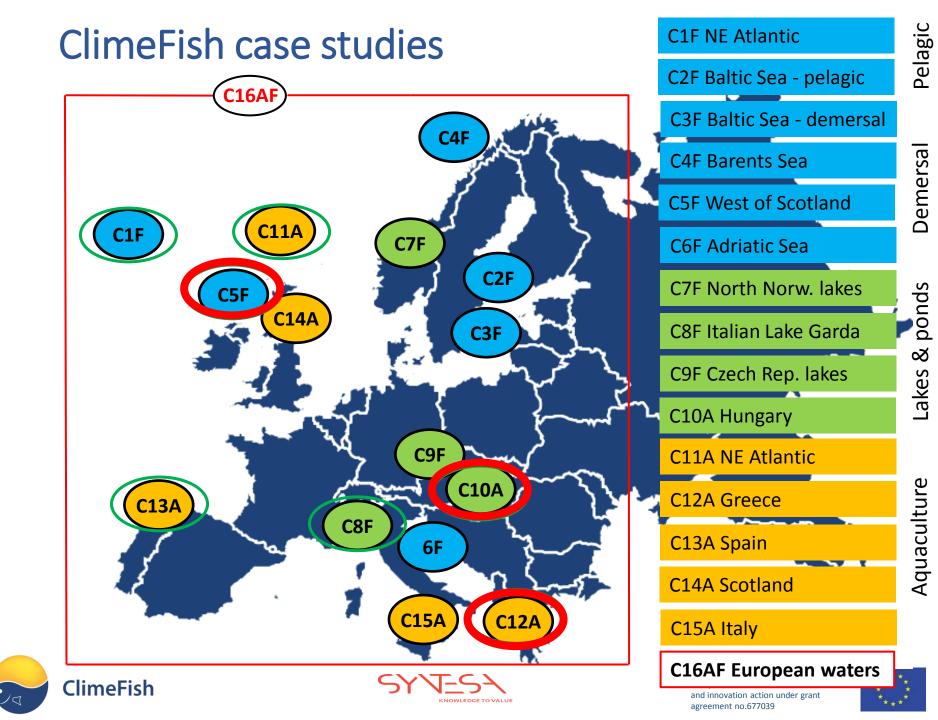
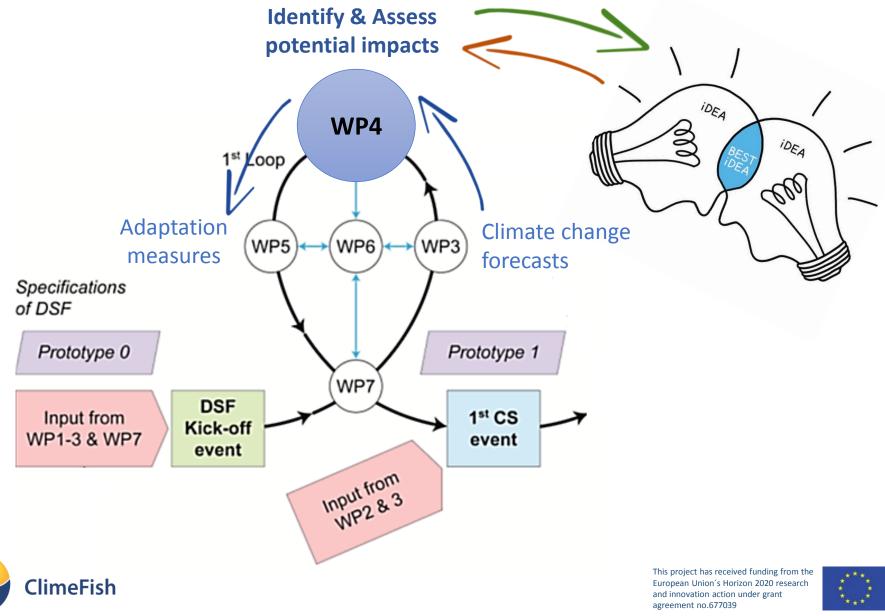
IIFET 2018 Seattle - July 16-20, 2018

European Seafood Production under Climate Change: Assessing Economic and Social Consequences

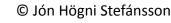
Unn Laksá, <u>Thong Tien Nquyen</u>, Magni Laksáfoss, Juliana Arias-Hansen, Gergő Gyalog, Alan Baudron, Nikos Papandroulakis, Elisabeth Ytteborg, Øystein Hermansen Anna Kristín Daníelsdóttir, Sveinn Agnarsson, Marianne Svorken, Jónas R. Viðarsson, Ragnhildur Fríðriksdóttir, X. Anton Alvarez-Salgado, Mariola Norte, Rosa Chapela, José Luis Santiago, Matteo Zucchetta, Fabio Pranovi and Thuy Pham Thanh


