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I. INTRODUCTION 

 

In today’s world, there are two main compute resources, on-premise (on-prem) and cloud 

services (AWS, Google Cloud, Azure). On-premise refers to hardware that a specific 

company maintains and runs for their own webservices, for example, Amazon hosts their 

online marketplace through Amazon Web Services. Much of the internet began with on-

premise servers. However, building-up web and server infrastructure is expensive, and large 

companies realized that they could subsidize the cost of their own hardware by renting out 

their computer power to host other people’s websites during non-peak traffic hours. Thus, the 

cloud was born. These two modes of service serve as the backbone for most internet 

architecture, as most major internet services use their own hardware and minor players use 

the cloud[1]. However, as technology grows, a third mode of service is emerging, the edge. 

 

Compute resources are always changing hands, as companies and individuals optimize their 

resource needs and expenditures. The internet has moved from using individual server 

mainframes in the early days, to servers, the cloud, and indeed the edge. These movements 

are driven by the need for more computational power, or the potential lower cost. Take for 

example, the migration to the cloud, companies have embraced the cloud because cloud 

services distribute the cost of maintenance of networks, reducing the need for each individual 

company to pay for high-cost maintenance staff. As with all tech, innovation will make 

certain advantages universal, and further advantage others, leading to a never-ending race for 

the best price/performance for software solutions. The edge stands to gain ground in this race 

when we look at future software solutions that rely on low latency, and other location-based 

concerns[2]. 

 

5g promises to bring ultra-low latency, high-bandwidth, and high-speed telecommunications 

to large service areas. Allowing for the rise of the ‘smart city’ or a city with a multitude of 

interconnected devices using 5g technologies. These interconnected devices will have to rely 

on localized computing power. This localized compute has been dubbed ‘the edge’, as the 

edge functions like the cloud, but is closer to service areas than a traditional datacenter-based 

cloud. The edge offers advantages in that it is close to its served devices, allowing for 

security and privacy as required, alongside ultra-low latency for highspeed tasks. Services 

such as autonomous vehicles, city-wide surveillance, and augmented reality are well poised 

to take advantage of the benefits of the edge[2]. As the edge gets built out to handle the 

maximum capacity that a smart city can handle, these servers will need to be optimized for 

everyday usage and needs. Companies and cities will have to grapple with how to best utilize 

the always running resources that compose the edge.  

 

The purpose of this project is to create a proof-of-concept system that can take advantage of 

the always online network that the edge uses to run machine learning tasks such as image 

recognition. The project will coordinate a number single-threaded containers utilizing 

Docker, Kubernetes, and related technologies. The project will be defined as a success should 

it be able to perform complex machine learning tasks in a replicable environment on an 

‘edge-like’ device. 
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II. BACKGROUND 

 

This project’s sponsor, Intel Corp., is an international semi-conductor manufacturer. Intel 

produces systems for a variety of use cases, including the edge. This project serves as an 

entry point for researchers who are interested in advancing edge systems as a proven way to 

setup an edge system for comparison between the edge and the cloud. 

 

This project started as a senior capstone project between a partner, Ty Cole, and I, supported 

by Rahul Khanna from Intel. Ty and I created the design of the project and ensured that it ran 

on the cloud. Following the conclusion of the capstone project, I continued to develop the 

project so that it was in a usable state on an example edge system using consumer grade 

technology. 

 

A. Docker 

 

Docker is an open-source containerization software that was developed and released in 2013. 

Docker was created as a reliability layer and abstracts the physical properties of hardware 

away from the software dependencies of a program. This allows a single Docker program to 

run any hardware and operating system combination as long as the combination has the base 

Docker program [3]. Docker programs, defined in dockerfiles, create containers which are 

almost entirely independent of the operating system and hardware that it is running on. 

Containers run using their own operating system and have all the necessary programs and 

dependencies built in. As a result, Docker containers are usually single threaded. The project 

uses Docker heavily throughout the project as all the individual  components of the program 

are containerized.  

 

 
Figure 1: Illustration of Docker[1] 
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B. Kubernetes 

 

Kubernetes is a piece of software developed by Google using the Go programming language 

to help coordinate Docker containers in the cloud. Kubernetes was made open source in 2014 

and is managed by the Cloud Native Computing Foundation (CNCF). Kubernetes builds 

upon Docker’s networking by introducing a hierarchical schematic to containers that allows 

for the developer to create relationships between containers in simple and sustainable 

ways[4]. A large challenge that Kubernetes overcomes is managing container deployments 

on different physical pieces of hardware, as before Kubernetes managing Docker 

deployments on multiple physical servers was quite difficult. 

