
Evaluating the Efficiency, Capabilities, and Scalability of a LoRaWAN Network in a
Fenceless Grazing Implementation

By
Ryan Alder

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented June 3, 2020
Commencement June 2020





AN ABSTRACT OF THE THESIS OF

Ryan Alder for the degree of Honors Baccalaureate of Science in Computer Science
presented on June 3, 2020. Title: Evaluating the Efficiency, Capabilities, and
Scalability of a LoRaWAN Network in a Fenceless Grazing Implementation

Abstract approved:

Bechir Hamdaoui

LoRaWAN networks are becoming more popular, and it is becoming common for
developers to look at solutions utilizing Internet of Things concepts. In this paper,
I introduce a Fenceless Grazing System utilizing the LoRaWAN network stack and
discuss the limitations of this theorized network to better understand the scalability
prior to production. The goal of this system is to define ”invisible fences” and prevent
livestock from crossing these boundaries. Using smart collars on animals, ranchers
are able to define boundaries and herd animals from the comfort of their home.
This system utilizes the LoRaWAN network stack, and this technology is further
discussed. Hardware is introduced, and the capabilities of this system and greater
LoRaWAN networks in general is evaluated. Utilizing NS-3, various simulations were
run to evaluate the packet loss across the entire network in an effort to determine
the constraints of the system. Finally, these results are presented and a theorized
maximum distance is evaluated and tested with the hardware on hand.

Key Words: LoRa, Fenceless Grazing, Internet of Things, Optimization

Corresponding e-mail address: alderr@oregonstate.edu



©Copyright by Ryan Alder
June 3, 2020



Evaluating the Efficiency, Capabilities, and Scalability of a LoRaWAN Network in a
Fenceless Grazing Implementation

By
Ryan Alder

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented June 3, 2020
Commencement June 2020



Honors Baccalaureate of Science in Computer Science project of Ryan Alder
presented on June 3, 2020

APPROVED:

Bechir Hamdaoui, Mentor, representing Electrical Engineering and Computer
Science

Lizhong Chen, Committee Member, representing Electrical Engineering and
Computer Science

Yeongjin Jang, Committee Member, representing Electrical Engineering and
Computer Science

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of
Oregon State University Honors College. My signature below authorizes release of
my project to any reader upon request.

Ryan Alder, Author





Evaluating the Efficiency, Capabilities, and Scalability of a LoRaWAN
Network in a Fenceless Grazing Implementation

Ryan Alder

Abstract— LoRaWAN networks are becoming more popular,
and it is becoming common for developers to look at solutions
utilizing Internet of Things concepts. In this paper, I introduce
a Fenceless Grazing System utilizing the LoRaWAN network
stack and discuss the limitations of this theorized network
to better understand the scalability prior to production. The
goal of this system is to define "invisible fences" and prevent
livestock from crossing these boundaries. Using smart collars
on animals, ranchers are able to define boundaries and herd
animals from the comfort of their home. This system utilizes
the LoRaWAN network stack, and this technology is further
discussed. Hardware is introduced, and the capabilities of this
system and greater LoRaWAN networks in general is evaluated.
Utilizing NS-3, various simulations were run to evaluate the
packet loss across the entire network in an effort to determine
the constraints of the system. Finally, these results are presented
and a theorized maximum distance is evaluated and tested with
the hardware on hand.

I. INTRODUCTION

Internet of Things (IoT) implementations are becoming
more common in the world today. The number of businesses
that utilize Internet of Things devices has increased from
13% in 2014 to 25% in 2019. The number of connected
IoT devices is projected to increase to 43 billion by 2023,
increasing threefold from 2018 [1]. With this increase in
popularity, many groups are looking at ways to utilize an
IoT network to solve their problems. One of the many
inefficiencies in modern day labor is the herding of animals
in a ranch setting. Ranchers must spend considerable time
managing herds of animals by moving them from pasture to
pasture to prevent overgrazing. This sort of problem can be
addressed with an IoT implementation where each animal is
a node in a network where all communicate back to a central
server managed by the rancher. My senior capstone team
and I implemented a product to address this inefficiency,
which aimed to decrease the total amount of time spent
managing and herding animals. This product, the Fenceless
Grazing System (FGS), implements collars on each animal
which then communicates over LoRa to a gateway hosted
in a central location. The Fenceless Grazing System allows
for ranchers to define so-called invisible fences to both herd
animals and observe their grazing habits. While the design is
complete, there are many lingering questions still associated
with this implementation that need to be answered before
hardware moves out of a preliminary testing phase and is
actually implemented in a large-scale setting.

