
Modelling Gas Adsorption inside Metal-Organic Frameworks using a Grand-Canonical Monte Carlo
Algorithm

By
Arthur York

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 21, 2021
Commencement June 2021

AN ABSTRACT OF THE THESIS OF

Arthur York for the degree of Honors Baccalaureate of Science in Computer Science presented on May
21, 2021. Title:
Modelling Gas Adsorption inside Metal-Organic Frameworks using a Grand-Canonical Monte Carlo Algorithm

Abstract approved:

Cory Simon

Metal-organic frameworks are promising novel materials for gas storage and separations because of their

extremely high internal surface area and their modular structures based on metal nodes and organic

linker molecules. Due to their modular design, it is possible to finely tune a structure for optimal

storage of a specific gas but it is costly and time consuming to synthesize thousands of materials for

experimental testing. Therefore it is beneficial to screen potential structures using high throughput

computing and then create only the most promising materials for more thorough experimentation. The

goal of this project is to create and test a software package - PorousMaterials.jl - for simulation of

gas adsorption in metal-organic frameworks and other nano-porous materials. As the scope of research

became broader, so did the functionality of PorousMaterials.jl. First, it was extended to allow for

tracking and visualization of adsorbates within the crystal structure. Second, options for inferring and

examining bonds were implemented. This culminated in a free and open source software package that

provides a wide range of analysis for metal-organic frameworks and other nano-porous materials.

Key Words: Metal-Organic Frameworks, Monte Carlo Algorithm, Computational Simulation,
Theoretical Chemistry, Applied Mathematics

Corresponding e-mail address: yorkar@oregonstate.edu

©Copyright by Arthur York
May 21, 2021

Modelling Gas Adsorption inside Metal-Organic Frameworks using a Grand-Canonical Monte Carlo
Algorithm

By
Arthur York

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 21, 2021
Commencement June 2021

Honors Baccalaureate of Science in Computer Science project of Arthur York presented on May 21,
2021.

APPROVED:

Cory Simon, Mentor, representing College of Biological, Chemical, and Environmental Engineering

David Roundy, Committee Member, representing Department of Physics

Kyriakos Stylianou, Committee Member, representing Department of Chemistry

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon State University
Honors College. My signature below authorizes release of my project to any reader upon request.

Arthur York, Author

Contents

1 Introduction 1

2 Buffon’s Needle 3

2.1 The Buffon’s Needle Problem . 3

2.2 Applications to Computer Simulation . 4

2.3 Representation of the Needle and the Floor . 4

2.4 Analytical Solution to Buffon’s Needle . 5

2.5 Simulation Approach to Buffon’s Needle . 6

2.6 Testing the Validity of the Model . 7

3 Modelling Gas Adsorption with a Grand Canonical Monte-Carlo Algorithm 9

3.1 Grand-Canonical Monte Carlo Simulation . 9

3.2 Deriving the Acceptance Rules for GCMC . 10

3.2.1 Insertion . 11

3.2.2 Deletion . 11

3.2.3 Translation . 12

3.3 Grand-Canonical Monte Carlo implemented in PorousMaterials.jl 13

3.4 Example Usage within julia . 14

3.4.1 Verifying the Model . 16

3.4.2 Flexible MOFs . 18

4 Adapting the Monte Carlo Algorithm to track Adsorbate Positions 20

4.1 Tracking Adsorbate Positions using snapshots . 20

4.2 Tracking Adsorbate Positions using a Grid . 21

5 Generating Bonding Information 24

5.1 Inferring Bonds in PorousMaterials.jl . 24

5.2 Removing Solvent Atoms from Crystal Files . 25

5.3 Separating Interpenetrated Metal-Organic Frameworks 26

6 Conclusion 29

1 Introduction

Gasoline is extremely potent as a fuel source due to its high energy density, but its greenhouse gas

emissions are cause for concern [1]. Natural gas is a prime alternative for gasoline in vehicle use during

the transition to renewable energy sources because of lower emissions, large supply, and the ease with

which existing infrastructure can be adapted to transport and use it [2]. However, storage of natural

gas is difficult because it requires extreme conditions to be stored as either liquefied natural gas (around

-162◦C) or compressed natural gas (around 200 bar) [3]. To make natural gas vehicles viable, there

needs to be a more efficient method for storing it for use in vehicles. Metal-organic frameworks are of

interest here because they have been shown to increase storage of usable fuel at a much lower pressure

of 65 bar [4].

Metal-organic frameworks (MOFs) are promising novel materials for gas separation and storage that

are modular by design [5]. They are comprised of metal nodes and organic linkers that self-assemble

into organized crystal structures with nano-pores when the component parts are combined in solution.

The high internal surface areas formed by these nano-pores provide ideal adsorption sites for a variety

of gaseous atoms and molecules. They can be used to improve gas storage without requiring extreme

temperature and pressures, a useful tool for implementing in natural gas vehicles [4]. MOFs can also

be used for simpler gas separation as is the case with CaSDB being more selective for Xe over Kr in

used nuclear fuel [6, 7]. The linkers and nodes can be selected to curate the MOF for higher selectivity

of a gas molecule, increasing the storage or separation capabilities of the MOF. This modularity means

that there are thousands of potential MOFs that can be synthesized and tested, so traditional synthesis

and evaluation is not viable for testing each MOF.

Computational simulation and modelling is a powerful tool for predicting the behaviour of complex

systems [8]. It provides a means for rapidly testing thousands of candidates faster, cheaper, and more

easily than conducting real world experiments. Computational modelling is highly applicable to a wide

range of fields because it allows researchers to explore novel concepts that are difficult to tackle in

traditional laboratory settings. Models can be developed for sociology, epidemiology, or chemistry (to

name a few) and establish a strong basis for future research [9–11]. The scalability of these simulations

in high throughput computation is an especially powerful factor because it removes the need to perform

tedious and repetitive tasks in a wet lab while still providing important information [12]. Computational

simulation is a perfect tool for examining large quantities of novel metal-organic frameworks because

they can be processed more efficiently.

1

In addition to providing estimates for gas storage, computational modelling and analysis of these MOFs

can allow researchers to better understand how gasses are adsorbing in the structure. These simulations

track the positions of the adsorbates throughout the simulation, so it is possible to identify likely sites

of adsorption [13]. Analysis of these structures in silico can also lead to a better understanding of how

nano-porous materials are organized [14]. Computational analysis of these materials creates opportuni-

ties for research that experimental methods are incapable of at this time.

Creating a community dedicated to studying these materials using computation can enhance and in-

spire experimental work and drive the field forward. A free and open source software package capable

of modelling gas adsorption in metal-organic frameworks and other nano-porous materials would prove

useful for screening large pools of potential candidates and can narrow down options to the most promis-

ing materials. With thousands of synthesized and even more hypothetical MOFs, narrowing down the

choices is a daunting yet important task [12]. Many existing software packages capable of running these

simulations are proprietary, so they limit those able to study MOFs in silico to those with the funds to

afford the licenses, and the methods used are hidden from researchers. A free and open source (FOSS)

package built for a FOSS language opens the door to more researchers and improves the community

of those studying these materials [15]. Having an open source package builds validity in the model

because end users are able to understand the inner mechanisms and provide input on how to improve

it.

