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Abstract

The intensity and scale of wildfires has increased throughout the Pacific Northwest in recent

decades, especially within the last decade, destroying vast amounts of valuable resources

and assets. This trend is predicted to remain or even magnify due climate change, growing

population, increased housing density. Furthermore, the associated stress of prolonged

droughts and change in land cover/land use puts more population at risk. We present results

of a multi-phase Extension Fire Program Initiative combining fire model results based on

worst-case meteorological conditions recorded at 50 weather stations across Oregon with

spatially distinct valuations of resources and assets based on regional ecological and socio-

economic conditions. Our study focuses on six different Fire Service Areas covering the

state of Oregon. We used a geostatistical approach to find weather stations that provide

worst-case meteorological input data on record for representative sub-domains. The results

provide regionally distinct assessments of potential value loss by wildfire and show that,

depending on the region, 12% to 52% of the highest relative risk areas are on private land.

This underscores the need to unite strategies and efforts on the landscape scale by includ-

ing different landowners, managers, and stakeholders of public land and private land effi-

ciently address wildfire damage protection and mitigation. Our risk assessments closely

agreed with risks identified during landscape-scale ground projects.
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1. Introduction

Increasing global temperatures and alterations in local or regional weather patterns have

lengthened fire seasons, reduced moisture content in fuel beds, and induced vegetative

changes [1–3]. Simultaneously, human populations and their activities have expanded into for-

ests and other flammable environments, increasing the probability of human-caused ignitions

and the potential magnitude of loss to infrastructure, homes, businesses, and human life [4–6].

These trends have led to increased risk and impact of wildfires throughout the Pacific

Northwest and the State of Oregon [7, 8]. The Eagle Creek Fire in 2017, for instance, burned

200 km2 along a major scenic highway in the Columbia Basin in northern Oregon. The fire

came close to a main watershed of the city of Portland, forced hundreds to evacuate, and fun-

neled smoke and ash into the city. The wildfire season of 2020 was the most destructive in

recent history in the Pacific Northwest [9]– 2027 fires burned over 4900 km2 in Oregon,

including several towns and destroying more than 3000 buildings in the western part of the

State [10].

In the western United States, there is growing recognition that large fires are not only an

issue of climate, but they are also heavily influenced or amplified by past (and current) man-

agement practices [11]. The region’s timber harvest, public lands grazing, and wildfire sup-

pression practices all too often focused on short-term objectives. This has resulted in altered

forest and range conditions [12, 13] characterized by increased homogeneity of vegetation,

shifts in species composition toward those less resistant to fire and more likely to serve as lad-

der fuels, and increased stand density. These characteristics have led to elevated risks of intense

wildfire that can transmit across large landscapes. The probability and consequence of wildfire

risk varies both spatially and temporally and is heavily influenced by native fire regimes, extent

of deviation from historic vegetative conditions, and the extent of human occupation and dis-

tribution of valued infrastructure.

The challenge of wildfire risk reduction is compounded by a lack of resources—U.S. land

management agencies suffer from insufficient funding and/or inadequate contractor or inter-

nal capacity to address all needs simultaneously [14, 15]. This is true of non-industrial private

landowners as well. As such, wildfire risk reduction efforts must be strategically implemented

to address highest priorities, with the recognition that not all areas will be feasible for direct

treatment. Finally, the need for involvement of individual private landowners and a necessity

of broad social understanding and license for action means wildfire risk reduction is not just a

management issue—it is also an education and outreach issue and an opportunity appropriate

for the Cooperative Extension Program.

In 2018, the Oregon legislature supported the need for holistic efforts to address wildfire

risk and approved funding to create the Oregon State University Extension Service Fire Pro-

gram. The Extension Fire Program was established to advance existing collaborative wildfire

risk reduction efforts, help establish new efforts where needed, and increase the rate and reach

of on-the-ground wildfire risk reduction treatments on both publicly- and privately-owned or

managed land. The Extension Fire Program was specifically tasked with conducting a detailed

assessment of fire risk for Oregon to help prioritize efforts. The assessment was to inform stra-

tegic placement of six field-based regional fire specialists authorized in the Program’s establish-

ment documentation to fulfill the following: 1. Best serve landscapes and communities with

similar needs; 2. Provide initial, regional assessments facilitating development or progress of

collaborative networks; 3. Allow for adaptation to local values at a variety of spatial scales,

reflective of differences in what (and to what extent) communities value their resources at risk;

and 4. Facilitate repeated landscape-scale, cross-boundary assessments that will reveal chang-

ing patterns of risk as management treatments or natural disturbances occur.
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Various fire risk assessments have recently been conducted. They are based on the combi-

nation of a) valuations of assets often generalized across several states, and b) fire model results

representing long-term averages of wildfire probability, intensity, and behavior. [16, 17]. The

objective of the Extension Fire Program project (which this study serves) is to provide finer-

scale relative risk assessments within Oregon to educate communities, agencies, and entities

across the State about wildfire hazards and potential impacts on values at risk. Accomplishing

this required the development of a method based on modeling fire probability and severity

which additionally accounted for spatially distinct valuations of assets and resources as well as

some regionally adjusted fire response functions—rather than valuations generalized at state-

wide or larger scales.

This study introduces the scientific methods used and presents results of the first two

phases of the Extension Fire Program in sufficient detail to allow planners, managers, and

wildfire specialists to utilize the approach to inform their long-term wildfire risk mitigation

efforts at the landscape scale. The objective of this study is to describe the specific approaches

of our risk assessment framework in detail and provide a tool tailored to the needs of the OSU

Extension Service Fire Program and its collaborators.

Firstly, we describe a data-driven delineation of six distinct areas in the state of Oregon to

identify spatially continuous areas that each exhibit maximized homogeneity of climate, vege-

tation, topography, drought effects, values at risk to hazards, and historic occurrences of wild-

fires for regionally specific risk assessments.

Secondly, a data-driven selection of meteorological stations most representative of domains

for fire model runs is described starting with 163 meteorological stations available in our study

area. A reproducible statistic sprawl clustering approach based on physical landscape proper-

ties, climate parameters, and data pertaining to fuel type is presented and applied.

Thirdly, we present spatially distinct and intentionally non-universal asset and resource val-

uations for the example regions, for which the risk to selected resources and assets was calcu-

lated. The application of the framework presented is intended to be hierarchical in scale—

tiering from the regional risk assessment efforts to ultimately be applied at the site-specific

stand scale and thus offer a tool that can be easily customized for localized inputs for fire

behavior as well as values at risk.

2. Materials and methods

The Extension Fire Program Relative Risk Assessment (EFPRRA) modeling process involved a

series of steps. These included spatial clustering to identify potential “service areas” for the Fire

Program’s regional fire specialists, fire modeling augmented by geostatistical selection of mete-

orological stations, quantification of additional disturbance mechanisms that would be likely

to influence fire severity, identification and valuation of regionally relevant resources and

assets, and, finally, integration of these components to quantify overall relative risk to regional

resources and assets. Each modeling aspect is described in this section. A schematic of the pro-

cesses is shown in Fig 1.

2.1 Delineation of Fire Service Areas

Phase 1 of this project delineated Fire Service Areas (FSAs), within Oregon. These constitute

the geographic assignments of the Fire Program’s six regional fire specialists, as supported by

the Oregon Legislature. Spatially constrained multivariate clustering (SCMC) [18] was utilized

to identify spatially continuous clusters that maximized internal homogeneity of climate, vege-

tation, topography, drought effects, values at risk to hazards, and frequency of wildfires. A

total of 13 variables, including 30-year normal values of PRISM climate parameters [19],

PLOS ONE A regional wildfire risk assessment tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0264826 March 8, 2022 3 / 32

https://doi.org/10.1371/journal.pone.0264826


topographic parameters, land cover type information from the U.S. National Land Cover

Database [20, 21], and historic fire frequencies derived from the Monitoring Trends in Burn

Severity (MTBS) database [22] were considered in the clustering procedure. (Table A in S1

Text).