The large scale implementation of the Fenceless Grazing
System is untested and unknown. Thorough evaluation into
the scalability of the product in a real environment is neces-
sary before any sort of wide-scaled production begins. Many

different variables must be estimated, including the max
allowable distance, average bandwidth as distance between
the end-nodes and the gateway increases, average packet
loss, battery life, and more. One of the most significant
requirements for this project is it’s ability to be widely scaled,
as the idea is to significantly decrease the amount of time a
rancher has to spend managing herds of animals. This thesis
will attempt to demonstrate the capabilities and constraints
of the FGS in terms of the number of end-nodes, maximum
size of the grazing area, communication frequency, and
more by using NS-3 to estimate the average values of
these variables. An evaluation of the resulting data will be
presented that demonstrates the theoretical capabilities of the
Fenceless Grazing System, and results will be verified with
the hardware currently on hand.

II. TECHNOLOGY BACKGROUND
A. LoRa Technology

The primary form of communication for the Fenceless
Grazing System implementation is LoRa. LoRa (stands for
Long Range) is a physical level communication protocol
patented by Semtech which utilizes the unlicensed band
of the radio spectrum. This protocol exists solely for IoT
devices, providing extremely long range capabilities with low
battery requirements. With these capabilities, however, the
bandwidth is extremely limited and decreases significantly
as range increases. This is less of a problem for IoT im-
plementations as most end-nodes will only need to send a
very small amount of data per communication cycle. This,
of course, is dependent on the network implementation but
for most IoT networks does not prove to be an issue. For the
Fenceless Grazing System, bandwidth is not anticipated to
be a significant factor in limiting the size of the network,
as the size of each communication is small at 12 bytes,
and frequency of communication can be extremely limited.
Depending on the network and requirements of the rancher,
communication can be restricted to once every few hours per
end-device while still achieving the goals of the project.

1) Chirp Spread Spectrum: LoRa is based on the Chirp
Spread Spectrum (CSS) modulation technique, which is a
series of upchirps and downchirps that utilizes the entire
bandwidth defined by the data rate (see Table 1). As a result,
LoRa is resistant to channel noise and multi-path fading and
allows for long distance communication with minimal power
requirements. Upchirp refers to an increase in frequency over
a time period, while a downchirp decreases in frequency.
LoRa starts each communication with a preamble, which
is a series of repeated upchirps followed by a downchirp



which signals the start of frame delimiter [2]. LoRa builds
upon Direct Sequence Spread Spectrum (DSSS) and Chirp
Spread Spectrum to provide their own implementation of a
modulation technique that greatly reduces the complexity
of the receiver. LoRa allows for scalable bandwidth, able
to be utilized for both narrowband frequency hopping and
wideband direct sequence applications [3]. Not only this,
but LoRa allows for high robustness, very low power use,
Doppler resistance, and long range capabilities.

Fig. 1. Modulation / Spreading Process (DSSS) [3]

2) Spreading Factor: The spreading factor simply refers
to the duration of the chirp sent by the LoRa transceiver.
The LoRa protocol has defined spreading factors from 7 to
12, where increasing the spreading factor by one results in
double the time a chirp spends on the air. As a result, adaptive
data rates can be achieved by increasing the spreading
factor as end-nodes move further away from a gateway or
decreasing it when a high SF is unnecessary to reduce the
total time on air and increase the data rate. This way vast
distances can be achieved while still managing total time on
air, as well as optimizing a network when the stability of the
end-nodes is consistent.

Fig. 2. LoRa SF demonstration, illustrating how changes in SF affect time
on air and bitrate [4]

B. LoRaWAN Technology

LoRaWAN is an open source MAC protocol created by
the LoRa Alliance that is found on top of the LoRa physical

protocol. LoRaWAN handles medium access control, encryp-
tion, authentication, and more to seamlessly integrate LoRa
devices into a network. LoRaWAN provides an adaptive data
rate protocol that optimizes battery life and medium usage
as the characteristics of the network change, and defines
several different data rates which differ from each other by
bandwidth and spreading factor. LoRaWAN is necessary for
any network, and is implemented in the Fenceless Grazing
System through several LoRaMAC in C (LMIC) libraries and
The Things Network as a free option for a network server.

1) Data Rates: In order to best adjust to various different
environments and networks, LoRaWAN provides several
different data rates. These data rates adjust bandwidth and
spreading factor to allow for consistent communication while
managing air time and battery usage. Swapping between
data rates also results in a change in the bits being sent
per second as well as the maximum payload size. As SF
increases, the data rate will decrease as each bit spends more
time on air. Likewise, as the BW widens the data rate will
increase [5]. The LoRaWAN defined data rates for the United
States frequency of 915Mhz is displayed in Table 1. DR4 is
identical to DR12, and DR5-7, 14, and 15 are reserved for
future applications [6].