 

The project utilizes Kubernetes as the primary medium of deploying containers over the 

servers present on the edge network. The containers in this project were deployed as 

deployments of pods and services. With pods being analogous to a docker container, 

deployments controlling a set of pods to scale up or down, and services serving as a front-end 

for inter-pod communication. For example, an ingestion pod could be controlled by a 

deployment that manages three pods, and all three pods use a single service to communicate 

with a queuing pod by asking for the queuing pod’s service. 

 

C. Kafka 

 

Kafka is a distributed queueing service which allows for different containers to pull ‘jobs’ or 

data from a queue[5]. Kafka is deployed in two containers and a service. The message broker 

holds the messages which it is passed through an accompanying service. Another managing 

container makes sure that the broker is functioning properly. The project used Kafka as the 

primary method of communication between containers, by setting up a queue in a a first in 

first out fashion for the processing containers and as a job assignment tool for worker 

containers.  

 

D. Other Technologies 

 

There were various other technologies used during different points of the project, however 

these technologies were not integral to the creation of the platform and served to demonstrate 

a purpose.  

 

The machine learning algorithm You Only Look Once (YOLO) was also used as a sample 

for a distributed classification workload. This algorithm was based upon the idea of only 

using one ‘look’ or pass at an image for recognition. The project used YOLO as an 

evaluation of whether the model usage pipeline functioned[6]. 

 

Genetic algorithms, are algorithms that take principles of genetic evolution and apply them to 

a use case. Genetic algorithms create ‘genes’ in the form of candidate models, and after 

fitting each model, the best performing algorithms are advanced to the next trails. Models are 

then mutated and the models are trained again. This process is repeated until a satisfactory 
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result has been achieved [5]. The project used a genetic algorithm to evaluate the model 

creation pipeline and create models for the model usage section. 

 

III. MODEL IMPLEMENTATION 

 

The project used Kubernetes as a base orchestration platform, and for ease-of-use purposes 

was developed in the default namespace. The project was then split into two distinct parts: 

model implementation, and model creation. Each of these parts was composed of layers 

including: ingestion and preprocessing, transmission and queuing, data processing, training, 

and working. Each of these layers corresponds to a different set of docker containers. 

Containerizing the project allowed for each container to run as a single thread on a 

node/machine.  

 

The purpose of the model implementation portion of the project was to verify that the 

platform worked in a usage scenario using a pretrained algorithm. The implementation 

started with an ingestion container. Which then parsed data to the Kafka broker. The Broker 

handled taking the data from each individual ingestion container queued it as a task to be 

queried by the worker containers. While the last docker container requested the data from the 

Kafka broker and processed it. In our processing example, we used the YOLO algorithm, 

however any other containerized image recognition or broader machine learning algorithm 

can be used so long as it works with the dataset. By the end of the project, the algorithm had 

been changed to one made by the model creation portion of the project. By breaking up the 

algorithm into ingestion, transmission and processing, the project was able to scale each 

section as needed on as many devices as needed, or to how much compute power is 

necessary. Figure 2 below illustrates a broad three pipeline implementation of this design, 

which was made to demonstrate an earlier understanding of the project that was using USB 

cameras. 
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Figure 2: Model implementation diagram. 

A. Preprocessor 

 

The preprocessor segment of the model implementation was composed of three parts, an 

application, the containerization of the application and then a Kubernetes deployment. 

 

The application was a simple python application, which can be viewed in the seventh listing 

of the appendix. The application made use of the Keras package for the database, and the 

Kafka package to appropriately connect and send data to the Kafka broker. The application 

downloaded the Modified National Institute of Standards and Technology database (MNIST) 

and then sent the first fifty testing datasets to the Kafka broker through a socket connection. 

After the first fifty testing datasets are sent, the connection is closed, and the application 

terminates. 

 

The containerization of the above application was done using docker. The exact code can be 

seen in the sixth listing of the appendix. The container was quite simple, and just included the 

base python container, with the non-standard kafka-python package installed in the OS. The 

application is then added to the root directory and then launched using python at the 

containers’ runtime. 

 

The Kubernetes deployment was created in a yaml (a notation format like JSON) file. The 

exact code can be seen in the fifth listing of the appendix. The file follows the standard 

deployment format listed on the Kubernetes website, with the additional fields defining an 

environment variable that lists the name of the service that serves the Kafka broker container. 

