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0. Abstract
This project focuses on implementing a model predictive control (MPC) algorithm as a pathfinding

algorithm for navigating tracks with the Oregon State University Global Formula Racing (GFR)

team's driverless car. The new algorithm would use an optimization function to calculate the least-cost

path for the car to take by assigning costs to actions such as braking and turning. The goal of this

project was to improve lap times by increasing the car's average velocity while optimizing the paths

taken through turns. This algorithm was chosen because it focuses on generating optimal racing lines

rather than staying centered in the track, as well as because of the support for open-source

implementations of the algorithm. The new code was added as a Robot Operating System (ROS) node

in the existing autonomous controls codebase within the GFR autonomous team. Incorporation of this

algorithm demonstrated the capability to match, but not yet substantially exceed the average velocity

of the pure pursuit algorithm. This was due to a combination of steering issues at the start of tracks

and limited top speeds. However, flexibility in the bounds set by MPC provides the groundwork for

fine-tuning to overcome its current limitations.

1. Project Description

1.1 Introduction
The Global Formula Racing (GFR) team is the product of collaboration between Oregon State

University and Ravensburg University of Cooperative Education (Duale Hochschule

Baden-Württemberg Ravensburg). Its purpose is to compete in Formula SAE events. Students from

these universities design and build cars to fulfill the requirements of these events, which include

driverless navigation of race tracks. The team follows a design philosophy of verifying the integrity of

its systems through rigorous testing. In the case of driverless navigation, rigorous testing is done

through replicating the car's behavior in simulation software. Driverless navigation is handled by the

GFR autonomous subteam, of which the autonomous controls node - the focus of this paper - is one

element of. The autonomous controls node performs pathfinding on a track, then determines the

appropriate inputs to be sent to the car to allow it to follow this path.

This project focuses on implementing a model predictive control (MPC) algorithm as a pathfinding

algorithm for navigating tracks with the GFR driverless car. MPC uses an optimization function to

find the lowest-cost path around a track, where actions such as braking and steering are considered

high-cost. It operates within a given set of bounds - for example, the track boundaries cannot be



exceeded - that limits the horizon of possible solutions to the optimization problem. MPC algorithms

have been used in Formula SAE competitions before in cars with a similar software architecture to the

GFR car [1], so testing its use in the GFR car is necessary to remain competitive in competitions.

The specific implementation of MPC used in this project is model predictive contouring control

(MPCC), an open source project focusing on use of MPC in autonomous racing cars [2]. In addition

to the optimization component of the algorithm, MPCC performs contouring within track limits to

predict a path for the car to follow. The optimization component is then applied to this path to

determine the least-cost route for the car to take. Because contouring is a time-consuming task, the

algorithm places a low amount of effort on creating perfect contouring, instead emphasizing

high-precision solutions to the optimization problem for following the contouring. The MPCC

formulation focuses on following this path by maximizing progress along the contoured path in a

minimum number of timesteps while being limited to track constraints, which is equivalent to

maximizing progress along the track [3]. Imposing the limitation of track boundaries limits the risk of

poor contouring resulting in the car exceeding track boundaries.

The resulting optimization function is quadratic, presenting a nonlinear programming problem. This

means that the solution is derived from a system of quadratic equations with polynomials of degrees

greater than 1. Liniger [3] presents two possibilities for solving the problem: linear-time-varying

approximation and using a nonlinear programming solver. The former is computationally faster, but

less precise and limits the number of possible constraints that can be applied to the car model. The

latter is the implementation used in the MPCC codebase, and takes longer per timestep but improves

driving performance and allows incorporation of additional friction forces in the car's tire model.

The autonomous navigation algorithm is used when the car is operating in driverless mode. The

autonomous controls system consists of this algorithm and its input and output interfaces with other

projects on the autonomous team. The system reads input information from cone positions on track

maps generated by the car's simultaneous localization and mapping (SLAM) node, as well as state

estimation data retrieved from the Robot Operating System (ROS) on the car's heading, velocity, and

position. With this, the controls system calculates a path for the car to take and the adjustments to

throttle, braking, and steering controls needed to follow that path. It then outputs the necessary

adjustments to the actuator systems for these controls.