All 13 variables were spatially aggregated to 900 m x 900 m resolution grids covering Ore-

gon. This medium resolution captured the spatial variability in sufficient detail to divide the

state into regions while accounting for the varying spatial resolution of the input datasets. One

thousand permutations of the SCMC algorithm were used to calculate cluster assignment

probabilities for each grid cell. Davies-Bouldin validity indices [23] were calculated to assure

that the imposed number of six clusters did not violate the inherent topology of the data. The

indices suggested that two or three clusters would most denote regions of similarity for our

variables of interest, but that six clusters (reflecting the number of positions funded by the Ore-

gon legislature) was an acceptable constraint with the corresponding validity index being in

the 50th percentile of all calculated indices for the range of 2 to 20 clusters.

While the primary purpose of Phase 1 was to delineate areas with similar wildfire hazard

characteristics, the FSA boundary lines also needed to serve as boundaries for the areas of

responsibility for the Extension Fire Program regional fire specialists. To facilitate manageabil-

ity, the original cluster lines were adjusted to existing political/administrative boundaries such

as city limits, county lines, or natural barriers (such as rivers or mountain ranges). Attempts

were made to shift boundaries only within areas not clearly aligned with a cluster (i.e., areas

Fig 1. Schematic overview of the processes conducted for the risk assessment.

https://doi.org/10.1371/journal.pone.0264826.g001
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with clustering probabilities less than 50%), but in a few cases the imposed geopolitical bound-

aries necessitated less than ideal alignment with clusters.

2.2 Modeling fire hazard

Phase 2 described, characterized, and quantified wildfire-related hazards within each FSA. It

utilized fire behavior modeling, burn probability calculations, and regionally specific valua-

tions of resources and assets at risk, as illustrated in Fig 1. FlamMap 6.0 [24], accessed through

the Interagency Fuel Treatment Decision Support System (IFTDSS) online front end, was

used to model burn probability and flame length binned into six fire intensity levels at a 30 m

x 30 m spatial resolution. IFTDSS provided a convenient online front-end to select geographic

areas and denote landcover, fuel moisture values, and other parameters required for the Flam-
Mapmodel runs, and to visualize the results [25]. FireFamilyPlus (ver. 4.2) [26] was used to

predict the 1-hour, 10-hour, and 100-hour, dead and live fuel moisture contents needed for

the model runs. A random ignition algorithm was applied in combination with the crown fire

model [27]. Modeled burn probabilities were used unaltered for further analysis without cali-

brations to historical burn probabilities, to avoid masking implications of weather modeling.

Meteorological data has a large effect on the results and accuracy of fire models [28, 29].

Our model utilized worst-case meteorological data instead of long-term average conditions to

parameterize the fire model runs. This was done to account for the increasing frequency and

severity of droughts and projected increase in air temperature in the Pacific Northwest and

thereby considering highest risk fire weather conditions as recorded by the stations for our

risk analyses. Moreover, if mean-based parameterizations are used, fire hazard can be poten-

tially underestimated for low frequency fire regimes as found in the coastal region of Oregon

where low-probability, high-consequence wildfires have recently destroyed significant

amounts of assets and resources [30].

One invaluable and frequently used source of meteorological data for fire modeling is the

Remote Automatic Weather Stations (RAWS) network, which provides data from weather sta-

tions across the conterminous United states [31]. Each RAWS station’s time series were ana-

lyzed and the five-day periods that were both hottest and driest were utilized as input to our

fire behavior model. This process was based on the hourly time series of relative humidity and

air temperature at each selected RAWS site using a 24-hour moving average filter to avoid

selection of data based on short peaks or outliers in the time series. The mode of the wind

direction and maximum wind speed during that period were also identified and utilized.

The LANDFIRE 2016 REMAP surface dataset was utilized [32, 33] for this study. A limita-

tion of this dataset is that sections of built-up areas containing numbers of structures that can

be close to burnable vegetation were classified as non-burnable in the fuel model layer. This

also applied to some sparsely built-up areas where structures and wildland intermixed within

Wildland-Urban Interface (WUI) areas and outskirts of towns and cities. Unfortunately, at the

time this study was conducted, no wildfire model was available to the authors that would have

incorporated buildings and structures in the simulation process.

To include these potentially fire prone areas, this assessment utilized an approach as pre-

sented by a previous assessment specifically applied to communities [17]. Grid cells in areas

around towns and cities, to which LANDFIRE assigned no value for burn probability and

flame length probability, were filled by spatially extrapolating the fire model results from

neighboring cells. During post-processing, two consecutive moving window filter steps (using

a 3 x 3 grid cells filter width) were applied to calculate burn probability and flame length prob-

ability values in those areas originally deemed non-burnable by the fire model. Grid cells with

surface water were re-assigned to zero burn probability in cases where those areas were
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included in the moving window width. Fire model results remained unchanged in all other

grid cells.

2.2.1 Geostatistical selection of meteorological stations. Choosing the most applicable

weather station(s) can be challenging, as neighboring stations often exhibit differing patterns

in wind fields and other meteorological data. In regions with heterogeneous terrain, topogra-

phy and changing land cover influence a station’s meteorology and climatology on a local

scale. Modeling that simply relies upon nearest stations may not be the most appropriate. In

practice, fire modeling efforts occasionally rely upon local knowledge to identify the most suit-

able weather station to draw upon, but such expertise is not available in every region and is

prone to being bias from personal perception, potentially compromising the reproducibility of

data selection and corresponding results.

This assessment utilized a solely data-driven approach to identify RAWS stations represen-

tative of climate and landscape characteristics for specific areas around stations. The 163

RAWS stations available in our study area were each assessed using the 13 variables utilized in

Phase 1 in order to determine the spatial extent to which each meteorological station repre-

sented areas with similar climate, topography, land cover, and historical fire frequencies. The

resulting polygons were then used as selected model sub-domains within which the fire behav-

ior model runs were conducted.

An initial circular area with a radius of 2 km (12.6 km2) was assigned around each weather

station’s location, and the averages and standard deviations of each of the 13 Phase 1 descrip-

tive variables calculated. At this proximity the respective climate, land cover, and burn history,

as well as the measured meteorological data of the RAWS station were assumed to be represen-

tative of the area surrounding that station. The process was then repeated with the radii

extended by 2 km, and the increase of the variance calculated for each variable in each 900 m x

900 m grid within each cluster area.

With each iteration, the area assigned to that station was extended to adjacent grid cells

only when both of two statistical constraints were met: 1) the maximum variance among all

clustered variables increased by no more than 5% within respective grid cells, and 2) with all

13 variables considered simultaneously, the clustered variables’ centroid position remained

stable within the 13-dimensional vector space. If the normalized Euclidean distance from any

variable’s average compared to the normalized position of the centroid during the previous

step increased by no more than 5%, the corresponding grid cells in that direction were added

to the area attributed to that RAWS station. The sprawl clustering process resulted in polygons

of varying shapes that reflected areas best represented by each station. Model sub-domains

around the RAWS were manually extended when the limited availability of stations would oth-

erwise have led to blank areas in our model domain.

