IIFET 2018 Seattle - July 16-20, 2018

ARCANIES S

ANALYSING UNCERTAINTIES IN SOCIO-ECONOMIC ASSESSMENTS OF FISHERIES AND AQUACULTURE UNDER CLIMATE CHANGE

Thong Tien Nguyen, Magni Laksáfoss, Unn Laksá, Juliana Arias-Hansen, Øystein Hermansen, Marianne Svorken, Sveinn Agnarsson, Elisabeth Ytteborg, Jónas R. Viðarsson, Matteo Zucchetta, Fabio Pranovi and Nikos Papandroulakis

CONTENT

- Uncertainties in asssessing socio-economics values
- Our approach: Co-creation and output simulation
- Case study 1: Lake Garda fisheries, Italy
- Case study 2: Seabass aquaculture, Greece

SOCIO-ECONOMIC ASSESSMENT

Industry's profit

$$Profit = \sum_{f=1}^{F} V_f P_f - \sum_{i=1}^{I} (FC + AV_iC_i)$$

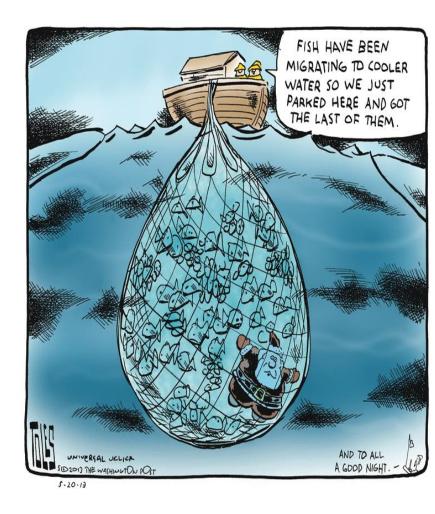
- V_f : Catch volume (ton, kg)
- P_f : Market price (\$)
- FC: Fixed costs (investment, capital cost)
- AV_iC_i : variable costs such as wage, feed, seed, energy.

• National Income: Gross value added (GVA)

Incl. Industy's Profit, Wage & Linkage values:

GVA = Profit + Wage + Output * Mult_{output} + Input * Mult_{input}

- Other social values
- e.g. Number of Employment, export values



UNCERTAINTIES OF INPUT DATA

Climate change and social change are uncertain factors, impacting on:

- Stock biomass=> Catch volume
- Fish growth=> Farming time & harvest volume
- Survival ratio
- ➢ Feed convert ratio
- Energy consumption
- ➤Wages
- Consumer's preference => Market price
- Roles of fisheries and aquaculture in local economy;

OUR APPROACH

- Data collection: Co-creation with two loops
 Involving stakeholders in discussion (loop 1) and auditing results (loop 2)
- **Data analysis**: Output Simulation
 - Distributions of output instead of fixed values,
 - Contribution of each input to output variance;

Simulation approach

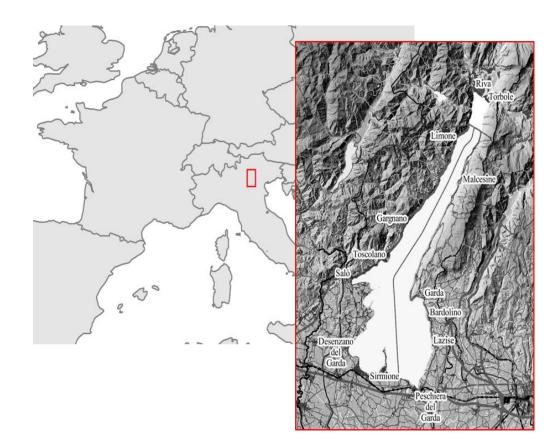
A sensitive analysis, each input variable assumed following a specific distribution.

- Step 1: Data collected, example, in range (max, min) or means and variance/Std.Dev;
- Step 2: Calculating the outputs at mean values of inputs;
- Step 3: Runing simulation with assumed distributions of inputs;
- Step 4: Summarizing the results: means and variance/Std.Dev.

