh(β).
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We proceed:

2ρR

ρ2 −R2

=

2ρ

 ρ sinh(β)

1 + cosh(β)


ρ2 −

ρ2 sinh2(β)

1 + 2 cosh(β) + cosh2(β)

=
2 sinh(β)

(1 + cosh(β))

1−
sinh2(β)

1 + 2 cosh(β) + cosh2(β)


=

2 sinh(β)

1−
sinh2(β)

1 + 2 cosh(β) + cosh2(β)
+ cosh(β)−

cosh(β) sinh2(β)

1 + 2 cosh(β) + cosh2(β)

=
2 sinh(β)

1 + 2 cosh(β) + cosh2(β)− sinh2(β) + cosh(β) + 2 cosh2(β) + cosh3(β)− cosh(β) sinh2(β)

1 + cosh(β) + cosh2(β)

=
2 sinh(β)(1 + 2 cosh(β) + cosh2(β)

2 + 2 cosh(β) + cosh(β) + 2 cosh2(β) + cosh(β)(cosh2(β)− sinh2(β))

=
2 sinh(β)(1 + 2 cosh(β) + cosh2(β)

2(1 + 2 cosh(β) + cosh2(β)

= sinh(β).

To finish our verification that equation (28) and equation (33) equivalent in their respective models,

we would like to show that

2ρ2

ρ2 −R2
dR = ρdβ,
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or equivalently:

2ρ

ρ2 −R2
dR = dβ.

Since we no longer have a direct mapping of β to R, we will need to do a bit more work here to

solve for dR in terms of dβ. We find that

d(R) = d

 ρ sinh(β)

1 + cosh(β)


=

 ρ cosh(β)

1 + cosh(β)
−

ρ sinh2(β)

(1 + cosh(β))2

 dβ.
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From here, we substitute for dR with the above calculation:

2ρ

ρ2 −R2
dR

=
2ρ

ρ2 −R2

 ρ cosh(β)

1 + cosh(β)
−

ρ sinh2(β)

(1 + cosh(β))2


=

2ρ

ρ2 −
ρ2 sinh2(β)

(1 + cosh(β))2

ρ cosh(β) + ρ cosh2(β)− ρ sinh2(β)

(1 + cosh(β))2



=
2(cosh(β) + 1)1−

sinh2(β)

(1 + cosh(β))2

 (1 + cosh(β))2

=
2(cosh(β) + 1)

(1 + cosh(β))2 − sinh2(β)

=
2(cosh(β) + 1)

1 + 2 cosh(β) + cosh2(β)− sinh2(β)

=
2(cosh(β) + 1

2(cosh(β) + 1)

= 1.

This computation completes our proof that the line elements in [8] are correct for the Poincaré

Disk.
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2.6.5 The Poincaré Disk

We now provide a general characterization of the Poincaré Disk. The points in this model are the

Euclidean points in the interior of the unit disk,

{(x, y) | x2 + y2 < 1}.

Since we are assuming the neutral geometry postulates, the lines in this model are all defined by

two distinct points.

p1 p′1

p2

p′2

Figure 7: Hyperbolic line between p1 and p2 (red)

The point (0, 0) is the center of the Poincaré Disk, and the disk has radius 1. Given two points

p1, p2, to find a line containing them first let p′1 be the inversion of p1. This is the point colinear

(in the Euclidean sense) to (0, 0) and p1 which satisfies

||p1|| · ||p′1|| = 1,

using the Euclidean norm. Now, let C be the circle that goes through p′1, p1, and p2. Notably, this
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circle will also contain the inversion of p2, so this circle is invariant upon relabeling of our points.

The hyperbolic line through p1, p2 in the Poincaré Disk is the intersection of C with the open unit

disk. Furthermore, we equip the Poincaré Disk with a non-Euclidean metric [25]. This is illustrated

for a particular pair of points p1, p2 in figure (7).

2.6.6 Computation of Curvature in the Poincaré Disk

In this section, we will compute the curvature in the Poincaré Disk using the intrinsic definition of

Gaussian curvature from equation (24). We begin with our dual basis, which we selected using the

line element to be:

σ1 =
2ρ2

ρ2 −R2
dR

σ2 =
2ρ2R

ρ2 −R2
dϕ.

From here, we solve for dσ1 and find that

dσ2 =

2ρ4 − 2ρ2R2 + 4ρ2R2

(ρ2 −R2)2

 dR ∧ dϕ

= −

2ρ4 + 2ρ2R2

(ρ2 −R2)2

 dϕ ∧ dR.

Now we equation (27) to conclude that

ω21 =

ρ2 +R2

ρ2 −R2

 dϕ

=

 ρ2

ρ2 −R2
+

R2

ρ2 −R2

 dϕ.
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Next we compute dω21, which we find to be:

 2ρ2R

(ρ2 −R2)2
+

2R

ρ2 −R2
+

2R3

(ρ2 −R2)2

 dR ∧ dϕ (34)

=
4ρ2R

(ρ2 −R2)2
dR ∧ dϕ (35)

= −
4ρ2R

(ρ2 −R2)2
dϕ ∧ dR. (36)

The final piece of the puzzle is σ2 ∧ σ1, for which we have:

σ2 ∧ σ1 =
4ρ4R

(ρ2 −R2)2
dϕ ∧ dR.

Now, using equation (25), we find that

K =
− 1

ρ2
.

Thus, we have finally verified that Gaussian curvature is equal on the Poincaré Disk and on the

hyperbola.
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2.7 Conclusion

We began by discussing the Euclidean box argument that motivates our orientation of the cube

in Minkowski Space. After that, we introduced and generalized various tools to the Minkowski

3-space setting, including divergence, the module isomorphism induced by the vector differential,

and the cross product. Finally, we used Stokes’ theorem to correctly pick an orientation for each

face of the cube. More specifically, our orientation of the cube relied on the assumption that each

face was orientable, and furthermore, that the integrands would be equal if a correct orientation

was selected. The latter assumption is grounded in the work we did to generalize the Euclidean

divergence theorem to our context using Stokes’ Theorem.

