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1 Introduction

1.1 A Personal Connection

At 17 years old, while playing football, I sustained a severe concussion. The in-

jury caused a considerable amount of disruption to my daily schedule, necessitating

stints of physical, speech, and occupational therapy, as well as prolonged exposure

to vision therapy. Initially being removed from school for roughly two months, the

catching-up process brought with it a number of curious root causes that result in

otherwise generic symptoms - deficiencies in reading speed and comprehension, dif-

ficulty retaining information and concentration, frequent headaches and dissipated

mental stamina, as well as sensitivity to light and noise.

The initial severity of my concussion ultimately proved beneficial. Milder injuries

are often diagnosed and addressed by a general practitioner or an athletic trainer;

bedrest and a brief respite from play are usually the prescribed treatments. While

this does help, and in many cases the patient recovers fully, others can experience

prolonged suffering and even permanent impairment, as the specific damage to the

brain is never specifically addressed. In this regard, I am lucky, as the severity of

my concussion necessitated a sports injury specialist, resulting in in-depth diagnoses,

and referrals to specialists for treatments of my injury.

The largest culprit of my cognitive impairments were ultimately based out of the

visual system. My eyes themselves are completely fine - the way my brain processes

the information and stimulus from them, however, is not. Visits with an ophthal-

mologist eventually identified saccadic eye movement, exophoria, and convergence

insufficiency as three of the main atypical occular behaviors identified as causing my

difficulty in reading and retaining information.

Discovering this root cause of my concussive symptoms was surprising, and fas-

cinating, as neither myself, nor close friends or family, were aware that concussions

could cause such side effects. It inspired a casual yet ever-present interest in neurol-
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ogy.

1.2 Project Aims and Goals

Narrowing down and identifying the root cause of concussive symptoms is challenging.

The ability to statistically model neural activity using available, accessible technolo-

gies could improved the diagnosing capabilities of physicians and sports medicine

specialists. This project aims to explore this problem, by investigating whether or

not neurological activity data can be successfully modeling through existing point

process software analysis.

As previously mentioned, the commonality of concussions, combined with the

breadth of possible side effects, makes narrowing down and identifying the root cause

of symptoms challenging. What if, we suggest, you could improve the diagnoses proce-

dure using neural activity data and the Cox process? If a concussive patient undergoes

a scan while performing a series of routine tasks, could we use this statistical analysis

to determine significantly different levels of neural activity throughout certain regions,

compared to some baseline? If, hypothetically, we could demonstrate a statistically

significant difference in neural activity in the visual region of the brain, compared

to some baseline, could that suggest the patient is having to expound more mental

effort to perform a relatively rudimentary task, and therefore could have difficulty con-

centrating, remembering, or are plagued with fatigue? The patient therefore might

benefit from targeted therapies to address the underlying deficiency. These what ifs

are far from simple - would a massive repository of ‘healthy’ brain data be adequate

to provide a generalized baseline? Or would each patient have to have their own indi-

vidual ”before” scan in order to accurately measure some deviation? While intuition

allows us to formulate some guesses about these next progressive steps, we first need

to demonstrate an ability to statistically model this neural activity.

Herein lies the goal of this exploratory analysis - to demonstrate an observable,

significant difference in neural activity under different cognitive loads, or, difficulty
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of task, using a spatial point process model - the Cox model. Success in this first

step justifies further exploration to more advanced applications in visualization and

analysis.

To explore this problem, we will briefly introduce the topic of concussions (Section

2), and the physiological damage they cause to the brain and the impacts they have

on patients. We will also discuss the statistical concepts (Section 3) applied in our

analysis, work through the processing of the data (Section 3.3.2, and demonstrate a

simulation (Section 4.3) of the statistical models. We conclude with results and the

practical ramifications of these results (Section 5.)

2 Concussions

The commonality of concussions betray the gravity and seriousness of the injury. Cells

called neurons transmit electrical signals between one another, regulating sensory

input and dictating response - such as motor commands to muscles or recollection of

some piece of information or memory[1]. The electrical communication between these

cells are referred to as neurons ‘firing’[23].

Over time, the order in which these neurons fire - the ‘path’ these electrical signals

take - become familiar patterns. The more familiar the pattern, the easier the brain

can produce the subsequent response, which we realize as learning[17, 23]. Familiar,

everyday actions such as walking have deeply ingrained neural patterns. The strength

of each neural connection on that path is much stronger than, say, the neural patterns

that dictate information retrieval on a geography test. That being said, information

retrieval can also have an incredibly strong neural pathways. For example, the name

of your parents, or your home’s address are usually strong patterns. When the brain

is damaged, the firing patterns - the neural pathways that ‘light up’ to produce some

response, can be damaged. When neural cells (neurons) are damaged, they do not

transmit electrical signals as effectively, weakening the neural pathway.
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Every brain is different, with different firing patterns that elicit different responses,

bits of information, emotions, etc. However, we know that certain areas of the brain

control different responses[7]. Due to this, we generalize the structure of the brain

- areas that light up in response to visual and auditory stimuli are consistent, and

likewise consistently different from areas of the brain that process emotion, memory,

or pain[18]. Therefore, despite the individuality of each brain, they all adhere to the

same approximate structure.

2.1 What is a Concussion?

Following from the Queensland Brain Institute[28], your brain floats in your skull.

Cerebrospinal fluid (CSF) suspends your brain within the cranial cavity protecting

it from damage caused by everyday swelling due to blood pressure fluctuations[8].

