
Building and Evaluating a Prototype Edge Computing System

by

Arnav Bhutani

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science

(Honors Associate)

Presented June 1, 2021

Commencement June 2021

AN ABSTRACT OF THE THESIS OF

Arnav Bhutani for the degree of Honors Baccalaureate of Science in Computer Science

presented on June 1, 2021. Title: Building and Evaluating a Prototype Edge Computing

System.

Abstract approved:___

Scott Fairbanks

As fifth generation telecommunications equipment becomes more viable and reliable,

demand for high-speed, low-latency, viewpoint specific data analysis is expected to

dramatically increase. Systems such as self-driving cars, traffic cameras, warehouses and

other commercial buildings will be using fifth generation telecommunications to form ‘smart

cities’, driving demand for the edge. The purpose of this project is to create a proof-of-

concept edge network that can deploy various high intensity machine learning and AI tasks,

from image recognition to algorithm generation. A system leveraging Kubernetes was shown

to work using both the cloud and the edge, however true comparisons cannot be made, as

there is a lack of data, and various issues that still have to be tested. This project can serve as

a pretested model that will work on both the edge and the cloud for a future comparison.

Key Words: Edge Computing, 5g, Cloud Computing, Kubernetes

Corresponding e-mail address: Bhutania@oregonstate.edu

©Copyright by Arnav Bhutani

June 1, 2021

Building and Evaluating a Prototype Edge Computing System

by

Arnav Bhutani

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science

(Honors Associate)

Presented June 1, 2021

Commencement June 2021

Honors Baccalaureate of Science in Computer Science project of Arnav Bhutani presented on

June 1, 2021.

APPROVED:

Scott Fairbanks, Mentor, representing Department of Computer Science

Kirsten Winters Committee Member, representing Department of Computer Science

Rahul Khanna, Committee Member, representing Intel, Corp.

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon State

University, Honors College. My signature below authorizes release of my project to any

reader upon request.

Arnav Bhutani, Author

Contents

I. Introduction .. 8

II. Background ... 9

A. Docker ... 9

B. Kubernetes ..10

C. Kafka ..10

D. Other Technologies ..10

III. Model Implementation .. 11

A. Preprocessor ...12

B. Kafka/Message Broker ...13

C. Processor ..13

IV. Model Creation ... 13

A. Trainer ..14

B. Kafka ..15

C. Worker ..15

V. Project Specifications.. 16

A. Cloud Setup ..16

B. Edge Setup..16

C. Comparision ...16

VI. Results and Discussion ... 17

VII. Conclusions ... 18

VIII. Awknoledgements... 18

IX. References ... 18

X. Appendix ... 19

A. Essential Code Listings – Model Implementation ..19

B. Essential Code Listings – Model Creation ...26

8

I. INTRODUCTION

In today’s world, there are two main compute resources, on-premise (on-prem) and cloud

services (AWS, Google Cloud, Azure). On-premise refers to hardware that a specific

company maintains and runs for their own webservices, for example, Amazon hosts their

online marketplace through Amazon Web Services. Much of the internet began with on-

premise servers. However, building-up web and server infrastructure is expensive, and large

companies realized that they could subsidize the cost of their own hardware by renting out

their computer power to host other people’s websites during non-peak traffic hours. Thus, the

cloud was born. These two modes of service serve as the backbone for most internet

architecture, as most major internet services use their own hardware and minor players use

the cloud[1]. However, as technology grows, a third mode of service is emerging, the edge.

Compute resources are always changing hands, as companies and individuals optimize their

resource needs and expenditures. The internet has moved from using individual server

mainframes in the early days, to servers, the cloud, and indeed the edge. These movements

are driven by the need for more computational power, or the potential lower cost. Take for

example, the migration to the cloud, companies have embraced the cloud because cloud

services distribute the cost of maintenance of networks, reducing the need for each individual

company to pay for high-cost maintenance staff. As with all tech, innovation will make

certain advantages universal, and further advantage others, leading to a never-ending race for

the best price/performance for software solutions. The edge stands to gain ground in this race

when we look at future software solutions that rely on low latency, and other location-based

concerns[2].

5g promises to bring ultra-low latency, high-bandwidth, and high-speed telecommunications

to large service areas. Allowing for the rise of the ‘smart city’ or a city with a multitude of

interconnected devices using 5g technologies. These interconnected devices will have to rely

on localized computing power. This localized compute has been dubbed ‘the edge’, as the

edge functions like the cloud, but is closer to service areas than a traditional datacenter-based

cloud. The edge offers advantages in that it is close to its served devices, allowing for

security and privacy as required, alongside ultra-low latency for highspeed tasks. Services

such as autonomous vehicles, city-wide surveillance, and augmented reality are well poised

to take advantage of the benefits of the edge[2]. As the edge gets built out to handle the

maximum capacity that a smart city can handle, these servers will need to be optimized for

everyday usage and needs. Companies and cities will have to grapple with how to best utilize

the always running resources that compose the edge.