This thesis explores how computational analysis of MOFs using PorousMaterials.jl can yield in-

valuable data for experimental researchers and propel the field forward [16]. It starts by examining the

Buffon’s needle problem because of its many structural similarities to this method of molecular simula-

tion. Then there is a discussion of how the model is constructed and verified. The modelling algorithm is

validated by producing simulated adsorption isotherms and comparing them to experimental data. The

simulation is further expanded to help locate adsorption sites within MOFs. PorousMaterials.jl is

lastly used for analyzing crystal structures by inferring and then analyzing their bonds to locate disjoint

structures.

2

2 Buffon’s Needle

2.1 The Buffon’s Needle Problem

Buffon’s needle is a probability problem originally discussed in the 18th century. The problem revolves

around needles of a given length and a floor marked with infinite parallel, equidistant lines. Figure 1

shows an example of the floor in this problem. The goal is to determine the probability that a dropped

needle will intersect one of those lines. This is a perfect problem to introduce computational modelling

because there is an analytical solution that can be used to verify the model.

Figure 1: This is the floor for the Buffon’s Needle problem. The vertical lines shown are the lines on
the floor that have infinite vertical length. The arrows are examples of needles that have fallen on the
floor. Some of the needles overlap the lines and some of them do not.

For the sake of simplicity, two assumptions are being made for the work done for this problem. The

first assumption is that the length of the needle is less than the distance between the lines on the floor,

eliminating the possibility that a needle could intersect two or more lines on the floor. The second

assumption is that the location needles land on the floor, and the orientation of the needle as it falls

are both uniformly distributed.

3

2.2 Applications to Computer Simulation

The simulation method for Buffon’s needle is not required because the analytical approach simplifies to

a solvable equation. However, this is a useful tool for showing how a simulated model can be developed

when there is no exact solution present. This problem is a perfect primer for the simulations done

with MOFs in PorousMaterials.jl because it has many parallels. The concept of simplifying the

main problem through periodic boundaries is an important aspect of PorousMaterials.jl . MOFs

are infinitely repeating crystalline structures, so finding a subsection to examine that will be represen-

tative of the whole structure is valuable. This problem also introduces the idea of exploring a model

through examining the state space. Buffon’s needle is simple because the state space is uniformly dis-

tributed, PorousMaterials.jl also uses an exploration of state space but more complicated methods

must be used because not all state spaces occur with equal probability. Using a toy model such as

Buffon’s needle provides an opportunity to introduce more complex topics that are used extensively in

PorousMaterials.jl .

2.3 Representation of the Needle and the Floor

For the analytical and the simulation approach it is important to define a representation for needles and

the floor. The position and orientation of each needle was defined by the Cartesian coordinates of the

center of the needle and the angle (0 → 2π in radians) between a vertical line and the needle. The

floor will be represented as the distance between the parallel vertical lines. Every line is infinitely long

in the y direction and they repeat ad infinitum in the x direction.

To make both models easier to work with, the representations can be simplified. Due to the rotational

symmetry of a needle, it is not necessary to use the full range 0 → 2π to represent the orientation of

the needle. The needle rotates about its center, so an orientation of 0 is the same as an orientation of

π. This means the range of angles can be restricted to be from 0→ π.

It is unwieldy to drop needles on an infinite plane, so the axes need to be bounded. The y coordinate

of a needle has no influence over whether it intersects a line. With everything else held constant, a

change in the y value of a needle will not change the outcome of the drop.

The lines repeat in the x direction and are evenly spaced a distance d apart. The space between two lines

can be defined as a chunk, and each chunk is identical. Therefore, periodic boundaries may be applied

because finding the probability that a needle intersects a line in a single chunk will be representative of

the probability that a needle intersects a line when dropped anywhere on the floor. This restricts the

possible x coordinates for a needle to be in 0 ≤ x ≤ d.

With this information, the state space for needles can be constructed. The x-value exists from 0 → d

and the θ value exists from 0→ π. Equation 1 shows the state space for the problem.

R := {(x, θ)|0 ≤ x ≤ d, 0 ≤ θ ≤ π} (1)

4

Figure 2: An needle with its parameters for length L, horizontal location x0, and angle from vertical θ

2.4 Analytical Solution to Buffon’s Needle

One of the benefits of this problem is that there is an exact analytical solution that can verify the

simulation model. This analytical solution can be found by working with areas inside the state space

that was defined for the needle in equation 1.

Dropping a needle on the floor is the same as uniformly sampling the state space because all positions

and orientations of the needle are equally likely when it is dropped. Thus the fraction of the space that

represents an intersection is the probability that a randomly dropped needle intersects a line. This can

be calculated because the size of the state space is finite.

In one chunk, the needle can either intersect the line that is at x = 0 (left line) or the line at x = d

(right line). All needles have a center between 0 and d, so if an endpoint of the needle is less than 0

or greater than d then it must cross a line. The needle crosses the left line when x − l
2
sin(θ) < 0,

and it crosses the right line when x+ l
2
sin(θ) > d. Where the length of the needle l and the distance

between the lines d is held constant.

These equations can be solved analytically to find the total area inside the state space that they satisfy.

they can be re-arranged to be in terms of θ to make integration simpler. The equation for the left line

becomes x < l
2
sin(θ). Equation 2 goes through solving for the area under the lower curve.

5

Alower =

∫ π

0

(
l

2
sin(θ))dθ

Alower = l

(2)

The same process is done for the right line to find the area above the upper curve. The inequality for

determining if a needle intersects the right line is rewritten x > d− l
2
sin(θ). This is solved in equation

3.

Aupper =

∫ π

0

(d− l

2
sin(θ))dθ

Aupper = l

(3)

The last step is to find the total area of the state space. This is done by taking a double integral over

both axes. Equation 4 shows the calculation of the total area of the state space.

Atotal =

∫ d

0

∫ π

0

dθdx

Atotal = dπ

(4)

The probability that a needle intersects a line when it is randomly dropped is the fraction of the space

that represents an intersection. The probability that a randomly dropped needle intersects a line is

Pintersection = (Alower + Aupper)/Atotal = 2l
dπ

.

2.5 Simulation Approach to Buffon’s Needle

The simulation approach is to take uniformly distributed samples from the state space, and keep track

of how many samples would intersect a line. A given sample intersects a line if it satisfies either

x + l
2
sin(θ) > d or x − l

2
sin(θ) < 0. Because the samples are uniform, they are representative

of the entire state space as a whole. This model was written in Julia to maintain consistency with

PorousMaterials.jl [17].

The code shown in code fragment 1 is the struct used to represent a single needle in the simulation.

For each cycle of the simulation a needle is “thrown” onto the floor by sampling uniformly from the

state space. It gets a random number between 0 and π for θ and a random number between 0 and d

for x. The value for l is set by the specifications for the particular simulation.

6

1 struct Needle

2 l::Float64

3 x::Float64

4 θ::Float64

5 end

Code Fragment 1: The struct used for representing a needle in the julia program

2.6 Testing the Validity of the Model

To compare these methods, the state spaces for these methods can be plotted side by side. Figure 3

shows the area in the state spaces that result in the needle intersecting a line. The blue in each plot

highlights the region in the state space that results in a needle intersecting a line.

