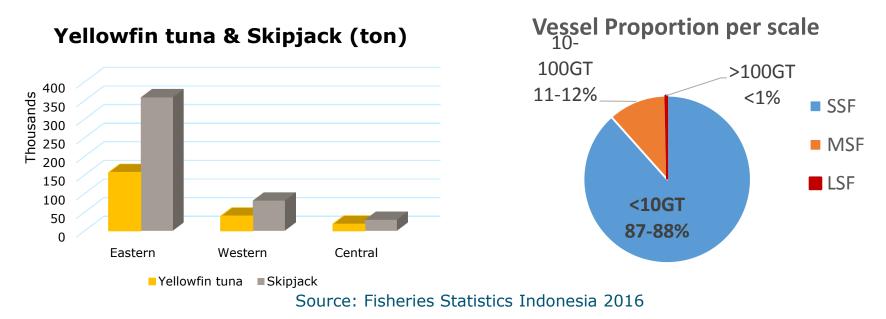
Alternative harvest control rules for multi-fleet and multi-species tuna fisheries under data-poor conditions in Eastern Indonesia

Shinta Yuniarta^{1,2}, Rolf Groeneveld¹, Paul van Zwieten¹, Budy Wiryawan², Johan Verreth¹, Ekko van Ierland¹.

> 1)Wageningen University and Research, Netherland 2)Bogor Agricultural University, Bogor, Indonesia

International Institute of Fisheries Economics and Trade 16-20 July 2018 in Seattle

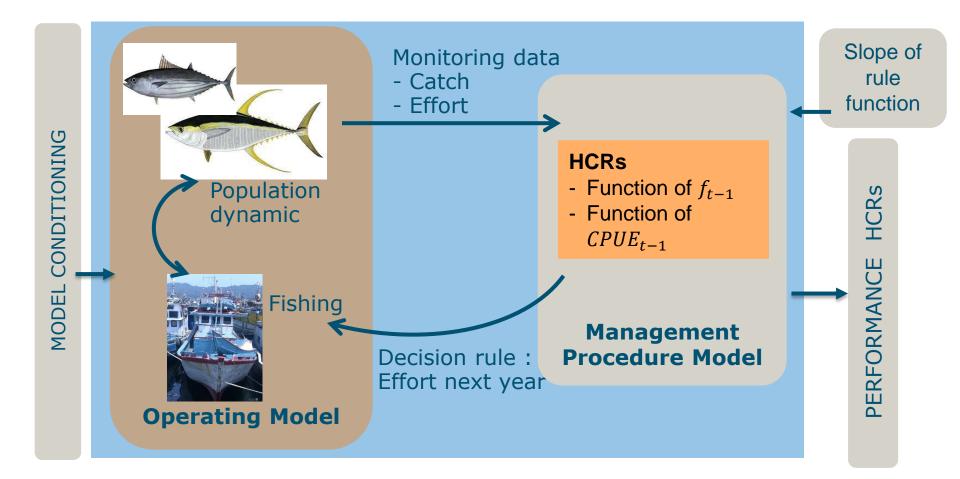


Tuna Fisheries in Indonesia and challenges on its fisheries management

- **Gears**: longline, handline, pole-and-line, purse-seine, troll-line
- Lack of good data: identified in 1980, major changes logbook(2002&2010), Indonesian catch was 38% higher in 1950-2010
- Multiple species: yellowfin, skipjack, bigeye, small pelagic
- Open-access system in vessel <5GT, high labour absorption</p>

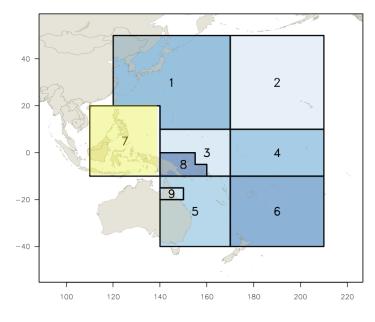
Solution (Alternative HCRs?)

- Demand for HS from stakeholders (industries & NGOs)
- Adopting HCRs by considering: data-poor, multi-scale, multispecies and social impacts
 - HCRs & data-poor fisheries: Dichmont & Brown (2010), Carruthers et al. (2014), etc.
 - HCRs & multi-fleet, multi-species: Smith et al. (2009), Little et al. (2011)
 - MS & multi-species, economics : Dichmont et al. (2008)
- HCR evaluations considering all challenges together are scarce


Objective of this study:

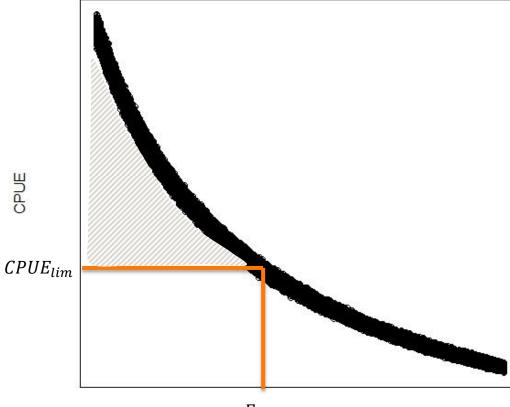
Develop alternative harvest control rules by taking into account: data poor, multiple species and fisheries, social impacts