1.2 Requirements
The project is intended to be able to function with only the information other autonomous projects

and ROS itself can provide, specifically current controls inputs, odometry information, and cone

positions. The current controls inputs affect subsequent inputs to the controls. The project should

output valid (numerical) values to the throttle and steering actuators at appropriate times, with

steering being a value in degrees, and with throttle being a value representing target velocity in meters

per second. The steering actuator attempts to correct the angle of the front tires to the target steering

angle value, and the throttle actuator attempts to adjust velocity to the target throttle input value.

Within the code, there is no limit to what these values should be at any given point in time, provided

they are inside the configurable bounds defined in the algorithm's files. Variation in real cone

positions compared to the SLAM map will necessarily decrease the error tolerances for controls

inputs, as they are ultimately used to determine the car's relative position and movement within the

track.

Code used in the project should be documented and organized. For code styling, file names, and

directory names, code conforms to the ROS C++ Style Guide [4]. This guide generally recommends

using lowercase, underscored names for files, and combining C-style header files with C++-style

source files. It also utilizes camel case for a variety of code elements, including class names and

function names, with most other elements being either all lowercase or all uppercase, and

underscored. Documentation is done through the tool Doxygen [5], an open-source C++ automatic

documentation generating tool. Code comments in the project therefore conform to Doxygen

requirements.

The autonomous system, like the entirety of the GFR car, is governed by Formula Student rules [6].

These rules primarily govern the sensors providing information to the autonomous system as well as

the driver functions regulating when the autonomous system is used. Sensors are prohibited from

using wireless communication and the autonomous system must be regulated by a master switch

which can enable or disable the system, and must have accompanying indicator lights. Because the

requirements outlined in the Formula Student rules are addressed by other components of the

autonomous system, their consideration in the autonomous controls portion of the system (the scope

of this project) is not strictly necessary.

It may utilize existing tools developed by the team, as well as those available with ROS, and any

code interfacing with ROS should be written in C++. Finally, its runtime should be low enough to not



negatively impact the car's performance. Because the project's runtime affects when commands to

control systems are issued, shorter runtimes result in more precise track navigation, and are therefore

desirable.

1.3 Black Box Description
The autonomous controls system accepts a track map generated by SLAM, and outputs instructions to

the throttle and steering systems in the form of target velocity and steering angle to navigate the track.

The locations of the cones on the track map are determined by a combination of camera and lidar, as

well as the SLAM node's interpretation of camera and lidar outputs, so the accuracy of the controls

algorithm is dependent on the accuracy of those systems as well. Prior to providing input to controls,

the track map should be formatted in YAML format.

1.4 System Description
The autonomous controls system is part of the larger autonomous system. It interfaces with the

SLAM node of the autonomous system to obtain track maps and with the throttle and steering

actuators for outputting controls. The overall system should provide input to the car's controls when it

is operating driverless using the known positions of cones around the track by interpolating track

boundaries from the cones and calculating an ideal racing line around the track. State estimation data,

such as position, heading, and velocity, are obtained from ROS, which is integral to the autonomous

system as a whole. The physics of the car (including weight, dimensions, tires, velocity, and position)

should be combined with the ideal racing line, state estimation information, and prior control values

to determine the new values of inputs provided to the controls.

2. Current State Analysis and Benchmarking

2.1 Current State Analysis
The ending state of the prior year's vehicle used a C++ implementation of a pure pursuit algorithm. It

contains two main files, named "inspection" and "pure_pursuit." The pure_pursuit file, which is the

file executed by default, contains eight functions, including separate functions for calculating a target

point, calculating steering angle, and calculating acceleration. The inspection file serves as a test file,

providing alternating steering angles at low speeds.



The pure pursuit file (pure_pursuit) runs primarily by repeatedly calling its update() method. This

method calls transform_path(), which updates the traveled path with the most recent line traveled by

the car based on prior trajectories. This is followed by findTarget(), which determines the next point

to travel to based on the car's current position and visible cones. update() then calls

calculateSteering() and calculateAcceleration() which determine the commands to be sent to the

physical controls, and finishes by publishing the steering and acceleration commands to the controls

and the new target as a marker. A flowchart of the code is given below.

Figure 1: A flowchart of the prior year's pure pursuit code.

Because the prior year was the first year of GFR using an autonomous controls node, no other

iterations of the code exist.

In the case of the MPCC library, by default the car model is a 1:43 scale electric vehicle [2] with

significantly different physical properties from the GFR car. It also includes many functions

unnecessary to the functionality of the autonomous controls node, which are present for the purpose

of demonstration and visualization of the code's output. The cycle used by MPCC begins by loading

its own default track, then repeatedly solving MPC problems generated by the code's own internal

simulator (referred to as its "integrator"), and finally plotting the results of each solution. The MPCC

integrator is similar to the GFR simulator in its physics model, but uses fewer parameters for

modeling motor strength and tires, and therefore is expected to produce different results.

