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This study was conducted to determine if bacterial DNA present streams could be used to 

predict upstream watershed characteristics. Previous studies have found that bacterial 

composition in soil is influenced by land use. It was hypothesized that if the bacteria present 

in a stream is known that it can be used to predict upstream watershed characteristics. 

Collecting bacterial data involved sampling at 62 different sites in Oregon. The bacterial 

DNA from these samples were then extracted resulting in a spreadsheet of operational 

taxonomic units (OTUs). Land cover characteristics for each site were obtained by 

delineating each site’s watershed in StreamStats. The OTU and StreamStats data were used 

as inputs to create a model using support vector regression (SVR) in python to predict land 

cover characteristics. The SVR inputs kernel and C value were manipulated to improve the 

model along with the prevalence of OTUs. The largest Nash-Sutcliffe efficiency (NSE) value 

obtained when manipulating the model for forest and shrub cover was 0.26 using an ‘rbf’ 

kernel, C value of 20433 and a prevalence greater than 91%. This indicates that the model 

produces a better prediction of land coverage than using the average of all the sites’ land 

cover. 
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1. Introduction 

The goal of this research was to investigate the relationship between bacteria present 

in a stream and its upstream watershed land cover characteristics. Bacteria have great 

importance because they are one of the most abundant organisms on the planet. This is 

likely due to their ability to grow in so many conditions and habitats. Bacteria can be 

found deep in the ocean, frozen in ice in Antarctica, at the tops of mountains, and in the 

guts of animals. There are many types of bacteria, but there are general groupings based 

on their need for oxygen and how they obtain their energy. Ecosystems depend heavily 

on bacteria to cycle nutrients like carbon, sulfur and nitrogen. Bacteria play an important 

role in the decomposition of organic matter. Plants can obtain nitrogen from the 

atmosphere through nitrogen fixation which is carried out by bacteria that convert 

gaseous nitrogen into nitrites and nitrates through their metabolism. Bacteria also 

complete denitrification, turning nitrate into a gas which can cause depletion of nutrients 

in soil (UCMP, 2019). Bacteria carry out many important processes, so it is necessary to 

understand what influences bacterial composition. 

A study in China investigated “the Effects of Land Use on Hydrochemistry and Soil 

Microbial Diversity”. This study assessed the impacts of land cover through biological 

and chemical data from four different land use groups. These land use groups included 

bare land, land growing peaches, land growing castanea, and land with pine growing on 

it. This study stated that land use is the key factor of human disturbance that is affecting 

ecosystems. The different land uses change the amount of gas, liquid, and solid in the soil 

which then affects microbial activity in the soil. The results of this study indicated that 

microbial diversity varied with different vegetation forms (Zhang et al., 2019). Another 

study in New Zealand investigated “Bacteria as Emerging Indicators of Soil Condition”. 

This study aimed to understand how bacterial communities are affected by anthropogenic 



 

 

activity and to use them as an indicator of environmental health. This study investigated 

110 soil samples in natural and human-impacted areas that were up to 300 km apart. The 

results of this study showed that there was a relationship between the bacterial 

community and their environment. They found these relationships between bacteria and 

soil variables that are known to be influenced by human activity. This suggested that the 

bacterial community could indicate the condition of the soil (Hermans et al., 2016). 

According to the review titled “Transport of Microorganisms Through Soil”, many 

studies have been executed to understand how bacteria move through soil and enter water 

sources. One explanation is preferential flow of microorganisms through cracks, holes 

formed by plants or animals, macropores and fractures. These studies found that the 

factors that affect the movement and survival of microorganisms are related to the 

interactions between water, the surrounding environment, soil, and microorganisms. Soil 

bulk density, soil texture, size and morphology of microorganisms, and the presence of 

plants or other living organisms all have been shown to influence bacterial transport 

through soil. The transport mechanisms for bacteria in soil can be categorized into 

physical, geochemical, and biological processes. The physical processes that influence 

microbial movement are advection, convection, and hydrodynamic dispersion. 