In our computations of curvature in each model, we verified the equivalence of the Poincaré

Disk and the hyperboloid as models of Hyperbolic Geometry. This result is further validated by

the fact that stereographic projection from the hyperboloid to the Poincaré Disk is an isometry; in

determining the line element for the Poincaré Disk according to our mapping under stereographic

projection, we guarantee that distance between points is preserved under mapping. This notion of

an isometry loosely follows the definition outlined more rigorously in [22].

The existence of any such isometry implies that the two models will have the same intrinsic

geometric properties [22]. Considering this in conjunction with Gauss’ Theorema Egregium, it

comes as no surprise that our separate computations for curvature yield an identical result. That

said, we have independently found the curvature for each model to be negative, constant, and equal

to
− 1

ρ2
.
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2.8 Future Work

The most immediate project following this work is to apply the orientation of the cube to compute

the Gaussian curvature of the Hyperboloid extrinsically. This can be easily verified using our

forms-based computation of curvature in the preceding section. Following that, I would love to

expand the accessibility of the results in this paper so that someone with a solid understanding

of vector calculus and the shape operator could seriously use the oriented cube to do their own

computations.
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3 Orienting Myself in Mathematics

“The real political task in a society such as ours is to criticize the workings of institutions that

appear to be both neutral and independent, to criticize and attack them in such a manner that

the political violence that has always exercised itself obscurely through them will be unmasked, so

that one can fight against them.”

– Michel Foucault
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3.1 Introduction

I would like to begin by saying, first and foremost, I am not anti-math. In my tenure as a stu-

dent of mathematics, I have gone through periods of general interest, active dread, and extreme

fixation toward my studies. Ultimately, however, I can’t imagine a future where I ever stop doing

mathematics because deep down, I always love it. Furthermore, I recognize that mathematics as

we think of it today has admittedly been used to cause a lot of harm, but it has also been used to

reduce human suffering, produce life-saving interventions, and bring joy to casual audiences who

learn that math is actually pretty fun.

While I love mathematics, I am also committed to improving the culture surrounding it. This

includes improving access to mathematics, as well as improving the experience of doing mathemat-

ics once access is granted, for everyone and especially those currently marginalized in the field.

Furthermore, improving the culture of mathematics also means expanding what counts as “valid”

mathematics and who is considered a mathematical knower. The consequences of doing so are

twofold; first, the experiences of mathematicians would be improved. This is important because

folks who love to do mathematicsshouldn’t have to decide between doing mathematics and feeling

comfortable in their profession. Furthermore, in improving access and culture, our field could have

higher retention of brilliant individuals who carry crucial perspectives. For a field that often claims

to be fundamental to the other sciences, mathematics is not represented by the necessary stake-

holders. One project aimed at improving the culture of mathematics is “humanizing mathematics”.

I have been drawn toward this project in particular, and I see it as an important goal with which to

orient our social work in mathematics. That said, the philosophy of humanist mathematics, while

an important step forward, is an insufficient theoretical framework from which to achieve this goal.

In this section, I will consider how a feminist philosophy of science lens could be used within

philosophy of mathematics, and how it can contribute to the project of humanizing mathematics. In

particular, a feminist philosophy of science lens both challenges humanist philosophy of mathematics

and reinforces many of the critiques made by such an approach toward platonic and formalist

philosophies of mathematics. In addition, feminist philosophy of science can deepen and support
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existing contributions toward the social and cultural construction of mathematics made by humanist

philosophers of mathematics. My scope of expertise, both on philosophy of mathematics and

feminist philosophy is insufficient to detail the extent of these possibilities or anticipate a cohesive

union of these disparate philosophies. That said, I aim to introduce feminist philosophy of science

in relation to humanist philosophy of mathematics, and argue that it is worth spending the time

to develop this line of thought more thoroughly.

Aside: On the Title of this Chapter

The language of “Orienting Myself in Mathematics” can be interpreted at several levels. Most

literally, my author positioning will serve as a way to contextualize myself and my experiences

in relation to mathematics. On a more abstract level, this qualitative inquiry is my attempt to

reconcile my understanding of the world and my love for mathematics, by adopting a philosophy

of mathematics that is consistent with my own beliefs and values.

3.2 Audience

This writing will be the most accessible to feminist philosophers of science and philosophers of

mathematics. That said, in the spirit of feminist qualitative inquiry [12, 24], I aim for this writing

to be accessible to any mathematician and, more broadly, to anyone affected by mathematics. Thus,

if my parents are able to read and understand this, I will be overjoyed.
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3.3 Author Positioning

To orient myself in mathematics, I will begin, according to the feminist research methodologies

introduced by Linda Tuhiwai Smith and Venus Evans-Williams [24, 12], by positioning myself in

this field. In addition, similarily to how Venus Evans-Williams uses autoethnography to inform

her research methodologies via her lived experiences, I will use autoethnographic writing to explain

how my positionality has led me to my current conceptualizing of philosophy of mathematics.

I am a senior mathematics student at Oregon State University; I am queer, white, and possess

the dual diagnoses of ADHD and OCD. I grew up in a rural unincorporated community in Western

Oregon where I did not have access to as much as a grocery store. I was discouraged from taking

advanced math courses on more than one occasion by my public school teachers, but several were

tremendously supportive of my development as a scientist.

My father did not attend college and worked mostly blue-collar jobs for the earlier part of my

life. My mom was college educated, and as a high school guidance counselor she was able to help

me apply for scholarships and internships prior to college. I have been lucky in that I could work

only summers in high school and was able to attain a full-ride scholarship, and unlucky in that I

continued to work through most of college to fund my housing, food, and healthcare.