Strengths-Weaknesses-Opportunities-Threats (SWOT) Analysis
A SWOT analysis for replacing pure pursuit with MPC is given below.



Strengths
● MPC is focused on producing an ideal

racing line with variable throttle inputs,
leading to potentially better lap times

● Both the MPC software and the Global
Formula Racing autonomous code are
written in C++, minimizing risk of
compatibility issues

Weaknesses
● Pure pursuit is already implemented and

known to work
● Pure pursuit has a fast runtime
● MPC is significantly more complex and

difficult to debug
● Pure pursuit can be used on courses

where not all the cones are known,
whereas MPC requires the entire track
to be known in advance

Opportunities
● Open-source implementations of MPC

are readily available
● Potential to catch up to teams already

using MPC

Threats
● External MPC software is not

plug-and-play and will require the
creation of intermediate code

● MPC software will need to be modified
to fit the physics and controls format of
the GFR car

Overall, MPC presents advantages in its optimized racing line construction, its availability in

compatible open-source implementations, and possible lap time reduction. However, it is competing

with a fully-implemented and effective pure pursuit implementation, while also suffering drawbacks

in its complexity, course limitations, and changes needed to make it compatible with the current GFR

autonomous software pipeline.

2.2 Benchmarking
The previously-implemented pure pursuit algorithm performs its calculations by finding a new target

point to drive to, then calculating the steering and acceleration needed to reach that target. These

instructions are then published to the controls as commands. Therefore, useful information that can be

measured from pure pursuit in the simulator are the throttle and steering commands, velocity,

execution time, and a visual representation of the real path followed along the track. To benchmark

this information, the pure pursuit algorithm was run for one lap around the GFR simulator's default

track. Graphs of the information obtained from this are given below.



Figure 2: Plot of pure pursuit execution time along different points in the default autonomous track.

The above graph shows the time taken to calculate and issue throttle and steering commands using

pure pursuit. Currently there is no explanation for the marginal yet consistent increase in

computational time beyond 90% track completion. However, the dataset overall showed that the

group of functions used for pure pursuit calculations averaged 44 μs.

A well-implemented MPC algorithm does not need to beat these times, and given the complexity of

its algorithm it likely cannot. However, it does provide the foundation for expectations on what a

reasonable runtime should be when the MPC functions are called.



Figure 3: Plot of pure pursuit track path along the default autonomous track.

The above graph shows the path taken using pure pursuit over one lap of the GFR simulator's default

track. The pure pursuit approach results in the car staying in the approximate center of the track

throughout the entire lap. Importantly, the car does not at any point exceed track boundaries.



Figure 4: Plot of pure pursuit throttle command along different points in the default autonomous

track.

This graph provides visualization of throttle input over the course of one lap. Pure pursuit provides

throttle input equal to the target velocity immediately, and continues to do so until the target velocity

is reached. After this, it attempts to maintain the target velocity as closely as possible. In this case, the

target velocity is approximately 3.5 m/s, or 12.6 km/h.



Figure 5: Plot of pure pursuit steering command along different points in the default autonomous

track.

This graph shows the target steering angle over the course of one lap. Steering angle is measured as

degrees of rotation of the front tires. Although overall the graph does not show any unusual steering

behavior, it does demonstrate an imprecise approach to steering correction, as the car appears to

remain at a target steering angle for some number of time steps before abruptly adjusting. Smoother

and less discrete transitions between steering angles may provide more flexibility in the steering

angles the car can expect to achieve.



Figure 6: Plot of pure pursuit velocity along different points in the default autonomous track.

This graph shows the actual velocity of the car over the course of one lap. Much like the throttle

graph, it demonstrates that the car rapidly accelerates to 3.5 m/s, and attempts to remain at this

velocity over the course of the lap, making corrections to this end when needed.

This data do not indicate any problems that fundamentally prevent the car from being competitive, but

they do provide a benchmark to compare MPC results with.

