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Salmon collapse in the Central Valley results in
unprecedented fishery closures (2008)

ranciseo Chronicle
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It's a hard homecoming for
season’s fall-run salmon
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Physical capital (hatcheries) has been developed to
compensate for the loss of natural capital (habitat)
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Trend towardsoff-5|te releases of hatchery fish

http://www.fisheryfoundation.org/

In 2008, 20.2 million smolts
outplanted to San Pablo Bay!
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...but also increases straying
(failure of adults to return to
home stream).

* Homogenization?
* Welfare impacts?

CDFG/NMFS. 2001. Final report on anadromous salmonid fish hatcheries in California.



To capture the portfolio effect within and between rivers
we model a two river, one hatchery system
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Annual payoffs from the fishery are given by harvest
revenue less harvest cost.
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X — state vector: {N, 1, G}

N — stock size A —action vector, {D,H}

[ — mean genetic value D — trucking distance

G — genetic standard H — harvest (set to PEMC policy)
deviation

The state of the system next period (t+1) is a function of the
current state and chosen actions in period t.

Xua =X [A)



The value function is commonly identified using backwards
iteration techniques (“value function iteration”)

V(X,) =max{Ex(X,, A)+BEV (X,,)}
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Given the challenge of a 6 state variable system we use
forward dynamic programming (FDP)

X — state vector: {N, 1,G}
N: {N,,N,}— stock size
Wi . 1, $— mean genetic value
G: {G,,G,} — genetic standard deviation

* As the number of stocks and control variables increase,
memory becomes a limiting factor.



FDP steps:

1.

2.
3.
4

You have a guess for value, VZ1(X)

Randomly choose an initial state, e.g. X,=500

Observe shock, &,

Choose optimal action D,*, given immediate profit and
discounted future value, § V#1(X,/D,* ¢,)

Provides an updated, stochastic observation of value.
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FDP steps:
Continue to simulate forward in a chain,
generating “data” reflecting updated estimates of value
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FDP steps: Regress to identify new estimate of the value

function.
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Advantages of FDP

e Simulating forward in time
* can eliminate (or simplify) integration
* reduces the need for calculations with very large arrays (e.g.
Markov transition matrices used in backwards induction
defined across the entire state space)

* This makes FDP particularly powerful tool for dynamic
optimization with many states and/or controls.



Simulation results:

- 3,000 sims of 50 periods, first 30 periods excluded for burn-in.
- Results presented as cumulative mass functions (CMFSs)

- Cases: no augmentation (blue) and optimal augmentation (red)
- *=mean
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Simulations show: 1. Optimal trucking (str. 1)
pulls trait means together, Uq > & U, (loss of b/n pop. diversity)
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2. Optimal trucking drives down mean G
(genetic variance) for both (loss of with subpop. diversity)

cumulative mass
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Under the optimal policy:
3. Optimal trucking of stream 1 boosts N, the most
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Under the optimal policy:
4. N, ,N,: less boom and bust. N,+N,: only more boom

cumulative mass
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cumulative mass
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Under the optimal policy:
5. Mean profit up 14%, no change in downside risk, only up

aggregate variance
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Under the optimal policy:
6. Wildness falls, especially for the non-hatchery subpop.
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Under the optimal augmentation policy:
7. The biggest impacts are on the non-hatchery subpop.

Change in mean outcome

genetic genetic population, profit, wild origin

mean, (1 variance, G N T share
subpop. 1 0.1 -1.0 3% . -0.063
subpop. 2 -2.3 -1.4 23% . -0.382
aggregate . -2.8 11% 16%

Table 1: Change in the mean outcomes (in percentage or raw terms) due to a shift from none to optimal
augmentation. Statistics represent stmulated averages over time after excluding the first 30 periods for burn-

imn.




Future directions
e optimal harvest
* trucking in anticipation of poor environmental conditions
e optimal proportion to truck
e size of hatchery output

Jill Pelto




Central findings
 The optimal policy in the vast majority of cases is to fully truck
salmon (except: y, near in-stream ideal, N, is low )
 Optimal trucking of stream 1 affects stream 2 the most
* boosts the non-hatchery stock (N,) the most
 homogenizes the portfolio:
* pulls trait means together, u, 2 < u,

* drives down mean G (genetic variance) for both
* boosts profits by 14%

e drives loss of wildness

 Weakly sustainable: degraded portfolio leaves system ill-suited for
return to fully natural production (recovery eventually occurs
unless loss of genetic variance is permanent).

* Value of genetic variance depends on the mean (u).
* lowest when y; is near its ideal.



Value function plots over the genetic mean show:
1. there is an ideal genetic mean (u) for streams 1 and 2 (49.5, 52.7)
2. ...different from the typical outcomes (47.7, 48.8) under

optimal trucking
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The optimal policy in the vast majority of cases is to fully
truck salmon.

Across a discretization
of the state space:

e D*=1 --82%

e D*=0 --7%

* interior --11%



The optimal policy in the vast majority of cases is to fully
truck salmon.

Across a discretization
of the state space:
e D*=1 --82%
e D*=0 --7%
* interior --11%
* U nearin-
stream ideal
* N;islow



The optimal policy in the vast majority of cases is to fully
truck salmon.

Across a discretization 1 . . . —
of the state space:
e D*=1 --82% aosl
o D*= 0 --7% g“ . _._Ir:mrestG1
* interior -- 11% & highest G,
. % i
* [ynearin- 5 0.6
. O
stream ideal £
. [l
©
£
o
O02F
0

40 45 50 55 60
W,



A hatchery management side effect is loss of wildness:
replacement of wild with hatchery-reared individuals
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Frequency distributions for each state variable (ieft to right) Show

that a shift from no trucking to optimal trucking (top to bottom)

alters the distribution of states.
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