The analytical model provides the exact solution. If the results of the simulation match the analytical

model then the simulation is accurate and provides relevant data. The results of the two models

estimating needles of length 10 and a distance between lines of 30 are shown in figure 3. The blue shaded

areas of both plots cover the same regions, so the simulation model is a fairly strong approximation for

the analytical approach.

Figure 3: Comparison of the simulation and analytical approaches. The blue area in each graph
represents a state that results in the needle intersecting a line. Red dots in the simulation plot represent
samples that did not intersect a line. These are generated from a run where the distance between the
lines is 30 and the length of the needle is 10.

One way of showing that the simulation is accurate is to compare directly with the exact solution. The

number of throws in a simulation can be compared to the mean of the results to find how accurate the

model is. Figure 4 shows the mean (as a point) and standard deviation (as error bars) as the number

of throws increases. Once the number of throws reaches 105 the error bars are no longer visible. The

simulated data from figure 3 was collected with 5,000 samples, where the standard deviation is around

0.02.

7

Figure 4: Mean and standard deviation over a varying number of throws. Each number of throws was
tested with 100 simulations. The mean of the data is shown as the point and the standard deviation is
represented with the error bars.

8

3 Modelling Gas Adsorption with a Grand Canonical Monte-

Carlo Algorithm

3.1 Grand-Canonical Monte Carlo Simulation

PorousMaterials.jl uses a Metropolis Hastings algorithm for molecular simulations [16]. This al-

gorithm is a more complex version of the simple Monte Carlo algorithm used in the Buffon’s Needle

problem discussed previously. By exploring the statespace of these problems the average statespace can

show an approximate solution. A major difference between the Buffon’s Needle problem and molecular

simulation is the probability distribution of each state. Each state in the Buffon’s Needle problem has

an equal probability of occurring. This is not true of gasses adsorbing to porous structures.

The statespace for this molecular model is defined as the total number of adsorbate molecules in the

system and their positions in 3D space, shown in equation 5. The order of the positions is not im-

portant because it has no impact on what is being represented. These states should not occur with

equal probability in order to accurately simulate this process. For instance, one state with a pair of

overlapping atoms and another state with the overlapping atom removed should not occur with the

same probability. To favor realistic permutations, PorousMaterials.jl uses the the grand-canonical,

µV T , ensemble of equations with a metropolis hastings algorithm to run grand-canonical Monte Carlo

(GCMC) simulations. These explore feasible states based on the energy of the system and avoid im-

probable, energetically unfavorable, states.

R := {N, {⇀x1, . . . ,
⇀
xN}} (5)

It is important to note that the GCMC simulation explores the statespace of the model to simulate it,

and that cycles are not related through time. Given the state of the system after cycle x, cycle x + 1

does not represent a snapshot of the system after 1 unit of time. Cycle x+ 1 represents another state

that can be attainable through insertion, deletion, or translation of a single adsorbate, or no change

from cycle x. Going from cycle x to x+ 1 does not indicate a change in time in the system.

The simulation works by proposing one of three trial moves: insertion, deletion, or translation. The

GCMC simulation uses acceptance rules to determine whether or not the simulation accepts or rejects

this trial move based on the change in energy. The simulation will accept trial moves with a probability

proportional to the increase in energy. Therefore large changes in energy will never be accepted, small

changes have a chance of being accepted, and decreases in energy will always be accepted. The trial

moves allow the model to explore the entire statespace, but the acceptance rules limit the spaces it

can actually visit. At the end of the simulation, information about the visited states such as number of

adsorbates and total energy can be averaged to calculate an approximate solution to the system.

9

3.2 Deriving the Acceptance Rules for GCMC

The grand-canonical Monte Carlo acceptance rules are derived from a Metropolis Hastings Algorithm

and the partition function for the grand-canonical statistical mechanical µV T ensemble [18, 19]. The

Metropolis Hastings algorithm defines the probability of going from the current state c to a new state

n as:

acc(n|c) = min

(
α(c|n)p(n)

α(n|c)p(c)
, 1

)
(6)

Where p(x) is a probability mass function for all states in R and α(t|s) defines the probability of propos-

ing transition state t given the current state is s.

The partition function from the µV T ensemble can be used to define a calculable value that is pro-

portional to the probability density of a given state as shown in equation 7. There is no function

that describes the exact probability of each state, so a value proportional to their probability is the

most accurate method for informing transitions between states. The simulation holds temperature T ,

volume V , and pressure P constant, while the number of adsorbates in the system N and their posi-

tions (
⇀
x1, . . . ,

⇀
xN) are allowed to fluctuate through the acceptance of GCMC proposals. The potential

energy at a given state U will be calculated as a function of the positions of the adsorbates via their

interactions with each other and the atoms in the host framework. The chemical potential µ is related to

the pressure. The De Broglie wavelength, Λ, is present in the partition function but will be substituted

later to cancel terms. β = 1/(kBT) where kB is the Boltzmann constant.

p(N, {⇀x1,
⇀
x2, . . . ,

⇀
xN}) ∝

Λ−3N

N !
eβµNe−βU(

⇀
x 1,

⇀
x 2,...,

⇀
xN) (7)

The particles within the system are indistinguishable because this simulation is designed to only handle

one type of adsorbate at a time. The N ! term is required in equation 7 to prevent double counting

permutations of the same set of particles. However, when calculating the guest-guest and guest-host

energy of each asorbate, U(
⇀
x1, . . . ,

⇀
xN), the order of the particles is not taken into consideration.

Therefore, the states are not counted multiple times, and this term can be removed to simplify this

equation. This creates a new equation that is still proportional to equation 7 for use in the Metropolis

Hastings Algorithm, but is easier to work with.

p(N, {⇀x1,
⇀
x2, . . . ,

⇀
xN}) ∝ Λ−3NeβµNe−βU(

⇀
x 1,

⇀
x 2,...,

⇀
xN) (8)

For simplifying the equation so as not to need the De Broglie wavelength, the following equivalence

may be used when working with an ideal gas [18]:

Λ3 =
eβµ

βP
(9)

10

To determine the acceptance rule for each Monte-Carlo proposal, every component of equation 6 must

be found for the state space transition from inserting, deleting, or translating an adsorbate molecule.

3.2.1 Insertion

Insertion into the system modifies the state space through the transition shown in equation 10. For the

sake of reducing clutter in the equations below, these will be simplified to (N, xN) for the initial state

and (N + 1, xN+1) for the proposed state.

