
 1 

The Effects of Modularity on Cascading Failures in Complex Engineering Systems 
 
 

by 
Elizabeth M. Parker 

 
 
 
 
 
 
 
 

A THESIS 
 
 

submitted to 
 

Oregon State University 
 

Honors College 
 
 
 
 
 
 

in partial fulfillment of 
the requirements for the  

degree of 
 
 

Honors Baccalaureate of Science in Industrial Engineering 
(Honors Scholar) 

 
 
 
 
 

Presented June 5, 2020 
Commencement June 2020 

  



  



 
AN ABSTRACT OF THE THESIS OF 

 
Elizabeth M. Parker for the degree of Honors Baccalaureate of Science in Industrial Engineering presented 
on May 5, 2020.  Title: The Effects of Modularity on Cascading Failures in Complex Engineering Systems. 
 

 
 
 

Abstract approved:_____________________________________________________ 

Irem Y. Tumer 
 

To design engineering systems that have improved reliability, it is important to understand what kind of system 

faults they will be susceptible to. Mitigation strategies are important to ensuring the performance of these 

engineering systems. Understanding how the modularity of complex engineering systems affects the risk of 

devastating failures such as cascading failures can help enable engineers to implement strategies in the design 

phase to increase reliability. The extent to which decreased system modularity propagates the spread of a 

cascading failure is unknown. This study analyzes how modularity in complex engineering systems affects 

resistance to the spread of cascading failures. In this research, synthetic networks are used to represent component 

models at differing degrees of modularity. These synthetic networks are then infected through epidemic spreading 

models that model cascading failures. The loss of functionality is determined by the percent of diseased nodes in 

the system, and the influence of the initial node is measured by eigenvector centrality. Increased modularity is 

associated with the improved ability of a system to inhibit the propagation of cascading failures over time through 

failure isolation within a module, measured by percent infected in the system, in comparison to less modular 

systems (p < 0.001).  This finding indicates that the structural design of complex engineering systems could be 

crucial to increasing reliability in design with reference to cascading failures.  
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1 INTRODUCTION 
The 21st century is an incredible time for technological developments. Engineers are designing 

increasingly complex systems to address increasingly complex problems. Self-driving cars are on the road, 

and seats for commercial space flight are on the market. With these progressively complex systems, failures 

are likely and even expected. Key considerations in designing a product are complications to anticipate and 

redundancies to preemptively implement. As failures occur, they can expand beyond the point of origin to 

other parts of the system. In 2003, the East Coast power grid experienced such a problem  [1]. The redundant 

lines that carry power are under high stress during the summer months. As the lines heat up, they sag. A 

failure in a line diverts the load to parallel lines, causing those lines to further sag. Such a failure in Ohio 

led to a massive overload in the system, causing further complications, and resulting in over 50 million 

people without power. Research into architectures that are resistant to cascading failures is crucial to 

preventing such accidents. Understanding how systems react to failures is essential to designing systems 

that are resistant to failures. 

Modularity in engineering models specifies a division of tasks and is generally designed into the 

system for redundancy or functional purposes [2]. Modular design methods tend to emphasize the 

maximization of modularity rather than considering possible setbacks from other system attributes [3]. As 

modularity in these systems varies, so does reaction to a component failure. More specifically, it can be 

hypothesized that highly connected systems run a higher risk of falling victim to cascading failures, as in 

the power line failure described previously. A cascading failure is a type of failure that increases over time 

as one component triggers the failure of another, causing a positive feedback loop [4]. Highly connected 

systems provide more pathways for a failure to travel through, showing that more connections between 

modules may lead to a faster spread of a failure [5]. In contrast, if a system is highly modular with few 

connections between modules, a failure has a greater chance of being contained within the affected module. 

This ability is weakened if the infection begins at a highly connected point in the system. As in an infection 

spread, creating fewer connections between communities of people can lessen the spread of the disease and 

contain the infection to only those affected communities. If someone who is involved in many communities 

becomes infected, the social network is at a higher risk of infection. Allowing more interaction between 

communities increases the likelihood that the infection will travel. Like social systems, engineered systems 

can be complex and modular, and thus it is important to understand how the varying degrees of modularity 

affect the severity of cascading failures within the systems. Analyzing which levels of modularity are more 

susceptible to cascading failures enables engineers to determine which components need to be higher in 

survivability [6]. 

This study assesses the impacts of modularity on a complex engineering system’s ability to contain 

the spread of a cascading failure. If systems have high levels of connectivity within modules but few 
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connections between modules, failures may be more easily contained within the affected module. Complex 

engineering systems with varying modularity in physical architecture, such as aircraft, weather satellites, 

or air traffic control systems, are required to perform with exceedingly high rates of dependability [7] [8]. 