The purpose of this project is to create a proof-of-concept system that can take advantage of

the always online network that the edge uses to run machine learning tasks such as image

recognition. The project will coordinate a number single-threaded containers utilizing

Docker, Kubernetes, and related technologies. The project will be defined as a success should

it be able to perform complex machine learning tasks in a replicable environment on an

‘edge-like’ device.

9

II. BACKGROUND

This project’s sponsor, Intel Corp., is an international semi-conductor manufacturer. Intel

produces systems for a variety of use cases, including the edge. This project serves as an

entry point for researchers who are interested in advancing edge systems as a proven way to

setup an edge system for comparison between the edge and the cloud.

This project started as a senior capstone project between a partner, Ty Cole, and I, supported

by Rahul Khanna from Intel. Ty and I created the design of the project and ensured that it ran

on the cloud. Following the conclusion of the capstone project, I continued to develop the

project so that it was in a usable state on an example edge system using consumer grade

technology.

A. Docker

Docker is an open-source containerization software that was developed and released in 2013.

Docker was created as a reliability layer and abstracts the physical properties of hardware

away from the software dependencies of a program. This allows a single Docker program to

run any hardware and operating system combination as long as the combination has the base

Docker program [3]. Docker programs, defined in dockerfiles, create containers which are

almost entirely independent of the operating system and hardware that it is running on.

Containers run using their own operating system and have all the necessary programs and

dependencies built in. As a result, Docker containers are usually single threaded. The project

uses Docker heavily throughout the project as all the individual components of the program

are containerized.

Figure 1: Illustration of Docker[1]

10

B. Kubernetes

Kubernetes is a piece of software developed by Google using the Go programming language

to help coordinate Docker containers in the cloud. Kubernetes was made open source in 2014

and is managed by the Cloud Native Computing Foundation (CNCF). Kubernetes builds

upon Docker’s networking by introducing a hierarchical schematic to containers that allows

for the developer to create relationships between containers in simple and sustainable

ways[4]. A large challenge that Kubernetes overcomes is managing container deployments

on different physical pieces of hardware, as before Kubernetes managing Docker

deployments on multiple physical servers was quite difficult.

The project utilizes Kubernetes as the primary medium of deploying containers over the

servers present on the edge network. The containers in this project were deployed as

deployments of pods and services. With pods being analogous to a docker container,

deployments controlling a set of pods to scale up or down, and services serving as a front-end

for inter-pod communication. For example, an ingestion pod could be controlled by a

deployment that manages three pods, and all three pods use a single service to communicate

with a queuing pod by asking for the queuing pod’s service.

C. Kafka

Kafka is a distributed queueing service which allows for different containers to pull ‘jobs’ or

data from a queue[5]. Kafka is deployed in two containers and a service. The message broker

holds the messages which it is passed through an accompanying service. Another managing

container makes sure that the broker is functioning properly. The project used Kafka as the

primary method of communication between containers, by setting up a queue in a a first in

first out fashion for the processing containers and as a job assignment tool for worker

containers.

D. Other Technologies

There were various other technologies used during different points of the project, however

these technologies were not integral to the creation of the platform and served to demonstrate

a purpose.

The machine learning algorithm You Only Look Once (YOLO) was also used as a sample

for a distributed classification workload. This algorithm was based upon the idea of only

using one ‘look’ or pass at an image for recognition. The project used YOLO as an

evaluation of whether the model usage pipeline functioned[6].

Genetic algorithms, are algorithms that take principles of genetic evolution and apply them to

a use case. Genetic algorithms create ‘genes’ in the form of candidate models, and after

fitting each model, the best performing algorithms are advanced to the next trails. Models are

then mutated and the models are trained again. This process is repeated until a satisfactory

11

result has been achieved [5]. The project used a genetic algorithm to evaluate the model

creation pipeline and create models for the model usage section.

III. MODEL IMPLEMENTATION

The project used Kubernetes as a base orchestration platform, and for ease-of-use purposes

was developed in the default namespace. The project was then split into two distinct parts:

model implementation, and model creation. Each of these parts was composed of layers

including: ingestion and preprocessing, transmission and queuing, data processing, training,

and working. Each of these layers corresponds to a different set of docker containers.

Containerizing the project allowed for each container to run as a single thread on a

node/machine.