CSF also protects it from small jostles and everyday movements that would other-

wise stress a rigid spinal cord. However, violent acceleration of the skull - either cause

by a direct impact to ones head, or a whiplash effect from sudden bodily motion, can

cause the freely-suspended brain to collide with the inner wall of the skull, damaging

the tissue of the brain - commonly described as a ‘bruising’ of the brain, although

this gentle term can betray the possible severity of such an injury. When this impact

occurs, the brain always sustains some damage, even if minutely. This event is called

a concussion[28], and are commonplace - especially among athletes. Medically speak-

ing, some evidence suggests every time a person ‘heads’ a soccer ball, they sustain an

(albeit) small concussion[27]. For a visual depiction of how a concussion occurs, see

Figure 1.

In extreme cases where damage to the brain is extensive, concussions are referred

to as a traumatic brain injury. (TBI)
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Figure 1: Figure of a Concussion. Image courtesy of the Queensland Brain Institute,
Australia[28].

2.1.1 Symptoms, Damage and Diagnoses

The pathway that is damaged determines the type of symptom experienced by the

patient. The list of possible symptoms from concussions is broad, and generalized.

These symptoms include: fatigue (mental or physical), depression, anxiety, difficulty

concentrating, memory problems, menstrual changes, poor motivation, impulsiveness,

migraines, dizziness, sleep disturbances, mood swings, and, anger or irritability[13].

There is no universally accepted definition of a concussion[28]. This is a large

part of what makes them difficult to officially identity and diagnose. The breadth and

commonality of these symptoms means they often go overlooked, and the concussions

go undiagnosed and unassessed - 89 percent of concussions are undiagnosed[28]. These

symptoms can be the manifestation of complex problems within the neural pathways

that are damaged.

For example, difficulty concentrating as a result of a concussion might be a result

of increased fatigue, difficulty with the neural pathway that commits to memory, or, as

a result of damage to neural pathways within the visual system. In expansion of this

last explanation - when concussions occur, they can impair the function of the eyes,

making it difficult for fine motor control to direct the eyes to converge and therefore

focus[11]. With the damaged neural pathway, the concussed individual unknowingly
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expounds increased mental effort to successfully focus their eyes and read, sapping

their mental stamina and ultimately making it more difficult to concentrate. In

instances such as these, therapeutic efforts that target the visual system, such as

vision therapy and exercises that practice fine eye movements and motor control,

reinforce the previously damaged neural pathways involved, eventually reducing the

effort required to read, and thus increasing concentration.

If, however, damage to the visual neural pathways was not recognized, the root

cause of concentration problems might go undiagnosed, or mis-diagnosed. The patient

continues to suffer from symptoms, greatly impairing quality of life.

The countless possible explanations for concussive symptoms represent a signifi-

cant problem. The boilerplate treatment for concussions, especially mild ones, is bed

rest - allowing the brain to heal itself, reduce swelling, and repair the damaged cells

and the neural pathways. In instances of mild concussions, when pathways are not

damaged significantly, recovery time is limited, and targeted treatment and therapy

is not needed. However, more serious concussions can yield lingering symptoms, the

causes of which are difficult to determine using traditional diagnoses methodologies.

Failure to address the specific structural damage to the brain perpetuates symptoms.

Qualitative metrics, such as the Glasgow Coma Scale (GCS) are frequently used

as an initial diagnosis metric due to the low complexity involved, making them perfect

first passes for athletic trainers. The GCS measures a person’s function in three basic

areas: ability to speak, open eyes, and move[13]. Other questions can be presented to

the patient - such as basic cognitive tasks or ability to read and write. These qualita-

tive metrics are proficient in determining what symptoms a patient will experience,

but do not actually determine the root cause for the patient[13].

Quantitative measurements can be made using functional Magnetic Resonance

Imaging devices - fMRI, and Electroencephalogram (EEG)1. While both of these

1How these technologies work and collect data is not within the scope of this project, but, more
information can be found here: https://books.google.com/books?id=HtkAfChTLToC&printsec=
frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
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technologies provide useful information, they each have trade offs. fMRI provides

superior spatial resolution, capturing more detailed information about neural activity

within the brain, at the sacrifice of temporal resolution - less detailed information

about neural activity over time. EEG, on the other hand, is the opposite. It provides

superior temporal resolution at the expense of spatial resolution[24, 20, 15, 10].

As we will discuss later, we will be using EEG data in this project.

3 Applied Statistical Concepts

3.1 Point Processes

In considering how to represent neural activity in the brain, it is first important to

touch on the concept of a point process. As the name suggests, a point process, in

statistical terms, is merely a dispersion of singular data points across some sample

subspace, usually, space and/or time[4, 16]. Consider how neural data is recorded

- EEG readings, for example, are achieved by the placement of ‘nodes’ around a

person’s head, with each node reading in neural activity at that specific point on the

brain. We can see, then, how the data presents itself as a series of points over space

and time, lending itself well to analysis via point patterns.

3.2 Stochastic Processes

A stochastic process is one which incorporates some element of randomness to the

outcome. It is easier to think about this as the opposite of a deterministic process. In

a deterministic process, a particular input (or inputs) will always result in the exact

same output, because all parameters of the process are known, and consistent. We

can determine exactly what the result will be, every time, without variation. An easy

example of this is the simple equation:

y = mx+ b.
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The known parameters, m and b, mean that for each input value of x, we can calculate

the exact value of y, every time. When dealing with stochastic processes, however,

this is not true. Identical inputs, due to randomness, will likely yield slightly different

results, but could yield vastly different results. Stochastic processes evolve randomly

throughout time. This evolution, in turn, can be observed and recreated through

probabilistic models, either through discrete time events or over continuous time in-

tervals[14]. Statistical models are used to describe the randomness of these processes.