Before I was eligible for food stamps, I experienced extreme food insecurity. This was also

the time I began the core classes for the mathematics major. I did not experience racism in my

mathematics classes, and I rarely experienced direct homophobia. On the other hand, I was stalked

by two of my classmates, and harrassed by many others. Most of my professors believed in my

abilities as a mathematician and actively challenged me to apply myself, albeit sometimes too much

so. As I worked through my degree, I lost two family members. My mother was diagnosed with

breast cancer, underwent treatment, and is now in remission. As I finish this thesis, my sibling is

undergoing treatment for ALS Leukemia.

All of this is the liminal space I have walked between experiencing oppression, bad luck, good

luck, and white privilege. Some of my fortune is due to institutional structures, and some is due

to sheer luck, and similarly for my misfortunes. These experiences immediately caused me to
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consider how my educational experience failed to support me fully when I struggled, and at the

same time elevated me unfairly over more marginalized students. My mathematics education was

largely based on the assumption that equality could be achieved by measuring every student with

the same metrics and treating each student the same. That is not the case, because student needs

are vastly different and student performance is largely affected by things such as experiencing food

insecurity, experiencing sexual harrassment, and working possibly several jobs, or on the other hand

not working and having parents with technical degrees. Teachers could provide more flexibility for

working students, and department scholarships could consider factors like hours worked per week

in conjunction with GPA and unpaid research experience.

My experiences have affected my access to the institution that produces mathematicians and

the resources to do mathematics, but furthermore my experiences have affected my relationship

with mathematics itself. Thus, while feminist philosophy of science could certainly be used to

investigate mathematics at an institutional level, I am more interested at the moment in how

feminist philosophy of science could be used within philosophy of mathematics.
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3.4 Philosophy of Mathematics

Broadly, the philosophy of mathematics is the study of philosophical questions about mathematics

from the field of philosophy. This is closely related, but distinct, from foundations of mathematics

research done from the field of mathematics [16]. In the philosophy of mathematics, there are

various theories for how mathematics should be conceptualized, and accurately explaining and

connecting all of these to this writing is far beyond my scope of knowledge and expertise. A

curious reader should look into [16, 5]. One of the most influential philosophies of mathematics is

platonism, through which “mathematics objects are real, objective, and mind independent abstract

objects existing outside of space and time” [16, 5]. This includes the conception that mathematics

is discovered by mathematicians [3].

Another hugely influential philosophy of mathematics is formalism, which “regards mathemat-

ics as the study of formal deductive systems, and mathematical truth is just provability in the

system” [3]. The reduction of mathematics to logic has been challenged substantially by mathe-

maticians, even those who see logical argument as an ultimate goal in the project of mathematics,

who nonetheless recognize a certain appeal to mathematics that is beyond logic. For example,

Paul Lockhart’s “A Mathematician’s Lament” famously situates mathematics as art and a part of

human culture. Paul Lockhart goes so far as to call mathematics the “purest of arts” and presents

mathematical objects as ideas which, much like a child’s toy, are moved around and played with

by various individuals [20]. In addition to demonstrating the popular belief that mathematics

is culturally and emotionally valuable, this simple example is significant to my critiques against

maintstream philosophies of mathematics. Toys are played with but not (significantly) physically

changed depending on who holds them. The analogy between mathematical entities and child’s toys

implies a static quality about mathematical entities–a representation of them as “out there”, that

is ultimately challenged by a feminist philosophy of science approach to mathematical knowing.

Paul Lockhart’s appeal to the beauty of mathematics, and the wide circulation and adoptation of

ideas from his essay, demonstrate that the the work of many mathematicians is clearly motivated by

than a desire for logic and truth. As further evidence of this, consider the case of proof automation;
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many mathematicians resist the automation of proofs, in this case seeing some value beyond mere

truth generated computationally. That said, we also work, and are trained, to produce correct

proofs and mathematical statements. This has certainly been the goal of my advisor and I in the

body of mathematics included for this thesis!

I am not equipped to comment on the objectivity of mathematics in any definitive way. On one

hand, I recognize that we construct axiomatic systems that allow for some notion of truth after a

potentially subjective proof experience. On the other, the mathematics we do cumulatively as a

field is flawed logically and sometimes lacking in “rigor”. At least for now, how truth comes to be

accepted is a human endeavor, and thus it seems intractible for us to succeed in having a logically

perfect, axiomatic, body of work. In my head, there is a mathematics “out there”, but ultimately

this mathematics doesn’t seem to exist. The mathematics we actually interact with is a living,

breathing, body of human knowers and human relationships. In some sense, mathematics is only

fallible as much as we entertain the idea of an uncorrupted and perfect mathematics beyond our

touch; mathematical truth is what we construct it to be.

Both humanist philosophy of mathematics and feminist philosophy of science position mathe-

matics as the truth, definitions, and conventions currently accepted within the field. That said,

humanist philosophy of mathematics measures accuracy relative to an infallible mathematical sys-

tem. Let’s assume the existence of such a system and temporarily wear the hat of a formalist.

When we compare our system to what is conceptualized as mathematics by either a humanist

philosophy of mathematics or a feminist philosophy of science lensing toward mathematics, we see

that “mathematics” is fallible. Concepts like folklore in mathematics, summarized on Wikipedia

as “an unpublished result with no clear originator, but which is well-circulated and believed to be

true among the specialists” [1], challenge our understanding of mathematics as consistent with .

Another example of the fallibility of mathematics is the case where mathematicians get it wrong.

