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Monte Carlo Counterfactual Regret Minimization
applied to Clue

Benjamin Martin
Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR, USA

martinb3@oregonstate.edu

Abstract

This document analyzes the application of Monte Carlo Counterfactual Regret Minimization (MCCFR) in the game of
Hasboro’s Clue. As a partially observable stochastic multiplayer game, Clue is well-suited for MCCFR methods. MCCFR has
previously been shown to be effective in beating top human players around the world in No-Limit Texas Hold’em. We have found
that an MCCFR agent proves to be superior in win rate over a heuristic model counting alternative and two baseline random
agents using choice sampling and regret matching.

Index Terms

clue, cluedo, MCCFR, monte carlo, partially observable games

Fig. 1. The 2002 edition of the game of Clue, featuring six suspect tokens, six weapons, and 21 cards corresponding to six suspects, six weapons, and nine
rooms. The rooms are depicted on the game board, which is not pictured here.

I. INTRODUCTION

Hasboro’s game Cluedo or Clue in North America is a murder-mystery board game. Each player takes on the role of a
detective, attempting to piece together the clues of the death of the owner of a large estate, who was found to be murdered. The
2002 Clue edition consists of 21 cards: 6 suspect cards, 6 weapon cards, and 9 room cards. Players attempt to gain knowledge
of the identity of three cards that are kept in a secret ’solution file’ which contain the identity of the murderer, the weapon, and
the room where the murder occurred. Clue, being a multiplayer turn-based stochastic partially observable game, is well-suited
for MCCFR methods. MCCFR is an iterative algorithm which traverses the game tree by sampling actions at nodes along the
game tree instead of exploring the entire tree. MCCFR employs the same regret updating and regret matching techniques as
counterfactual regret minimization (CFR). We have used Choice Sampling (CS) MCCFR coupled with abstracting the game
state space to reduce memory overloads.
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Compared to several varieties of heuristic agents, we have found that MCCFR has proven to be superior. In 3-player games
where 2 of the agents are based on a heuristics algorithm, and the third agent is the MCCFR agent, we found that the MCCFR
agent wins slightly more than 1/3 of the time when playing against agents using the most robust heuristics.

Clue, being a partially observable stochastic game, is a perfect target for the application of MCCFR. MCCFR has been
used with a high degree of success in other imperfect-information games including Liar’s Dice, [6] No-Limits Texas Hold’Em,
[5] and Kuhn Poker. We have extended the work from No-Limits Texas Hold’Em [5] solving by adopting their blueprinting
strategies (the MCCFR module of their Libratus agent) to advance play. Clue is also a straightforward game to simulate and
observe as opposed to more complex partially observable games, such as Hearts.

II. BACKGROUND

A. Domain

Before the game begins, one card of each type (room, suspect, and weapon) is randomly selected and set aside and placed
in the ’solution’ file. The remaining 18 cards are then shuffled together distributed as evenly as possible between the remaining
players. Players keep their own cards hidden to themselves. Players take turns making ”suggestions” which are then refuted by
other players with cards from their hands. Once a player makes a suggestion which consists of a room card, a weapon card,
and a suspect card, each player clockwise from the player who made the suggestion must attempt to refute the suggestion or
pass. If they can refute, they must privately show one of the cards from their hand that match one of the suggested cards to the
suggester. Once a suggestion is refuted or all players pass, play continues to the next player, who then may make a suggestion.
Each player may make one accusation per game. If they accuse and correctly identify the three hidden cards, then they win
the game. Otherwise, they are eliminated from the game and must continue refuting suggestions, but may no longer make an
accusation. For the full rules of the game, refer to the 2002 edition rulebook. [3] Traditionally, players are limited to making
suggestions only in the room which their own character pawns visit. For ease of application, we have abridged the rules such
that there are no movement actions or game board. Instead, players may choose to make a suggestion for any room on their
turn, uninhibited by movement. Additionally, players cannot make an accusation. Instead, players win the game automatically
once they suggest the correct set of ’solution’ cards i.e., a player wins a game of Clue when they make a suggestion that all
players pass on and they do not hold any of the suggested cards in their own hand.

Initially, the total number of valid models is

6 ∗ 6 ∗ 9 ∗ 18!∏P
i=1Hi!