Geochemical processes usually influence microbial movement through soil by delaying 

movement through adsorption, filtration, and sedimentation (Abu-Ashour et al., 1994).  

This previous research suggests that the bacterial communities in soil vary with land 

use. Using this information, it was predicted that if the bacteria present in a stream is 

known, that it can be used to predict the upstream watershed characteristics. To test this 

prediction sampling was done around Oregon to collect bacterial composition using 

Sterivex filters. The bacterial DNA was then extracted and sequenced resulting in 

operational taxonomic units (OTUs). Watershed characteristics for the sampling sites 



 

 

were estimated using StreamStats. The OTUs and watershed characteristics were then 

used with support vector regression (SVR) in python to develop a model to predict a 

watershed characteristic for a certain site using the OTUs for that site, the OTUs for the 

other sites, and the land cover characteristic for other sites. This model could then be 

used as a tool to predict watershed characteristics based on the bacterial composition of 

the water. 

2. Methods 

2.1 Sampling Method 

DNA samples were collected from water sources in 62 different locations in Oregon. 

These sites were chosen because of their proximity to USGS gauges so that hydraulic 

data could be used. Of these 62 sites, 5 were within the middle coast basin, 20 were 

within the Deschutes basin, and 37 were within the Willamette basin, with 10 of the 37 

specifically in the HJ Andrews experimental forest. A map of the sampling site locations 

can be seen below in Figure 1. 

 

Figure 1: Map of sampling sites (Google Earth, 2019) 

At each site an acid washed bucket was filled with water from the center of the river 

or stream. Then this water was emptied to perform a clean transfer and the bucket was 



 

 

filled again. With gloves on, the tip of a 25 mL disposable plastic pipette was broken off 

while still in the packaging. Then the pipette packaging was opened on the plugged end 

and the cotton was removed from the end with autoclaved tweezers. Then this end was 

inserted into autoclaved flex tubing while trying not to touch the ends and keeping as 

much of the pipette inside the packaging as possible to prevent contamination. Once the 

pipette and the tubing were connected, the tube was carefully inserted into the pump head 

of a GeopumpTM peristaltic pump (Geotech Environmental Equipment, Inc.). The bucket 

filled with sample was placed below the pump, the pipette was placed in the sample, and 

the pump was turned on. As the sample was being pumped out of the bucket the pipette 

was moved in a slow figure 8 motion to ensure appropriate mixing of the sample. Enough 

sample was pumped through the tube to coat all the surfaces to ensure a clean transfer 

and then the pump was turned off. After this, two MilliporeSigma™ Sterivex Sterile 

Pressure-Driven filters were labeled and then screwed on to the ends of the tubing and a 

graduated cylinder was placed under each filter. This sampling apparatus can be seen 

below in Figure 2. 

 

Figure 2: Picture of the sampling apparatus (Dawn Urycki) 

Once the apparatus was set up, the pump was turned on and the volume pumped 

through each filter was recorded using the graduated cylinders until the filters clogged. 



 

 

Then the pump was turned off and the filters were removed from the tubing. After the 

filters were removed, DNA extraction buffer was inserted into each filter, autoclaved lock 

plugs were screwed on to the wide end of each filter, and the thin end of each filter was 

sealed with putty. The filters were then placed in a labeled Ziploc bag and placed in a 

cooler on dry ice. Then the equipment was rinsed with DI water before moving on to the 

next site. The procedure was repeated for every site that was visited during the day in the 

field. After returning from a day of sampling the samples were all stored in a -80°C 

freezer until DNA extraction was performed. 

2.2 DNA Extraction Method 

The DNA extraction method used was developed by Byron Crump in 2007 and the 

samples were extracted in Byron Crump’s lab at Oregon State University. First the 

samples were pulled out of the freezer to thaw and a sterile scalpel was prepared. Then 

the scalpel and two pairs of forceps were placed in a small container of ethanol. Then, 

under a laminar flow hood, using pliers, the outport end of the filter was cracked open. 