The purpose of the model implementation portion of the project was to verify that the

platform worked in a usage scenario using a pretrained algorithm. The implementation

started with an ingestion container. Which then parsed data to the Kafka broker. The Broker

handled taking the data from each individual ingestion container queued it as a task to be

queried by the worker containers. While the last docker container requested the data from the

Kafka broker and processed it. In our processing example, we used the YOLO algorithm,

however any other containerized image recognition or broader machine learning algorithm

can be used so long as it works with the dataset. By the end of the project, the algorithm had

been changed to one made by the model creation portion of the project. By breaking up the

algorithm into ingestion, transmission and processing, the project was able to scale each

section as needed on as many devices as needed, or to how much compute power is

necessary. Figure 2 below illustrates a broad three pipeline implementation of this design,

which was made to demonstrate an earlier understanding of the project that was using USB

cameras.

12

Figure 2: Model implementation diagram.

A. Preprocessor

The preprocessor segment of the model implementation was composed of three parts, an

application, the containerization of the application and then a Kubernetes deployment.

The application was a simple python application, which can be viewed in the seventh listing

of the appendix. The application made use of the Keras package for the database, and the

Kafka package to appropriately connect and send data to the Kafka broker. The application

downloaded the Modified National Institute of Standards and Technology database (MNIST)

and then sent the first fifty testing datasets to the Kafka broker through a socket connection.

After the first fifty testing datasets are sent, the connection is closed, and the application

terminates.

The containerization of the above application was done using docker. The exact code can be

seen in the sixth listing of the appendix. The container was quite simple, and just included the

base python container, with the non-standard kafka-python package installed in the OS. The

application is then added to the root directory and then launched using python at the

containers’ runtime.

The Kubernetes deployment was created in a yaml (a notation format like JSON) file. The

exact code can be seen in the fifth listing of the appendix. The file follows the standard

deployment format listed on the Kubernetes website, with the additional fields defining an

environment variable that lists the name of the service that serves the Kafka broker container.

The deployment ensures that each container is running healthily and can scale the number of

containers up and down as necessary.

13

B. Kafka/Message Broker

Kafka itself is split into two different containers, each of which has a service which stands as

an abstraction in front of the Kubernetes deployments. The first container is called the Kafka-

Broker, and the second is called the Zookeeper. As Kafka is a completed open-source

product, all components are provided by the Apache organization, and the defined as

specified on their website. The Broker is used to send and hold messages, while the

Zookeeper ensures that each message is only sent once and to an appropriate consumer.

C. Processor

The processor like the preprocessor is composed of three parts, an application, the

containerization of the application and a Kubernetes deployment.

The application is a python application, which can be viewed in the tenth listing of the

appendix. The application makes use of the sockets package to receive a model from the

model creation portion of the project in the form of a h5 file. The application then uses the

Kafka package to receive the images. It then uses the model to classify the images.

The containerization of the application was done in docker. The dockerfile can be viewed in

the appendix as listing nine, and used the Tensorflow container as a base. The Kafka Keras

and Networkx dependencies were installed on the OS. The application was then run at the

containers’ runtime.

The Kubernetes Deployment, much like for the preprocessor was standard, except for the

inclusion of the Kafka Broker port. The implementation can be seen in the eighth listing of

the appendix.

IV. MODEL CREATION

The model creation portion of the project was centered around using the edge to improve the

development and fit of models to ingested data. A genetic algorithm was used to see if

distributing the model training to multiple containers was possible. The genetic algorithm

was split into three sections much like the model usage portion of the project, with a

trainer/master container, a transmission container, and a set of ‘work’ containers alongside

corresponding services. To achieve this split, the genetic algorithm was split. The trainer

container ran the initial dataset setup and created the potential candidates for the genetic

algorithm, instead of training each candidate algorithm locally, the candidate for training was

then sent to the Kafka broker with the candidate’s index, and a training dataset. Worker(s)

containers then requested and trained their algorithm using the python package Keras. The

trained models were then sent back to the Kafka broker, and requested by the initial

container, which used their index for genetic selection. Note that a key difference between

the model creation and other portions of the project is that the model creation pipeline is

designed in a ‘master-slave’ relationship, with a singular ingestion or control container, and

many worker containers. This is an important distinction as this relationship requires

consistent two-way communication between the ‘master’, control container and the many

14

‘slave’, worker, containers. Figure 3 illustrates this setup with nine workers and a trainer

node, the communication done by Kafka is not shown in this model.

Figure 3: Model Creation Diagram

A. Trainer

The trainer was composed of four sections, an application, a containerization of the

application, a deployment for the container and a service in front of the deployment.

The application was derived from an example implementation of the Keras-CoDeepNeat

package. This python application makes use of the Keras-CoDeepNeat library to create a set

of populations based on the training data. These populations are subdivided into blueprints on

which mutations are applied. These blueprints are then fitted by Keras to the training data,

and the best model is then selected for the next generation. The project modified the Keras-

CoDeepNeat package such that the actual fitting of blueprints is not done by the Keras

package, but rather by our own custom code that sent each blueprint is sent to a Kafka broker

alongside the blueprint’s index. We also modified the package so that the model selected is

then sent to the model implementation portion of the project, should it be running, alongside

an index, the training data, and other metadata about the sample being trained. An excerpt

containing the modifications to the example application can be seen in the fourteenth listing

of the appendix.

