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Alexander Guyer
Electrical Engineering and Computer Science
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Abstract—Recent studies have shown that novel con-
tinuous dropout methods can be viewed as a Bayesian
interpretation of model parameters, though most such
studies have shown results using normal distributions.
As the posterior distributions over neural network
nodes and parameters are intractable, given that
they are a result of artificial construction to improve
model performance rather than a result of observation,
there is no justification in assuming that they are
necessarily normal. In this paper, a unimodal and
symmetric distribution called the generalized normal
distribution, sometimes referred to as the exponential
power distribution, is instantiated with various shape
and scale parameter configurations. These instantiated
distributions are tested as nodal representations in
multilayer perceptrons trained against the MNIST and
MNIST Fashion datasets. Results conclude that the
shape parameter of a generalized normal distribution
has a statistically significant effect on the performance
of the multilayer perceptron in continuous dropout
against MNIST. Results also suggest, though not con-
clusively, that a Gaussian distribution is not necessarily
optimal in continuous dropout against MNIST.

Index Terms—neural network, dropout, overfitting

I. INTRODUCTION

Neural networks are a class of nonlinear math-
ematical models in which nodes are connected via
directed weighted edges, wherein the weights, also
referred to as the model’s parameters, serve as
coefficients for the input node’s value, and those
parameters are incrementally adjusted to minimize
the model’s error given a set of training data. This
training process is generally referred to as hill
climbing, or gradient descent. Along with many
other fundamental practices of machine learning,
gradient descent was discussed in depth in Marvin
Minsky’s seminal paper, ”Steps Toward Artificial
Intelligence,” in which he explained how gradients
of the model’s error with respect to each parameter
can be computed to determine the direction, and
optionally inform about the magnitude, by which to

adjust the respective parameter [1]. By increment-
ing a parameter by an amount proportional to the
negative of its computed gradient, the model’s error
will decrease, so long as the parameter is not over-
adjusted.

A. Activation Functions

In effect, if a line of best fit is to be considered
a linear statistical model used to correlate variables
and provide output predictions, a neural network can
be considered a complex non-linear model which
exists to serve the same purpose. The non-linearity
is introduced by non-linear activation functions.
Nodes are organized in layers, and, in the most
traditional case, nodes from each layer are connected
to nodes in the following layer by individual edges
weighted by their parameters. For a given node in
the following layer, the summation of its inputs,
each of which is the product between the corre-
sponding parameter and input node, is provided as
the input for the activation function. Traditionally,
nodes within the same layer share the same activa-
tion function, though activation functions may and
generally do differ across layers.

The most traditional activation function is the
sigmoidal curve with a range of (0, 1). It has been
proven that the superposition of an arbitrary finite
number of sigmoidal activations, as well as other
activation functions under mild assumptions, can ap-
proximate any continuous function within a compact
subset of IRn to an arbitrary degree of accuracy
[2]. This theorem is fundamental to neural network
theory, and it is known as the universal approxima-
tion theorem. The key constraint to this theorem is
that the inputs must be contained within a compact
subset. Ideally, a neural network trained on a given
set of training data will correctly approximate the
unknown non-linear map given the same training



data as input. However, it is only useful as a predic-
tion model if it can also interpolate or extrapolate.
Given a complex non-monotonic function, a neural
network may have a difficult time extrapolating.
However, given sufficient training data for a task
with bounded inputs, such as RGB values of an
image in the task of object recognition, all inputs
thereafter may be some case of interpolation. If the
function is not highly sporadic, interpolation may
be fairly successful, allowing the neural network
to correctly predict output values corresponding to
previously unseen inputs.

Recently, novel activation functions have pro-
vided an increase in neural network performance
for a variety of tasks, including both classification
and regression. The most popular of such activa-
tion functions is the rectified linear unit, or RELU
activation function. It is defined by its positive
domain, in which its range is linear and monotoni-
cally increasing, while its negative domain is often
mapped to zero or linearly scaled by a relatively
small coefficient (in the case of leaky RELU); it
has been empirically shown that rectified linear units
often yield greater predicition performance than
hyperbolic tangents and sigmoid activation functions
[3].