Finally, the number of RAWS stations utilized in the assessment was reduced by eliminat-

ing stations whose areas were overlain by other equally or more representative stations. Based

on maximum spatial coverage, 50 sub-domains and the weather stations representative of

those areas were selected to cover all six FSAs. The statistical boundary values used were

selected empirically and signify the best compromise between a suitably large extent of the

model sub-domains and homogeneity within the model sub-domains in terms of climate con-

ditions, landcover, and topography. The 30 m x 30 m results of all sub-domains were then

merged to fully cover every FSA. The gridded sub-domain results for burn probability and

flame length probabilities (six flame length classes) were merged, using the average for areas

where grid cells of different model sub-domains overlapped. To account for unavoidable

seams where some fire model sub-domains overlapped results of other, adjacent fire model

sub-domains, a moving window filter was applied with a filter width of 10 grid cells. The fil-

tered values were then rescaled to the original range of the results to avoid an alteration of the
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actual probabilities due to the low-pass filter procedure, while at the same time producing

more realistic spatial transitions of the burn probabilities.

2.2.2 Quantification of additional disturbance hazards. The EFPRRA incorporated

three hazard factors not considered by the fire behavior model, but which potentially increase

fire susceptibility and associated losses to values and resources at risk in certain areas. These

additional hazard factors addressed long-term climate drought conditions; insects or diseases

affecting vegetation (and, hence, fuel composition, condition, and potential to increase wild-

land fire intensity and severity); and the abundance of European gorse (Ulex europaeus, and

invasive and highly flammable species). While this list of additional hazard factors was not

intended to be complete (further research would be needed for more accurate quantifications

of specific hazards as part of fire models and fuel models), the approach allowed for a quantita-

tive consideration of factors with potential to increase fire probability, intensity, severity, and

negative consequences [34–36].

The climatic trend we measured and utilized as a model input represented the increased

probability of the wildland fire hazard resulting in higher negative consequences to values at

risk. Stronger and prolonged droughts as observed in our study area, and that are expected to

occur in the near future, exacerbate this potential and impact [8, 37–39]. The values of

drought, insect and disease, and flammable shrubs were added to the Integrated Additional

Risks Factor (IARF) to quantify the associated increase of wildfire susceptibility of the potential

fuel.

Long-term drought was assessed using the Self-Calibrated Palmer Drought Severity Index

(SCPDSI), which is locally calibrated to facilitate spatial comparability [40].

SCPDSI data were available as monthly gridded values with a spatial resolution of 2.5 arc

minutes, roughly corresponding to 4 km x 4 km in our study area [41]. For each grid cell, aver-

age indices were calculated representing dry conditions during the Oregon peak fire season

(July—September) over the last six years. This alleviated effects of year-to-year variability

while capturing changing climate trends and correlated fuel conditions [7] during recent

years. Since the SCPDSI denotes dry conditions as negative values, grid cells with positive val-

ues were omitted and negative values were multiplied by -1 (to make them positive), then

scaled from 1 to 1.25. Thus, presence of long-term drought within a grid cell could enhance

that area’s risk rating by up to 25%.

The additional hazard potential imposed by effects of insects and diseases on the vegetation

(as fuel) was incorporated using a long-term plot dataset provided by the USDA Forest Service

through the 2018 Update of the National Insect and Disease Composite Risk Map [42]. Using

the 2018 dataset update, only plots where conditions exhibited a remaining risk through

insects or diseases were considered exposed to additive fire risk in our assessment.

Invasive vegetation can also have strong effects on wildfire in affected areas due to altered

fuel composition and potential to burn [43, 44]. While a variety of invasive plant species can

be found in Oregon, the EFPRRA focused on European gorse as an exemplary, highly flamma-

ble, and regionally important species. Found along the Oregon coast in portions of FSAs 1 and

4, it increases the fire hazard [45] in areas otherwise considered of relatively low fire hazard

[16, 17, 46]. Occurrence probability maps based on field samples [47] and a random forest

model [48, 49] were used to quantify additional potential risk at grid cells where gorse occur-

rence was classified as very likely or highly likely (with α> 0.5 indicating high confidence val-

ues for the model predictions). Where present, an additional risk factor of 0.25 was added to

the grid cell.

The values of the three additional risk factors were combined to derive an integrated addi-

tional risks factor (IARF), to which drought contributed 1.0 to 1.25, and presence of insects/
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disease and/or gorse contributed a maximum of 0.25. Thus, the IARF could increase fire risk

ratings by a maximum of 50% (see Eq 4).

2.2.3 Resources and assets at risk. Twenty-one Highly Valued Resources and Assets

(HVRA) were considered in the EFPRRA. Note that the set of HVRAs used makes no claim to

be complete yet incorporates a wide range of assets and resources potentially at risk through

wildfire in the study area. Furthermore, we introduce distinct and intentionally non-universal

asset and resource valuations as used for the Extension Service Fire Program within Oregon

for which the risk to selected resources and assets was calculated. The HVRA considered in

this study and conducted on the FSA scale included measures such as population density,

WUI, several building/structure categories, infrastructure considerations such as power and

communication lines, recreation resources, agriculture, timber, wildlife and endangered spe-

cies habitat, and water-related resources/considerations.

The values at risk side of risk assessments were developed by collaborating with the Oregon

State University-based Institute for Natural Resources (INR). INR specializes in the synthesis

of expertise, research findings, data, tools, and information. We worked cooperatively with

INR to identify and valuate our initial values at risk. Each HVRA was identified as a resource

or asset known to be of value to Oregonians for which georeferenced data was available at 30

m x 30 m (or better) resolution (Table 1).

HVRAs with continuous datasets were linearized to a 10-class integer scale ranging from 0

(no value) to 9 (highest value). HVRA datasets denoting presence or absence of a resource (by

grid cell) were mapped as binary values (0 if absent, weighted value if present) and valuations

Table 1. Scaled valuations for HVRA subcategories by FSA.

HVRA main category HVRA sub-category Scaled valuation

FSA 1 FSA 2 FSA 3 FSA 4 FSA 5 FSA 6

People Population density Grid cell explicit (range: 0–9)

Wildland urban interface 5 5 5 5 5 5

Buildings Building density Grid cell explicit (range: 0–9)

Historic buildings 6 6 6 6 6 6

Fire response buildings 7 7 8 7 8 9

Buildings with vulnerable people 9 9 9 9 9 9

Infrastructure Communication infrastructure 7 7 7 7 7 7

Power infrastructure Grid cell explicit (range: 0–9)

Transportation infrastructure 6 6 6 6 6 6

Recreation sites 2 3 2 2 2 2

Sawmills 4 3 5 4 5 5

Agriculture Agriculture Grid cell explicit (range: 0–9)

Timber Timber volume in harvestable areas Grid cell explicit (range: 0–9)

Habitat Habitat Grid cell explicit (range: 0–9)

Species Threatened, endangered and at-risk Grid cell explicit (range: 0–9)

Critical habitat for key species Grid cell explicit (range: 0–9)

Big game Grid cell explicit (range: 0–9)

Salmon 3 3 3 3 3 3

Water Drinking water from groundwater 5 6 5 6 6 5

Drinking water from surface water 4 4 4 4 4 4

Scenic waterways 3 3 3 3 3 3

Note that valuations by FSA are only provided for presence-absence datasets. Continuous datasets are scaled from 0 to 9 for each grid cell specifically and regional

differences across the state are incorporated into the respective HVRA raster datasets.

https://doi.org/10.1371/journal.pone.0264826.t001
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assigned from lookup matrices during processing. All valuations were gridded and aggregated

to 30 m x 30 m spatial resolution for each subcategory.