The deployment ensures that each container is running healthily and can scale the number of 

containers up and down as necessary. 
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B. Kafka/Message Broker 

 

Kafka itself is split into two different containers, each of which has a service which stands as 

an abstraction in front of the Kubernetes deployments. The first container is called the Kafka-

Broker, and the second is called the Zookeeper. As Kafka is a completed open-source 

product, all components are provided by the Apache organization, and the defined as 

specified on their website. The Broker is used to send and hold messages, while the 

Zookeeper ensures that each message is only sent once and to an appropriate consumer. 

 

C. Processor 

 

The processor like the preprocessor is composed of three parts, an application, the 

containerization of the application and a Kubernetes deployment. 

 

The application is a python application, which can be viewed in the tenth listing of the 

appendix. The application makes use of the sockets package to receive a model from the 

model creation portion of the project in the form of a h5 file. The application then uses the 

Kafka package to receive the images. It then uses the model to classify the images. 

 

The containerization of the application was done in docker. The dockerfile can be viewed in 

the appendix as listing nine, and used the Tensorflow container as a base. The Kafka Keras 

and Networkx dependencies were installed on the OS. The application was then run at the 

containers’ runtime. 

 

The Kubernetes Deployment, much like for the preprocessor was standard, except for the 

inclusion of the Kafka Broker port. The implementation can be seen in the eighth listing of 

the appendix. 

IV. MODEL CREATION 

 

The model creation portion of the project was centered around using the edge to improve the 

development and fit of models to ingested data. A genetic algorithm was used to see if 

distributing the model training to multiple containers was possible. The genetic algorithm 

was split into three sections much like the model usage portion of the project, with a 

trainer/master container, a transmission container, and a set of ‘work’ containers alongside 

corresponding services. To achieve this split, the genetic algorithm was split. The trainer 

container ran the initial dataset setup and created the potential candidates for the genetic 

algorithm, instead of training each candidate algorithm locally, the candidate for training was 

then sent to the Kafka broker with the candidate’s index, and a training dataset. Worker(s) 

containers then requested and trained their algorithm using the python package Keras. The 

trained models were then sent back to the Kafka broker, and requested by the initial 

container, which used their index for genetic selection. Note that a key difference between 

the model creation and other portions of the project is that the model creation pipeline is 

designed in a ‘master-slave’ relationship, with a singular ingestion or control container, and 

many worker containers. This is an important distinction as this relationship requires 

consistent two-way communication between the ‘master’, control container and the many 
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‘slave’, worker, containers. Figure 3 illustrates this setup with nine workers and a trainer 

node, the communication done by Kafka is not shown in this model. 

 

 
Figure 3: Model Creation Diagram 

A. Trainer 

 

The trainer was composed of four sections, an application, a containerization of the 

application, a deployment for the container and a service in front of the deployment.  

 

The application was derived from an example implementation of the Keras-CoDeepNeat 

package. This python application makes use of the Keras-CoDeepNeat library to create a set 

of populations based on the training data. These populations are subdivided into blueprints on 

which mutations are applied. These blueprints are then fitted by Keras to the training data, 

and the best model is then selected for the next generation. The project modified the Keras-

CoDeepNeat package such that the actual fitting of blueprints is not done by the Keras 

package, but rather by our own custom code that sent each blueprint is sent to a Kafka broker 

alongside the blueprint’s index. We also modified the package so that the model selected is 

then sent to the model implementation portion of the project, should it be running, alongside 

an index, the training data, and other metadata about the sample being trained. An excerpt 

containing the modifications to the example application can be seen in the fourteenth listing 

of the appendix. 
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The containerization for the trainer application was done using docker. The dockerfile can be 

viewed in the thirteenth listing of the appendix. The base container varies based on the 

hardware used, specifically the vendor that supplies the graphics processing unit. However, 

in our case the base TensorFlow container was used in Intel/Nvidia systems, and the 

Rocm/TensorFlow package was used in Intel/AMD systems. Further discussion on this topic 

is in the Project Specifications section of the paper. After that the packages used by the 

Keras-CoDeepNeat are installed the program is run. 

 

The Kubernetes deployment was created using the yaml notation. The exact code can be seen 

in the eleventh listing of the appendix. It is again a standard deployment, with the exception 

of the Kafka port, and an additional port for the completely trained model to be sent to the 

model implementation portion of the project. 

 

The Kubernetes service was created using the yaml notation. The exact code can be seen in 

the twelfth listing of the appendix. It is a standard service and stands in front of the trainer. 