TABLE I
LORAWAN DATA RATES (US)[6]

Data Rate SF BW (kHz) bit/s Max payload size (bytes)
0 10 125 980 11
1 9 125 1,760 53
2 8 125 3,125 125
3 7 125 5,470 242
4 8 500 12,500 222
8 12 500 980 33
9 11 500 1,760 109

10 10 500 3,900 222
11 9 500 7,000 222
12 8 500 12,500 222
13 7 500 21,900 222

2) Adaptive Data Rate: LoRaWAN implements an al-
gorithm to allow for Adaptive Data Rates (ADR), which
is toggled on or off by each end-node at an opportune
moment. ADR allows the network server to tell each end-
node which data rate and transmission power should be used
to communicate with the gateway. This results in optimal
data rates, airtime, and energy consumption in the network
[7]. The Things Network (TTN) recommends only enabling
ADR once an end-nodes RF conditions are stable. For
example, if an end-node stops moving for a set amount of
time then it should enable ADR and disable it once the
device begins to move again. This prevents the end-node
from being silenced as a result of moving too far away from
the gateway while still using a data rate that was previously
optimal. ADR should also be disabled by the end-node if
RF conditions become unstable, even if the device is still
stationary, to prevent being silenced. Once an end-node is
confident that RF conditions are stable, it sends a message
to the gateway with an ADR bit set. TTN then measures



the signal-to-noise ratio (SNR) and number of gateways
that received each uplink throughout the next 20 uplinks.
Based on this information, the algorithm informs the end-
node of the new optimal data rate. Fig. 3 shows The Things
Network’s implementation of ADR, which is currently what
is used in the Fenceless Grazing System implementation.

Fig. 3. TTN ADR Algorithm [7]

3) Classes: LoRaWAN defines three different classes
that can be implemented on each end-node in an effort to
provide options for various networks. Each class handles
communication slightly differently, where some excel in low
latency others will excel in low battery life. While groups
like The Things Network only support class A, classes B and
C are gaining popularity and are likely to be implemented
in basic network servers like TTN soon.

• Class A (All) is the default class and must be imple-
mented on every end-node on a LoRaWAN network.
Class A provides the foundation for classes B and
C, which build upon the implementation of class A.
This class excels in restricting the battery usage, and
boasts the lowest power requirements out of all of
the classes. In class A, end-nodes are the ones to
always initiate communication, and if an application
needs to communicate with an end-node through the
gateway it must wait until the end-node initiates the
communication. An uplink transmission from an end-
node to the gateway can be initiated at any time,
which may result in collisions as this implementation
is an ALOHA type of protocol. Once an end-node
has initiated communication, the gateway only has two

windows in which to respond to the end-node. Fig. 4
shows these two windows, and if the end-node does not
receive a response from the gateway in these windows
it can assume the packet was lost. The response sent
by the gateway can be adjusted to fit the needs of the
application, but must set an ack bit in the response
to acknowledge the receipt of the previous packet. If
necessary, the end-node can continue to attempt to re-
transmit the packet if no acknowledgement was received
up to a certain number defined by the network adminis-
trator. During this re-transmission process, the end-node
will hop between frequencies to try to find an available
channel on the gateway. Note that LoRaWAN doesn’t
implement listen before transmit as it is an ALOHA
protocol, so collisions are likely to occur especially as
the number and density of end-nodes increases.

Fig. 4. LoRaWAN Class A Receive Windows [6]

• Class B (Beacon) is ideal for battery-powered end-nodes
that are either mobile or stationary. This class, which
is built upon class A, schedules specific receive slots
for each end-node. This increases the battery usage of
the end-devices, as they are forced to turn on their
transceivers and listen to the medium during every de-
fined receive window. While this decreases battery life,
it increases the flexibility of the network, allowing for
the gateway to communicate with the end-nodes without
requiring the end-nodes to initiate communication. This
is accomplished through the use of a beacon, which is
a signal sent by the gateway once every 128 seconds.
The end-nodes listen for this beacon, and use it to
synchronize with the gateway. Then, end-devices are
made available for reception at a predictable time based
on the beacon value, and during this time the gateway
has the opportunity to send messages to a specific
end-node. Class B implements slot randomization in
order to prevent collisions between many different end-
nodes, which randomizes the receive slots across all
separate end-devices. Fig. 5 demonstrates this feature,
showing the gateway’s network beacon transmission
and the scheduled RX windows on the end-node based
on the time of the beacon. In the US specification
of LoRaWAN, the gateway is allowed to utilize fre-
quency hopping for transmitting the beacon, meaning
the beacon will be transmitted across all frequencies.
This allows the end-nodes to be spread out across those
frequencies, which increases the number of potential



devices as well as decreases the chance of packet loss
due to collision. Each end-device can be set to operate
on a specific frequency, which allows for frequency
diversity across the entire network.

Fig. 5. LoRaWAN Class B Receive Windows [6]

• Class C (Continuously listening) significantly affects the
battery life of the end devices while greatly decreasing
the latency. As the name suggests, this class imple-
ments class A except instead of two limited receive
windows, the last receive window is extended until
the next transmission. That is, if an end-node is not
currently transmitting a message to the gateway then it
is listening for communication from the gateway. Fig.
6 demonstrates how it extends class A implementation
by extending the second receive window until the next
uplink. This class is ideal for end devices that do not
have any power requirements that could benefit from
extremely low latency in regards to gateway to end-
node communication when compared to the other two
classes.