For the sake of this project, we will be focusing on Poisson statistical models.

3.3 Poisson Process

The Poisson process is a statistical model used to represent the occurrence of points

over some dimension or dimensions. Fundamentally, it is a counting process, as it

returns the number (count) of events that occur over an interval of some dimension,

often time or space. The process is easily thought of as rates of occurrence over time

- such as how frequently car accidents happen on a stretch of freeway throughout

the day. At different time intervals, the number of car accidents would be different.

Poisson models can also count rates of change over space, such as the frequency of

earthquakes in relation to some distance away from a fault line.

Specifically, the Poisson process describes the distribution of the number of events,

Y , that occur over some sample space, be it time, space, distance, area, or volume[26].

Conceptually, the Poisson process is a limiting case of the binomial distribution.

Similarly to how the binomial distribution measures the number of successes and

failures for some number of finite trials, the Poisson process measures the existence

of an event or not for an infinite number of trials. To stick with our freeway analogy

example, a car crash either happened in such moment in time, or it did not. If then,

for over some period of time, we use the binomial distribution to represent the number

of events (successes) or not (failures), we can consider the number of repetitions to

repeat this sampling n to be a number of sub-intervals within some given time period.
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If we then take the time intervals to be infinitesimally small, such that only one event

could possibly take place[26] within each subinterval, then either an event happens,

or does not happen, but never do two events happen over the same sub-interval. In

rationalizing this, one must realize that the requisite size of each sub-interval is so

unbelievably small, that a functionally infinite amount of them occur over any given

sub-interval of time. Therefore, to calculate a probability distribution for this event

over the entire time period, we can take the limit of the binomial distribution as n

approaches infinity. The resultant calculation of this limit is what we refer to as the

Poisson distribution, modeling the rate of some event, over some dimension[26, 14].

This is applicable to the research question, because the event of a neuron firing

is likewise binary - a neuron either fires or it does not. Herein lies justification for

modeling neural activity with a Poisson process.

3.3.1 Intensity Function for Poisson Processes

An inhomogeneous Poisson point process has intensity function λ(u) in which the

expected number of points µ falling within a region B is the integral:

µ =
∫
B
λ(u) du

where λ is the intensity of the process - the average number of points per unit of

area[4]. The intensity function λ(u) is important - it drives the behavior of the point

distribution over a certain area, and this characteristic will be used later on in the

simulation.

3.3.2 A Brief Note about the Exponential Distribution

The exponential distribution is closely tied to Poisson point processes. It is the

probability distribution which describes the length of time in the intervals between

successive Poisson event[21]. Its parameter, λ, is considered the rate of the distribu-
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tion. Given as the expected, or, average value of the distribution µ can be expressed

as the inverse of the rate[21], we can derive the exponential rate function by inverting

the mean:

λ = 1/µ

This relationship between the exponential distribution and Poisson process will come

into play during the simulation.

3.3.3 Homogeneous versus Inhomogeneous Poisson Processes

Homogeneous Poisson point processes are both stationary, and isotropic, unlike in-

homogeneous Poisson point processes[16]. In this regard, stationary point processes

have distributions that remain consistent under translation of a point throughout

the sample space. Ergo, the distribution of points is consistent regardless of where

they are observed within the area in question[16]. Similarly, isotropicy exists if the

point process’ distribution is consistent regardless of rotations about the origin of

the area in question[16]. In considering neural behavior, we can intuitively recognize

that the relative frequency of neural activity is dependent upon the neuron’s location

within the brain, as well as the task being performed. Therefore, its behavior cannot

be statistically described as stationary nor isotropic, meaning the describing point

process must be inhomongeneous. The difference between these two processes can

be seen in Figure 2, which a realization of both a homogeneous and inhomogeneous

point process, in space, graphically. The homogeneous point process in the left pane

exhibits a completely random pattern while the inhomogeneous point process in the

right pane exhibits a preference for points to occur in the upper-right hand corner of

the plot.
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Figure 2: An example of a homogeneously distributed Poisson point process (left) and
an inhomogeneously distributed point process(right). Notice the bias of the points in
the inhomogeneous graph - clustering near the upper-righthand corner of the plot.

3.4 Cox Processes

Furthermore, it is not appropriate to simply use the Poisson process to model neural

activity. A key assumption of the Poisson process is that each point within the process

is independent of one another. That is to say, the existence of one event bears no

influence on the existence of another event[4]. From what we understand about the

structure of the brain, with certain regions controlling certain functions, and neural

pathways existing as a linked chain of neurons, this assumption could not possibly be

met. (Positive) dependency between points/events is referred to as clustering, and

clustered point processes are so prevalent in the real world that models have been

developed to represent them. For the purposes of analyzing neural data, we will

consider the Cox process - a modification of the Poisson process.

The modification present in the Cox process is the randomization of the intensity

function, which, for spatial point processes, is a randomness attributed to spatial

covariance[4]. This covariance, this variation and randomness in the Poisson intensity

function, causes points to be spread inhomogeneously across space. The practical

consequence of this is that points could be more abundant in some areas of the

relevant region than in others - a ‘clustering’ of the points, again, due to some spatial

covariance[4].
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When we consider the structure and function of the brain, we can intuitively draw

parallels between neural activity and the behavior of point processes. As we discussed

above, different regions of the brain are responsible for different functions. Therefore,

we suggest that this innate structural attribute can be comparatively used as the

spatial covariance that drives the randomization of the Poisson intensity function -

the Cox process. Thinking practically, this makes sense - when performing tasks

focused on fine motor control, such as typing an Honors College thesis, one would

not expect the region of the brain that is connected to taste buds to be particularly

active. Rather, one would (reasonably) expect to see clustering of neural activity

present in spatial regions associated fingers and hands, as well as critical thinking

and memory, to name a few.