Whereas risk assessment models typically assign statewide values to resources and assets,

EFPRRA fine-tuned valuations regionally (at the FSA level) in recognition of the widely differ-

ent socio-economic conditions and ecosystem services provided in different parts of Oregon

[50, 51]. For instance, a hospital or fire station in a rural area (where these assets are scarce)

may merit a higher value assignment than those same resources in more populated areas that

benefit from greater numbers of the assets. The valuations were scaled relatively within each

HVRA main category, but not across main categories. For example, we weighted the value of

historic buildings in relative to fire response buildings, but we do not suggest that a mapped

value of 5 in the people category is equivalent to a mapped value of 5 in the timber category.

Additionally, HVRA weights and values were computed independently for each FSA to enable

each region to customize how it values its resources and assets. As such, a mapped value of 5 in

the timber category in FSA 1 is not necessarily the equivalent of that same value in FSA 2.

Therefore, weights and values calculated are relative to their FSAs rather than being equal

throughout the state. Table 1 provides valuations by category and FSA. Descriptions of HVRA

main categories follow.

The People HVRA main category assigned values for population density and WUI classifi-

cation. Population density estimates were obtained from the 2018 Land Scan USA Population

Database provided by U.S. Department of Homeland Security through the Homeland Infra-

structure Foundation-Level Data database (HIFLD) [52, 53].

Separate day and night gridded datasets were averaged into a single raster and values reclas-

sified based on a quantile classification. Population density was structured as a continuous

dataset with distinct values for each 30 x 30 m grid cell and therefore was not weighted by FSA.

WUI areas were assigned a valuation of 5 across all FSAs. WUI was considered of interme-

diate importance and no information was available to weight these areas differently in different

FSAs. WUI areas were represented as a presence-absence grid, based on a dataset released by

the USDA Forest Service for the conterminous United States [54] and updated in May 2020.

The Buildings HVRA included four elements: building density, historic buildings, fire

response buildings, and buildings with vulnerable people. The Building Density data layer pro-

vided the number of buildings per km2 across Oregon, with building locations extracted from

the 2018 Microsoft Building Footprint database created from satellite and aerial imagery using

the ResNet34 deep neural network [55]. The density values were rescaled to 0–9 using a quan-

tile classification (Table 2).

Table 2. Density-based valuation of buildings used for the risk assessment.

Buildings/km2 HVRA valuation

0 0

> 0–1 1

> 1–3 2

> 3–5 3

> 5–8 4

> 8–13 5

> 13–21 6

> 21–37 7

> 37–89 8

> 89–1633 9

https://doi.org/10.1371/journal.pone.0264826.t002
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Historic Buildings in Oregon were identified using the 2014 National Park Service National

Register of Historic Places Public Dataset [56]. Historic Buildings were assigned a scaled valua-

tion of 6 across all FSA regions because they are valuable but not considered as valuable as

emergency response buildings or buildings housing vulnerable people (Table 1).

Fire Response Buildings (fire departments) values ranged between 7 and 9, due to their

importance in responding to wildfire. They were weighted higher in FSA regions 3, 5 and 6

(eastern Oregon) because these regions featured fewer stations covering larger areas. Locations

of fire response buildings were obtained from the HIFLD repository [53].

The Buildings with Vulnerable People HVRA incorporated buildings merged from nine

separate spatial data sources (S2 Text) for medical facilities, shelters, schools, and nursing

homes. Buildings with vulnerable people were assigned the highest valuation (9) across all FSA

regions because they contain populations at high risk which would be susceptible to wildfire

impacts and difficult to evacuate during an emergency, regardless of their FSA location.

The Infrastructure HVRA main category was divided into five subcategories: communica-

tions; power; transportation; recreation; and sawmills (Table 1).

The Communication infrastructure data layer included locations of cellular towers, FM

transmission towers, AM transmission towers, microwave service towers, and various land

mobile transmission towers across the state from the HIFLD database. Communication infra-

structure was given a valuation of 7 across all FSAs due to its importance in coordinating

emergency response and informing the public of hazards.

The Power infrastructure HVRA included transmission lines and substations, wind tur-

bines, and power plants. Items in the power infrastructure HVRA dataset were assigned a valu-

ation of 0 where no power infrastructure exists, 3 where transmission lines were located, 6

where wind turbines were located, and a value of 9 where substations or power plants were

located. Where multiple power infrastructure facilities were mapped in the same grid cell, the

maximum of 9 was used as the final HVRA valuation. Power infrastructure was not weighted

by FSA but was grid cell-specific.

Transportation infrastructure was consistently valued at 6 because it is less valuable during

emergencies than communication infrastructure, but still important for commerce, evacua-

tion, and emergency response—all of which could be impacted by wildfire.

Recreation sites were assigned a value of 2 in all FSA regions except for FSA 2, where the

resource was given a value of 3 in recognition of its recreation sites (near population centers)

experiencing greater usage. The recreation sites HVRA data includes ski areas and other recre-

ation sites and facilities. Both datasets were compiled for the Pacific Northwest Quantitative

Wildfire Risk Assessment 2018 report [16] and original data layers were obtained by request

from the report authors.

Sawmills were considered a valuable element of the infrastructure HVRA main category

because of their local importance to the timber industry in Oregon [57]. Sawmills were given

ratings between 3 and 5, with highest values in FSA 3, 5, and 6 because of their higher relative

contributions to local economies and their sparse distribution in those regions (Table 1).

The Agriculture HVRA included crops of high economic value that would be vulnerable to

wildfire. Crops’ economic values were determined based on an annual assessment by the Ore-

gon Department of Agriculture [58]. Each Oregon crop was assigned a relative crop value

based on their economic value, their rank as a top-20 agriculture commodity, and their

national ranking of agricultural production. CropScape data, provided by the National Agricul-

tural Statistics Service [59, 60], was used to quantify the spatial distributions and types of crops

cultivated in Oregon for the year 2019. In addition, the spatial distribution of winter wheat

and caneberries from the 2017 and 2018 CropScape dataset were included because these crops

were not well represented in 2019 (their land areas had been mapped as fallow fields). Crop
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economic values were rated from 0 (no value) to 3 (highest value). Detailed valuations for all

crops considered are provided in the S1 Table.

The category Timber Volume in Harvestable Areas estimated the amount of timber avail-

able in forested lands where timber harvesting activities may occur. Timber volume was

derived from the 2014 Gradient Nearest Neighbor (GNN) forest structure map [61], which

estimated the volume (m3/ha) of live trees > = 2.5 cm diameter at breast height (ca. 1.37 m).

Areas not likely to provide timber were adjusted using the Protected Areas Database 2.0 [62],

which revealed national parks, wilderness areas, research natural areas, nature reserves, and

other protected areas. Areas excluded from timber harvest were those determined to have Gap

Analysis Program (GAP) [63] Status 1 or 2.

Accordingly, the GNN forest structure layer was clipped to set designated protected areas

(GAP status 1 or 2) to a value of 0, indicating no potential for timber harvest. For all other for-

ested grid cells, live tree volume estimates from the GNN were classified into 10 categories

(Table 3) on a scale from 0–9 based on quantiles of live tree volume. Classifications were done

separately for timber volume on the eastern side (FSA 3, FSA 5, and FSA 6) and western side

of the state (FSA 1, FSA 2, and FSA 4) as their relative productivities vary rather dramatically.

The Habitat HVRA assigned values, ranging from 0 to 9, to 77 different habitat types identi-

fied in the Oregon Statewide Habitat Map developed by the Oregon Biodiversity Information

Center [64, 65]. Details are provided in the S2 Table. Note that, for this assessment, western

juniper habitat was divided into “old” juniper and “other” juniper (primarily juniper expand-

ing into historic shrub steppe sites), as old juniper is generally protected during management

while other/expanding juniper is targeted for removal. Note also that while the habitat map

contains some information about forest structure it does not identify stocking density. As a

result, it fails to differentiate between fire-resistant/adapted stands of old ponderosa pine or

Douglas-fir and overstocked forests of mixed small and large trees which could have very dif-

ferent economic or societal values.