Fig. 6. LoRaWAN Class C Receive Windows [6]

III. FENCELESS GRAZING SYSTEM

A. System Overview

The Fenceless Grazing System is made up of four distinct
components: a collar device, a LoRaWAN gateway / HTTP
server, a network server, and an Android application. Collars
are placed on each animal, and communicate over LoRa
and LoRaWAN to the gateway. The gateway then forwards
these packets to the network server hosted by The Things
Network (TTN) over Ethernet or Wi-Fi. A network server
is required for any LoRaWAN implementation, and these
servers manage encryption, adaptive data rate algorithms,
packet parsing, server-side LoRaWAN class implementation,
and more. TTN was chosen for simplicity and ease of

use, and provides both uplink and downlink capabilities
for each end device. The HTTP API server hosted on the
same machine as the gateway is the main application, and
utilizes LoRaWAN to send and receive these transmissions.
Lastly, the Android application authenticates using JSON
Web Tokens, and communicates with the HTTP API server.
Fig. 7 demonstrates the high level overview of this network
and shows the communication between these elements. In
this figure, the reference to other hardware connected to the
collars encompasses any form of desired stimulus (whether
it be auditory or electrical) to prevent livestock from leaving
the set bounds.

Fig. 7. FGS Network Topology

B. Collar

The collar component of the FGS project will be the
physical collar placed upon the animal. Each collar will be an
end-node in the greater LoRaWAN network, communicating
with the gateway to update the user of the animal’s status and
location as well as gathering user defined fence boundaries.
The main purpose of this device is GPS acquisition, LoRa
communication, and bounds checking. Fig. 8 shows the
current state of the collar, currently being developed on a
breadboard for ease of use during the prototype stages. From
the left to the right the figure shows the Arduino Nano
acting as the main controller, the logic converter (5v to
3.3v), the GPS module, and lastly the LoRa transceiver. The
logic converter is required as the Nano operates at 5 volts,
while the GPS module and LoRa transceiver operates at 3.3
volts. In the final product more connections to a speaker
and electrical stimulus module will be added. Currently, we
are utilizing the TinyLoRa library by Adafruit for LoRaWAN
capabilities on the end-node [14]. This manages the link layer
communication with the gateway, and the application layer
is written in C++ for Arduino and flashed onto the Nano.
The application manages sending updates to the gateway,
and receiving communications from the gateway for updated
fence constraints. This device also periodically checks the
GPS location and based on that value determines whether or
not the collar is within the defined bounds. Lastly, all com-
munication is first encoded using Google’s protocol buffers
(Protobuf) [15] to decrease the total length of the message
which in turn increases the max number of end-nodes and



decreases the chances of packet loss due to collisions. Each
communication from the end-nodes is only 12 bytes, which
is achieved through the use of protocol buffers.

Fig. 8. FGS End-node (Collar)

C. Gateway

The gateway component of the FGS project acts as two
separate entities: the LoRaWAN gateway and the HTTP API
server used to communicate with the Android application.
This gateway is designed to be hosted in a central loca-
tion with connection to internet through Ethernet. Fig. 9
shows the current state of the gateway, with the primary
sub-component being a Raspberry Pi. The Pi is a single
board Linux computer running a custom Raspbian image
provided by The Things Network which comes with all of
the necessary programs for running the LoRaWAN gateway
including a packet forwarder to the network server [16].
The Raspberry Pi is capable of interfacing with the LoRa
concentrator seen in Fig. 9, which is the set of transceivers
capable of listening on eight different channels at the same
time. As previously mentioned, the Raspberry Pi also takes
on the responsibility of hosting the API server in order to
reduce the total amount of hardware necessary. The API
server was written in Python using the Sqlalchemy library,
and interacts with an SQLite database also hosted on the
Pi. This database holds all of the received information from
each end-node, and is queried by the API whenever the user
requests information to be displayed. Lastly, the ideal back-
haul for the gateway would be Ethernet due to increased
reliability, but also supports Wi-Fi depending on the hosting
requirements. In the final product, a secure outer shell will
be used to encapsulate this hardware to allow for it to be
hosted outside if necessary to provide better communication
strength with all of the end-nodes.

D. Network Server

The network server is being hosted by The Things Net-
work, providing an easy to use interface that allows for
a simple setup for a LoRaWAN network. While not ideal

Fig. 9. FGS Gateway

due to off-site hosting and privacy concerns, TTN provides
an extremely robust and simple system allowing for quick
development time and testing. In an ideal world, each imple-
mentation would host an internal network server to provide
security and remove the complexity of having an off site
server. TTN manages many aspects of a LoRaWAN network,
including adjusting the data rate as defined by the Adaptive
Data Rate algorithm, end-to-end encryption, and encoding
/ decoding of packets for the LoRaWAN protocol. Fig. 10
shows the network stack, where the Network Server is hosted
by TTN and the gateway server and application server are
both hosted on the Raspberry Pi.