Of course, the introduction of some appropriate stimulus (say, for example, drink-

ing black coffee - a necessary companion to the often late-night activity of Honors

thesis writing) should, in turn, be observed with increases in neural activity in the

appropriate region of the brain. It is with this that we adopt a somewhat banal and

axiomatic hypothesis about neural activity:

If the consumption of some stimulus or performance of some action consistently

results neural activity in a particular brain region, then absence of neural activity in

said region likewise results in the absence of the stimulus/action.2

4 Methodology

4.1 Data

The EEG data used in our analysis was found on a public GitHub repository3 of

various types of EEG data. Aside from being publicly-accessible, this data set was

2It is important here to take pause and note the limitations of the scope of this thesis - the focus
of which is purely exploratory statistical analysis, and not functional neurology. However, the above
self-evident statement serves as the kernel for the (hopeful) statistical application.

3The repository[5] can be found here: https://github.com/pbashivan/EEGLearn
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chosen because it is feature-rich. The data set contains both spatial information,

as well as temporal information, providing 3-dimensional Cartesian coordinates for

each EEG sensor node, as well as recording activity for a variety of time windows.

Furthermore, the data set provides the activity readings of each sensor node over

a four different brain loads, as well as recording three different wave forms: alpha,

beta, and theta. These wave forms are dependent on the frequency of the readings,

and reflect different types of neural activity: The wave form alpha has oscillations

between 8 and 12Hz, and is generated when a person’s mind is at rest - such as

in a meditative state. Conversely to beta, alpha wave forms represent the absence

of mental activity, and has been described as an ‘idling rhythm’[12, 24]. The wave

form beta has oscillations between 15 and 30Hz, and is generated with the brain is

actively engaged in mental activities, such as giving a speech or presentation. This

arousal response of the brain suppresses slower EEG rhythms, and, in simultaneous

EEG-fMRI studies, a correlation was noted between beta rhythms and strong fMRI

readings in areas of the brain associated with high levels of introspection4 and mental

exercise[12, 24]. The wave form theta has oscillations between 4 and 7Hz, and is

generated when the brain is daydreaming, or, in a ”zoned out” state, such as the

‘autopilot’ that sometimes happens when people are driving on the freeway[12, 24].

In considering the goal of our analysis - demonstrating the applicability of Cox

models to measure and compare neural activities under various conditions - this data

set is uniquely positioned to allow for analysis across various states of mental engage-

ment. However, for preliminary investigation, we will focus on the beta wavelength

as it best demonstrates engaged mental activity.

Under ideal circumstance, two sets of data would be used for analysis - each

with the same participants, collecting the same information, while performing the

same tasks, with the only difference between the two is that one set of data be

collected before a concussion, and the second being collected after. Understandably,

4The emphasis here is inward thinking, not a response to external factors.
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the difficulty of obtaining such a set of data organically precludes us from being able

to conduct such an analysis, these are not ideal circumstances. Brain scans of the

same subject both before and after a concussion are rare, and even if enough could

be uncovered to create a data set, the lack of standardization between them would

invalidate most results. Ethical considerations likewise prohibit such a data set from

being deliberately constructed. However, we believe that if we can demonstrate Cox

models depicting different levels of brain activity, this justifies further exploration in

using Cox models to describe and analyze neural activity.

4.2 Data Exploration

Looking at the EEG data in its raw form, it is not immediately clear how to report

the data spatially, or as a point process. The de-facto output for EEGs is shown in

Figure 3.

Figure 3: Standard output of an EEG. Image courtesy of the University of California,
San Diego[9].

In order to approach this problem using a Cox process, some processing needs to

be done. To aid in the visual analysis as part of our data exploration process, an

interactive 3-dimensional plot of the data across various wave forms, brain loadings,

and time windows was developed to serve as an analytical tool.5 This application was

5The application can be access here: https://haffnerm.shinyapps.io/EEG_3D_Plot/
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used throughout the analysis and simulation process as it helps to visualize the neural

activity. It was used to spot-check our simulation to see if the generated offspring

points accurately represent the associated level of brain activity. Figure 4 shows an

image of the app. Each time window has multiple readings within said time window -

they were averaged to achieve a mean reading for said time window. Exact continuous

temporal data was not available, as each reading was grouped into a time window.

Figure 4: The app used for exploratory analysis. The slider bars on the left allow the
user to filter through the different subjects, time windows, and brain loadings. The
top graph shows mean readings for each sensor node under the appropriate filters,
whereas the bottom graph shows the standard deviation of each node reading under
the appropriate filters.

As the Cox process is a point process, some processing needed to be conducted

to translate singular points to represent spatial regions of the brain. To address this

issue, the Voronoi6 method was used to mathematically generate cells around each

EEG node location. We make the assumption that Voronoi cells are an adequate way

6Voronoi Diagrams, also called Dirichlet tessellations[25], are a way to generate regions, or cells,
around central points such that from any location within the cell, the closest point to that location
is the one around which the cell was formed[3]. It is a way to define borders around which point is
the closest to any region of space.
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to represent spatial regions of the brain, and, that activity in that general region is

picked up by the closest EEG node.