The Species HVRA main category included four subcategories: Threatened/endangered/at-

risk species; critical habitat for key species; big game; and salmon. The threatened, endangered

and at-risk species dataset was derived from the Element Occurrence Record (EOR) geodata-

base of the Oregon Biodiversity Information Center (OBIC) [66]. It contained over 38,000 rec-

ords, each identifying an at-risk species population. A total of 1751 species, each occurring in 1

to 5 FSAs, were identified.

Species with a status of “secure” or “probably secure” in Oregon were assigned ratings of 0.

Populations of endangered species that could be extirpated by wildfires, such as endangered

Table 3. Classification of timber volume for value assignment and fire response allocation.

Timber volume (m3/10000 m2) Value Class

East (FSA 3, 5, 6) West (FSA 1, 2, 4)

0 0 0

� 15 � 42 1

� 32 � 107 2

� 54 � 178 3

� 78 � 258 4

� 105 � 341 5

� 135 � 437 6

� 175 � 573 7

� 243 � 766 8

� 1614 � 6241 9

https://doi.org/10.1371/journal.pone.0264826.t003
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butterflies or federally listed species occurring in old-growth forests, were attributed a value of

9. Within each grid cell, values for each species present were summed, resulting in grid cell-

specific totals ranging from 0 to 72. This range was then reclassified to a 0 to 9 range (Table 4).

Critical Habitat for Key Species considered mapped habitat for 18 species listed by the US

Fish and Wildlife Service. Data was downloaded from the Environmental Conservation Online

System of the US Fish and Wildlife Service (https://ecos.fws.gov/ecp/report/table/critical-

habitat.html). A recently proposed species, the greater sage grouse (Centrocercus urophasia-
nus), was added to the list. Assigned values ranged from 0 to 2 (Table A in S3 Text). Where

habitats for species overlapped, scores were summed. For example, forested grid cells with

both spotted owl (Strix occidentalis) and marbled murrelet (Brachyramphus marmoratus) hab-

itat were assigned a value of 4, whereas grid cells with only one of the species scored a 2. The

range of summed values had a maximum of 6.

Big Game habitat summarized maps of winter range habitat for deer and for elk in Oregon

obtained from the Oregon Department of Fish and Wildlife web database (https://nrimp.dfw.

state.or.us/DataClearinghouse). The raster contains values from 0 to 2, with 0 values where no

deer or elk winter range habitat was mapped, a value of 1 where there was winter habitat for

either deer or elk, and a value of 2 for areas that provided both deer and elk winter habitat. The

dataset had a maximum value of 2, recognizing that other species in this HVRA category are

more valuable and vulnerable to wildfire.

Salmon habitat identified essential habitat for salmonids from a 2015 layer provided by the

Department of State Lands (DSL) and Oregon Department of Fish and Wildlife (ODFW),

available online as an ArcGIS service (https://chetco-new.dsl.state.or.us/arcgis/rest/services/

Maps/ESH_State/MapServer) but obtained directly from DSL for this project. The map was

used in lieu of the National Oceanic and Atmospheric Administration critical habitat maps of

federally listed salmon, primarily because the ORBIC EOR already included salmon streams

and rivers in Oregon. Additionally, the Essential Salmon Habitat map was specifically defined

in Oregon law (OAR 141-102-0030) as representing the state’s significant salmon areas.

Salmon were given a rating of 3 across all FSA regions, where present, because as an aquatic

species they were inherently less prone to direct wildfire damage, and most salmon species

were also captured in the threatened, endangered, and at-risk species subcategory.

The Water main HVRA category consisted of three subcategory layers: drinking water

from groundwater, drinking water from surface water, and scenic waterways. Drinking water

from groundwater was assigned values of 5 or 6 depending on the FSA (Table 1). Drinking

Water from Surface Water was rated as 4 across all FSA regions. Scenic Waterways were con-

sidered less vital than drinking water sources and valuated with 3 across all FSA regions.

Table 4. Composite valuations for the species category based on EOR.

Sum of attributes Classified valuation

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7–8 7

9–10 8

11–72 9

https://doi.org/10.1371/journal.pone.0264826.t004
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2.2.4 Fire response functions. Fire response functions quantify the consequential degree

of harm (or benefit) to a certain value at risk if exposed to fire with a certain intensity,

expressed as six flame length heights. EFPRRA response functions were primarily adopted

from the Pacific Northwest Quantitative Wildfire Risk Assessment 2018 [16] but were in some

instances refined or added to reflect FSA-specific conditions or expected outcomes. The

response functions consist of positive percentage values for beneficial effects and negative val-

ues for damaging effects. Each HVRA (Table 1) was represented by a matrix of response func-

tion values reflecting six flame length categories (0–0.6 m, 0.6–1.2 m, 1.2–1.8 m, 1.8–2.4 m,

2.4–3.65 m, and>3.65 m). Response functions modified or developed specifically for the

EFPRRA are shown in the S3 Table and can be summarized as follows:

• WUI response functions were obtained from [67], averaged across their three WUI types.

• Timber functions were segmented and adjusted to reflect differing conditions for the west-

ern (FSAs 1, 2, and 4) and eastern (FSAs 3, 5, and 6) sides of the state.

• HVRA grids related to density values such as housing density, population density, or timber

volume were assigned various sets of response functions for different density classes based

on quantiles of the distribution of density values.

• HVRA grids that refer to assets and resources with many sub-types, such as agriculture and

habitat, were assigned specific fire response values for each type of crop or habitat. For agri-

cultural resources, the response function values applied were based on an earlier, unpub-

lished project study at the Institute of Natural Resources at Oregon State University that

examined fire sensitivities of various groups of crops considering general sensitivity and irri-

gation status. Seventy-three crops cultivated in Oregon were assigned to four different fire

sensitivity classes. We adopted that classification and applied a 6 (flame lengths) x 4 (crop

fire sensitivity classes) response function array individually on the grid cells to account for

flame length and crop type.

2.2.5 Conditional flame length. Conditional flame length (Eq 1) was calculated as a

representation of relative risk independent of HVRA considerations. It provides a consolidated

estimate of fire intensity, incorporating all six flame length classes and was calculated as the

sum overall flame length occurrence probabilities according to:

X6

i¼1

FLPi � FLi; ð1Þ

where FLPi is the probability of fire with a specific flame length, FLi is the mid-point of that

flame length class, and i is the flame length class. An upper limit of 7.6 m was applied when cal-

culating the mid-point of FL6, the flame length class of 3.65 m and above.

2.2.6 FSA-specific overall relative risk calculations. For each FSA, regionally distinct

HVRA valuations, HVRA-specific fire response functions, and the fire behavior model results

were combined similarly to the approaches utilized in earlier regional and local fire risk assess-

ments [68–71]. First, risk for each HVRA (within a specific FSA) was calculated as:

Rj ¼
X6

i¼1

FLPi � RFij � RVj ð2Þ

Where:
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Rj = Risk associated with the jth HVRA (j = 1, . . ., 21) within the specific FSA being

modeled.

FLPi = Flame length probability for ith flame length class (i = 1, . . ., 6).

RFij = Response function associated with each combination of flame length and HVRA.

RVj = Valuation of asset/resource for a particular HVRA.

Next, the HVRA-specific risk assessments were summed to arrive at the Relative Risk for

each grid cell (again derived individually within each FSA).

RR ¼
X21

j¼1

Rj ð3Þ

Finally, the overall relative risk within each FSA was calculated for each 30 m x 30 m grid

cell by multiplying its relative risk, burn probability, and IARF:

ORR ¼ RR � BP � IARF; ð4Þ

where:

ORR = Overall relative risk

RR = Relative risk

BP = Burn probability

IARF = Integrated additional risks factor.