3. Design Analysis

3.1 Design Concepts
The autonomous controls system aims to calculate the fastest path around a track. To do so, the

position of the cones forming track boundaries must be known, as well as both transitory and inherent

aspects of the car including current velocity, current steering angle, car weight, car length, and car

mass. The existing implementation of this system is in the form of a pure pursuit algorithm; the

primary alternative to this is an MPC algorithm. Because MPC is an optimization algorithm, it is

possible to weigh some objectives over others; for example, it is possible to prioritize avoiding the



track boundaries more, which would necessitate more cautious driving - and therefore possibly slower

lap times - but reduce the risk of exceeding the track limits. The MPCC implementation prioritizes

maximizing average velocity over the course of one lap with the condition that track boundaries are

never exceeded.

3.1.1 Concept 1 - Pure Pursuit
A pure pursuit algorithm keeps track of all visible cones in front of the car, as well as all

previously-seen cones within a specific radius of the car. The algorithm works in a cycle, finding a

point that is both within the specified radius (limited by previously-seen cones) as well as between the

inner and outer cones seen ahead. The car then drives straight to this point, adjusting steering angle as

necessary and braking as the point approaches. Once the point is reached, the car repeats the cycle.

This algorithm is dynamic and does not require knowing the course ahead of time. However, there is

no attempt to find the quickest path around a circuit, only an accurate path.

The algorithm works in the context of a car by adjusting the steering angle to allow a car in motion to

reach a given point. This is necessary because a car in motion cannot turn on the spot to face a new

target point, but rather must follow an arc to reach it. A visual representation of this is shown below.

Figure 7: Visual representation of pure pursuit [7].



3.1.2 Concept 2 - MPC
An MPC algorithm requires existing knowledge of cone positions. With this information, the

algorithm calculates a path through the course using an optimization algorithm maximizing rate of

change in position while minimizing necessary changes to controls such as steering angle and

braking. It is bound by pre-defined constraints that it cannot exceed, such as the physical attributes of

the car and the boundaries of the course. Open-source implementations of MPC algorithms exist with

pre-defined optimization parameters while car and course attributes can be modified in configuration

files.

This algorithm has both "hard" and "soft" limitations hardcoded into whichever open-source

implementation is chosen. Hard limitations - those that cannot ever be exceeded - may include track

boundaries and the physics of the car. Soft limitations - those that are given priority in the

optimization algorithm - may include minimum speed or maximum steering angle at a given speed.

These, along with the weights of different components of the optimization algorithm, would not be

changed if an unmodified MPC algorithm were implemented. An example of a path followed by an

MPC algorithm around a track is given below. This example is included in the MPCC library as a

demonstration of the code, and is not using the GFR car model.

Figure 8: A path followed around a track calculating using MPCC; the red dashed line is the

centerline, and the blue line is the path taken.

Regardless of how an MPC algorithm is implemented, the model used would have to be adjusted to

accommodate the GFR car's physical attributes, such as weight and dimensions.



3.1.3 Concept 3 - MPC with Changes to Optimization
Existing MPC algorithms can be modified not only in the car and track parameters, but also in the

relative priority placed on minimizing changes to controls while avoiding the track boundaries. If

current open-source solutions are excessively cautious in avoiding cones, it may be advantageous to

edit the code to place additional emphasis on speed. On the other hand, if current implementations are

too risky with their behavior, it is possible to prioritize avoiding cones more instead. Whether these

changes are necessary can only be determined through trial and error in testing. As with Concept 2,

changes to the model to match the GFR car's physical attributes would be necessary.

3.2 Design Iterations
The three implementations listed above are described below.

3.2.1 Design Iteration 1 - Pure Pursuit

Advantages Disadvantages

● Can always be used for events where
the course is not known beforehand

● Already implemented

● Does not attempt to find optimal racing
line

● Does not vary throttle input to account
for turns or straights

Risks Potential Failure Modes

● Slowness from non-ideal racing line
could compromise lap times

● Relies on consistently accurate input
about cone positions

● Inaccurate inputs could result in an
incorrect line if camera or LIDAR miss
or erroneously detect a cone

The pure pursuit concept has advantages in its versatility and existing implementation. However, it is

not a competitive algorithm in terms of expected results. These jeopardize the chances of posting fast

lap times when used on courses where use of an MPC algorithm is possible.