Fig. 10. TTN LoRaWAN Stack [17]

E. Android Application

The primary way of interacting with the system currently
is through the use of an Android application. This application
connects to the HTTP API server written in Python being
hosted on the Raspberry Pi. This API uses JSON Web Token
(JWT) technology for authenticating clients, and basic JSON
as the data exchange format. The downloaded Android client



must first login, and once authenticated allows for the user
to monitor the collars and define new grazing boundaries.
All information is gathered from the SQLite database hosted
on the Pi before being sent back to the client.

IV. SYSTEM EVALUATION

A. Simulation Setup

Simulations were run using NS-3, a discrete networking
simulator alongside a LoRaWAN library [8]. While ex-
tremely thorough, this library had not yet implemented the
US frequency of 915 Mhz. As a result, simulations were run
with the EU standard. While this differs from the hardware
purchased for the Fenceless Grazing System, the simulation
results should vary insignificantly, and still provide a good
baseline for determining the scalability of the FGS project.
The simulation code was based on an example provided by
the LoRaWAN library, adjusted based on the requirements
and network topology of the Fenceless Grazing System [9].
The three reasons measured for packet loss are as follows:

• Interfered: This form of packet loss occurs when two
packets collide at the gateway. That is, they were both
sent at the same time by two different transceivers with
the same spreading factor. As a result, the gateway
cannot distinguish between the two of them which
results in collision and packet loss.

• No Receivers: A LoRaWAN gateway utilizes a LoRa
concentrator - essentially a piece of hardware that hosts
multiple radio transceivers to allow for multiple down-
links at the same time. A typical LoRa concentrator can
receive eight different packets at once given separate
spreading factors on different channels. This form of
packet loss occurs when there are no longer any receive
paths available to lock onto the incoming packet. That
is, all of the channels are occupied already so the packet
is dropped.

• Low TX Power: This form of packet loss occurs when a
packet is received at a gateway at too low a power. That
is, the gateway or end-node is not sensitive enough to be
able to correctly decode the message, which would be
fixed with an increase in the output power, an increase
in the spreading factor, or simply a reduction in distance
between the end-node and the gateway.

B. Network Topology

Various simulations were run while adjusting several sig-
nificant parameters of interest including the number of end-
nodes in the network, the number of gateways listening to the
end-nodes, the rate of transmission, and the mobility models
of the end-nodes. The full software stack was simulated,
including the network server which implements adaptive
data rate (ADR) and Class A implementation of LoRaWAN.
Packets were sent from end-nodes to a single gateway at
the center of the simulated area, which then forwards the
packets along to the simulated network server. In the cases
where there were mulitple gateways, the gateways were
placed into the operating area in such a way that they were
equidistant from each other and provided the best coverage

of the field. Each gateway was placed 5 meters above the
ground in order to simulate being placed on top of a house
or other structure which provides better line of sight to
all the collars. Each end-node was randomly placed in the
field, and depending on the mobility model given an initial
speed ranging from 0.5 to 11 meters/second. Mobility was
handled by the RandomWalk2dMobilityModel provided by
NS-3. Some simulations were run with no mobility model,
where each end-node was randomly placed into the field and
given no velocity vector. Eleven meters/second was chosen
as the top speed, as that is the top speed of an average cow.
Each end-node continued along it’s initial vector until 1km or
the end of the field was reached, where in the FGS implemen-
tation some form of stimulus would be provided to prevent
cattle from crossing over. The path loss exponent was set to
3.033 to best simulate an open field with minimal barriers
[12]. The default behavior for each end-node was to send a
packet every 10 minutes, however some simulations adjusted
this value to determine the affect the rate of transmission
has on the scalability of the system. Every simulation was
ran for one day of simulation time, resulting in a total of
144 packets sent per device with the default transmission
rate. The starting time of each end-node was randomized to
prevent packet collisions at time 0 of simulation. Simulated
packet size is 12 bytes, which is currently what the FGS
sends from each end-node to the gateway. Initial simulations
were done with 400 end-nodes and a field of 4km by 4km,
and the packet loss was measured as the number of end-nodes
increased, while subsequent simulations adjusted the number
of gateways, rate of transmission, and lack of mobility.