{N, {⇀x1, . . . ,
⇀
xN}} → {N + 1, {⇀x1, . . . ,

⇀
xN ,

⇀
xN+1}} (10)

When choosing to insert a molecule, a random location will be uniformly chosen from within the

simulation box (1/V). The reverse will also be needed for finishing equation 6. When reversing this

insertion, a random molecule will be uniformly chosen from all adsorbates currently in the system

(1/N + 1). These combine to obtain:

α((N, xN)|(N + 1, xN+1))

α((N + 1, xN+1)|(N, xN))
=

V

N + 1
(11)

Equation 8 can then be inserted into p(n)/p(c) for:

p(N + 1, xN+1)

p(N, xN)
= Λ−3eβµe−β(U(xN+1)−U(xN)) (12)

Equation 9 can further simplify this into:

p(N + 1, xN+1)

p(N, xN)
= βPe−β(U(xN+1)−U(xN)) (13)

Lastly, equations 13 and 11 can be used within equation 6 to achieve the probability of acceptance for

an insertion proposal.

acc((N + 1, xN+1)|(N, xN)) = min

(
V P

kBT (N + 1)
e−β(U(xN+1)−U(xN)), 1

)
(14)

3.2.2 Deletion

Deletion of a randomly chosen kth molecule modifies the state space through the transition shown in

equation 15. The current state will be represented by the same notation in insertion, and (N−1, xN−1)

will represent the proposed state with a randomly selected molecule deleted.

{N, {⇀x1, . . . ,
⇀
xk−1,

⇀
xk,

⇀
xk+1, . . . ,

⇀
xN}} → {N − 1, {⇀x1, . . . ,

⇀
xk−1,

⇀
xk+1, . . . ,

⇀
xN}} (15)

The proposed moves for deletion will be the opposite of insertion. When deleting a molecule, a random

molecule will be uniformly chosen from the list of all adsorbates to remove (1/N). The reverse of

11

this action involves generating a random point uniformly chosen from within the simulation box (1/V).

These are the opposites of the rules for insertion, so it naturally follows that this will be the inverse of

equation 11.

α((N, xN)|(N − 1, xN−1))

α((N − 1, xN−1)|(N, xN))
=
N

V
(16)

Deletion will follow the same process for simplifying this equation as insertion, first creating p(n)/p(c)

and then substituting in equation 9. This achieves:

p(N − 1, xN−1)

p(N, xN)
=

1

βP
e−β(U(xN−1)−U(xN)) (17)

Equations 16 and 17 can be substituted into equation 6 to get the acceptance rule for a deletion

proposal.

acc((N − 1, xN−1)|(N, xN)) = min

(
kBTN

V P
e−β(U(xN−1)−U(xN)), 1

)
(18)

3.2.3 Translation

Translation of a randomly chosen kth molecule modifies the state space through the transition shown

in equation 19. The notation from insertion and deletion will be upheld for the current state, and the

new state will be shortened to (N ′, x′N).

{N, {⇀x1, . . . ,
⇀
xk, . . . ,

⇀
xN}} → {N, {

⇀
x1, . . . ,

⇀
x
′
k, . . . ,

⇀
xN}} (19)

With translation, a random molecule will be chosen from the list of current adsorbates and then

translated to a nearby position. When moving to a nearby position, V ′ can signify the volume around

its current position from which a uniformly chosen point will be selected. Therefore, the probability of

proposing a given translation from some state (N, xX) is 1/(N ∗ V ′). This same logic can be followed

for reversing the translation to yield the same probability for reversing the action. This generates:

α((N, xN)|(N ′, x′N)

α((N ′, x′N)|(N, xN))
= 1 (20)

Because the number of adsorbates within the system stays constant between the current and proposed

states, p(n)/p(c) simplifies further without needing to substitute a value for the De Broglie wavelength.

p(N ′, x′N)

p(N, xN)
= e−β(U(x′N)−U(xN)) (21)

Equations 20 and 21 can be substituted into equation 6 to achieve the acceptance rule for translation

proposals.

12

acc((N ′, x′N)|(N, xN)) = min
(
e−β(U(x′N)−U(xN)), 1

)
(22)

3.3 Grand-Canonical Monte Carlo implemented in PorousMaterials.jl

PorousMaterials.jl uses a grand-canonical Monte Carlo simulation to approximate the storage po-

tential of adsorbate-MOF pairs. The simulation can be controlled through a variety of parameters

that allow the user to approximate the scenario they are most interested in. When using the µVT sim

function, there are five required arguments. An example of this is shown in code fragment 2, and a

further explanation of each is provided in table 1. There are many optional keyword arguments (shown

in table 2) that allow the user to tune the length of the simulation (thus increasing the accuracy) as

well as control other data collection options (i.e. adsorbate snapshot functionality).

The µVT sim function is a series of proposed GCMC moves that are accepted or rejected based on the

change in energy they apply to the system. At every iteration, the simulation will choose to propose

an insertion, deletion, or translation by randomly selecting an option based on pre-assigned weights.

It then proposes a new trial state based on the selected move. Because only one molecule is being

modified for each proposal, the total system energy does not need to be recalculated. Instead, only the

contribution of the molecule in question is used because it provides U(proposed)−U(current) = ∆E.

The list below explains how trial moves are generated, while retaining information about the current

state, for each type of proposal.

• Insertion: A new molecule is placed within the simulation box and appended to the array of

molecules.

• Deletion: A random molecule is selected in the array for deletion, but it is left in the array to

preserve information about the current state.

• Translation: A random molecule is selected, its position is saved, and it is translated by a small

amount to a nearby location.

After a trial move is generated the change in energy is calculated and the system randomly chooses

whether it will accept or reject it. The change in energy is used within equation 14, 18, or 22 based on

its proposal type. The term inside of the min function will generate a positive value for the probability

of accepting that move. A value greater than 1 indicates that the proposed state is more energetically

favorable and will always be taken. A value close to 0 means the proposal is extremely energetically

unfavorable, likely from overlapping atoms, and will always be rejected. Any where in between shows

that the proposed state is less energetically favorable than the current state, so it will be accepted with

a probability defined in one of the acceptance rules. Travelling to less favorable states prevents the

system from becoming trapped inside local minima and allows the simulation to explore more of the

state space.

13

1 result = µVT sim(xtal, molecule,

temperature, pressure, ljff)↪→

Code Fragment 2: Example of the µVT sim with the required arguments

These proposals are grouped into cycles to prevent oversampling the system. These proposals have low

acceptance rates so very few prompt a change. Oversampling can inadvertently skew the data if many

proposals pass without the state changing. Each cycle contains max(20, N) proposals.

The simulation starts by executing “burn cycles” where it explores the state space before samples are

collected because it starts with 0 adsorbates. This sets up the simulation by reaching an energetically

favorable position before sampling for data. Due to the low acceptance rate of the proposals, it takes

many cycles before the system reaches a state that is indicative of the real world. These cycles do not

contain information that is valuable to the user because they are held at a constant temperature and

do not represent the MOF filling with gas. If these cycles were sampled, then the simulation would

underestimate the amount of gas that a MOF can store because many of its data points are from the

beginning of the simulation where no gas is present.