This makes the problem of understanding how these systems react to failure an important problem. This 

study addresses this by generating synthetic networks with varying modularity, infecting them with an 

epidemic as a way to model the failure of a component and the potential spread of the failure to connected 

components, measuring the spread of that epidemic through the percent infected, and comparing the spread 

at different infection starting points. Understanding how modularity affects the spread of cascading failures 

provides vital information to the design and monitoring of complex engineering systems. If a system is less 

modular by design, implementing preventative methods to monitor the system for potential cascading 

failures can prevent system failure. This study investigates how increased network modularity will increase 

resistance to cascading failures. 
 

2 BACKGROUND  

Complex systems vary from technological, to biological, to social in nature and are often difficult 

to analyze, with many interrelated parts [9]. Complex engineering systems are a subset of complex systems. 

The terminology of ‘complex engineering systems’ differentiates from other complex systems to highlight 

that they are artificial, exist to perform specific functions, and are comprised of interdependent engineered 

systems [10]. Like complex systems, complex engineered systems have architectures and behaviors that 

cannot be fully understood and modeled due to their tendency to self-organize [11]. Self-organization is the 

spontaneous emergence of order in a system in the absence of external interference [12]. A complex system 

is neither completely random nor completely ordered [13]. This property makes complex networks a viable 

approach for analysis of complex engineered systems. Networks are made up of the interacting components 

of a complex system and are a useful tool to simplify systems into abstract structures by showing only basic 

connections [5]. In their most basic form, networks are collections of nodes connected by lines. These can 

then be labeled with additional information to represent something as simple as a family tree or as complex 

as the network structure of the Internet. Engineering system components can be modeled as the nodes, and 

relationships can be displayed as the lines connecting each node. Complex networks are used in research to 

understand a variety of complex systems [14]. Modeling product co-considerations as complex networks 

allows for the analysis of the relationship between customers and products in the vehicle industry [15]. 

Requirement change propagation in the design process can be predicted through complex network centrality 

metrics [16]. Visualizing these systems as complex networks creates a simpler method for analysis [17]. 

Furthering the use of using complex networks in the modeling of complex systems is the 

introduction of modules [17]. Networks represent each component in the system as a node. Clusters of 
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nodes make up each module. Modules are frequently designed to contain components that are more 

connected to each other than other components in the system [18]. The connections between each node are 

referred to as edges [19]. This technique assumes that all nodes are equal [10]. In reality, all components 

are not equal in importance. For the purpose of this study, the nodes that connect modules together are 

referred to as bridging nodes. More or fewer bridging nodes are created as interconnectedness fluctuates. 

Research suggests that when those particular nodes are subject to failure through a cascading failure, they 

have a moderate to strong effect on the failure tolerance of a system [17]. Despite this impact on failure 

spread, bridging nodes are modeled as commensurate with the other system components [20]. Nodes can 

be commensurate if they share functional or categorical similarities, or if their commensurate status 

supports the ultimate goal of the model [10]. For example, the ocean freight industry frequents certain ports. 

The Port of Los Angeles is significantly larger than the Port of Miami; however, in a network diagram, both 

would be modeled as equal nodes. In an argument against using complex networks in complex system 

modeling, some researchers highlight these heterogeneous parts as a reason this method is unfit for research 

[21]. Despite these limitations, network analysis is useful due to the inherent benefits of failure analysis, 

non-trivial topological features, and emergent interaction detection [10]. 

Failure analysis through complex networks can provide valuable insight. Haley et al. utilizes uni-

partite and bi-partite networks for failure analysis [10]. A network with nodes of a single type is known as 

a uni-partite network, and a network with nodes of two types as a bi-partite network. Uni-partite behavioral 

networks can be used specifically in the analysis of commensurate node relationships to look at failure 

properties. A bi-partite network can be used to map the relationships in the same network between 

functional and design parameters to look at system behavior and performance. Research on cascading 

failures as a form of failure analysis is rapidly increasing. Crucitti et al. utilize complex networks to look at 

cascading failures and show that a single node failure can be catastrophic in highly heterogenous networks 

with large load distribution differentials  [22]. Wang and Rong study how different targeted attacks on the 

United States power grid vary the impact of cascading failures [23]. Talukdar et al. investigate survivability 

in the aftermath of a power grid cascading failure, focusing on mission continuation during an inevitable 

blackout rather than prevention [24]. Mitigation strategies for overloaded edges in networks through routing 

can reduce the need to shut down nodes to stop a cascading failure [25]. Mehrpouyan et al. establish that 

networks with a higher node degree will propagate failures faster [26]. Modularity in networks is shown to 

have a relationship with cascading failures through intermodular links [27]. While prior studies have 

established network analysis as a means of understanding system failure, few studies have investigated the 

direct relationship between a system’s modularity and its ability to decrease the rate of propagation of faults 

across a network. This study treats a cascading fault as an error in a node that then transmits to all other 

connected components, such as a contaminant in a part that flows to other parts and causes problems. Within 



 4 

a highly modular system, the limited connections to outside modules create fewer paths for a fault to travel. 

