A Coupled Bioeconomic Model of a Regional Economy and an Aquatic Food Web

Jenny Apriesnig¹, Travis Warziniack², David Finnoff ³, Hongyan Zhang⁴, **Katherine Lee⁵**, Ed Rutherford⁴

¹ Global Institute of Sustainability, Arizona State University
²Rocky Mountain Research Station, USDA Forest Service
³Department of Economics, University of Wyoming
⁴NOAA, University of Michigan
⁵Agricultural Economics & Rural Sociology, University of Idaho

Work partially funded by the NOAA CSCOR Grant No. NA09NOS4780192 "Forecasting spread and bioeconomic impacts of aquatic invasive species from multiple pathways to improve management and policy in the Great Lakes."

Asian carp

- Bighead carp and silver carp: introduced to southern US in 1970s
- Spread north through river systems
- Lake Erie and Lake Michigan: highest risk
- Unknown whether Asian carp will have similar **negative** impacts in the Great Lakes

Lake Erie: Impact of Asian carp

Recreational and commercial fishing

Regional

economy

- Commercial fishery (Canada)
- Recreational fishery (USA)

System ecology/function

• Altered food web

Lake Erie food web

System ecology/function

• Impacted by choice of targeted fish species, harvest

RESEARCH QUESTIONS

>What are the economic impacts of an Asian Carp invasion on Lake Erie?

> How do considering harvest impact on food web affect estimated impacts?

APROACH

Model bioeconomic feedbacks by coupling
Computable general equilibrium model
Ecological food web model

TAKE-AWAYS

> Mixed impact of Asian carp invasion on species (+/-)

>Including/ignoring feedback loops significantly changes estimates

Overview: Linking CGE and food web models

Model: Producer choice

Endogenous

Variables

Harvest

 H_f

6

LEE

 $E_{h_{f,h}} \| S_{E_{f,h}}$

 $|E_{h_{\underline{1},h}}|$

 $|S_{E_{1,h}}|$

 $|S_{E_{2,h}}|$

 $E_{h_{2,h}}$

Full bioeconomic model

Ecopath with Ecosim (EwE) Model (Zhang et al. 2016)

- Analyze responses to past and future perturbations to aquatic ecosystems
- Incorporates species populations, trophic levels, and energy (food) availability
- 47 species groups

RESULTS - ROADMAP

- >Ecological impact of invasion using bioeconomic model
- >Economic impact of invasion using <u>bioeconomic</u> model
- Compare ecological outcome of invasion between <u>food web</u> and <u>bioeconomic</u> models

Bioeconomic model: ecological impacts invasion

Percent difference in biomass between AC and no AC invasion

July 18, 2018

Bioeconomic model: ecological impacts invasion

Lake trout populations increase by 100% following AC invasion.

- Overall increased biomass of prey
- + juvenile AC, other species

White bass and white perch populations decrease following AC invasion.

• Diets overlap with AC throughout lifecycles

Long-run % difference in biomass between AC and no AC invasion

LEE

11

Bioeconomic model: economic impacts invasion

Long-run % difference in welfare between AC and no AC invasion

Total welfare decreases by 4.5%

Households experience welfare losses, heterogeneous in magnitude.

Welfare losses are driven by price changes.

LEE

Comparing models

How do biomass estimates differ? Measured as: biomass result from food web – biomass result from bioeconomic

Comparing model results

What causes overestimate/underestimate?

- Effort-intensiveness of fishery
- There's not a one size fits all rule for under/overprediction.

14

Conclusions

Asian carp will *in general* reduce biomass of fish species in Lake Erie. Not all species, not to same degree.

Welfare impacts are negative but heterogeneous in magnitude, income dependent.

Ignoring the impact of human influence on fish stocks significantly alters results. Critical to get this right in management.