3.2.2 Design Iteration 2 - MPC

Advantages Disadvantages

● Finds an ideal racing line
● Open-source implementations exist,

limiting necessary work

● Only works on courses where cone
positions are known in advance

● Requires integration with existing
software

Risks Potential Failure Modes

● Car comes much closer to track
boundaries than pure pursuit

● Untested, more risks may arise
spontaneously

● Existing open-source models may not
handle existing car model well

● Varying levels of precision in
optimization may push car too close to
track boundaries

The MPC concept showcases the main advantage of the algorithm, in that it attempts to find an ideal

racing line in advance, producing a faster theoretical lap without needing to redo these calculations

while in motion. However, while implementing unmodified open-source software is both easier and

more stable, it compromises the accuracy and effectiveness of the output, with racing lines possibly

coming too close to track boundaries or the car physics being improperly modeled, with unpredictable

results.

3.2.3 Design Iteration 3- MPC with Changes to Optimization

Advantages Disadvantages

● Finds an ideal racing line
● Cone positions are known to be

accurate, so no room for input error
from sensors

● Allows balancing speed and risk-taking
to levels acceptable to the team

● Only works when cone positions are
known in advance

● Requires integration with existing
software

● Requires modification of existing
third-party code, which may not be
well-documented or stable in when
modified

Risks Potential Failure Modes

● Totally untested, more risks may arise
much more spontaneously

● Misjudging risk-taking levels may result
in higher rates of exceeding track limits
or slower than optimal speed



The third option, modifying existing MPC software, poses a greater risk of failure due to being

completely untested and requiring changes to unfamiliar code. This could have the consequences of

unpredictable behavior during races. However, it allows fine-tuning the optimization algorithm to

what is reasonable for the car used by GFR, potentially producing both faster and safer laps.

4. Design Selected
The design selected for implementation was Concept 2 with some elements of Concept 3. This design

uses MPCC, a largely third-party implementation of an MPC algorithm. The selected implementation

does not model cars of the specification used by GFR. Therefore, minor changes to the model itself

(as opposed to simply the track and car physics inputs) were necessary. While changes to the

optimization algorithm itself were not made, the relative weights assigned to some components of the

algorithm - primarily the soft limitations on maximum and minimum speed - were changed. Initial

testing indicated the car did not vary its speed to an acceptable degree using the default settings, and

so the minimum speed was lowered and the maximum speed raised. However, these are predefined

variables that can be configured in external, non-code configuration files, and therefore do not affect

the method in which the MPC solution is derived.

The algorithm selected for this implementation was Liniger's [2] MPCC C++ algorithm, which allows

an input track and car model, and produces output plots of the ideal racing line, controls inputs, and

expected physical results such as position and velocity.

4.1 Rationale for Selection
The algorithm selected met the requirement of forecasting a racing line around an arbitrary course

while providing the inputs for a car with arbitrary specifications needed to navigate the course. This is

needed for the car to move while not exceeding track boundaries. MPCC is implemented in C++,

making it easily compatible with GFR's ROS architecture. While not a strict requirement, this does

provide it an advantage over other MPC implementations that provide similar behavior but may

require programming language translation to implement. The software is compiled from a large set of

C++ files handling different parts of the MPC algorithm, and outputs its instructions and predictions

in the form of plots. When implemented into ROS, these instructions can instead be sent directly to

the GFR car's controls rather than plotting, which would reduce computation time, as plots of the

controls are unnecessary while the car is running.



Modifications to the configuration of MPCC were deemed necessary based on a lack of variation in

the car's velocity in simulator testing. Because this was the only area of concern in testing, no changes

were made to the algorithm itself, but rather to the predefined weights used by the algorithm assigned

to increasing and decreasing velocity.

4.2 Technical Specification
The MPC algorithm interfaces with a pre-generated track map and ROS odometry in order to verify

its position along the course at any given point. Once the position is verified and compared to the

expected point and physical state predicted by the MPC algorithm, the appropriate instructions to

correct to or maintain the forecasted path are relayed to the throttle and steering actuators. These

interfaces - odometry to MPC and MPC to actuators - are the components of the code implemented by

this project.

4.2.1 Specification Sheet
The following equations are specified by Liniger [8] as the basis for the MPCC codebase's

optimization problem generation:

Figure 9: MPC model equation [8].

This in turn relies on the following model for vehicle dynamics (a bicycle model) to provide X and Y:



Figure 10: Bicycle model equations [8].

A bicycle model is not as computationally demanding as a double-track model, which is a more

generally applicable model for car applications. However, Vazquez [9] argues that the bicycle model

is applicable in the specific case of Formula SAE cars, as the cars generally follow the basic

assumptions of the bicycle model that the track is level, load changes and combined slip are ignored,

drivetrain forces act on the vehicle's center of gravity, and the vehicle is a rigid body. The tire and

drivetrain model listed in the above tire model and the constraints listed on the above MPC model are

defined by the following equations:

Figure 11: Tire and drivetrain model equations [8].