This service is used for the model implementation portion of the project to lookup the 

completed model used by the model creation portion of the project. 

 

B. Kafka 

 

Again, the Kafka deployment is as advised by the Apache Kafka group. There is one 

exception in that the message size allowed by the containers has been expanded to reflect the 

size needed to transmit the various blueprints. Two different Kafka sets were created as a 

way to independently develop the two segments of the project, and in the future these 

individual brokers could be combined into one, so long as the increased message size buffer 

is retained. The Kubernetes deployment and service for this Kafka deployment can be viewed 

in appendices fifteen through eighteen. 

 

C. Worker 

 

The worker, like the preprocessor and the processor, is composed of three parts, the 

application, the containerization, and the Kubernetes deployment. 

 

 The application is made using python and can be viewed in the twenty first listing of the 

appendix. The application receives the model and its metadata from the Kafka broker, and 

unpacks the model. The metadata is then used to unpack the training data, and the data is 

trained using the Keras function, ‘model_fit’. The application then sends the model back, 

alongside its fitting score, so that the trainer can select the best scores for the next generation. 

 

The container is made using docker, and the dockerfile can be viewed in appendix twenty. 

The dockerfile is quite simple and uses a base Tensorflow container and adds some 

additional packages that are used by the application. The application is then run at the 

container’s runtime. 
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The Kubernetes deployment was created using the yaml notation and can be viewed in 

appendix nineteen. It is functionally identical to the deployment used for the trainer. It is to 

be noted, that this deployment would need to be slightly modified if one wishes to scale the 

number of containers used. As, in this design there was just one container deployed.  

 

V. PROJECT SPECIFICATIONS 

 

The project was designed in two different environments, using different base machines. The 

project was first developed on the cloud as a part of a capstone program for the Oregon STate 

University Computer Science program. It was then extended through individual work with an 

edge device, an Intel NUC compute platform. The cloud was composed of Intel Haswell era 

server SOCs, and very limited graphical processing unites (GPUs) running a Linux operating 

system. While the NUC was equipped with an Intel Comet-Lake consumer i7-8700k CPU 

and an Advanced Micro Dynamics (AMD) Vega 56 GPU also using a Linux operating 

system. 

 

A. Cloud Setup 

 

The project was initially developed on the G-cloud suite, which allowed for free access to a 

limited Kubernetes network. The project was developed on this network, using Linux, 

Kubernetes, Yaml, Docker, Python 3.6 and a set of Python packages, including but not 

limited to: TensorFlow, NetworkX, and Keras. Most of the individual applications, such as 

the ingestion container, etc. were written using Python 3.6, and then were containerized using 

Docker. Kubernetes configuration files were then written in Yaml. The project is self-

contained and can be run on any Kubernetes network using Nvidia or Intel based hardware 

using a simple set of Kubernetes commands. 

 

B. Edge Setup 

 

Additionally, the project was extended to be used on AMD and consumer hardware when 

used with edge devices. The AMD ROCm platform (an AMD substitute for Nvidia’s CUDA 

platform) had to be installed. In addition, Kubernetes had to be deployed on the NUC 

platform, which required the installation of Kube admin (a Kubernetes software), and a 

network solution, Flannel which was chosen for its simplicity. The docker containers for all 

the deployments that used the Python package TensorFlow had to be changed to use those 

developed by the ROCm project, in this case a docker container with CentOS, Python3.6 and 

TensorFlow 0.13.1. After all these adjustments there were a few Kubernetes adjustments, 

such as allowing the master node to be used by containers (a default setting turned off by 

Kubernetes) and modifying the ingestion containers to be built with the dataset preinstalled 

(due to network signing issues). 

 

C. Comparision 
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While the outcome of both solutions was similar, there were driver level issues with running 

required packages on different hardware. Specifically, Tensorflow a popular machine 

learning Python package, was difficult to implement due to specific package drivers being 

written with nvidia hardware in mind. These issues should be kept in mind for a network 

rollout, as they may preclude certain server setups from being used in the network.  

 

VI. RESULTS AND DISCUSSION 

 

The proof of concept was able to run on both a cloud infrastructure and on an edge platform, 

opening the subject to further testing and investigation. Both the model creation and the 

model implementation algorithms accurately ran on both the cloud and the edge. This model 

can be used as a base for further testing in the field of edge computing, as the basic 

infrastructure for any machine learning task has been created. Containerizing seems to be a 

natural solution to the problem posed by a highly connected smart city, with many edge 

devices working cohesively to power next generation technologies such as autonomous 

vehicles, or large area private security.  