B. Local Extrema Convergence

When incrementally adjusting parameters in gra-
dient descent, one will not always discover the
global minimum of the model’s error. Rather, it is
possible that gradient descent will cause the model
to descend into a local peak or trough wherein
the incremental adjustment of any parameter will
increase local error even if such a sacrifice is ulti-
mately necessary to locate a more optimal extremum
[1]. The occurrences of such problems are difficult
to detect, leading to two practical solutions:

1) Increase the amount of training data so that
a single local minimum is less likely to be
shared across all input vectors

2) Increase the complexity of the network by
superimposing a greater number of activation
functions so that a single local minimum is
less likely to be shared across all parameters

However, Solution 1 is not always feasible. Often,
training data is collected once or pulled from a
public dataset. In such cases, one may be inclined to
choose Solution 2 and increase the number of nodes
in the network so as to increase the number of ac-
tivation function instances which are superimposed.

However, this introduces a model complexity which
is unnecessary for the given task environment. There
are many other reasons which would also incline
one to increase model complexity, such as con-
vergence toward an otherwise insufficient absolute
extrema or in the occasional case wherein training
dataset accuracy is prioritized over the model’s
ability to interpolate and extrapolate (often referred
to as generalization). The latter mentioned reason
is rarely intentional, but more often an undesired
consequence of increased model complexity.

C. Overfitting

Besides increasing training time, testing time, and
memory requirements, increasing the complexity of
a model by superimposing a greater number of
activation functions is likely to introduce a problem
known as overfitting. Formally, overfitting is de-
fined as the case when the model’s accuracy within
the training input space is greater than that of the
the complimentary input space, thus it can predict
outputs within the training set much more effectively
than it can predict outputs within the remainder of
the problem space.

At least to some degree, overfitting is unavoid-
able; the universal approximation theorem suggests
that it is theoretically possible to construct a simple
multilayer perceptron which can achieve perfect
accuracy over an arbitrary training set by approx-
imating the corresponding function, but there is no
such theorem which suggests that this approximated
function will sustain its accuracy when applied to
interpolated or extrapolated problems in the same
problem space. This is because there are infinitely
many functions which can achieve perfect accuracy
within an arbitrary finite problem space, but only
one which can achieve perfect accuracy within a
problem space which is infinite or perceived as such.
This concept can also be understood with a VC-
dimension analysis. As the number of parameters
increases along with the number of activation func-
tions, the model’s Vapnik-Chervonenkis dimension
increases as well, meaning that it is capable of
approximating a larger range of functions via su-
perposition of its activation functions [4]. In other
words, given a model that is perfectly capable of
approximating the desired function, adding param-
eters will introduce alternative functions which the
model is capable of approximating. If one of these
newly introduced functions also correctly maps the
training input space to the output space, then the



Fig. 1. A common depiction of overfitting resulting from
unnecessary model complexity and consequential high-magnitude
gradients

model may be equally likely to converge on this
function as the original desired function. Given that
the two functions are different, albeit equal within
the testing input space, this newly introduced func-
tion will be less accurate within the training input
space’s complement. If the model converges on this
function, overfitting will occur. Thus, increasing
the complexity of a neural network may reduce
the likelihood of converging on a local optimum,
but it also increases the likelihood of introducing
additional overfitting.

The discovery of this issue led to efforts to
decrease overfitting in neural networks through tech-
niques classified as regularization. One of the first
widely used regularization methods is known as L2
regularization. In realistic task environments, ideal
gradients tend to have relatively small magnitudes.
As an overfitting model may correctly predict the
output space given the training set, though falters
when attempting to generalize, such a model is
likely to have too extreme of output gradients with
respect to the input space (i.e. a small change in the
model’s inputs results in a significant change in the
model’s prediction, contrary to the aforementioned
description of realistic task environments). This is
demonstrated in Figure 1.