C. Issues

As mentioned, the library used did not provide the ability
to mimic the Fenceless Grazing System perfectly. One of the
issues was the lack of support for the US LoRa standard,
resulting in the use of the EU standard instead. This resulted
in a change in the frequency as well as the different data rates
implemented by LoRaWAN. The EU has a much smaller
available bandwidth than the US (865-868 Mhz vs 902-928
Mhz respectively). As a result, US devices can hop around
the band more to avoid interference. With that said, however,
there is usually more interference in the US 915Mhz range
then there is in the EU range [10]. Lastly, the EU has
restrictions on the duty cycle and transmission power of the
end nodes. The duty cycle regulation says that you can only
be on the air for 1% of the time. The EU also limits the
power output, limiting the potential range [11]. However, the
differences between the EU and US in regards to simulations
is minimal, and while there is a difference in the bandwidth
allocated, simulation results should be conservative enough
to be applied to the US standard.

D. Results

The first series of simulations adjusted the number of
end-nodes present in the system while observing the packet
loss across the entire network. The goal of this simulation
was to estimate the true average percentage of packet loss,



where packet loss is split into three varying reasons: low
transmission power, interference at the gateway, and no
available receivers. Each simulation was conducted with a
different total number of collars and simulated 24 hours of
communication. The RngRun value was also incremented
for each simulation, ensuring different starting locations and
initial velocity vectors were chosen. Each simulation was
run with only one gateway hosted exactly in the middle of
the operating field 5m above the ground. The total size of
the area was 4 kilometers by 4 kilometers, and each device
was sending a packet once every ten minutes. Fig. 11 shows
the results for this series of simulations, illustrating the total
packet loss as the number of end-nodes increased. Setting
the maximum percentage of packet loss at 20%, we can host
a maximum of 1500 collars in this network configuration.
This graph demonstrates the rapid increase in packet loss,
eventually ending at 85% of all packets lost with a singular
gateway and 5,000 end-devices.

Fig. 11. Packet loss as # end-nodes increases (4km by 4km, one gateway)

Fig. 12 shows how increasing the total number of gateways
in our network increases scalability and efficiency with a
high density of end-devices. These simulations simply added
gateways to the topology of the network at the previous final
simulation of 5,000 end nodes. This way the change in packet
loss can be determined while easily comparing to the results
of the previous simulation set. Each gateway was added to
a location in the field such that it was equidistant from the
other gateways, and provided the best possible coverage of
the operating area. For each new simulation the gateways
were moved to different locations. Up to four gateways were
simulated, and the results show a drastic decrease in packet
loss as the other gateways can pick up the loads and the
adaptive data rate algorithm comes more into play. This will
prove to be slightly challenging in a real world scenario.
Currently the Fenceless Grazing System requires a backend
of either Ethernet or Wi-Fi which restricts the locations
where a gateway can be deployed. The original thinking
was to host it in the home of the rancher where an internet
connection would be available. However, if a gateway needs

to be hosted in the middle of the field support for another
type of backend like 5G will likely be required. With the
results in Fig. 12, we were not able to achieve less than 20%
of packet loss in an area of 4 kilometers by 4 kilometers.

Fig. 12. Packet loss as # gateways increases (4km by 4km, 5,000 end-
nodes)

The next set of simulations aimed to see how changing
the transmission rate affected the scalability of the network.
As we increase the rate of communication for each end-
node, the latency for sending a boundary update request
will decrease drastically as the FGS product implements
Class A of LoRaWAN. Thus, we can expect there to be a
perfect ratio of keeping latency down while still maintaining
good battery life and network stability. Fig. 13 illustrates the
percentage of packet loss as the delay between transmissions
increases. That is, the initial value was one minute, indi-
cating that each end-node attempted to send a packet once
every minute. As the transmission rate decreases, we see a
significant decrease in packet loss. However, this change is
the most significant from one minute to about ten minutes,
showing that at one point there is no significant decrease
in packet loss. Originally, the main cause for packet loss
was the lack of available receivers on the gateway as it was
overwhelmed by requests. However, this quickly changed as
interference became the main reason for packet loss from
one transmission every three minutes and onward. Fig. 13
shows that anything less than ten minutes is not decreasing
the total packet loss substantially enough to account for the
high latency.

Fig. 14 is essentially the same set of simulations as
Fig. 11 but with the mobility model disabled. Each end-
node was randomly placed in the field and stayed in that
location throughout the entire duration of the simulation.
Each simulation shows an increase in the total number
of end-nodes and the packet loss was graphed against the
number of end-nodes. The adaptive data rate algorithm is
most impactful when the radio strength of each node remains
constant, such as when there is no movement between the
nodes. As a result, this set of simulations were conducted to



Fig. 13. Packet loss as the rate of transmission for each device decreases
(4km by 4km, 1500 end-nodes)

see if there was a significant difference between moving and
non-moving devices. In the Fenceless Grazing System it has
to be assumed that the end-nodes will be somewhat mobile.
However, there will likely be times where each animal stops
moving to sleep which would result in the adaptive data rate
algorithm being initiated. Comparing the results in Fig. 14 to
Fig. 11, there is no significant difference in the total packet
loss. While the ADR algorithm decreases time on air, we
still see no substantial difference in the rate of interference
between these packets. At 5,000 end-nodes the difference
between the total amount of packet loss is 0.5%.