Where P is the number of players in the game, and Hi is the number of cards in player i’s hand. For a 6-player game
where each player is dealt 3 cards, the number of valid models is over 44 trillion. This formula is arrived at by multiplying
the number of possible solution files (6 suspect cards, 6 weapon cards, and 9 room cards, 1 of each which is independently
selected at random) which yields 6∗6∗9 = 324. The remaining 18 cards can then be arranged in any permutation, but must be
divided by the number of ways in which the same cards can be rearranged in each player’s own hand. Note that the following
condition must be true:

P∑
i=1

Hi = 18

For different versions of clue (where there may be more or less room cards, weapon cards, or suspect cards), these conditions
do not hold.

In order to avoid leaking knowledge or information to other players in the game of Clue, the agent must play in a somewhat
random fashion to avoid disclosing its own cards or the cards that it knows about. To expand upon this point, we have shown
that greedy heuristic agents that suggest the most likely combination of cards in a game of Clue can be exploited by a heuristic
exploitation agent. As an example to show how a deterministic policy can be punished, consider a naive poker agent. This
agent will bet proportionally to the strength of its hand; it will bet high when it has a good hand, and it will bet low when it
has a bad hand, and it will fold when the bet size grows larger than the expected value of the hand. This naive poker agent is
missing a very human component: the bluffing element. It is playing in a greedy way which would

B. Existing Clue research

Clue has previously been analyzed using Monte Carlo policy rollout algorithm which used a baseline heuristic policy to
begin evaluating the likelihood of a set of cards appearing in the solution file, and tweaking the hyperparameters of both
the horizon and the number of simulations to run. The authors found that the policy rollout improved each baseline agents’
performance when pitted against the unimproved baseline agent. Games were modeled using a Markov Decision Process (MDP)
with modified transition functions to approximate the partially observable domain. [4]
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Fig. 2. Clue bayesian network as described in [2]

Clue has also been modeled and tested using a Bayesian Network (BN). The authors modified the rules of the game by
fixing the player’s hands with a certain quantity of each typology of card by their category of room, suspect, or weapon. The
authors tested their model by providing an interactive, graphical interface which allows human players to play against the
computer. Testing showed that the model had an advantage over human players with a win disparity. [2]

C. Monte Carlo counterfactual regret minimization

1) History: Valid sequences of actions in the game are called histories, denoted h ∈ H . A history is a terminal history,
h ∈ Z where Z ⊂ H , if its sequences of actions lead from root to leaf. A prefix can be obtained by taking a valid sequence of
actions from h. Given h, the current player to act is denoted P (h). Each information set contains one or more valid histories.
The standard assumption is perfect recall: information sets are defined by the information that was revealed to each player
over the course of a history, assuming infallible memory. In a game’s play, there are two different types of nodes: a chance
node, which denotes a random event not caused by any particular player. There is also a choice node, which is a state at which
the player must take an action. Choice nodes are further logically divided up into opponent’s choice nodes, and the player’s
choice nodes. In Clue, we express the utility at the terminal node of the history by assigning a value of -1 to any player who
loses the game, and +P to the winner, where P is the number of players in the game. A player then, who takes an action
that causes them to lose a game in an otherwise winning position, would regret taking the winning action by 1 + P .

2) Counterfactual regret minimization: In 2000 counterfactual regret minimization (CFR) was introduced as a means to
track player regrets for their previous actions and play with a weighted bias towards positive regrets.

In counterfactual regret minimization, a strategy is a mapping of infoset I to action probabilities. All strategies for all players
at time t is called a strategy profile, denoted by σt. The strategy for player i at information set (infoset) I then is denoted
by σti(I). An information set is the set of all information available to player i in the game at that point. Events which occur
independently outside of player control are chance nodes. Chance nodes can be treated the same as a player – chance nodes
have a constant strategy which is not updated over the course of the counterfactual regret minimization algorithm. For instance,
in a 2-player game, the ”chance” player would be denoted as player i = 3. The counterfactual value of a history h is:

vσ(h) =
∑
z∈Zh

πσ−i(h)π
σ(h, z)ui(z)

where Zh is the set of all terminal histories that can be reached from h, and πσ(h, z) is the reach probability of reaching
z from h assuming that all players follow the strategy profile σ.

The instantaneous counterfactual regret is as follows:

ri(h, a) = vi(σI→a, h)− vi(σ, h)

where σI→a is the exact same strategy profile as σ except that player i will always follow the pure strategy of taking action
a when at infoset I .

The cumulative counterfactual regret after T time steps is as follows:

RTi (I, a) =

T∑
t=1

rti(I, a)

where

rti(I, a) =
∑
h∈I

r(h, a)
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Fig. 3. Typical variants of CFR versus MCCFR exploring the game tree. While (a) CFR explores the entire tree, (b) MCCFR will sample opponent actions
to reduce the space needed to evaluate an action by the player.