This summer, one of the research teams at my “Research Experience for Undergraduates” site spent

a large part of their time correcting a proof for a result that had gone, incorrectly, through peer

reviews and into print, and which was to serve as the basis of their future work. Because both

humanist philosophy of mathematics and feminist philosophy of science admit an understanding of
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mathematics as socially constructed, this fallibility is accepted as a part of mathematics. It’s worth

noting now that this isn’t necessarily a positive artifact of the social construction of mathematics

in either philosophy, but rather it just “is”.
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3.4.1 Humanizing Mathematics

Reuben Hersh is a research mathematician who is largely credited with developing a humanist phi-

losophy of mathematics. The humanist philosophy of mathematics seeks to reconcile the activities

of mathematicians with our understanding of mathematics. This philosophy is conflated in [5] with

a socioconstructivist philosophy of mathematics. Humanist philosophy of mathematics establishes

mathematics as a part of human culture that is constructed by humans. In this philosophy, “mathe-

matical knowledge isn’t infallible, and there are different versions of proof and rigor” [3]. In line with

platonism, the humanist philosophy of mathematics sees mathematical objects after construction

as independent of their creator and mathematical statements as describing mathematical objects

[5]. This notion will be challenged by the concept of situated knowledge from feminist philosophy

of science.

Ultimately, my training as a feminist philosopher, and my own experiences in mathematics, lead

me to agree that mathematics is indeed a part of human culture. That said, feminist philosophy

of science challenges the notion of mathematical objects as separate, abstract objects, and instead

situates them within social context, relationships, and a variety of other dynamics that knowledge is

conceived as situated under this framework. One consequence of adopting a feminist philosophy of

science lensing toward mathematics is the relationality and culture of mathematicians, as advanced

by humanist philosophy of mathematics, is emphasized further because, through this lens, culture

and relationships partially constitute mathematical entities. Furthermore, feminist theory provides

further space to ponder the social construction of mathematics through the theory of feminist

postmodernism. Finally, a feminist philosophy of science framework move towards a non-essentialist

conception of humans, human culture, and the role of mathematics therein.
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3.5 Feminist Philosophy of Science

My original vision for this inquiry was largely inspired by Piper H’s thesis [14]. I wanted to discuss

the lives of each cited mathematician, and I wanted to include context for my life as this work

was written, in an effort to radically contextualize the mathematics that I do. This developed into

a set of case studies challenging the overall objectivity of mathematics, and the institution that

trains mathematicians. Ultimately, working out the theoretical lensing for that research was a rich

inquiry in and of itself and has become the focus of my qualitative inquiry. I chose to use a feminist

philosophy of science lens because of my background in feminist philosophy; I took a variety of

women, gender, and sexuality courses as well as feminist philosophy as an undergraduate, and I

have continued to recreationally read, blog about, and critique various feminist philosophical pieces

recreationally.

The primary lens through which I will conduct my analysis is feminist philosophy of science.

Various expert scientists have contributed to active feminist inquiry on the epistemology and on-

tology of their own field, including Banu Subramaniam, Robin Wall Kimmerer, and Karen Barad

[23, 17, 4]. It is my goal to contribute an argument for developing a feminist philosophy of mathe-

matics, using a feminist philosophy of science framework, in my own field.

Here I will provide a brief overview of the elements from feminist philosophy of science that

are particularly relevant to my project, and which have shaped my areas of study. The material

for this overview is prepared based on [2], as well as my own scholarship broadly across feminist

philosophy, which will be cited throughout.

Background: Situating Feminist Philosophy of Science

Western philosophies have been significant in their assumption of humanism and essentialism. This

has been challenged vigorously by feminist theorists. In my domain of experience, I have encoun-

tered such challenges from feminist philosophers of disability like Susan Wendell (see [26]) who push

back against the naturalization of disability and reveal how disability is significantly constructed

by the organization and structure of society.

In addition, feminist scholars of color have significantly pushed back against the essentialist,
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global, category of “women” assumed under traditional western feminist philosophers. This in-

cludes Kimberly Crenshaw’s genius intersectional feminist framework [7], which articulates how

unique types of oppression create different and unique experiences of womanhood and patriarchy

for women in distinct social groups. Furthermore, in “Feminism Without Borders” Chandra Tal-

pade Mohanty articulates a strong critique against a universal “woman” or a universal experience

of patriarchy [21]. In fact, as Mohanty shows, such conceptions are essentialist and ultimately

naturalize gendered oppression. Furthermore, she carefully argues that implicit in the universal

constitution of womanhood by many western feminists is an affluent, white, American woman.

Finally, in “Full Surrogacy Now”, Sophie Lewis brilliantly moves feminist reproductive justice

toward questioning family, kinship, and birth [19]. She highlights how Western ontologies have

ultimately limited conceptions of pregnancy and birth to what is understood as essential to birth,

and suggests that we should radically reconsider what is seen as fundamental to childbirth, including

birth mortality, and pain during pregnancy and childbirth.

All of these contributions have been in line with feminist philosophical stances that reject hu-

manism and the naturalization of gendered oppression. In parallel to these counters to an essential

human, an essential woman, or an essential birth experience, feminist philsophy of science has

challenged the objectivity promised by western science and ultimately of essential knowledge. In

traditional western epistemologies, knowledge is held separately from the subject of knowledge, and

furthermore, knowledge is fundamentally true.

Assumptions implicit under Western epistemology have been effectively exposed by Indigenous

scholars. For example, Whitt, Roberts, Norman, and Grieves describe two “prevailing convictions

in western philosophy and the science which it sustains.” These convictions are the claims that

”knowledge of nature is ultimately distinct, and separable from, nature” and “what is known are

true propositions about reality.” Furthermore, these scholars outline an eye-opening alternative to

what they define as Western representational knowledge systems, revealing that the very conception

of knowledge as separated from the subject of knowledge is contingent on a choice of ontology [27].

Feminist Philosophy of Science
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Similar to Indigenous feminist philosophers, feminist philosophers of science have grounded into

critiques of knowledge as representational, informed largely by the theory of knowledge as situated.