 

While the project is successful there are number of issues that need to be explored. Current 

testing was very limited, and only extended as far as the implementation of the project on the 

cloud and the edge. There was no empirical performance data collected from either service, 

and thus no conclusions can be drawn as to the performance of the cloud or the edge. 

Assumptions such as, the edge having lower latency, and the relative computer power of the 

edge and the cloud must be tested before any conclusions can be drawn about the model.  

 

In addition, there are potential problems with some of the technologies used. Project 

performance, in terms of both time and overhead, must be measured to see if this multi-

device approach improves upon just a simple singe-device. Should performance not be 

improved then there are very few real-world situations where this project can be deployed.  

 

Fifth generation technologies have not been verified to work with the project either. The data 

transfers were quite small in this example and should fall well below the 1 gigabit per a 

second threshold that early 5g networks are capable of. However, if the packets transmitted 

within applications grow in size, then multi-system edge networks using 5g technology could 

slow down and make edge processing inefficient, when compared to the cloud. This can be 

mitigated using more preprocessing steps to evenly distribute the data over the network, 

however there is an absolute limit that needs to be tested. 

 

Kubernetes will have to be further tested to see if there is an upper limit to the number of 

nodes and containers that it can run. Should this limit not be large enough, a deployment of 

this model could run into issues when scaling to a large number of devices. 

 

Power usage will have to be measured to see if docker is a viable cost-effective 

containerization technology. As the edge grows, power usage starts to be a concern, as the 

large number of always running devices can put a strain on a cities’ power infrastructure. 

Optimizing the edge for performance per a watt could help alleviate some of these concerns.  

 



 

18 

 

VII. CONCLUSIONS 

  

This project was a valuable way of testing the feasibility of edge computing in the future. 

Current popular trends such as containerization and cloud-based orchestrators can be adapted 

to run well on the edge. This solution could serve as a valuable first step in testing the 

viability of the edge in comparison to the cloud. 
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X. APPENDIX 
 

A. Essential Code Listings – Model Implementation 

 

Listing 1: Kubernetes deployment for the Kafka broker 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: kafka-broker-pre 

spec: 

  selector: 

    matchLabels: 

      app: kafka-pre 

      id: "0" 

  template: 

    metadata: 

      labels: 

        app: kafka-pre 

        id: "0" 

    spec: 

      containers: 

      - name: kafka-pre 

        image: wurstmeister/kafka 

        ports: 

        - containerPort: 9092 

        env: 

        - name: KAFKA_ADVERTISED_PORT 

          value: "9092" 

        - name: KAFKA_ADVERTISED_HOST_NAME 

          value: kafka-service-pre 

        - name: KAFKA_ZOOKEEPER_CONNECT 

          value: zoo1:2181 

        - name: KAFKA_BROKER_ID 

          value: "0" 

        - name: KAFKA_CREATE_TOPICS 

          value: images:1:1 
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Listing 2: Kubernetes service for the Kafka broker 

apiVersion: v1 

kind: Service 

metadata: 

  name: kafka-service-pre 

  labels: 

    name: kafka 

spec: 

  ports: 

  - port: 9092 

    name: kafka-port 

    protocol: TCP 

  selector: 

    app: kafka-pre 

    id: "0" 

  type: LoadBalancer  
 

Listing 3: Kubernetes deployment for the Kafka Zookeeper container 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: zookeeper-deployment-1 

spec: 

  replicas: 1 

  selector: 

    matchLabels: 

      app: zookeeper-1 

  template: 

    metadata: 

      labels: 

        app: zookeeper-1 

    spec: 

      containers: 

      - name: zoo1 

        image: digitalwonderland/zookeeper 

        ports: 

        - containerPort: 2181 

        env: 

        - name: ZOOKEEPER_ID 

          value: "1" 

        - name: ZOOKEEPER_SERVER_1 

          value: zoo1 
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Listing 4: Kubernetes service for the Kafka Zookeeper container 

apiVersion: v1 

kind: Service 

metadata: 

  name: zoo1 

  labels: 

    app: zookeeper-1 

spec: 

  ports: 

  - name: client 

    port: 2181 

    protocol: TCP 

  - name: follower 

    port: 2888 

    protocol: TCP 

  - name: leader 

    port: 3888 

    protocol: TCP 

  selector: 

    app: zookeeper-1  
 

Listing 5: Kubernetes deployment for the preprocessing container 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: preprocessor 

spec: 

  selector: 

    matchLabels: 

      app: preprocessor 

  template: 

    metadata: 

      labels: 

        app: preprocessor 

    spec: 

      containers: 