The strategy profile is then updated at every timestep. The following algorithm is also referred to as regret matching, where
the probability of selecting action a is proportional to the positive cumulative regret of taking that action:

σT+1
i (I, a) =


RT,+

i (I,a)∑
a∈A(I) R

T,+
i (I,a)

if
∑
a∈A(I)R

T,+
i (I, a) > 0

1
|A(I)| otherwise

where

RT,+i (I, a) = max(RTi (I, a), 0)

MCCFR in Texas Hold’Em uses an iterative strategy training over multiple games. In each iteration, it simulates a game as
a player, called the traverser. The traverser would pick actions according to its strategy profile, and sample opponent actions
in the game. After the game completes, the traverser then examines other paths where it could have chosen different actions
and evaluates the value of picking other actions in the game. The traverser measures how much better it otherwise could have
played by assigning a regret value to each other action. The action chosen by the traverser always has a regret of 0. In the
future, actions with higher regret have a higher chance of being chosen, because the strategy profile is updated at the end of
each game and is proportional to the regret of each action.

III. ADAPTATION OF MCCFR TO CLUE

CFR guarantees that in a two-player zero-sum game, two players employing the CFR to update their respective strategies
will reach a Nash Equilibrium with a large enough number of games. While Clue is not a two-player game, the game of Clue
is not easily prone to ”kingmaker” or ”gang-up” tactics, which lends itself to still be applicable to CFR, regardless of the
number of players.

In Clue, the public history of the game is represented with a 5 x h matrix, where h is the total number of suggestions made
in a game. The first column denotes the player who made the suggestion, columns 2, 3, and 4 denote the identity of the cards
for the suspect, weapon, and room respectively, and the final column denotes the player who refuted. If no player was able
to refute, then the final column is left empty as NULL. This history is public knowledge, which means that all players have
access to this information with perfect recall.

The infoset for each player in the game can be accurately created using two tables. First, the public history of the game as
described above, and secondly, the private knowledge of the player at that point of the game. The knowledge of the player
can be expressed as a 21 x P matrix, where each cell in the matrix denotes whether player p has card c. If the player knows
that some player p doesn’t have card c (either because the player passed, or through logical deduction), then the value of the
cell is -1. If player p has card c, then the value of the cell is 1. Otherwise, the value of the cell is 0. This denotes that the
player’s knowledge on whether or not player p has card c is not yet conclusive. We can infer that any card which cannot be
in any player’s hand must be in the solution file.

Fig. 4. An example game in progress in the game of Clue. Player 1 began by suggesting Professor Plum with the Knife in the Study. Player 2 did not
have any cards that matched the suggestion, and passed. Player 3 then showed a card to Player 1. Player 2 then made a suggestion of Mrs. White with the
Candlestick in the Kitchen. Players 3 and 4 passed, and player 5 refuted, showing a card to Player 2. Player 3 then made a suggestion of Mr. Green with
the revolver in the Hall which none of the other players could refute. Player 3 won the game if none of the 3 cards that she suggested were in their own
hand (because they could automatically deduce that the 3 cards that they just suggested were in the solution file). This information is expressed in a compact
format, but for simplicity’s sake has been shown more explicitly here.
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A. Implementation

MCCFR uses sampling to evaluate the counterfactual regrets of an action for a particular choice node in a player. The game
tree is sampled using Chance Sampling (CS) – one of the simplest variants of MCCFR. Each choice node where a player
may take an action is sampled following the weights of their current strategy profile and evaluated. Opponent’s choice nodes
and chance nodes are merely queried, that is, only a single sample is generated which creates the response that would have
happened if the player had taken the action that they did. This technique can create high variance due to the high branching
factor and low sampling of opponent’s choices and random events There is continued discussion on how to reduce variance
in the MCCFR algorithm to speed its training up. [7]

B. Game Abstraction

Due to the branching factor and memory cost associated with a long game duration like in Clue, the game’s information
states must be abstracted, or compactly expressed so as to avoid expensive memory and computational costs. Here we logically
divide cards by their typology [2], and bucket information states where cards of the same typology are in identical positions
relative to player order. Cards in Clue are reduced to three different typologies: room cards, suspect cards, and weapon cards.
For example, a player holding 3 cards: Plum, Knife, Ballroom is functionally similar to holding Plum, Knife, Study, except
for the fact that the ballroom card has been swapped with the study card. Since these situations can be calculated in exactly
the same way albeit with different locations for the cards, then they can be bucketed in the state space of the strategy profile
without loss of information.