ORR lacks a direct physical meaning or unit. Rather, it comprises a scaling system for rela-

tive valuation and offers an integrative measure combining fire probability, fire severity, fire

sensitivity of each HVRA, and FSA-specific valuations of HVRAs into one interpretable value,

which in turn facilitates a quantitative risk assessment.

To account for regionally specific fire risks and values assigned to assets in differing regions

of the state, overall fire risk was modeled individually for each FSA. The five risk categories

(ranging from lowest risk to highest risk) were based on quantiles of ORR values of all grid

cells calculated for a specific FSA. This led to a classification of the relative integrated risk

value that addressed the regionally distinct combination of fire risk driven by burn probability

and flame length, as well as the FSAs’ specific values of assets and resources (Eq 4). Hence, a

resource potentially affected by fire damage and rated at being at highest risk to hazard in one

FSA could be assigned to a different risk class in another FSA. While potentially positive effects

of lower severity fires are considered through some of the response function values used for

the Timber HVRA (S3 Table) or the Deer & Elk Habitat HVRA, our ORR classification does

not include a “positive effect” bin.

Hence, if in summary effects were overall positive for a given grid-cell this would lead to a

assignment to the quantile-based lowest ORR class, including grid cells where the effects of a

fire would be beneficial for a specific HVRA included in the sum (Eq 3). We decided to use

this classification including five risk classes with no beneficial allocation in the final classifica-

tions system because a “positive effect” is not considered a risk and therefore is not specifically

labeled in our final ORR classification.

3. Results

3.1 Large-scale outcomes

Cluster assignment probabilities were generally high within each individual FSA, and lowest at

their margins. The exceptions occurred where FSA boundaries were shifted to align with geo-

political boundaries (typically county lines) or natural boundaries (e.g., rivers or mountain
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ridges). These regions formed the analysis areas for subsequent modeling. The final FSA delin-

eations and cluster assignment probabilities are shown in Fig 2.

Burn probability and conditional flame length are illustrated in Figs 3 and 4, respectively.

The modeled results of these large-scale spatial patterns strongly corresponded to climate and

vegetation gradients (particularly precipitation) within subregions: the mesic western part

dominated by coastal regions; the productive Douglas-fir forests in the Coast Range Moun-

tains and the western flank of the Cascade Mountains; the Willamette Valley; and the dry to

semiarid regions east of the Cascade Mountains crest. The spatial patterns, as shown in Figs 3

and 4, largely agree with other the recent burn probability and fire severity modelling efforts

conducted at the statewide scale [16, 17, 46]. Due to the difference in fire models employed

(FlamMap vs. FSim), and data preparation/post-processing (e.g., our model used unaltered

burn probabilities while some other models shifted burn probabilities towards historical fire

occurrence), the absolute values of burn probability and flame length differ between among

the studies within an expected range. Furthermore, due to the quantile-based scaling of our

overall risk classification (section 2.2.6), absolute values of burn probability and flame length

Fig 2. Cluster assignment probabilities of the SCMC procedure including the overlaid final FSA boundaries.

https://doi.org/10.1371/journal.pone.0264826.g002
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probability do not alter risk classifications but rather the relative differences among grid cells

within each FSA. Note that a detailed comparison among fire models was beyond this study’s

scope.

Most extreme conditional flame lengths were predicted for heavily forested (and thus high

fuel load) regions such as the Coast Range and Cascade Mountains. In particular, the densely

forested Siskiyou Mountains located in southwestern Oregon (FSA 4) featured dense, mixed

conifer forests highly susceptible to intense wildfires—results attributable both to high fuel

loads and low fuel moisture due to recurrent summer droughts.

The meteorological data we applied did not consider potential future changes of climate

that are expected to further exacerbate conditions for wildfires. Instead, our data represent

worst case conditions as already observed and recorded by weather stations, leading to results

reflective of conditions likely to recur more frequently in forthcoming years.

Fig 3. Burn probability for all FSAs using worst-case meteorological data on record during peak fire season from the 50 selected weather stations.

https://doi.org/10.1371/journal.pone.0264826.g003
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The IARF generally followed delineations of insect and disease issues which are often corre-

lated with long-term drought [72]. The exception is an area along the southern Oregon coast

which has been invaded by gorse (Fig 5).

A significant proportion of land in Oregon is privately owned, and risk levels associated

with private lands varied by FSA. Per Fig 6, the percentage of areas assigned to the highest

ORR category ranged from 11.8% (FSA 6) to 51.5% (FSA 3).

Fig 7 shows the distribution of ORR on private and public land in Oregon. The values show

that with exception of FSA 4, the largest percentages of public land are assigned to the high

ORR and highest ORR classes whereas the biggest portion of private areas is assigned to the

lower and lowest ORR classification which agrees with similar distributions found in recent

related studies [17, 30].

A detailed analyses of ORR findings are shown in subsections 3.2.1 to 3.2.6 for each FSA.

3.2 FSA-specific outcomes

3.2.1 FSA 1: Northwest coastal. FSA 1 comprises the northwestern coastal region of Ore-

gon and covers an area of 20265 km2. The region is characterized by the mesic forests of the

Coast Range mountains with high timber values and a sparsely populated coastline with tourist

infrastructure of high importance for the regional economy. Its average annual air temperature

is 10.6˚C. With 2063 mm the area features the highest annual precipitation values among the

FSAs, based on the 30-year normal of the 800 m resolution PRISM dataset. Its population den-

sity averages 15.3 people per km2.

Burn probability and conditional flame length were modeled as low to moderate within

FSA 1 (Figs 3a and 4a), and the area had a relatively low IARF (Fig 5a). The ORR ratings spe-

cific for FSA 1 (Fig 8a) revealed areas where HVRAs were prevalent, indicating areas of local

priority for wildfire risk reduction.

A large portion of the highest potential risk / highest value loss areas within FSA 1 appeared

within the Coast Range Mountains. This can be attributed to high fuel loads combined with

high timber value, potential habitat loss, and potential loss of threatened, endangered and at-

risk species.

Fig 9 shows the contributions of each ORR class to the total value loss of each main HVRA

group. The Infrastructure and Water HVRA main categories both contributed ca. 20% of the

value loss across all risk classes, indicating their homogeneous distribution across different fire

regimes in FSA 1. The Timber, Habitat, and Species HVRAs were the primary contributors to

highest risk ratings within this FSA.

3.2.2 FSA 2: Willamette Valley and Cascades. FSA 2 covers 32628 km2. Its strong west-

east gradients in climate and topography resulted in the largest variety of climate and vegeta-

tion of all FSAs. The western part of FSA 2 includes the Willamette Valley, where over 70% of

the state’s population resides. Agriculture, forested areas, and urban areas dominate the land

cover and use. The eastern portion of FSA 2 includes the northern segment of the Oregon Cas-

cade Mountain Range. This densely forested area’s western slopes are dominated by Douglas-

fir (Pseudotsuga menziesii). Ponderosa pine (Pinus ponderosa) dominates its drier eastern

slopes, which lie within the range’s rain shadow [73, 74]. FSA 2’s average annual air tempera-

ture is 9.4˚C and its 30-year mean annual precipitation is 1552 mm. Its population density

averages 87.1 people per km2, by far the highest of all FSAs.

The west-east gradient is noticeable for the burn probably of this FSA (Fig 3b). Its most

western extent includes significant areas modeled as having a burn probability of 0, as these

grid cells were categorized as non-burnable or not burned areas such as non-vegetated sur-

faces, water bodies, irrigated agricultural fields, or built-up areas for which no fuel model
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existed. Burn probability, in general, increased as in the more easterly extents of the FSA. The

IARF peaked in the norther portion of FSA 2 (Fig 5b), on the eastern slopes of the Cascades

and around Mount Hood—primarily attributable to insect and disease issues.