This occurrence leads to the hypothesis that increased system modularity limits the spread of a cascading 

failure due to the isolation of the failure within a module, thus making the system more resistant to 

cascading failures. 

 

3 METHOD 
To ease the complexity of analyzing modularity, synthetic networks perform well in place of actual 

component models. This study utilizes synthetic network generation to create networks with varying 

degrees of modularity. These networks are then infected with an epidemic spreading model, and evaluated 

for Q-modularity, percent infected, and edges in the system. This process is depicted in Figure 3. A degree 

distribution plot is a common approach used to describe networks. Figure 1 shows the degree distribution 

plot of for the behavioral network of a simple drivetrain system [17]. Figure 2 shows the degree distribution 

plot for a synthetic network generated through the methodology used on the networks used in this study. 

The similarities in the two plots show that synthetic networks have a similar structure to real engineered 

systems, implying that the failure tolerances will be similar. Furthermore, synthetic networks allow for the 

performance of controlled experiments. Rather than finding models with differing levels of modularity, 

software is able to create network models with adjustable inter and intra module connectedness. 

Interconnectedness refers to the number of connections between modules, while intra-connectedness refers 

to the number of connections within modules. To increase modularity, intra-connectedness must be high, 

and interconnectedness must be low. By varying only one parameter in network generation and holding the 

other factors constant, the effect of that parameter’s variation can be tested on the outcome.  
 

  

Figure 2: Degree distribution plot for synthetic 
network with 𝑝!,#=0.8, 𝑝!,$=0.35 

Figure 2: Degree distribution plot for 
simple drivetrain system 
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Figure 3: Algorithm for data collection 

The generation of synthetic networks for this research was done within Mathematica. The synthetic 

networks generated consist of four inputs: 𝑝!,#, 𝑝!,$, number of modules, and network size. The 𝑝!,# refers 

to the interconnectedness, or the probability of nodes within a module being connected. The 𝑝!,$ denotes 

intra-connectedness, or the probability of nodes between modules being connected. A network is considered 

modular when 𝑝!,#	> 𝑝!,$. If 𝑝!,# ≃ 𝑝!,$, the network is considered integrated. The method for generating 

synthetic networks is based off of methodologies from Walsh [28], Sarkar et al [29] and Kasthurirathna et 

al [30]. Networks are generated by manipulating connections between nodes and connections between 

modules. The network size is set to contain 30 nodes, and each node must reside within a module. This 

means that the network size must be divisible by the number of modules with no remainder. The number 

of modules is held constant at 3, to ensure modules are large enough to contain more than just bridging 

nodes. Constraining the number of modules and nodes ensures that the differences between networks is 

solely due to connections produced by chance. Walsh et al. show that real engineered systems with 10, 19, 

and 375 components, random node removal does not significantly impact the network’s Q-modularity [31]. 

This makes 30 nodes a reasonable value to analyze in this study. In the network, the adjacency matrix can 

be used to show node connections. If nodes i and j share a connection, 𝐴$% is equal to 1. If there is not a 

connection between nodes i and j, 𝐴$% is equal to 0. This matrix is utilized in the calculation of the network 

modularity as well as the eigenvector centrality. 

 

3.1 Q-Modularity 
Network modularity is evaluated using Q-modularity. Q-modularity is a quantitative criterion of 

the extent to which nodes in a module are connected [5]. The value of the Q-modularity quantifies the 

strength of modules themselves rather than the number of modules in a network [31]. Each module in the 

network represents a cluster of nodes that interact on a higher level of the system. Eq. 1 gives the calculation 

method for Q-modularity. The connections between nodes are represented by an adjacency matrix 𝐴$%, m 

is total number of edges in the system, 𝑘$ is the degree of vertex i, and 𝛿(𝑐$ , 𝑐%) is the Kronecker delta.  

𝑄 = !
"#
∑ (𝐴$% −

&!&"
"#
)$% 𝛿(𝑐𝑖, 𝑐𝑗)                                             (1) 

Generate network 
'n' by setting 

inter/intra 
connectedness, 

number of modules, 
and size of network

Generate epidemic 
spreading model by 
setting probability 

of infection

Infect network 'n' 
with the epidemic 
spreading model

Evaluate network 'n' 
for Q-modularity, 
percent infected, 

and number of 
edges
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The value of Q falls between -1 and 1, but never exactly 1. If Q is positive, it shows to what degree there 

are more edges between nodes than would be expected by chance. If Q is negative, it quantifies the degree 

to which there are fewer edges between nodes than would be expected by chance. Q-modularity is ideal for 

network analysis and research because it can be used on both component and behavior models [31]. Figure 

2 shows a highly modular network generated with a high interconnectedness (𝑝!,#) and low intra-

connectedness (𝑝!,$). Figure 4 shows a network with equal 𝑝!,# and 𝑝!,$. Figure 5 depicts a network with a 

very low 𝑝!,# and high 𝑝!,$, which is shown in the increase in connections between modules from Figure 4 

to Figure 5. The networks themselves do not dramatically vary visually; however, their Q-modularity values 

show that they are structurally very different.  