Under the framework of situated knowledge, knowledge is held in the relationships of the knower,

possibly to the subject of knowledge, to themselves, or to other knowers. Unlike other philosophies of

mathematics, including mainstream humanist philosophy of mathematics, in a feminist philosophy

of science lens knowledge doesn’t exist “beyond” knowers but instead is situated within and among

knowers and thinkers.

Situated knowledge has been informed significantly by feminist standpoint theory, feminist post-

modernism, and feminist empiricism. Each theory has challenged and evolved the other in its cri-

tiques, and modern feminist philosophy of science is informed by this evolution and convergence

of theories. Situated knowledge stresses several relationships to knowledge that are significant in

the context of mathematics. Of the eight major constituents of situated knowledge highlighted

by Elizabeth Anderson in ([2]), the following are immediately relevant to advancing or critiquing

claims made by a humanist philosophy of mathematics:

1) Embodiment “People experience the world by using their bodies, which have different consti-

tutions and are differently located in space and time.”

3) Emotions, attitudes, interests, and values “People often represent objects in relation to

their emotions, attitudes and interests, which differ from how others represent these objects.”

5) Know-how “People have different skills, which may also be a source of different propositional

knowledge.”

6) Cognitive Styles “People have different styles of investigation and representation.”

7) Background beliefs and worldviews “People form different beliefs about an object, in virtue

of different background beliefs.”

8) Relations to other inquirers “People may stand in different epistemic relations to other

inquirers-for example, as informants, assistands, students–which affects their access to infor-
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mation and their ability to convey their beliefs to others.” Epistemic authority and epistemic

injustice is ellaborated on in great detail in [2].

Because situated knowledge is ultimately informed by our three distinct philosophies, I will detail

each of those philosophies in the next section. Rather than present these philosophies as competing

with each other, I will explain each and how it can enhance the other.

Feminist Standpoint Theory

Feminist standpoint theory is grounded on the assumption that women, holding subjugated identi-

ties, have a clearer and thus more objective understanding of gendered oppression than cis-gender

men. This assumption is grounded in a critical catchum that this understanding is only granted in

conjunction with critical awareness gained through political struggle and theoretical indoctrination

in feminism. In this sense, the grounds of standpoint expertise are restricted to women who largely

identify as feminists and who have struggled for liberation in the face of their oppression [2].

Feminist standpoint theory implies that any such women are uniquely qualified to detect and

eliminate bias in matters where gender is implicated. As standpoint theory relates to feminist

philosophy of science, this theory suggests that women are uniquely equipped to detect gender bias

in science. Thus, an ultimate implication of this theory is that objectivity of science is improved

by increasing the participation of women [2].

Feminist standpoint theory is not necessarily inconsistent with feminist empiricism or postmod-

ernism, but responds to the question of political objectivity differently. For example, a feminist

standpoint theorist might reject the scientific method, in a manner inconsistent with most feminist

empiricists, but they may also adopt and fully utilize both philosophies.

Feminist standpoint theory has been criticized on several grounds. From mainstream philoso-

phies of science which present scientists as objective, this theory is charged with incorrectly portray-

ing scientists as biased. From a feminist perspective, this theory is critiqued for over-universalizing

the category of “woman”. As Mohanty discusses, behind such universal classification is the as-

sumption of a specific, usually white and affluent, woman [21]. Ultimately, this theory provides a

framework that suggests expertise to a group of subjugated knowers, and I suggest we take it “with
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a grain of salt” and adapt it in local contexts as much as it makes sense to.

Feminist standpoint theory is a relevant theory to my project in that it enhances my validity

as a feminist theorist. That said, I will not consider for the scope of this project the ways in

which gender is implicated further in our field or in the structures of our logical systems. I am not

dismissing the possibility that our very proof structures and definitions are in some ways gendered

and in fact find that likely; see, for example, [15]. Instead, I am acknowledging that this is beyond

the scope of my resources at the time to consider.

Postmodernism

Postmodernism is a branch of philosophy concerned with the rejection of and skepticism toward

essentializing or universalizing claims of existence, reason, subject and self dichotomy, and science

[15]. This theory, informed significantly by postmodernist philosophers including Michael Foucault,

“stresses the locality, partiality, contingency, instability, uncertainty, ambiguity, and essential con-

testability of any particular view of the world and the good” [2].

Before situating postmodernism further into a feminist philosophy of science lens, I will discuss

a couple of key applications of postmodernist philosophies. From a feminist philosophy of disability

lens, postmodernism provides grounds to argue toward a social model of disability, where disability

is not produced by essential classifications but instead through environmental conditions and as

such, it can be considered (at least in many cases) as “socially constructed” [26]. A concrete

example is a wheelchair user who cannot access a room on the second floor due to a lack of ramps

in the building. Instead of placing disability on behalf of the individual, we can recognize that the

omission of a ramp has resulted in their lack of access, thus partially constructing their disability.

Another application that we have already seen is Mohanty’s anti-universalizing appeals for

categories like “woman” [21]. The experience and customs associated to women and womanhood

differ by culture, historical moment, and presentation on behalf of the individual. Thus, there can

be no essential “woman”. Shifting from gender toward sex, which is often portrayed as rooted in

the biological instead of social, a postmodernist lens encourages us to take not even those categories

for experience as final. As Sophie Lewis demonstrates in her groundbreaking writing, there cannot
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even be an essential female experience.

So what does postmodernism imply for feminist philosophy of science? Postmodernism imme-

diately critiques our preceding two theories as being too broad or too rigid. Furthermore, post-

modernism asserts that “there can be no complete, unified theory of the world that captures the

whole truth. . . The selection of any one theory is a choice that cannot be justified by appeal to

the ‘objective’ truth or reality” [2]. As Michel Foucault suggests, truth itself is constructed within

various epistemes, each of which is in turn created by a comibation of social and historical factors

[13]. One such episteme Foucault identifies is the episteme of western science; thus, postmodernism

provides a lens by which to question the very structures of science, discovery, and experimentation

as being socially constructed and thus having room for gender bias.