15

The containerization for the trainer application was done using docker. The dockerfile can be

viewed in the thirteenth listing of the appendix. The base container varies based on the

hardware used, specifically the vendor that supplies the graphics processing unit. However,

in our case the base TensorFlow container was used in Intel/Nvidia systems, and the

Rocm/TensorFlow package was used in Intel/AMD systems. Further discussion on this topic

is in the Project Specifications section of the paper. After that the packages used by the

Keras-CoDeepNeat are installed the program is run.

The Kubernetes deployment was created using the yaml notation. The exact code can be seen

in the eleventh listing of the appendix. It is again a standard deployment, with the exception

of the Kafka port, and an additional port for the completely trained model to be sent to the

model implementation portion of the project.

The Kubernetes service was created using the yaml notation. The exact code can be seen in

the twelfth listing of the appendix. It is a standard service and stands in front of the trainer.

This service is used for the model implementation portion of the project to lookup the

completed model used by the model creation portion of the project.

B. Kafka

Again, the Kafka deployment is as advised by the Apache Kafka group. There is one

exception in that the message size allowed by the containers has been expanded to reflect the

size needed to transmit the various blueprints. Two different Kafka sets were created as a

way to independently develop the two segments of the project, and in the future these

individual brokers could be combined into one, so long as the increased message size buffer

is retained. The Kubernetes deployment and service for this Kafka deployment can be viewed

in appendices fifteen through eighteen.

C. Worker

The worker, like the preprocessor and the processor, is composed of three parts, the

application, the containerization, and the Kubernetes deployment.

 The application is made using python and can be viewed in the twenty first listing of the

appendix. The application receives the model and its metadata from the Kafka broker, and

unpacks the model. The metadata is then used to unpack the training data, and the data is

trained using the Keras function, ‘model_fit’. The application then sends the model back,

alongside its fitting score, so that the trainer can select the best scores for the next generation.

The container is made using docker, and the dockerfile can be viewed in appendix twenty.

The dockerfile is quite simple and uses a base Tensorflow container and adds some

additional packages that are used by the application. The application is then run at the

container’s runtime.

16

The Kubernetes deployment was created using the yaml notation and can be viewed in

appendix nineteen. It is functionally identical to the deployment used for the trainer. It is to

be noted, that this deployment would need to be slightly modified if one wishes to scale the

number of containers used. As, in this design there was just one container deployed.

V. PROJECT SPECIFICATIONS

The project was designed in two different environments, using different base machines. The

project was first developed on the cloud as a part of a capstone program for the Oregon STate

University Computer Science program. It was then extended through individual work with an

edge device, an Intel NUC compute platform. The cloud was composed of Intel Haswell era

server SOCs, and very limited graphical processing unites (GPUs) running a Linux operating

system. While the NUC was equipped with an Intel Comet-Lake consumer i7-8700k CPU

and an Advanced Micro Dynamics (AMD) Vega 56 GPU also using a Linux operating

system.

A. Cloud Setup

The project was initially developed on the G-cloud suite, which allowed for free access to a

limited Kubernetes network. The project was developed on this network, using Linux,

Kubernetes, Yaml, Docker, Python 3.6 and a set of Python packages, including but not

limited to: TensorFlow, NetworkX, and Keras. Most of the individual applications, such as

the ingestion container, etc. were written using Python 3.6, and then were containerized using

Docker. Kubernetes configuration files were then written in Yaml. The project is self-

contained and can be run on any Kubernetes network using Nvidia or Intel based hardware

using a simple set of Kubernetes commands.

B. Edge Setup

Additionally, the project was extended to be used on AMD and consumer hardware when

used with edge devices. The AMD ROCm platform (an AMD substitute for Nvidia’s CUDA

platform) had to be installed. In addition, Kubernetes had to be deployed on the NUC

platform, which required the installation of Kube admin (a Kubernetes software), and a

network solution, Flannel which was chosen for its simplicity. The docker containers for all

the deployments that used the Python package TensorFlow had to be changed to use those

developed by the ROCm project, in this case a docker container with CentOS, Python3.6 and

TensorFlow 0.13.1. After all these adjustments there were a few Kubernetes adjustments,

such as allowing the master node to be used by containers (a default setting turned off by

Kubernetes) and modifying the ingestion containers to be built with the dataset preinstalled

(due to network signing issues).