 

 
 

 

 

 

 

 

 

 

 

3.2 Edge Count 
Connections between nodes are referred to as edges. The number of edges in a network can 

contribute as a confounding variable in calculating the percentage of infected nodes. For example, social 

distancing is aimed to reduce social interaction and thus prevent the spread of infection. Each social 

interaction can be conceptualized as an edge, and each individual as a node. By limiting the edges in the 

network, infection can be minimized. Figure 6 shows a positive correlation between number of edges in the 

network and the final percentage of infected nodes. This relationship creates a need to control how many 

edges are in each network. 

Figure 5: Low modular network 
(𝑝!,#=0.5, 𝑝!,$=0.5, Q=0.0882). 
Equal probability of connection 
between nodes and modules. 

Figure 4: Highly modular 
network (𝑝!,#=0.9, 𝑝!,$=0.1, 
Q=0.4406). Many edges within 
modules, but few edges between 
modules. 
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Figure 6: Plot of number of edges against percent infected using data from Table 2 of Appendix A 

 

Edges can be held constant throughout network generation. Functionally, this means that edges do 

not fluctuate with modularity, they instead move around the system between different nodes. Eq. 2 can be 

utilized to calculate the number of edges in a system. Eqs. 2 and 3 are derived from Walsh [28] and based 

on the methodology from Sarkar et al [29] and Kasthurirathna et al [30].  

𝐸 =
'(#$)!)

"
∗ *𝑝+,$ ∗ (𝑀 − 1) + 𝑝+,#/                                              (2) 

𝑝+,$ =

%&

#(#$())
)-+,-

.)!
                                                                 (3) 

E is calculated in terms of N, M, 𝑝!,$, and 𝑝!,#. N denotes the network size as the number of nodes, while 

M is the number of nodes in the network. Once Eq. 2 has been used to determine the number of edges in a 

network for a specific 𝑝!,# and 𝑝!,$ value, Eq. 3 can be used to calculate the 𝑝!,$ value for the desired 

number of edges with an adjusted 𝑝!,#.  

 

3.3 Epidemic Spreading Function 
Epidemic spreading models can be used in research of cascading failures. Guan et al. show how 

simulated cascading failures are accurate when compared to real-world cascading failure examples [32]. D. 

Valdez et al utilize the susceptible-infected-recovered (SIR) model of infection to study the role of bridging 

nodes in the spread of infection [33]. Mehrpouyan et al implement an epidemic spreading model to evaluate 

resiliency in complex engineering design [26]. The cascading failure model in this study utilizes the 

susceptible-infected (SI) model of disease spread. This model acknowledges two types of nodes: susceptible 

(S) or infected (I). This model simulates a system in which infected components experience an 

unrecoverable failure. Using an SI model represents an engineering system experiencing a failure that 
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incapacitates each node it interacts with. Population is denoted by N, so that N is the sum of S and I [34]. 

N refers to network size in the utilized model and is set at 30. The probability of infection per time step, or 

discrete state, is commonly denoted by b [5]. The probability of infection represents the likelihood of 

transmission between two nodes, one which is ‘infected’ and one which is ‘healthy.’ Thus, the number of 

new infections is bSI. This process makes a key assumption of no recovery of infected nodes. Once a node 

is infected, it cannot recover. In each infection probability time step b, the infected nodes retain their ability 

to infect healthy nodes, creating a cascading failure. This modeling technique is based off of the analysis 

of human interaction during an epidemic, with interaction modeled from social behavior [35]. An epidemic 

spreading models views a complex engineering system as a population existing in different discrete states 

[36]. The SI model can be represented by the following differential equation [37]: 
/0
/1
=	−𝛽𝑆𝐼 = 	−𝛽𝑆(𝑁 − 𝑆)                                                  (4) 

While a two-state classification model overlooks many finer biological details in an infection spread, it 

captures the fundamental features of a disease dynamic. The SI model is a useful simplification to look at 

network level effects rather than what is happening internally within each node [5]. This study measures 

the number of infected nodes, rather than how recovering nodes can influence disease spread. The SI model 

is ideal for this due to its unchanging classification of infected nodes, no matter the passage of time steps. 