From a more specific context, Sandra Harding discusses challenges presented to “pure math-

ematics” that are in line with such postmodernist skepticism. For example, the field of formal

semantics is critiqued as individuating objects in a highly gendered manner by Merrill and Jaakko

Hintikka. She further discusses how historical moments and social images have created logic and

routes to proof in mathematics [15].

Finally, Sandra Harding crucially notes that “no conceptual system can provide the justificatory

grounds for itself.” As such, even pure mathematics must be derived from human intentions and

values. Thus, just as a geometry is axiomatically constructed, the logical system from which

axiomatic construction is permitted is produced relationally and ultimately socially constructed.

Postmodernism contributes to a feminist philosphy of mathematics in a final significant way; in

valuing and recognizing a plurality and constant evolution of perspective, we can better recognize the

potential of individuals with unique beliefs, perspectives, or worldviews as knowers of mathematics.

Empiricism

Empiricism is broadly the philosophy that “experience provides the sole or primary justification for

knowledge” [2]. Within feminist empiricist philosophy of science, there are two main philosophies:

community-based social knowledge and values-as-evidence. Both philosophies agree that “values,

as with any number of descriptive beliefs, are often implicit and assumed in scientific research, oper-
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ating as auxiliary or background assumptions” [6]. Notably, in addition to the discussion of values

informing practice, several empiricists have argued for an empiricist philosophy of mathematics.

For Quine, such a philosophy assumes that “the natural sciences are the ultimate arbiters concern-

ing mathematical existence and mathematical truth” [16]. On the other hand, Tevian Dray, who

works at the intersection of theoretical physics and mathematical physics, has claimed that math-

ematics is only ever a crude approximation for the natural world, and is constructed axiomatically

by mathematicians [10]. Tevian’s philosophy on this matter more accurately summarizes my own

relationship to mathematics and logic, and notably still leaves space to interpret a constructivist

approach to mathematics and the imbuing of values in such construction.

The community-based social knowledge approach argues that objectivity arises from democ-

racatic decision-making and diverse representation in science. On the other hand, the values-as-

evidence approach conceptualizes that “values are beliefs informed by the evidence of experience”,

and furthermore, that objectivity is increased by interrogating and testing values in the same way

that other propositions are tested in science. Sharyn Clough provides a more thorough overview

of the above material, and discusses how feminist values hold up to interrogation and can inform

scienctific processes, in her essay ”Using Values as Evidence When There’s Evidence For Values: A

Pragmatist Approach” [6].

Objectivity

Contrary to representations in the media, feminist philosophy of science is explicit and nearly

universal in its goal to improve objectivity in science [2, 6]. Objectivity in research is defined

by Sharyn Clough, an empiricist, as research that “captures as much of the available evidence

as possible, obscures or discounts as little of the available evidence as possible, is based on as

representative a sampling of the relevant evidence as possible, and explains as much as possible

of the variation in the evidence at issue” [6]. That said, there are a variety of appraoches within

feminist philosophy of science toward objectivity, but they are fitted to the lens of each philosopher

and do not necessarily imply an abstract, “pure” notion of objectivity [2]. In her summary of

feminist philosophy of science, Elizabeth Anderson presents the following critiques posed by feminist
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philosophers of science toward western science’s claims toward objectivity:

Subject/object dichotomy “what is really (‘objectively”) real exists independently of knowers.”

Aperspectivity “‘objective’ knowledge is ascertained through ’the view from nowhere,’ a view

that transcends or abstracts from our particular locations.”

Detachment “knowers have an ‘objective’ stance toward what is known when they are emotionally

detached from it.”

Value-neutrality “knowers have an ‘objective’ stance toward what is known when they adopt an

evaluatively neutral attitude toward it.”

Control “‘objective’ knowledge of an object (the way it “really” is) is attained by controlling it,

especially by experimental manipulation, and observing the regularities it manifests under

control.”

External guidance “‘objective’ knowledge consists of representations whose content is dictated

by the way things really are, not by the knower.”

Many of these critiques are especially relevant in the context of mathematics. For example,

platonism and, possibly to a lesser extent, humanist philosophy of mathematics both product

subject/object dichotomy as portraying mathematical entities as separate from mathematicians.

Furthermore, aperspectivity is assumed by many mathematicians when they claim that mathematics

is a universal language. This hides the subtleties of mathematics as situated in an individual’s

culture and perhaps misses the unique and possibly quite different interpretations at play when two

mathematicians work together.

Although doing mathematics is regularly portrayed as neutral or “pure”, this is contrary to my

experience in mathematics. Mathematicians often fondly remark on proofs (“cute” is a favorite

descriptor in our department) and relate to favorite structures warmly and affectionately. Mathe-

maticians are described as passionate and eccentric. Notably, the emotions it is appropriate to feel

toward mathematical entities are policed in what I feel is a highly gendered manner. Furthermore,
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excess passion is part of a larger class of neurodivergence which is, in the words of a past advisor,

“fetishized” in our field to the point of exploitation of mathematicians. That said, mathematicians

place strong emphasis on certain emotions and the ability of emotions to connect us closely to

the objects we work with; such connection fosters what many professors refer to as “mathematical

intuition.”