As these gradients are solely determined by the
magnitude of the model’s parameters, the model’s
loss function can be modified to encourage conver-
gence toward smaller, though still correct parame-
ters. In L2 regularization, this is done by adding the
square of the Euclidean norm of the flattened vector
of all model parameters, multiplied by a constant,
to the model’s loss; thus, the larger in magnitude
a given parameter is, the more it contributes to
the model’s error. As gradient descent aims to de-

crease the error described by the loss function, the
model will tend toward smaller, though ideally still
well-predicting parameters. Adjusting the supplied
constant will directly adjust the significance of the
squared Euclidean norm in the model’s loss, thus
adjusting the priority of regularization compared
to prediction accuracy. Other similar regularization
methods, such as L1 regularization, use different
exponents when summing the model’s parameters,
effectively adjusting the sparseness of the solution
set.

While L2 regularization and similar methods are
highly effective, they assume that overfitting is
merely a global problem with respect to the model’s
parameter set. However, it may be such that the
ideal parameter set includes some parameters of
proportionally high magnitudes when compared to
other parameters. As such, a relatively high mag-
nitude does not necessarily imply that the param-
eter is overfitting. However, methods such as L2
regularization tend to encourage all parameters to
be relatively small, even if certain high-magnitude
parameters are greatly contributing to the model’s
accuracy. The significance of this effect increases as
the regularization exponent increases, as higher ex-
ponents yield more significant losses with relatively
high-magnitude parameters.

In an effort to avoid such a divergence from an
ideal solution associated with L2 and similar regu-
larization methods, early stopping was developed,
which recognizes that overfitting is a local issue
and should not be treated equivalently across the
entire model. It has been shown that large, complex
neural networks pass through similar stages to those
passed through by smaller networks when training
on the same sample space. As such, even though
the final result of the larger model’s convergence
may result in greater overfitting than that of the
smaller model, the larger model will, at some point,
pass through a stage which is very similar to the
optimal convergence of the smaller model. As such,
by terminating training of the larger model before
its final convergence, it is possible to stop training
at a point where the larger model is equally or
more accurate than the terminally converged smaller
model, avoiding the introduction of additional over-
fitting [5]. As this method simply terminates training
before any overfitting occurs, it does not force
those select parameters to diverge from their ideally
higher-magnitude values, and thus does not treat
regularization is a global mechanism to be applied



equivalently to all parameters.
However, determining when to terminate training

is difficult, as models tend to both increase and
decrease in accuracy fairly sporadically during the
training process. And while it may be feasible
to cache optimal model states or use alternative
caching methods to retrieve previous optimal model
states, there is no guarantee that the stages passed
by the larger model are identical to those of the
smaller model. As such, the final result may still be
less accurate than the terminally converged smaller
model. This has led others to develop alternative
methods to reduce overfitting in neural networks by
artificially decreasing its complexity during training
time while restoring its complexity and therefore its
expressive capabilities during testing time.

D. Neuron Dropout

The most popular method of artificially altering a
single network’s complexity to reduce overfitting is
known as Bernoulli dropout (traditionally referred
to simply as ”dropout”) [6]. Bernoulli dropout was
described in one of Nitish Srivastava’s papers as a
practical alternative to averaging several large mod-
els wherein random nodes are selectively omitted
from a single super-model in each training case to
achieve random sub-models. During testing time,
when all of the nodes are utilized, the model’s
parameters are expected to be overestimated to com-
pensate for the reduced complexity during training
time. Thus, nodal outputs are multiplied by a restor-
ing coefficient during testing time when all nodes
are acknowledged to ensure that the actual model
output during testing time converges in probability
to the model’s expected output during training time
[7].

However, in the same paper, it was shown that
the noise applied to a given node or alternative
model parameter can be drawn from a continuous
distribution, such as a Gaussian distribution, rather
than from a discrete Bernoulli distribution. Specifi-
cally, Srivastava showed that a Gaussian distribution
with mean 1 and a hyperparameterized variance
σ, used to generate multiplicative noise to scale
model parameters during training time, can perform
as well as or better than Bernoulli dropout; it was
also noted that this concept of Gaussian dropout
can be generalized to any continuous distribution.
This generalized method will be referred to as
continuous dropout.