The midsection of the FSA was rated at elevated ORR due in large part due to predomi-

nance of agricultural HVRAs, while its dense population led to high ORR ratings associated

with people-related HVRAs near cities, towns, WUI zones, and related infrastructure. Cities

had a particularly striking effect on the FSA’s modeled ORR (Fig 8b). For instance, a large

(1020 km2) region southeast of Portland ranked in the highest ORR category due in part to its

high burn probability and high conditional flame length (related to timber conditions) and

amplified by HVRA-specific valuations associated with towns and infrastructure. Similarly,

areas near the outskirts of Eugene and Salem rated within the highest ORR class because of the

susceptibility to wildfire of HVRAs in those suburban and WUI zones. Zones of highest risk

extend east of these cities, where highways and associated WUI zones lead into forested areas

within the western Cascades foothills. The highest risk locations correspond well with

recorded losses of houses and infrastructure during Oregon’s 2020 fire season, which devas-

tated rural communities along those highways [10].

3.2.3 FSA 3: Northeast. FSA 3 covers an area of 55641 km2 and includes the Columbia

Basin, with its vast grasslands and agriculture areas, as well as the Blue and Wallowa Moun-

tains. Its population density is low (only 3.1 people per km2). Annual average precipitation is

relatively low (517 mm) and air temperature averages 8.1˚C. Although fuel reduction

Fig 4. Conditional flame length modeled for each FSA.

https://doi.org/10.1371/journal.pone.0264826.g004
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treatments have been conducted for decades in this region’s forested areas, they remain prone

to wildfires due to recurring summer droughts and frequent lightning storms [75–77].

Burn probability was relatively high to very high in much of FSA 3 (Fig 3c). This was partic-

ularly evident in the Columbia Basin region (northern extent of the FSA), which is subject to

dry and warm summer conditions in combination with high wind speeds of the Columbia

Gorge gap flow [78]. Very high burn probability was also evident in the FSA’s high desert

southeastern extent. High burn probability was also predicted for much of the FSA’s forested

mountain areas, which also featured the region’s highest anticipated flame lengths (Figs 3c and

4c). Additional risk factors (in this case long-term drought and forest health) were evident

throughout this (Fig 5c).

The resulting ORR ratings (Fig 8c) were heavily influenced by the underlying burn proba-

bilities, conditional flame lengths, and IARF. The HVRAs, particularly those for agriculture,

timber, and habitat, amplified the ratings (Fig 9c).

Fig 5. Spatial distribution of the IARF accounting for drought severity during the fire season, insect and disease infestation, and gorse

occurrence.

https://doi.org/10.1371/journal.pone.0264826.g005
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3.2.4 FSA 4: Southwest. FSA 4 covers a total area of 33780 km2, of which 67% is covered

by forest. In addition to timber management, significant land uses include agriculture and

recreation (e.g., Crater Lake, Oregon’s only National Park). The mean annual air temperature

is 10.3˚C and annual precipitation averages 1489 mm. The average population density is 14.8

Fig 6. Percentages of land owned and managed by different entities in areas with the highest ORR within each FSA. Entities with less than 1%

assigned to the highest risk class in any FSA were summarized as ‘Others’.

https://doi.org/10.1371/journal.pone.0264826.g006

Fig 7. ORR class allocations showing the percent of private and public land area, respectively, assigned to the risk

classes in FSA 1 to 6 (panel a to f).

https://doi.org/10.1371/journal.pone.0264826.g007
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people per km2, with most of the population residing in smaller towns along the coast and in

the few urban centers of Roseburg, Medford, Grants Pass, and Ashland that are scattered

across the otherwise sparsely populated region.

Due to recurring summer droughts, the densely forested Klamath and Siskiyou Mountains

are particularly prone to wildfire. Furthermore, the topography facilitates high wind speeds

through funnel and slope effects that intensify the heat, expanding the spread and growth of

wildfires [79, 80]. Accordingly, FSA 4 has experienced some of the largest and most damaging

wildfires on record in Oregon, including the Biscuit Fire in 2002 [81]. It was significantly

affected during the 2020 wildfire season [10].

Burn probabilities were modeled as high for much of the FSA (very high near Ashland),

and it had the greatest concentration of very high conditional flame lengths of all the FSAs

(Figs 3d and 4d). The portion of the IARF relating to drought and forest health were high

within the FSA’s eastern extent, and pockets of high IARF values appeared along its western

extent associated with Gorse invasion (Fig 5d).

Fig 8. Spatial distribution of overall relative risks in FSA1 to FSA 6 (panel a to f). Transparent areas show grid cells that were classified as non-

burnable or not burned by the fire model and consequently have no risk values assigned.

https://doi.org/10.1371/journal.pone.0264826.g008
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Large, continuous areas of highest ORR are noticeable in the southern central section of

FSA 4 (Fig 8d). The Timber, Habitat and Species HVRA main groups contributed significantly

to the ORR values across all ORR classes of FSA 4, whereas risks and associated value losses

that affect the Agriculture, People, and Buildings main groups were key factors in the high and

highest ORR grid cells (Fig 9d). Agriculture, concentrated around the cities of Medford and

Roseburg, also contributed to heightened ORR, as did their associated Building and People

HVRAs. This means those HVRAs are mostly located within areas of high burn probabilities

and conditional flame length, observations that should be of concern to local emergency

managers.

3.2.5 FSA 5: Central. With an area of 63023 km2 the central FSA is the largest region and

incorporates a variety of land cover types associated with its lengthy north-south extent. The

western portions of FSA 5 are characterized by vegetation and climate representative of the

eastern slopes of the Cascade Mountain Range. The vegetation cover in this forested area is

dominated by subalpine species at higher elevations, transitioning through mixed conifer for-

ests to lodgepole and ponderosa pine at lower elevations. Eastward, the vegetation is domi-

nated by open stands of western juniper (Juniperus occidentalis). Shrublands of big sagebrush

(Artemisia tridentata) and bitterbrush (Purshia tridentata) dominate as the climate gets drier

toward the east.

The eastern extent of FSA 5 exhibits dry and hot summers with most precipitation observed

from November through April [82]. The annual precipitation averages 460 mm and the

30-year mean air temperature is 7.2˚C. With 4.8 people per km2 the area is sparsely populated.

The city of Bend is the FSA’s only large urban center. Its population of roughly 98,000 resi-

dents, significant infrastructure, and industry make Bend the socio-economical supply center

of the otherwise rural region. Bend exhibits a growing wildland urban interface which makes

its outskirts particularly susceptible to wildfire threats [4, 83].

Fig 9. Percent ORR distribution across all risk classes with respect to the HVRA main categories for FSA 1 to 6 (panel a to f).

https://doi.org/10.1371/journal.pone.0264826.g009
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Burn probabilities were modeled as high to very high across the FSA except for three areas

associated with higher elevation forests (Fig 3e). Conditional flame lengths were typically low

to moderate, with exceptions in the FSA’s southern and northern extents (Fig 4e). The IARF,

however, was elevated throughout much of the FSA, reflecting long-term drought and forest

health conditions (Fig 5e).

Fig 8e shows highest ORR to the WUI areas north, east, and south of Bend, driven by Peo-

ple and Buildings HVRAs, and numerous areas of high or highest risk associated with Tim-

bered Areas (Fig 9e) in the Eastern Cascades Slopes and Foothill ecoregion [84, 85].