Then the filter barrel was pulled out of the plastic casing and placed on a sterile 

disposable petri dish. After the filter barrel was removed the buffer was poured into a 2 

mL microcentrifuge tube removing the lock plug to ensure all the buffer was emptied and 

the plastic casing was discarded. Then an ethanol flame was lit, and the scalpel and 

forceps were passed through the flame to burn off the ethanol and sterilize them. Then the 

scalpel was used to cut the white filter off the plastic barrel. Then the plastic barrel was 

thrown away and the filter was placed in the sterile petri dish. The forceps were then used 

to fold the filter in half with the side with organic matter on it on the inside. Then while 

folded in half the filter was sliced into thin strips and the forceps were used to place these 

strips in the 2 mL microcentrifuge tube submerged in the buffer. After this the 2 mL 

microcentrifuge tube was closed, the petri dish was thrown away, and the blade and 



 

 

forceps were placed back in ethanol (Crump, 2007). This process was repeated for 

however many samples were being processed that day. The filter cutting process can be 

seen below in Figure 3. 

 

Figure 3: Photo of the filter cracking and cutting process (Dawn Urycki) 

The next step in the extraction process was to add proteinase-K and lysozyme to the 

sample and freeze-thaw. First, 20 µL of 10 mg/ml proteinase-K and 20 µL of 100 mg/ml 

lysozyme were added to each microcentrifuge tube. The proteinase-K is used to digest 

any contaminating proteins that may be present, and the lysozyme is used to lyse the 

bacterial cells. Lysing a bacterial cell involves perforating the bacterial cell wall without 

denaturing the proteins (Genlantis, 2017). After the enzymes were added, the samples 

were placed in a -80 °C freezer for 15 minutes or in dry ice until they were frozen. Then 

the samples were placed in a 37 °C water bath for 5 minutes or until the samples had 

thawed. This process was repeated three times. The third time the samples were left in the 

37 °C water bath for another 30 minutes to incubate (Crump, 2007). This freeze-thaw 

method is used to lyse the bacterial cells as well. The dry ice and water bath used for the 

freeze thaw process can be seen in Figure 4 below. 



 

 

 

Figure 4: Dry ice freezing (left) and the 37 °C water bath thawing (right) (Dawn Urycki) 

After the 37 °C water bath incubation, 50 µL of filter-sterilized sodium dodecyl 

sulfate (SDS) was added to each microcentrifuge tube. Then each tube was inverted 

several times to properly mix. These tubes were then placed in a 65 °C water bath to 

incubate for at least one hour (Crump, 2007). The SDS is used to disrupt the cell 

membrane during the lysis process.  

The next step was phenol-chloroform extraction. Underneath a fume hood, all the 

microcentrifuge tubes were filled the rest of the way with phenol-chloroform-isoamyl 

alcohol (25:24:1, pH 8.0). The phenol-chloroform was added using a sterile glass pipette 

with a rubber pipette bulb. Then the samples were placed on a vortex until the filter paper 

had noticeably started to degrade. Then the microcentrifuge tubes were centrifuged at 

3000 rpm for 5 minutes (Crump, 2007). The phenol-chloroform in this step helps to 

separate the cellular debris in the organic phase from the DNA in the aqueous phase 

(McKiernan & Danielson, 2017). After the five minutes of centrifuging, the top aqueous 

phase, containing DNA, was transferred into a new microcentrifuge tube. When 

performing this extraction with the Sterivex filters, there was usually a layer of the filter 

material that helped to separate the organics and the aqueous DNA. Once the top layer of 

aqueous DNA was transferred to a new tube the new tube was filled with phenol-

chloroform and centrifuged again as a second wash. Then the top aqueous DNA layer 



 

 

from the second wash was transferred to a new microcentrifuge tube (Crump, 2007). A 

visual summary of this extraction process can be seen in Figure 5 below. 