The use of percent infected as the metric for analyzing the spread of the cascading failure is useful to 

interpret the loss of functionality in the system. Infecting through three timesteps allows a look at the initial 

phase of an infection timeline where the majority of the system population is still susceptible, rather than 

letting the infection run its course and seeing the aftermath. Using an alternate method, such as time until 

100% infection, would allow an analysis of which system survived the longest, but the interest of this study 

lies in how well modules contain the cascading failure. This is better described by percent infected rather 

than how long the system can survive the epidemic before total failure.  

 

3.4 Eigenvector Centrality 

 Eigenvector centrality is a measurement of the influence a node has on a network [5]. Bonacich 

was the first to suggest that the eigenvector of the largest eigenvalue of an adjacency matrix could serve as 

a useful network centrality measure [38]. This method of degree centrality weights connections based on 

the centralities of the neighboring nodes. It is a weighted sum of not only direct connections, but the indirect 

connections as well, allowing it to take into account the entire network pattern [39]. The centrality of a node 

is proportional to the sum of the neighboring nodes, meaning that this property allows eigenvector centrality 

to be large because the node is highly connected or has important neighbors. Consider a social network. By 

this measure, one person can be important because they know a lot of people (who are not necessarily 
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incredibly important), or because they know a few very important people, or both. This can be represented 

mathematically as [5]: 

𝑥$ = 𝑘()(∑ 𝐴$%𝑥%%                (5) 

where 𝑥$ is the centrality of vertex i, and 𝑘(is the largest eigenvalue of all eigenvalues 𝑘$ in adjacency 

matrix 𝐴$%. This equation can also be written in matrix form [38] to say that centrality x satisfies 

𝐀𝐱 = 	k(𝐱                            (6)  

 Calculating at the eigenvector centrality of each node shows the relative structural importance of 

each node within the network. Infecting the network starting at varying nodes and seeing how the 

eigenvector centrality correlates with the final percent infected offers the opportunity to investigate the 

importance of the starting node to the propagation of the epidemic. 

 

3.5 Data Collection 

The data collection was completed in six different phases. The initial collection of data consisted 

of creating 20 networks at varying levels of inter and intra connectedness, chosen at random. The probability 

of infection was initially set to 0.3. The initial data shown in Table 2 of Appendix A included the analysis 

of networks with	𝑝!,$ 	> 𝑝!,# , which are not considered modular. After an adjustment in 𝑝!,# and 𝑝!,$ values, 

the number of edges in each network was measured to determine if it was acting as a confounding variable. 

Table 2 of Appendix A shows that as modularity decreased, so did the number of edges in the system. This 

was due to the modularity in the system being adjusted without consideration of edges. Equations 2 and 3 

were then implemented to hold the edges constant, and while Q modularity showed improvement in variety, 

the percent infected in each system at the end of the simulation was consistently high (see Table 3 of 

Appendix A). The next phase of data collection involved lowering the probability of infection to 0.1 and 

ensuring that 𝑝!,# remained greater than 𝑝!,$. This data, shown in Table 4 of Appendix A, displayed the 

stochastic nature of the epidemic spreading model. The inherent stochasticity that exists within an infection 

algorithm can produce varying results each time it infects the same network. In response, a loop was 

incorporated into the code to infect the model 1000 times and use the average of the fluctuating results. The 

1000 trials were plotted in Figure 9, and the large spread of infection results led to the measurement of 

eigenvector centrality. This was an unforeseen confounding variable, in response eigenvector centrality was 

plotted against percent infected to see if the infection start node of the epidemic played a role in the epidemic 

spread. 

 

4 RESULTS 

The data collected after the final phase of data collection, shown in Table 5 of Appendix A, shows 

the relationship between modularity and percent infected to be negative. Figure 7 plots the two and visually 
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displays a general negative trend is observable between infection and modularity. Spearman’s rank 

correlation details the relationship between a monotonic relationship, rather than the strength of a linear 

relationship such as Pearson’s correlation [40]. Spearman’s rank correlation is useful to this study because 

it does not assume linearity in the data and is most useful in studies with a sample size below 28. It shows 

whether or not the relationship between the two variables occurred by chance. The Spearman’s rank 

correlation shown in Table 1 is statistically significant at a 95% confidence level (p < 0.01). This statistically 

significant correlation means that there is only a 5% chance that the strength of r occurred by chance. A 

one-tailed t-test is appropriate for this study because the hypothesis is determining a directional relationship 

between Q-modularity and percent infected, rather than showing just a relationship.  