      - name: preprocessor 

        image: coletyl/preprocessor 

        env: 

         - name: KAFKA_HOST_NAME 

           value: kafka-service-pre 
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Listing 6: Docker container for preprocessor application 

FROM python:3 

RUN pip3 install kafka-python 

ADD app.py /app.py 

ENTRYPOINT ["python3", "app.py"]  
 

Listing 7: Python application for preprocessor 

from kafka import KafkaProducer 

import os 

import sys 

 

from keras.datasets import mnist 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

 

# Connect to Kafka 

kafka_host = os.getenv('KAFKA_HOST_NAME') 

if(kafka_host == None): 

    print("Failed, no KAFKA_HOST_NAME environment variable was set") 

    sys.exit(1) 

 

# Setup Kafka Producer 

producer = KafkaProducer(bootstrap_servers=kafka_host) 

numIterations = 0 

for x_test as test: 

    numIterations = numIterations+1 

    # Stop after 50 iterations 

    if(numIterations >= 50): 

        exit(0) 

    b = test1.tobytes() 

    print("Message sent") 

    response = producer.send('images', b) 

    print("Response = " + str(response)) 

    result = response.get(timeout=30) 

    print("Fetched Message = " + str(result))  
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Listing 8: Kubernetes deployment for the processor container 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: processor 

spec: 

  selector: 

    matchLabels: 

      app: processor 

  template: 

    metadata: 

      labels: 

        app: processor 

    spec: 

      containers: 

      - name: processor 

        image: coletyl/processor 

        env: 

         - name: KAFKA_HOST_NAME 

           value: kafka-service-pre  
 

Listing 9: Docker container for the processor application 

FROM rocm/tensorflow:latest 

LABEL maintianer="Tyler Cole" 

 

ENV DEBIAN_FRONTEND noninteractive 

 

ADD app.py /app.py 

 

RUN pip3 install kafka-python 

RUN pip3 install keras 

RUN pip3 install networkx 

 

ENTRYPOINT ["python3",  "/app.py"]  
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Listing 10: Python processor application 

from kafka import KafkaConsumer 

import os 

import sys 

import time 

import socket 

from tensorflow import keras 

import numpy as np 

 

kafka_host = os.getenv('KAFKA_HOST_NAME') 

if(kafka_host == None): 

    print("Failed, no KAFKA_HOST_NAME environment variable was set") 

    sys.exit(1) 

 

if __name__ == "__main__": 

 

    HOST, PORT = "trainer-model-service", 80 

    data = "my data" 

    # Create a socket (SOCK_STREAM means a TCP socket) 

    while 1: 

        try: 

            # Connect to server and send data 

            sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

            sock.connect((HOST, PORT)) 

        except socket.error: 

            print("Couldn't connect to server, no model available"); 

            time.sleep(5); 

            sock.close(); 

            continue  

       sock.sendall(bytes(data + " ", "utf-8")) 

        # Receive data from the server and shut down 

        print("Receiving the model:"); 

        received = b''; 

        numReceived = 0 ; 

        while True: 

            data = sock.recv(1048576); 

            print("Recevied data, len = " + str(len(data)) + ", this is byte num 

" + str(numReceived) + "\n"); 

            numReceived+=1; 

            if not data: break 

            received += data; 

        sock.close() 

        break  
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    print("Len = " + str(len(received))); 

    f = open('/model.h5', 'wb') 

    f.write(received) 

    f.close() 

    print("Model receieved"); 

    model = keras.models.load_model("/model.h5") 

 

    consumer  = KafkaConsumer("images", group_id="processor",  request_timeout_ms

=120000,session_timeout_ms=100000, bootstrap_servers=kafka_host) 

 

    for message in consumer: 

       bytestream = bytes(message.value) 

       newer = np.frombuffer(bytestream, dtype=np.uint8) 

       newer = newer.reshape((28,28)) 

       newer = np.expand_dims(newer, axis=0) 

       newer = np.expand_dims(newer, axis=3) 

       scores = model.predict(newer); 

       print("Prediction = " + str(scores));  
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B. Essential Code Listings – Model Creation  

 

Listing 11: Kubernetes deployment for the training container 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: trainer 

spec: 

  selector: 

    matchLabels: 

      app: trainer 

  replicas: 1 

  template: 

    metadata: 

      labels: 

        app: trainer 

    spec: 

      containers: 