Background-Climefish project

Co-creating a decision support framework to ensure sustainable fish production in Europe under climate change


- The forecasting models for fish production
- Identified risks and opportunities and socio-economic implications
- Guidelines for making responsive MPs and climate change adaptation plans
- Guidelines for establishing legal good practice when resources move and diseases occur
- The ClimeFish Decision Support System with accompanying user instructions
- Recommendations for good co-creation practice

Framework for socio-economics and Impact Assessment



Scope of Socio-Economic Analysis

- Impact on resources
 - e.g. stock size, distribution, growth rates
 - abiotic effects of climate change: impact on production instrastructure, restricted access to inputs (e.g. water)
- Catching/farming link
 - impact on processing and derived industries will be included
- Impact in each case study area.

Assessment of Risks and Opportunities

Category	Climate Change Drivers	Potential Impact	R/O	Stakeholder severity score	Stakeholder consensus	Severity Analysis	Consequence ranking	Likelihood Score	Risk score	Risk rating
ő				S	Std. Dev	Α	C = (S, A)	L	R = (C, L)	
		11. Deployment and	R	2		2	2	Possible	C2, L Possible	Major
sa	Storminess and waves	performance of fishing gear reduced due to storminess	0	-1	↔ 1.27	0	-1	Possible	C-1, L Possible	Moderate
Fisheries	Temperature	12. Potential new fisheries	R	2		0	1	Possible	C1, L Possible	Moderate
The Fisl	 changing distribution 	due to emerging species	0	-2	↔ 1.26	-2	-2		C-2, L Possible	Major
-		13. Changes to catchability of	R	2		1	2	Possible	C2, L Possible	Major
	Temperature	target species	0	-2	↔ 1.53	-2	-2		C-2, L Possible	Major
	Storminess and waves	14. Reduced safety at sea for crew due to waves and storminess	R	3	↔ 1.15	2	2	Possible	C2, L Possible	Major
governance	Storminess and waves	15. Reduced days at sea due to severe weather conditions	R	2	⊅ 0.76	2	2	Unlikely	C2, L Unlikely	Moderate
Socio-economics and gover	Increasing rainfall, storminess and waves, sea level rise	16. Damage to ports and land-based facilities due to weather conditions and sea level rise	R	2	⊅ 0.83	2	2	Possible	C2, L Possible	Major
ocio-ecor	Temperature - changing distribution	17. Increased complexity in negotiations on allocations of shared stocks	R	3	⊅ 0.86	3	3	Likely	C3, L Likely	Severe
s	Temperature	18. Overfishing of shared pelagic stocks due to unilaterally set quotas	R	3	⊅ 0.69	3	3	Likely	C3, L Likely	Severe

General Findings

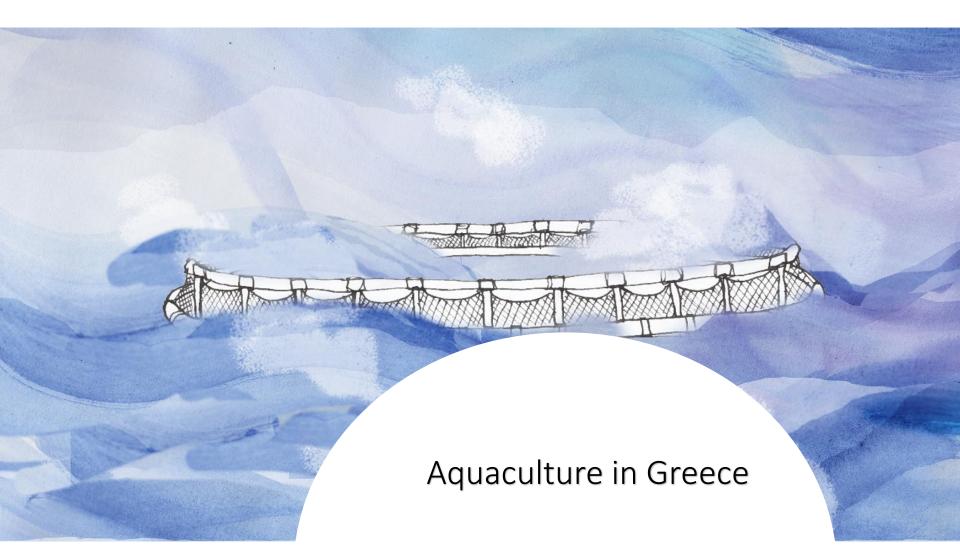
- Different and inequitable impacts across the European case studies
- For fisheries, change in species composition and abundance
- Warmer temperature can promote fish growth and productivity, but also a risk in terms of changing presence of pathogens
- Change in suitable areas for aquaculture