 
Figure 7: Plot of relationship between Q modularity and percent infected in a network 

 
Table 1: Spearman's rank correlation: t-test results 

Spearman’s Rank Correlation 

Correlation value r -0.9188 
One-tailed T-stat -9.8754 
P-Value, 𝛼 = 0.05 5.4139 × 10)* 

 
When comparing different networks over five time steps, Figure 8 displays how the network with 

a higher Q-modularity is infected slower than the less modular network. As time increases, the graph 

shows that the gap in the infection rates also increases. Figure 9 shows the large variation in the infection 

spread. Each network had a minimum of 3.33% infected within the 1000 trials, an outcome that would 

occur if the infection never spread past the original node. The 25th through 75th percentile spread is large; 

however, this is not surprising due to the stochastic nature of the epidemic spreading model. The initial 

point of infection is not targeted; it occurs randomly with each simulation. The probability of infection is 
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just that, a probability. When the infection starts at a random node and the likelihood of the start node 

infecting neighboring nodes is a small probability, there are countless ways for the infection to spread 

through the system. This inherent randomness causes much variation in the study of cascading failures 

through epidemic spreading models. 

 
Figure 8: Comparison of two synthetic network infection rates over five time steps 

  

 
Figure 9: Boxplots of 1000 trials of epidemic spreading model on 20 generated synthetic networks 

  

 Controlling the start node of the infection shows a strong linear correlation between eigenvector 

centrality and percent infected. Fixing a node as the initial infection point and infecting it from that node 

allows for the comparison of infection rates to the eigenvector centrality of the start node. Figures 10, 11, 

and 12 show how the strength of the correlation increases with trials of infection. These figures illustrate 

the influence of the path of propagation in addition to the start node. As shown in Figure 9, the variation 

in final percent infected varies greatly in each trial. From 10 to 1000 infection trials, the Pearson’s 
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Coefficient value increased from 0.202 to 0.919. The path through which the infection travels has a large 

impact on the cascading failures within the modular networks. 

 

 
 

  

Figure 13 depicts a synthetic network high in modularity with 

the infected nodes highlighted. Visualizing the infection spread in a 

network by highlighting infected nodes shows a higher concentration 

of infection in the module of origin. As the infection spreads and 

infects the entire module, chances of the failure cascading beyond the 

module to which it is contained increases. This figure highlights that 

the infection spread to a bridging node, and thus was able to continue 

its path through the network rather than being contained in one 

module. 

 

5 DISCUSSION 
It has been shown that network modularity and a system’s ability to resist cascading failures have 

a positive relationship. Networks with higher modularity are more resistant to a cascading failure. If a 

complex engineering system falls victim to a failure, the more modularized the system the more likely it is 

for the failure to be contained to the affected module. These findings agree with other studies on modularity 

as a means to resist an epidemic spread. Tightly connected clusters are shown to inhibit the Susceptible-

Infected-Recovered phenomena [41]. Viruses can be annihilated faster by dividing networks into clusters; 

however, this comes at the cost of communication and reachability [42]. A fault will remain reasonably 

self-contained in one module if few edges between modules exist [43]. Mehrpouyan et al. show that 

networks with a higher degree will propagate failures faster [26]. Consider the power grid failure of 2003. 

There were redundancies in place to support the system, but the complex level of interconnected systems 

is what ultimately allowed the spread of the failure to over 50 million people in under eight minutes [1]. 
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Figure 13: Visualization of 
infection in network with 
Q=0.5490 

Figure 10: 10 epidemic trials Figure 11: 100 epidemic trials Figure 12: 1000 epidemic trials 
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High modularity can serve as both a benefit and deficit in designing complex engineering systems. The 

more modular a system is, the more a failure can be contained; however, the lack of connections between 

modules can cause communication issues in the system. This also leaves key nodes susceptible to failures 

that could rapidly affect the entire system. System robustness is an important design decision. There is a 

tradeoff between modularity and robustness [31]. High modularity can penalize system performance [44].  

The path through which an infection spreads has been shown to have a large impact on total 

infection within a network. The increasing Pearson’s Coefficient shows that with just a few infection 

models, there is still much unpredictability. Only when a large number of trials at the same start node are 

performed can the average ending infection rate be seen. When an infection starts at a node with a higher 

eigenvector centrality, the infection on average infects a larger percentage of the network. For engineers, 

this means that systems must be designed to handle unpredictable cascading failure paths. Protecting the 

nodes that are more structurally important in the system could prevent detrimental failure propagation. 

Enabling engineers to make early design changes in modularity levels greatly reduces the potential cost of 

later adjustments. Furthermore, identifying a node with a higher eigenvector centrality provides the 

opportunity to implement protection measures in advance. This also allows for the premeditated analysis 

of likely cascading failure paths based on component relationships. Understanding early the implications 

of modularity and eigenvector centrality in design allows the integration of mitigation strategies into the 

system. This could be in the form of redundancies, sensors on bridging nodes, or a health management 

system. The benefits of modularizing a system are not universal; rather, they are extremely system-

dependent [31]. If the goal of the system is increase containment of component failures, modularity is a 

helpful design factor. If the bridging nodes within the system are a high concern for failure, modularity is 

not a desirable feature. 