Most software packages generate Voronoi cells in 2D space, including the one

we used in R. While there are some resources available online, there does not exist

widely-accessible standard software to calculate Voronoi cells in 3D space. While a

resource was found[22], its exclusive compatibility with C++ prevented it from being

a viable choice for the purposes of this project, as R is the lingua franca of the parties

involved. As most of the R packages and tools used to simulate and analyze point

processes are optimized for use in 2D, the most reasonable course of action was to

project the data into 2D.

4.3 Simulation

To consider the data set in 2D, it is not sufficient to simply use the Cartesian (x, y)

coordinates of each EEG node. Ignoring the z-coordinate eliminates a dimension

of the spatial relationship between points, which is a critical aspect of the research

question. This can be effectively demonstrated by considering a graph of the just the

(x, y) coordinates as shown in Figure 5. In ignoring the third dimension, compression

of the points occurs around the perimeter of the brain. This loss is spatial resolution

is unacceptable, and which is why we introduce projections to address this problem.

We use a stereographic projection to project our data from 3D to 2D. It is im-

portant to note that stereographic projections are not isometric, and do not preserve

area[6]. However, it does preserve the angular relationship between points, creating a

more faithful representation of the EEG nodes than just the x, y coordinates. Using

this projection allows us to better preserve the spatial relationships between each

EEG node. The formula used for the projection is as following[6]:

Xstereo = xcart/(1 − zcart)

17



Figure 5: A top-down view of the EEG locations around the brain. Notice the compres-
sion around the edge, making the points appear to be much closer than they actually
are. A comparison to Figure 4 demonstrates how the third dimension plays a crucial
role in the spatial relationships between the points.

Ystereo = ycart/(1 − zcart)

The projected points now create a data frame we can use to effectively generate

Voronoi cells, and simulate point processes.

The projection can be visualized in the Figure 6. The projected EEG nodes with

their respective Voronoi cells can be seen in Figure 7.

This projection allows us to simulate and analyze the readings of the EEG data

as a Cox point process. To do so, we will be discussing three categories of points,

so it is important to clearly delineate how we will refer to each group. Each of the

EEG nodes are called the ‘parent points.’ From these parent points, we will randomly

generate ‘background points.’ Finally, from these background points, we will generate
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Figure 6: The stereographic projection of the EEG nodes onto 2D. Compare against
Figure 5 to see how spatial relationships are better preserved. These points are con-
sidered the ‘parent’ points.

‘offspring points.’ The distinction between each of these three categories is important.

After projecting the nodes onto a 2D plane, each of the node’s stereographic (x, y)

coordinates were read in as an existing Poisson point process, using the ppp() function

in R’s spatstat package. Voronoi cells were generated for each point. Then, each cell

was cycled through and an arbitrary number of background points were generated

with an intensity function proportionally consistent with the size (area) of each cell7.

For each of the background points, the process is repeated. For each background

point, offspring points are generated as a Poisson point process. However, this time,

the intensity function driving the generation of offspring points within a cell is not

7As an aside, a function was written which returns the cell in which a point - the input parameter
- is located. This function was used repeatedly throughout the simulation process, and further
references linking points to a cell implicitly used this function in some capacity
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Figure 7: The Voronoi cells calculated for the projected EEG locations.

merely proportionally consistent, as it was will the background points.

To generate our offspring points, we use an intensity that takes a random value

from an exponential distribution, due to the relationship discussed in Section 3.3.2.

λOffspring,i ∼ Exp
(
(EEG Readingi − Shifting Value)−1

)
Area−1

i

As we know that the parameter for the exponential function, the rate, is merely

the inverse of the average, or expected value, we calculated the exponential rate based

on the initial EEG reading from the parent point of the cell. As you may recall, this

EEG reading is the average value of the readings at this point over a given time

window, and, as the dispersion of these offspring points are intended to represent

the neural activity at that location over a certain window of time, this use of the
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EEG reading is justified. The EEG reading is corrected for a shifting value8, and

the result from the exponential distribution is generated. Before being passed to the

intensity function parameter for the Poisson distribution, however, the value is lastly

scaled proportionately to the size (area) of the Vornoi Cell i that the points are being

generated within.

To pause and reaffirm: the background points are generated arbitrarily, and con-

sistently - they merely represent part of the stochastic randomness that is crucial to

the Cox process, and act as a ‘placeholder’ for the EEG nodes. As the placement

of the EEG nodes is predetermined, and the number constrained to one per cell, the

parent points are a decidedly not random point pattern. Using these parent points

to spawn our offspring points would not adequately reflect the behavior of Cox point

processes, nor the brain. Use of background cells provide a means to represent neural

activity throughout an area. Furthermore, the background cells are generated consis-

tently yet proportionately to the area of the Voronoi cell they are in, to avoid bias.

The intensity with which to generate these background points was chosen arbitrarily,

necessitating only act as a “happy medium” - we did not want too many background

points generated so as to crowd, and therefore obscure, data, nor did we want there

to be to be a significant risk upon repetition of cells being left empty - that is, no

points generated for them by sheer unfortunate chance. The value 6 (divided by area,

of course) was found to satisfy these requirements, and was both found and validated

by trial-and-error.

λBackground,i = 6/Areai

The ultimate output of this simulation is a collection of offspring points whose

8Some of the EEG node readings reported negative values. To generate the offspring points in our
simulation, the Poisson rate is normalized against the intensity of the relevant EEG sensor reading.
However, given as a Poisson rate cannot be negative, we introduce a shifting factor to bump the
rate to be just north of positive. This is based on another key assumption - we are assuming that a
negative sensor reading reflects a very low level of neural activity. Therefore, we introduces a very
small shift factor to ensure the subsequent Poisson rate is small, representing low activity, but still
non-negative, to be mathematically possible.
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density and dispersion - whose clustering - is representative of neural activity in the

respective region. By using the R loccit() function, we can fit these points to a

Cox point process model, and pass this loccit object through the psib() function

to calculate the sibling probability9 of each point that was fitted to the Cox model.