C. Comparision

17

While the outcome of both solutions was similar, there were driver level issues with running

required packages on different hardware. Specifically, Tensorflow a popular machine

learning Python package, was difficult to implement due to specific package drivers being

written with nvidia hardware in mind. These issues should be kept in mind for a network

rollout, as they may preclude certain server setups from being used in the network.

VI. RESULTS AND DISCUSSION

The proof of concept was able to run on both a cloud infrastructure and on an edge platform,

opening the subject to further testing and investigation. Both the model creation and the

model implementation algorithms accurately ran on both the cloud and the edge. This model

can be used as a base for further testing in the field of edge computing, as the basic

infrastructure for any machine learning task has been created. Containerizing seems to be a

natural solution to the problem posed by a highly connected smart city, with many edge

devices working cohesively to power next generation technologies such as autonomous

vehicles, or large area private security.

While the project is successful there are number of issues that need to be explored. Current

testing was very limited, and only extended as far as the implementation of the project on the

cloud and the edge. There was no empirical performance data collected from either service,

and thus no conclusions can be drawn as to the performance of the cloud or the edge.

Assumptions such as, the edge having lower latency, and the relative computer power of the

edge and the cloud must be tested before any conclusions can be drawn about the model.

In addition, there are potential problems with some of the technologies used. Project

performance, in terms of both time and overhead, must be measured to see if this multi-

device approach improves upon just a simple singe-device. Should performance not be

improved then there are very few real-world situations where this project can be deployed.

Fifth generation technologies have not been verified to work with the project either. The data

transfers were quite small in this example and should fall well below the 1 gigabit per a

second threshold that early 5g networks are capable of. However, if the packets transmitted

within applications grow in size, then multi-system edge networks using 5g technology could

slow down and make edge processing inefficient, when compared to the cloud. This can be

mitigated using more preprocessing steps to evenly distribute the data over the network,

however there is an absolute limit that needs to be tested.

Kubernetes will have to be further tested to see if there is an upper limit to the number of

nodes and containers that it can run. Should this limit not be large enough, a deployment of

this model could run into issues when scaling to a large number of devices.

Power usage will have to be measured to see if docker is a viable cost-effective

containerization technology. As the edge grows, power usage starts to be a concern, as the

large number of always running devices can put a strain on a cities’ power infrastructure.

Optimizing the edge for performance per a watt could help alleviate some of these concerns.

18

VII. CONCLUSIONS

This project was a valuable way of testing the feasibility of edge computing in the future.

Current popular trends such as containerization and cloud-based orchestrators can be adapted

to run well on the edge. This solution could serve as a valuable first step in testing the

viability of the edge in comparison to the cloud.

VIII. ACKNOWLEDGEMENTS

I would like to thank my mentor, Instructor Scott Fairbanks for his patience and his guidance

through the thesis process. I would also like to thank Dr. Rahul Khanna, who was a sponsor

for my project for his assistance with constructing the project and with providing the edge

computing resource for the project. I also would like to thank Instructor Kirsten Winters for

helping me start out the Thesis processes, and would also like to acknowledge Ty Cole, my

partner from the initial capstone project, for his contributions to the project.

IX. REFERENCES

[1] K. Foote, “A Brief History of Cloud Computing - DATAVERSITY,” DATAVERSITY,

Jun. 22, 2017. https://www.dataversity.net/brief-history-cloud-computing/.

[2] S. Yi, Z. Hao, Z. Qin and Q. Li, "Fog Computing: Platform and Applications," 2015

Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), 2015,

pp. 73-78, doi: 10.1109/HotWeb.2015.22.

[3] Nish Anil, “What is Docker?,” Microsoft.com, Aug. 31, 2018.

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/container-docker-

introduction/docker-defined.

[4] Kubernetes, “What is Kubernetes?,” Kubernetes, Apr. 30, 2021.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-you-need-kubernetes-

and-what-can-it-do (accessed Jun. 03, 2021).

[5] Amazon Web Services, “What is Apache Kafka?,” Amazon Web Services, Inc., 2021.

https://aws.amazon.com/msk/what-is-kafka/.

[6] Open Data Science, “Overview of the YOLO Object Detection Algorithm,” Medium, Sep.

25, 2018. https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-

7b52a745d3e0#:~:text=YOLO%20is%20a%20clever%20convolutional%20neural%20netwo

rk%20%28CNN%29 (accessed Jun. 03, 2021).