 

6 CONCLUSION AND FUTURE WORK 

The relationship between cascading failures in complex engineering systems and modularity has 

been demonstrated to be positive. In addition, the initial location of the failure has been shown to be crucial 

in predicting the impact of the failure. This connection serves as the first step towards understanding 

appropriate levels of modularity and protections strategies in complex system design. This research study  

approached the concept of modularity and cascading failures at a very broad level. Intuitively, 

conceptualizing a module as a very connected system with little connection to the outside world simplifies 

the understanding of why a component failure is easier to contain. If one of the few components connected 

to another module fails or if the module is highly connected to the other modules, the chance of spreading 

the failure increases. This study only analyzed systems with 30 nodes. Complex engineering systems, such 

as jet engines, can have hundreds of components. As part of future work to understand the ramifications of 
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modularity on a system’s ability to resist failures, performing a specific case study would provide a clearer 

understanding of the problem in application. This would also allow for the observation of the specific path 

of the cascading failures through real components with functional connections, enabling an investigation 

of containment levels within modules to track the spread of infection. The explicit statement of modularity 

affecting cascading network failure assists in the continuation of research on robustness in system design. 

Failures in a system are inevitable; however, being able to contain and respond to the failures through the 

system architecture improve safety, reliability, and quality. 
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APPENDICES 

Appendix A: Data collected from Mathematica 
 
Table 2: Initial Data Collection 

PCM PCI PI Q modularity % Infected 

1 0.25 0.3 0.315701 96.6667 

1 0.2 0.3 0.331639 93.3333 

1 0.15 0.3 0.40839 90 

1 0.1 0.3 0.46539 60 

1 0.05 0.3 0.578707 60 

0.75 0.25 0.3 0.308962 96.6667 

0.75 0.2 0.3 0.273692 86.6667 

0.75 0.15 0.3 0.323146 50 

0.75 0.1 0.3 0.463092 33.3333 

0.75 0.05 0.3 0.563057 23.3333 

0.5 0.25 0.3 0.165175 73.333 

0.5 0.2 0.3 0.240467 33.333 

0.5 0.15 0.3 0.280277 60 

0.5 0.1 0.3 0.376286 60 

0.5 0.05 0.3 0.527634 30 

0.25 0.25 0.3 0.231124 70 

0.25 0.2 0.3 0.234211 43.3333 

0.25 0.15 0.3 0.292533 36.6667 

0.25 0.1 0.3 0.368609 20 

0.25 0.05 0.3 0.445176 26.6667 
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Table 3: Data collection with edges counted 

PCM PCI PI Q modularity % Infected Edges 

1 0.25 0.3 0.315701 96.6667 208 

1 0.2 0.3 0.331639 93.3333 203 

1 0.15 0.3 0.40839 90 182 

1 0.1 0.3 0.46539 60 168 

1 0.05 0.3 0.578707 60 148 

0.75 0.25 0.3 0.308962 96.6667 165 

0.75 0.2 0.3 0.273692 86.6667 167 

0.75 0.15 0.3 0.323146 50 138 

0.75 0.1 0.3 0.463092 33.3333 124 

0.75 0.05 0.3 0.563057 23.3333 116 

0.5 0.25 0.3 0.216827 73.3333 132 

0.5 0.2 0.3 0.245097 83.3333 112 

0.5 0.15 0.3 0.320829 66.6667 114 

0.5 0.1 0.3 0.308199 46.6667 95 

0.5 0.05 0.3 0.45231 26.6667 84 

0.25 0.25 0.3 0.2723 73.3333 100 

0.25 0.2 0.3 0.254538 53.3333 93 

0.25 0.15 0.3 0.302978 40 76 

0.25 0.1 0.3 0.361212 23.3333 62 

0.25 0.05 0.3 0.475792 10 53 
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Table 4: Data collection with edges held constant 

PCM PCI PI Q modularity % Infected Edges 

1 0.25 0.3 0.305398 100 207 

0.95 0.275 0.3 0.203419 93.3333 220 

0.9 0.3 0.3 0.242095 100 203 

0.85 0.325 0.3 0.191669 80 204 

0.8 0.35 0.3 0.196823 66.6667 212 

0.75 0.375 0.3 0.151444 90 212 

0.7 0.4 0.3 0.10937 86.6667 219 

0.65 0.425 0.3 0.118934 100 190 

0.6 0.45 0.3 0.10751 100 216 

0.55 0.475 0.3 0.110691 100 218 

0.5 0.5 0.3 0.144046 100 208 

0.45 0.525 0.3 0.100847 96.6667 229 

0.4 0.55 0.3 0.113503 96.6667 213 

0.35 0.575 0.3 0.117955 100 213 

0.3 0.6 0.3 0.105604 93.3333 201 

0.25 0.625 0.3 0.085739 96.6667 239 

0.2 0.65 0.3 0.0867495 100 241 

0.15 0.675 0.3 0.0948495 96.6667 227 

0.1 0.7 0.3 0.0857579 93.3333 221 

0.05 0.725 0.3 0.0851138 100 236 
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Table 5: Data collection with 𝑝!,#>𝑝!,$, PI=0.1 