        - name: trainer 

          image: coletyl/trainer 

          ports: 

            - containerPort: 9999 

          env: 

           - name: KAFKA_HOST_NAME 

             value: kafka-service-train  
 

Listing 12: Kubernetes service for the training container 

apiVersion: v1 

kind: Service 

metadata: 

  name: trainer-model-service 

spec: 

  selector: 

    app: trainer 

  ports: 

  - protocol: TCP 

    port: 80 

    targetPort: 9999 
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Listing 13: Docker container for the training application 

FROM rocm/tensorflow:rocm3.3-tf1.13-centos-mkl-dev 

LABEL maintianer="Tyler Cole" 

 

ENV CENTOS_FRONTEND noninteractive 

 

ADD Keras-CoDeepNEAT /Keras-CoDeepNEAT 

ADD run_mnist.py /run_mnist.py 

 

RUN yum install -y python3.6-dev graphviz* libgraphviz-dev   

 

RUN pip install kafka-python 

RUN pip install -Iv keras==2.2.5 

RUN pip install -Iv networkx==2.3 

RUN pip install -Iv pydot==1.4.1 

RUN pip install graphviz 

RUN pip install pygraphviz 

RUN pip install sklearn 

RUN pip install matplotlib==3.2.1 

 

 

ENTRYPOINT ["python3",  "/run_mnist.py"]  
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Listing 14: Excerpt from the python training application 

if __name__ == "__main__": 

 

    generations = 2 

    training_epochs = 2 

    final_model_training_epochs = 2 

    population_size = 1 

    blueprint_population_size = 10 

    module_population_size = 30 

    n_blueprint_species = 3 

    n_module_species = 3 

 

    def create_dir(dir): 

        if not os.path.exists(os.path.dirname(dir)): 

            try: 

                os.makedirs(os.path.dirname(dir)) 

            except OSError as exc: # Guard against race condition 

                if exc.errno != errno.EEXIST: 

                    raise 

 

    create_dir("models/") 

    create_dir("images/") 

     

    run_mnist_full(generations, training_epochs, population_size, blueprint_popul

ation_size, module_population_size, n_blueprint_species, n_module_species, final_

model_training_epochs) 

     

    

    print("############################################"); 

    print("### Loading top performing model ....  #####"); 

    print("############################################"); 

   

    filename = "best_generation_" + str(generations-1) + ".h5"; 

    model = keras.models.load_model("models/" + filename) 

    

    print("############################################"); 

    print("### Manually verifying the test scores #####"); 

    print("############################################"); 

 

    img_rows, img_cols = 28, 28 

    (x_train, y_train), (x_test, y_test) = mnist.load_data()  

    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) 

    y_test = keras.utils.to_categorical(y_test, 10) 

    x_test = x_test.astype('float32') 

    x_test /= 255  
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    scores = model.evaluate(x_test, y_test, verbose=1) 

 

    print("Setting up kafka application ... "); 

    

    os.rename("models/"+filename, "/model.h5"); 

 

    HOST, PORT = socket.gethostname(), 9999 

 

    # Create the server, binding to localhost on port 9999 

    server = socketserver.TCPServer((HOST, PORT), MyTCPHandler) 

 

    # Activate the server; this will keep running until you 

    # interrupt the program with Ctrl-C 

    server.serve_forever() 
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Listing 15: Kubernetes deployment for the Kafka broker container 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: kafka-broker-train 

spec: 

  selector: 

    matchLabels: 

      app: kafka-train 

      id: "0" 

  template: 

    metadata: 

      labels: 

        app: kafka-train 

        id: "0" 

    spec: 

      containers: 

      - name: kafka-train 

        image: wurstmeister/kafka 

        ports: 

        - containerPort: 9092 

        env: 

        - name: KAFKA_MESSAGE_MAX_BYTES 

          value: "2000000000" 

        - name: KAFKA_ADVERTISED_PORT 

          value: "9092" 

        - name: KAFKA_ADVERTISED_HOST_NAME 

          value: kafka-service-train 

        - name: KAFKA_ZOOKEEPER_CONNECT 

          value: zoo2:2181 

        - name: KAFKA_BROKER_ID 

          value: "0" 

        - name: KAFKA_CREATE_TOPICS 

          value: "models-to-fit:1:1,models-fitted:1:1" 
 

 
  



 

31 

 

Listing 16: Kubernetes service for the Kafka broker container(s) 

apiVersion: v1 

kind: Service 

metadata: 

  name: kafka-service-train 

  labels: 

    name: kafka 

spec: 

  ports: 