Two implementation case studies

Greece Aquaculture case study focusing on European Seabass

Two climate scenarios: RCP4.5 (low emissions) and RCP8.5 (high emissions)

This project has received funding from the European Union's Horizon 2020 research and innovation action under grant agreement no.677039

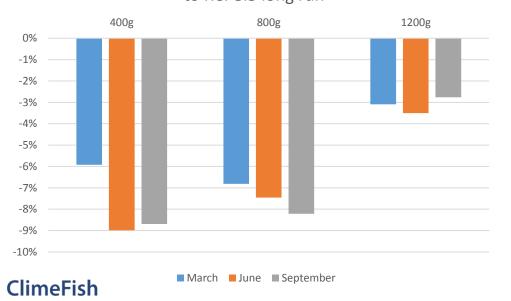


Fisheries case study in the West of Scotland area

Mixed demersals

Greece: Highest scoring risks and opportunities

Risks	Risk Rating	Opportunities	Opportunity Rating		
Increased presence of pathogens	Severe	Increase in biomass and production capacity	Transformative		
Seasonal changes in growth and stocking timing	Severe	Seasonal changes in growth and stocking timing	Transformative		
Water quality deterioration, risk for anoxic conditions	Severe	Shift of thermal window suitable for growth	Major		
Inhibition of growth and increase of mortality	Major	Increased size variability	Major		

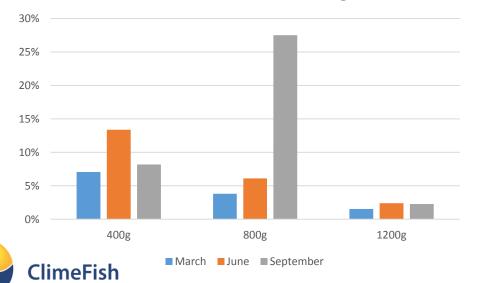


CC impacts Productivity (RCP4.5 short vs. RCP8.5 long)

	Production days														
Stocking	RCP4.5 short run			RCP8.5 long run			Absol	Relative difference							
Weight	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g			
March	544	909	1,048	512	847	1,016	-32	-62	-32	-6%	-7%	-3%			
June	519	881	1,039	472	815	1,003	-47	-66	-36	-9%	-7%	-4%			
September	603	943	1,087	551	865	1,057	-52	-77	-30	-9%	-8%	-3%			

Changes in production days from RCP4.5 short run to RCP8.5 long run

Climate Change reduces the production time substantially.


The largest changes occur in 400g and 800g.

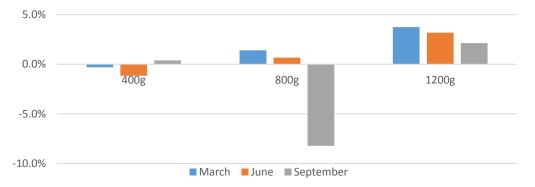
CC impact on Profitability (RCP4.5 short vs. RCP8.5 long)

	Profits per production day														
Stocking	RCP4.5 short run			RCP8.5 long run			Absol	Relative difference							
Weight	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g			
March	153	326	734	164	339	745	11	12	11	7%	4%	2%			
June	177	370	809	200	392	828	24	23	19	13%	6%	2%			
September	146	319	853	158	406	873	12	88	19	8%	27%	2%			

Changes in profits per production day from RCP4.5 short run to RCP8.5 long run

The shorter production time increases profits.

Notice the large increase in profits in 800g in September stocking. This is due to a smaller feed consumption and high growth of juveniles.



CC Impact on Cost (RCP4.5 short vs. RCP8.5 long)

Cost structure	400 g	800 g	1200 g
Feed	54%	65%	69%
Juveniles	23%	11%	7%
Wages	11%	13%	14%
Other	11%	9%	6%
Depreciations	3%	4%	4%

	Cost Unit (€/kg fish)														
Stocking	R	CP4.5 short ru	un	RC	P8.5 long r	un	Abs	olute differe	Relative difference						
Weight	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g	400g	800g	1200g			
March	3.66	4.07	4.45	3.65	4.12	4.61	-0.01	0.06	0.17	0%	1%	4%			
June	3.59	3.96	4.28	3.55	3.98	4.41	-0.04	0.03	0.14	-1%	1%	3%			
September	3.67	4.21	4.04	3.68	3.86	4.13	0.01	-0.35	0.09	0%	-8%	2%			

Changes in unit cost (€/kg fish) from RCP4.5 short run to RCP8.5 long run

ClimeFish

Notice the unit costs (€/kg fish) of large fishes increase in all stocking times. Unit cost of fish size 800g stocking in September decreases significantly.

Cost structure is the same among CC scenarios.