More recently, continuous dropout has been rein-
terpreted as a variational method to describe model
parameters as probability distributions rather than
point estimates. At the same time, it has been shown
that the parameters used to represent continuous
dropout distributions can be learned as well during
training time by minimizing the KL-divergence be-
tween the dropout distribution and the intractable
posterior distribution over the model parameters,
done in practice by maximizing the variational lower
bound of the marginal likelihood of the data ob-
served [8]. This method is referred to as variational
dropout. However, the minimum KL-divergence at-
tainable through such methods is dependent entirely
on the shape of the chosen continuous distribution
and how it compares to the shape of the posterior
distribution over the model parameters.

II. METHODS

As the posterior distribution over a model param-
eter is intractable, this paper empirically evaluates
potential shapes of the average posterior distribution
over an arbitrary node in a multilayer perceptron.
Given that the average distribution’s shape may
be dependent on factors such as the model’s ar-
chitecture and task, this paper focuses solely on
a multilayer perceptron and low-resolution image
classification, though these methods can be extended
to any architecture or task.

A. Generalization of Normal PDF

While a normal distribution has been used in
both traditional continuous dropout and variational
dropout, there is no evidence suggesting that the
true shape of the intractable nodal or parameter
distributions are necessarily normal. However, some
success has been seen using normal distributions
to approximate said intractable distributions. As
such, in order to derive alternative distributions, the
normal distribution was generalized to include a
shape parameter, resulting in the following proba-
bility density function (sometimes referred to as an
exponential power distribution):

f(y) = ce−|
x
α
|β

In the given equation, c is an integral-normalizing
constant within the window of interest to ensure a
proper probability density function. This generalized
normal distribution has the following properties:



Fig. 2. Generalized normal PDF with β = 1010, α = 1

1) As β → ∞, the distribution converges to a
uniform distribution between −α and α

2) As β → 2, the distribution converges to a
normal distribution with mean µ = 0 and
variance σ2 = α2

2

Property 1 is illustrated in Figure 2. It can also
be derived from the following:

lim
β→∞

ce−|
x
α |
β

=


c , | xα | < 1

0 , | xα | > 1
c
e , | xα | = 1

=


1
2α , |x| < α

0 , |x| > α
1

2eα , |x| = α

=


1
2α ,−α < x < α

0 , x < −α, x > α
1

2eα , x = ±α

The discrete case x = ±α can effectively be
ignored as the distribution is continuous, so the
absolute probability of a discrete event is treated
as zero. This yields the following result:

lim
β→∞

ce−|
x
α |
β

=

{
1
2α ,−α < x < α

0 , otherwise

This can be viewed as the probability density
function of a uniform distribution with bounds −α
and α.

Property 2 is illustrated in Figure 3. It can also
be derived from the following:

Fig. 3. Generalized normal PDF with β = 2, α = 1

f(y) = ce−|
x
α |

2

= ce−(
x
α )2

= ce
− 1

2
(x−0)2

α2/2

=
1√

2πα2/2
e
− 1

2
(x−0)2

α2/2

This can be viewed as the probability density
function of a normal distribution with mean µ = 0
and variance σ2 = α2

2 .
Given these two properties, the generalized nor-

mal PDF can almost be viewed as a generaliza-
tion on continuous probability distributions which
are unimodal and symmetric. However, this is not
perfectly accurate, as certain uncommon unimodal
symmetric probability density functions are not an
instance of this class, such as the following:

f(y) =

{
1− |y| ,−1 ≤ y ≤ 1

0 , otherwise

B. Probability Integral Transform

Simple hashing algorithms make pseudorandom
uniform sampling trivial. However, sampling from
an unconventional distribution requires transforma-
tions. The goal is to randomly sample from a
uniform distribution, and then to somehow shift
the sampled variable so that, upon repetition, the
shifted distribution matches the desired alternative
distribution.