Finally, the variables in these equations are defined with the state and inputs:

Figure 12: State inputs [8].

Where, according to Liniger, "(X,Y) is the global position phi the heading of the car, vx, and vy the

longitudinal respectively the lateral velocity and omega the yaw rate." This formula determines how a

car will navigate a given stretch of track given the car's physics and bound by the constraints of the



track boundaries. The tire model provided by Liniger was revised in order to enable compatibility

with the GFR model. In the above equations, it is listed as:

𝐹
𝑦
 =  𝐷 𝑠𝑖𝑛(𝐶 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵 α))

This is the MPCC solution for lateral force applied to a tire at any given point. B, C, and D are

predefined physical properties of the car (in the case of the GFR car, these are B = 12.56, C = 1.38,

and D = 1.60). However, The model GFR uses for Fy is:

𝐹
𝑦
 =  𝐷 𝑠𝑖𝑛(𝐶 𝑎𝑟𝑐𝑡𝑎𝑛 (𝐵 (1 −  𝐸) α +  𝐸 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵 α))) 𝐹

𝑧

This includes both an E component for the tires, as well as an Fz component (in the case of the GFR

car, E = 0.58). This difference results from the MPCC software being designed around small,

radio-controlled cars rather than human-driven cars, as the smaller car deals with less substantial

physical forces and as such requires fewer variables to model accurately. All the other input

parameters (given in x) are directly compatible with what is used in the GFR simulator and only

require a function, which transfers them to the MPC software at runtime by reading the values from

ROS.

The remaining variables are not identified in the paper published by Liniger [8] pertaining to the

MPCC code. Inspection of the code suggests φ to be the heading angle of the car, θ to be the progress

along the track, d to be the throttle input as a target velocity in meters per second, δ to be the steering

angle in radians, and vθ to be the rate of change of θ. Components of x (states) are values that are

measured prior to each solution, whereas components of u (inputs) are numbers taken directly from

the prior solution (being 0 initially). The identity of all other listed variables remains uncertain, as

they are documented neither in the Liniger [8] paper nor in the MPCC code. Moreover, because the

C++ implementation of the MPCC code uses different variable names altogether from those presented

by Liniger, mapping the variables used from the code to the equations is not possible without

completely reverse-engineering MPCC, which is outside the scope of this project.

4.2.2 Performance Specification Estimation
Performance estimations for the MPC algorithm can be obtained by recording identical data to pure

pursuit, as the same data is available across both, and provides a point of comparison for the two

algorithms. This means the execution time of the MPCC function, coordinates of the car across one

lap to generate a track path, velocity across one lap, and the steering and throttle control outputs

across one lap can be recorded at time step intervals. While the two algorithms will require a different



quantity of timesteps to navigate one lap, converting the vectors containing each timestep to linearly

spaced vectors of equivalent length allows for simpler comparison and visualization.

5. Implementation
Ultimately, the MPC algorithm was implemented by adding the existing MPCC codebase as a

submodule of the controls codebase. Extraneous files such as the plotting function and MATLAB

implementation of the program were dropped, and the software's configuration files were relocated to

the controls directory. Within the controls directory, a driver C++ file was added to handle fetching

odometry information, converting the track file to a format readable by MPCC, executing the MPC

function, and issuing controls to the throttle and braking actuators. Within the MPCC configuration

files, the costs for changing throttle input were decreased, the target velocity range increased, and the

physical parameters of the car updated in order to account for the demands of the GFR car.

5.1 Interface Definitions
The MPCC driver file interfaces with the controls actuators by publishing steering and throttle

commands. The method in which it does this is identical to the existing pure pursuit implementation.

5.2 Code Architecture
The MPC implementation uses the predominantly-external MPCC codebase for solving MPC

problems. Therefore, the driver file focuses primarily on generating the problems and serving as an

interface between the track maps, ROS, MPC, and actuators. It does so by initializing the track map

by generating an MPCC-compatible configuration file based on information read from the simulator's

track directory. Which track it selects from there can itself be set in a configuration file. Once the

track is set, the software enters a cycle where an MPC structure is generated containing the car's

current position, velocity, heading, and commands. The track is assigned as an attribute of this

structure, and the structure sent to the MPC solving function. The MPC solving function returns

throttle and steering commands, which are forwarded to the command publisher. After this, the cycle

repeats by generating a new MPC structure with the previously-returned throttle and steering outputs

included as inputs.