Some Conclusions for Greek Aquaculture

- Climate change reduces the production time substantially, especially in the RCP8.5
- Temperature promotes fish growth and productivity. A potential opportunity?
- CC may increase extreme weather events
- CC may have negative effects on disease spread
- Potential for farming other warm-water species
- Reduction in suitable areas for farming

Demersal Fisheries in the West of Scotland

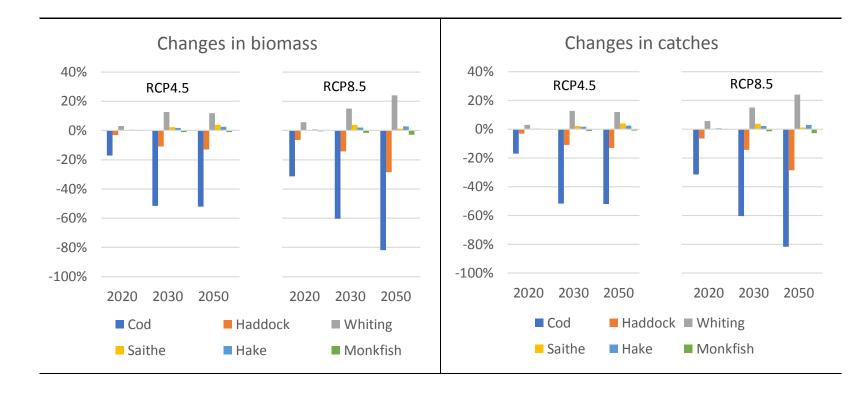
This project has received funding from the European Union's Horizon 2020 research and innovation action under grant agreement no.677039

Laan IIII

Highest scoring risks and opportunities

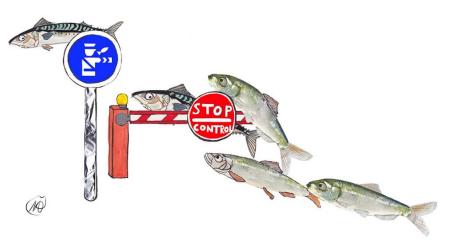
Risks	Risk Rating	Opportunities	Opportunity Rating
No recovery of cod biomass	Severe	Increased biomass of Whiting and Hake	Major
New emerging species due to expanding northwards limits	Severe	New emerging species due to expanding northwards limits	Major
Alterations to year-class strengths incl. larval survival	Severe	Changes in species phenology, including timing of spawning	Major
Lack of TACs	Severe	change in catch composition	Major

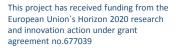
West of Scotland: Socio-Economic Results


		RCP8.5 Scenario								
		2020	020 Δ ABSOLUT		2030	Δ ABSOLUT		2050	Δ ABSOLUT	
Biomass and catches										
Spawning stock biomass	tonnes	453,06	5 🔶	-356	443,452	1	5813	447,945	V	-3870
Weighted spawning stock	tonnes	469,02	5 🔶	-805	457,274	1	2747	462,555	V	-7123
Catches	tonnes	131,79	1	-180	126,716	1	1356	126,947	V	-2162
Weighted catches	tonnes	125,45	8 🖖	-239	120,483	1	633	120,999	Ţ	-2546
Business economics										
Income	1,000€	215,12	0 🔶	-410	206,590	1	1086	207,474	V	-4365
Wages and salaries	1,000€	54,53	6	-104	52,374	1	275	52,598	V	-1107
Operating costs	1,000€	153,97	4 🖊	-211	148,044	1	1584	148,314	V	-2526
Operating profits	1,000€	6,61	0 🕹	-96	6,172	1	-774	6,562	Ţ	-733
National economics										
GVA in fisheries	1,000€	61,14	7 🖊	-200	58,546	V	-498	59,160	V	-1839
Backward linking	1,000€	117,63	7 🖊	-161	113,107	1	1211	113,313	V	-1930
Forward linking	1,000€	80,29	1	-153	77,107	1	405	77,437	V	-1629
Flow-on	1,000€	266,72	0 🔶	-508	256,144	1	1346	257,239	V	-5412
Total GVA	1,000€	525,79	5 🦊	-1022	504,904	1	2464	507,150	V	-10810
Vessels and employment										
Vessels	#	12	9 🖖	0	124	2	1	124	↓	-2
Employment in fisheries	#	1,34	7 🖊	-2	1,295	2	14	1,297	V	-22

ClimeFish

Biomass and Catches





Some conclusions on West of Scotland

- Composition of species will change in area – increased presence of warm water species
- Quantity of catches largely the same
- Relative changes in socioeconomics remains relatively stable (0-3%)
- Profitability will reduce due to decreased abundance of most valuable species

Thank you for your attention! <u>thong@syntesa.fo</u>

This project has received funding from the European Union's Horizon 2020 research and innovation action under grant agreement no.677039

an lite