Management Strategy Evaluation (Non-model based)



Operating Model

- An Age Structured Model;
- Beverton-Holt SRR;
- Baranov Catch Function



Parameter	Source
Age	<u>WCPFC (2016); (WCPFC</u>
	<u>2017</u>)
Weight per age	Estimated from WCPFC
	(2016); (WCPFC 2017)
Natural Mortality	Estimated from <u>Hampton and</u>
(M)	Fournier (2001), Hampton
	<u>(2000)</u>
Catchability (q)	Assumed constant
Selectivity (s)	Estimated from <u>Hampton and</u>
	Fournier (2001), Hampton
	(2000),WCPFC (2016);
	(<u>WCPFC 2017</u>)
recruitment	Estimated from WCPFC
parameter	(2016); (WCPFC 2017)
Proportion of SSB	Estimated from WCPFC
	(2016); (WCPFC 2017)
Immigration and	Estimated from WCPFC
Emigration	(2016); (WCPFC 2017)
NO	Estimated from WCPFC
	(2016); (WCPFC 2017)
Mean Effort	Assumed (50000 vessels)

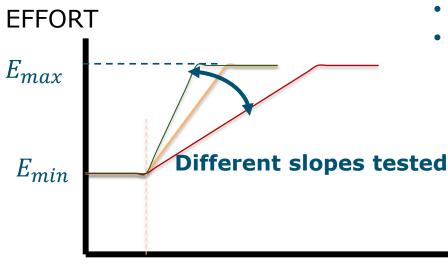
Reference Points

 E_{max}

Effort

- Simulation OM: big range effort, run for 100 years,1000 draws
- *CPUE*_{lim} at 0.4*CPUE*_{max}
- *E_{max}* is an effort that associated with *CPUE_{lim}*
- E_{min} = 1000 a social policy rule of the fisheries.

Alternative Harvest Control Rules

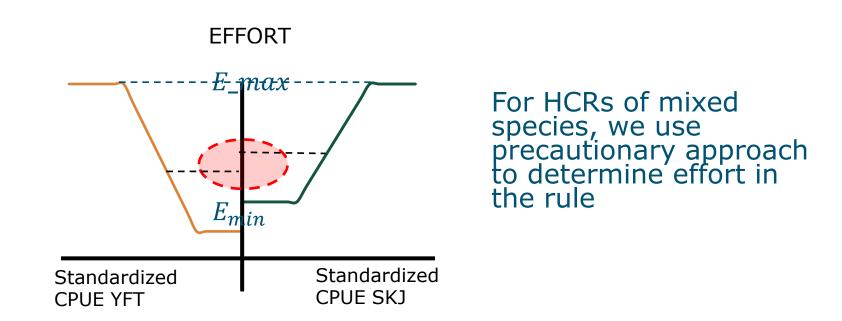

HCR1) Effort is a function of last year's effort

- $E_t = E_{t-1}$
- 1st year of projection $E_t = 1.5 E_{t-1}$, after that constant

CPUE

• $E_t = 1.01 E_{t-1}$

HCR2) Effort is a function of CPUE


- $E_t = f(CPUE_{t-1})$, without threshold
- $E_t = f(CPUE_{t-1})$, with threshold 20% of increasing and decreasing effort from last year's

Alternative Harvest Control Rules

HCR3) HCR2 with a minimum effort available to SSF to limit social impacts

Performance Evaluation

• Present Value of Profit;

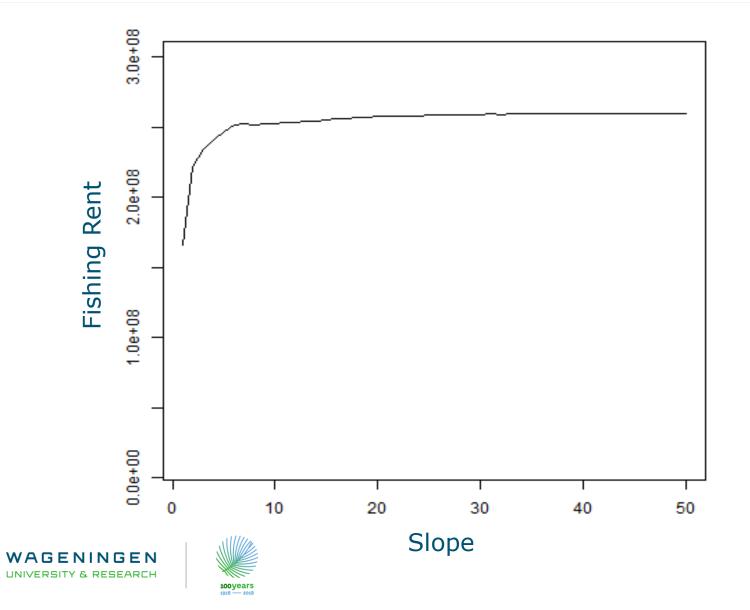
consequences on the fishing rent

• Minimum Effort;