Simulation models:

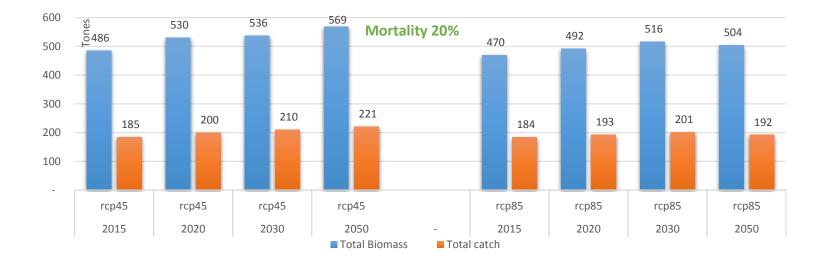
$$Profit = \int f(V, P, FC, VC) d_V d_P d_{FC} d_{VC}$$

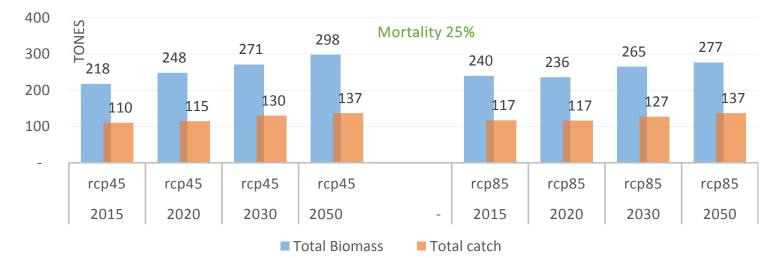
 $GVA = \int f(V, P, FC, VC, Mult_{input}, Mult_{output}) d_V d_P d_{FC} d_{VC} d_{Mult_input} d_{Mult_out}$



CASE STUDY 1: Lake Garda Fisheries, Italy

- Focusing on the European Whitefish (*Coregonus Lavaretus*);
- Evaluating both professional & recreational fisheries;
- Three forecasting scenarios (Short, Medium and Long)
- ➤Two climate scenarios (RCP4.5 and RCP8.5)





Lake Garda Fisheries: Biomass & Catch under Climate Change

KNOWLEDGE TO VALUE

Lake Garda Fisheries: Cost structure

	Average	Variation	Distribution
Professional fisheries	Value	(Range)	Assumption
Number of fishermen	100	70-130	Min-Max
Fuel cost (€/year)	650	600-700	Min-Max
Maintenance cost (€/year)	350	300-400	Min-Max
Gear and equipment cost (€/year)	5,000	4000-6000	Min-Max
% costs assigned to whitefish	50%	40%-60%	Min-Max

	Average	Variation	Distribution
Recreational fisheries	Value	(Sdt.Dev/Range)	Assumption
Number of registered fisher	1850		-
Fuel cost (per day)	15	2	Normal distribution
Days fishing whitefish (days/year)	17.5	10-25	Min-Max
Maintenance cost (year/boat)	125	15	Normal distribution
Baits (year/boat)	125	15	Normal distribution
Gear and equipment cost (year/boat)	200	20	Normal distribution
% costs assigned to whitefish	25%	20%-30%	Min-Max
Active recreational fishermen	12.50%	2%	Normal distribution