Table 1: Rquired Arguments for µVT sim

Argument Name Type Purpose

xtal Crystal The crystal structure being tested. Read in from a *.cif

or *.cssr file in using the Crystal() constructor from
PorousMaterials.jl

molecule Molecule The adsorbate being tested inside the structure. Read in using the
Molecule(...) constructor from PorousMaterials.jl

temperature Float64 The temperature of the system in Kelvin

pressure Float64 The pressure of the system in bar

ljff LJForceField The parameters used for atomic interactions. Read in from
a *.csv file using the LJForceField() constructor in

PorousMaterials.jl

3.4 Example Usage within julia

Code fragment 3 shows the basics of running a GCMC simulation using PorousMaterials.jl in

julia. Lines 4 - 10 are reading in necessary information from files including the framework being

tested (IRMOF-1.cssr), the forcefield to use (Dreiding forcefield), and the molecule being adsorbed

(methane). The universal forcefield can be used to simulate almost any structure gas pair (because

it contains atomic interaction information for all elements), but in this case the Dreiding forcefield

will generate a more accurate simulation because it uses more precise information for a smaller set of

14

1 using PorousMaterials

2

3 # read in the metal-organic framework

4 structure = Crystal("IRMOF-1.cssr")

5 # atom labels are read in with numbers, these interfere with the

simulation↪→

6 strip_numbers_from_atom_labels!(structure)

7 # read in the forcefield being used - the Dreiding forcefield

8 ljforcefield = LJForceField("Dreiding")

9 # read in the adsorbate being used - Methane

10 molecule = Molecule("CH4")

11

12 # run a single GCMC simulation with a pressure of 50.0 bar

13 result = µVT sim(structure, molecule, 298.0, 50.0, ljforcefield;

n_burn_cycles=2000, n_sample_cycles=7000, verbose=true,

eos=:PengRobinson)

↪→

↪→

14

15 # calculate an adsorption isotherm by running GCMC simulations with

pressures from 1.0 bar to 80.0 bar↪→

16 pressures = [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0,

80.0]↪→

17 results = adsorption_isotherm(structure, molecule, 298.0, pressures,

ljforcefield; n_burn_cycles=10000, n_sample_cycles=10000,

verbose=true, eos=:PengRobinson)

↪→

↪→

Code Fragment 3: Running a GCMC simulation for a single pressure, and for a range of pressures in
julia with PorousMaterials.jl

15

atoms [20,21]. A single GCMC simulation run with optional arguments is shown on line 13. This models

the adsorption of methane inside IRMOF-1 using the Dreiding forcefield file provided at 298.0◦K and

50.0 bar. Because the model starts empty, the simulation has been set to perform 2,000 “burn cycles”.

The simulation has also been set to run 7,000 “sample cycles” where it collects information about the

state of the system. Lastly this simulation will use the PengRobinson equations of state instead of

treating the gas as ideal.

Code fragment 3 also shows a function call for calculating an adsorption isotherm. It takes the same

arguments (and optional arguments) as the µVT sim function except it takes an array of pressures

instead of a single value. This allows the user to create an adsorption isotherm across a range of

pressures with a single function call. The adsorption isotherm function takes advantage of pmap

within julia, so these different simulations can be run in parallel on powerful enough machines.

3.4.1 Verifying the Model

The results from the adsorption isothem call in code fragment 3 can be used to construct an adsorp-

tion isotherm for methane in IRMOF-1 alongside experimental data. The results from this simulation

can be compared to the results from experimental data to determine the accuracy of the model.

Figure 5: An adsorption isotherm for xenon in calcium sulfonyl dibenzoate with 10,000 burn cycles,
10,000 sample cycles, the Dreiding forcefield (for atomic interactions), 298.0K, and pressures ranging
from 0.1 bar to 80.0 bar.

Figure 5 shows a comparison of simulation results to experimental data for methane in IRMOF-1 [22].

16

This shows that given the specialized Dreiding forcefield, this model can approximate the adsorption

of methane in IRMOF-1. This is not a perfect match, but provides insight into how well a given MOF

can perform. It can be useful for determining which MOFs are most promising for gas adsorption and

should be investigated further.

This model assumes ideal and uniform conditions. For example, MOF synthesis involves mixing nodes

and linkers in solution, and having the framework form in solution. This leaves solvent inside of the

pores of the MOF, blocking the channels. Removing the solvent “activates” the MOF, and allows

experimental tests to be run [5]. There are many methods for activation, and a MOF is not guaranteed

to be entirely evacuated of solvents in its pores.

Figure 6: An adsorption isotherm highlighting the limitations of the model. The simulated uptake of
methane is significantly larger than the experimental uptake.

Differences can occur between the simulation data and experimental data because PorousMaterials.jl

assumes the porous structure has been perfectly activated and no solvent remains. Figure 6 shows an

experimental and simulated adsorption isotherm that don’t match due to issues relating to the acti-

vation of the porous material. The difference shown here is believed to be influence in large part by

an imperfect removal of solvent, thus impacting the experimental data. The simulation data assumes

a best case scenario within the system, so it will overestimate the amount of gas it can store if the

material is not prepared carefully.

17

3.4.2 Flexible MOFs

Flexible MOFs such as Co(bdp) are potential materials for use in natural gas vehicles because not only

do they increase energy storage potential over compressed and liquid natural gas systems due to their

large internal surface areas, but they also release more of the material when the system goes to a low

pressure, meaning more usable fuel [4]. Flexible MOFs have a higher usable capacity because they

transition between a “closed” form at low pressures and an “open” form at high pressure [4]. They

retain the same amount of gas, but when they pass a pressure threshold during desorption they collapse

and expel all remaining gas in the system.

Figure 7: An adsorption isotherm for Co(bdp) showing experimental results alongside theoretical results
using the collapsed and expanded crystallographic files.

PorousMaterials.jl assumes a rigid, non-moving structure meaning that it is not able to properly

simulate flexible materials. While PorousMaterials.jl can approximate the “closed” and “open”

forms of a flexible MOF fairly well, as seen in figure 7, it cannot simulate the transition between the

two. The transition point is extremely important because it needs to happen in a reasonable pressure

range that allows the user to extract most of the fuel they put in. Because PorousMaterials.jl

cannot simulate this behaviour, it cannot make assumptions about when the transition occurs. This

means it cannot serve as a guide for which materials are the most promising due to their flexible nature.

18

Table 2: Optional Keyword Arguments for µVT sim

Argument Name Type default Purpose

molecules Array [] An array of molecules that can be pre-loaded
into the simulation if the user does not want
to start with an empty box

n burn cycles Int 5000 The number of cycles that will run at the
beginning of the simulation where data is
not collected

n sample cycles Int 5000 The number of data collection cycles that
will be run after the burn cycles are com-
pleted

sample frequency Int 1 The number of sample cycles between each
data collection (after burn cycles are com-
pleted). For example, 1 means data is col-
lected every cycle, while 2 means every other
cycle and so on.

ewald precision Float64 1e-6 The precision used for long range ewald sum-
mations

eos Symbol :ideal The equations of state used within the sim-
ulation. Can either be ‘ideal’ or ‘PengRobin-
son’

write adsorbate snapshots Bool false Whether the simulation will track and out-
put adsorbate positions to a *.xyz file

snapshot frequency Int 1 The number of sample cycles between each
snapshot (after burn cycles are completed).
Similar to sample frequency.

calculate density grid Bool false Whether the simulation will generate a den-
sity grid of where adsorbates are located dur-
ing the simulation

density grid dx Float 1.0 The size of voxels used in the density grid in
Angstroms.

density grid species Symbol | nothing nothing The atomic species within the adsorbate
that will be tracked for the density grid. If
nothing is chosen and there is only one
unique species, the unique species will be
used. Otherwise the simulation will error.

density grid sim box Bool true A true value means the density grid covers
the entire simulation box after the crystal is
replicated. A false value means the density
grid only covers the original crystal passed in.

verbose Bool false Whether the simulation will print out up-
dates about the status of the simulation.

autosave Bool true Whether the simulation autosaves its
progress in the gcmc checkpoints direc-
tory.

result filename comment String ”” String that will be appended to the end of
autosaved filenames.