A higher sibling probability means more neural activity, as a larger intensity function

would result in more offspring points being generated for each background point,

increasing the chances that two points are siblings.

Plotting this sibling probability gives us our most effective visualization tool - a

heatmap of sibling probabilities across the different regions of the brain, quantifying

neural activity through the use of a Cox point process model.

5 Results

The resultant heatmaps of our simulation suggest that the Cox point process model is

an adequate way to model and represent neural activity under different loads. Figure

8 depicts each of the 4 different brain loadings for the Beta10 waveform. The ribbon

on the side of each graph maps the colors to the relative probability of sibling points.

(They are all the same, standardized scaling.)

Figure 8: From Left to Right, regional sibling probabilities for Loadings 1, 2, 3, and
4 of the brain for the Beta waveform.

For clarity, Figure 9 shows only Loadings 1 and 4, recreated at a larger scale to

9In a Poisson point process, two points are called siblings if they were generated from the same
background point[19].

10Again, we chose to focus on the Beta wavelength as it is associated with the highest levels of
brain function, on average[24].
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more easily draw distinction.

Figure 9: Left, Loading 1 of the Beta waveform. Right, Loading 4 of the Beta wave-
form.

If we compare these heat maps against the levels of activity demonstrated by

the 3D EEG app, we can see relatively consistent parallels. This is best seen by

comparing Loadings 1 and 2. For Loading 1, in Figure 10, we can clearly see higher

levels of neural activity on the top-back portion of the brain, as well as front-right

side. Considering the levels of activity represented in the 3D rendering of the EEG

data for Loading 1, this pattern more-or-less holds. The same result, albeit opposite

magnitude, can be seen for Loading 2, in Figure 11. Brain Loading 2 has muted

activity pretty much throughout, a pattern which is corroborated with a comparison

to the 3D output.

The parallels are not perfect, nor exact. And, for the other brain loadings, the

correlations are not as strong. The comparisons between the 3D app and the heatmaps

are not entirely fair - when simulating the data, we averaged over all of the time

windows, and subject IDs, unlike in the app, where they are specified individually.

These generalizations in the simulation were made for simplicity just as much as

they were practicality. The fitting of the Cox model to the simulated points was a
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Figure 10: Comparison of the heatmap (left) against the 3D app (right) for the Beta
waveform Loading 1.

Figure 11: Comparison of the heatmap (left) against the 3D app (right) for the Beta
waveform Loading 2.

fairly computationally and time intensive process. Individually simulating and fitting

models to each subject over each time window was not realistically feasible on personal

hardware, nor was reserving HPC11 time considered to be very responsible until more

evidence was provided on the merit of this project.

The fundamental takeaway is that the modeling and analysis of neural activity

through the application of Cox Point Process models is capable of demonstrating sig-

nificant differences of neural activity over a spatial region.

11High-Performance Computing - reserving time on Oregon State University’s supercomputers.
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6 Future Work

Throughout this project, some concessions were certainly made for the sake of simplic-

ity and accessibility. However, we believe that the work demonstrated shows promise,

and supports further exploration into this application. Throughout the project, we

encountered countless rabbit holes or possible next steps to take, some of which are

expanded upon below:

• We would like to explore the incorporation of fMRI data into our analysis.

fMRI has superior spatial resolution, so the combination/contrast between the

two would provide more information and insight into the levels of activity.

• The use of machine learning, classification, and neural networks to classify neu-

ral activity based on certain brain loadings is a logical next step. In addition

to these classification methodologies, recent exposure to hierarchical clustering

algorithms likewise inspires future applications.

• The current method of analysis realistically only incorporates the spatial di-

mension as a covariance factor. This was out of the sake of simplicity. However,

a more complex, next iterative step would be to create a generalized additive

model, with which to include the temporal dimension as well as spatial.

• One critique with the methodology used reflects the limitations of EEG as

measurement medium. EEGs measure on the surface of the head, and as such,

lack the cross sectional capabilities of MRI or fMRI to see ‘inside’ the brain

instead of just the surface. While our method of projecting the EEG points into

2D and using Voronoi cells after is acceptable, we think the idea of using surface-

area Voronoi cells could provide an added benefit to analysis. Surface-area

Voronoi software, like 3D Voronoi cells[22], is not widely available in statistical

packages such as spatstat. However, prior research on the use of Voronoi cells
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for surface area[2] certainly exists, so it would be a fascinating avenue to explore

further.

7 Conclusion

In considering the goals of the project, to demonstrate the applicability of the Cox

point process in the modeling of neural activity, we feel as thought we have successfully

met this end goal. Excitingly, there seems to be multiple direct follow-up projects with

which we could build upon the work demonstrated here. Concussions are debilitating,

common injuries that can impair anyone unlucky enough to sustain one. We hope

that the realized results - the unique visualization methodologies and analysis, can

go on to improve the accuracy and frequency of concussion diagnosis, and aid in the

treatment of brain injuries of all kinds.
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10 Appendix

10.1 Code

10.1.1 3D App Code

library(tidyverse)

library(plotly)

library(readr)

#load("~C:/Users/haffn/Documents/College/Thesis/Nuerostatistical Mapping/

Coding/Report Files/eeg.Rda")

load("eeg.Rda")