 

Figure 5: A visualization of DNA extraction using phenol-chloroform-isoamyl alcohol (PCIA) 

(McKiernan & Danielson, 2017) 

After the second wash with phenol-chloroform the resulting buffer volume was 

estimated. This volume was then used to determine what volume of isopropanol to add by 

multiplying the buffer volume by 0.6. This volume of room temperature isopropanol was 

added to the buffer and the tube was gently inverted to mix. These tubes were then placed 

in a drawer in the dark at room temperature to precipitate overnight (Crump, 2007). 

Isopropanol is used in DNA precipitation because DNA is insoluble in isopropanol so 

adding it to the buffer causes the DNA to come out of the solution (BiteSizeBio, 2018). 

After leaving the tubes overnight they were placed in a microcentrifuge at 13000 rpm 

for 30 minutes. Then the solution was removed with a pipette making sure not to disturb 

the pellet of DNA. After the solution was removed and disposed of, 1 mL of 70% EtOH 

was added to each tube and the tubes were inverted several times. Then the tubes were 

placed in the centrifuge again at 13000 rpm for 10 minutes. After removing the tubes 

from the centrifuge, the EtOH was removed with a pipette and 1 mL of 70% EtOH was 

added for a second rinse. This EtOH rinse washes away any salt that may have 

precipitated from the pelleted DNA. After the second rinse the EtOH was removed from 



 

 

the tube and the tubes were placed open in the roto-evaporator for 15 minutes or until the 

pellets were dry (Crump, 2007). An image of a pellet resulting from this study can be 

seen in Figure 6 below. 

 

Figure 6: An image of a pellet (in the red circle) from this study (Dawn Urycki) 

After the pellets were dry they were resuspended in 250 µL of autoclaved UV sterile 

ultra-pure water. The liquid was flicked at the bottom of each tube to ensure that all 

possible DNA was covered. The tubes were then left in the refrigerator for 2 hours. After 

2 hours 100 µL of the solution was put in a working screw-cap cryovial and 150 µL of 

the solution was put in an archive screw-cap cryovial (Crump, 2007). These tubes were 

then frozen in a -80 °C freezer until they were needed for PCR. 

After the extraction, bacteria-specific primers (515F 

GTGCCAGCMGCCGCGGTAA, and 806R GGACTACHVGGGTWTCTAAT). were 

used to PCR-amplify the V4 region of the16S rRNA gene. Then the PCR products were 

analyzed with agarose gel electrophoresis to make sure that the PCR was successfully 

amplified. PCR products were purified, and concentrations normalized using the 

SequalPrep Normalization plates (Thermo-Fisher). Next, PCR products were combined 

in equimolar quantities and sent to the Oregon State University Center for Genome 

Research and Biocomputing to get sequenced. Then the sequences were quality filtered 



 

 

and grouped into operational taxonomic units (OTUs) with 95% similarity. Then the 

OTUs were rarefied to 2000 sequences per sample and this was the dataset that was used 

in the SVR analysis in python (Urycki et al, 2019).  

2.3 Data Analysis 

2.3.1 StreamStats 

The USGS tool StreamStats was used to obtain watershed characteristics for each of 

the 62 sampling sites. This was done by first going to the StreamStats application and 

entering the latitude and longitude of a site into the search bar. Once this location was 

found the state or regional study area of Oregon was selected. Then once at zoom level 

15 or greater the delineate button was selected. Next the spot closest to the sampling site 

within the available points was selected. Then the option to continue was chosen and all 

basin characteristics were selected and continue was chosen twice more to produce a 

basin characteristics report for that location. An excel spreadsheet was compiled 

containing each characteristic for the 62 different locations. Eventually through the 

python code discussed in the next section, the percent land cover characteristics were 

extracted for each site from the excel file (USGS, 2019). The characteristics used in data 

analysis can be seen below in Table 1. 