ClimeFish

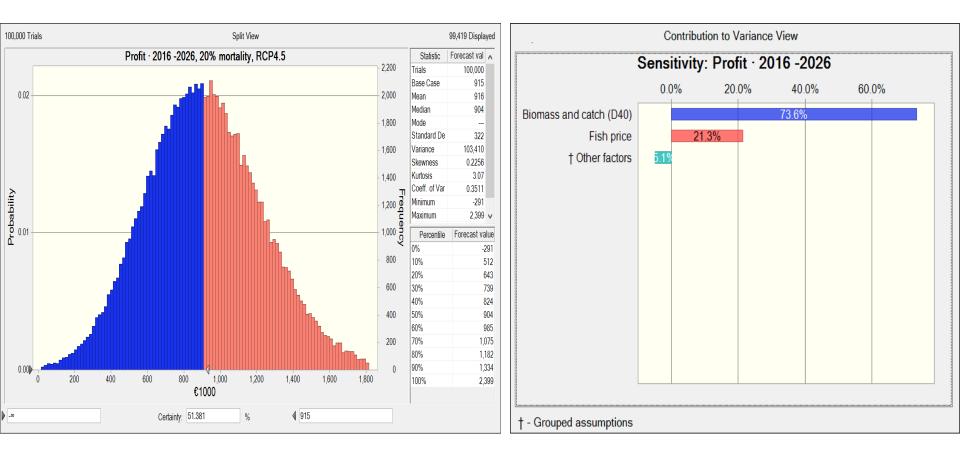
SYNESA KNOWLEDGE TO VALUE

Lake Garda Fisheries: Fish price and linkage values

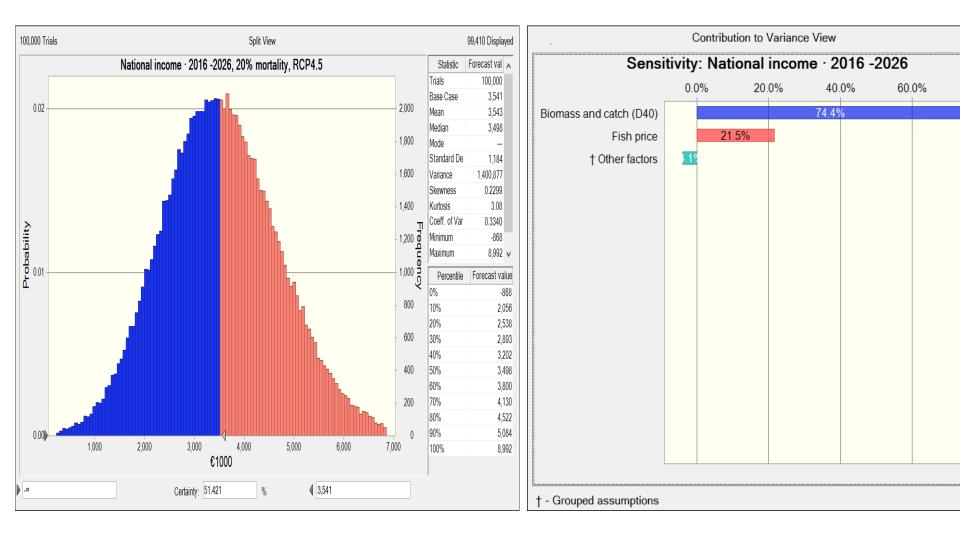
	Average Value	Variation (Sdt.Dev/Range)	Distribution Assumption
Price of whitefish (€/kg)	6.5	0.75	Normal distribution
Backward linkages (€/operational cost)	0.40	0.05	Normal distribution
Flow-on effects (€/sale value)	2.7	0.5	Normal distribution

Lake Garda Fisheries: Simulation

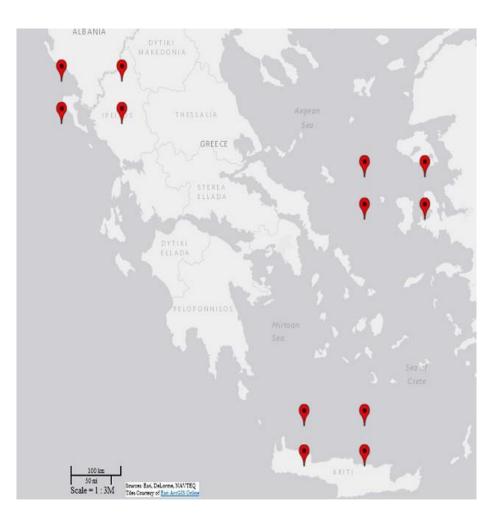
32 simulation models are developed and each runs 100.000 trials, providing two important results:


- 1) Means and variance of industry's profit and national income of each senarios;
- 2) Contribution of uncertain factors (i.e. Biological and economic factors) to variances of the industry's profit and national income.

Lake Garda Fisheries: Profit 2016-2026, 20% mortality under RCP4.5



Lake Garda Fisheries: GVA 2016-2026, 20% mortality under RCP4.5



CASE STUDY 2: Seabass aquaculture, Greece

➤Three farming locations;

- Climate change impacts directly on biological performance of fish farming (i.e. fish survival, growth and feed required);
- Three forecasting scenarios (Short, Medium and Long)
- ➤Two climate scenarios (RCP4.5 and RCP8.5)
- Three stocking periods (March, June and September)
- Three harvested size of fish (400g, 800g, and 1200g).