PCM PCI PI Q modularity % Infected Edges 

1 0.25 0.1 0.318806 20 207 

0.975 0.2625 0.1 0.293274 26.6667 209 

0.95 0.275 0.1 0.289528 13.3333 207 

0.925 0.2875 0.1 0.245564 16.6667 209 

0.9 0.3 0.1 0.27052 16.6667 207 

0.875 0.3125 0.1 0.22565 36.6667 200 

0.85 0.325 0.1 0.198999 36.6667 216 

0.825 0.3375 0.1 0.161769 40 210 

0.8 0.35 0.1 0.165136 40 210 

0.775 0.3625 0.1 0.19007 33.3333 212 

0.75 0.375 0.1 0.143422 33.3333 216 

0.725 0.3875 0.1 0.108444 36.6667 217 

0.7 0.4 0.1 0.123319 50 221 

0.675 0.4125 0.1 0.132101 53.3333 204 

0.65 0.425 0.1 0.111279 50 225 

0.625 0.4375 0.1 0.11357 26.6667 199 

0.6 0.45 0.1 0.112127 60 230 

0.575 0.4625 0.1 0.119619 56.6667 213 

0.55 0.475 0.1 0.0957278 50 230 

0.525 0.4875 0.1 0.11269 60 218 
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Table 6: Data collection with % Infected looped 1000 times 

PCM PCI PI Q modularity % Infected Edges 

1 0.25 0.1 0.312527 33.8133 209 

0.975 0.2625 0.1 0.283705 33.85 209 

0.95 0.275 0.1 0.270216 34.28 207 

0.925 0.2875 0.1 0.250143 34.01 209 

0.9 0.3 0.1 0.231406 34.4833 216 

0.875 0.3125 0.1 0.188458 35.06 221 

0.85 0.325 0.1 0.185005 35.0033 213 

0.825 0.3375 0.1 0.153563 35.1267 213 

0.8 0.35 0.1 0.154169 35.1967 207 

0.775 0.3625 0.1 0.146383 35.34 210 

0.75 0.375 0.1 0.137872 35.8067 235 

0.725 0.3875 0.1 0.13034 35.5433 210 

0.7 0.4 0.1 0.111756 36.1933 211 

0.675 0.4125 0.1 0.125389 36.1867 212 

0.65 0.425 0.1 0.113094 35.4567 217 

0.625 0.4375 0.1 0.0943271 36.1467 228 

0.6 0.45 0.1 0.10828 35.6767 221 

0.575 0.4625 0.1 0.103662 36.5267 231 

0.55 0.475 0.1 0.103895 35.7833 220 

0.525 0.4875 0.1 0.107355 36.027 220 
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Table 7: Eigenvector centrality and percent infected from targeted node attacks for varying infection trials  

 Trials for Percent Infected Avg 

Node EigCent 10 100 1000 

1 0.0327373 38.1481 31.3805 30.7241 

2 0.0274257 29.6296 27.4411 27.4875 

3 0.0276047 32.5926 27.6768 26.7434 

4 0.0295861 30.7407 29.0572 28.5085 

5 0.034706 35.1852 31.3805 31.0244 

6 0.0294764 28.1481 27.6768 28.8155 

7 0.0320046 26.6667 32.3569 30.2366 

8 0.0444492 32.5926 37.7441 39.3994 

9 0.0369763 28.5185 34.3434 34.3143 

10 0.0322513 28.8889 30.3704 30.01 

11 0.031631 25.9259 32.5589 29.6864 

12 0.0293184 23.3333 29.0909 28.5552 

13 0.0286718 30 26.3636 28.1315 

14 0.0317813 34.8148 29.0909 29.7731 

15 0.0323734 33.7037 30.8418 31.041 

16 0.0270567 21.8519 26.7003 26.1495 

17 0.0335207 31.8519 31.5825 32.1622 

18 0.0367671 29.6296 35.5892 34.2509 

19 0.0357872 36.2963 34.3771 34.3477 

20 0.0300808 29.6296 30.0337 28.9256 

21 0.0363287 31.4815 31.9529 31.8719 

22 0.03496 27.7778 29.798 30.4538 

23 0.0377724 44.4444 34.6801 34.2242 

24 0.0342604 30.3704 30.8418 31.3113 

25 0.0393813 38.88889 34.6801 34.5813 

26 0.0361533 28.8889 32.3232 32.7494 

27 0.0347172 34.0741 31.1111 30.6273 

28 0.0332081 32.5926 32.6263 30.9142 

29 0.0339183 38.1481 30.303 31.3714 

30 0.0350945 30 30.8081 30.4705 

 