5.3 Parameters
The MPC implementation has a variety of configuration files it uses as parameters. However, as most

of the definitions in these files never need modification, they can be treated as constants. Therefore,

only the following parameters are fetched from configuration files located in the controls

configuration directory: a track file name to use, the target average velocity, and range of allowable

deviation from the target average velocity. While the target average velocity is based on the physical

parameters of the car, increasing it can result in faster but risker track navigation, whereas decreasing

it results in slower but safer track navigation. Similarly, increasing the range for average velocity

increases speed and risk while decreasing it decreases speed and risk. This justifies customization of

these values, and therefore they must be treated as parameters.

Also used as parameters are the car's current velocity in both the x and y directions, current x and y

position, and heading. These are fetched from basic ROS operations, and are updated by

gfr_common, which handles processing commands published to actuators. While these parameters are

not customizable, their variation does affect the operation of each cycle of MPC solving.

6. Testing & Support
Because the MPCC library is treated as a black box within this project due to the selection of Concept

2, the only tests for which the expected output were verified are navigation attempts of pre-existing

tracks. Individual sections of the MPCC code were not tested. Comparison to benchmarking of pure

pursuit was the most effective way to do this, as navigating a track requires similar commands and

similar points in time; for example, no matter which algorithm is used, a steer left command must be

issued at a left turn. Therefore, a successful test can be viewed as navigation of a track with similar

velocity and commands over one lap when compared with pure pursuit while also not exceeding track

boundaries (which can be quantified by visual inspection of the track path map). Runtime should also

be tested - although it is not a metric of success for the autonomous controls node, it does provide an

indication of potential sources of error, as higher runtimes result in greater time intervals between

commands (and thus less precise commands).



6.1  Tests complete to Date
The following data were obtained when executing MPC on the default simulator track, with the same

methodology as was done with pure pursuit in benchmarking. Pure pursuit outputs are included to

provide easy comparison.

Figure 13: Plot of MPC pure pursuit execution time along different points in the default autonomous

track.

MPCC demonstrates a far higher runtime than pure pursuit, exceeding it by at least 70,000 μs (70

ms), three orders of magnitude, at any given timestep. However, this does not necessarily have serious

consequences for the functionality of the MPC algorithm. As MPCC is a far more complex

calculation than pure pursuit, longer computation times are expected, and adjusting the prediction

timestep in the MPCC portion of the code allows for farther "lookahead" distances (at the cost of less

precise inputs) that accommodate the computation time taken when determining what commands to

issue.



Figure 14: Plot of MPC and pure pursuit track path along the default autonomous track.

This graph shows that generally, MPCC and pure pursuit follow identical paths around the track, with

neither exceeding track boundaries. Interestingly, a qualitative visual inspection suggests that MPCC

actually takes wider turns than pure pursuit at several corners, a trait expected of sub-optimal racing

lines.



Figure 15: Plot of MPC and pure pursuit throttle command along different points in the default

autonomous track.

This graph compares the throttle input of MPCC and pure pursuit over one lap. MPCC maintains a

higher average throttle input beyond the first 200 timesteps, resulting in a more gradual approach to

its target velocity. Wider fluctuations in the throttle input are also indicative of speeding up coming

out of turns and slowing down going into turns, an expected result that contrasts with the constant

speed maintained by pure pursuit.



Figure 16: Plot of MPC and pure pursuit steering command along different points in the default

autonomous track.

This graph compares the steering angles used by the two algorithms over the course of a lap. Because

MPCC is slightly faster to complete the lap, its plot is shifted left of pure pursuit at several points on

the graph, but generally the same commands are issued at the same time. The largest source of error

in the MPCC implementation becomes apparent at the start of the graph, however: MPCC results in

rapid back-and-forth steering in excess of 10 degrees left and right during the first 200 timesteps. The

cause of this is unknown, and no solution was found during the duration of this project. The impact of

this was severe enough that the top speed of the MPCC implementation was limited such that the car

would not exceed track boundaries during this period.



Figure 17: Plot of MPC pure pursuit velocity along different points in the default autonomous track.

The testing indicates that the MPC implementation produces behavior consistent with pure pursuit in

velocity, track path, and commands. Its significantly higher runtime does not seem to affect this.