Fig. 14. Packet loss as # end-nodes increases with constant position of
each end-node (4km by 4km, one gateway)

Overall, depending on the reliability requirements, one
gateway may only be able to handle 1000 - 2000 end-
devices. As the current Fenceless Grazing System is only
implemented with one gateway, the total number of devices
will be limited primarily based on the percentage of packet
loss. If a network does not need that many collars the rate
of transmission can be increased while still maintaining

reliability and network stability at the cost of battery life.
If low latency is more desired then the number of end-
nodes can be decreased to maintain the same average level of
packet loss. These results demonstrate the flexibility of this
system and the ability to adjust network parameters based
on individual requirements of each implementation.

E. Maximum Achievable Range

We have seen how packet loss increases as the number
of end-nodes increases within a confined area. The next
metric that will constrain the scalability of the Fenceless
Grazing System is the maximum achievable distance. There
are many things that affect the range of LoRa including the
spreading factor or data rate, the transmission power, the
hardware itself, and the medium that the radio is trying to
penetrate through. For instance, LoRa will not be able to
reach nearly as far in a dense forest than it would across
open plains with line of sight. While an argument could be
made that the majority of farms would be rather flat it is not
guaranteed and the achievable distance will adjust for each
implementation. Fig. 15 illustrates the required output power
to be able to reach a specific distance while still accounting
for the various spreading factors. This graph was built using
(1) and (2), mathematical representations of the path loss and
link budget respectively as detailed in [13], which utilized
a loss exponent of 3 to represent an urban area. In (1), L
represents the path loss, f is the LoRa frequency, and c is
the speed of light. The path loss exponent n was set to 2,
and d represents the distance of communication. Equation
(2) shows the relationship between the link budget L and the
transmitted power P and receiver sensitivity S.

L = 10 log10((
4πdf

c
)2dn) (1)

LBudget(SF,BW ) = PTX − SRX(SF,BW ) (2)

Then, [13] sets these two equations equal to each other in
order to graph the theorized range with regards to spreading
factor and output power. These mathematical expressions
provides basic assumptions regarding the range estimations
for the Fenceless Grazing System. Fig. 15 demonstrates the
importance of output power in the maximum achievable
range, which will differ across different hardware test-beds.
In an effort to compare this model against the FGS im-
plementation, the achievable range of the current test-bed
hosting the FGS hardware was tested.

V. TEST-BED IMPLEMENTATION RESULTS

While all of the simulation results could not be verified
entirely with the hardware on hand, the theorized maximum
communication distance could be tested. The challenging
part was to try to find a location that provided similar
topology to the simulations. That is, significant distance
while still maintaining line of sight. The furthest distance
while still maintaining line of sight that was relatively local
to my area was 5.25 km, where the gateway was set up at the



Fig. 15. Achievable range with adjustments in SF and output power [13]

top of a hill across Corvallis, OR to the end-node on top of
a parking garage on Oregon State campus (see Fig. 16). We
were able to achieve communication at this distance using
DR8 (SF 12, BW 500) with an output power of 15 dBm.
This data rate corresponds with 980 bits/s with a maximum
payload size of 33 bytes. Theoretically, with our expectations
based on the data provided in Fig. 15, the maximum distance
achievable with these parameters would be about 12 km,
over twice the distance tested with the current FGS test-bed.
The next test consisted of using DR3 (SF 7, BW 125) with
an output power of 6 dBm and did not reach to the full
distance. The output power was increased to see when the
communication would go through, but we could not achieve
communication with a spreading factor of 7 as our library
limited the total output power. The lowest data rate that
allowed for communication at this range was DR 11 (SF 9,
BW 500) with an output power of 14. The non-conformance
with the model may be due to many various issues with
the hardware, but the most likely scenario is due to cheap
antennas. While local area constraints limited the ability to
push the range any further, the ability of the current hardware
on hand to reach 5.25 km at least allows for far distance
communication which corresponds of a maximum acreage of
21,400 acres. This is assuming a circular field with a radius
of 5.25 km which is simply the furthest distance tested with
the current hardware. The LoRa protocol easily provides long
distance communication making the likely constraint to the
Fenceless Grazing System the ratio of the number of end-
devices to gateways.

VI. CONCLUSIONS

The LoRa communication protocol provides the Fenceless
Grazing System with great scalability in terms of both
range and number of devices. With the information gathered
through the NS-3 simulations, the theoretical maximum num-
ber of end-devices is determined to be just under 2,000 with

Fig. 16. Maximum Achieved Distance

only a singular gateway and a cutoff at 20% of total packet
loss. This provides the knowledge necessary to implement
the FGS project in a multitude of different situations and
based on the topology and structure of different ranches a
network administrator can determine whether or not it is
feasible to implement this system. Also, the achievable range
was confirmed to be on par with other LoRa implemen-
tations, and with the maximum tested distance to be 5.25
kilometers the FGS project supports significantly large areas
of land. Potential improvements to the Fenceless Grazing
System include developing support for multiple gateways as
this is the limiting factor to the size of the network both in
terms of the number of animals as well as the acreage of
the grazing area. With these restrictions and capabilities in
mind, ranches can be evaluated and a full scale model of this
product can be built and deployed.