19

X. APPENDIX

A. Essential Code Listings – Model Implementation

Listing 1: Kubernetes deployment for the Kafka broker

kind: Deployment

apiVersion: apps/v1

metadata:

 name: kafka-broker-pre

spec:

 selector:

 matchLabels:

 app: kafka-pre

 id: "0"

 template:

 metadata:

 labels:

 app: kafka-pre

 id: "0"

 spec:

 containers:

 - name: kafka-pre

 image: wurstmeister/kafka

 ports:

 - containerPort: 9092

 env:

 - name: KAFKA_ADVERTISED_PORT

 value: "9092"

 - name: KAFKA_ADVERTISED_HOST_NAME

 value: kafka-service-pre

 - name: KAFKA_ZOOKEEPER_CONNECT

 value: zoo1:2181

 - name: KAFKA_BROKER_ID

 value: "0"

 - name: KAFKA_CREATE_TOPICS

 value: images:1:1

20

Listing 2: Kubernetes service for the Kafka broker

apiVersion: v1

kind: Service

metadata:

 name: kafka-service-pre

 labels:

 name: kafka

spec:

 ports:

 - port: 9092

 name: kafka-port

 protocol: TCP

 selector:

 app: kafka-pre

 id: "0"

 type: LoadBalancer

Listing 3: Kubernetes deployment for the Kafka Zookeeper container

kind: Deployment

apiVersion: apps/v1

metadata:

 name: zookeeper-deployment-1

spec:

 replicas: 1

 selector:

 matchLabels:

 app: zookeeper-1

 template:

 metadata:

 labels:

 app: zookeeper-1

 spec:

 containers:

 - name: zoo1

 image: digitalwonderland/zookeeper

 ports:

 - containerPort: 2181

 env:

 - name: ZOOKEEPER_ID

 value: "1"

 - name: ZOOKEEPER_SERVER_1

 value: zoo1

21

Listing 4: Kubernetes service for the Kafka Zookeeper container

apiVersion: v1

kind: Service

metadata:

 name: zoo1

 labels:

 app: zookeeper-1

spec:

 ports:

 - name: client

 port: 2181

 protocol: TCP

 - name: follower

 port: 2888

 protocol: TCP

 - name: leader

 port: 3888

 protocol: TCP

 selector:

 app: zookeeper-1

Listing 5: Kubernetes deployment for the preprocessing container

kind: Deployment

apiVersion: apps/v1

metadata:

 name: preprocessor

spec:

 selector:

 matchLabels:

 app: preprocessor

 template:

 metadata:

 labels:

 app: preprocessor

 spec:

 containers:

 - name: preprocessor

 image: coletyl/preprocessor

 env:

 - name: KAFKA_HOST_NAME

 value: kafka-service-pre

22

Listing 6: Docker container for preprocessor application

FROM python:3

RUN pip3 install kafka-python

ADD app.py /app.py

ENTRYPOINT ["python3", "app.py"]

Listing 7: Python application for preprocessor

from kafka import KafkaProducer

import os

import sys

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Connect to Kafka

kafka_host = os.getenv('KAFKA_HOST_NAME')

if(kafka_host == None):

 print("Failed, no KAFKA_HOST_NAME environment variable was set")

 sys.exit(1)

Setup Kafka Producer

producer = KafkaProducer(bootstrap_servers=kafka_host)

numIterations = 0

for x_test as test:

 numIterations = numIterations+1

 # Stop after 50 iterations

 if(numIterations >= 50):

 exit(0)

 b = test1.tobytes()

 print("Message sent")

 response = producer.send('images', b)

 print("Response = " + str(response))

 result = response.get(timeout=30)

 print("Fetched Message = " + str(result))

23

Listing 8: Kubernetes deployment for the processor container

kind: Deployment

apiVersion: apps/v1

metadata:

 name: processor

spec:

 selector:

 matchLabels:

 app: processor

 template:

 metadata:

 labels:

 app: processor

 spec:

 containers:

 - name: processor

 image: coletyl/processor

 env:

 - name: KAFKA_HOST_NAME

 value: kafka-service-pre

Listing 9: Docker container for the processor application

FROM rocm/tensorflow:latest

LABEL maintianer="Tyler Cole"

ENV DEBIAN_FRONTEND noninteractive

ADD app.py /app.py

RUN pip3 install kafka-python

RUN pip3 install keras

RUN pip3 install networkx

ENTRYPOINT ["python3", "/app.py"]

24

Listing 10: Python processor application

from kafka import KafkaConsumer

import os

import sys

import time

import socket

from tensorflow import keras

import numpy as np

kafka_host = os.getenv('KAFKA_HOST_NAME')

if(kafka_host == None):

 print("Failed, no KAFKA_HOST_NAME environment variable was set")

 sys.exit(1)

if __name__ == "__main__":

 HOST, PORT = "trainer-model-service", 80

 data = "my data"

 # Create a socket (SOCK_STREAM means a TCP socket)

 while 1:

 try:

 # Connect to server and send data

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.connect((HOST, PORT))

 except socket.error:

 print("Couldn't connect to server, no model available");

 time.sleep(5);

 sock.close();

 continue

 sock.sendall(bytes(data + " ", "utf-8"))