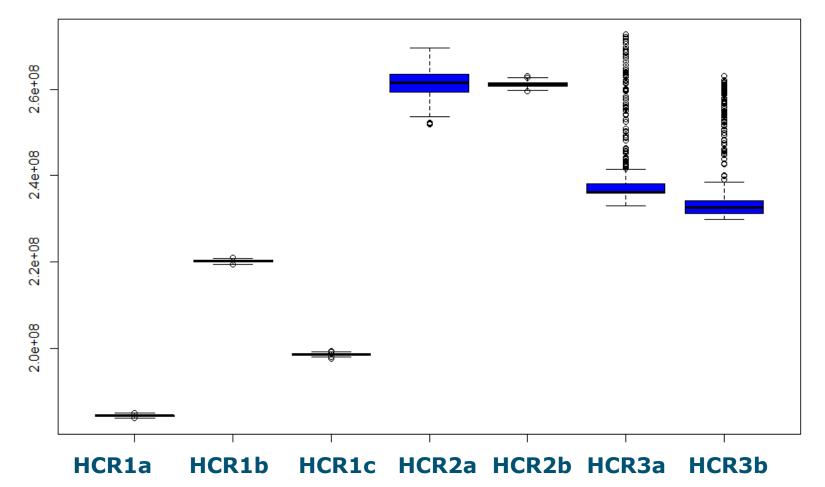
- consequences on the effort stability
- risk of effort reach E_{min}

• Income earned by the poorest fishers;

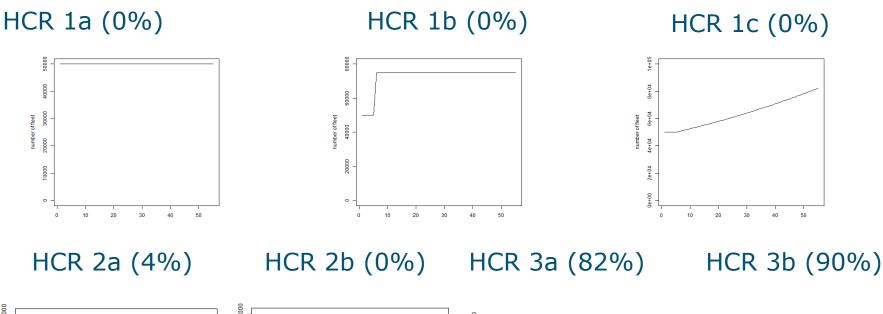
- consequences on the proportion of the poorest
- risk of fisher's income < 25x10⁶ rupiah/year

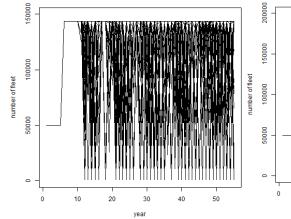

• Status stock ;

- Consequences on the stock
- risk of $B_t < 0.4B_v_t$

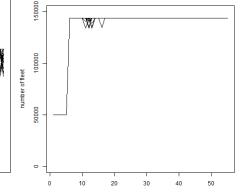


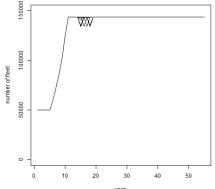
Slope and Present Value of Profit


Performance of HCRs on Fishing Rents (in 10⁶ rupiah)



Performance of HCRs on Minimum Effort


50



vear

12

Performance of HCRs on income earned by the poorest (Risk fishers earn <25 10⁶ Rupiah/year)

HCRs	Risk		
	SSF	MSF	LSF
HCR1a	96%	2%	0%
HCR1b	96%	<mark>89%</mark>	0%
HCR1c	96%	51%	0%
HCR2a	94%	2%	0%
HCR2b	94%	2%	0%
HCR3a	4%	40%	90%
HCR3b	4%	40%	91%

Performance on Status Stock (Risk of $B_t < 0.4B_v_t$)

Management	Risk		
Strategy	Skipjack	Yellowfin tuna	
MS1a	<2%	<2%	
MS1b	>90%	<2%	
MS1c	>40%	<2%	
MS2a	>80%	<2%	
MS2b	>90%	<2%	
MS3a	>90%	<2%	
MS3b	>90%	<2%	

Conclusion

- Protecting SSF would have the price of efficiency and trade-off between fisheries
- Performances on the HCR with effort is a function of CPUE → maximizes fishing rent but unrealistic (bang-bang fishery). Constant effort is less efficient but more realistic

QUESTIONS?

THANK YOU