Two of the defining properties of a distribution
are its probability density function and its integral
(cumulative distribution function). The area under
a given interval of the probability density function
(and so the corresponding range in the cumulative
distribution function) marks the probability of ob-
serving an event in that interval. As such, X%
of observed events will come from the interval
bounding the first X% of the probability density
function’s area. In a uniform distribution, the relative
probability of observing each event is constant.



Thus, in a standard uniform distribution (bounded
between 0 and 1), the probability of observing an
event less than or equal to Y is exactly Y , within
the bounds [0, 1].

The intuition then follows: if a random variable
sampled from a uniform distribution is observed
to be Y , one can find the upper bound B of the
lower interval within the alternative distribution’s
probability density function whose area also sums
to Y ; the probability of observing an event less than
or equal to B within the alternative distribution will
be equal to Y , just as is the probability of observing
an event less than or equal to Y within the standard
uniform distribution. This transformation is simply
the inverse of the probability integral transformation,
which yields a standard uniform distribution from an
alternative distribution through integration [9].

The generalization of the normal PDF is not
integrable by elementary means. It may be ap-
proximated by an infinite series which is trivially
integrable such as a taylor series, but the result often
diverges quickly from the true distribution without
sufficient terms. As such, in order to integrate the
generalized normal PDF for use in the probability
integral transform, the trapezoidal integral approx-
imation was used. The integral need only be ap-
proximated once to compute a table from which one
can sample cumulative probabilities for an arbitrary
probability integral transformation.

As the integral is represented using a table of
trapezoidal area sums, a binary search is used to
discover the closest approximation to the desired
cumulative area Y and its corresponding upper
bound B.

Lastly, the probability integral transformation tra-
ditionally transforms between any continuous prob-
ability distribution and a standard uniform distribu-
tion. However, if the original distribution is scaled
so that its integral is non-normal, and thus so that
it is no longer a valid probability distribution, the
probability integral transformation can still be ap-
plied to yield a uniform distribution bounded in [0,
C] where C is equal to the definite integral between
(−∞,∞) of the scaled probability density function.
The proof is trivial: the scaling constant applied
to the probability density function scales the cu-
mulative distribution function by the same amount.
Thus, the definite integral between (−∞,∞) of the
scaled probability density function, C, is equal to the
scaling constant. The uniform random variable re-
sulting from the probability integral transformation,

Fig. 4. A graph depicting the MNIST test accuracy versus β
with multiple data series distinguished by α

Fig. 5. A graph depicting the MNIST test accuracy versus α
with multiple data series distinguished by β

then, will also be scaled by C. Scaling a uniformly
distributed variable by a constant is equivalent to
scaling its bounds by the same constant. Therefore,
the result is a uniform distribution bounded in [0,
C].

Because of this property of the probability inte-
gral transform, the normalizing constant of the gen-
eralized normal PDF can effectively be ignored, as
the function need only be transformed into a uniform
distribution for sampling; this is possible without
the generalized normal PDF having a normalized
cumulative area.

III. RESULTS

Various multilayer perceptrons were trained
against the MNIST and MNIST Fashion datasets
for a comparative study. Each multilayer perceptron
differed only in hyperparameters which described
the probability distribution of its nodes, α and β.
Each MLP was equipped with two hidden layers,
each with 512 nodes. Cross entropy was the loss
function of choice, given the classification task at
hand. Each MLP was trained for 20 epochs.

With the given MLP architecture against MNIST,
it was found that, given β = 2, the most accurate



Fig. 6. A table depicting the MNIST test accuracy versus α
(row-grouped) and β (column-grouped)

Fig. 7. A graph depicting the MNIST Fashion test accuracy
versus β with multiple data series distinguished by α

result was achieved with α = 0.25 and a test
accuracy of 0.9786. This corresponds to a normal
distribution with variance σ2 = 1

32 . However, of
greater importance is the finding that the most
accurate result of the MNIST grid search occurred
with β = 5 and α = 0.25 and with a test
accuracy of 0.9789. The table of results are depicted
in Figure 6. Graphs depicting performance versus
the generalized normal distribution’s parameters are
shown in Figure 4 and Figure 5.