ACKNOWLEDGMENT

I thank Dr. Bechir Hamdaoui (Oregon State University) for
his assistance and support throughout the design and devel-



opment of this thesis. His knowledge and experience helped
to streamline the development of the Fenceless Grazing
System as well as the set of simulations, and his input could
not have been more valuable. With his help, the research and
testing aspects of this thesis went smoothly.

REFERENCES

[1] F. Dahlqvist, M. Patel, A. Rajko, and J. Shulman, “Growing oppor-
tunities in the Internet of Things,” McKinsey & Company, Jul-2019.
[Online]. Available: https://www.mckinsey.com/industries/private-
equity-and-principal-investors/our-insights/growing-opportunities-in-
the-internet-of-things. [Accessed: 06-Apr-2020].

[2] B. Ray, “What Is LoRa? A Technical Breakdown,” Link Labs:
Cost-Effective Connectivity For IoT, 26-Jun-2018. [Online]. Avail-
able: https://www.link-labs.com/blog/what-is-lora. [Accessed: 01-
May-2020].

[3] Semtech Application Note AN1200.22, "LoRa Modula-
tion Basics", Semtech, May-2015. [Online]. Available:
http://wiki.lahoud.fr/lib/exe/fetch.php?media=an1200.22.pdf.
[Accessed: 01-May-2020].

[4] Qoitech, “How Spreading Factor affects LoRaWAN device bat-
tery life,” The Things Network, 18-Nov-2019. [Online]. Avail-
able: https://www.thethingsnetwork.org/article/how-spreading-factor-
affects-lorawan-device-battery-life. [Accessed: 01-May-2020].

[5] “Modulation & Data Rate,” The Things
Network, 30-Mar-2020. [Online]. Available:
https://www.thethingsnetwork.org/docs/lorawan/modulation-data-
rate.html. [Accessed: 01-May-2020].

[6] N. Sornin, M. Luis, T. Eirich, T. Kramp, O. Hersent,
"LoRaWAN Specification V1.0," LoRa Alliance, 2015. [Online].
Available: https://lora-alliance.org/sites/default/files/2018-05/2015_-
_lorawan_specification_1r0_611_1.pdf. [Accessed: 01-May-2020].

[7] “Adaptive Data Rate,” The Things Network, 25-Oct-2019. [Online].
Available: https://www.thethingsnetwork.org/docs/lorawan/adaptive-
data-rate.html. [Accessed: 01-May-2020].

[8] D. Magrin, M. Capuzzo, S. Romagnolo, M. Luvisotto,
LoRaWAN ns-3 Module, 29-Apr-2020, Github repository,
https://github.com/signetlabdei/lorawan.

[9] R. Alder, Honors Thesis, May-2020, Github repository,
https://github.com/ryanalder/honorsthesis.

[10] G. Schatz, “How To Launch An IoT Application In Europe Vs.
America,” Link Labs: Cost-Effective Connectivity For IoT, 17-Feb-
2016. [Online]. Available: https://www.link-labs.com/blog/launch-iot-
application-europe-vs-america. [Accessed: 01-May-2020].

[11] Saelens, M., Hoebeke, J., Shahid, A. et al. Impact of EU duty cycle
and transmission power limitations for sub-GHz LPWAN SRDs: an
overview and future challenges. Wireless Com Network 2019, 219
(2019). https://doi.org/10.1186/s13638-019-1502-5

[12] R. E. Chall, S. Lahoud, and M. E. Helou, “LoRaWAN Network:
Radio Propagation Models and Performance Evaluation in Various
Environments in Lebanon,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 2366–2378, 2019.

[13] A. Pötsch and F. Haslhofer, "Practical limitations for deployment of
LoRa gateways," 2017 IEEE International Workshop on Measurement
and Networking (M&N), Naples, 2017, pp. 1-6.

[14] C. Riederer, TinyLoRa, Oct-2019, Github repository,
https://github.com/adafruit/TinyLoRa.

[15] “Protocol Buffers | Google Developers,” Google. [Online]. Avail-
able: https://developers.google.com/protocol-buffers. [Accessed: 05-
May-2020].

[16] “RAK2245 Pi Hat,” The Things Network, Oct-2019. [Online]. Avail-
able: https://www.thethingsnetwork.org/docs/gateways/rak2245/. [Ac-
cessed: 05-May-2020].

[17] “The Things Network,” The Things Network. [Online]. Available:
https://www.thethingsnetwork.org/. [Accessed: 05-May-2020].