Table 1: StreamStats percent landcover characteristics used in data analysis (USGS, 2019) 

 



 

 

2.3.2 SVR Analysis in Python 

All the data analysis was conducted in Python. The first step included importing both 

the excel file containing the OTUs for each sampling site and the file containing all the 

compiled StreamStats land cover characteristics. It was decided to only use the percent 

land cover characteristics above in Table 1 so only those columns of the StreamStats 

excel file were imported. The OTU data frame was standardized by dividing the entire 

spreadsheet by 2000 since each sites OTUs summed to 2000. Then a prediction was 

defined to use support vector regression (SVR) to predict land cover characteristics for a 

site using the bacterial DNA present in the water at that site. The inputs for this 

prediction are the training OTUs, the OTUs for that site, and the training StreamStats 

data. The training OTUs are the OTU spreadsheet without the column of OTUs for the 

site the land cover is being predicted for. The OTUs for that site would be the column 

removed from the training OTUs. The training StreamStats data is the column from the 

StreamStats data that contains the land cover characteristic being predicted without the 

value for the site that is being predicted. Then the output of this prediction is a predicted 

value for that land cover characteristic at that site that is calculated through the model 

developed by SVR. 

The predictions were evaluated by calculating the Nash-Sutcliffe efficiency (NSE). 

The equation for this metric can be seen below in Figure 7. NSE is a way to determine if 

a prediction is better than just using the mean of the data. NSE values can range from 

negative infinity to 1 with 1 being the best possible value which would occur if the 

modeled value was the same as the observed value. An NSE value of 0 would mean that 

the error associated with the model is equal to the error associated with using the mean of 

the observed values. A negative value of NSE would mean that the error associated with 



 

 

the model is greater than the error associated with using the mean of the observed values 

as a prediction. A positive value would mean the opposite. 

𝑁𝑆𝐸 = 1 −
∑(𝑚𝑜𝑑𝑒𝑙𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2

∑(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2
 

Figure 7: Equation for Nash-Sutcliffe efficiency 

This prediction relies on support vector regression (SVR) from the sklearn package in 

python. SVR has many inputs but the inputs that were manipulated in this study to 

develop a better model were the kernel and C value. The kernel in SVR specifies the 

kernel type to be used in the algorithm. The options for the kernel are ‘linear’, ‘poly’, 

‘rbf’, ‘sigmoid’, ‘precomputed’, or a callable. The default kernel if not specified 

otherwise is ‘rbf’. Only ‘linear’, ‘rbf’, and ‘poly’ were considered for this model. The C 

value is a penalty parameter C of the error term. If a larger value of C is specified that 

means that a smaller margin is accepted by the decision function. Therefore, a higher C 

value should result in better classifying or training of the model (Scikit-learn, 2007 - 

2019). 

The first test involved using the prediction for all land cover characteristics and 

OTUs. The values for C tested ranged from 100 – 105 with 60 log spaced values in-

between. The kernels evaluated in this first test included ‘linear’, ‘rbf’, and ‘poly’. For 

loops were used to test the prediction with each possible combination of the C values and 

kernels mentioned. To understand how well this model predicted land cover both RMSE 

and NSE were calculated for every combination of kernel and C. The only land cover 

characteristic that had a positive NSE was percentage of forests and shrublands 

(LC11FORSHB).  

This information was used in the second test where the kernel was specified as linear 

and the C value was set to 3.22. With these two parameters already set different 

prevalence values for OTUs were tested to try to improve the model. Before this could be 



 

 

done the prevalence of each OTU had to be calculated. This was done by replacing any 

value other than 0 in the OTU data frame with a 1 to represent that a certain OTU was 

present at a site. Then the rows were summed across and divided by the 62 total sites and 

multiplied by 100 to determine the percentage of sites that a certain OTU was present in. 

Then a for loop was created to cycle through all the possible percentage values (0-99) and 

determine where in the prevalence data frame there was a value greater than that 

percentage. The ‘where’ function in python returns an index, so within the loop that index 

was used to find the original OTU values for those locations and add them to a new data 

frame. The result of this loop was a new data frame filled with only values for OTUs that 

had a prevalence greater than the percentage specified. After this code was developed the 

for loop was setup to predict land cover with a ‘linear’ kernel and a C value of 3.22 with 

all possible prevalence values. It was then considered that different C values might work 

for different prevalence values. 