 # Receive data from the server and shut down

 print("Receiving the model:");

 received = b'';

 numReceived = 0 ;

 while True:

 data = sock.recv(1048576);

 print("Recevied data, len = " + str(len(data)) + ", this is byte num

" + str(numReceived) + "\n");

 numReceived+=1;

 if not data: break

 received += data;

 sock.close()

 break

25

 print("Len = " + str(len(received)));

 f = open('/model.h5', 'wb')

 f.write(received)

 f.close()

 print("Model receieved");

 model = keras.models.load_model("/model.h5")

 consumer = KafkaConsumer("images", group_id="processor", request_timeout_ms

=120000,session_timeout_ms=100000, bootstrap_servers=kafka_host)

 for message in consumer:

 bytestream = bytes(message.value)

 newer = np.frombuffer(bytestream, dtype=np.uint8)

 newer = newer.reshape((28,28))

 newer = np.expand_dims(newer, axis=0)

 newer = np.expand_dims(newer, axis=3)

 scores = model.predict(newer);

 print("Prediction = " + str(scores));

26

B. Essential Code Listings – Model Creation

Listing 11: Kubernetes deployment for the training container

apiVersion: apps/v1

kind: Deployment

metadata:

 name: trainer

spec:

 selector:

 matchLabels:

 app: trainer

 replicas: 1

 template:

 metadata:

 labels:

 app: trainer

 spec:

 containers:

 - name: trainer

 image: coletyl/trainer

 ports:

 - containerPort: 9999

 env:

 - name: KAFKA_HOST_NAME

 value: kafka-service-train

Listing 12: Kubernetes service for the training container

apiVersion: v1

kind: Service

metadata:

 name: trainer-model-service

spec:

 selector:

 app: trainer

 ports:

 - protocol: TCP

 port: 80

 targetPort: 9999

27

Listing 13: Docker container for the training application

FROM rocm/tensorflow:rocm3.3-tf1.13-centos-mkl-dev

LABEL maintianer="Tyler Cole"

ENV CENTOS_FRONTEND noninteractive

ADD Keras-CoDeepNEAT /Keras-CoDeepNEAT

ADD run_mnist.py /run_mnist.py

RUN yum install -y python3.6-dev graphviz* libgraphviz-dev

RUN pip install kafka-python

RUN pip install -Iv keras==2.2.5

RUN pip install -Iv networkx==2.3

RUN pip install -Iv pydot==1.4.1

RUN pip install graphviz

RUN pip install pygraphviz

RUN pip install sklearn

RUN pip install matplotlib==3.2.1

ENTRYPOINT ["python3", "/run_mnist.py"]

28

Listing 14: Excerpt from the python training application

if __name__ == "__main__":

 generations = 2

 training_epochs = 2

 final_model_training_epochs = 2

 population_size = 1

 blueprint_population_size = 10

 module_population_size = 30

 n_blueprint_species = 3

 n_module_species = 3

 def create_dir(dir):

 if not os.path.exists(os.path.dirname(dir)):

 try:

 os.makedirs(os.path.dirname(dir))

 except OSError as exc: # Guard against race condition

 if exc.errno != errno.EEXIST:

 raise

 create_dir("models/")

 create_dir("images/")

 run_mnist_full(generations, training_epochs, population_size, blueprint_popul

ation_size, module_population_size, n_blueprint_species, n_module_species, final_

model_training_epochs)

 print("##");

 print("### Loading top performing model #####");

 print("##");

 filename = "best_generation_" + str(generations-1) + ".h5";

 model = keras.models.load_model("models/" + filename)

 print("##");

 print("### Manually verifying the test scores #####");

 print("##");

 img_rows, img_cols = 28, 28

 (x_train, y_train), (x_test, y_test) = mnist.load_data()

 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

 y_test = keras.utils.to_categorical(y_test, 10)

 x_test = x_test.astype('float32')

 x_test /= 255

29

 scores = model.evaluate(x_test, y_test, verbose=1)

 print("Setting up kafka application ... ");

 os.rename("models/"+filename, "/model.h5");

 HOST, PORT = socket.gethostname(), 9999

 # Create the server, binding to localhost on port 9999

 server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)

 # Activate the server; this will keep running until you

 # interrupt the program with Ctrl-C

 server.serve_forever()

30

Listing 15: Kubernetes deployment for the Kafka broker container

kind: Deployment

apiVersion: apps/v1

metadata:

 name: kafka-broker-train

spec:

 selector:

 matchLabels:

 app: kafka-train

 id: "0"

 template:

 metadata:

 labels:

 app: kafka-train

 id: "0"

 spec:

 containers:

 - name: kafka-train

 image: wurstmeister/kafka

 ports:

 - containerPort: 9092

 env:

 - name: KAFKA_MESSAGE_MAX_BYTES

 value: "2000000000"