With the given MLP architecture against MNIST
Fashion, it was found that, given β = 2, the most
accurate result was achieved with α = 0.25 and a

Fig. 8. A graph depicting the MNIST Fashion test accuracy
versus α with multiple data series distinguished by β

Fig. 9. A table depicting the MNIST Fashion test accuracy versus
α (row-grouped) and β (column-grouped)

test accuracy of 0.8834. This also corresponds to a
normal distribution with variance σ2 = 1

32 . Again,
of greater importance is the finding that the most
accurate result of the MNIST fashion grid search
occurred with β = 6 and α = 0.25, with a test
accuracy of 0.886. The table of results are depicted
in Figure 9. Graphs depicting performance versus
the generalized normal distribution’s parameters are
shown in Figure 7 and Figure 8.

As suspected, increasing the α hyperparameter
tended to decrease the final accuracy after a certain
point, depending on the value of β. However, prior
to that point being exceeded, a higher α value tended
to increase the final accuracy by reducing overfitting
without significantly increasing the model’s conver-
gence time. Thus, until a threshold is exceeded, a
higher α hyperparameter tends to result in a greater
test accuracy and a lower training set accuracy. With
a sufficiently high α value, however, the model is
unable to converge quickly due to the high variance
in nodal outputs, or sometimes unable to converge
at all (as in both cases with α = 2, β = 1) without
reducing the training rate to compensate.

Variance, which is highly affected by the scale
parameter α, is already understood to be an im-
portant parameter when implementing continuous
dropout. However, in order to test the significance of
the shape parameter β, K-fold cross validation was
used with K = 10. Particularly, the two parameter
configurations with equal variances that resulted in
the widest range of of test accuracies in the MNIST
dataset, being (β = 1, α = 1) and (β = 7, α = 1),
were both tested using K-fold cross validation and
the results were compared against one another using
a two-tail matched-pairs t test (wherein each pair of
samples was trained and tested on a fixed partition
of the training data). The result of the t-test indicated
a T score of 52.1938 and, with nine degrees of
freedom, a p-value less than 0.00001.

Similarly, the optimally performing normal distri-
bution of MNIST (β = 2, α = 0.25) was compared
against the optimally performing generalized normal
distribution of MNIST given the same variance (β =
5, α = 0.25), also using K-fold cross validation with
k = 10 and a one-tail matched-pairs t test. The result
of the t-test indicated a T score of 1.7434 and, with
nine degrees of freedom, a p-value of 0.057626.

IV. SIGNIFICANCE

In the field of machine learning, it is common
to perform K-fold cross validation with K=10 in



the way mentioned and compare results using a
significance level of 0.05. This is the manner in
which the results will be analyzed and discussed.

The first of the two p-values can be interpreted as
the probability of observing such a large difference
in performance in continuous dropout between two
generalized normal distributions varying only in
their shape parameters (holding scale parameters
equal), assuming that the shape parameter has no
effect on the performance of the multilayer percep-
tron. With a significance level of 0.05 and a p-
value less than 0.00001, it can be stated that the
results support the statement that performance in
continuous dropout against MNIST can be improved
by altering the shape parameter of the generalized
normal distribution.

The second of the two p-values can be interpreted
as the probability of observing such a large increase
in performance in continuous dropout between a
normal distribution and a generalized normal distri-
bution with the same scale parameter but a different
shape parameter, assuming that the shape parameter
has no effect on the performance of the multilayer
perceptron. With a significance level of 0.05 and a
p-value of 0.057626, the data is not quite conclu-
sive that a Gaussian distribution can necessarily be
outcompeted in performance against MNIST by an
alternative parameter configuration of a generalized
normal distribution, holding the scale parameters (α)
equal.

Thus, it can be stated that the shape parameter
of a generalized normal distribution does have a
statistically significant effect on the performance of
continuous dropout against the MNIST dataset when
approximating nodal posterior distributions.

Secondly, given a fairly low p-value in the second
test, the data does seem to support the notion that
a Gaussian distribution is not necessarily optimal
in continuous dropout against the MNIST dataset.
However, the data is not sufficiently significant to
make any conclusions in this regard.