A third test was initiated that only used a ‘linear’ kernel but looped through different 

C values and prevalence values. A range of 100 – 102 with 30 values log spaced was used 

for C and 0-99 was used for prevalence. After this it was considered that different 

prevalence values may be better for different kernels. 

The fourth test involved using for loops to test every possible combination of 

prevalence, 5 log spaced values of C within the range 100 – 105, and kernel. The highest 

NSE resulting from this test was 0.21 with a rbf kernel, C value of 100,000, and a 

prevalence greater than 86%. Because the largest NSE was the last value of C tested the 

same test was run again but with 5 log spaced values of C within the range 100 – 106. The 

results from each test described can be compared in the side by side image in Figure 16 

below. The entire code in python for this last analysis in step 4 can be seen in Appendix 

A.1.  



 

 

3. Results  

Step 1: 

The highest NSE value for this land cover was 0.171 with a ‘linear’ kernel and a C 

value of 3.22. A graph of all the NSE values for each kernel resulting from the range of C 

values specified can be seen below in Figure 8. A graph of measured and predicted values 

of forest and shrub cover using a linear kernel and a C value of 3.22 can be seen below in 

Figure 9. 

 

Figure 8: Graph of C values tested in step 1 with all three kernels and their resulting NSE. 

 

 

Figure 9: A graph of the measured and predicted LC11FORSHB resulting from step 1. 
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Step 2: 

The largest NSE value was 0.177 with a prevalence of greater than 20%. A graph of 

the NSE from different prevalence values can be seen below in Figure 10. A graph of 

measured and predicted values of forest and shrub cover using a linear kernel, a C value 

of 3.22, and OTU prevalence of >20% can be seen below in Figure 11. 

 

Figure 10: NSE values for the range of OTU prevalence with a linear kernel and a C value of 3.22. 

 

 

Figure 11: A graph of the measured and predicted LC11FORSHB resulting from step 2. 
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Step 3: 

The largest NSE value that resulted from this was 0.2 with a C value of 100 and a 

prevalence greater than 99%. A plot of the NSE resulting from different combinations of 

C and prevalence can be seen below in Figure 12. A plot of the predicted forest and shrub 

cover and the StreamStats measured forest and shrub cover with a linear kernel, C value 

of 100 and a prevalence greater than 99% can be seen below in Figure 13. 

 

 

Figure 12: Graph of resulting NSEs from different C and prevalence values with a ‘linear’ kernel. 

 

 

Figure 13: A graph of the measured and predicted LC11FORSHB resulting from step 3. 
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Step 4: 

The largest NSE from this test was 0.22 with a rbf kernel, C value of 31,622.78, and a 

prevalence greater than 91%. The NSE values from this test with different prevalence 

values can be seen in Figure 14 below. In this graph a prevalence value of 91 has the 

highest peak which appears to be between C values of 10,000 and 100,000. This test was 

modified again to have 30 log spaced values of C within the range 104 – 105. The largest 

NSE from this modified test was 0.26 with a rbf kernel, C value of 20,433, and a 

prevalence greater than 91%. A plot of the predicted forest and shrub cover and the 

StreamStats measured forest and shrub cover with a rbf kernel, C value of 20,433 and a 

prevalence greater than 91% can be seen below in Figure 15. 

 

Figure 14: Graph of NSEs from different C (100 – 106) and prevalence values with a ‘rbf’ kernel. 
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Figure 15: A graph of the measured and predicted LC11FORSHB resulting from step 4. 

Overall Results: 

 

Figure 16: Comparison of model performance at each of the four steps in the python methods  



 

 

4. Discussion 

In the first step of python analysis Figure 8 shows that different kernels have different 

ideal values of C. This can be seen in the two different peaks for the linear and rbf 

kernels. It is important to understand that there may be multiple ranges of ideal values of 

C when applying and tuning this model. The NSE then increased from 0.17 to 0.18 when 

prevalence was accounted for. As an input to the model, it makes sense that an OTU that 

may only be present in one site may not be a significant indicator when tuning the model. 