# Define UI for application that draws a histogram

ui <- fluidPage(

# Application title

titlePanel("EEG Data"),

# Sidebar with a slider input for number of bins

sidebarLayout(

sidebarPanel(

selectInput("wave_form",

label = "Choose a wave form to display",

choices = c("alpha",

"beta",

"theta"),

selected = "alpha"),

sliderInput("subject_id",

"Select a Subject to View:",

min = 1,

max = 15,

value = 1),

sliderInput("time_window",

"Select a Time Window to View:",

min = 1,

max = 7,

value = 1),
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sliderInput("brain_load",

"Select a Brain Load to View:",

min = 1,

max = 4,

value = 1)

),

# Show a plot of the generated distribution

mainPanel(

plotlyOutput("mean_plot"),

plotlyOutput("sd_plot")

)

)

)

# Define server logic required to draw a histogram

server <- function(input, output) {

locations <- eeg %>%

group_by(sensor_node) %>%

summarize(V1 = unique(V1),

V2 = unique(V2),

V3 = unique(V3))

#input filtering?

plot_df <- reactive({eeg %>%

filter(subject_id == input$subject_id,

time_window == input$time_window,

wave_form == input$wave_form,

brain_load == input$brain_load) %>%

group_by(sensor_node) %>%

summarize(mean_reading = mean(reading),

sd_reading = sd(reading)) %>%

left_join(locations)

})

output$mean_plot <- renderPlotly({
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plot_ly(plot_df(), x = ~V1, y = ~V2, z = ~V3,

color = ~mean_reading) %>%

add_markers() %>% colorbar(limits = c(-.5,2.5))

})

output$sd_plot <- renderPlotly({

plot_ly(plot_df(), x = ~V1, y = ~V2, z = ~V3,

color = ~sd_reading) %>%

add_markers() %>% colorbar(limits = c(0,4.5))

})

}

# Run the application

shinyApp(ui = ui, server = server)
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10.1.2 Simulation Code

# Load libraries

library(spatstat)

library(spatstat.local)

library(tidyverse)

library(plotly)

library(ggvoronoi)

library(patchwork)

library(ggthemes)

load("eeg.Rda")

locations <- eeg %>%

select(sensor_node, V1, V2, V3) %>%

group_by(sensor_node) %>%

slice(1) %>%

mutate(Xconv = V1/(1-V3),

Yconv = V2/(1-V3))

speedy_calc <- function(waveform, brainloading){

loading1 <- eeg %>%

filter(wave_form == waveform,

brain_load == 1) %>%

group_by(sensor_node) %>%

summarize(mean_reading = mean(reading)) %>%

left_join(locations)

loading2 <- eeg %>%

filter(wave_form == waveform,

brain_load == 2) %>%

group_by(sensor_node) %>%

summarize(mean_reading = mean(reading)) %>%

left_join(locations)

loading3 <- eeg %>%

filter(wave_form == waveform,

brain_load == 3) %>%

group_by(sensor_node) %>%
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summarize(mean_reading = mean(reading)) %>%

left_join(locations)

loading4 <- eeg %>%

filter(wave_form == waveform,

brain_load == 4) %>%

group_by(sensor_node) %>%

summarize(mean_reading = mean(reading)) %>%

left_join(locations)

shift_value <- round(min(c(loading1$mean_reading, loading2$mean_reading,

loading3$mean_reading, loading4$mean_reading))-.1, digits = 1)

loading <- eeg %>%

filter(wave_form == waveform,

brain_load == brainloading) %>%

group_by(sensor_node) %>%

summarize(mean_reading = mean(reading)) %>%

left_join(locations)

df <- loading%>%

rename(

nodes = sensor_node,

x = Xconv,

y = Yconv,

readings = mean_reading

)

# Based on the nodes in our eeg data, we want to compute (1) the

# Voronoi tesselation for each point and (2) the area/size of each

# Voronoi cell

# Turn our points into a point pattern object

eeg_window <- owin(c(-2.75, 2.75), c(-4, 3.75))
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points <- ppp(df$x, df$y, window = eeg_window) #-> function ppp() creates a

point pattern

# plot(points, main = "EEG Parent Points")

# Compute the Voronoi cells for each point

cells <- dirichlet(points) #-> creates dirichlet (aka voronoi) tesselation

of points

# plot(cells, add = TRUE)

# Compute the area of each cell

areas <- tile.areas(cells)

# To get our simulation to work, what we need is a function which

# takes a set of random points and computes which Voronoi cell each

# point falls into. So to do this, I create the find_cell() function

#

# For this function, you input the x,y coordinate of the points, it

# turns those points into a point pattern object, computes the cell

# the points fall into and outputs the cells. These cells should have

# a 1-1 coorespondance with the sensor nodes. So "cell 5" should line-up

# with sensor node 5 for instance

find_cell <- function(x,y) {

new_points <- ppp(x, y, window = eeg_window)

cell <- cut(new_points, cells)$marks

return(cell)

}

# You can demo the function below

find_cell(x = c(0.2, 0.45, 0.9), y = c(0.2, 0.45, 0.9))

# Now we initiate our simulation. This simulation should generate a

# point pattern which resembles a Cox process.

# First, we generate some "background" points which represent general

# neural activity across the regions of the brain.

#

# Note: When we perform our simulation on the real data, we might need
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# to change lambda = 100 to be some other number. We can chat more about

# this later

# bg_pts <- rpoispp(lambda = 10, win = eeg_window)

store_x_bg <- c()

store_y_bg <- c()

# Iterate through each background point

for (i in 1:64) {

# Generate some offspring for background event i and place those points

# in the Voronoi cell which contains that point

bg_by_cell <- rpoispp(lambda = 6/areas[i],

win = cells[i])