19

4 Adapting the Monte Carlo Algorithm to track Adsorbate Po-

sitions

When studying gas adsorption in nano-porous materials, it is important to know where molecules are

located in relation to the structure. X-ray diffraction can be used to get this information, but it has issues

with non crystalline materials. For example, porous coordination cage molecules serve a similar purpose

to metal-organic frameworks with respect to gas storage but their non-crystalline structure means x-ray

diffraction cannot find the locations of individual molecules inside the pores. PorousMaterials.jl can

provide an estimate because it already tracks the locations of the molecules in the pores of the crystal

to run the simulation. These adsorbates were tracked using two separate methods: storing coordinates

for individual atoms and tracking the number of atoms that appear within a given unit of space.

This information is extremely useful for designing optimal pore spaces. Understanding where gasses are

likely to adsorb within the structure can guide research about tuning MOFs and other porous structures

to increase their gas storage potential. This insight can be applied to functionalize or replace linkers

in the hopes of generating stronger adsorption between the gas and the internal surface area of the

structure.

4.1 Tracking Adsorbate Positions using snapshots

The simulation code for modelling gas adsorption can be extended to take “snapshots” of the molecule

positions during the simulation. The user can specify how frequently they want snapshots to be taken

in terms of sample cycles. For each snapshot, the location of every molecule in the system is output to

a single .xyz file which is closed and ready for use at the end of the simulation.

These snapshots are useful for generating average positions for the molecules, but they are not indicative

of molecules moving in the porous material. The simulation in PorousMaterials.jl is not time

dependent. The GCMC moves are transitioning from one state space to another state space with a

similar energy level. Therefore the snapshot functionality cannot be used to show the positions of the

adsorbates at a particular time. Instead a snapshot shows the state of the system at a given sample

cycle. Adsorbate tracking can give insight into where molecules will likely be located, but it cannot

describe the motion of molecules within the system.

20

Figure 8: This is a single snapshot taken from a GCMC simulation for methane adsorbtion in IRMOF-1
at 298.0K and 50.0 bar. (Blue-Grey - Zinc, Red - Oxygen, Grey - Carbon, White - Hydrogen, Black -
Methane)

Figure 8 is a snapshot of methane adsorbing inside IRMOF-1. It shows the locations of the methane

molecules in the crystal structure at an arbitrary sample cycle. The simulation was run at 298.0K and

50.0 bar using the Dreiding forcefield [20]. There were 10,000 burn cycles, 10,000 sample cycles, and

snapshots were taken every 1,000 sample cycles. This is one possible state space for the metal-organic

framework under the given conditions. This visualization is a useful conceptual tool but does not provide

conclusive quantitative data.

4.2 Tracking Adsorbate Positions using a Grid

Capturing snapshots is helpful for visualizing where the adsorbates are most likely to adsorb within the

system, but lacks a convenient method for aggregating the data to make meaningful conclusions. The

snapshot shows the position of each adsorbate at the end of a given sample cycle, but this is not enough

to make broad statements about where gasses are likely to adsorb. The format of the snapshot is not

conducive to large-scale analysis because one must sift through every entry and compare positions to

determine where clusters are occurring. Another method would be to lay a grid over the crystal structure

and instead of taking snapshots, each element of the grid can track the average number of adsorbates

that appear in its unit of space.

21

This method is a considerable improvement over snapshots because it requires fewer computational

resources and likely adsorption locations will naturally reveal themselves. Writing information to a file is

a costly action when compared to updating an array element, so a density grid can collect information

from more sample cycles throughout the simulation without sacrificing time. The grid is not tracking

individual atoms, instead it has “bins” that count the number of times an atom is found in it every

time the grid updates.

The density grid is implemented in the µVT sim function by generating a Grid struct that is laid over

the crystal such that each element of the density grid corresponds to a voxel in the simulation box

where each voxel has the same dimensions. When a snapshot is taken, the simulation iterates through

each molecule currently in the system, converts the fractional coordinate of the molecule to indices in

the density grid using xf to id, and increments the counter at that index. At the end of all sample

cycles, each element is divided by the total number of snapshots taken. Each element of the grid now

contains the average number of adsorbates in the corresponding voxel.

Figure 9: This is the density grid of methane molecules (modelled as spheres) represented as a cloud
plot laid over IRMOF-1. The darker blue portions of the cloud have a higher probability of observing
methane at that position. Generated from a GCMC simulation for methane adsorbtion in IRMOF-1 at
298.0K and 50.0 bar. (Blue-Grey - Zinc, Red - Oxygen, Grey - Carbon, White - Hydrogen).

22

Figure 9 shows a density grid generated under the same conditions as figure 8. The density grid ran for

the same number of burn and sample cycles, however the snapshot frequency was set to 1 for a more

robust density grid. The voxels are no more than 0.5Å apart. This visualization produces more general

estimates of where adsorbates are located through gradations in the cloud plot. A darker blue indicates

more atoms were found there during the simulation, and it is an energetically favorable position for

methane within IRMOF-1. The lighter portions of the cloud plot indicate that adsorbates were found

there during the simulation, but not with the same frequency. These are likely positions that require

higher energy states because PorousMaterials.jl explored them, but quickly accepted a proposal

that deleted the offending molecule or moved it back into an energetically favorable location.

Compared to the previous method, this visualization is more rich in information. Instead of describing

the state of the system at the end of one sample cycle, the density grid describes the average positions

of adsorbates within the system. It becomes easier to differentiate between positions that are likely

adsorption sites from positions where adsorbates have been observed. Because the system can jump

to higher energy states to escape local minima, the system will not be in the perfect configuration at

every cycle. The density grid is able to differentiate between these by averaging data across the entire

simulation so positions that are rarely visited due to the increase in energy required appear as less likely

areas for adsorption.

23

5 Generating Bonding Information

Bonds within metal-organic frameworks can be used to reveal the topology of these structures and bet-

ter understand their form. The main benefit of having information about these bonds is that it shows

isolated structures within the crystal file. Being able to view these isolated structures can be extremely

valuable. They may reveal multiple structures woven together, or solvents present in the file that were

not removed prior its use. Having control over bond information can also be extremely powerful for the

formation of hypothetical structures because it enforces the intended topology when it is relaxed using

molecular dynamics.

PorousMaterials.jl already has an extensive tool kit for interacting with MOFs and other frame-

works through its Crystal struct, so it was expanded to store information about bonds. Storing bond-

ing information as a graph provides countless, well established algorithms for searching and travers-

ing the structure through neighboring atoms. This means the bonds only need to be stored by

PorousMaterials.jl, and functions from other libraries can then be used to analyze and modify

them.

5.1 Inferring Bonds in PorousMaterials.jl

PorousMaterials.jl is capable of reading in bonds from crystal source files, inferring them within

the system, and writing them when outputting crystal files. It uses an undirected, unweighted graph

data structure from LightGraphs.jl to represent the crystal where each vertex is an atom and each

edge is a bond between two atoms. It can also take user defined bonding rules to determine where

bonds exist within the crystal file that is supplied.