Emotional connection to mathematical entities is actually in line with what Elizabeth Anderson

highlights as a method to improve objectiviy in science. According to Anderson, feminist theory

also suggests methodologies for more objective scientific research [2]. This part of the lensing is

crucial, because the overall goal of feminist philosophers of science is not to attack science, but

to improve science. So far, we have recognized some of the shortcomings of our philosophies of

mathematics and the limitations of their promises for objectivity. We now consider Anderson’s

producers, as implied by feminist theory, for more objective research:

Feminist/nonsexist Research Methods Feminist and nonsexist research methods encapsulates

the application of research methods which avoid gender bias. Various feminist scholars have

articulated ways in which the structure of inquiry, or the design of individual experiments,

are biased in gendered ways.

Emotional Engagement Rather than avoiding and attempting to remain neutral toward the

subjects of study, feminist philosophers of science argue that we should engage at an emotional

level with them. By doing so, we can more accurately predict and understand them. In the

words of Anderson, “loving attention toward the object enhances perception of”. Furthermore,

because knowledge is situated within the knower, emotions are an important tool for inquiry,

and inform our intuition for the truth.

Reflexivity Reflexivity means that “inquirers place themselves on the same causal plane as the

object of knowledge.” Reflexivity requires that an inquirer makes their social position ex-

plicit in their inquiry. This convention was adopted above when I discussed my own social

positioning.

Democratic discussion Feminist theorists posit that objectivity is improved through critical and
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cooperative discussion. Further, democratic discussion must include a representative group,

and further, that the participants in knowledge production are not subject to illegitimately

garnered epistemic authority or denial of such authority on the basis of social power. This is

also referred to as “equality of intellectual authority.”
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3.6 Philosophical Takeaways

I have struggled to place my understanding of embodied and more generally situated mathematical

knowledge within the main philosophies of mathematics. Feminist philosophy of science provides

a crucial lens for understanding the deeply human, and furthermore situated, aspect of the work

that we do as mathematicians. Furthermore, this lens critiques what we assume to be the source of

our objectivity, and inspires a new line of inquiry that encourages collaboration, full and fair rep-

resentation, and open critique. Finally, the relational aspect of situated knowledge underscores the

human and cultural aspect of mathematics that philosophers including Reuben Hersh have argued

for. In my experience as a mathematician, mathematics is not abstractly “out there” but deeply

contingent on the context it is done in; feminist philosophy of science, and more broadly feminist

theory are a promising philosophy of mathematics in that they admit for such contextualization.
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3.6.1 Future Philosophizing

My writing so far has largely advanced the argument that this framework shows potential for

advancing and critically challenging humanist philosophy of mathematics. Because of my lack of

deep expertise on either feminist theory or philosophy of mathematics, future work would most

immediately be including the expertise and perspectives of philosophers from these two domains.

Furthermore, if this theory truly holds water, I envision a feminist philosophy of mathematics,

which would require much more work and research to develop fully and thoroughly. Many major

elements of feminist theory were left out of this analysis, and there is a lot of room for future

exploration and development of a feminist philosophy of mathematics. Furthermore, an immediate

corollary to this writing, and the original inspiration for working out this lensing, would be to use

this framework to inquire on the subjectivity of mathematics through four major lines of inquiry

that I will discuss in the next section.

Further projects, which I have not had time to consider, are what shortcomings there are

for feminist philosophy of science’s “situated knowledge” in describing mathematical knowledge.

For example, does this place knowledge mostly at the level of the individual, instead of among

and potentially beyond mathematicians? Furthermore, I think it is worthwhile to examine how

gender is implicated in the construction of specific mathematical entities and, the development of

or tendency to select certain proof methods.
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3.7 Application of Feminist Philosophy of Science Lensing: A Proposal

for Qualitative Inquiry in Humanizing Mathematics

The preceding philosophical work was largely inspired to serve as the lensing for a body of work

that remains unfinished. Accordingly, I will discuss the most immediately pressing questions on

which I would like to apply a feminist philosophy of mathematics lensing. The following are the

main questions I seek to investigate:

1. What existing critiques are there in the literature for the title “pure math”?

2. What ontological assumptions are baked into the distinction between “pure” and “applied”

mathematics?

3. Where is there space for subjectivity or human-ness in “pure” mathematics?

For most of this proposal, I would like to elaborate more on the third question. I would like to

research the subjectivity of “pure” mathematics. Because I have been trained as a mathematician

in a rigid axiomatic system, I want to look at how even this system has space for humanity and

subjectivity. There is a common notion that “pure mathematics” is truly value neutral, ends-

oriented, and standardized because it relies on proofs of mathematical statements. In my experience,

this is very much not the case.

Even if there is an underlying very rigid logical structure to things, I think the myth of objectivity

in our field causes a loss of creativity and perpetuates a scarcity model in who has the ability to

do math. What’s more, treating mathematics as separate from the people who do it causes bad

people to continue to be rewarded and recognized in our field. I would like to critique the process of

mathematics as objective by interviewing others, share my personal experiences at the intersection

of mathematics and being marginalized, and, in addition, provide personal context for every person

cited in my project to radicalize the citation process in math.
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I would like to analyze four key areas that I see as relevant to launching a critique against

objectivity of “pure mathematics”: process vs. outcome, ethics of mathematicians in their lives

beyond math, relationship to mathematical structures, and institutional structures influence on the

doing of mathematics.

I originally planned to incorporate interviews with other mathematicians to analyze both process

vs. outcome, and the relationship to mathematical structures. That said, due to the resources and

time needed to obtain an IRB approval, I have written a proposal for work that would not require

IRB approval. Instead, per my colleague Kay Ohsiek’s inspirational example, I would like to

incorporate autoethnography to discuss these components and detail my own experiences. While

I worry that I would like to be taken less seriously if I only document my own experiences, I do

have a cumulative three years of research experience in the domain of “pure mathematics”, and the

testimonies of many other professional mathematicians that I can cite in my work to back up my

analytical claims.

3.7.1 Methodologies and Methods

Amplification For this method, I would like to reach out to a philosophy professor who is a white

woman working at the intersection of western scientific ontologies and Indigenous ontologies.