 - name: KAFKA_ADVERTISED_PORT

 value: "9092"

 - name: KAFKA_ADVERTISED_HOST_NAME

 value: kafka-service-train

 - name: KAFKA_ZOOKEEPER_CONNECT

 value: zoo2:2181

 - name: KAFKA_BROKER_ID

 value: "0"

 - name: KAFKA_CREATE_TOPICS

 value: "models-to-fit:1:1,models-fitted:1:1"

31

Listing 16: Kubernetes service for the Kafka broker container(s)

apiVersion: v1

kind: Service

metadata:

 name: kafka-service-train

 labels:

 name: kafka

spec:

 ports:

 - port: 9092

 name: kafka-port

 protocol: TCP

 selector:

 app: kafka-train

 id: "0"

 type: LoadBalancer

Listing 17: Kubernetes deployment for the Kafka Zookeeper container(s)

kind: Deployment

apiVersion: apps/v1

metadata:

 name: zookeeper-deployment-2

spec:

 replicas: 1

 selector:

 matchLabels:

 app: zookeeper-2

 template:

 metadata:

 labels:

 app: zookeeper-2

 spec:

 containers:

 - name: zoo2

 image: digitalwonderland/zookeeper

 ports:

 - containerPort: 2181

 env:

 - name: ZOOKEEPER_ID

 value: "1"

 - name: ZOOKEEPER_SERVER_1

 value: zoo2

32

Listing 18: Kubernetes service for the Kafka Zookeeper container(s)

apiVersion: v1

kind: Service

metadata:

 name: zoo2

 labels:

 app: zookeeper-2

spec:

 ports:

 - name: client

 port: 2181

 protocol: TCP

 - name: follower

 port: 2888

 protocol: TCP

 - name: leader

 port: 3888

 protocol: TCP

 selector:

 app: zookeeper-2

Listing 19: Kubernetes deployment for the worker container(s)

kind: Deployment

apiVersion: apps/v1

metadata:

 name: worker

spec:

 selector:

 matchLabels:

 app: worker

 template:

 metadata:

 labels:

 app: worker

 spec:

 containers:

 - name: worker

 image: coletyl/worker

 env:

 - name: KAFKA_HOST_NAME

 value: kafka-service-train

33

Listing 20: Docker file for the worker application

FROM rocm/tensorflow:rocm3.3-tf1.13-centos-mkl-dev

LABEL maintianer="Tyler Cole"

ENV CENTOS_FRONTEND noninteractive

ADD app.py /app.py

RUN pip3 install kafka-python

RUN pip3 install keras

RUN pip3 install networkx

ENTRYPOINT ["python3", "/app.py"]

34

Listing 21: Python application for the worker

from kafka import KafkaConsumer

from kafka import KafkaProducer

import os

from tensorflow import keras

import numpy as np

import io

import tarfile

import json

kafka_host = os.getenv('KAFKA_HOST_NAME')

if(kafka_host == None):

 kafka_host = "kafka-service-train";

consumer = KafkaConsumer("models-to-

fit", group_id="worker", fetch_max_bytes=2000000000, request_timeout_ms=120000,s

ession_timeout_ms=100000, bootstrap_servers=kafka_host)

while(1):

 print("Starting the worker process");

 for message in consumer:

 print("Waiting for message");

 bytestream = bytes(message.value)

 file_like_object = io.BytesIO(bytestream)

 tar = tarfile.open(fileobj=file_like_object)

 for member in tar.getmembers():

 print("F = " + str(member.name));

 tar.extractall()

 break;

 print("Model receieved");

 model = keras.models.load_model("/model.h5")

 input_x = np.fromfile("input_x", dtype = np.uint32);

 input_y = np.fromfile("input_y", dtype = np.uint32);

 print("X and Y are loaded", str(input_x.shape), str(input_y.shape));

 metadata_file = open("metadata");

 metadata = json.load(metadata_file);

 metadata_file.close();

 print("Metadata has been received, = " + str(metadata));

 index = metadata["index"];

 training_epochs = metadata["training_epochs"];

 validation_split = metadata["validation_split"];

 x_shape = metadata["x_shape"];

 y_shape = metadata["y_shape"];

35

 input_x = np.reshape(input_x, x_shape);

 input_y = np.reshape(input_y, y_shape);

 print("New shape = " + str(input_x.shape));

 score = model.fit(input_x, input_y, epochs=training_epochs, validation_split=

float(validation_split), batch_size=128)

 producer = KafkaProducer(bootstrap_servers=kafka_host)

 print("index, score = ", + str(index) + " " + str(score));

 producer.send('models-fitted', {index: score})

 print("Resposne = " + str(response))

 result = response.get(timeout=30)

 print("Result = " + str(result))