PorousMaterials.jl can infer bonds on any structure and store that information as a graph inside

the Crystal struct. The first step is to define a set of bonding rules. These are built using the

BondingRule struct within PorousMaterials.jl that defines a minimum and maximum distance

for a bond to occur between two defined atom species. Wildcards can also be used in place of a

specific species as a stand in for any type of atom. An array of bonding rules can be passed into the

infer bonds! function along with a structure, and a boolean that determines if it will check for bonds

between atoms over the boundary of the simulation box. This will not work if the structure already

has bonds present either because of bonding information read in from the *.cif file or if bonds have

already been inferred, to avoid having overlapping sets of bonds.

The infer bonds! function checks every pair of atoms in the system and determines if they are

bonded by finding a bonding rule that applies to the given species and then comparing the distance

between them to the defined minimum and maximum distances allowed under that rule. The order of

the BondingRules in the array matters because infer bonds! will find and use the first rule that

matches the species of a given pair. If they are not bonded under this rule, it will not check the

remaining rules. This is there to ensure that wildcard rules are obeyed. For example, when using the

24

rules outlined in table 3, and working with a hydrogen and oxygen atom 1.3 Å apart, it should not

classify them as bonded. If it stops after the first rule that matches their species (H-Any), then they will

not be bonded. However, if it instead attempts to use every rule listed it will classify them as bonded

under the final rule (Any-Any).

Using a graph is beneficial because there are many algorithms built into julia and LightGraphs.jl

for quick traversal and analysis. Graphs are perfect tools for tasks like this, because each vertex is paired

with an atom so one can evaluate a single atom and the atoms it is directly bonded to. One example

of how a graph is easily applicable is the connected components function within LightGraphs.jl.

Once bonds within a structure are inferred, the connected components can be used to find isolated

groups of atoms within the original file read in. These groups can be separate structures, solvents, or

something else entirely.

5.2 Removing Solvent Atoms from Crystal Files

A time consuming component of simulating metal-organic frameworks is the need to prepare or “clean”

the crystal files. Many crystallographic crystal files on the Cambridge Crystallographic Data Centre still

have atoms from the solvents present in a low level symmetry group. Before simulations can be run,

these must be removed. It is time consuming to run trial and error deletions of atoms by hand. An

automated process that can detect and extract the proper crystal structure can increase the number of

potential structures for testing.

The crystal structure CaSDB can be found on the Cambridge Crystallographic Data Centre in its “dirty”

form under the identifier KAXQIL [23]. This is a simple example where the solvent atom (oxygen) is

easy to locate in its lower symmetry form. However it is a useful example of how solvent removal can

be automated to pave the way for large scale simulation using experimentally derived crystal structure

files. This can be refined and scaled up to automate the cleaning of batches of simulation files before

they can be used.

Figure 10 shows the crystal structure CaSDB from the Cambridge Crystallographic Data Centre without

any modification aside from a conversion to P1 symmetry and a replicated unit cell. The visualization

shows how the solvent atoms have been isolated and can be removed from the structure. The main

crystal structure is colored red and the solvent atoms present in the original crystal file are colored blue.

This was achieved by inferring bonds in the structure across periodic boundary conditions using the

bonding rules shown in table 3 to generate a graph of the crystal.

By assuming that CaSDB is a single structure, that it has more connected atoms than any of the solvent

groups, and that no solvent is bonded to the crystal, it can be isolated and extracted from its original

form. The largest connected component of the graph representation of the structure must be CaSDB

under these assumptions, and it can be removed to form a separate crystal using functionality within

PorousMaterials.jl . The remaining connected components can also be separated and stored to

25

prove through visualization that structure has been properly “cleaned.”

Figure 10: This is the CaSDB structure file from the Cambridge Crystallographic Data Centre (identifier:
KAXQIL) with the solvent atoms still present. The red atoms and bonds represent the “cleaned” structure
that can be used for simulation. The blue atoms and bonds represent the solvents present in the raw
data file that must be removed.

Table 3: Bonding Rules for CaSDB

Species 1 Species 2 Min. Bonding Distance Max Bonding Distance

H Any 0.4 Å 1.2 Å
Ca Any 1.2 Å 2.5 Å

Any Any 0.4 Å 1.9 Å

5.3 Separating Interpenetrated Metal-Organic Frameworks

Some metal-organic frameworks are interpenetrated, meaning that there are disjoint structures woven

through each other to make up the greater structure. These are not always labeled as interpenetrated in

large databases, but it is valuable information to have. Having an automated tool for scanning databases

26

and identifying interpenetrated structures for further study can cut down on time spent searching for

them. This can also reveal the level of interpenetration and separate the components for further study

of its non-interpenetrated forms.

This is useful for analyzing interpenetrated metal-organic frameworks because it provides a simple way

for identifying the separate structures. All one needs to do to isolate them is infer bonds in the structure

across periodic boundaries and then find the connected components of the bond graph. This yields a

collection of subgraphs that represent the disparate structures. From here, the subgraphs can guide

the creation of individual crystals for each interpenetrated layer from the original file. These can then

be written to individual *.cif files to be examined on their own, or to showcase their disjoint nature

through visualization.

Figure 11 shows a 2×2×2 unit cell of NiPyC2 where the disjoint structures are colored separately. The

interpenetrated layers only revealed themselves when the unit cell was replicated by 2 along each axis.

The bonds were inferred wrapping across the periodic boundaries of the unit cell using the bonding

rules shown in table 4. The graph of the bonds contained two connected components, so the structure

was separated into two sub-structures using the vertices in each subgraph to determine which atoms

were present. Finally the two crystal structures were written to separate *.cif files and then visualized

in separate colors side-by-side to show how the interpenetrated layers of NiPyC2 are woven together.

Table 4: Bonding Rules for NiPyC2

Species 1 Species 2 Min. Bonding Distance Max Bonding Distance

H Any 0.4 Å 1.2 Å
N Ni 1.2 Å 2.5 Å
O Ni 1.2 Å 2.5 Å

Any Any 0.4 Å 1.9 Å

27

Figure 11: NiPyC2 is an example of an interpenetrated MOF. In its crystal file there are two distinct
structures that are not connected. By calculating the bonds in PorousMaterials.jl it is possible to
separate the crystal based on the connected components of the bond graph. Then these components
can be colored (red and blue) to show the two distinct structures.

28

6 Conclusion

PorousMaterials.jl is a powerful, open source package for julia that is capable of modelling and

analyzing complex porous crystalline structures. The powerhouse of the software is its ability to model

gas adsorption in nano-porous structures and generate adsorption isotherms that match experimental

data. It also provides unique analysis through the adsorbate tracking functionality to predict high

probability locations for adsorption. Lastly PorousMaterials.jl can analyze and manipulate the

structures through inferred bonds and the Crystal structure.

PorousMaterials.jl is the perfect tool to complement experimental research because it can guide

the synthesis of materials through high throughput computation of a batch of potential MOFs. Many

synthesized and hypothetical MOFs lack reliable adsorption data for a range of gasses making it difficult

to know where to begin examining them [24]. PorousMaterials.jl can easily be scaled up with enough

computing power to produce hypothetical adsorption isotherms for many distinct materials. These can

be well known MOFs, or hypothetical variations developed in silico. This simulation can produce more

data faster than traditional experimental methods, so it can be invaluable for prioritizing promising

areas of research.