Seabass aquaculture, Greece: Exp. Biological inputs, RCP4.5, 200.000 juvel. Stocking in March

	Short Run			Mid Run			Long Run		
Market size of fish	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g
Growing days	544	909	1063	529	880	1024	526	872	1016
Std.Dev	38	92	148	34	71	141	33	73	141
Feed consumption (t)	108	282	491	108	283	499	107	283	501
Std.Dev	7	22	58	6	15	58	6	16	59
Survival rate (%)	0.86	0.84	0.83	0.86	0.84	0.83	0.86	0.84	0.83
Std.Dev	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04

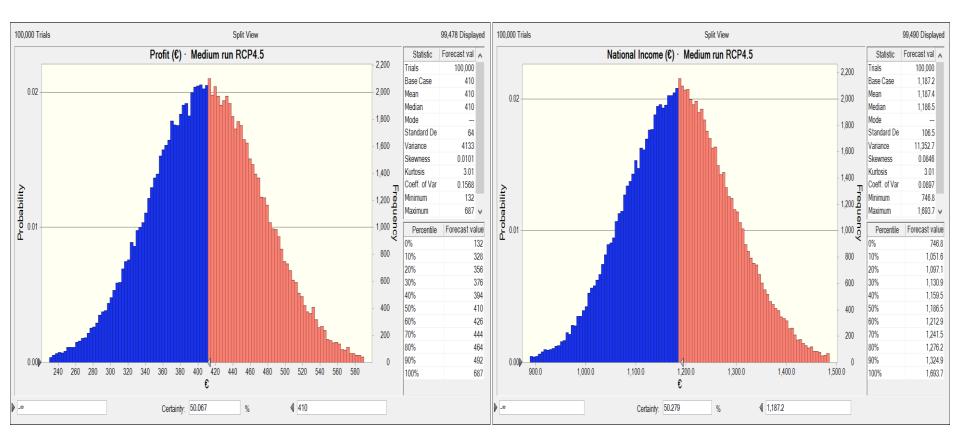
Seabass aquaculture, Greece: Socioeconomic inputs

Inputs	Average	Std.Dev	Unit
Production costs			
Feed	1.15	0.070929	€/kg feed
Juvenile	0.27	0.0321354	€/stk
Wage	0.23	0.063124	€/kg feed
Other	0.05	0.027378	€/prod day
Depreciation	0.07	0.024392	€/kg feed
Financial cost	0.14	0.090966	€/kg feed
Prices of Diff. fish sizes			
400g	4.87	0.23	€/kg
800g	6.27	0.29	€/kg
1200g	8.33	0.61	€/kg
Multiplier effects			
Backward linkage	0.52	0.09	Per one € of cost
Flow-on effect	0.42	0.07	Per one € of sale

Seabass aquaculture, Greece: Simulation

- **54 simulation models, combining:** 2 climate change scenarios, 3 periods, 3 stocking times, and 3 fish sizes.
- Indicators:
- Industry profit
- National income
- Unit cost (€/kg of harvested fish)
- Profit ratio (profit/sale)

Seabass aquaculture, Greece: Exp. Forecasting profits


		4.5 Scenari	0	8.5 Scenario			
	Short	Medium	Long	Short	Medium	Long	
Industry Profit (€)							
Mean	415	410	409	413	415	409	
Std. Dev	65	64	64	65	65	64	
Min-Max value	128-701	129-685	136-711	147-704	138-695	125-687	
Contribution to the variance							
Sale price	47.4%	47.3%	47.6%	49.0%	48.7%	49.1%	
Feed and juveniles price	16.8%	17.1%	17.3%	11.4%	11.3%	17.2%	
Other cost	14.2%	13.3%	13.1%	14.4%	14.9%	13.0%	
Feed consumption	11.9%	12.8%	12.1%	16.3%	16.2%	11.8%	
Growing time&survival rate	9.7%	9.5%	9.9%	8.9%	8.9%	8.9%	

SY VESA

Seabass aquaculture, Greece: Exp. Distribution of profit RCP4.5, medium run

Conclusions

- Uncertainty => less effective MP and policy;
- Co-creating approach and simulation => improving accuracy and enriching information;
- Active interactions of producers, associate members, policy maker, and scientists;
- Increasing temperature increases profitability of Lake Garda fisheries; fishing mortality & biological factors contributes 95% of variance of economic values;
- Increasing temperature promotes Seabass growth in Greece but market price contributes to nearly 50% of the profit variance; Profitability seems to be insignificantly changed.

Thank you for your attention!

Thong Tien Nguyen: thong@syntesa.eu

