IIFET 2018 Conference, 16-20 July 2018, Seattle, USA

Investigating tradeoffs in alternative catch share systems with a vessel-based bio-economic model.

Manuel Bellanger*, Claire Macher, Mathieu Merzéréaud, Olivier Guyader, Christelle Le Grand. Investigating trade-offs in alternative catch share systems: an individual-based bio-economic model applied to the Bay of Biscay sole fishery. 2018. CJFAS (in press)

* Ifremer, UMR 6308 Amure

Background

- Catch share designs: ITQs, collective catch shares (co-management), ...
- Few integrated assessments of different catch share designs across the ecological, economic and social dimensions
- Most bioeconomic models overlook catch share management mechanisms and their constraints on producers at the vessel level

Background

- French quota co-management system implemented in 2006
- Based on producer organizations (POs = groups of fishers that collectively hold rights to manage their members' fishing activities)
- POs are responsible for quota allocation
- Individual fishing allocations are non-transferable
- Most stakeholders opposed to ITQs

Objective

- Develop a bioeconomic model that integrates institutional arrangements related to catch share management and their constraints on producers at the vessel level
- Exploration and comparison of different catch share management options:

Current co-management system implemented in France

ITQ system

Producer organizations and quota management in France

- 6 POs in the Bay of Biscay
- 35 800 vessels
- Quota system:

(1) French share is based on a relative stability key

(2) quota share by PO isbased on historical landings(2001-2003) of theirmembers

(3) each PO organizes quota redistribution among its members according to selfestablished rules

quota transfers:

- between POs
- among individuals 🗙

Methods

- Bio-economic model coupled with institutional arrangement model
- Assessment of ecological and socioeconomic impacts of options
- Vessel-based, Multi-species, age structured, multi-métier
- Annual time step
- Production function: Baranov equation
 → interactions between agents

IAM: Impact Assessment Model for Fisheries Management (Merzéréaud et al., 2011)

Methods

Bio-economic model: calibrated and validated in previous studies Macher et al. 2011; Guillen et al. 2013, 2014, 2016; STECF 2011, 2015

IAM: Impact Assessment Model for Fisheries Management

Management procedures

- Integration of institutional arrangements related to catch share management
 - harvest control rule (TAC at MSY)
 - ➢ distribution of catch shares
 (TAC → MS quotas → PO sub-quotas
 → Individual Quotas)
 - PO allocations / ITQs
- Short term behavior model
- Long term behavior model

Bellanger et al., 2018

The Bay of Biscay sole fishery

- High value fishery
 - 400 vessels (> 1 Ton), 1280 fishermen
 - > 157 million euros (gross revenue)
- Multi-species fishery
- Multiple fleet segments
 - netters / trawlers
 - small-scale / large-scale
- Total Allowable Catch (TAC)
- Multi-annual management plan (MSY)
- Quota co-management by POs
 - individual quotas (IQs)
 - various allocation rules

Sole landings (Gepeto project, 2008)

Scenarios

Baseline scenario	 Quota co-management POs operate quota distribution Individual allocations are non-transferable 				
Decommissioning scheme scenario	 Quota co-management (similar to baseline scenario) Simulation of decommissioning scheme Transfer of historical rights of scrapped vessels to reserves 				
ITQ scenario	 ITQ lease market (leasing in=buying quota; leasing out=selling) Sole is the only species that can be traded Price and trades of quota depend on marginal profitability 				
9	 ✓ initialization on 2014 data, simulations 2015-2025 ✓ Sole and Nephrops biological dynamics ✓ 359 individual vessels ✓ Transition to MSY: yearly TACs set such that F=FMSY_{sole} 				

Results

• Fleet evolution

- ✓ initialization on 2014 data, simulations 2015-2025
- ✓ Sole and Nephrops biological dynamics
- ✓ 359 individual vessels
- ✓ Transition to MSY: yearly TACs set such that F=FMSY_{sole}

Results

Changes in fleet structure

Decommissioning scheme scenario

Results

• Trade-offs between ecological, economic, and social impacts

> effectiveness of decommissioning scheme and ITQ options relative to the baseline

			Transition phase (2017)		Long-term impacts (2025)	
	Indicator		Decommissioning scheme	ITQ	Decommissioning scheme	ITQ
ECOLOGICAL IMPACTS	Impacts on habitats	Fishing effort (h/year)	-10%	36%	-10%	33%
		Trawling energy effort (kWh)	-16%	53%	-15%	52%
	Carbon footprint	Fuel consumption (L/year)	-11%	41%	-11%	38%
	Stock status	SSB sole (t)	0%	0%	0%	-8%
		SSB Nephrops (t)	0%	-3%	5%	-9%
		Landings sole (t)	0%	11%	0%	2%
ECONOMIC IMPACTS	Profits	Gross Operating Surplus (€)	15%	69%	7%	27%
	Economic efficiency	Cumulative net present value of Net Profit (€)			6%	33%
	Economic viability	Gross Operating Surplus > 0 (% vessels)	7%	6%	2%	2%
	Economic inequality	Theil index applied to gross value of landings	-7%	23%	-5%	25%
SOCIAL IMPACTS	Employment	Crew * hours at sea (h/year)	-10%	23%	-10%	18%
	Acceptability	Average yearly wage per crew (€/year)	13%	41%	13%	34%
		Average hourly wage (€/h)	8%	-4%	10%	-4%
		Time at sea (h/year)	7%	35%	6%	30%
		Wage inequality	-12%	94%	-5%	97%

Discussion

- Current co-management arrangements, potentially associated with a decommissioning scheme, favor social acceptability
- ITQs would improve economic situation but may cause social and ecological concerns: increased inequalities, carbon footprint, trawling effort

> safeguards on tradability to meet ecological and social objectives

- Added value of integrating POs in the bio-economic model
 - endogenization of the role played by POs in the management of catch shares
 - consideration of individual constraints of fishers
 - enhanced comparability of PO-based co-management systems vs ITQ systems

Future work

- Parameterization of the initial allocation of catch shares
 - allocation rules are not necessarily made public by POs

- Stochatiscity to account for resource variability
 - high demand for computational resources required by the combination of vesselbased modelling and the Baranov catch equation
 - avoid situations where uncertainty makes it impossible to discriminate the impacts of different management measures

Thank you for your attention

Manuel Bellanger, Claire Macher, Mathieu Merzéréaud, Olivier Guyader, Christelle Le Grand. Investigating trade-offs in alternative catch share systems: an individual-based bio-economic model applied to the Bay of Biscay sole fishery. 2018. CJFAS (in press)

I gratefully acknowledge financial support from:

Backup slides

Material

Sensitivity analysis

short-term dynamics parameters: profit-tradition weight

Iong-term dynamics parameters: capital malleability for (dis)investment decisions

Baranov equation

$$C_i = N \cdot \frac{F_i}{\sum_i F_i + M} \left(1 - e^{-(\sum_i F_i + M)} \right)$$