Not only can this simulation estimate adsorption, but it can predict where these materials can be located

inside the structure. This data provides insight into modifying linker molecules to provide the optimal

environment for attracting and holding adsorbates. It is a perfect companion to producing hypthetical

structures because it provides a simple, efficient way to analyze how modifications to the structure alter

the adsorption within it.

The potential to examine bonds provides another layer of analysis for the structure. The bonding

information can reveal interesting aspects of the topology such as woven layers or stray solvents. It

also allows users to quickly modify structures through replacing or functionalizing certain linkers while

retaining the desired topology by enforcing bonds. Bonding information is another lens through which

these materials can be examined.

PorousMaterials.jl is an extensive software package that can provide expansive functionality in a

single, free and open source software package written in a user friendly language. From experimental

crystal structure files, it can identify solvents or separate layers woven together and clean them for use

in simulations. It then has the power to modify these structures and create new hypothetical MOFs

for further investigation. These crystal structures then model adsorption through the grand-canonical

Monte Carlo simulation to understand how well a given MOF stores a certain gas. The adsorption sites

within the structure can then be studied to guide the creation of another round of hypothetical MOFs in

the quest to find the optimal structure. PorousMaterials.jl is a single free and open source software

package that can manipulate and model nano-porous materials quickly, making it ideal for exploring

novel MOFs and optimizing known structures.

29

References

[1] M. Q. Wang and H. S. Huang, “A full fuel-cycle analysis of energy and emissions impacts of

transportation fuels produced from natural gas,” tech. rep., United States, Argonne National Lab,

2000.

[2] S. Yeh, “An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas

vehicles,” Energy Policy, vol. 35, pp. 5865–5875, 2007.

[3] C. M. Simon, J. Kim, D. A. Gomez-Gualdron, J. S. Camp, Y. G. Chung, R. L. Martin, R. Mercado,

M. W. Deem, D. Gunter, M. Haranczyk, D. S. Sholl, and R. Q. Snurr, “The materials genome in

action: identifying the performance limits for methane storage,” Energy & Environmental Science,

vol. 8, pp. 1190–1199, 2015.

[4] J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I.

Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, and J. R.

Long, “Methane storage in flexible metal–organic frameworks with intrinsic thermal management,”

Nature, vol. 527, pp. 357–361, 2015.

[5] H. Furukawa, K. E. Cordova, M. O’keeffe, and O. M. Yaghi, “The chemistry and applications of

metal-organic frameworks,” Science, vol. 341, no. 6149, pp. 1230444–1230444, 2013.

[6] D. Banerjee, C. M. Simon, A. M. Plonka, R. K. Motkuri, J. Liu, X. Chen, B. Smit, J. B. Parise,

and M. H. amd Praveen K. Thallapally, “Metal–organic framework with optimally selective xenon

adsorption and separation,” Nature Communications, vol. 7, p. n.p., 2016.

[7] D. Banerjee, A. J. Cairns, J. Liu, R. K. Motkuri, S. K. Nune, C. A. Fernandez, R. Krishna, D. M.

Strachan, and P. K. Thallapally, “Potential of metal–organic frameworks for separation of xenon

and krypton,” Accounts of Chemical Research, vol. 48, pp. 211–219.

[8] A. Sturluson, M. T. Huynh, A. R. Kaija, C. Laird, S. Yoon, F. Hou, Z. Feng, C. E. Wilmer,

Y. J. Colon, Y. G. Chung, D. W. Siderius, and C. M. Simon, “The role of molecular modelling

& simulation in the discovery and deployment of metal-organic frameworks for gas storage and

separation,” ChemRxiv. https://doi.org/10.26434/chemrxiv.7854980.v2.

[9] B. Edmonds and D. Hales, “Computational simulation as theoretical experiment,” Journal of

Mathematical Sociology, vol. 29, pp. 209–232, 2005.

[10] O. Silva, “Black death–model and simulation,” Journal of Computational Science, vol. 17, pp. 14–

34, 2016.

[11] J. Carney, D. Roundy, and C. Simon, “Statistical mechanical model of gas adsorption in a metal–

organic framework harboring a rotaxane molecular shuttle,” Langmuir, vol. 36, pp. 13112–13123,

2020.

i

[12] B. J. Sikora, C. E. Wilmer, M. L. G. b, and R. Q. Snurr, “Thermodynamic analysis of xe/kr

selectivity in over 137,000 hypothetical metal–organic frameworks,” Royal Society of Chemistry,

vol. 3, pp. 2217–2223, 2012.

[13] G. R. Lorzing, B. A. T. Aeri J. Gosselin, A. H. P. York, A. Sturluson, C. A. Rowland, G. P. A. Yap,

C. M. Brown, C. M. Simon, and E. D. Bloch, “Understanding gas storage in cuboctahedral porous

coordination cages,” Journal of the American Chemical Society, vol. 141, no. 30, pp. 12128–12138,

2019.

[14] A. Sturluson, M. T. Huynh, A. H. P. York, and C. M. Simon, “Eigencages: Learning a latent space

of porous cage molecules,” ACS Central Science, vol. 4, pp. 1663–1676, 2018.

[15] K. Carillo and C. Okoli, “The open source movement: A revolution in software development,”

Journal of Computer Information Systems, vol. 49, pp. 1–9.

[16] C. Simon, A. H. York, Á. Sturluson, M. T. Huynh, A. S. Rosen, C. Laird, , and M. Piibeleht,

“Simonensemble/porousmaterials.jl:bonds, symmetry and flexible file paths.”

[17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical

computing,” SIAM, vol. 59, no. 1, pp. 65–98, 2017.

[18] C. M. Simon, Computation assisted discovery of nanoporous materials for gas storage and separa-

tions. PhD thesis, 2016.

[19] H. Tijms, Probability: A Lively Introduction. Cambridge University Press, 2018.

[20] S. L. Mayo, B. D. Olafson, and W. A. Goddard, “Dreiding: a generic force field for molecular

simulations,” vol. 94, no. 26, pp. 8897–8909, 1990.

[21] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “Uff, a full periodic

table force field for molecular mechanics and molecular dynamics simulations,” Journal of the

American Chemical Society, vol. 114, no. 25, pp. 10024–10035, 1992.

[22] J. A. Mason, M. Veenstra, and J. R. Long, “Evaluating metal-organic frameworks for natural gas

storage,” Chemical Science, vol. 5, pp. 32–51.

[23] D. Banerjee, Z. Zhang, A. M. Plonka, J. Li, and J. B. Parise, “A calcium coordination framework

having permanent porosity and high co2/n2 selectivity,” Cyrstal Growth and Design, vol. 12,

pp. 2162–2165.

[24] A. Sturluson, A. Raza, G. D. McConachie, D. Siderius, X. Fern, and C. M. Simon, “A recom-

mendation system to predict missing adsorption properties of nanoporous materials,” ChemRxiv.

https://doi.org/10.26434/chemrxiv.14205929.v3.

ii