While it does not correlate directly with lap times, average velocity can nevertheless be a good

predictor of how quickly a car can navigate a track. MPC, with its variable velocity, maintained an

average velocity of 3.3096 m/s, whereas pure pursuit maintained an average of 3.2830 m/s. The

average velocity of MPCC can be configured, however as mentioned in the discussion of Figure 16,

exceeding this average velocity resulted in track boundaries being exceeded as well within the first

200 timesteps. Should this problem be corrected, it is expected that the minimum velocity set by

MPCC would be equal to or greater than the average velocity of pure pursuit. This is because pure

pursuit maintains a constant velocity over the course of the entire track, and therefore its average

velocity is equivalent to the maximum velocity needed to navigate the slowest turn on the track

without losing grip.



7. Conclusion
This project resulted in successful implementation of an MPC algorithm using the open-source

MPCC codebase, with the GFR car being able to navigate the default track of the GFR simulator in

comparable time to the preexisting pure pursuit algorithm. MPCC requires the track to be known in

advance, providing a limitation that does not exist with pure pursuit, meaning it is not suitable for

every application.

The MPC algorithm demonstrated the ability to maintain an average velocity approximately equal,

but marginally greater than, pure pursuit. Critically, its top speed is limited due to severe

overcorrections in steering in the first 200 timesteps of its first lap around a track. The cause of this is

unknown, and the issue was unable to be resolved in the timeframe of the project. It happens to be the

case that the top speed limit needed to prevent a track boundary violation in this timeframe results in

near-equal performance with pure pursuit. Additionally, MPCC showed possible sub-optimal racing

lines upon visual inspection of its path around the track, suggesting a problem in the calibration of its

steering solution. Further testing is needed to determine the cause and solution for this. MPCC

necessitated longer runtimes between issuing commands, an expected and unavoidable drawback that

can be accommodated by using larger timesteps in its optimization function.

It is possible the cause of the chaotic navigation can be attributed to MPCC's large runtimes. In this

scenario, the odometry data is taken from the ROS measurements of the car at the start of a timestep,

but by the time the MPC solution is complete, the car's position has changed and the controls output

does not have the expected effect. Such an issue would also explain the seemingly sub-optimal racing

lines taken when MPCC is used. The solution to this would likely involve adjusting the timestep

provided to MPCC to be larger. Additional testing is needed to determine whether this is in fact the

issue and whether timestep modification is a substantial enough change to resolve the problem.

While the current implementation of MPCC is functional, the greater risk associated with its more

abrupt steering at the beginning, as well as its less-than-ideal racing lines and relatively comparable

time compared to pure pursuit, means that there is not yet a compelling reason to fully transition to

using MPCC over pure pursuit. Should the problems with its steering be rectified, it is likely a far

higher top speed can be set in its configuration, thus allowing it to reach speeds far beyond pure

pursuit on portions of the track where minimal steering is necessary. This is because pure pursuit's

average speed is limited by its top speed on the portion of the track where steering is at a maximum.



Addressing the overcorrection issue will therefore result in MPC becoming a competitive alternative

to the current implementation.

7.1 Future Development
Future development should primarily focus on solving the issue with overcorrection in the first 200

timesteps. One possible solution to this issue may be "hard-coding" the car to drive straight during

this period, though this runs the risk of exceeding track boundaries should the starting line be

followed immediately by a sharp turn. A more sustainable solution should focus on exploring why the

issue is occuring to begin with. Testing larger timesteps may be the preferred way to start this process.

However, GFR is a time-sensitive operation with strict deadlines in order to be able to attend

competitions, and sustainable solutions may not be the best course of action in scenarios where it

would run the risk of exceeding such a deadline. Any future development should therefore be done

under good judgment, taking into account how much work is realistically achievable that would allow

the car to be functional at the soonest competition. While solving the overcorrection issue is the ideal

long-term goal, working towards this goal in steps that gradually improve the performance with the

car in testing is more consistent with the test-centric approach of GFR team philosophy.

Future development may also explore other algorithms as well as improvements on the MPC

algorithm. MPCC documentation is limited and the code is a "black box" in many cases. However,

this presents a good opportunity for future projects to explore the code in greater detail, and also

opens up the possibility of further improvements to the physics model used by MPCC and the weights

in the optimization algorithm itself. In particular, once the MPCC codebase is well understood, future

developers can improve on the physics model used by the software as well as the optimization

weights given in the parameters.
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