  - port: 9092 

    name: kafka-port 

    protocol: TCP 

  selector: 

    app: kafka-train 

    id: "0" 

  type: LoadBalancer  
 

Listing 17: Kubernetes deployment for the Kafka Zookeeper container(s) 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: zookeeper-deployment-2 

spec: 

  replicas: 1 

  selector: 

    matchLabels: 

      app: zookeeper-2 

  template: 

    metadata: 

      labels: 

        app: zookeeper-2 

    spec: 

      containers: 

      - name: zoo2 

        image: digitalwonderland/zookeeper 

        ports: 

        - containerPort: 2181 

        env: 

        - name: ZOOKEEPER_ID 

          value: "1" 

        - name: ZOOKEEPER_SERVER_1 

          value: zoo2 
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Listing 18: Kubernetes service for the Kafka Zookeeper container(s) 

apiVersion: v1 

kind: Service 

metadata: 

  name: zoo2 

  labels: 

    app: zookeeper-2 

spec: 

  ports: 

  - name: client 

    port: 2181 

    protocol: TCP 

  - name: follower 

    port: 2888 

    protocol: TCP 

  - name: leader 

    port: 3888 

    protocol: TCP 

  selector: 

    app: zookeeper-2  
 

Listing 19: Kubernetes deployment for the worker container(s) 

kind: Deployment 

apiVersion: apps/v1 

metadata: 

  name: worker 

spec: 

  selector: 

    matchLabels: 

      app: worker 

  template: 

    metadata: 

      labels: 

        app: worker 

    spec: 

      containers: 

      - name: worker 

        image: coletyl/worker 

        env: 

         - name: KAFKA_HOST_NAME 

           value: kafka-service-train 
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Listing 20: Docker file for the worker application

FROM rocm/tensorflow:rocm3.3-tf1.13-centos-mkl-dev 

LABEL maintianer="Tyler Cole" 

 

ENV CENTOS_FRONTEND noninteractive 

 

ADD app.py /app.py 

 

RUN pip3 install kafka-python 

RUN pip3 install keras 

RUN pip3 install networkx 

 

ENTRYPOINT ["python3",  "/app.py"]  
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Listing 21: Python application for the worker

from kafka import KafkaConsumer 

from kafka import KafkaProducer 

import os 

from tensorflow import keras 

import numpy as np 

import io 

import tarfile 

import json 

kafka_host = os.getenv('KAFKA_HOST_NAME') 

if(kafka_host == None): 

    kafka_host = "kafka-service-train"; 

 

consumer  = KafkaConsumer("models-to-

fit", group_id="worker",  fetch_max_bytes=2000000000, request_timeout_ms=120000,s

ession_timeout_ms=100000, bootstrap_servers=kafka_host) 

 

while(1): 

    print("Starting the worker process"); 

    for message in consumer: 

        print("Waiting for message"); 

        bytestream = bytes(message.value) 

        file_like_object = io.BytesIO(bytestream) 

        tar = tarfile.open(fileobj=file_like_object) 

        for member in tar.getmembers(): 

            print("F = " + str(member.name)); 

        tar.extractall() 

        break; 

 

    print("Model receieved"); 

    model = keras.models.load_model("/model.h5") 

 

    input_x = np.fromfile("input_x", dtype = np.uint32);  

    input_y = np.fromfile("input_y", dtype = np.uint32); 

    print("X and Y are loaded", str(input_x.shape), str(input_y.shape)); 

 

    metadata_file = open("metadata"); 

    metadata = json.load(metadata_file); 

    metadata_file.close(); 

    print("Metadata has been received, = " + str(metadata)); 

    index =  metadata["index"]; 

    training_epochs = metadata["training_epochs"]; 

    validation_split = metadata["validation_split"]; 

    x_shape = metadata["x_shape"]; 

    y_shape = metadata["y_shape"];  
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    input_x = np.reshape(input_x, x_shape); 

    input_y = np.reshape(input_y, y_shape); 

    print("New shape = " + str(input_x.shape)); 

    score = model.fit(input_x, input_y, epochs=training_epochs, validation_split=

float(validation_split), batch_size=128) 

    producer = KafkaProducer(bootstrap_servers=kafka_host) 

    print("index, score = ", + str(index) + " "  + str(score)); 

    producer.send('models-fitted', {index: score}) 

    print("Resposne = " + str(response)) 

    result = response.get(timeout=30) 

    print("Result = " + str(result)) 
 

 