# If no offspring are created, move on. Otherwise, put them into the

# storage vectors

if (bg_by_cell$n > 0) {

store_x_bg <- c(store_x_bg, bg_by_cell$x)

store_y_bg <- c(store_y_bg, bg_by_cell$y)

}

# readline(prompt="Press [enter] to continue")

}

# Once our simulation is done, we can store these points as a point

# pattern object so we can analyze them

bg_pts <- ppp(x = store_x_bg, y = store_y_bg, window = eeg_window)

# You can see our "background" points by plotting them. Notice that here,

# our neural activity is taking place randomly across the "brain"

# plot(bg_pts, main = "Background Points, Loading 3, Alpha")

# plot(cells, add = TRUE)

# For each of our simulated background points, we next want to compute

# which cell each point is in using our find_cell() function

bg_cells <- find_cell(bg_pts$x, bg_pts$y)

# bg_cells

# Next, we want to compute the "intensity" of the points for each point

# landing in each background cell. Our Voronoi cells are different sizes,

# so I think one thing that might be useful is to scale the intensity

# based on the area of the cells. This way, the intensity will be for each
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# ’unit area’.

bg_intensity <- df$readings[bg_cells]

# Now, we simulate:

# Create some vectors to store our simulated points

store_x <- c()

store_y <- c()

# Iterate through each background point

for (i in 1:bg_pts$n) {

# Generate some offspring for background event i and place those points

# in the Voronoi cell which contains that point

offspring <- rpoispp(

lambda = rexp(1,

rate = 1 / (bg_intensity[i]-shift_value)) /

areas[bg_cells[i]],

win = cells[bg_cells[i]]

)

# If no offspring are created, move on. Otherwise, put them into the

# storage vectors

if (offspring$n > 0) {

store_x <- c(store_x, offspring$x)

store_y <- c(store_y, offspring$y)

}

# readline(prompt="Press [enter] to continue")

}

# Once our simulation is done, we can store these points as a point

# pattern object so we can analyze them

simulated_points <- ppp(x = store_x, y = store_y, window = eeg_window)

# Finally, we can plot the points

# plot(simulated_points, main = "Simulated Points, Loading 3, Alpha")

# plot(cells, add = TRUE)

mod_loading <- loccit(simulated_points, sigma = 0.15)

return_list <- list("sim_points" = simulated_points,

"mod_loading" = mod_loading,
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"cells"=cells, "bg_points" = bg_pts,

"points" = points)

return(return_list)

}

mod_loading1_alpha <- speedy_calc(waveform = "beta", brainloading = 1)

mod_loading2_alpha <- speedy_calc(waveform = "beta", brainloading = 2)

mod_loading3_alpha <- speedy_calc(waveform = "beta", brainloading = 3)

mod_loading4_alpha <- speedy_calc(waveform = "beta", brainloading = 4)

psib_l1_alpha <- psib(mod_loading1_alpha$mod_loading)

psib_l2_alpha <- psib(mod_loading2_alpha$mod_loading)

psib_l3_alpha <- psib(mod_loading3_alpha$mod_loading)

psib_l4_alpha <- psib(mod_loading4_alpha$mod_loading)

psib_list <- list(l1_alpha = psib_l1_alpha, l2_alpha = psib_l2_alpha,

l3_alpha = psib_l3_alpha, l4_alpha = psib_l4_alpha)

simpts_list <- list(smpts_l1_alpha = mod_loading1_alpha$sim_points,

smpts_l2_alpha = mod_loading2_alpha$sim_points,

smpts_l3_alpha = mod_loading3_alpha$sim_points,

smpts_l4_alpha = mod_loading4_alpha$sim_points)

lapply(psib_list, range)

range(psib_l1_alpha)

range(psib_l1_alpha$marks)

psib_range <- range(unlist(lapply(psib_list, range)))

plot(as.listof(psib_list), zlim = psib_range, ncols = 1)

plot(as.listof(simpts_list), add=TRUE, ncols = 2)

plot(psib_l1_alpha, zlim = psib_range, main = "Loading 1, Beta")

#plot(mod_loading1_alpha$sim_points, add = TRUE)

plot(mod_loading1_alpha$cells, add = TRUE)

plot(psib_l2_alpha, zlim = psib_range, main = "Loading 2, Beta")

#plot(mod_loading2_alpha$sim_points, add = TRUE)
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plot(mod_loading1_alpha$cells, add = TRUE)

plot(psib_l3_alpha, zlim = psib_range, main = "Loading 3, Beta")

#plot(mod_loading3_alpha$sim_points, add = TRUE)

plot(mod_loading1_alpha$cells, add = TRUE)

plot(psib_l4_alpha, zlim = psib_range, main = "Loading 4, Beta")

#plot(mod_loading4_alpha$sim_points, add = TRUE)

plot(mod_loading1_alpha$cells, add = TRUE)

# mod_cox4 <- kppm(mod_loading1_alpha$sim_points, trend = ~1,

clusters = "MatClust")

# summary(mod_cox4)

# mod_cox4

# Next steps:

# (1) We want to adapt this code to the eeg data

# (2) We want to simulate points for brain loadings 1 and 4

# (3) We want to analyze the points and demonstrate how

# they’re different
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10.1.3 Homogenous/Inhomogenous Example

library(spatstat)

par(mfrow=c(1,2))

#homogenous

plot(rpoispp(500, win=square(1)), ncols = 2)

#inhomogenous

lambda <- function(x,y) { 500 * (x^2+y) }

X <- rpoispp(lambda, win=square(1))

plot(X, win=square(1))
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