An extensive area (ca. 11000 km2) around and east of Klamath Falls, characterized by tim-

ber (70%) and agricultural land use (30%), was rated primarily within the highest ORR class

(Fig 8e). Between and adjacent to forested areas, bitterbrush dominates in the western half

while juniper and sagebrush dominates in the eastern portion of this area.

3.2.6 Southeast FSA 6. FSA 6 covers an area of 45890 km2 and incorporates the Oregon

High Desert region located in the northwest of the Great Basin. This semiarid area is charac-

terized by volcanic plains broken by local mountain ranges typical of the Great Basin. The

open steppe is dominated by bitterbrush (Purshia tridentata) and sagebrush (Artemisia triden-
tata), with interspersed rabbit brush (Chrysothamnus spp.) and bunchgrasses (Festuca, Poa,

Eriocoma, and Elymus spp.). The northwestern corner of FSA 6 includes ca. 2000 km2 of the

southern Blue Mountains ecoregion, where the land cover changes to western juniper and

ponderosa pine woodlands. Average annual precipitation within the FSA is 321 mm and the

air temperature averages 8.0˚C. The area is the least populated FSA in Oregon, with only 0.3

people per km2.

The burn probability values show large areas with highest values in the FSA’s eastern

extents (Fig 3f). Rangeland is the primary agricultural land use within this segment of FSA 6.

The relative low abundance of timber resulted in low overall conditional flame lengths. The

area has been affected by large grassland fires attributed to its semiarid climate and an

increased spread of invasive species [86]. IARF values associated with long-term drought were

of significance in portions of the FSA, and the forested area in the FSA’s northwestern extent

was subject to insects and disease (Fig 5f).

Drinking Water from Groundwater Sources is highly valuable in this predominantly semi-

arid FSA and exposed to the highest ORR to an extent that exceeds the associated value loss of

all other FSAs due to the relative shortage and importance of ground water in this region (Fig

9f). The FSA’s main population centers of Burns and Hines, co-located in the northwestern

quadrant of FSA 6, have combined populations of about 4300 inhabitants. Although small,

their associated HVRAs shifted the ORR in their vicinities to the highest risk category. Some

unnaturally circular-shaped zones with the highest ORR classification in FSA 6 (Fig 8f) are

caused by habitat areas allocated for endangered, threatened, and at-risk species found in

those areas.

3.3 Landscape-scale validation of risk analyses

Klamath and Lake Counties, Oregon, cover an area of over 3.64 million hectares, of which

over 70% is federally managed and the remainder primarily privately managed. The EFPRRA

projects an ORR in the highest risk category for much of that same area (Fig 10a) whereas the

QWRA results indicate a low risk for all of Klamath and Lake County (Fig 10b). QWRA results

indicate a low risk for all of Klamath and Lake County (Fig 10b), whereas the EFPRRA projects

ORR in the highest risk category for much of that same area (Fig 10a).

From 2015 to 2021, the region completed three landscape-scale, cross-boundary projects

designed to implement the goals of the National Cohesive Wildland Fire Management Strategy
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Fig 10. Regional comparison for Klamath and Lake County Oregon between overall relative risk as assigned by

EFPRRA (a) and the overall wildfire risk calculated by QWRA 2018 [16] (b).

https://doi.org/10.1371/journal.pone.0264826.g010
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(https://www.forestsandrangelands.gov/strategy/). Under the auspices of the Klamath Lake

Forest Health Partnership (KLFHP) (https://www.klfhp.org/), a non-profit organization with

diverse local and regional public/private partners, over 364000 hectares (also approximately

70% public and 30% private) were treated to mitigate fire risk to resources and assets. Private

land areas within the projects were extensively mapped during treatment planning using

1-meter resolution imagery [86], and later ground-validated, to identify landcover type, vege-

tation density, and age of dominant vegetation. Wildfire risk mitigation plans were then devel-

oped based on these data.

Fig 11 illustrates the fire risk assessed on approximately 16000 hectares of private lands

within the Chiloquin Community Forest and Fire Project (CCFFP), surrounding the commu-

nity of Chiloquin, north of Klamath Falls [87]. Note the preponderance of area categorized as

high risk, and its alignment with risk indicated by the EFPRRA (Fig 10a). The relative risk

assessment completed is consistent with the inventory and mapping conducted during the

landscape assessments. This effort is used as a tool for risk assessment and encourage it to be

used with up-to-date landform layers and locally derived HVRA metrics.

4. Discussion

The western United States benefits from several excellent fire risk models, each with its own

emphasis. The QWRA [16, 69] and West Wide Wildfire Risk Assessment [88] focused on

statewide or a multi-state evaluation of overall fire risk and implications for core sets of

resources and assets. Other models facilitate analysis of tradeoffs among ecosystem services,

fire suppression, and/or mitigation of wildfire impacts [89–91] or focus on risk assessments

specifically for human populations [17].

The EFPRRA presented here was designed to allow customized risk assessments at spatial

scales varying from a subregion of the state (FSA) to individual municipalities, as a tool tai-

lored to the needs of the Extension Service Fire Program. The refined meteorological data

available from our analysis of RAWS allows the model to reflect weather patterns most relevant

to our objectives. In our case, we chose worst-case scenarios with respect to heat and drought,

which align with current climate trends [7, 8, 36] and are likely appropriate for future model-

ing efforts. While we drew baseline land condition data from the LandFire data repository,

other local data could be substituted leading to truly customized and current burn probabilities

and expected flame lengths. This allows the model to reflect landcover changes associated with

wildfires or forest management activities. Our risk model builds in additional capacity through

integration of additional risks factors. Its approach is straightforward and can be refined for

risks specific to any locality or region. Finally, and perhaps most importantly, our method of

valuing resources and assets (HVRAs) is fully intended to be adjusted where needed to best

represent stakeholders within their regions of interest.

The HVRAs incorporated into this model broadly represent those impacted by wildfire

within Oregon, but they are by no means all-inclusive nor are they exclusive. Users can add or

remove HVRAs from the model and can modify weighting factors to better represent constitu-

ent perspectives. Capacity for customization was a key consideration in the Extension Fire

Program’s decision to develop this risk assessment model.

Individual private landowners, local governments, or nation states are not able to signifi-

cantly modify underlying climate issues (doing so will require systematic and comprehensive

global efforts), but they can take more localized steps to mitigate wildfire intensity and risk to

people, resources, and assets. For example, active treatments can be applied to reduce vegeta-

tive fuel loads and restore ecosystem composition and heterogeneity. Education and regulatory

actions can be utilized to minimize unintended ignitions, building codes/requirements
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adjusted to control housing density in fire-prone areas, and practices promoted that reduce

fire risk to homes and home landscapes. Fire risks and implications of wildfire, however, are

not limited to any one landowner or land management entity—fires ignore political and own-

ership boundaries. A significant proportion of land in Oregon is privately owned, and risk

Fig 11. Ground-based fire risk assessed on the landscape scale on private lands within the Chiloquin Community Forest and Fire Project.

https://doi.org/10.1371/journal.pone.0264826.g011
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levels associated with private lands varied by FSA in our assessment. The percentage of private

land assigned to the highest ORR category ranged from 11.8% (FSA 6) to 51.5% (FSA 3),

underlining the importance of collaboration across physical, administrative, and ownership

boundaries for management and treatments aimed to protect resources from wildfire damage.

Our modelling approach offers Oregon (and other) communities a highly scalable and cus-

tomizable approach to identifying areas of wildfire risk, as a means of prioritizing risk mitiga-

tion efforts. Regardless of whether those communities choose this model or another, we

reemphasize the urgency of taking active measures to reduce wildfire risk as the western

United States’ forest conditions and changing climate demand concerted and collaborative

attention.
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