IV. EXPERIMENTAL RESULTS

We developed 3 agents similar to what is used in [4]. The first agent is a random stateless agent. It will merely suggest any
three cards every turn as long as those three cards are not in its own hand. We then have a second, stateful random agent. This
agent will record all cards it has seen directly, and will never suggest a card that it has seen, but will otherwise make random
suggestions. Finally, we have a greedy heuristic agent which will approximate the likelihood of each card in a solution file. It
will greedily suggest the set of three cards that are most likely to be in the solution file. The heuristic agent works by model
counting the number of valid solution models after reaching a specific game state, and checks to see which cards appear in
the solution most often in the model. The heuristic agent starts by encoding all information in the infoset into a set of boolean
variables, which can then be used to model count using standard SAT# model counting techniques. The heuristic agent relies
on the assumption that all solution models are distributed uniformly random. Also since it works in a greedy way, the heuristic
agent is vulnerable to revealing information on its own hand state and knowledge, which can be exploited.
Algorithm 1: Heuristic model counting agent

Result: Return action a for game state (infostate) s.
for each unique tuple of cards suspect, weapon, room do

T[suspect, weapon, room] = model count valid solutions(suspect, weapon, room);
return max(T)

end
function MODEL COUNT VALID SOLUTIONS(suspect, weapon, room)
if s.privateKnowledge.playerHasOne(suspect, weapon, room) then

num = 0;
end
s.publicHistory.convertHistoryToSATKnowledge();
num = s.SATMODELCOUNT();
return num;

The MCCFR agent was trained and then tested against each agent in a 3-player setting, with a single MCCFR agent and two
of the same benchmarking agent. In order to mitigate the bias of player order, the MCCFR agent would play first in a third
of the games, second in another third of the games, and last in the final third of the games. The agent played in total 30,000
games against the two opposing agents. It played 10,000 games in 3 different positions each. The 95% confidence interval
after 30,000 games played is ±156.8 games or ±.523% in win rate. The MCCFR was trained at several intervals, at which
point the training was paused and the strength of the MCCFR agent was measured against the baseline random agents and the
heuristic agent. After training, a copy of the training result at that point in time was saved and training resumed. The results
measure the win rate of the MCCFR agent against the two opposing agents with respect to the number of games trained that
the MCCFR was allotted. One traversal of the game tree in the CFR algorithm here is considered 1 game of training.

V. FUTURE WORK

Although there has been groundwork laid in showing the promise of MCCFR solving in Clue games, it may perhaps be
beneficial to develop more sophisticated agents to benchmark the MCCFR agents. It would also be beneficial to translate the
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code from the propriety Matlab language into a more easily distributed and accessible language, such as Python or Java. There
are also several optimization techniques which can be used to improve upon the MCCFR algorithm to improve its learning
speed, using variance reduction [7] . There is a possibility of implementing linear CFR which will linearly scale up more
recent regrets, and Regret-Based Pruning (RBP). Regret-based pruning is a technique where negative cumulative regrets are
not zeroed out, but rather, are stored as they are. Any regrets which are very negative will be ignored and their regrets will not
be updated for as many iterations as needed until it is possible that the action could be positive again. Then, the game tree can
be traversed for that action and the regret can be reevaluated. There is also a consideration of adding ”subgame solving” when
approaching near the end of the game. The static blueprinting strategy that this MCFFR agent can be great at approaching the
myriad of options and possibilities early on in the game, but may not be as strong when it approaches game states that only
occur a handful of times. Leveraging the extra knowledge it has at the end of the game, the agent would switch to using a
granulated solving method by analyzing every possible action by the opponent. This approach has been used successfully in
No-Limit Texas Hold-’Em. [5]

Fig. 5. Results of the MCCFR agent versus the heuristic agent, as a function of number of games won over games trained.

Fig. 6. Results of the MCCFR agent versus the random stateful agent, as a function of number of games won over games trained.
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Fig. 7. Results of the MCCFR agent versus the random stateless agent, as a function of number of games won over games trained.

VI. CONCLUSION

We have found a robust agent that is proven to be superior over other benchmarking agents after sufficient training. The
downside of this particular agent is the high training cost and time needed to train, which can be mitigated with enough
computing resources and optimization of the algorithm.
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