V. FURTHER RESEARCH OPPORTUNITIES

Given a low p-value in the second test, though
not sufficiently low to permit any conclusions, the
experiments could be performed with a higher sam-
ple size (thus requiring a higher K value in K-fold
cross validation) in search of conclusive evidence.
A K value of 10 was used due to the resource- and
time-constraints of this thesis.

Next, these findings cannot be immediately ex-
trapolated to ascertain a statement regarding con-
volutional neural networks and their nodal distribu-
tions given an image analysis task. Further research
could involve an empirical study to determine the
normality of such distributions.

Similarly, further research could involve empirical
studies regarding other predictive tasks such as
regression rather than classification.

This study evaluated the continuous distributions
over neural network nodes rather than parameters.
A nodal output is a nonlinear transformation of the
sum of its inputs, each of which is a linear trans-
formation on the corresponding parameter, simply
scaled by the output of the previous node. It is
reasonable to assume that different parameters may
have different ideal continuous distributions, so ideal
nodal distributions are unlikely to have the same
shape as ideal parameter distributions. Thus, further
research could involve similar empirical evaluations
on the shapes of parameter distributions.

This study did not apply variational dropout tech-
niques to find an ideal distribution shape as it was
not deemed necessary to do so in order to demon-
strate the validity of non-Gaussian distributions in
continuous dropout. Further research could apply
variational dropout, or other Bayesian techniques,
to learn distribution parameters if reasonably achiev-
able. This would also allow for different nodes or
parameters to have their own associated distributions
without exploding the dimensions of a hyperparam-
eter grid search, which is likely to result in further
improved performance.

Lastly, distributions of entirely different classes
could be empirically tested. As the posterior dis-
tributions over neural network parameters are in-
tractable, there is no guarantee that unimodal sym-
metric distributions are necessarily ideal. Perhaps
multimodal or even asymmetric distributions may
result in improved performance.

VI. CONCLUSION

Recent work has shown that continuous, Gaus-
sian dropout can perform as well or better than
Bernoulli dropout, and that continuous dropout in
general can be interpreted as treating neural network
parameters as probability distributions rather than
point estimates. Other related work has shown that a
continuous probability distribution can be fine-tuned
through its parameters to minimize the Kullback-
Leibler divergence between it and the posterior



distribution over the corresponding parameter. How-
ever, all empirical studies associated with this recent
work has focused on Gaussian distributions.

While it may be reasonable, or at least intuitive,
to assume that the true continuous distribution over
an arbitrary neural network node or parameter is
roughly symmetric, there is no reason to assume
that they are necessarily Gaussian. As these distri-
butions do not arise from observation or frequency,
but rather are generated in order to maximize the
model’s performance while minimizing its overfit-
ting, they are entirely intractable and can generally
be considered a construct rather than a naturally
occurring event. As such, it is unlikely that a
Gaussian distribution will necessarily achieve the
most optimal results when applying a continuous
probability distribution to neural network nodes or
parameters.

In this study, various instances of a general-
ized normal distribution (specifically an exponential
power distribution), capable of representing contin-
uous distributions between a zero-centered normal
distribution and a zero-centered uniform distribu-
tion, were empirically evaluated as nodal probabil-
ity distributions in their abilities to yield maximal
test accuracy within a multilayer perceptron trained
against the MNIST and MNIST Fashion datasets.
It was shown that the shape parameter of the gen-
eralized normal distribution has a statistically sig-
nificant effect on the performance of the multilayer
perceptron when trained against MNIST. The data
also seemed to support that optimal performance
does not necessarily coincide with convergence to-
ward a Gaussian distribution, nor with convergence
toward a uniform distribution, but rather interpola-
tions between the two. However, the data was not
sufficiently significant to make any conclusions in
this regard. Although variational dropout and other
Bayesian techniques were not applied, this is suffi-
cient in demonstrating the validity of constructing
non-Gaussian continuous distributions to represent
neural network nodes.
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