A prevalence of greater than 99% resulted in the best model for a linear kernel but greater 

than 91% resulted in the best model for a rbf kernel which can be seen in Figure 12 and 

Figure 14 above. This shows that as the kernels change so do the ideal tuning parameters. 

The final step resulting in the highest NSE value of 0.26 showed that if multiple 

parameters are being tuned that they need to all be tuned together because of their 

dynamic relationships that influence the efficiency of the model. 

The 0.26 value obtained at the end of this testing means that the model is better than 

just using the average of a land cover characteristic to make a prediction for a watershed. 

This conclusion is made by simply looking at the equation for NSE in Figure 7. An NSE 

value is 0 if a model produces the same results as taking the average of the characteristic. 

An NSE value of 1 would represent a perfect model because the only way 1 is the result 

from that equation is if the observed land cover is equal to the predicted land cover. A 

positive NSE value means that the difference between the predicted value and the mean 

of the observed value is less than the difference between the observed value and the mean 

of the observed. If the equation is manipulated with the 0.26 value one can see that the 

error associated with the model is 0.74 times the error associated with using the mean. 

This shows that a model was developed in python that could predict watershed 



 

 

characteristics using bacterial DNA better than using the average of the observed land 

cover values to make a prediction. 

4.1 Application 

This model could most likely be applied to locations within Oregon with little 

manipulation. The model would have to be modified however if it was used outside of 

Oregon. The effect of changing input data was seen in the wide range of NSE values that 

resulted from testing different OTU prevalence values. If the model was applied in a 

different area the input data would likely vary from what was used to develop the model 

due to differences in bacteria and land cover. This means it may be necessary to search 

again for the values of parameters (kernel, C, and prevalence) that result in the best 

prediction using the new input data. The methods from this study could still be used to 

develop a model for a different location but the final model that resulted from this 

research may not be applicable to all locations. In different locations it is also important 

to consider the different land covers that may be indicators for bacterial DNA. It is 

possible that if this model was applied in a different location that it could predict a land 

cover characteristic other than forest and shrub cover most efficiently using bacterial 

DNA 

4.2 Reasoning for Result 

The resulting NSE value was not as high as expected and this can be explained by 

many factors. When examining the StreamStats data frame not all the land cover 

percentages summed to 100 for each site and some of them were over 100. This means 

that there is likely some overlap of the land cover categories or that there is some error in 

the StreamStats estimation. The forest and shrub cover values were very similar for most 

of the sites since the sampling was all done in Oregon. It is important to consider that this 

may have made it easier to predict than other land covers due to this similarity in values. 



 

 

Another factor that was considered when examining the results was the time of year 

the sample was collected. It was expected that part of the contribution of bacteria from 

different land covers would be from runoff, but the amount of runoff depends on the time 

of year. It is also important to consider that there is likely a higher concentration of these 

bacteria in the runoff from the first major rain event due to build up over the dry season. 

The samples used in the data analysis were mainly spring samples and there is usually a 

lot of rainfall in spring in Oregon, but it would not be part of the initial flush. 

4.3 Future Research 

There are many opportunities for future research with this model. There are still many 

Sterivex filters that have not been extracted yet that include additional sampling sites 

from John Day and the sampling sites used for this study but sampled at different times of 

the year. This provides plenty of data with which this model can be tested. It would be 

interesting to see how the bacterial composition changes seasonally at some of the 

sampling sites. If data from a fall collection was used, which is likely around the time of 

the first heavy rainfall event, it would be interesting to see if the model could predict land 

cover characteristics such as agriculture more effectively. The bacterial DNA from John 

Day sampling could be used to diversify the forest and shrub cover data since the John 

Day area generally has less forest cover than the Willamette Basin. This would be a good 

test of the model to see if it would get better or worse at predicting forest and shrub cover 

with more diverse data. 
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6. Appendix 

A.1: Python code for step 4 in SVR Analysis in Python methods section 

 

 
 



 

 

 

 
 

 

  



 

 

 