She has mentioned that she uses “Amplification” as a methodology to recognize that she is

uplifting the voices of others who contributed the original theories she is pulling from. I would

like to ask her for good texts and resources to learn about this methodology. I think this is

really relevant to what I want to do, since especially women of color in mathematics have been

advancing critiques that have informed my existing stance and motivation to do this kind of

research work. Essentially, other folks have been doing this, and I want to lift up their voices.

Autoethnography This narrative methodology is informed by the methodology used and adopted

by Venus Evans-Winters in her book, and by a desire to bring to light the barriers hidden

both systematically and explicitly by “Math”.
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3.7.2 The four areas

Process vs. Outcome I have been frustrated with a fixation on outcome instead of process,

because oftentimes even if an effort fails to prove the result we believe is true, the effort either

suggests a more effective proof strategy or is itself a very cool, potentially useful but also

potentially just fun and interesting, idea to explore. Research into this component would

largely consist of my own experiences in my department, as well as my experiences as a

researcher. I would like to use autoethnographic methods to include these narratives, and

explain how these have informed my existing critiques in this domain.

Ethics This component describes the tendencancy in our field to see mathematics as separate from

the person who produced it. This is self-reinforcing with myths of mathematical genius, with-

out whom we would never have certain contributions, and has famously led to the tolerance

of individuals famous for their mathematics who also are Nazis (Teichmuller, or someone who

developed the tools in my own field, Friedrich Hirzebruch). Another famous example is Serge

Lang, who was an AIDs denier and whose textbooks are still used in our curriculum even

though there are a wealth of other texts about the same content that we could be using.

In addition to tolerating atrocious individuals and saving space for them simply due to

a scarcity model of mathematics contributions, we leave out narratives of mathematicians

who contributed immensely to important social movements. One example is Eugene Lawler,

who attended anti-war protests and was even bailed out of jail by famous complexity theorist

Richard Karp after protesting the VietnamWar. Another example is Alexander Grothendieck,

often hailed as the founder of algebraic geometry, who in addition to drawing cooky categorical

diagrams founded an anticaptialist and pro environment legion of French mathematicians and

vocally and through his work, protested wars the U.S. was involved with going so far as to

move into regions that were being actively bombed while doing his work as a sign of protest.

Because of myths that mathematics is supposed to be all-consuming and that a mathe-

matician has no time to contribute to social movements, the hiding of these narratives is very

detrimental to our community and the training of future mathematicians, as well as caus-
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ing people who are socially-minded to question their place in mathematics and ultimately

sometimes leave mathematics because of a lack of attention on these exceptional narratives.

Research in this component would involve simply looking into and documenting the lives

of every mathematician cited in my work, including my mentor Tevian Dray and myself. This

would be largely biographical and involve a lot of digging through archives to learn about the

people who created the mathematics that I use.

Relationships to Mathematical Structures This component is inspired by a class I took in

differential geometry, and the relationship I developed to a theoretical construct called differ-

entiable manifolds. I love manifolds, and honestly that’s not an understatement. In addition,

I have certain images, feelings, and physical embodied knowledge about manifolds. Intuition

is very important in mathematics as it guides us to using tools for our proofs; I am curious

about how our relationships to structures affects our intuition and how that all comes together

to create an environment for the mathematics we do within ourselves. This relationality with

completely imaginary things is bizarre, but from conversations with friends everyone does this

and in fact, there seem to be differences in how we relate to constructs. For this component

of research I would like to pick a few basic structures to have in common that all mathe-

maticians at the graduate or upper-division undergraduate level would be acquainted with,

and discuss my own visualizations and feelings toward these structures. Furthermore, I would

like to include my artwork, song lyrics, doodles, proof scratch work, and any other personal

”scratch work” that helped me arrive at the material for the mathematical side of my thesis.

This also overlaps with the Process vs. Outcome component.

This section is informed somewhat by Indigenous concepts of relationality to the envi-

ronment [27], as well as conversations with friends about their relationship to math, and the

overarching and pleasantly surprising emphasis on intuition and embodied knowledge that is

found in higher level mathematics.

Institutional Structures This is the final component I want to investigate, and it ultimately

would look at institutional aids and barriers, and how they affect the ability to sit down and
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focus and do math. Some things I have envisioned are having to work through college or

graduate school in a different field, as well as facing systemic racism or gender bias. Their are

also structures in place to help marginalized people in our department, including a club for

women and non-binary mathematicians. For this component, I ultimately want to hear about

everyone’s experiences getting to the blackboard (or whiteboard, paper, whatever medium

they are using to do math), and in addition how structures might affect focus or emotions

and how those play out on doing math.

Currently the Association for Women in Mathematics at OSU is running a winter blog

series of free-form art centering the experiences of marginalized people. With the club’s

permission, I would like to include some of these contributions in my research. Another source

for testimonies on this part would be from unofficial group(s) of mathematician activists at

our university including graduate students, undergraduates, and sympathetic faculty, working

toward various activist projects in our department. Activists have written and sent letters to

the department on a variety of subjects, including the honors society for undergraduates and

the qualifying exam requirement for graduate students. With the permission of testimony

contributors and the permission of any wider collectives, I would like to include some of their

work in my research analyses. This would be hard to navigate ethically, as I have responsibility

to the community who has done this work. My friend Tali Ilkovitch and I have talked about

the ethical impacts of doing archival work on behalf of a community working toward systemic

change, and I think this is going to be an ongoing conversation if I pursue this work.

The other part of this research would be autobiographical, and include personal barriers I

experienced in mathematics, and in my life for which there was inadequate support from my

higher ed institution that ultimately impacted my ability to learn and produce mathematics.

This would essentially be a dialogue of what was going on while I did this work. Much of this

autoethnographic writing would overlap with the author positioning presented earlier in this

chapter.
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